
Mathematisches Forschungsinstitut Oberwolfach

Report No. 16/2019

DOI: 10.4171/OWR/2019/16

Mini-Workshop: Recent Progress in Path Integration on
Graphs and Manifolds

Organized by
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Introduction by the Organizers

The workshop Recent Progress in Path Integration on Graphs and Manifolds has
been organised by Batu Güneysu (Bonn), Matthias Keller (Potsdam), Kazumasa
Kuwada (Sendai) and Anton Thalmaier (Luxembourg). It was attended by 14
participants across Europe and Australia and it allowed young researchers to
meet leading experts in the field. Especially, the diverse backgrounds – analy-
sis, geometry, mathematical physics and probability theory – created a productive
atmosphere leading to discussions on new developments, advance projects and
establishing new collaborations.

The workshop activities consisted of 11 extended talks which were enhanced by
intensive collaboration of the participants in the late afternoon and the evenings.
Each of the talks and especially the ones contributed by the young researchers
were followed by a lively discussion of the new developments.
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Path integral formulae are a universal phenomenon playing a central role in
various fields of mathematics: Let us consider the Schrödinger operator −~2∆+V
in the Hilbert space L

2(Rm) of square integrable functions Ψ : Rm → C, where
V : Rm → R is an (electric) potential. Then, following R. Feynman (1948), for all
Ψ ∈ L

2(Rm), t ≥ 0, x ∈ Rm, one expects a path integral formula of the form

eit(~
2∆−V )Ψ(x) =

1

N(t)

∫
Ψ(γ(t))e

i
~
St(γ)D

xγ,(1)

where

• i =
√
−1 is the imaginary unit,

• ∆ =
∑m
j=1 ∂

2
j is the Laplace operator,

• St(γ) is the classical action functional

St(γ) =

∫ t

0

|γ̇(s)|2ds−
∫ t

0

V (γ(s))ds,

• Dx is the “Lebesgue measure” on the space C([0,∞),Rm) of continuous
paths γ : [0,∞) → R

m, where Dx is assumed to be concentrated on paths
γ with γ(0) = x,

• N(t) is a normalization constant such that

1

N(t)

∫
e
i
~
St(γ)D

xγ = 1.

Note that

R
m × (0,∞) ∋ (x, t) 7−→ Ψt(x) := eit(~

2∆−V )Ψ(x) ∈ C

is the unique solution of the Schrödinger equation

∂tΨt(x) = i
(
~
2∆ − V (x)

)
Ψt(x), Ψ0(x) = Ψ(x),

so that according to the basic axiomatic framework of quantum mechanics, Ψt is
interpreted as the state at time t, given the initial state has been Ψ. Feynman’s
path integral gives a brilliant intuition behind the rather abstract (but mathemat-
ically rigorous) operator theoretic framework behind quantum mechanics: in order
to calculate the quantum mechanical state at the time t, one has to integrate over
all possible trajectories, where each trajectory γ is weighted according to the com-

plex number e
i
~
St(γ). Moreover, as ~ → 0 the expression e

i
~
St(γ) oscillates rapidly

and the γ’s (which are precisely the classical trajectories of the system!) make the
action stationary and give the main contribution in the semiclassical limit.

While Feynman’s path integral formula is very illustrative, it lacks of mathematical
rigour for several reasons:

• the action St(γ) of an arbitrary continuous path γ is infinite,
• the normalization constant N(t) is infinite, when interpreted literally in

Feynman’s derivation of the formula,
• it can be proven that there exits no translation invariant measure on
C([0,∞),Rm), so the formal Lebesgue measure Dx does not exist.
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One way to prevent these mathematical difficulties has been noted by M. Kac in
1949, based on N. Wiener’s prior mathematical work on measure and probability
theory. Let us set ~ = 1 for simplicity. In Kac’s approach, one switches from

(
eit(∆/2−V )

)
t≥0

⊂ L (L2(Rm)) := bounded operators in L
2(Rm),

to the heat semigroup
(
et(∆/2−V )

)
t≥0

⊂ L (L2(Rm)),

which is also called a Schrödinger semigroup in the mathematical physics litera-
ture, thus making the substitution t→ it (’Wick rotation’). Formally, the RHS of
(1) becomes

1

N(t)

∫

C([0,∞),Rm)

Ψ(γ(t)) exp

(
−
∫ t

0

|γ̇(s)|2ds−
∫ t

0

V (γ(s))ds

)
D
xγ.

In a sense that can be made precise, the product of the three ’bad’ expressions

1

N(t)
, exp

(
−
∫ t

0

|γ̇(s)|2ds

)
, D

xγ,

becomes a well-defined probability measure Px on C([0,∞),Rm), the Wiener mea-
sure. It is the law of a Brownian motion in Rm starting from x and thus directly
linked with probability theory. The outcome of these observations is the mathe-
matically completely rigorous Feynman-Kac path integral formula

et(∆/2−V )Ψ(x) =

∫
Ψ(γ(t)) exp

(
−
∫ t

0

V (γ(s))ds

)
P
x(dγ).

Using the (unnormalized) pinned Wiener measures Px,yt , so that Px,yt is essentially
the law of a Brownian bridge from starting in x and ending up in y at the time
t, a formula which is equivalent to the Feynman-Kac formula can be given at the
level of integral kernels:

et(∆/2−V )(x, y) =

∫
exp

(
−
∫ t

0

V (γ(s))ds

)
P
x,y
t (dγ).

In the past decades this formula has been generalized to several directions. The
central observation behind these extensions is as follows: in order to define the
analog of Brownian motion or, equivalently, the family of Wiener measures Px, one
starts from a (densely defined) closed nonnegative quadratic form Q in L

2(X,µ),
where X is a locally compact space and µ is a Radon measure on X . By Kato’s
abstract theory, such a Q canonically induces a self-adjoint operator H ≥ 0 in
L
2(X,µ). Then under mild additional analytic assumptions on Q that turns the

latter into a so called regular Dirichlet form, Fukushima’s theory shows the exis-
tence of an (essentially uniquely determined) strong Markov family of probability

measures Px, x ∈ X , on the space of right-continuous paths γ : [0,∞) → X̂ having
left-limits, such that

e−tHΨ(x) =

∫
Ψ(γ(t))Px(dγ).(2)
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Above, X̂ = X∪{∞} denotes a one-point compactification of X . Formula (2) sug-
gests to consider H as some abstract Laplace operator, and in fact the Feynman-
Kac formula remains to hold in the form

e−t(H+V )Ψ(x) =

∫
Ψ(γ(t)) exp

(
−
∫ t

0

V (γ(s))ds

)
P
x(dγ),

for a very large class of potentials V : X → R. For example, if X is a (weighted)
Riemannian manifold with µ its (weighted) volume measure, then one can take

Q(f) :=

∫
|∇f |2dµ, dom(Q) = W 1,2

0 (X),

and then H corresponds to the Friedrich’s realization of the Laplace-Beltrami
operator −∆ and the Px’s correspond to the Riemannian Brownian motion (having
a drift in the weighted case). The main strength of Fukushima’s theory, however,
is that one can deal simultaneously with local and nonlocal situations such as for
example the Laplacian on a weighted infinite graph, or a sufficiently well-behaved
pseudodifferential operator (leading to processes with jumps in both cases). An
important question in the above abstract context is that of stochastic completeness,
namely whether or not one has

P
x{γ : γ(t) ∈ X} = 1 for all x ∈ X , t ≥ 0.

For example, there exist geodesically complete Riemannian manifolds which are
not stochastically complete. On the other hand, a very general result by A.
Grigor’yan from 1987 states that on geodesically complete Riemannian mani-
folds, stochastic completeness boils down to a volume growth assumption, which
is satisfied if the Ricci curvature is sufficiently bounded from below, say by a
constant. The validity of a natural discrete analog of Grigor’yan’s result on an
infinite weighted graph has turned out be a very subtle business and could only
be established recently.

In many geometric situations one can obtain Feynman-Kac formulae for more
general operators than those of the form −∆ + V : most importantly, there is a
Feynman-Kac formula for the semigroups e−t(∇

∗∇+V ) that are induced by covari-
ant Schrödinger operators of the form ∇∗∇ + V acting on metric vector bundles
over Riemannian manifolds (and even for bundles over weighted graphs). This class
includes the physically very relevant class of Schrödinger operators with magnetic
fields, in which case the corresponding Feynman-Kac formula is called Feynman-
Kac-Ito formula.

Moreover, there even exist probabilistic formulae for the derivatives ∇e−t(∇∗
∇+V )

, usually refered to as Bismut derivative formula. Some of the state-of-the-art
results for geometric inequalities on noncompact Riemannian manifolds, such as
the Calderon-Zygmund inequality or the parabolic Harnack inequality, are based
on such derivative formulae.

Finally, we would like to mention that (covariant) Feynman-Kac formulae have
played an important role in topology, too: for example, in 1984, J.-M. Bismut has
given a probabilistic proof of the Atiyah-Singer index theorem, which is based on



Mini-Workshop: Recent Progress in Path Integration 1007

such a covariant Feynman-Kac formula. Moreover, around 1985, Atiyah, Bismut
and Witten have found a very surprising heuristic connection between a hypo-
thetical Duistermaat-Heckman type localization formula on the loop space of a
spin manifold and the Atiyah-Singer index theorem. A variant of this heuristic
localization formula has recently been implemented using methods from cyclic ho-
mology and Chen’s iterated integrals. Moreover, in the past decade the heuristic
Duistermaat-Heckman localization formula has led to the development of the hy-
poelliptic Laplacian and variants thereof, providing a new powerful machinery in
geometric analysis.

Filled with deep sadness we dedicate this mini-workshop to our friend, colleague
and coorganizer Kazumasa Kuwada who unexpectedly passed away at the end of
last year.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
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Abstracts

Loop spaces and index theory

Jean-Michel Bismut

The purpose of the talk was to give a historical account of the connections between
loop spaces and index theory as seen through the speaker’s eyes, and to explain
how these two subjects have cross-fertilized each other.

The starting point was a talk given by M.F. Atiyah at a conference in honor of
L. Schwartz in 1983, which was published in [A85], in which Atiyah described ideas
communicated to him by Witten. If X is a compact oriented spin manifold of even
dimension, let STX = STX+ ⊕ STX− be the corresponding Z2-graded vector bundle

of spinors. Let DX be the Dirac operator acting on C∞
(
X,STX

)
, that exchanges

positive and negative spinors. The McKean-Singer formula [MS67] asserts that if
IndDX

+ is the index of DX
+ , for any t > 0,

IndDX
+ = Trs

[
exp

(
−tDX,2/2

)]
.

Let LX be the smooth loop space of X , i.e., LX is the set of smooth maps
x· : S1 → X . Then LX can be made into a Riemannian manifold, equipped
with the obvious L2 metric. Also S1 acts isometrically on LX , and K (x) = ẋ is
the corresponding Killing vector field, whose zero set is exactly the manifold X .
Let K ′ be the associated 1 form. Let dK = d + iK be the equivariant de Rham
operator, which is such that d2K = LK . Since LKK

′ = 0, then dK (dKK
′). Also

dKK
′ = |K|2 + dK ′.

If E (x) is the energy of x ∈ LX , then E (x) = |K|2 /2.
For t > 0, set

αt = exp (−dKK ′/2t) .

Then dKαt = 0.
The starting point of Atiyah’s argument is that

Trs
[
exp

(
−tDX,2/2

)]
=

∫

LX

αt.

This equality has to be taken with a touch of salt. Indeed the left-hand side is well
defined, the right-hand side not at all, or not so much. Passing from the left-hand
side to the right-hand side is done by expressing the supertrace in the left-hand side
as the integral on the continuous loop space of a well-defined S1-invariant measure
µt using standard Brownian motion on X , and by evaluating the supertrace of
the parallel transport on STX along a loop x· as an infinite dimensional Pfaffian.
While µt is just S1-invariant, αt vanishes under dK , which is much stronger.

In [B85], I showed that if
(
E, gE,∇E

)
is a Hermitian vector bundle with con-

nection, and if DX still denotes the Dirac operator acting on C∞
(
X,STX ⊗ E

)
,
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we still have a more general formal equality,

Trs
[
exp

(
−tDX,2/2

)]
=

∫

LX

αt ∧ β,

where β is a canonical dK-closed form on LX associated with the loop vector
bundle LE on LX . The restriction of β to X turns out be the Chern character
form ch

(
E,∇E

)
. Also, we still have dK (αt ∧ β) = 0.

For the above formulas to make sense, the loop space LX should be thought as
even dimensional and orientable. In the talk, I showed that the orientability of X
makes that LX is even-dimensional, and I referred to [A85] for a proof that X is
spin implies the orientability of LX .

The point about these formal equalities is that they have a surprising predic-
tive power. Indeed, assume temporarily that LX is a compact even dimensional
oriented Riemannian manifold, equipped as above with an isometric action of S1

generated by a Killing vector field K. Let αt be as above, and let β be a dK-
closed form on LX . The localization formulas of Duistermaat-Heckman [DH82],
Berline-Vergne [BeV83] assert that

∫

LX

αt ∧ β =

∫

X

β

eK
(
NX/LX

) ,

where eK
(
NX/LX

)
is the equivariant Euler class of the normal bundle NX/LX .

As shown in [A85, B85], if LX is indeed the loop space of X , we have the
identity

1

eK
(
NX/LX

) = Â (TX) ,

so that a formal application of the above formula leads to

Ind
(
DX

+

)
= Trs

[
exp

(
−tDX,2

)]
=

∫

X

Â (TX) ch (E) ,

a true formula.
This was already puzzling enough. One seemed to have at our disposal two

kinds of proofs for the Atiyah-Singer index theorem for Dirac operators: the heat
equation proof in all its variants [Gi74, ABP73], that include Getzler’s proof [G86],
based on the asymptotics as t → 0 of the heat kernel on the diagonal, and the
‘fantastic cancellations’ as t→ 0 of the supertrace of the heat kernel anticipated by
McKean-Singer [MS67], and a direct formal proof based on the above localization
formulas.

In [B86b], we reconciled the two points of view. While originally, we had tried
to import in an infinite dimensional setting the existing proofs of localization
in equivariant cohomology, the opposite turns out to be true: when interpreted
geometrically, the heat equation method is the universal model of a proof of local-
ization formulas in equivariant cohomology that also works in finite dimensions.
In a finite dimensional context, we showed that as t→ 0, we have the convergence
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of currents on LX ,

αt →
δX

eK
(
NX/LX ,∇X/LX

) ,

where eK
(
NX/LX ,∇X/LX

)
is the Chern-Weil representative of the Euler class

eK
(
NCX/LX

)
associated with the connection ∇NX/LX that comes from the Levi-

Civita connection on TLX . When properly interpreted in infinite dimensions, the
above ‘implies’ the ‘fantastic cancellations’ anticipated by McKean-Singer [MS67].
In parallel, we gave a probabilistic proof of the local index theorem [B84a, B84b].

Even though 35 years have passed, there is still a basic misunderstanding on
the significance of the above. The point is not to give a nonrigorous easy proof of
a known difficult result, but to reinterpret a mysterious known analytic result in
geometric terms, and to build up on this geometric understanding to prove new
results.

For an illustration of some of the applications of the above line of thought, we
refer to our review paper [B11a], in which applications to the local families index
theorem and to holomorphic torsion are outlined.

We briefly explained some of these applications. One is the local index theorem
for families of Dirac operators [B86a] based on Quillen’s superconnections [Q85b].

If LX is instead taken to be compact and finite dimensional, in [B11a], the
canonical construction of an odd current ǫ on LX is given that solves the equation
of currents

dKǫ =
δX

eK
(
NX/LX ,∇NX/LX

) − 1,

that refines on the localization formulas. If we consider a family of such X , and
integrate the current ǫ long the fiber, we get odd forms on the base.

By going back to the original infinite dimensional setting, these forms, which
should be thought as integrals of currents on the loop space LX , have impor-
tant analytic and geometric significance. Considerable knowledge can be gained
through this loop space interpretation. The degree 1 component of such forms
can be viewed as a connection form on the determinant bundle of the family
[Q85a, BF86a, BF86b].

If in the above X is instead odd dimensional, LX is now ‘odd dimensional’. As
‘shown’ in [B11a], the integral on LX of ǫ is a fundamental spectral invariant of
X , the eta invariant introduced in Atiyah-Patodi-Singer [APS75].

If X is a complex Kähler manifold, LX is also a complex Kähler manifold,
and K is a holomorphic vector field. We have a natural splitting dK = ∂K +
∂K . As shown in [B11a], the above equation of currents is replaced by a kind of
Poincaré-Lelong equation, where dK is replaced by ∂K∂K , and the integral on LX
of the corresponding current is the holomorphic analytic torsion of LX of Ray-
Singer [RS73]. Again this knowledge, which seems a first sight to be formal, has
considerable predictive power.

Along such lines, we were led to the construction of the hypoelliptic Laplacian,
and its applications to the evaluation of semisimple orbital integrals [B05, BL08,
B11b], subjects on which I could not say a word, in which ideas coming from path
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integrals, probability theory, and the Malliavin calculus play again a fundamental
role.
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Birkhäuser/Springer, New York, 2011.

[B11b] J.-M. Bismut. Hypoelliptic Laplacian and orbital integrals, volume 177 of Annals of
Mathematics Studies. Princeton University Press, Princeton, NJ, 2011.

[BF86a] J.-M. Bismut and D.S. Freed. The analysis of elliptic families. I. Metrics and connections
on determinant bundles. Comm. Math. Phys., 106(1):159–176, 1986.

[BF86b] J.-M. Bismut and D.S. Freed. The analysis of elliptic families. II. Dirac operators, eta
invariants, and the holonomy theorem. Comm. Math. Phys., 107(1):103–163, 1986.

[BL08] J.-M. Bismut and G. Lebeau. The hypoelliptic Laplacian and Ray-Singer metrics, vol-

ume 167 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ,
2008.
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Ruelle zeta function, resonance, and Anosov flow

Shu Shen

1. The Fried conjecture

Let X be a closed manifold. Recall that a fixed point x ∈ X of a diffeomorphism
φ : X → X is called non degenerate if det(1 − Dφ(x))|TxX 6= 0. The Lefschetz
formula tells us that if φ is a diffeomorphism of X with only non degenerate fixed
points, then

dimX∑

i=0

(−1)iTr
[
φ∗|Hi(X)

]
=

∑

x∈Fix(φ)

ǫx,(1)

where ǫx is the Lefschetz index defined by

ǫx = sgn det(1 −Dφ(x))|TxX .(2)

Fried asked if there is a Lefschetz-like formula for flows (φt)t∈R, i.e.,

certain topological invariant =
∑

γ:closed orbits

certain index of γ.(3)

Note that there are two kinds of closed orbits: the trivial closed orbits, i.e., φtx = x
for all t ∈ R, and the non trivial closed orbits. For a non trivial closed orbit γ,
denote by ℓγ ∈ (0,∞) and mγ ∈ N its period and its multiplicity.

Assume:

A.1) The flow (φt)t∈R has no trivial closed orbits;
A.2) The flow (φt)t∈R has only non degenerate non trivial closed orbits. It

means that if γ is a non trivial closed orbit with period ℓγ , then for any
x ∈ γ, det(1 −Dφℓγ (x))|TxX/RV (x) 6= 0, where V is the genereting vector
field of (φt)t∈R;

A.3) There is C > 0, for any T ≥ 0, we have

|{γ : ℓγ ≤ T }| ≤ CeCT .(4)

Note that Assumption A.1) implies that the Euler characteristic number of X
vanishes. For a flow (φt)t∈R under Assumptions A.1)-A.3), Fried conjectured
a Lefschetz-like formula (or more precisely a twisted Lefschetz-like formula): if
ρ : π1(X) → U(r) is a unitary representation of the fundamental group of X , then

logTX(F ) =
∑

γ

ǫγ
mγ

Tr[ρ(γ)],(5)

where TX(F ) is the analytic torsion of the unitarily flat vector bundle F associated
to ρ. However, the sum in the above formula does not nessecerily converge. To
regularize the sum, we introduce the Ruelle zeta function for the dynamical system
(φt)t∈R with twist ρ : π1(X) → GLr(C) defined for Re(s) ≫ 1 by

Rρ(s) = exp

(
∑

γ

ǫγ
mγ

Tr[ρ(γ)]e−sℓγ

)
.(6)
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Now, we can state the Fried conjecture [F87, F95] in a precise way.

B.1) for any representation ρ : π1(X) → GLr(C), the Ruelle zeta function
Rρ(s) has a meromorphic extension to C;

B.2) if the representation ρ : π1(X) → U(r) is unitary such that H ·(X,F ) = 0,
then the Ruelle zeta function Rρ(s) is regular at s = 0, so that

|Rρ(0)| = TX(F ).(7)

The above conjecture was solved by Fried [F86a, F86b] for the geodesic flow on
the unit tangent bundle of a hyperbolic manifold. In [S18], following previous con-
tributions by Moscovici-Stanton [MSt91], using Bismut’s orbital integral formula
[B11], the author affirmed the Fried conjecture for the geodesic flow on the unit
tangent bundle of a closed locally symmetric manifold. In [SY17], the authors
made a further generalisation to closed locally symmetric orbifolds.

2. Anosov flow

A flow (φt)t∈R with generating vector field V is called Anosov, if there is a φt-
invariant continuous splitting

TX = RV ⊕ Eu ⊕ Es(8)

of C0-vector bundles on X and there exist C > 0, θ > 0, and a Riemannian metric
on X such that for v ∈ Eux , v′ ∈ Esx, and t ≥ 0, we have

|Dφ−t(x)v| ≤ Ce−θt |v| , |Dφt(x)v′| ≤ Ce−θt |v′| .(9)

By (8) and (9), Assumptions A.1) and A.2) are satisfied. By a simple estimate on
recurrence, Assumption A.3) is also satisfied.

Take a flat vector bundle F with holonomy ρ : π1(X) → GLr(C). The Lie
derivation LV is a first order differential operator acting on Ω·(X,F ). Fix a
Riemannian metric on X and a Hermitian metric on F . Let 〈, 〉L2 be the L2-
metric on Ω·(X,F ). It is elementary to see that there is C ≥ 0 such that for any
u ∈ Ω·(X,F ),

Re〈LV u, u〉L2 ≥ −C|u|2L2,(10)

and also that LV has a unique natural closed extension in the sense that the
minimal and the maximal closed extensions coincide. In particular, for Re(s) ≫ 1,

(s+ LV )−1 : L2(X,Λ·(T ∗X) ⊗ F ) → L2(X,Λ·(T ∗X) ⊗ F )(11)

is a holomorphic family of bounded operators.
We can state the main results :

C.1) The operator (s+LV )−1 : Ω·(X,F ) → D′(X,Λ·(T ∗X)⊗F ), which is well
defined when Re(s) ≫ 1, has a meromorphic extension to C. The poles
are called resonances.

C.2) The Ruelle zeta function Rρ(s) has a meromorphic extension to C, whose
zeros and poles are contained in the resonance set. In particular, if 0 is
not a resonance, then Rρ(0) is a well defined non zero complex number.
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C.3) Assume that 0 is not a resonance of V . If V ′ is a vector field close enough
to V in the C∞-sense, then1

RV
′

ρ (0) = RVρ (0),(12)

where RVρ and RV
′

ρ are the Ruelle zeta functions for the flows induced
respectively by V and V ′.

The result C.1) was shown by Butterley-Liverani [BuL07], Faure-Sjöstrand
[FaSj11], and Adam [Ad18]. All the cited proofs are based on the introduction of
Anisotropic spaces. The proofs of C.2) were given by Giulietti-Liverani-Pollicott
[GiLP13] and also by Dyatlov-Zworski [DyZ16]. Both of the proofs use the Atiyah-
Bott-Guillmin trace formula in an essential way. The stability property C.3) is due
to Dang-Guillarmou-Rivière-Shen [DGRS18]. It is based on a variation methods,
which can also be obtained by a super symmetric argument [S19].
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Dimension-free Harnack inequalities for Feynman-Kac semigroups

James Thompson

Using tools from stochastic analysis, we prove various derivative formulas, gradi-
ent estimates and Harnack inequalities for Feynman-Kac semigroups with possibly
unbounded potentials. The setting is that of a complete and connected Riemann-
ian manifold M with Laplace-Beltrami operator ∆. We suppose V is a smooth
function which is, for simplicity, bounded below and denote by PVt f the mini-
mal semigroup generated by the operator 1

2∆ − V acting on bounded measurable
functions f via the Feynman-Kac formula

PVt f(x) = E

[
e−

∫ t
0
V (Xs(x))dsf(Xt(x))1{t<ζ(x)}

]

for all t ≥ 0, where X(x) denotes a Brownian motion on M starting at x ∈ M
with explosion time ζ(x). Reasoning at the level of local martingales, we start by
proving Bismut-type differentiation formulas for PVt f . In particular, denote by
// the stochastic parallel transport along the paths of X(x) and by B the anti-
development of // to TxM . Then B is a Brownian motion on TxM starting at the
origin. Denote by W the solution to the covariant ordinary differential equation
DWs = − 1

2Ric♯Ws along the paths of X(x) with initial condition W0 = idTxM .
Suppose D is a regular domain in M and denote by τD(x) the first exit time of

X(x) from D. Set V
x
s := e−

∫
s
0
V (Xr(x))dr for s ≥ 0. Then, using Itô’s formula, we

prove that if h a bounded adapted process with paths belonging to the Cameron-
Martin space L1,2([0, t]; Aut(TxM)), such that h0 = 1, hs = 0 for s ≥ τD(x) ∧ t
and E[

∫ τD(x)∧t

0
|k̇s|2ds] <∞, then

(dPVt f)x = −E

[
V
x
t f(Xt(x))1{t<ζ(x)}

∫ t

0

〈Wsḣs, //sdBs〉 + dV (Wshs)ds

]

for all t ≥ 0. For suitable f , this formula can be used to prove the uniform
boundedness of the derivative dPVt f which in turn yields a gradient estimate of
the form

|∇PVt f | ≤ e−KtPVt |∇f | + ‖∇V ‖∞
(

1 − e−Kt

K

)
PVt |f |

which is equivalent to Ric ≥ 2K for some K ∈ R. We prove that for non-negative
V , this gradient estimate implies that for all bounded non-negative measurable
functions f and p > 1 we have

(PVt f)p(x) ≤ (PVt f
p)(y) exp

[
pd2(x, y)

2(p− 1)C1(t,K)t
+
td(x, y)‖∇V ‖∞

2C2(t,K)

]
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for all x, y ∈M and t > 0, where

C1(t,K) :=
e2Kt − 1

2Kt
, C2(t,K) :=

Kt

2
coth

(
Kt

2

)

and where d denotes the Riemannian distance. This is the first version of F.-
Y. Wang’s dimension-free Harnack inequality [4] to be proven for Feynman-Kac
semigroups. We can similarly derive dimension-free shift-Harnack inequalities [5],
using an integration by parts formula for the Feynman-Kac semigroup acting on
the codifferential of a smooth 1-form.
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Counter-intuitive approximations

Christian Bär

(joint work with Bernhard Hanke)

This talk describes the phenomenon that many maps can be approximated by
maps with slightly worse regularity but which have unexpected additional proper-
ties. The prototype for such a result is the classical Nash-Kuiper theorem which
ensures that short embeddings of Riemannian manifolds into Euclidean space can
be approximated by isometric C1-embeddings [4, 3].

The talk is based on [1].
To formulate the result precisely, we denote by

• V a smooth manifold;
• π : X → V a smooth vector bundle;
• k ∈ N a positive integer;
• πk : JkX → V the k-jet bundle;
• Γ a subsheaf of the sheaf of Ck-sections of X ;
• f a Ck-section on V ;
• N a neighborhood of f in the strong Ck−1-topology.

Recall the natural commutative diagram of jet bundles:

JkX
πk,k−1

//

πk

!!
❉❉

❉❉
❉❉

❉❉
❉ Jk−1X

πk−1

{{✇✇
✇✇
✇✇
✇✇
✇

V
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Here πk and πk−1 are vector bundle projections while πk,k−1 : JkX → Jk−1X is
an affine bundle.

We set JkΓ := {jkγ(p) | γ is a local section of Γ, defined near p, p ∈ V } ⊂
JkX .

Theorem. Assume that for each p ∈ V there is an open neighborhood W of
jk−1f(p) in Jk−1X and a continuous map σW : W → JkX such that

• πk,k−1 ◦ σW = idW ;
• σW (ω) ∈ JkΓ for each ω ∈W .

Then there exists a section f̂ of X → V with the following properties:

• f̂ ∈ Ck−1,1
loc (V,X);

• f̂ ∈ N ;

• f̂ |U ∈ Γ(U) where U ⊂ V is open and dense.

Example 1. We apply the theorem with the following choices: V = R, X is the
trivial line bundle so that sections are nothing but real-valued functions, k = 1,
and Γ is the sheaf of smooth functions with constant derivative K where K is a
given constant. The strong C0-neighborhood of f is given by N = {h ∈ C0(R) |
|f − h| < ε}. The theorem yields:

For any C1-function f : [0, 1] → R, any ε > 0 and any K ∈ R there exists a

Lipschitz function f̂ : [0, 1] → R such that:

• |f − f̂ | < ε;

• f̂ is smooth and satisfies f̂ ′ = K on an open dense subset of [0, 1].

If we apply this to f(t) = t, K = 0 and ε = 0.0001 then we get a Lipschitz

function f̂ : [0, 1] → R with f̂(0) < 0.0001, f̂(1) > 0.9999 and f̂ ′ = 0 on an open
dense subset. Note that Lipschitz functions are differentiable almost everywhere
by Rademacher’s theorem and the fundamental theorem of calculus holds. Thus
we have ∫ 1

0

f̂ ′(x) dx = f̂(1) − f̂(0) > 0.9998

which, at first glance, seems to violate f̂ ′ = 0 on the open dense subset. The point
is that open dense subsets need not have full measure, so there is no contradiction.

Clearly, f̂ cannot be C1 in this case.
This function is not to be confused with the Cantor function. The Cantor

function is a Hölder continuous function [0, 1] → [0, 1] with Hölder exponent α =
ln 2/ ln 3. It has vanishing derivative on an open subset of full measure but it is
not absolutely continuous. Hence the fundamental theorem of calculus cannot be
applied and the Cantor function is not Lipschitz.

Example 2. We apply the theorem with the following choices: Let V be an
analytic surface, let X be the trivial R3-bundle so that sections are maps V → R3.
Let k = 2 and Γ be the sheaf of analytic embeddings with induced Gauss curvature
K where, again, K is a given constant. The theorem yields:
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Let f : V →֒ R
3 be a C2-embedding and let N be a neighborhood of f in the

strong C1-topology. Then there exists a C1,1-embedding f̂ : V →֒ R
3 in N which

is analytic and has constant Gauss curvature K on an open dense subset of V .

The Gauss-Bonnet theorem holds for f̂ but does not lead to a contradiction

because the open dense subset need not have full measure. The regularity of f̂
cannot be improved from C1,1 to C2 because then the Gauss curvature would be
continuous and hence equal to K everywhere which then would contradict Gauss-
Bonnet.

Example 3. As a third application we show:
Let K ∈ R. Each differentiable manifold of dimension ≥ 2 has a complete C1,1

loc -
Riemannian metric which is smooth and has constant sectional curvature ≡ K on
an open dense subset.

Again, such a metric cannot be C2 in most cases.

The proof of the theorem is based on “weak flexibility”, a concept introducted
by Gromov in his book [2], see the exercise on p. 111. A full solution to this
exercise can also be found in [1].
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Recent Progress in Supersymmetric Path Integrals

Matthias Ludewig

(joint work with Batu Güneysu, Florian Hanisch)

Introduction. More than 30 years ago, it was observed by Alvarez-Gaumé
[AG84], Atiyah [Ati85] and Witten that there is a very short and conceptual,
but formal, i.e. non-rigorous, proof of the Atiyah-Singer index theorem using a
supersymmetric version of the Feynman path integral. Reformulating the super-
geometry appearing in the work of Alvarez-Gaumé in the language of differential
forms, Atiyah is led to consider the differential form integral

(1) I(θ)
formally

:=

∫

LX

e−S+ω ∧ θ

over the loop space of a Riemannian (spin) manifold X , for suitable differential
forms θ ∈ Ω(LX), where

(2) S(γ) =
1

2

∫

S1

|γ̇(t)|2dt and ωγ [v, w] :=

∫

S1

〈
v(t),∇γ̇w(t)

〉
dt
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are the usual energy functional, respectively the canonical two-form on the loop
space. Atiyah proceeds with a series of formal manipulations allowing him to write
(1) as a Wiener integral; then, using the Feynman-Kac formula, he identifies this
integral with the supertrace of the heat semigroup associated to the Dirac operator
and thus (via the McKean-Singer formula) with the index of the Dirac operator.

On the other hand, the loop space has a natural S1-action by rotation of loops,
so if the differential form e−S∧θ is closed with respect to the equivariant differential
dK = d + iK (where K = γ̇ is the generating vector field of the action), one for-
mally applies a Duistermaat-Heckmann type formula to this infinite-dimensional
situation, in order to localize the integral to the fixed point set (i.e. the set of
constant loops) with respect to the action. Now there is an obvious inclusion map
ι : X → LX identifying X with these fixed points, which yields the localization
formula

(3) I(θ) =

∫

X

Â(X) ∧ ι∗θ.

It was observed by Bismut [Bis85] that this can be used to (formally) prove the
twisted Atiyah-Singer theorem, by considering special differential forms β on LX
defined from the data of a vector bundle with connection on X , which today are
called Bismut-Chern characters.

Our work. At the Mini-Workshop in Oberwolfach, we reported on a recent
project that carries out a rigorous construction of such a supersymmetric path
integral map. The map should have the following properties.

(i) It should be defined on some large subset Ωint(LX) of integrable forms,
which at least includes the Bismut-Chern characters β defined by Bismut.

(ii) For any form θ ∈ Ωint(LX) with dKθ = 0, I should satisfy the localization
formula (3).

We remark that in particular, (ii) implies that I is coclosed with respect to dK .
Of course, these properties do not fix I uniquely, since e.g. the functional I0(θ),
defined as the right hand side of (3) satisfies both requirements tautologically
(even with Ωint(LX) = Ω(LX)). To make this a reasonable problem, we therefore
require the following rather heuristic property.

(iii) I is given by formula (1) in a suitable sense.

Our construction of such a map I consists of two parts that will be sketched now.

The first construction. In a first series of papers with Florian Hanisch [HL17a,
HL17b], we construct an integral map I satisfying (iii): Following along the lines
of Atiyah’s original exposition, we replace the differential form integral (1) by an
integral over the measure e−Sdγ (which is identified with the Wiener measure).
It then remains to determine the “top degree part” of the mixed differential form
eω ∧ θ, for suitable differential forms θ. Under the condition that X is spin, we
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arrive at the expression

[
eω ∧ θ1 ∧ · · · ∧ θN

]
top

=
∑

σ∈SN

sgn(σ)

∫

∆N

str
(

[γ‖1τN ]Σ
N∏

j=1

c
(
θσj (τj)

)
[γ‖τjτj−1

]Σ
)

dτ,

where SN is the N -th symmetric group, [γ‖ts]Σ denotes the parallel transport in
the spinor bundle along γ, and c denotes Clifford multiplication. Interpreting the
parallel transport in the stochastic sense, we can integrate with respect to the
Wiener measure W on the continuous loop space LcX to obtain the definition

(4) I(θ) :=

∫

LcX

[
eω ∧ θ

]
top

exp

(
−1

8

∫

S1

scal bigl(γ(s)
)
ds

)
dW(γ)

for suitable differential forms θ. This generalizes a definition earlier given by John
Lott [Lot87].

The second construction. It is then a challenge to show that the map I defined
in (4), which by construction satisfies (iii), in fact satisfies the properties (i)-(ii) as
well. To this end, in a joint paper with Batu Güneysu, we develelop a second, more
algebraic description of the integral map. A surprising result of our endeavors is
that the path integral map turns out be precisely the Chern character of the Dirac
operator, in a certain setting of non-commutative geometry. This version of the
path integral map will be a cochain on the bar complex1

(5) B
(
Ω(X)

)
=

∞⊕

N=0

Ω(X)[1]⊗N .

This complex has two differentials: One coming from the usual de-Rham differen-
tial on Ω(X) and one, the bar differential, taking into account the multiplication
on Ω(X). It is related to the space of differential forms on the loop space by Chen’s
iterated integral map

ρ : B
(
Ω(X)

)
−→ Ω(LX),

which is a chain map when restricted to the subspace B
♯(Ω(X)) ⊂ B(Ω(X)) of

cyclic chains (c.f. [Che73]). Using this map, a closed cochain on B(Ω(X)) is then
essentially the same as an equivariantly closed cochain on im(ρ) ⊂ Ω(LX).

Now the bar complex B(Ω) can be defined for any abstract dg algebra Ω, by
the same formula (5). In the paper [GL19], we develop a general theory of Chern
characters for so-called Fredholm modules over Ω, a generalization of the well-
known concept of Fredholm modules introduced by Atiyah, which abstracts the
notion of an elliptic operator. Now if X is a spin manifold, there is a canonical
Fredholm module over Ω(X) determined by the Dirac operator D over X , and we
can form its Chern character Ch(D), which is a closed cochain on B

♯(Ω(X)).
We prove that Ch(D) vanishes identically on ker(ρ), hence we can define its

push-forward ρ∗Ch(D). This cochain satisfies property (ii) of the iterated integral
map by construction (since Ch(D) is closed and ρ is a chain map), but not yet
property one. For the latter, we have to pass to a certain extended bar complex

1Here Ω(X)[1] is the same as Ω(X) as a vector space, but with degrees shifted by one.
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B(ΩT(X)) and consider the extended iterated integral map ρT defined by Getzler,
Jones and Petrack [GJP91]. It follows from their work (together with some analytic
considerations from our paper) that the image of ρT contains the Bismut-Chern
characters β; moreover, the Chern character Ch(D) extends to this larger extended
complex. The result is then the following.

Theorem. The domain of the integral map I defined in (4) contains the image of
ρT. Moreover, the (extended) Chern character Ch(D) coincides with the pullback
ρ∗
T
I of I via the extended iterated integral map.

In other words, the two constructions of the supersymmetric path integral yield
the same result. By the properties of Ch(D), this integral verifies the properties
(i)-(iii); at the same time, our work uncovers intricate mathematics working in
the background of the supersymmetric path integral and displays the integral as
a Chern character, a quite fundamental object associated to the Dirac operator.
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Scattering theory for the Hodge-Laplacian without assumptions on
the injectivity radius

Robert Baumgarth

We report on an ongoing research project. We prove only using an integral criterion
the existence and completeness of the Wave operators

W±(∆
(j)
h ,∆(j)

g , Ig,h) = lim
t→±∞

eit∆
(j)
h Ig,he−it∆

(j)
g Pac(−∆(j)

g )

corresponding to the Friedrich’s extension of the Hodge-Laplacian ∆
(j)
ν acting

on differential j-forms, for ν ∈ {g, h}, induced by two quasi-isometric Riemannian
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metrics g and h on an open smooth manifold M . In particular, this result provides
a criterion for the absolutely continuous spectra

σac(∆
(j)
g ) = σac(∆

(j)
h )

of ∆
(j)
ν to coincide. The proof is based on a gradient estimate obtained by a

probabilistic Bismut-type formula for the exterior derivative and the codifferential
of the heat semigroup defined by spectral calculus. By this localised formulae, the
integral criterion only requires on a function defined in terms of local bounds on
the Weitzenböck curvature term and some upper local control on the heat kernel
acting on functions, but no control on the injectivity radii.

Let us omit the metric in what follows. We work on the special bundle
E =

∧
T
∗M →M with its natural metric

∇ := ∇
∧

T
∗M :=

dimM⊕

j=0

∇
∧j

T
∗M

and Clifford action c : TM → End (
∧
T
∗M), c(α)β := α∧β−α♯ β. The Hodge-

Laplacian ∆ is related to the Connection Laplacian tr∇2 by the Weitzenböck
formula

∆ = tr∇2 + R,(1)

where R ∈ Γ(EndΩC∞(M)) is a symmetric field of endomorphisms. Acting on dif-
ferential j-forms, the field of endomorphisms is specified by an index
R(j) := R

∣∣
Ωj

C∞
(M,g)

. Note that R(1) = Ric and R(0) = 0. Let Q ∈ End (
∧

T
∗
xM)

be the solution to the ordinary differential equation

d

dt
Qt = −1

2
R//tQt, Q0 = id∧

T∗
xM

,

along the paths of X(x), where R//t := //−1
t R ◦ //t. The composition Q ◦ //−1 is

called the damped parallel transport along the paths of X(x).
Let X(x) be a Brownian motion on M starting at x ∈M and ζ(x) its maximal

lifetime. Then [2, Theorem 6.1], for any α ∈ ΩL2(M, g) and v ∈
∧
TxM , we have

the following Bismut-type formulae

〈(dPsα)x, v〉 = −E

〈
//−1
s α(Xs(x))1{s<ζ(x)},Qs

∫ s

0

Q−1
r (dBr Qr ℓ̇r)

〉
,(2)

〈(δPsα)x, v〉 = −E

〈
//−1
s α(Xs(x))1{s<ζ(x)},Qs

∫ s

0

Q−1
r (dBr ∧ Qr ℓ̇r)

〉
,(3)

where

• τ(x) < ζ(x) is the first exit time of X(x) from a relatively compact neigh-
bourhood D in M ,

• dB := //−1 ◦ dX(x) is a Brownian motion in TxM , i.e. the associated
antidevelopment of the Brownian motion X(x),
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• (ℓr)r∈[0,s] is any adapted process in
∧
TxM with absolutely continuous

paths such that for some arbitrary small ε > 0

E

(

∫ (s−ε)∧τ(x)

0

∣

∣

∣
ℓ̇r

∣

∣

∣

2

dr

)1/2

< ∞ and ℓ0 = v, ℓr = 0 for all r ≥ (s− ε) ∧ τ (x).

Let us consider the special case of two quasi-isometric metrics, a conformal
metric change, namely, given a smooth function ψ : M → R, we define another
metric by gψ := e2ψg.

Then our main result reads as follows: Setting Ψg(x, s) as a function defined
only in terms of local bounds on R and Φg(x, s) = supy∈M ps(x, y) <∞ the heat
kernel on functions. Let ψ, |dψ|g be bounded and for some s ∈ (0,∞) and both

ν ∈ {g, h}
∫

sinh |2ψ(x)|Ψν(x, s)Φν(x, s)volν(dx) <∞.(4)

Then the wave operators W±(∆gψ ,∆g, Ig,gψ ) exist and are complete, and one has
σac(∆g) = σac(∆gψ ).
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[3] B. Güneysu, Batu, Covariant Schrödinger Semigroups on Riemannian Manifolds, Springer,
(2017).
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Couplings, gradient estimates and Logarithmic Sobolev inequalitiy for
Langevin bridges

Max von Renesse

(joint work with Giovanni Conforti)

We present quantitative results about the bridges of the Langevin dynamics and
the associated reciprocal processes. These results can be seen as counterparts of
well known characterizations of convexity properties of drift potentials for sto-
chastic differential equations but now for the associated bridge processes. They
include an equivalence between gradient estimates for bridge semigroups and cou-
plings, comparison principles, bounds of the distance between bridges of different
Langevin dynamics, and a Logarithmic Sobolev inequality for bridge measures. In
contrast to the SDE case these estimates are shown to characterize a convexity
of an effective potential appearing in a novel Feynman-Kac representation for the
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bridge measure on path space. – More specifically, we consider the family of brigde
measures P x,y−T,T induced from solutions to the SDE

dXt = −∇U(Xt)dt+ dBt, X−T = x

conditioned to the event {XT = y}. Introducing the derived potential

U :=
1

2
|∇U |2 − 1

2
∆U

one of our main results reads as follows.

Theorem 1. The following are equivalent for α > 0:

(i) U is α2

2 convex. That is,

inf
z,v∈Rd:|v|=1

∇2
U (z)[v, v] ≥ α2.

(ii) For any T > 0, t ∈ [−T, T ] and any smooth function f the following
gradient estimates hold:

∀x ∈ R
d, |∇xEPx,y

−T,T
(f(ωt))| ≤

sinh(α(T − t))

sinh(2αT )
EPx,y

−T,T
|∇f(ωt)|

∀y ∈ R
d, |∇yEPx,y

−T,T
(f(ωt))| ≤

sinh(α(T + t))

sinh(2αT )
EPx,y

−T,T
|∇f(ωt)|

(iii) For any x1, y1, x2, y2 ∈ Rd there exists a probability space (Ω̃, F̃ , P̃ ) and

maps X i, i = 1, 2 defined on it with the property that X i#P̃ = P xi,yi−T,T and

P̃

(
|X1

t −X2
t | ≤

sinh(α(T − t))

sinh(2αT )
|x2 − x1| +

sinh(α(T + t))

sinh(2αT )
|y2 − y1| ∀ t ∈ [−T, T ]

)

= 1.
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Heat kernel estimates, comparison and second variation

Xue-Mei Li

(joint work with Xin Chen and Bo Wu)

We discuss Hessian formulas for the second order derivatives of the solution to a
parabolic equation (with or without a potential). In a joint work with X. Chen and
B. Wu, we introduced a new variation for stochastic equations on the orthonormal
frame bundle. This is different from those used previously for such analysis (e.g.
by Bismut, Driver, et al.). We also introduced a second order variation ensuring
vanishing of the second order derivatives of the projection. We also constructed
a family of local vector fields on the path spaces. Together with a localising
technique, and comparison theorems, this allows us to obtain a clean and neat
formula for the gradient and for the Hessian of the logarithmic heat kernel, leading
to nice estimates on the gradient and on the Hessian. This was shown to hold
for any complete Riemannian manifolds without curvature restrictions. This has
further applications to analysis on path spaces.
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Heat kernel estimates for non-local Schrödinger operators

René L. Schilling

(joint work with Kamil Kaleta)

We report on recent progress achieved in the joint paper with K. Kaleta (Wroc law
University of Technology) Progressive intrinsic ultracontractivity and heat kernel
estimates for non-local Schrödinger operators (https://arxiv.org/abs/1903.12004).

We are interested in the long-time asymptotic behaviour of semigroups gen-
erated by non-local Schrödinger operators of the form H = −L + V ; the free
operator L is the generator of a symmetric Lévy process in Rd, d > 1 (with
non-degenerate jump measure) and V is a locally bounded, confining potential.
The assumptions below will ensure that the L2-semigroup {e−tH , t ≥ 0} gener-
ated by H consists of compact operators which are also integral operators of the
form etHw(x) =

∫
ut(x, y)w(y) dy for w ∈ L2, say. Our aim is to study the be-

haviour of ut(x, y) as t→ ∞. Since the spectrum σ(H) of H is discrete, we define
λ0 := inf σ(H) and we denote by ϕ0 ∈ L2 the corresponding eigenfunction such
that ‖ϕ0‖L2 = 1.

In the literature the (asymptotic) intrinsic ultracontractivity condition (a)IUC
is used to describe the large time behaviour of ut(x, y). These are conditions on
Ut which can be conveniently stated in the following form

∀t0 > 0 ∃C = C(t0) ≥ 1 ∀t ≥ t0 ∀x, y ∈ R
d :(IUC)

ut(x, y)
C≍ e−λ0tϕ0(x)ϕ0(y),

∃t0 > 0 ∃C = C(t0) ≥ 1 ∀t ≥ t0 ∀x, y ∈ R
d :(aIUC)

ut(x, y)
C≍ e−λ0tϕ0(x)ϕ0(y).

We add a further condition to this list which we call progressive instrinsic ultra-
contractivity — pIUC for short —

∃t0 > 0 ∃r : [t0,∞) → (0,∞] increasing, lim
t→∞

r(t) = ∞, ∃C > 0 :(pIUC)

ut(x, y)
C≍ e−λ0tϕ0(x)ϕ0(y), |x| ∧ |y| < r(t), t ≥ t0.
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(“
C≍” denotes a two-sided comparison with the constants 1 ≤ C < ∞ and C−1.)

Note that IUC always implies aIUC, and aIUC always implies pIUC (with thresh-
old function r ≡ ∞).

The IUC and aIUC regimes are well-understood and we want to concentrate
on the pIUC case; en passant our results recover some of the known results with
different proofs and — sometimes — with a greater generality. Our main result are
sharp two-sided large-time estimates for the kernel ut(x, y). Let us first state the
result and then discuss the assumptions (A1)–(A3) appearing in the statement.

Theorem.Let L be the generator of a symmetric Lévy process with Lévy measure
ν(dx) = ν(x) dx and diffusion matrix A = (aij)i,j=1...,n, and let V be a confining
potential. Denote by H = −L + V the Schrödinger operator and assume (A1)–
(A3) with tb > 0, R0 > 0 and the profile functions f(|x|) and g(|x|) which control
ν(x) and V (x), respectively. Write λ0 and ϕ0 for the ground-state eigenvalue and
eigenfunction, and ut(x, y) for the density of the operator Ut = e−tH . There exist
constants C ≥ 1 and R > R0 such that for every t > 30tb the following assertions
hold.

(1) If |x|, |y| ≤ R, then

1

C
e−λ0t ≤ ut(x, y) ≤ Ce−λ0t.

(2) If |x| > R and |y| ≤ R, then

1

C
e−λ0t ν(x)

V (x)
≤ ut(x, y) ≤ Ce−λ0t ν(x)

V (x)
;

by symmetry, if |x| ≤ R and |y| > R, then

1

C
e−λ0t

ν(y)

V (y)
≤ ut(x, y) ≤ Ce−λ0t

ν(y)

V (y)
.

(3) If |x|, |y| > R, then

1

C

F (Kt, x, y) ∨ e−λ0tν(x)ν(y)

V (x)V (y)
≤ ut(x, y) ≤ C

F
(
t
K
, x, y

)
∨ e−λ0tν(x)ν(y)

V (x)V (y)
,

where K = 4C6C
2
7 — the constants C6, C7 are from (A3) — and

F (τ, x, y) :=

∫

R−1<|z|<|x|∨|y|

(f(|x− z|) ∧ 1) (f(|z − y|) ∧ 1) e−τg(|z|) dz.

Let us now elaborate on the statement of the theorem. A Lévy process on
Rd is a stochastic process (Xt)t≥0 with values in Rd, independent and stationary
increments, and càdlàg (right-continuous, finite left limits) paths. Any Lévy pro-
cess is a Markov process whose transition semigroup is a semigroup of convolution
operators

Ptu(x) = Eu(Xt + x) = u ∗ µ̃t(x), µ̃t(dy) = P(−Xt ∈ dy)
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which is a strongly continuous contraction semigroup on L2 = L2(Rd, dx). Using
the Fourier transform we can describe Pt as a Fourier multiplication operator

Ptu(x) = F−1
(
e−tψFu

)
(x)

with symbol (multiplier) e−tψ(ξ). The semigroup
{
Pt : t ≥ 0

}
is symmetric in L2

if, and only if, Xt is a symmetric Lévy process (i.e. P(Xt ∈ dy) = P(−Xt ∈ dy),
t ≥ 0) which is equivalent to e−tψ or ψ being real. All real characteristic exponents
are given by the Lévy–Khintchine formula

ψ(ξ) = ξ ·Aξ +

∫

Rd\{0}

(1 − cos(ξ · z)) ν(dz), ξ ∈ R
d.

where A is a symmetric non-negative definite matrix (which may be degenerate or
even vanish completely), and ν is a symmetric Lévy measure, i.e. a Radon measure
on Rd \ {0} satisfying ν(E) = ν(−E) and

∫
Rd\{0}(1 ∧ |z|2)ν(dz) < ∞. We always

assume that ν 6≡ 0. The matrix A describes the diffusion part of (Xt)t≥0 while
ν is the jump measure. We assume that the jump activity is infinite and ν is
absolutely continuous with respect to Lebesgue measure, i.e.

ν(Rd \ {0}) = ∞ and ν(dx) = ν(x) dx.

The generator L is a non-local self-adjoint pseudo-differential operator given by

F [Lu](ξ) = −ψ(ξ)Fu(ξ), ξ ∈ R
d, u ∈ D(L) :=

{
v ∈ L2(Rd) : ψFv ∈ L2(Rd)

}
,

Examples of non-local operators (and related jump processes) are fractional Lapla-
cians L = −(−∆)α/2, α ∈ (0, 2) (isotropic α-stable processes) and quasi-relativistic
operators L = −(−∆ + m2/α)α/2 + m, α ∈ (0, 2), m > 0 (isotropic relativistic α-
stable processes) which play an important role in mathematical physics.

Our assumptions on ν guarantee that the process (Xt)t≥0 is a strong Feller
process, i.e. Pt maps bounded measurable functions into continuous functions;
this means that its one-dimensional distributions are absolutely continuous with
respect to Lebesgue measure, i.e. there exists a transition density pt(x, y) = pt(y−
x) such that P0(Xt ∈ E) =

∫
E pt(x) dx for every Borel set E ⊂ Rd.

Here are the assumptions appearing in the statement of the theorem.

(A1) Lévy density. There exists a profile function f : (0,∞) → (0,∞) such
that
(1) there is a constant C1 ≥ 1 such that C−1

1 f(|x|) ≤ ν(x) ≤ C1f(|x|) for
all x ∈ Rd \ {0};

(2) f is decreasing and limr→∞ f(r) = 0;
(3) there is a constant C2 ≥ 1 such that f(r) ≤ C2f(r + 1) for all r ≥ 1;
(4) f has the direct jump property: there exists a constant C3 > 0 such

that
∫

|x−y|>1
|y|>1

f(|x− y|)f(|y|) dy ≤ C3f(|x|), |x| ≥ 1.
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The convolution property (A1.d) is fundamental for us. It has a very suggestive
probabilistic interpretation: the probability to move from 0 to x in “two large jumps
in a row” is smaller than with a “single direct jump”.

(A2) Transition density of the free process. The function (t, x) 7→ pt(x)
is continuous on (0,∞) × Rd and there exists some tb > 0 such that the
following conditions hold.
(1) There are constants C4, C5 > 0 such that

pt(x) ≤ C4

([
eC5tf(|x|)

]
∧ 1
)
, x ∈ R

d \ {0} , t ≥ tb;

(2) For every r ∈ (0, 1] we have

sup
t∈(0,tb]

sup
r≤|x|≤2

pt(x) <∞.

A sufficient condition for the time-space continuity of the density pt(x) is

e−tψ(ξ) ∈ L1(Rd, dξ) for all t > 0.

This condition trivially if ψ has a nondegenerate Gaussian part, i.e. detA 6= 0.
The other assumptions in (A2) govern the asymptotic behaviour of the transition
density pt(x) for the free operator L and they should be seen as the minimal
regularity requirement for the density of the free semigroup. The upper bound on
pt(x) in (A2.a) is known for a wide range of operators L whose Lévy measures
satisfy (A1). The condition (A2.b) is a small time off-diagonal boundedness
property which holds for a large class of semigroups. Under (A2.a) we know that
supx∈Rd

ptb(x) = ptb(0) <∞ — this extends to all t ≥ tb — and the function pt(·)
is smooth for all t > tb; this is a consequence of the fact that pt is the convolution
of pt−tb ∈ L1(Rd) and ptb ∈ L∞(Rd).

(A3) Confining potential. Let V ∈ L∞
loc

(Rd) be such that lim|x|→∞ V (x) = ∞
and assume that there exist constants C6 ≥ 1 and R0 > 0, and a profile
function g : [0,∞) → (0,∞) such that
(1) g|[0,R0) ≡ 1 and C−1

6 g(|x|) ≤ V (x) ≤ C6g(|x|), |x| ≥ R0;
(2) g is increasing on [R0,∞);
(3) there exists a constant C7 ≥ 1 such that g(r+1) ≤ C7g(r), r ≥ R0.

The uniform growth condition (A3.c) excludes profiles growing like exp
(
r2
)

or
exp (er), but exponentially and slower growing potentials — for example growth
orders log log r, log(r)β , rβ and eβr, with β > 0 — are admissible.

These assumptions guarantee the setup onH and etH (self-adjointness, mapping
properties, spectral properties etc.) as explained above.

Our main tool is the Feynman-Kac formula

e−tHf(x) := E
x
[
e−

∫
t
0
V (Xs) dsf(Xt)

]
, f ∈ L2(Rd), t > 0.

In order to get estimates, we “keep track of the path” as it goes from x→ y where
x is large. This is done by an elaborate pathwise decomposition which allows us
to use (A2), (A3) to estimate the expression in the Feynman–Kac formula. Since
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we deal with a jump process, the process typically exits sets with jumps and this
can be controlled by the following Ikeda–Watanabe formula:

P
x(τD ∈ dt,XτD− ∈ dy,XτD ∈ dz) = pD(t, x, y) dt1{|z−y|>0}(y, z) ν(z − y) dy dz;

here D is some domain, τD the first exit time from this domain and pD(t, x, y) is
the density of the free process (Xt)t≥0 killed upon exiting D.

If we make a further structural assumption on the profile function g, we can
improve our results, splitting the estimates in two distinct scenarios: the aIUC
regime (including the IUC regime) and the non-aIUC regime.

(A4) V is a potential satisfying (A3) with the profile g and R0 > 0 such that
f(R0) < 1 and

g(r) = h (| log f(r)|) , r ≥ R0,

for some increasing function h : [| log f(R0)|,∞) → (0,∞) such that h(s)/s
is monotone.

The large time estimates of the heat kernel ut(x, y) in the the aIUC and the
non-aIUC (=pIUC) regime are substantially different. This is due to the intri-
cate asymptotic behaviour of the function F (τ, x, y). In the non-aIUC regime the
following result holds true

Corollary. For every confining potential – no matter how slowly V grows at infin-
ity – there is an increasing function r : (0,∞) → (0,∞] such that limt→∞ r(t) = ∞
and such that the following estimate holds: There is a constant C ≥ 1 such that
for sufficiently large values of t we have

ut(x, y)
C≍ e−λ0t

f(|x|)
g(|x|)

f(|y|)
g(|y|) , |x|, |y| > R, |x| ∧ |y| < r(t).

These estimates are equivalent to saying that there is a constant such that for
sufficiently large values of t we have

1

C̃
e−λ0tϕ0(x)ϕ0(y) ≤ ut(x, y) ≤ C̃e−λ0tϕ0(x)ϕ0(y), |x| ∧ |y| < r(t).

The estimates for ut(x, y) are essentially different if |x|, |y| > r(t).

On the uniqueness class, stochastic completeness and volume growth
for graphs

Marcel Schmidt

(joint work with Xueping Huang and Matthias Keller)

In 1980 Azencott [1] gave an example of a complete Riemannian manifold on
which Brownian motion has finite lifetime. Such manifolds are referred to as
stochastically incomplete and typically are of very large volume growth. On the
other hand it was shown that stochastic completeness is guaranteed under certain
volume bounds which were improved over the years, see Gaffney [4], Karp/Li [12],
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Davies [2] and Takeda [14]. An optimal result was obtained by Grigor’yan [5] (see
also [6]) who proved stochastic completeness of a geodesically complete manifold
under the condition ∫ ∞ r

log♯ vol(Br)
dr = ∞,

where log♯ = max{log, 1}. He also showed by examples that his criterion is sharp.
Later, Grigor’yan’s result was extended by Sturm [13] to strongly local Dirichlet
forms where the phenomenon is referred to as conservativeness and distance balls
are considered with respect to a so called intrinsic metric. Indeed, in spirit the
proof in this more general situation follows Grigor’yan’s. A remarkable feature
of Grigor’yan’s proof is that it not only yields stochastic completeness but di-
rectly implies a uniqueness class statement for the heat equation. Precisely, while
stochastic completeness is equivalent to uniqueness of bounded solutions to the
heat equation, the uniqueness class statement extends this uniqueness to a class
of unbounded solutions which satisfy a certain growth bound.

In recent years the phenomenon of stochastic completeness was intensively stud-
ied for graphs. The interest in this topic was sparked by the PhD thesis [15] and
follow up work [16] of Wojciechowski who presented examples of graphs of polyno-
mial volume growth, which are stochastically incomplete. This showed that there
is no analogous result to Grigor’yan’s for graphs when one considers volume growth
of balls with respect to the combinatorial graph distance. However, in view of the
work of Sturm [13] for local Dirichlet forms, which uses intrinsic metrics, it seemed
promising to consider distance balls with respect to a metric that is adapted to the
heat flow on the graph. While such a theory of intrinsic metrics was developed at
this time also for non-local (and thus for all regular) Dirichlet forms, this idea was
used by Grigor’yan/Huang/Masamune [7] to prove a first result in this direction
that guaranteed stochastic completeness of the graph provided

vol(Br) ≤ exp(Cr log r)

for r large enough and some constant 0 < C < 1/2. Shortly afterwards Grigor’yan’s
result for manifolds was recovered for graphs using so called intrinsic (or adapted)
metrics by Folz [3] and shortly after that an alternative proof was given by Huang
[9]. See also [11] for results on the closely related problem of escape rates.

In spirit, the proofs of these results used techniques that relate the non-local
graph to a more local object. Specifically, Folz [3] compared the heat flow on the
combinatorial graph with a corresponding metric (or quantum) graph and Huang
and Shiozawa [11] decreased non-locality of the graph by inserting additional ver-
tices in the edges (which probabilistically decreased the jump size of the process).
Although this was a breakthrough, there are two aspects in which the results are
not completely satisfying – one of technical the other of structural nature. The
technical aspect is that the results were proven under rather restrictive conditions
such as local finiteness of the graphs, finite jump size of the metric and uniform
lower bounds on the measure. Moreover, the only metrics considered were special
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path metrics. These restrictions did not inspire much hope that the proof strate-
gies can be carried over to more general jump processes. The second aspect, which
may be seen as a shortcoming of more fundamental nature, is that the proofs do
not allow to recover Grigor’yan’s uniqueness class for the heat equation. Indeed,
this is not a shortcoming of the proofs but the optimal uniqueness class that is
known for manifolds does not hold for general graphs. In his PhD thesis [8] Huang
gave an example of a nontrivial solution to the heat equation with initial value
0 on the integer line Z, which showed that the corresponding uniqueness class
statement of Grigor’yan is already wrong for this simple graph.

In this talk we present recent results from [10], where we amend these short-
comings. In order to obtain Grigor’yan’s uniqueness class for the heat equation
we introduce the class of globally local graphs (GL graphs for short). These are
graphs whose jump size decays fast enough outside large balls. On GL graphs we
establish Grigor’yan’s uniqueness class and directly use it to obtain Grigoryan’s
optimal volume growth criterion for stochastic completeness (with respect to an
intrinsic metric). This part of the results is general and also applies to jump pro-
cesses associated with regular Dirichlet forms. In a second step we establish the
optimal volume growth criterion for stochastic completeness for general graphs
under the only assumption that they admit an intrinsic metric with finite distance
balls. For this we use the ideas from [11] to refine the given graph to a GL graph
of the same volume growth, establish stochastic completeness of the refined graph
and then use stability of stochastic completeness under refinements.
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Hypoelliptic Laplacian on symmetric spaces and twisted trace formula

Bingxiao Liu

Let G be a connected real reductive Lie group, and let K be a maximal compact
subgroup of G. Let θ ∈ Aut(G) denote the Cartan involution such that K is the
fixed point set. The Cartan decomposition of g is

(1) g = p⊕ k.

Let B be an invariant nondegenerate symmetric bilinear form on g, which is posi-
tive on p and negative on k.

Let X = G/K be the associated symmetric space. Then TX = G ×K p.
Moreover, B induces a Riemannian metric gTX on X , so that X is of nonpositive
sectional curvature. Let d(·, ·) be the Riemannian distance in X .

In [3], Bismut constructed a family of hypoelliptic Laplacians LXb |b>0, which
converges in the proper sense to a Bochner-like Laplacian LX on X as b → 0.
Using a geometric description of the orbital integrals associated with semisimple
elements in G, Bismut obtained an explicit formula for the semisimple orbital
integrals for the heat kernel and the wave kernels of LX [3, Theorems 6.1.1, 6.3.2].

Here, we introduce a twist σ ∈ Aut(G). We extend Bismut’s formula to the
σ-twisted orbital integrals of heat kernels [7, Theorem 3.3].

An explicit formula for twisted orbital integrals. Let σ ∈ Aut(G) be such
that σ commutes with θ and preservesB. Then σ acts onX isometrically. If γ ∈ G,
we say γσ to be semisimple if the displacement function dγσ(x) := d(x, γσ(x)) on
X can reach its infimum mγσ in X [4, Section 2.19]. If γσ is semisimple, after
conjugation, we have

(2) γ = eak−1, a ∈ p, k ∈ K, Ad(k−1)σa = a.

Then mγσ = |a|.
Let Zσ(γ) ⊂ G be the σ-twisted centralizer of γ, consisting of h ∈ G such that

hγσ(h−1) = γ. Then θ acts on Zσ(γ), and its Lie algebra zσ(γ) splits as

(3) zσ(γ) = pσ(γ) ⊕ kσ(γ).

Let z⊥σ (γ) = p⊥σ (γ) ⊕ k⊥σ (γ) be the orthogonal of zσ(γ) in g. Let X(γσ) be the
minimizing set of dγσ. Then it is a symmetric space so that

(4) X(γσ) = Zσ(γ)/Kσ(γ).
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The fibres of the orthogonal normal bundle NX(γσ)/X can be identified with p⊥σ (γ).

Let Kσ be the compact group generated by K and σ. If (E, ρE) is a unitary
representation of Kσ, then F = G ×K E is a Hermitian vector bundle on X
equipped with a Hermitian connection ∇F and the equivariant action of σ.

Let Cg be the Casimir element of (g, B). Then it descends to an operator Cg,X

acting on C∞(X,F ). Let ∆X,F be the Bochner Laplacian on F , and let Ck be the
Casimir element of k, which acts on E by ρE . Then

(5) Cg,F = −∆X,F + Ck,E .

Put

(6) LX =
1

2
Cg,X +

1

2
c,

where c is an explicit constant from the Kostant identity [6, Theorem 2.16] for
Cg. Then LX is a self-adjoint Bochner-like Laplacian acting on C∞(X,F ), which
commutes with σ.

For t > 0, let pXt (x, x′) be the smooth kernel for the heat operator exp(−tLX).

The twisted orbital integral Tr[γσ][exp(−tLX))] is an integration of pXt on Zσ(γ)\G.
Using the above constructions associated with γσ, we have a geometric interpre-
tation for it [7, Definition 2.1], so that

(7) Tr[γσ][exp(−tLX))] =

∫

p⊥
σ (γ)

TrF [γσpXt (efp1, γσefp1)]r(f)df.

Here r(f) is a Jacobian term relating the measures on Zσ(γ)\G and p⊥σ (γ).
The main result is as follows [7, Theorem 3.3]. Note that if we take σ = IdG,

we will recover [3, Theorem 6.1.1].

Theorem 2. Set p = dim pσ(γ), q = dim kσ(γ). For any t > 0,

Tr[γσ][exp(−tLX)] =
exp(−|a|2/2t)

(2πt)p/2
×

∫

kσ(γ)

Jγσ(Y k
0 )TrE [ρE(k−1σ) exp(−iρE(Y k

0 ))]e−|Y k

0 |2/2t dY k
0

(2πt)q/2
.

(8)

Here Jγσ is an analytic function on kσ(γ) given by

Jγσ(Y k
0 ) =

1

| det(1 − Ad(γσ))|z⊥0 |1/2
Â(iad(Y k

0 )|pσ(γ))
Â(iad(Y k

0 )|kσ(γ))
[

1

det(1 − Ad(k−1σ))|z⊥σ,0(γ)

det(1 − exp(−iad(Y k
0 ))Ad(k−1σ))|k⊥σ,0(γ)

det(1 − exp(−iad(Y k
0 ))Ad(k−1σ))|p⊥

σ,0(γ)

]1/2
.

(9)

Let Γ ⊂ G be a cocompact torsion-free lattice preserved by σ. Then σ acts on
the compact locally symmetric space Z = Γ\X . We have a twisted Selberg’s trace
formula,
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(10) Tr[σZ exp
(
− tLZ

)
] =

∑

[γ]σ∈[Γ]σ

Vol(Γσ(γ)\X(γσ))Tr[γσ][exp
(
− tLZ

)
].

Then by our theorem, the summands in right-hand side of (10) are explicit.

To prove the theorem: hypoelliptic deformations. Put N = G ×K k. Let

X̂ be the total space of π̂ : TX ⊕ N → X , so that X̂ ≃ X × g. The hypoelliptic
Laplacians of Bismut are a family of hypoelliptic differential operators LXb , b > 0

acting on C∞(X̂ , π̂∗(Λ·(T ∗X ⊕N∗) ⊗ F )). We refer to [1, 2, 8] and [3, Introduc-
tion] for the motivations behind the theory of hypoelliptic Laplacians. Generally
speaking, the hypoelliptic Laplacians interpolate between the elliptic Laplacians
LX on X (as b→ 0) and the generator of geodesic flow on TX (as b→ +∞).

By [3, Section 11.8], the heat operator exp(−tLXb ) has a smooth Schwartz ker-
nel qXb,t((x, Y ), (x′, Y ′)). Let P be the projection from Λ·(T ∗X ⊕ N∗) ⊗ F onto

Λ0(T ∗X ⊕N∗) ⊗ F . Then as b→ 0, we have

(11) qXb,t((x, Y ), (x′, Y ′)) → PpXt (x, x′)π−(m+n)/2 exp(−1

2

(
|Y |2 + |Y ′|2

)
)P.

Since LXb commutes with σ, we can extend (7) to the hypoelliptic twisted orbital
integrals as follows.

Trs
[γσ][exp(−tLXb ))] =

∫

p⊥
σ (γ)

[ ∫

TX⊕N

Trs
Λ·(T∗X⊕N∗)⊗F [γσqXb,t((e

fp1, Y ), γσ(efp1, Y ))]dY

]
r(f)df.

(12)

By (11), (12) and a Bianchi identity for LXb [3, (2.15.2)], we can establish a fun-
damental identity [7, Theorem 3.1] such that for t > 0, b > 0,

(13) Tr[γσ][exp(−tLX)] = Trs
[γσ][exp(−tLXb )]

To get the explicit formula in (8), we make b→ +∞ in the right-hand side of (13).
Indeed, as b→ +∞, exp(−tLXb ) will concentrate to the geodesic flow {ϕt}t∈R on

TX in proper sense. Then the integrand in the right-hand side of (12) concentrates
near the point (x, Y TX) ∈ TX such that ϕt(x, Y

TX) = γσ(x, Y TX), which is
equivalent to x ∈ X(γσ). Therefore, we only need to consider a small neighourhood
Uβ = {|f | < β} ⊂ p⊥σ (γ) for some β > 0. We can apply a technique as the Getzler
rescaling in local index theory. As b → +∞, we amplify Uβ to p⊥σ (γ) by b2. This
way, we flatten the geometry along the normal fibre NX(γσ)/X . Correspondingly,
the hypoelliptic heat kernel in the right-hand side of (12) will converges to the
heat kernel of a model operator on p⊥σ (γ) × g. Finally, we evaluate a rescaled
twisted orbital integral for the heat kernel of this model operator, which gives the
function Jγσ(Y k

0 ), Y k
0 ∈ kσ(γ).

An example. We take G = SL2(R), K = SO(2), θ(A) = (At)−1. For u, v ∈
sl2(R), set B(u, v) = 2TrR

2

[uv]. Then X = G/K is the upper half-plane H = {z =

x+ iy : y > 0} with the metric ds2 = dx2+dy2

y2 . We take σ to be the conjugation
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by the matrix

[
1 0
0 −1

]
, which verifies our assumptions. Then the action of θ on

H is given by z 7→ − 1
z , and the action of σ is given by z 7→ −z̄. Then X(σ) is just

the upper y−axis.
In this case, LX = − 1

2∆H − 1
8 . We take γ = 1, then kσ(1) = 0, pσ(1) is

1-dimensional space. We apply our theorem to Tr[σ][exp(−tLX)], then we get

(14) Tr[σ][exp(−tLX)] =
1√
2πt

1

2
.

Note that there is a classical formula (cf. [5]) for the heat kernel of − 1
2∆H, by (7),

(14), we deduce that for t > 0,

(15)

√
2

πt

∫

f∈R

cosh(f)df

∫ +∞

2|f |

se−s
2/2t

(cosh(s) − cosh(2f))1/2
ds = 1.
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