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Abstract. Discrete groups generated by reflections constitute an important
source of examples of lattices in simple Lie groups of real rank 1 (whose
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goal of this mini-workshop was to stimulate the research by bringing together
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Introduction by the Organizers

This mini-workshop Reflection groups in negative curvature was attended by 18
participants, including the three organizers: Misha Belolipetsky (IMPA), Vincent
Emery (Bern), and Ruth Kellerhals (Fribourg). The participants had responded
to the invitation with interest and enthusiasm.

Hyperbolic reflection groups are discrete Coxeter groups – generated by reflec-
tions – acting on the real hyperbolic n-space Hn

R. They are direct analogues of
spherical and Euclidean reflection groups, and provide an important source of lat-
tices in the isometry group PO(n, 1) of Hn

R. Their fundamental importance can
be explained by the following:

(1) they provide very concrete examples of lattices, from which explicit volume
computations, topological constructions, etc., can be realized;

(2) some of them provide examples of lattices that are non-arithmetic.

A systemic study of hyperbolic reflection groups was initiated by Vinberg in the
1960’s; in particular the first results about non-arithmeticity (Makarov, Vinberg)
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were obtained at that time. On the other hand, the study of arithmetic subgroups
has been an important tool for constructing examples of discrete reflection lattices
in PO(n, 1) (work of Vinberg, Kaplinskaya, Bugaenko).

Due to their importance it is clear that a classification of hyperbolic reflection
groups is desirable. However, the latter is far from being completed. To illustrate,
a famous theorem by Prokhorov asserts that no discrete reflection lattices exist
in PO(n, 1) for n > 996; yet the highest dimensional known example is n = 21
(Borcherds, 1987).

The definition of hyperbolic reflection group can be adapted to the case of
the complex hyperbolic space Hn

C. There also constructions are possible in low
dimensions, and the fundamental facts (1) and (2) expressed above in the real
case remain correct. Moreover, a classification in this case appears even more
elusive.

The aim of the mini-workshop was to bring together (senior and younger) re-
searcher that are specialist on the reflection groups in order to exchange knowledge,
stimulate the research, and facilitate further and new collaborations. Four of the
participants were asked in advanced to prepare a mini-course (2 × 50 minutes) on a
specific subject related to their research, and of general interest for this workshop:

• Martin Deraux: Non-arithmetic lattices in PU(2, 1) and PU(3, 1).
• Anna Felikson: Cluster algebras and reflection groups.
• Matthew Stover: Recent rigidity results in PO(n, 1).
• Anne Thomas: Geometry of right-angled Coxeter groups.

In addition almost everyone in the rest of the participants gave an individual talk
on his research (10 talks of 50 minutes).

Free time for discussion was scheduled in the early afternoon. The first three
days of the workshop were concluded by problem sessions, at which many specific
research problems have been exposed and discussed. On Friday afternoon, during
a session dedicated to computer experiments, the idea formulated by Anna Haen-
sch and Jeffrey Meyer to organize a workshop Sage Days related to hyperbolic
geometry (in particular Coxeter groups) was discussed with great interest. As a
result a wishlist for useful functions to implement in Sage has been elaborated,
as well as practical aspects for the organization of such a workshop.

The organizers wish to thank all the participants for their enthusiasm and com-
mitment during this week at Oberworlfach, as well as the MFO staff and the MFO
administration for the excellent working conditions.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
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Abstracts

Non-arithmetic complex hyperbolic lattices

Martin Deraux

(joint work with John R. Parker, Julien Paupert)

We consider lattices (discrete subgroups of finite covolume) in the isometry groups
of symmetric spaces of non-compact type. It follows from important work of
Margulis, Corlette, Gromov-Schoen that for most symmetric spaces, all lattices
are arithmetic, i.e. they can be obtained (up to commensurability and taking the
image by a surjective homomorphism with compact kernel) as the set of matrices
with integer entries in a linear algebraic group defined over the rationals. For
these symmetric spaces, this gives a satisfactory classification of lattices, since
forms over totally real number fields of real algebraic groups have been classified
up to commensurability by work of Weil and Tits.

The exceptions to the above general arithmeticity theorems are real and com-
plex hyperbolic spaces, where some non-arithmetic lattices are known to exist.
In the real hyperbolic case, there is a general construction due to Gromov and
Piatetski-Shapiro, based on gluing pieces of arithmetic manifold along totally ge-
odesic submanifolds, which produces infinitely many commensurability classes of
non-arithmetic lattices in every dimension. Although these examples are well un-
derstood, and the construction has been generalized in several directions, there is
currently no general structure theory of lattices in PO(n, 1).

In the complex hyperbolic case, the situation is even more mysterious. A
few non-arithmetic lattices have been constructed, only in very low dimension.
The first examples were constructed by Mostow, and his work was generalized
by Deligne and Mostow. For a long time, these were the only known examples,
even though some alternative constructions were given (by Thurston, Barthel-
Hirzebruch-Höfer, for example). In joint work with J.Parker and J. Paupert [1], [2],
the author used a variation on the original Mostow construction to produce more
examples of non-arithmetic lattices in PU(2, 1). The main technique is the con-
struction of explicit polytopes in the complex hyperbolic plane that serve as a
fundamental domain for the action of the group, the latter being verified by ap-
plying the Poincaré polyhedron theorem. Our verification of the hypotheses of
the Poincaré polyhedron theorem relies on heavy computer usage, but most exam-
ples have been given alternative construction, using orbifold uniformization (hence
avoiding the use of computers), see [3], [4].

It turns out that our examples contain 22 commensurability classes. In or-
der to determine the precise number of commensurability classes obtained by our
construction, we used basic commensurability invariants (cocompactness, adjoint
trace field) and also volume estimates in conjunction with the Margulis commen-
surator theorem. It would be interesting to find general, effective techniques to
determine whether lattices are commensurable. More recently, the author stud-
ied the arithmeticity of the lattices constructed by Couwenberg, Heckman and
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Looijenga, and showed that the list contains precisely one non-arithmetic lattice
in PU(n, 1) with n ≥ 3 which is not commensurable with any Deligne-Mostow
lattices by Deligne-Mostow, see [5].

The main open question is whether there are infinitely many commensurabily
classes of non-arithmetic lattices in PU(n, 1) for n ≥ 2. There is no straightforward
analog of the Gromov-Piatetski Shapiro construction in complex hyperbolic space,
since there are no totally geodesic real hypersurfaces (in any dimension n ≥ 2).

To this day, three classes of techniques have been used to produce lattices,
namely arithmetic constructions, fundamental domains, and uniformization. The
last class has two slightly different flavors, the first one being orbifold uniformiza-
tion, where the complex hyperbolic metric comes from the existence of a Kähler-
Einstein metric (this is the approach taken in BHH). The second one is the uni-
formization via period maps arising from certain moduli spaces (this is the ap-
proach taken in Deligne-Mostow). It would be interesting to develop systematic
techniques to go from one of the three descriptions of a lattice to another.
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A hyperbolic counterpart to Rokhlin’s cobordism theorem

Alexander Kolpakov

(joint work with Michelle Chu)

A classical result by V. Rokhlin states that every compact orientable 3-manifold
bounds a compact orientable 4-manifold, and thus the three-dimensional cobor-
dism group is trivial. One can recast the question of bounding in the setting of
hyperbolic geometry, which generated plenty of research directions over the past
decades.

A hyperbolic manifold is a manifold endowed with a Riemannian metric of
constant sectional curvature −1. Here and below all manifolds are assumed to be
connected, orientable, complete, and of finite volume, unless otherwise stated. We
refer to [14] for the definition of an arithmetic hyperbolic manifold.

A hyperbolic n-manifold M bounds geometrically if it is isometric to ∂W , for
a hyperbolic (n+ 1)-manifold W with totally geodesic boundary.

Indeed, some interest in hyperbolic manifolds that bound geometrically was
kindled by the works of D. Long, A. Reid [10, 11, 12] and B. Niemershiem [15],
motivated by a preceding work of M. Gromov [5, 6] and a question by F. Farrell
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and S. Zdravkovska [4]. This question is also related to hyperbolic instantons, as
described by J. Ratcliffe and S. Tschantz [18, 19].

As [10] shows many closed hyperbolic 3-manifolds do not bound geometrically:
a necessary condition is that the eta invariant of the 3-manifold must be an inte-
ger. The first known closed hyperbolic 3-manifold that bounds geometrically was
constructed in [18] and has volume of order 200.

The first examples of knot and link complements that bound geometrically were
produced by L. Slavich in [16, 17]. However, [8] implies that there are plenty of
cusped hyperbolic 3-manifolds that cannot bound geometrically, with the obstruc-
tion being the geometry of their cusps.

In [1], M. Belolipetsky, T. Gelander, A. Lubotzky, and A. Shalev showed that
the asymptotic growth rate of the number αn(v) of all orientable arithmetic hy-
perbolic manifolds, up to isometry, with respect to volume v is super-exponential,
in all dimensions n ≥ 3. That is, there exist constants A,B,C,D > 0 such that
AvBv ≤ αn(v) ≤ CvDv. In our present work, we use the ideas of [1, 12, 13] to-
gether with the more combinatorial colouring techniques from [9] in order to prove
the following facts:

Theorem 1. Let βn(v) = the number of non-isometric compact arithmetic hyper-
bolic n-manifolds of volume ≤ v that bound geometrically. Then, if 2 ≤ n ≤ 8, we
have that AvBv ≤ βn(v) ≤ CvDv, for some constants A,B,C,D > 0.

Theorem 2. Let γn(v) = the number of non-isometric cusped arithmetic hyper-
bolic n-manifolds of volume ≤ v that bound geometrically. Then, if 2 ≤ n ≤ 19,
we have that AvBv ≤ γn(v) ≤ CvDv, for some constants A,B,C,D > 0.

The proofs of both theorems above rely heavily on reflectivity of certain qua-
dratic forms studied by È. Vinberg, I. Kaplinskaya [7, 20] and V. Bugaenko [2, 3].
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Cluster algebras and reflection groups

Anna Felikson

(joint work with Pavel Tumarkin)

Cluster algebras were introduced by Fomin and Zelevinsky [3] in 2002, since then it
turned out that the notion is connected to numerous fields in mathematics (such as
hyperbolic geometry, Teichmüller theory, dilogarithm identities, Poisson geometry,
representation theory, integrable systems, combinatorics of polytopes, probability
theory and many others). In this mini-course we introduce cluster algebras and
show a number of their connections to reflection groups.

From the very birth of the theory of cluster algebras it was known due to Fomin
and Zelevinsky [4] that cluster algebras of finite type are tightly related to root
systems. More precisely, cluster algebras of finite type are described by Dynkin
diagrams. Moreover, the cluster variables (key elements in the cluster algebra
construction) in cluster algebras of finite type are in natural correspondence with
almost positive roots (where by the set of almost positive roots one means the
union of positive roots and negative simple roots).

Further classificational result, the description of cluster algebras of finite mu-
tation type [5], showed some more implicit connections to reflection groups: the
methods used for this classification were inspired by the strategies used for inves-
tigation of hyperbolic Coxeter polytopes (see [10] for the overview of the known
developments on hyperbolic Coxeter polytopes).

In [2], Barot and Marsh proposed a method to construct a series of presentations
of a finite reflection group arising from a cluster algebra of finite type. More
precisely, a cluster algebra is defined by a quiver (i.e. an oriented graph), and a
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presentation of the corresponding reflection group can be read off the quiver. The
quiver defining a cluster algebra is determined up to an operation of mutation.
Barot and Marsh show that the reflection group defined from the quiver does not
depend on the choice of the quiver in the mutation class.

In [7] we use a geometric interpretation of the Barot-Marsh presentations to
construct hyperbolic manifolds of finite volume with actions of large finite groups.
We also generalise results of [2] to affine quivers, quivers arising from unpunctured
surfaces and exceptional mutation-finite quivers, see [6]. When the quiver is not
finite or affine, however, we obtain a quotient of a Coxeter group instead of a
Coxeter group.

In the case when a cluster algebra is acyclic (i.e. when one of the quivers defining
this cluster algebra contains no oriented cycles), one can construct a linear reflec-
tion group defined by the corresponding quiver. Mutation of the quiver will then
correspond to the change of generators of the group, see [1]. Moreover, similar
geometric construction works for every quiver in case of rank 3, see [8]. Further-
more, the geometric constructions under consideration work also for quivers with
non-integer weights of arrows. This allows us to classify quivers of finite mutation
type in rank 3 [8] as well as in all other ranks [9]. The classification turns out to
be also tightly connected to reflection groups.
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(Volumes of) hyperbolic manifolds

Brent Everitt

(joint work with Bob Howlett, John Ratcliffe, Steve Tschantz)

This will be an elementary survey of some ideas for finding small volume hyperbolic
manifolds in various dimensions.

The presence of an Euler characteristic creates a big difference between even
and odd dimensions: in even dimension the volume of a hyperbolic manifold is a
constant multiple of the Euler characteristic by the Gauss-Bonnet theorem. As
the Euler characteristic takes integer values, the most obvious place to look for
minimal volume manifolds is when the characteristic is 1 (in absolute value). A
compact orientable manifold has even characteristic, so the minimum volume is
most likely achieved by a non-compact manifold. In odd dimensions the Euler
characteristic vanishes, and so a different approach must be found. For these
reasons, progress in even dimensions has been more rapid.

The underlying principle is to consider the quotient of hyperbolic space by the
action of groups acting freely and properly discontinuously. Algebraically, these
are discrete, torsion-free subgroups of the isometry group of hyperbolic space. The
greatest control is to be had when working inside reflection groups – the torsion
is well understood, and the problem of finding subgroups that avoid the torsion
becomes combinatorial.

The talk will report a construction of small volume manifolds in 4, 6 and 8-
dimensions. The techniques use all right-angles polytopes and the action of finite
Weyl groups (of types A4, E6 and E8) on their root and weight lattices.

References

[1] Brent Everitt, John Ratcliffe and Steve Tschantz, Right-angled Coxeter polytopes, hyperbolic
six-manifolds, and a problem of Siegel, Math. Ann. 354 (2012), 871–905.

[2] Brent Everitt, Robert Howlett, Weyl groups, lattices and geometric manifolds, Geom. Ded.
142 (2009), 1–21.

Commensurability of hyperbolic Coxeter groups and quadratic forms

Edoardo Dotti

Let Hn be the real hyperbolic space of dimension n. Consider two discrete sub-
groups Γ1,Γ2 < Isom(Hn). They are said to be commensurable (in the wide sense)
if there exists h ∈ Isom(Hn) such that Γ1∩hΓ2h

−1 has finite index in both Γ1 and
hΓ2h

−1. This is an equivalence relation. We are interested in the classification of
hyperbolic Coxeter groups into commensurability classes where a Coxeter hyper-
bolic group is a cofinite discrete group generated by reflections on the bounding
hyperplanes of a suitable polyhedron. The complete commensurability classifica-
tion of hyperbolic Coxeter groups has been achieved for simplices [5] and pyramids
[3].
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We start by looking at arithmetic groups in Isom(Hn). A group is arithmetic
if it is commensurable to the automorphism group of a Ok-lattice in the ambient
group, where Ok is the ring of integers of a totally real number field k. Such
a group has always an associated number field and quadratic form. By a result
of Gromov and Piatetski-Shapiro [2], it is known that two hyperbolic arithmetic
groups are commensurable if and only if the two associated fields are equal and
the quadratic forms are similar. However, for non-arithmetic groups this is false,
and a necessary and sufficient commensurability criterion does not exist to date.

Following work of Vinberg [6, §6], we are able to associate a number field and
a quadratic form even to non-arithmetic hyperbolic Coxeter groups, the Vinberg
field and the Vinberg form. We then obtain a new necessary condition for com-
mensurability of non-arithmetic hyperbolic Coxeter groups.

Theorem 1 (Dotti, [1]). Let Γ1,Γ2 < Isom(Hn) be two commensurable Coxeter
groups in Isom(Hn), n ≥ 2. Then their Vinberg fields coincide and the two asso-
ciated Vinberg forms are similar over it.

In the even dimensional case, we present a concrete criterion for similarity of
the Vinberg form, in terms of the Hasse invariant for example, and we apply it
to the following example. Consider two Napier cycles giving rise to the Coxeter
groups Γ1, Γ2 (see [4]) acting cocompactly on H4 represented by their Coxeter
graphs as shown in Figure 1.

5

4

Γ1

5

5

Γ2

1
Figure 1. The groups Γ1 and Γ2 acting cocompactly on H4.

These groups have both k = Q(
√
5) as Vinberg field. The diagonalized as-

sociated Vinberg forms over k are q(Γ1) = (4, 4, 4,−2 − 2
√
5, 20 + 8

√
5) and

q(Γ2) = (4, 5

2
+ 1

2

√
5, 2 + 2

5

√
5, −37

2
− 17

2

√
5, 312

19
+ 136

19

√
5), respectively. These

forms are not similar, and therefore the two groups are not commensurable.
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On finite upper half plane graphs

Yohei Komori

Let Fq be a finite field with q elements where q is an odd number. After fixing a
non-square element δ ∈ Fq, we define the finite upper half plane as

Hq = Fq(
√
δ)− Fq.

For z = x+ y
√
δ, we use the following notations

z = zq = x− y
√
δ, Im z = y, N(z) = zz = zq+1.

To make Hq as a graph, we define the incidence relation among elements of Hq as
follows [1, 6]; for z, w ∈ Hq, the “distance” between z and w is

d(z, w) =
N(z − w)

Im z Im w
.

For a ∈ Hq, the graph Xq(δ, a) consists of Hq as its vertex set, and z, w ∈ Hq

are connected by an edge if the “distance” between z and w is equal to a i.e.
d(z, w) = a. Then Xq(δ, a) is isomorphic to the Cayley graph of the affine group

Aff(q) = {
(

y x
0 1

)
| x, y ∈ Fq, y 6= 0}

with its symmetric system of generators

Sq(
√
δ, a) = {

(
y x
0 1

)
∈ Aff(q) | x2 = ay + δ(y − 1)2},

which implies that Xq(δ, a) is a (q+1)-regular connected graph provided that a 6=
0, 4δ. As a conclusion the spectrum Sp(Xq(δ, a)) of Xq(δ, a), the set of eigenvalues
of the adjacency matrix of Xq(δ, a) contains q + 1 with multiplicity one which is
called the trivial eigenvalue. Then every non-trivial eigenvalue λ ∈ Sp(Xq(δ, a))
satisfies the following remarkable inequality

λ√
q
∈ [−2, 2]
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which implies that Xq(δ, a) is a Ramanujan graph [2, 4, 5]. In my talk I reported
some results [3, 7] on the asymptotic behavior of k-th moments of the distribution
of non-trivial eigenvalues

lim
q→∞

q−1∑

i=1

(
λi√
q
)k

mi

q(q − 1)
=

∫ 2

−2

xk

√
4− x2

2π
dx

where mi is the multiplicity of the non-trivial eigenvalue λi.
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Large-scale geometry of right-angled Coxeter groups

Anne Thomas

(joint work with Pallavi Dani, Emily Stark)

This mini-course consisted of two talks on various aspects of geometric group
theory relating to right-angled Coxeter groups. General references are [5] and [7],
while many recent results and open questions are discussed in the survey [2].

Given a finite simplicial graph Γ with vertex set S, the associated right-angled
Coxeter group WΓ has generating set S, and relations s2 = 1 for all s ∈ S together
with st = ts whenever s and t are adjacent vertices of Γ. Right-angled Coxeter
groups include some hyperbolic reflection groups, for example the group generated
by reflections in the sides of a right-angled hyperbolic pentagon.

Right-angled Coxeter groups are often studied via their action on the associated
Davis complex ΣΓ. This is a cube complex with 1-skeleton the Cayley graph of
WΓ with respect to S, and then for every n-element subset of pairwise commuting
elements of S, the corresponding n-cube “filled in”. The group WΓ acts properly
discontinuously and cocompactly on the associated Davis complex ΣΓ.

We recalled the notion of a CAT(0) space, due to Gromov. Gromov proved
that the Davis complex for a right-angled Coxeter group is a CAT(0) space. Con-
sequently, it has many nice properties, for example it is contractible, uniquely
geodesic, and has a visual boundary. We then recalled the definition of a quasi-
isometry, also due to Gromov, and explained that a major program in geometric
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group theory is to classify finitely generated groups up to quasi-isometry. By the
Milnor–Schwarz Lemma, the group WΓ is quasi-isometric to its Davis complex ΣΓ.

We then recalled various notions of “hyperbolicity” due to Gromov. We stated
Moussong’s Theorem, which characterizes word-hyperbolicity, in the case of right-
angled Coxeter groups. We then discussed joint work with Pallavi Dani [3] and
with Pallavi Dani and Emily Stark [4] on the quasi-isometry and abstract commen-
surability classification of certain word-hyperbolic right-angled Coxeter groups. (If
two groups are abstractly commensurable, meaning that they have isomorphic fi-
nite index subgroups, then they are quasi-isometric.)

The quasi-isometry invariant used in [3] is Bowditch’s JSJ tree [1]. We recalled
the definition of the visual boundary of a word-hyperbolic group, and the result
due to Gromov that the homeomorphism type of the visual boundary is a quasi-
isometry invariant for such groups. Bowditch’s JSJ tree is constructed using only
topological features of the visual boundary, so this tree is also a quasi-isometry
invariant. The main results of [3] give an explicit construction of Bowditch’s JSJ
tree for a class of right-angled Coxeter groups, and show that if the graph Γ has
no K4 minor, then this tree is a complete quasi-isometry invariant.

For the work on abstract commensurability in [4], we first prove that the right-
angled Coxeter groups we consider have finite-index, torsion-free subgroups which
are geometric amalgams of free groups. This allows us to apply a topological
rigidity theorem of Lafont [6] and so formulate our necessary conditions. These
conditions involve vectors of Euler characteristics of certain parabolic subgroups.
To show that our conditions are sufficient involves delicate constructions of finite
coverings.
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Geodesic submanifolds of hyperbolic manifolds

Matthew Stover

(joint work with Uri Bader, David Fisher, Jean-François Lafont, Nicholas Miller)

It is a basic fact that closed geodesics on finite-volume hyperbolic manifolds are
uniformly dense. The higher-dimensional analogue of a geodesic is a totally geo-
desic subspace, i.e., an immersed, relatively closed, finite-volume, codimension k

submanifold N # M for which the map on universal covers Ñ →֒ M̃ is realized
as an isometric embedding Hn−k →֒ Hn. In general, it is not expected that a neg-
atively curved manifold will have totally geodesic subspaces other than geodesics.
Remarkably, each known construction of hyperbolic manifolds runs counter to this
expectation. Specifically, for n ≥ 4 there are basically three known constructions –
arithmetic groups, reflection groups, and cut-and-paste methods – and all contain
geodesic submanifolds of some codimension 1 ≤ k ≤ n− 2.

When an arithmetic manifold contains one geodesic submanifold of codimen-
sion k, then it contains infinitely many and they are everywhere dense. One can
easily prove this using the well-known fact due to Borel that the commensurator
of π1(M) in PO0(n, 1) is analytically dense. All known nonarithmetic hyperbolic
n-manifolds for n ≥ 4 contain a totally geodesic hypersurface. However the above
commensurator trick for turning one into infinitely many fails. Indeed, it is a fa-
mous result of Margulis that π1(M) is arithmetic if and only if its commensurator
in PO0(n, 1) is dense [4, p. 2]. Motivated by this failure, Alan Reid and Curtis
McMullen (for n = 3) asked: If M is a hyperbolic n-manifold containing infinitely
many totally geodesic hypersurfaces, is π1(M) arithmetic?

This was asked without a single example for which the set of totally geodesic
hypersurfaces was known to be finite but nonempty. (There were known examples
of nonarithmetic hyperbolic 3-manifolds containing no totally geodesic surfaces;
see [3, §6.1] for examples.) The first examples were provided in joint work with
Fisher, Lafont, and Miller:

Theorem 1 ([3]). There exist infinitely many commensurability classes of finite-
volume nonarithmetic hyperbolic n-manifolds, n ≥ 3, for which the collection of
totally geodesic hypersurfaces is finite but nonempty.

This theorem includes all the famous hybrid examples of Gromov and Piatetski-
Shapiro. See [3] for a careful statement that includes higher codimensions. The
proof applies to certain cut-and-paste manifolds that contain “arithmetic pieces”.
In particular, the proof can be made effective in that one could possibly enumerate
the finite collection of geodesic submanifolds in certain cases. For example, we also
show that there are nonarithmetic reflection lattices (e.g., in dimensions 3 and 6)
that are not commensurable with lattices constructed by the classical cut-and-
paste constructions [3, §6.2].

More recent work with Bader, Fisher, and Miller answers Reid and McMullen’s
question completely.
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Theorem 2 ([1]). Let M be a hyperbolic n-manifold containing infinitely many
codimension k totally geodesic submanifolds for some 1 ≤ k ≤ n− 2 that are not
properly contained in a totally geodesic submanifold of smaller codimension. Then
π1(M) is arithmetic.

For example, it follows that if n ≥ 4 is even and M is a hyperbolic n-manifold,
thenM contains infinitely many totally geodesic hypersurfaces if and only if π1(M)
is arithmetic. Theorem 2 also implies that if K is a knot in S3 such that S3 rK
admits a complete hyperbolic structure of finite volume for which S3rK contains
infinitely many immersed totally geodesic surfaces, then K is the figure-eight knot.
The proof is inspired by Margulis’s proof of arithmeticity of lattices in higher-rank
semisimple Lie groups [4]. In particular, we prove a superrigidity theorem for
certain representations of lattices in PO0(n, 1).
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Pseudo-arithmetic reflection groups

Vincent Emery

(joint work with Olivier Mila)

For n ≥ 4 there are two known sources of nonarithmetic lattices in PO(n, 1):

(1) Reflection groups (Makarov, Vinberg; see [4])
(2) Manifolds obtained by gluing or “hybridisation” of arithmetic pieces (Gro-

mov and Piatetski-Shapiro [2], and more recent generalisations)

This second source is systematic in the sense that it provides (infinitely many)
examples in every dimension n > 2. On the other hand, by nature the reflection
groups can only be a “sporadic” source.

For any lattice Γ ⊂ PO(n, 1) there exists a minimal number field K ⊂ R (the
trace field) and an algebraic K-group G such that Γ ⊂ G(K) and G(R) identifies
with PO(n, 1). We call the group G (which is uniquely determined by Γ up
to K-isomorphism) the ambient group of Γ. In the recent paper [1] the authors
introduced the following notion, which generalizes the notion of arithmetic lattices:

Definition 1 (Pseudo-arithmeticity). A lattice Γ ⊂ PO(n, 1) (n ≥ 4) is called
pseudo-arithmetic if its trace field K is a multi-quadratic extension K/F and its
ambient group is obtained the scalar extension GK of an F -group G such that
G(F ⊗Q R) = PO(n, 1)× compact.
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The introduction of this notion is motivated by the following theorem, proved
in the same paper.

Theorem 1. Let M = Hn
R/Γ be a hyperbolic manifold obtained by gluing of arith-

metic pieces. Then Γ is pseudo-arithmetic.

Extending the methods of Vinberg’s arithmeticity criterion [4] we have been able
to check that all currently known hyperbolic reflection lattices in dimension n ≥ 4
are also pseudo-arithmetic. This is a rather surprising observation, in particular
since many of the known (non-arithmetic) examples are constructed essentially by
combinatorial means (see for example Roberts [3]). This brings to ask:

Problem 1. Let Γ ⊂ PO(n, 1) be lattice, with n ≥ 4. Is Γ necessarily pseudo-
arithmetic?
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A Vinberg-like algorithm that’s not Vinberg’s algorithm

Alice Mark

Vinberg’s algorithm has been one of the main tools in the classification of reflective
hyperbolic lattices since he introduced it in the 1970s [14]. These are lattices in
O+(n, 1) generated by finitely many real hyperbolic reflections. Unlike finite and
affine Coxeter groups, which exist in all dimensions, these do not exist in high
dimensions. On the other hand, in dimensions up through 19, there are infinitely
many [3]. A lattice in O+(n, 1) is called reflective if it is generated up to finite index
by reflections. A class of lattice with nice properties is the arithmetic lattices, and
we are particularly interested in them because there are finitely many maximal
arithmetic hyperbolic reflective lattices in all dimensions [2, 8, 1, 12].

The reflecting hyperplanes of a hyperbolic lattice Γ carve up hyperbolic space
Hn into a tiling by copies of a fundamental polygon. Fix a copy P of that polygon.
The lattice Γ is reflective if and only if P has finitely many sides and finite volume.
The roots pointing outward from the walls of P form a system of simple roots for
Γ. Vinberg’s algorithm is a method for finding all those roots. Currently existing
implementations are depend on the context of the specific problems they were
written to solve. The dimension, ground field, and ’shape’ of the quadratic form
all come into play in an implementation. Our implementation for 2-dimensional
lattices defined over Z[

√
2] was taking too long to run on some lattices, so we

needed other techniques for finding simple roots [9].
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Our approach is based around the idea that under a reasonable set of assump-
tions, codimension n − 1 subspace of Hn containing a 1-dimensional facet of P
admits a translation that is an element of Γ. A fast way to find this translation
is to use the classical correspondence, due to Gauss and Dedekind, between in-
tegral quadratic forms defined over a field F and ideals in quadratic extensions
of F . PARI [13] can identify a unit in such and extension field, and therefore a
translation of ϕ minimal length, almost instantaneously.

We begin by assuming that we know simple roots for the stabilizer of a corner
of P . This stabilizer is a finite Coxeter group of rank n. Any edge emanating
from the corner is stabilized by a corresponding Coxeter subgroup of rank n− 1.
Our search for simple roots proceeds by picking one of those edges E and looking
for the next wall of P one would bump into by walking along E. The shortest
translation ϕ along E decomposes as a product of a pair of reflections orthogonal
to E.

The next wall extends the rank n − 1 group stabilizing E to a rank n group
stabilizing the corner at the other end of E. We know from the classification of
finite Coxeter groups that there are finitely many possibilities for what that rank
n extension could be. It is always possible that the next wall will intersect E
orthogonally. Any other possibilities will depend on the ground field, n, and the
stabilizer of E. In the nicest cases, the next wall meets ℓ at the same vertex as
one of a pair of reflections whose composition is the translation ϕ, and by finding
ϕ we find that wall immediately. In other cases, finding the nearest translate gives
us a bound on how far along ℓ we will need to search to find the next wall.

This algorithm is most useful for cocompact lattices, where all of P ’s vertices
are inside Hn. Luckily, arithmetic lattices defined over extensions of Q are always
cocompact. (For cusped arithmetic lattices, Vinberg’s algorithm is effective, and
you don’t need these sorts of time saving strategies.) It has so far only been imple-

mented in dimension 2, and over the field Q[
√
2], but we would like to implement

it more generally, for other number fields and in higher dimensions.
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Problems of computation and enumeration with quadratic forms

Anna Haensch

(joint work with Mikhail Belolipetsky, Wai Kiu Chan, Benjamin Linowitz, Jeffrey
S. Meyer)

The reflections of a polyhedron in n-dimensional hyperbolic space, Hn, form a
hyperbolic reflection group. Such groups are intimately connected to the theory of
quadratic forms, in that certain classes of hyperbolic reflection groups are defined
by the automorphism groups of quadratic forms satisfying explicit arithmetic con-
ditions. Consequently, it is possible to realize enumerations of certain hyperbolic
reflection groups by leveraging computational results in the arithmetic theory of
quadratic forms. Specifically, we consider the case of congruence arithmetic hy-
perbolic reflection groups and their correspondence to the integral automorphisms
of quadratic forms satisfying certain arithmetic conditions.

Let k be a totally real number field with ring of integers ok, and let f be a qua-
dratic form on k which has signature (n, 1) and for which fσ is positive definite for
every non-identity embedding σ : k →֒ R. Then the group Γ = O(f, ok), the group
of integral automorphism of f , form a discrete subgroup of Isom(Hn) ∼= PO(n, 1).
A subgroup of Isom(Hn) which arises in such a way (or one which is commensu-
rable to a group arising in such a way) is called arithmetic. It is a well-known
result of Vinberg [8] that there are no arithmetic groups in dimension n ≥ 30.
Moreover, results of Agol, Belolipstsky, Storm and White [1] bound the volume
of the orbifold Hn/Γ associated to any arithmetic reflection group, Γ, thereby de-
termining that there are only finitely many arithmetic reflection groups which are
maximal. If we further impose a condition of congruency, that is, we require that
the group Γ contain a principal congruence subgroup, then we obtain improved
bounds on the possible field of definition via spectral theory. In particular, it is
know explicitly from work of Vigneras [7] and Burger – Sarnak [4] (as well as im-
proved conjectural bounds by Ramanujan and Selberg) that the minimal non-zero
eigenvalue of the Laplacian on Hn/Γ is bounded from below by a term that grown
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linearly with n. Subsequent work of Belolipetsky [2], Linowitz [6], and Belolipet-
sky – Linowitz [3] effectively bound the degree and possible discriminants of the
field of definition, k, of any arithmetic congruence hyperbolic reflection groups, Γ.
The techniques used to limit the fields of definition involves a strict bound on the
norm of primes that can divide the discriminant of the defining quadratic forms,
as well as explicit Hasse invariant conditions. With these local considerations in
place, the candidates for defining quadratic forms can then be produced using an
algorithm of Kirschmer [5] which generates and diagonal quadratic form with co-
efficients from the ring of integers, satisfying the desired determinant and Hasse
invariant conditions. In this way we have produced a candidate list for all possible
congruence arithmetic hyperbolic reflection groups.
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Fully Augmented Links, Reflection Groups, and Arithmeticity

Jeffrey S. Meyer

(joint work with Christian Millichap, Rolland Trapp)

Every link L ⊂ S3 determines a link complement ML := S3 \ L. If M admits a
metric of constant curvature −1, we say that both ML and L are hyperbolic, and if
such a hyperbolic structure exists, then it is unique (up to isometry) by Mostow–
Prasad rigidity. In such cases, the link group, ΓL := π1(ML), can be realized as
a lattice in PSL2(C), thereby enabling us to analyze arithmetic properties of the
link complement. Given a lattice Γ ⊂ PSL2(C), its invariant trace field kΓ is the
field generated by the traces of squares of elements of Γ.

Question 1. What number fields arise as the invariant trace fields of link com-
plements?

Neumann has conjectured [9] that every non-real number field arises as the
invariant trace field of some hyperbolic 3-manifold, yet to date, a relatively small
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collection of such fields have been verified to arise in this way. A link L is said
to be arithmetic if ML is arithmetic, or in other words, if the link group ΓL is
commensurable with a Bianchi group PSL(Od), where d is a negative square-free

integer and Od is the ring of integers in Q(
√
d).

Question 2. Which link complements are arithmetic?

Alan Reid [11] showed that the only arithmetic knot is the figure-eight. Recently
the culmination of the work of Baker, Goerner, and Reid [1] [2] [3] answered a
question of Thurston by providing a complete list of all 48 principal congruence
arithmetic link complements.

In joint work with Christian Millichap and Rolland Trapp [8], we analyzed
these questions for a class of links known as fully augmented links (FALs) (see
[10]). As first described by Agol and Thurston in the appendix of [6], any fully
augmented link complement ML may be decomposed into two copies of a single
right-angled hyperbolic polyhedron PL, together with gluing instructions. In [4],
Chesebro, Deblois, and Wilton give a sufficient condition for the link group ΓL

to be commensurable with the reflection group Γ(PL), generated by reflections
through the walls of the polyhedron PL. Combining these results, we analyze the
commensurability invariants of link groups via reflection group techniques.

As an example of our techniques, we compute the arithmetic invariants of fully
augmented pretzel links. A fully augmented pretzel link with n ≥ 3 planar cir-
cles and n crossing circles is a fully augmented link FAPLn with 2n components
arranged as in Figure 1. In Thurston’s notes [12], he refers to these links as D2n.

c1 c2 cn−1 cn

. . .

. . .

Figure 1. FAPLn, with crossing circles ci, i = 1, . . . , n.

We show that for each n ≥ 3, FAPLn satisfies the symmetry conditions of CDW
[4] and hence its link group Γn is commensurable with the reflection group Γ(Pn).
We then use the geometry of the circle packing associated to the polyhedra Pn,
using, for example, the Pedoe product, to explicitly compute its cusp shape and
its Gram matrix. Using results of Flint [5] we compute the invariant trace field of
Γn and then use Vinberg’s arithmeticity criterion [7, 10.4.5] to check arithmeticity.

Theorem 1. For n ≥ 3, let Γn denote the nth fully augmented pretzel link group.
Then kΓn = Q(cos(π/n)i). Furthermore, Γn is arithmetic if and only if n = 3, 4.
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[12] W. Thurston, The Geometry and Topology of 3-Manifolds, Lecture Notes, Princeton Uni-
versity Math. Dept. (1978).

Fields of definition of arithmetic hyperbolic reflection groups

Benjamin Linowitz

A hyperbolic reflection group is a discrete subgroup of the isometry group of hy-
perbolic n-space which is generated by reflections in the faces of a hyperbolic poly-
hedron. In this talk we will be concerned with hyperbolic reflection groups which
are arithmetic. It was proven by Agol, Belolipetsky, Storm and Whyte [1], and
independently by Nikulin [7], that there are only finitely many conjugacy classes
of arithmetic maximal hyperbolic reflection groups, where a hyperbolic reflection
group is said to be maximal if it is not properly contained in another hyperbolic
reflection group. This finiteness result makes the enumeration of the (conjugacy
classes of) maximal hyperbolic reflection groups feasible, at least in theory. A first
step towards such a classification is to determine the potential fields of definition
of such groups.

In [7] Nikulin proved that the maximum degree of the field of definition of an
arithmetic hyperbolic reflection does not exceed the maximum degree of such fields
in dimensions n = 2, 3, and a certain transition constant which was proven to be
bounded above by 25 in [8]. This result makes the problem of obtaining bounds for
the degree of the fields of definition in dimensions n = 2, 3 especially important.
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To that end, we present the following results (proven in [4] and [3], the latter
representing joint work with M. Belolipetsky):

Theorem 1. The field of definition of the quaternion algebra associated to an
arithmetic Fuchsian group of genus 0 is at most 7. In particular the degree of the
field of definition of an arithmetic hyperbolic reflection group in n = 2 is at most
7.

Theorem 2. The degree of the (totally real) field of definition of an arithmetic
hyperbolic reflection group in dimension 3 is at most 9.

We note that the first theorem proves a conjecture of Long, Maclachlan and
Reid [5] and improves upon a previously known bound of Maclachlan [6], while
the second theorem improves upon previous work of Belolipetsky [2].

Note that in [5], Long, Maclachlan and Reid actually construct arithmetic Fuch-
sian groups of genus 0 whose field of definitions have degree 7. This construction
motivates the following problem:

Problem 1. Construct an arithmetic hyperbolic reflection group in dimension
n = 2 whose field of definition has degree 7.
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Hyperbolic manifolds without a spin structure

Leone Slavich

(joint work with Bruno Martelli, Stefano Riolo)

A smooth, orientable, compact n-manifold M is said to be spinnable if the second
Stiefel-Whitney class of its tangent bundle vanishes, i. e.

ω2(M) = 0 ∈ H2(M,Z/2Z).

A more topological definition of spinnable manifold is as follows: suppose that
M is endowed with a cell complex structure. Then M is spinnable if there is a
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trivialization of its tangent bundle on the 2-skeleton ofM (this does not depend on
the choice of the cell decomposition). This property is not very interesting in the
low-dimensional cases, since all orientable surfaces and 3-manifolds are spinnable.
Things become more intersting from dimension 4 upwards, where there are both
spin and non-spin examples.

One might wonder what happens if we restrict our attention to finite volume
hyperbolic manifolds. By work of Deligne and Sullivan [1] the following holds:

Theorem 1. Let M be a finite volume hyperbolic manifold. Then M is virtually
spinnable.

In other words, every hyperbolic manifoldM admits a finite-index cover which is
spinnable. This theorem provides an abundance of spinnable hyperbolic manifolds,
and it reasonable to ask if the virtual hypothesis is really needed. Indeed, all
previously known examples of closed, orientable hyperbolic 4-manifolds for which
the property of being or not spinnable could be checked turned out to be spinnable.
We prove the following:

Theorem 2. There are compact orientable hyperbolic manifolds that do not admit
any spin structure, in all dimensions n ≥ 4.

Notice that a necessary condition for a 4-manifold to admit a spin structure
is that its intersection form is even, which means that for all S ∈ H2(M,Z), the
algebraic self-intersection S · S is even. We first prove the following:

Theorem 3. There is a compact oriented arithmetic hyperbolic 4-manifold M that
contains a π1-injective embedded surface S with genus 3 and S · S = 1.

The 4-manifold M above is therefore non-spinnable. We then build a sequence
of non-spinnable hyperbolic n-manifolds Mn, by repeatedly embedding each Mn

in Mn+1 in a totally geodesic way as in [2]. The normal bundle of Mn in Mn+1

will then be trivial, and by standard properties of the Stiefel-Whitney classes, if
Mn is not spinnable also Mn+1 will not be spinnable.

Notice that if S is a totally geodesic immersed surface, its self-intersection S ·S
is necessarily even. Therefore Theorem 3 implies the following:

Corollary 4. There exists a hyperbolic 4-manifold M such that H2(M,Z) is not
generated by totally geodesic immersed hypersurfaces.

For the construction of the 4-manifold M of Theorem 3, we refer the reader to
[3]. Here we simply remark that the 4-manifold M is built by glueing together a
finite number of copies of the hyperbolic right angled 120-cell, which is a regular 4-
dimensional hyperbolic polytope. This construction guarantees the arithmeticity
of M . The surface S with self-intersection equal to 1 lies in the 2-skeleton of M .
It is a pleated surface, tessellated by right-angled hyperbolic pentagons.

Finally, we remark that the surface S is π1-injective in M . The quotient
H4/π1(S) is geometrically finite, and its topology is that of a rank 2 real vec-
tor bundle over S with Euler number one. The existence of complete hyperbolic
structures on non-trivial bundles over surfaces was first discovered by Gromov –
Lawson – Thurston [4] in 1988. The following consequence seems also new:
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Corollary 5. There are non-trivial bundles over surfaces that cover some compact
hyperbolic 4-manifolds.
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Selected Open Problems

Vincent Emery, Martin Deraux, Matthew Stover, Edoardo Dotti,

Mikhail Belolipetsky, Pavel Tumarkin, Anna Felikson, Anne Thomas

Several problems were discussed during the three problem sessions; some of them
could find answers (at least partially) and stimulated further discussion. We list
here a selection of some problems that were proposed and remained open.

Problem 1 (Deraux). Are there infinitely many commensurability classes of non-
arithmetic lattices in PU(2, 1)?

→ It appears that a positive answer would require a completely new approach for
producing nonarithmetic lattices. This same comment holds for the next question:

Problem 2 (Stover). Does there exist a hyperbolic n-manifold (n ≥ 4) containing
no arithmetic totally geodesic m-submanifold for each 1 < m < n?

Problem 3 (Dotti). Let Γ be a (non-arithmetic) reflection lattice in PO(n, 1)
with n ≥ 4. Is the trace field of Γ necessarily totally real?

→ Note that the problem is more generally open for Γ any lattice in PO(n, 1)
(n ≥ 4).

Problem 4 (Belolipetsky). Find examples of non-isomorphic hyperbolic Coxeter
groups Γ1 and Γ2 such that their quotients Hn

R/Γi (i = 1, 2) are isospectral.

→ The basic idea would be to apply Sunada’s method (so that in particular the
Coxeter groups would be commensurable).

Problem 5 (Tumarkin). Let (W,S) a Coxeter system, and Γ ⊂ W a reflection
subgroup of finite index; then rankΓ ≥ rankW . When does equality holds?

→ Tumarkin and Thomas point out that examples with equality (other than “dou-
bling”) notably exist for affine and hyperbolic groups.

Problem 6 (Belolipetsky). Visualize the Coxeter diagram of Borcherds’ Coxeter
polytope of dimension n = 21.
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Problem 7 (Felikson). Give a geometric explanation for the classification of quiv-
ers of finite mutation type.

Problem 8 (Thomas). Develop new (abstract) commensurability invariants for
Coxeter groups.

Problem 9 (Thomas). Compute the abstract commensurator for (certain) right-
angled Coxeter groups.

→ The abstract commensurator is an abstract commensurability invariant, which
has been studied for some important classes of groups including right-angled Artin
groups, but very little seems to be known for right-angled Coxeter groups.

Wishlist for Sage functions

Vincent Emery

During the week emerged the idea (by Anna Haensch and Jeff Meyer) to orga-
nize a workshop Sage Days with the goal of implementing functions related to
hyperbolic geometry. This idea was welcomed by the participants, and four of
them have accepted to be responsible for pushing forward its realization. A list of
possible experts in Sage with competence in hyperbolic geometry was prepared,
and possible places for the workshop were discussed. The discussion also provided
a wishlist for Sage functions. Here is a sample, divided in three categories:
Functions on Coxeter groups:

• Vinberg’s algorithm
• Geometric realization
• Volume computation (ad-hoc for Coxeter groups)
• Coxeter subgroups of Coxeter groups

Functions on lattices:

• Finding torsion-free subgroups
• Construction of fundamental domains (e.g. Dirichlet domains)
• Volume computation (integration)

Functions of arithmetic nature:

• Manipulation of Hermitian forms
• Checking if an arithmetic subgroup is congruence
• Volume computation (Prasad’s formula)
• Circle packing (e.g., draw packings)
• Continued fractions
• Checking pseudo-arithmeticity

Reporter: Ruben Bär
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