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Abstract. Crystallisation, by which we mean the formation of solids pre-
cipitating from a solution, is the central theme of the present mini-workshop.
Participants discussed different approaches towards a rigorous mathematical
understanding of crystallisation as well as detecting, modelling and establish-
ing properties of crystalline and quasicrystalline structures.
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Introduction by the Organizers

The mini-workshop Mathematics of Crystallisation was attended by 17 partici-
pants from different mathematical disciplines. Understanding the structure for-
mation of crystals was the overarching theme of this week-long program. Even
though this question is rather classical, a rigorous picture is still missing. How-
ever, the field currently undergoes a phase of renewed interest and activity, and
the workshop brought together senior and junior mathematicians with a keen in-
terest in crystallisation. Apart from presentations of current and classical results,
the workshop aimed at identifying tractable and challenging questions for future
research.

We had fifteen one-hour talks throughout the week, targeting a wide range of
perspectives on the crystal problem. These talks were completed by four half-hour
lectures on additional aspects on Friday afternoon, as well as a summary by one of
the organisers. Furthermore, we had scheduled informal discussions every evening
after dinner, which led to a lively interaction between the participants.

For a rough mathematical description of crystallisation, we consider a point
process in d-dimensional space (representing the atoms in the crystal) equipped
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with a pair or multi-body interaction that is given through a potential function
and the desire is to study structural properties of the resulting configuration. In
broad terms, the research presented at the workshop can be categorised in four
themes.

The first theme summarises results on the energy minimising configurations.
Laurent Bétermin studied the case when the point process is a Bravais lattice,
and derived correspondences between the potential function and the resulting lat-
tice. Lucia Scardia took a slightly different angle and studied the equilibrium
measures for anisotropic energies, which allowed her to identify grain boundaries.
Michael Baake gave a more algebraic view on the classification of large-angle grain
boundaries by linking them with coincidence site lattices and algebraic number
theory.

The second theme studied resulting configurations under a thermal measure
at low but positive temperature. In contrast to the first theme (which would
correspond to the particular case of temperature zero), the challenge is that de-
fects and impurities arise at all scales. Physicists distinguish between two kinds
of defects: Dislocations (such as missing atoms, line defects or screw defects) as
well as disclinations. Uniform energy bound on these defects appears currently
out of reach even for arbitrarily small temperatures; in particular, the energetic
cost of disclinations, albeit seemingly costly, is not yet found. However, there is
exciting new progress in restricted settings. The one-dimensional case is special
because the possibility of defects is minimal on the line. Sabine Jansen and Bernd
Schmidt presented novel results for the one-dimensional case at positive temper-
ature, which give a somewhat detailed description of the statistical properties of
one-dimensional crystals.

The two-dimensional case is highly challenging. A delicate artefact of the two-
dimensional case is the absence of positional order (by Mermin–Wagner type ar-
guments) so that only long-range orientational order appears possible. Alessandro
Giuliani gave an overview talk about orientational order of two-dimensional crys-
tals, outlining possible approaches for rigorous proofs. Florian Theil reported on
joint work with Luke Williams on a two-dimensional model, where the chemical
potential of defects is so large that the thermal measure excludes them statistically.

Modelling crystals in three dimensions was an important theme during the week.
Two new models were proposed to demonstrate the breaking of linearised rota-
tions. Diana Conache and Franz Merkl described a mesoscopic model of a three-
dimensional crystal that is inspired by the classical Kosterlitz–Thouless model.
The setting is a mixed discrete/continuum model: while the actual atoms are
modelled on a microscopic scale (described in a continuum approximation), the
relevant dislocations are described on a mesoscopic lattice. Florian Theil proposed
a different route, where he models dislocations microscopically following a model
by Ariza and Ortiz. It is a future challenge to prove the breaking of rotations
(rather than linearised rotations) in a physically meaningful model.

A third theme of the workshop is the theory of quasicrystals. Uwe Grimm gave
an overview talk about the construction of aperiodic tilings and their properties.
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The notion of order is fundamental in establishing crystals, and crystallographers
use diffraction experiments to distinguish order from disorder. Michael Baake
presented a mathematical theory of diffraction, with a particular emphasis on
quasicrystals. Holger Kösters extended this by calculating diffraction spectra for
various point configurations. Franz Gähler completed the theme with a computa-
tional perspective by demonstrating molecular dynamics simulations.

Under the fourth theme, we gather results on related problems and techniques,
whose solution presumably sheds light on crystallisation questions. Franz Gähler
discussed the construction of tiling spaces. Alastair Rucklidge explained the link
between pattern formation and the field of non-linear dynamics and discussed
Fourier spectra of quasi-patterns. Alexander Magazinov explained his recent proof
that Poisson hard disks percolate in sufficiently high density. Stefan Adams re-
ported on results about gradient fields for non-linear elasticity. The underlying
renormalisation scheme appears universal and might be of use in the crystallisation
context as well.

The perfect scientific environment provided by the institute supported numer-
ous mathematical discussion among the participants. The fact that most of the
participants left the institute only on Saturday morning demonstrates this active
attitude. We trust that the workshop was seed and fertiliser for exciting new
results on the mathematics of crystallisation.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
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Abstracts

Orientational order of 2D crystal at low temperatures: an overview,
open problems and possible approaches

Alessandro Giuliani

In this talk, I will review the problem of understanding whether interacting particle
systems at low temperature exhibit crystalline orientational order in two dimen-
sions. The basic understanding comes from the harmonic (also known as gaussian,
or ‘spin wave’) approximation, which predicts: positional and orientational order
in three dimensions; orientational order without positional order in two dimen-
sions. Absence of positional order for particle systems in two dimensions is well
understood, on the basis of the Mermin-Wagner theorem [8], and of various quan-
titative extensions thereof [3, 10]. On the contrary, existence of orientational order
has been proved so far only in toy models of interacting particles that either do
not support dislocations [5, 7], or allow them but with an associated astronomical
(i.e., box size dependent) energy cost [2]. It remains to be seen whether orien-
tational ordering is possible in models supporting dislocations, with finite energy
cost associated to each dislocation core. A possible toy model with this features
is a statistical mechanics version of the Ariza–Ortiz model [1], which has features
reminiscent of the Villain model for 2D rotators; in particular, the energy can be
split exactly into an elastic plus ‘vortex’ part, the vortices representing now the
dislocation cores. It is likely that the model can be treated by the methods used
in 1981 by Fröhlich–Spencer [4] for understanding the Kosterlitz–Thouless phase
in the 2D Villain model. However, it must be taken into account that energy
of non-neutral clusters of vortices in the Ariza–Ortiz model scale very differently
from the case of the Villain model: in particular, there are regular, non-neutral,
arrangements of vortices that have an energy linear in the number of vortices
(‘Read-Shockley law’ for the grain boundaries [6, 9]). I will argue that these con-
figuration have the potential of changing qualitatively the predictions of spin-wave
theory, possibly destroying orientational order in two dimensions.
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Aperiodic tilings: construction and properties

Uwe Grimm

Non-crystallographic symmetries have intrigued artists and scientists for centuries.
For instance, in the early 17th century, Johannes Kepler attempted to construct
a fivefold tiling of the plane, a feat that was eventually completed successfully by
Roger Penrose in 1974 [10]. Today, the Penrose tiling is still one of the paradigms
of aperiodic order.

The field of aperiodic order developed rapidly after the surprising discovery of
aperiodically ordered materials, now known as quasicrystals, in the early 1980s
by Dan Shechtman [12], who was awarded the 2011 Nobel Prize in Chemistry.
However, it builds on earlier work, in particular the theory of almost periodic
functions developed by Harald Bohr in the early 20th century [5], and work on
Wang tiles related to the undecidability of the domino problem [6]. A key con-
tribution comes from Yves Meyer’s work in harmonic analysis [8], although this
was only fully recognised much later. For a general mathematical introduction to
aperiodic order, see [1], and [9, 4, 11, 7, 2] for more details.

The talk introduced the notions of tilings of space and point sets in space, and
two important equivalence concepts: local indistinguishability (LI) andmutual local
derivability (MLD). The latter can be used to switch between tiling and point set
pictures, in order to use a description of a given spatial structure that is most
convenient for the purpose at hand.

There are three main approaches to construct aperiodic tilings, which are local
rules (also known as matching rules), inflation rules (which in the symbolic context
are usually referred to as substitution rules) and cut and project sets (or model
sets, under mild extra assumptions). In the talk, examples for all these approaches
were discussed. It was emphasised that local rules generally do not constitute local
growth rules. While there are examples of aperiodic tilings that allow for all three
constructions (for instance the Penrose tilings), this is not generally the case. For
example, the pinwheel tiling of the plane arises from an inflation description but
clearly cannot be embedded into a higher-dimensional periodic lattice, because
it exhibits circular rotational symmetry. Several properties of certain classes of
aperiodic tilings, such as repetitivity and pure point diffractivity, were introduced.
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Model sets obtained from Euclidean cut and project schemes were discussed in
some detail. For sufficiently nice windows, these sets are pure point diffractive,
and the diffraction measure can be expressed explicitly in terms of the Fourier
transform of the characteristic function of the window. It is possible to generalise
results to weak model sets of maximal density, such as the set of visible (primitive)
points of the square lattice. This subset of the lattice Z2 is not a Delone set,
as it contains holes of arbitrary size (as a consequence of the Chinese remainder
theorem), but can be interpreted as a model set with a window that has no interior
and so consists just of its boundary. A weak model set of this type is still pure
point diffractive if it has extremal density [3].
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From potentials to minimizing structures

Laurent Bétermin

(joint work with Mircea Petrache, Peng Zhang)

A natural question arising in any crystallization problem in Rd (equipped with
its euclidean norm |.|) with a central-force energy represented by an absolutely
summable interaction potential f : (0,+∞) → R is the following:

What is the minimizer of Ef [L] :=
∑

p∈L\{0}
f(|p|2) among lattices L?
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By comparing the energies of different crystal structures, we can exclude or keep
possible minimizing lattices for the crystallization problem with potential f . We

restrict our study to the class Ld of simple lattices L =
⊕d

i=1 Zui where (ui)i is a
basis of Rd, and we denote by L◦

d(V ) the space of simple lattices with a unit cell
of volume V . Furthermore, f is assumed to be the Laplace transform of a Radon
measure µf , i.e. f(r) =

∫∞
0 e−rtdµf (t). We then ask the following fundamental

questions:

Q1: For which f a lattice can be a minimizer of Ef in L◦
d(V ) for all V ?

Q2: If the minimizer is not the same for all the densities, what are the other
candidates?

Q3: What are the reasonable candidates for being a minimizer of Ef in Ld?
A key point to study these questions is to write Ef in terms of theta functions:

Ef [L] =

∫ ∞

0

[
θL

(
t

π

)
− 1

]
dµf (t), θL(α) :=

∑

p∈L
e−πα|p|

2

.

Thus, the minimizers of L 7→ θL(α) and the sign of µf can give some crucial
information about the minimizers of Ef . Let us assume that L 7→ θL(α) has the
same minimizer L0 for all α > 0 in L◦

d(1), which is the case for d ∈ {2, 8, 24} and
where L0 is respectively the triangular lattice, E8 and the Leech lattice, as proved
in [8, 6]. Then we have proved the following results in [4]:

(1) Completely monotone functions. If µf is nonnegative, then L0 mini-
mizes Ef in L◦

d(V ) for all V > 0.
(2) Negativity of the measure µf near 0 and infinity. If µf < 0 on

(0, r0) (resp. on (r0,∞)), then there exists V0 such that for all V > V0
(resp. for all V < V0), L0 is not a minimizer of Ef in L◦

d(V ).
(3) Positivity of the measure µf near 0. If µf > 0 on (0, r0) or on (r0,∞)

and if L minimizes Ef on L◦
d(V ) for all V > 0, then L = L0.

The class of completely monotone functions answers question Q1, but it turns out
that the problem of finding all the potentials f answering this question is a difficult
task. Indeed, in dimension d = 2 where the only lattice that can be a minimizer of
Ef at all the scales is the triangular one, we have found in [1] a positive, decreasing
and convex function f such that the triangular lattice is not a minimizer of Ef in
L◦
2(V ) for some V in an open interval. Furthermore, in [4], we have constructed

a potential f such that its measure µf is negative on an open interval and the
minimizer of Ef in L◦

2(V ) is triangular for all V > 0. We also remark that the
sign of the derivatives of fε0 alternates until the fourth one only.

It is also possible to have some quantitative results for the optimality of the
triangular lattice for Ef in L◦

2(V ). For example, in the Lennard–Jones case
f(r) = ar−p − br−q, p > q > 1, in [5, 1], we have derived a new integral rep-
resentation of Ef and we have found an explicit bound V0 such that the triangular
lattice is a minimizer of Ef in L◦

2(V ) for all V < V0. Furthermore, in [2], we
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have numerically checked that the minimizer of Ef in L◦
2(V ) exhibits an inter-

esting phase transition of the form ’triangular-rhombic-square-rectangular’ as V
increases, the same behaviour being observed for the Morse potential in [3].

Finding the global minimizer of Ef in Ld is also a difficult task. The integral
representation showed in [1] implies the optimality of a triangular lattice for the
Lennard–Jones potential with small parameters p, q, but the same result is ex-
pected for any values of the parameters, and a method to compare the possible
global minima is explained in [4]. The Morse potential seems also to have a trian-
gular lattice for global minimum, but in [4] we have constructed many examples
of one-well potentials f such that the minimizer of Ef in L2 is not triangular.

Finally, an important result is the classification of all the lattices being critical
points of Ef in L◦

2(V ) for all V in some open interval. Using a result by Gruber
[7] about the Epstein zeta function, we have shown in [3] that such lattices must
have all their layers ’strongly eutactic’. These structures, answering question Q3,
that are then the best candidates for being a global minimum of Ef , are the square
and triangular lattices in dimension d = 2 and the BCC, FCC and simple cubic
lattice Z3 in dimension d = 3.
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The equilibrium measure for a non-local dislocation energy

Lucia Scardia

In this talk I presented the results in [7] and [1] on the characterisation of equilib-
rium measures for non-local and anisotropic weighted energies.

For α ∈ R we consider the interaction energy

(1) Iα(µ) =

∫∫

R2×R2

Wα(x− y) dµ(x) dµ(y) +

∫

R2

|x|2 dµ(x)

defined on probability measures µ, where the interaction potential Wα is given by

(2) Wα(x) = − log |x|+ α
x21
|x|2 , x = (x1, x2),

while the second term in the energy acts as a confinement.
The energy Iα is the continuum limit (via Γ-convergence) of the discrete inter-

action energy

(3) In,α(z1, . . . , zn) =
1

n2

∑

i6=j
Wα(zi − zj) +

1

n

∑

i

|zi|2

for n → ∞. The non-local term in (1) describes the macroscopic effect of long-
range interactions in the discrete energy (3). Note that W1 is the interaction
potential between positive edge dislocations with Burgers vector e1 (see [4]), and
so the energy In,1 (and its continuum limit I1) models the interaction of positive
dislocations in the plane in the case of single slip.

We are interested in characterising the minimisers µα of Iα. We first focus
on α = 1. For α = 1 the minimiser µ1 represents the equilibrium dislocation
pattern at the mesoscale. Although such a minimiser has not been characterised
analytically so far, neither at the micro nor at the mesoscale, it is conjectured to be
a vertical wall (see, e.g., [2, 4]). This belief has triggered a considerable interest in
dislocation walls in the engineering and mathematical literature, and interactions,
upscaled behaviour and dynamics of walls have been thoroughly analysed. We
also mention the remarkable result [5] where, starting from a nonlinear dislocation
model, vertical walls, ‘low-angle grain boundaries’, are shown to have the optimal
energy scaling in accordance with the celebrated Read-Shockley formula.

Formally, we can see how the interaction term in I1,n can be obtained start-
ing from a dislocation model as the one considered in [5]. Indeed, consider the
(linearised) energy

Eε(µn) =
1

2
min
β

∫

Ω\Bε(suppµn)

Cβ : βdx,

where Ω is a bounded domain, C is the tensor of isotropic elasticity, ε > 0 is the
length of the Burger’s vector, µn = 1

n

∑
δzi , and the minimum is taken over the

strains β such that curlβ = e1µn. Roughly speaking, the energy contribution of
Eε in the vicinity of the dislocations at {zi} is the so-called self-energy, which is
constant (although a large constant) under the assumption that |zi−zj| ≫ ε. The
contribution away of the core regions, in the formal limit of Ω → R2, corresponds to
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the energy In,1. So, minimising In,1 is very much in the same spirit as minimising
Eε, and it is natural to expect the minimiser of In,1 or I1 to be a vertical structure,
similarly as in [5] for Eε.

This is what we prove in [7]: the minimiser of I1 exists, is unique, and is given
by a one-dimensional, vertical measure, namely the semi-circle law on the vertical
axis

µ1 :=
1

π
δ0 ⊗

√
2− x22 H1 (−

√
2,
√
2).

This proves the conjecture that positive edge dislocations form vertical structures
to minimise their interaction energy. Note that the semi-circle law is well-known
in the theory of Random Matrices, as it is the unique minimiser of the logarithmic
one dimensional energy

(4) Ilog(µ) = −
∫∫

R×R

log |x− y| dµ(x) dµ(y) +
∫

R

|x|2 dµ(x), µ ∈ P(R),

and represents the average distribution of the eigenvalues of a random matrix (with
i.i.d. Gaussian entries) in the Hermitian case (see [6] and [9]). Curiously,

Ilog(µ1) = I1(µ1),

namely the 2d-dislocation energy I1 coincides with the 1d-logarithmic energy along
the measure µ1 (in fact on every vertical measure, since the anisotropic term
vanishes on those measures). Therefore if one could prove that the minimiser of I1
is supported on the vertical axis, then the minimality of the semi-circle law would
follow directly from [9].

This is however not the strategy we use in [7]. Our approach consists of two
steps: We first prove the strict convexity of I1 on the class of measures with
compact support and finite interaction energy. Strict convexity implies uniqueness
of the minimiser and the equivalence between minimality and the Euler-Lagrange
conditions for I1. As a second step, we show that the semi-circle law satisfies the
Euler-Lagrange conditions and hence is the unique minimiser of I1.

The proof of both steps is highly non-trivial. We could not rely on the machin-
ery developed in the classical case of purely logarithmic potentials with external
fields (see [8]), which is heavily based on − log | · | being radially symmetric, and
on it being the fundamental solution of the Laplace operator, since W1 is neither.
Similarly, although non-local energies are widely used and studied in the mathe-
matical community, and the existence of their ground states and their qualitative
properties have received great attention in recent years, the potential is typically
required to be radially symmetric, or the singularity to be non-critical, so W1 is
not covered by their analysis.

Now, we consider the case of a general α ∈ R. Note that for α = 0, corre-
sponding to the Coulomb potential W0 = − log | · |, the minimiser of I0 in (1)
is well-known and given by the circle law µ0 := 1

πχB1(0) (see, e.g., [3, 8], and
the references therein). Although the radial component of the potential in (2) is
exactly the Coulomb kernel W0, the presence of the additional anisotropic term
for α = 1 has then a dramatic effect on the structure of the equilibrium measure.
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Unlike µ0, the support of µ1 is one-dimensional and its density is not constant. It
is then natural to consider the intermediate case of α ∈ (0, 1), where we sort of
interpolate between W0 and W1.

In this case we prove in [1] that the minimiser µα of Iα is the (normalised)
characteristic function of an ellipse of semi-axes

√
1± α. So α = 0 indeed gives

back the circle law µ0, and the case α = 1 is singular, in the sense that one of the
semi-axes is degenerate. This is indeed the case, as for α = 1 we know that the
minimiser is one-dimensional, and hence it can be considered as a ‘singular’ limit
case.
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Molecular dynamics simulations, with applications to quasicrystals

Franz Gähler

An overview of the molecular dynamics simulation technique and its application
to the simulation of quasicrystals is given. More details can be found in the review
[1]. Molecular dynamics is a low-level simulation technique, in which the equations
of motion of an interacting system of particles are integrated numerically. One
thereby performs a numerical experiment. The only modelling required is the
choice of a suitable interaction model and, to some extent, the choice of an initial
structure. For performance reasons, classical interaction potentials are preferred,
whenever suitable potentials are available. Such potentials usually have to be
constructed for a particular material.

Quite generally, complex intermetallics require potentials with Friedel oscillata-
tions, but already very simple such potentials with just a second minimum, or even
only a second maximum, can lead to complex quasicrystal phases. This was first
observed by Dzugutov, who found dodecagonal random tiling quasicrystal phases
upon slow cooling of a monoatomic liquid [2]. The very same structures, dodecago-
nal Frank-Kasper phases, actually occur also in many soft-matter quasicrystals.
Later, Engel systematically investigated the phase diagram of simple oscillating
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potentials, and found a region with decagonal random tiling quasicrystals in two
dimensionals [3], and icosahedral quasicrystals in three dimensions [4].

For more realistic quasicrystal structures, also more realistic potentials are re-
quired. These are usually fitted to reproduce forces and energies of reference struc-
tures computed in ab-initio DFT simulations [5]. In this way, quantum mechanical
information is made available also to classical simulations. As an illustrative exam-
ple, simulations of Al diffusion in decagonal AlNiCo quasicrystals are presented.
These have been performed with two kinds of potentials, derived analytically from
density functional theory on the one hand, and fitted to ab-initio data on the other
hand. Results for the two potential types are compared and discussed (see also
[1]).
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Dislocation lines in three-dimensional solids at low temperature, part I

Franz Merkl

(joint work with Roland Bauerschmidt, Diana Conache, Markus Heydenreich,
Silke Rolles)

We propose a model for three-dimensional solids on a mesoscopic scale with a
statistical mechanical description of dislocation lines in thermal equilibrium. The
model has a linearized rotational symmetry, which is broken by boundary condi-
tions. We show that this symmetry is spontaneously broken in the thermodynamic
limit at small positive temperatures. This part I is continued by the talk of Diana
Conache.

In a linear and continuum approximation, a deformed solid is modeled by a
map w : R3 → R3×3, describing locally the linear part of the deformation map.
Total energy in the model. The leading order total energy H(w) of a deformed
solid is modeled to consist of

H(w) = Hel(w) +Hdisl(d1w),(1)

with an “elastic” part

Hel(w) =

∫

R3

F (w(x) + w(x)t) dx, F (U) =
λ

2
(trU)2 + µ|U |2,(2)



1086 Oberwolfach Report 18/2019

with Lamé coefficients λ and µ, and a local “dislocation”part Hdisl(d1w), depend-
ing on the exterior derivative

bijk := (d1w)ijk = ∂iwjk − ∂jwik(3)

of w, describing the Burgers vector density of dislocations in the solid.
Coarse-grained model for dislocation lines. Dislocation lines are only allowed
in the set Λ of undirected edges of a mesoscopic lattice in R3. Let VΛ denote
its vertex set. As a lattice, the graph (VΛ,Λ) is of bounded degree. To model
boundary conditions, we only allow dislocation lines on a finite subgraph G =
(V,E) of (VΛ,Λ), ultimately taking the thermodynamic limit E ↑ Λ. The graph
(VΛ,Λ) is not intended to describe the atomic structure of the solid, as it lives on
a mesoscopic scale. Rather, it is just a tool to introduce a coarse-grained structure
which eventually makes the model discrete.
From dislocation lines to Burgers vector densities. We model the Burgers
vector densities with the help of vector-valued currents flowing along the edges of Λ,
but smeared out with a smooth, compactly supported form function ϕ : R3 → R+

0

with total mass ‖ϕ‖1 = 1 and ϕ(0) > 0. Let Γ ⊂ R3 be a lattice, interpreted as the
microscopic lattice (scaled to length scale 1). It should not be confused with the
mesoscopic lattice VΛ. The Burgers vectors on the finite subgraph G = (V,E) are
encoded by a family I = (Ie)e∈E ∈ ΓE of vector-valued currents flowing through
the edges in counting direction. We set

I = I(E) = {I ∈ ΓE : Kirchhoff’s node rule holds for I}.(4)

For e = {x, y} ∈ Λ, let λe : Borel(R3) → R+
0 denote the 1-dimensional Lebesgue

measure on the line segment [x, y]. For every edge e ∈ E, let ne ∈ R3 denote the
unit vector pointing in its counting direction. Before smearing out, we model the
vector-valued current associated to the current configuration I to be described by
the following matrix-valued measure J(I) : Borel(R3) → R3×3 on R3, supported
on the union of all edges:

Borel(R3) ∋ B 7→ Jjk(I)(B) =
∑

e∈E
(ne)j(Ie)kλe(B).(5)

The Burgers vector density b(I) associated to I is then modeled by convolving
J(I) with the form function ϕ and contracting it with the totally antisymmetric
tensor ǫijk = det(ei, ej , ek) with the standard unit vectors ei ∈ R3:

bijk(I) =
3∑

l=1

ǫijlϕ ∗
∑

e∈E
(ne)l(Ie)kλe.(6)

Dislocation part of the energy: For the dislocation part of the total energy,
we make the following assumptions:

• Symmetry: Hdisl(b(I)) = Hdisl(b(−I)) for all I ∈ I.
• Locality: For I = I1 + I2 with I1, I2 ∈ I such that no edge in supp I1
has a common vertex with another edge in supp I2 we have Hdisl(b(I)) =
Hdisl(b(I1)) +Hdisl(b(I2)). In particular, Hdisl(0) = 0.
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• Lower bound: For some constant c > 0 and all I ∈ I,

Hdisl(b(I)) ≥ c
∑

e∈E
|Ie|.(7)

Elastic part of the Hamiltonian of the model. We define

H∗
el(I) = inf

w∈C∞

c (R3,R3×3):
d1w=b(I)

Hel(w)(8)

for all I ∈ I. The condition that w is compactly supported reflects the boundary
condition: Close to infinity the solid must not be moved away from its reference
location. The symmetry with respect to linearized global rotations is reflected
by the fact Hel(w) = Hel(w + wconst) for every constant antisymmetric matrix
wconst ∈ R3×3. Only the boundary condition, i.e. only the restriction that w
should have compact support, breaks this global symmetry.
Partition sum and thermal measure:

Zβ,E :=
∑

I∈I(E)

e−β(H
∗

el(I)+Hdisl(b(I))),(9)

Pβ,E :=
1

Zβ,E

∑

I∈I(E)

e−β(H
∗

el(I)+Hdisl(b(I)))δI ,(10)

here δI denotes the Dirac measure in I ∈ I.
Comparison to the rotator model. Purely elastic deformations in the present
model correspond to “spin wave” contributions in the rotator model, while de-
formations induced by the Burgers vectors correspond to “vortex” contributions.
In our model, the purely elastic deformations are orthogonal to the deformations
induced by the Burgers vectors in a suitable inner product. Therefore, we do
not model the purely elastic part stochastically. It would not be relevant for our
purposes, because in a linearized model, it is expected to be independent of the
Burgers vectors anyway.
Statement of results. The following lemma shows that any sequence of smooth
configurations satisfying the boundary conditions with prescribed Burgers vectors
has a limit w∗ in L2 provided that the energy is approaching the infimum of all
energies within the class.
Lemma: Compactly supported approximations of the minimizer. For
any I ∈ I, there is a bounded smooth function w∗(·, I) ∈ L2(R3,R3×3) such that
for any sequence (wn)n∈N in C∞

c (R3,R3×3) with d1w
n = b(I) for all n ∈ N and

lim
n→∞

Hel(w
n) = H∗

el(I) we have lim
n→∞

‖wn − w∗(·, I)‖2 = 0.

The following theorem shows that the breaking of linearized rotational symme-
try w w+wconst induced by the boundary conditions persists in the thermody-
namic limit E ↑ Λ, provided that the inverse temperature β is large enough.
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Theorem: Spontaneous breaking of linearized rotational symmetry.
There is a constant c1 = c1(Γ,Λ, c) > 0 such that for all β large enough and for
all t ∈ R,

inf
E⋐Λ

inf
x,y∈R3

min
i,j∈[3]

EPβ,E

[
eit(w

∗

ij(x,I)−w∗

ij(y,I))
]
≥ exp

{
− t2

2
e−c1β

}
,(11)

and consequently

sup
E⋐Λ

sup
x,y∈R3

max
i,j∈[3]

VarPβ,E

(
w∗
ij(x, I)− w∗

ij(y, I)
)
≤ e−c1β .(12)

The presentation of Diana Conache provides the key ingredients for the proof
of this theorem. Details are given in reference [1].
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Dislocation lines in three-dimensional solids at low temperature,
part II

Diana Conache

(joint work with Roland Bauerschmidt, Markus Heydenreich, Franz Merkl, Silke
Rolles)

This talk is a continuation of the one by Franz Merkl and is based on [2]. The aim
will be to prove the main theorem stated in his abstract and we therefore use the
notation introduced there. Namely, we study the statistical mechanical properties
of a random Burgers vector configuration, in the spirit of the Fröhlich–Spencer
approach to the Villain model introduced in [1]. In particular, we show that
the breaking of the linearized rotational symmetry persists in the thermodynamic
limit.

In this sense, we consider the Sine-Gordon transformation of the Boltzmann
factor of the elastic Hamiltonian Hel, namely we introduce an auxiliary Gaussian
field φ = (φe)e∈E in order to get rid of the non-locality of Hel:

E
[
ei〈φ,I〉

]
= e−βH

∗

el(I).(1)

For any observable of the form I ∋ I 7→ 〈σ, I〉 with σ ∈ RE and β > 0, we
define

Zβ,φ :=
∑

I∈I
ei〈φ,I〉e−βHdisl(I),(2)

Zβ(σ) :=
∑

I∈I
ei〈σ,I〉e−β(H

∗

el(I)+Hdisl(I)) = E [Zβ,σ+φ] .(3)

We prove via a cluster expansion a Gaussian lower bound for the Fourier trans-
form of an observable with respect to the thermal measure, as follows. For I ∈ I
we define its size to be size I := ‖I‖1 + diam supp I and note that there exists a
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positive constant c4 such that Hdisl(I) ≥ c4size I. An important observation at
this point is that all constants that appear in our estimates are only dependent
on the model, namely on the two lattices Λ and Γ, on the constant c appearing in
the lower bound of Hdisl and on the form function ϕ.

We denote by J the set of all I ∈ I with compact support and introduce
the weights K(J) := e−βc4size J , for J ∈ J , and size function a : J → R>0,
a(J) := βc5η|supp J |, for J ∈ J . We prove via a Peierls argument that the
conditions for convergence of the cluster exansion are satisfied. We then show
that the partial partition sums defined by

z(β, I) :=

∞∑

n=1

∑

(I1,...,In)∈Jn

U(I1, . . . , In)1{I1+···+In=I}

n∏

j=1

e−βHdisl(Ij) ∈ R,(4)

where U are the Ursell functions, have exponential decay, despite some exponential
corrections. Namely, the following lemma holds:
Lemma: (Exponential decay of partial partition sums.) For all sufficiently
large β > 0, the following holds with the positive constants c4 and c7:

sup
E⋐Λ

sup
o∈E

∑

I∈I:
o∈supp I

eβc4size I |z(β, I)| ≤ e−βc7.(5)

Next, we apply a cluster expansion with K(I, φ) := ei〈φ,I〉e−βHdisl(I) to obtain
a representation of Zβ,φ.
Lemma: (Partition sums in the presence of φ.) For all β large enough the
following identity holds for any φ ∈ RE:

0 < Zβ,φ = exp

(∑

I∈I
z(β, I)ei〈φ,I〉

)
= exp

(∑

I∈I
z(β, I) cos〈φ, I〉

)
<∞.(6)

This representation is now used to give a bound for the Fourier transform of
the observable
Lemma: (Gaussian lower bound for Fourier transforms.) For all β large
enough, the following holds for any observable σ ∈ RE:

EPβ

[
ei〈σ,I〉

]
≥ exp

(
−1

2

∑

I∈I
|z(β, I)|〈σ, I〉2

)
.(7)

Choice of the observable: For x, y ∈ R3, we choose σ(x, y) = (σij(x, y))i,j∈[3] ∈
(RE)[3]×[3] satisfying the equation

〈σij(x, y), I〉 = w∗
ij(x, I) − w∗

ij(y, I) for all I ∈ I.

By the previous lemma, in order to prove the main result one needs to bound
|z(β, I)|w∗

ij(x, I)
2. This is done as follows.
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Lemma: (Bounding the observable.) There are a function W : Λ × R3 ×⋃
E⋐Λ(I(E) \ {0}) → R≥0 with

c11 := sup
x∈R3

sup
E⋐Λ

sup
I∈I(E)\{0}

∑

o∈Λ

W (o, x, I) <∞(8)

and β1 > 0 such that for all E ⋐ Λ, I ∈ I(E) \ {0}, o ∈ supp I, x ∈ R3, β ≥ β1
and i, j ∈ [3] we have

w∗
ij(x, I)

2 ≤W (o, x, I)eβc4size I .(9)

The proof follows by a variant of the dipole expansion from magnetostatics.
The main result follows easily by a direct application of the Gaussian lower

bound and the bound on the observable from the previous lemma.
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Order versus disorder from a diffraction perspective

Michael Baake

The diffraction measure of a point set or pattern in Euclidean space is a natural
tool to detect various forms of long-range positional order or disorder. This has
been a powerful tool in crystallography for over 100 years, which has recently been
developed also from a more mathematical point of view [9]; see [3, Chs. 8 and 9] for
a systematic exposition. In recent times, diffraction has become important in the
context of aperiodic systems as well; see [12, 7, 3, 10, 4] for general background.

Concretely, taking up from the initial overview given by U. Grimm, we assume
that a translation-bounded Radon measure on Rd is given, such as the Dirac comb
ω =

∑
x∈Λ δx of a uniformly discrete point set Λ ⊂ Rd. Then, its autocorrelation

γω is given by

γω = ω ⊛ ω̃ := lim
r→∞

ωr ∗ ω̃r
vol(Br)

,

where Br denotes the ball of radius r around 0, provided the limit exists (which
can usually be ensured by mild assumptions or some ergodicity property). Then,
γω is a positive definite measure, which is thus Fourier transformable. Its Fourier
transform, γ̂ω, is a positive measure, known as the diffraction measure of ω.

By the Lebesgue decomposition theorem, one has the splitting

γ̂ω =
(
γ̂ω
)
pp

+
(
γ̂ω
)
sc
+
(
γ̂ω
)
ac

into the pure point (pp) part, which consists of at most countably many Dirac
measures (or Bragg peaks), the absolutely continuous (ac) part, which is described
by a locally integrable Radon–Nikodym density relative to Lebesgue measure (also
known as diffuse background), and the singular continuous (sc) part, which is
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concentrated to an uncountable Lebesgue null set. Usually, Bragg peaks signify
a coherent long-range positional order, while the diffuse background is a strong
indicator of disorder with entropic nature (though the Rudin–Shapiro sequence is
a classic counterexample to this stereotype). The sc-part is somewhere in between,
and often an indicator of long-range correlations of a different nature, for instance
one with a more complex behaviour as a function of the system size.

In this survey talk, the basic structures were explained, with examples from
perfect crystals and ‘nice’ cut and project sets, compare [11, 3], as used to model
perfect quasicrystals (of energetically stabilised type). In a nutshell, all these
results essentially rely on the Poisson summation formula for lattices, which can
be written as

δ̂Γ = dens(Γ ) δΓ∗

for a lattice Γ in Rd and its dual, Γ ∗. This extends to examples of number-theoretic
origin [11, 5]. Various further examples with concrete expressions were discussed,
including the classic Thue–Morse chain with singular diffraction of mixed type,
where the sc-part of the diffraction measure is given by an infinite Riesz product,

(
γ̂
)
sc

=
∏

ℓ>0

cos
(
2ℓ+1π(.)

)
,

with convergence in the vague topology; see [3, Sec. 10.1] for details. The asso-
ciated inverse problem increases in complexity as the spectrum shows continuous
components, which was illustrated by the Bernoullisation of the Rudin–Shapiro
chain, taken from [3, Sec 11.2.2]. This also marked the crossover to the correpond-
ing theory for general point processes in Rd, as discussed in [2, 1, 6] and covered
in more detail in H. Kösters’ contribution to this workshop.

As one application, an argument was presented to corroborate the decay of
long-range order in a one-dimensional model with Lennard–Jones type potential,
presented by S. Jansen and B. Schmidt during the workshop. Here, the essence
emerges from the observation that the sum

1 +
M∑

m=1

exp
(
2πi

m∑

ℓ=1

Xℓ

)
,

where the Xj are i.i.d. random variables with values in R+, concentrates around
0 as M grows, and suppresses other Bragg peaks, because its absolute square
appears as an overall factor in the diffraction measure of the model.

Another application of diffraction methods is the detection of grain boundaries
in (almost) single crystals. This leads to the classification problem of coincidence
site lattices (CSLs) and modules; see [8] for a review and a comprehensive list
of the existing literature. For ‘nice’ lattices (with large symmetry groups, say)
in dimensions d 6 4, the CSLs can be classified, and an efficient enumeration of
the number of such lattices of a given index can be achieved via Dirichlet series
generating functions and their expression in terms of Dedekind zeta functions of
algebraic number fields and quaternion algebras.
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Basel (2015).
[11] Y. Meyer, Algebraic Numbers and Harmonic Analysis, North Holland, Amsterdam (1972).
[12] R.V. Moody (ed.), The Mathematics of Long-Range Aperiodic Order, Kluwer, Dordrecht

(1997).

Fourier spectra of quasipatterns and quasicrystals

Alastair M. Rucklidge

(joint work with Andrew J. Archer, Daniel J. Ratliff, Priya Subramanian)

Two-dimensional quasipatterns with 12-fold rotation symmetry are the soft ana-
logues of the metallic quasicrystals that can be found in certain alloys. In the
early 1990s [1, 2], quasipatterns were identified in the Faraday wave experiment,
in which a thin layer of liquid is subjected to vertical vibrations strong enough
that standing waves form when the flat surface becomes unstable. In models of
soft matter, a similar transition corresponds to the formation of a crystal from
a liquid. In the early 2000s [3], structures with 12-fold rotation symmetry were
identified in a polymeric material. Here, large cone-shaped branched polymers
self-assemble into spheres, which in turn assemble into quasicrystals that have
12-fold rotation symmetry in one plane while being periodic in the third dimen-
sion. The Faraday wave example is characterised as being more wave-like than
particle-like, and here we use the word quasipattern to mean a structure with non-
crystallographic symmetry (here, 12-fold rotation) that can be well approximated
by a linear superposition of waves. In contrast, quasicrystals are better described
as non-crystallographic arrangements of particles (or delta functions). The poly-
meric example, in which the density is not far from uniform, may be in between
these two limits.
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Figure 1. Triangular (also known as up hexagons, left) and ap-
proximate quasipattern (right) solutions of (1). The common pa-
rameters are R = 5.0962 and ρ0βǫ = 0.2455. For the triangles,
µ = 10.052 in an 8 × 8√

3
wavelengths domain; for the quasipat-

terns, µ = 4.0395 in an 8× 8 domain, partly shown.

Here, we focus on a description of soft matter (polymeric) crystallisation based
on Density Functional Theory (DFT), which can span the wave-like to particle-
like description of crystals, and in which entropy and energy are both taken into
account. The density of centres of mass of soft particles is described by a field ρ(x),
and the Helmholtz free energy F for a collection of particles interacting through
a pair potential V (r) is

F = kT

∫
ρ(x) (log ρ(x)− 1) dx+

1

2

∫∫
ρ(x)V (|x− x

′|)ρ(x′)dxdx′,

where T is the temperature and k is Boltzmann’s constant. The first term repre-
sents the entropy of non-interacting particles, and the second term is the energy
of interaction. The free energy is minimised subject to the constraint of the total
number of particles being constant. The chemical potential µ is the Lagrange
multiplier for this constraint, so the equation that is solved is

(1) log(1 + n(x)) + ρ0β

∫
V (|x− x

′|)n(x′)dx′ − µ = 0,

where β = 1/kT and the density is written in terms of a background density ρ0
and a perturbation n(x): ρ = ρ0(1 + n).

Potentials V (r) can be devised to make 12-fold quasipatterns the lowest (or
nearly lowest) energy state [4, 5]. Here we focus on existence rather than stability,
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and so we choose a simple potential V (r) = ǫ exp((r/R)4), where ǫ controls the
strength of the interaction and R its length scale. Triangles (figure 1, left) have
the lowest free energy, but 12-fold approximate quasipatterns (figure 1, right) can
also be found close to the transition point.

Small-amplitude approximate solutions to (1) can be found: if µ = O(ǫ), where
ǫ≪ 1, we scale µ→ ǫµ and write

n = ǫn1 + ǫ2n2 + . . .

This formal power series for quasipatterns does not converge for related prob-
lems [6], though asymptotic approximations can be found in a function space that
requires the amplitudes of Fourier modes to decay at high order [7, 8]. Let the 12
basic wave-vectors of the quasipattern be k1, . . . , k12, where

kj =

(
cos

(
2π

12
(j − 1)

)
, sin

(
2π

12
(j − 1)

))
,

and letm = (m1, . . . ,m12), withmj being non-negative integers, let |m| =∑jmj ,

and let km =
∑

jmjkj . With these, define the truncated quasilattice ΓM to be
the sum of all integer combinations of up to M wave-vectors:

ΓM = {km such that |m| ≤M} ,
so Γ1 is the set of the original 12 vectors, Γ2 includes these and all pairwise sums,
and so on. In the limit, the quasilattice of all integer combinations of the 12 wave-
vectors forms a dense set Γ [6].

Braaskma et al. [8] proved that quasipattern solutions of a partial differential
equation related to (1) can be found in a Hilbert space Hs defined by

Hs =

{
n(x) =

∑

k∈Γ

nke
ik·x : ||n||2s =

∑

k∈Γ

(
1 +N2

k

)s |nk|2 <∞
}
,

where s > 4, and the order Nk of a wave-vector is the smallestM = |m| such that
k ∈ ΓM . In this space, amplitudes of Fourier modes exp(ikm · x) decay both as
|km| → ∞ and as |m| → ∞.

The triangle and quasipattern shown in figure 1 are members of families of
solutions of (1) parameterised by the parameter µ. As µ increases, the quasipattern
becomes less wave-like and more particle-like, in the sense that the density (top
row of figure 1) varies over increasingly many orders of magnitude and the maxima
become larger and sharper as µ increases. Nonetheless, for both triangles and
the quasipattern, the logarithm of the density (bottom row of figure 1) remains
smooth. The reason that log(1+n) is smooth is that the integral in (1) damps high-
wavenumber Fourier modes: even as the density becomes sharper, the logarithm
of the density remains well behaved. This is reflected in the Fourier spectra of the
two fields: amplitudes of the Fourier modes of the logarithm of the density drop of
sharply, while the Fourier spectrum of the density becomes flatter as µ increases.

Perhaps this dichotomy will allow a connection to be made to aperiodic struc-
tures derived from tilings, which have Fourier spectra that do not decay at high
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wavenumber [9]. This connection may clarify the connection between these wave-
like quasipatterns and quasicrystals characterised by aperiodic arrangements of
atoms, tilings or cut-and-project sets.
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Long-range order in atomistic equilibrium distributions with
dislocations

Florian Theil

(joint work with Alessandro Giuliani)

The Ariza–Ortiz energy [1] is a discrete model for elastic crystals with dislocations.
To define the model properly we need the concept of cellular lattice complexes.

1. Notation

We assume that L is a three-dimensional lattice. The domains of the elastic
configurations with dislocations are p-dimensional cells, denoted by Ep.

• Oriented vertices E0 are a finite subset of L.
• Oriented edges E1 are vertex pairs,
• Oriented faces E2 are polygons where the sides are a subset of the E1,
• Oriented volumes E3 are a tessellation of R3 such that the boundary of
each volume is a collection of faces.

A key property of the cells is that the boundary of each cell e ∈ Ep is a subset of
Ep−1. It is important to remember that the boundary of an oriented cell consists
of a collection of oriented cells, for example the boundary of an edge are two
oppositely oriented vertices.
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Maps from Ep to R3 which are equivariant under the change of orientation are
called p-forms:

Ωp = {u : Ep → R3 s.t. u(−e) = −u(e) for all e ∈ Ep},

where −ep denotes the cell ep with opposite orientation. The motivation for in-
troducing p-forms is that that we can define the exterior derivative operators
dp : Ωp → Ωp+1 by the formula

dpu(f) =
∑

e∈∂f
u(e).

We assume from now on that L is the 3-dimensional face centered cubic lattice:

L =





3∑

j=1

ljbj : l ∈ Z3



 with basis vectors b1 =



0
1
1


 , b2 =



1
0
1


 , b3 =



1
1
0


 ,

and E1 are the nearest neighbor pairs. The Ariza–Ortiz energy is a functional on
Ω0 × Ω1:

HAO(u, σ) =
1

2

∑

e∈E1

[de · (du(e)− σ(e))]
2
,

with the convention that de is an abbreviation for d Id(e) where Id ∈ Ω0 is the
identity map. The 1-form σ is called slip field and assumes only values in L. The
0-form u is called displacement. The case of the face centered cubic lattice is
motivated by a particularly simple notation because it suffices to consider only
nearest neighbor interactions. Of course it is possible to consider less restrictive
settings as well.

2. Symmetries

We observe that HAO is invariant under a large group of transformations.
Classical models with continuous spins such as the X − Y -model or the Villain

model have two symmetries: Continuous translations and discrete translations.
The Ariza–Ortiz energy is invariant under the classical symmetries and an addi-

tional symmetry which yields new and interesting configurations with low energy.
Proposition 2.1.The Ariza–Ortiz energy HAO admits the following invariance:

H(u, σ) = H(u+ v + s+ t, σ + dv)

for all u, v, s, t ∈ Ω0 and σ ∈ Ω1 if t is constant and there exists a skew-symmetric
3× 3 matrix S such that s(x) = S x for all x ∈ E0.
Remark 2.2.The interpretation of the symmetries is that

• t generates continuous translations,
• s generates linearized rotations,
• v generates discrete translations (lattice slips).
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3. Main result

We consider the Boltzmann–Gibbs measure

P (u, σ) =
1

Z(β)
exp(−β H(u, σ)),

where Z(β) is the partition function, u ∈ Ω0 and σ ∈ Ω1/ ∼ with the convention
that

(1) σ is lattice valued, i.e. σ(e) ∈ L for each bond e.
(2) Two slip fields σ and σ′ are equivalent if σ − σ′ is exact (i.e. σ − σ′ = dv

for some v ∈ Ω0).

Our main result is that the Boltzmann-Gibbs measure breaks the translational
symmetry of the energy if the temperature is low.
Theorem 3.1 (In preparation 2019). Let b ∈ L∗ be an element of the reciprocal
lattice. Then

lim
|x−x′|→∞

lim
|E0|→∞

Eβ(cos((u(x) − u(x′)) · b)) = 1 +O(β−1), β ≪ 1

This result has been previously established by Fröhlich and Spencer in [2] for
models without rotational invariance like the X − Y model. Franz Merkl et al
studied a mesoscopic version of this model which is invariant under linearized
rotations, [3]. They establish the weaker notion of orientational order.
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Percolation of two-dimensional hard disks

Alexander Magazinov

How closely can we pack unit disks in the Euclidean plane? A result, generally
attributed to Thue [6], asserts that the density of any packing (informally, the
number of centers per unit area) is at most 1

2
√
3
(see also [3]). The packing, where

the centers of the disks are the points of a triangular lattice with edges of triangles
equal to 2, realizes the maximal density. But one can ask the following question
— are there properties of the triangular lattice that are retained by packings of
slightly sub-optimal density (say, 1

2
√
3
− δ)?

Let us connect two centers of a packing by an edge if the distance between
them is at most 2+ ε. Is it true that the resulting graph has an infinite connected
component? Bowen, Lyons, Radin and Winkler [2] explicitly conjectured that an
infinite connected component can be found almost surely in any model obtained
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as a weak-∗ limit (N → ∞) of a random NZ2-periodic packings with density dN ,
provided that lim inf

N→∞
dN > 1

2
√
3
− δ(ε).

Aristoff [1] addressed a similar question to that of [2]: does percolation at
distance 2 + ε occur almost surely for Gibbs states of the hard-disk model if the
intensity parameter λ satisfies λ > λ(ε)? Aristoff managed to provide a positive
answer for ε > 1. Passing from intensity to density is indeed relevant; the former
has control over the latter (see [5, Subsection 2.2 and Appendix A]).

In this talk we focus on generalizing of Aristoff’s result by eliminating the re-
striction ε > 1. This result strongly supports the conjecture by Bowen, Lyons,
Radin and Winkler, although the definition of a model just by density, as in [2],
may, a priori, be less restrictive than the definition via the Grand canonical en-
semble.

Define

Ω := {ξ ⊂ R2 : ‖x− y‖ > 2 for all x, y ∈ ξ, x 6= y}.
Let D ⊂ R2 be a bounded open set and let ζ ∈ Ω. Assume that λ is a positive
real number. Consider the Poisson point process η in D with intensity λ. With
this notation, the Poisson hard-disk model on D with intensity λ and boundary
conditions ζ is, by definition, the random point set

η[λ](D, ζ) :=
(
η ∪ (ζ \D)

) ∣∣
η∪(ζ\D)∈Ω

.

(Note that the conditioning implies η[λ](D, ζ) ∈ Ω a.s.)
The random set η[λ](D, ζ) will be treated as the set of centers for a random

packing of unit disks.
Let a packing of unit disks be given by the set ξ ∈ Ω of its centers. We denote

by Gε(ξ) the above mentioned graph, where the edges connect each pair of centers
at distance at most 2 + ε.

Now, using the notation QN := [−N,N ]2 ⊂ R2, the main result of the talk can
be stated as follows.

Theorem. For any ε > 0 there exists a positive number λ0 such that the following
holds. For every λ > λ0, M > 10 and L > 3M , and for arbitrary boundary
conditions ζ ∈ Ω one has

Pr

(
Gε

(
η[λ](QL, ζ)

)
contains a connected component Γ

such that V (Γ) ∩QM 6= ∅ and V (Γ) ∩QL−M 6= ∅
)

≥ 1− e−cM ,

where c is a positive constant depending only on ε.

In other words, for a Poisson hard disk model of sufficiently high intensity in a
large square box Q there is a high probability to find a connected component of
the graph Gε that closely approaches both the center and the boundary of Q.

This talk is based on the paper [4].
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Surface energy and boundary layers for a chain of atoms at low
temperature: analytic aspects

Bernd Schmidt

(joint work with Sabine Jansen, Wolfgang König, and Florian Theil)

We report on recent results obtained in [2] on the low-temperature behavior for a
one-dimensional chain of atoms that interact via a Lennard–Jones type potential.
In particular we (1) provide a detailed analysis of the boundary layers and surface
energy at temperature T = 0, (2) show that at T > 0 the Gibbs measures µβ
and νβ for infinite chains and semi-infinite chains satisfy path large deviations
principles and find that the surface correction to the Gibbs free energy converges
to the zero temperature surface energy, and (3) derive bounds on the decay of
correlations. Further developments, in particular, a detailed description of the
typical atomic configurations at low temperature and low density which fill space
by alternating approximately crystalline domains (“clusters”) with empty domains
(“cracks”) that can be obtained with the results discussed below are the subject
of another abstract within this report given by Sabine Jansen, see [3].

1. Set-up Consider a system of N particles with interparticle spacings
z1, . . . , zN > 0 whose Gibbs energy at zero temperature and (small) pressure p
is given by

EN (z1, . . . , zN−1) =
∑

1≤i<j≤N
|i−j|≤m

v(zi + · · ·+ zj−1) + p

N−1∑

j=1

zj,

m ∈ N ∪ {∞} fixed. The pair interaction potential v is assumed to satisfy a set
of generic conditions, which in particular allows for the Lennard–Jones potential
v(r) = r−12 − r−6. It is characterized by rhc ∈ [0,∞) (a hard core) and special
values zmax > zmin > rhc such that v attains its unique (negative) minimum at
zmax, v(zmin) > 0 is large and v is strictly convex in [zmin, zmax] (see [2] for details).
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2. Results at zero temperature. Our first result can be seen as an extension
of a result by Gardner and Radin [1] to a generic setting.

Theorem A (Bulk properties)

(a) For every N ≥ 2, EN has a unique minimizer (z
(N)
1 , . . . , z

(N)
N−1). The

mimizer has all its spacings z
(N)
j in [zmin, zmax].

(b) As j,N → ∞ along N − j → ∞, we have z
(N)
j → a where a ∈ (zmin, zmax]

is the unique minimizer of R+ ∋ r 7→ pr +
∑m
k=1 v(kr).

(c) The limit e0 = limN→∞(min EN/N) < 0 exists and is given by

e0 = pa+

m∑

k=1

v(ka) = min
r>0

(
pr +

m∑

k=1

v(kr)
)
.

Our next goal is to provide a finer analysis which not only captures bulk energy
effects (of order N) but also the surface corrections (of order 1). For this we set
for sequences (zj)j∈N with none or at most finitely many elements different from
a

Esurf
(
(zj)j∈N

)
=

∞∑

j=1

(
−e0 + pzj +

m∑

k=1

v(zj + · · ·+ zj+k−1)
)
.

Esurf is the Gibbs energy of a semi-infinite chain, with additive constant chosen in
such a way that at spacings zj ≡ a the Gibbs energy is zero. Let D = {(zj)j∈N ∈
(rhc,∞)N |∑∞

j=1(zj − a)2 <∞} be the space of square summable strains.

Theorem B (Surface energy) Equip D with the ℓ2-metric. Then

(a) Esurf extends to a continuous functional on D.
(b) On D ∩ [zmin, zmax]

N

it is strictly convex.
(c) Esurf has a unique minimizer. The minimizer lies in D ∩ [zmin, zmax]

N.
(d) The limit esurf = limN→∞(min EN −Ne0) exists and is given by

esurf = 2min
D

Esurf − pa−
m∑

k=1

kv(ka).

3. Results at (small) positive temperature. Here we assume rhc > 0 and

p > 0 (small). Let Q
(β)
N be the probability measure on RN−1

+ defined by

Q
(β)
N (A) =

1

QN (β)

∫

A

e−βEN (z1,...,zN−1)dz1 · · · dzN−1

with QN (β) =
∫
R

N−1

+

e−βEN (z1,...,zN−1)dz1 · · · dzN−1. Standard arguments show

that there are uniquely defined surface and bulk Gibbs measures νβ on RN
+ and µβ

on RZ
+, respectively, such that for every bounded continuous test function f which

only depends on z1, . . . , zk for a k ∈ N,

lim
N→∞

〈f,Q(β)
N 〉 = 〈f, νβ〉 and lim

N→∞
(iN ,N−iN→∞)

〈f ◦ τ iN ,Q(β)
N 〉 = 〈f, µβ〉,
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where τ denotes the left shift on Z. Let RN
+ and RZ

+ be equipped with the product

topology and extend Esurf and Ebulk to all of RN, resp., RN with value +∞ where
not defined previously. With the help of these functionals we can quantify the
asymptotic behavior at small temperature as follows.

Theorem C (Large deviations) As β → ∞, (νβ)β>0 and (µβ)β>0 satisfy large
deviations principles with speed β and respective rate functions Esurf − min Esurf
and Ebulk. The rate functions are good, i.e., lower semi-continuous with compact
level sets.

For the asymptotic behavior of the Gibbs free energy we get:

Theorem D (Zero temperature limit of the Gibbs free energy) The Gibbs free
energy g(β) per particle in the bulk and the surface correction gsurf(β) given by

g(β) = − lim
N→∞

1

βN
logQN(β), gsurf(β) = lim

N→∞

(
− 1

β
logQN(β) −Ng(β)

)
,

are well-defined. They satisfy

lim
β→∞

g(β) = e0, lim
β→∞

gsurf(β) = esurf .

At last we mention an estimate on the decay of correlations which is exponential
for finite range interactions and algebraic for unbounded interaction ranges.

Theorem E (Decay of correlations) There exist c, C > 0 such that for all β, p > 0,
k ∈ N, and bounded f, g : Rk+ → R,

∣∣µβ(fg ◦ τn)− µβ(f)µβ(g)
∣∣

≤ min
q∈N:

1≤q≤n/k

(
(1− e−cβ)q + ecβ(eCβ(q/n)

s−2 − 1)
)
‖f‖∞‖g‖∞.

When m is finite and k = m− 1, we have the stronger bound
∣∣µβ(fg ◦ τn)− µβ(f)µβ(g)

∣∣ ≤ (1− e−cβ)n/k‖f‖∞‖g‖∞.
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Surface energy and boundary layers for a chain of atoms at low
temperature: probabilistic aspects

Sabine Jansen

(joint work with Wolfgang König, Bernd Schmidt, and Florian Theil)

The talk is a continuation of a talk by Bernd Schmidt, we use the same notation.
We complement the zero-temperature results and the rough a priori estimate on
the decay of correlations by the following: (1) improved estimates on the decay of
correlations that are uniform in the temperature, and (2) results on the Gaussian
approximation to the bulk Gibbs measure.

Concretely, we prove the following.

Theorem E Let m ∈ N ∪ {∞}. There exists c > 0 such that for all β, p > 0,
smooth f, g : R+ → R, and i 6= j,

∣∣∣µ̃β(figj)− µ̃β(fi)µ̃β(gj)
∣∣∣ ≤ c

β|i− j|s
(
µ̃β(f

′
i
2
) µ̃β(g

′
j
2
)
)1/2

.

Theorem F Assume 2 ≤ m < ∞, p ∈ (0, p∗), and rhc > 0. There exists γ > 0
such that for all sufficiently large β, suitable C(β), all n ∈ N, and all f, g : Rd+ → R,
we have ∣∣µβ(f0gn)− µβ(f0)µβ(gn)

∣∣ ≤ C(β)e−γn||f0||∞ ||gn||∞.
If m = 2, we can pick C(β) = 1.

For the Gaussian approximation, let Hij = ∂i∂jEbulk((zi)i∈Z). The Hessian
(Hij)i,j∈Z is diagonally dominant and defines a bounded, positive-definite opera-
tor in ℓ2(Z). Let µGauss is the distribution of a Gaussian process (Nj)j∈Z with
mean zero and covariance E[NiNj] = (H−1)ij . We identify the measure µβ on RZ

+

with the measure 1RZ

+
µβ on RZ. We exclude the trivial case m = 1.

Theorem G Assume 2 ≤ m <∞, p ∈ (0, p∗), and rhc > 0. Then for every n ∈ N,
the n-dimensional marginals of µβ and µGauss have probability density functions

ρ
(β)
n and ρGauss

n , and

lim
β→∞

∫

Rn

∣∣∣β−n/2ρ(β)n

(
a+ β−1/2s1, . . . , a+ β−1/2sn

)
−ρGauss

n (s1, . . . , sn)
∣∣∣ds1 . . . dsn

= 0.

We also provide a result on the Gaussian approximation to the Gibbs free energy.

Theorem H Assume 2 ≤ m <∞, p ∈ (0, p∗), and rhc > 0. The Gibbs free energy
satisfies, as β → ∞,

g(β) = e0 −
1

β
log

√
2π

β(detC)1/d
+ o(β−1)
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where d = m− 1 and C is a d× d positive-definite matrix.
The matrix C is a function of the Hessian of the energy.

Theorem F is instrumental in examining the distribution of micro-cracks at van-
ishing pressure p = p(β) → 0 / average spacing ℓ > a0, with a0 the minimizer
of the Cauchy–Born density r 7→ ∑∞

k=1 v(kr) at zero pressure: In a forthcoming
article [2] we treat the elongated chain of atoms with an effective model consisting
of a lattice gas of defects. The “sites” of the effective lattice gas correspond to
nearest-neighbor bonds {i, i+ 1} of the atomic model, and a defect occurs if the
spacing zi = xi+1 − xi is larger than some cut-off parameter R > a. The param-
eter is chosen in such a way that the entropic push for large spacings overcomes
the attractive interaction between particles. The estimates on the decay of cor-
relations allow us to show, under some additional assumptions, that the effective
interaction between defects decays exponentially when defects are separated by
many non-broken bonds.
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On the diffraction spectra of some random point sets

Holger Kösters

One approach to identifying long-range order is via diffraction. Since real-world
crystals and quasicrystals are never perfect, it is natural to ask for the effects of
randomness. We survey selected examples of random structures for which the auto-
correlation measure γ and the diffraction measure γ̂ may be calculated explicitly.
For background information and further examples, we refer to [1, 2, 5].

Random modifications of deterministic point sets. Here we start from a “nice”
deterministic point set Λ ⊂ Rd of density 1 (e.g. a lattice or a model set) such that
γΛ and γ̂Λ exist and make random modifications at each point of Λ. In the random
weight model [1], we take Φ =

∑
x∈Λ ξxδx, where (ξx)x∈Λ is a family of independent

copies of a real random variable ξ with E|ξ|2 <∞. Then, almost surely,

γΦ = |Eξ|2 γΛ + (E|ξ|2 − |Eξ|2) δ0 , γ̂Φ = |Eξ|2 γ̂Λ + (E|ξ|2 − |Eξ|2)λλd .
In the random displacement model [9, 1], we take Φ =

∑
x∈Λ δx+Yx

, where (Yx)x∈Λ

is a family of independent copies of an Rd-valued random vector Y with law ν.
Then, almost surely,

γΦ = (ν ∗ ν̃) ∗ γΛ + (δ0 − ν ∗ ν̃) , γ̂Φ = |ν̂|2 γ̂Λ + (1 − |ν̂|2)λλd .
Similar results hold for the random cluster model [1], where each point of Λ is re-
placed with a copy of a finite random cluster. In all cases, γ̂Φ consists of two parts,
a first part which is related to γ̂Λ and a second part which is absolutely continuous.
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In particular, if γ̂Λ is pure point, then the first part of γ̂Φ is also pure point, i.e.
the random modification has a modulating but not a smoothing effect.

More general weighting schemes where the weights are distributed according to
some finite-range Gibbs measure have also been investigated [3, 10, 6, 7]. Moreover,
in d = 1, one may also consider renewal processes where the increments between
the points are i.i.d. random variables [1].

Completely random point sets. Here we do not have a reference point set in the
background anymore, but we start from a stationary and ergodic point process Φ
with density 1 and reduced second-order correlation function 1+g, with g ∈ L1(λλd)
[1, 5]. Then, almost surely,

γΦ = δ0 + (1 + g)λλd , γ̂Φ = δ0 + (1 + ĝ)λλd .

Thus, apart from the Bragg peak at the origin, γ̂Φ is absolutely continuous. Ex-
amples include

(i) the homogeneous Poisson process, for which g = 0 and ĝ = 0,
(ii) determinantal point processes [5], for which g = −|ϕ̂|2 and ĝ = −(ϕ ∗ ϕ̃),

for some probability density ϕ on Rd taking values in [0, 1].
(iii) permanental point processes [5], for which g = +|ϕ̂|2 and ĝ = +(ϕ ∗ ϕ̃),

for some probability density ϕ on Rd.
A famous example of type (ii) is the sine process with d = 1, g(x) = −( sinπxπx )2

and ĝ(k) = −(1 − |k|)+. It arises as the limit (after appropriate rescaling) of the
eigenvalue ensembles of Gaussian Hermitian random matrices. More generally,
one might consider the corresponding limits for the Gaussian beta ensembles [8],
which interpolate between the homogeneous Poisson process (for β → 0) and the
integer lattice (for β → ∞). It would be interesting to describe the transition from
complete disorder to perfect order at the level of the diffraction spectrum, at least
qualitatively. The diffraction is known explicitly for β ∈ {1, 2, 4}, see e.g. [4], but
not for general β > 0.
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[4] M. Baake, H. Kösters, Random point sets and their diffraction, Philos. Mag. 91 (2011),
2671–2679.
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The Widom–Rowlinson model: metastability, mesoscopic and
microscopic fluctuations for the critical droplet

Elena Pulvirenti

(joint work with Frank den Hollander, Sabine Jansen and Roman Kotecký)

Metastability is a widely observed phenomenon where a system, subject to random
dynamics, moves between regions of its state space on different time scales. In the
context of statistical physics, metastability is the dynamical manifestation of a
first-order phase transition, e.g. condensation. In this case, the crossover from
one phase to the other is triggered by the formation of a critical droplet of the new
phase (liquid) inside the old phase (gas). While in the metastable state, the system
makes many unsuccessful attempts to form a critical droplet, because this requires
the system to climb an energetic barrier, and returns many times to the bottom
of the valley it resides in. As a consequence, metastability is a non-equilibrium
phenomenon and the crossover time is random (for an overview see the monograph
by Bovier and den Hollander [1]).

We study metastability for a model of continuum interacting particle systems
displaying condensation. The microscopic model that we consider is a non - equi-
librium version of the static Widom–Rowlinson model introduced in [7], which
describes a classical fluid in thermodynamic equilibrium and is one of the few
models in the continuum for which the occurrence of condensation has been rig-
orously proven (first by Ruelle [6], then by Chayes, Chayes and Kotecký [2]). The
phase transition occurs as the chemical potential, controlling the density of the
particles, changes from a subcritical value to a supercritical value. It is therefore
very natural to expect that it displays a metastable behaviour, once we choose a
random dynamics.

This model possesses a dual description. In the first one, it is a binary gas
with hard-core repulsion between particles of different types. In the second one,
particles are viewed as points carrying d-dimensional disks and the energy of a
particle configuration is the volume of the union of the disks minus the sum of
the volumes of the disks. Consequently, the interaction between the particles is
attractive.

We consider a dynamic version of the WR model on a two dimensional torus,
where the system is subject to a Metropolis random dynamics associated with
the Hamiltonian of the model. This means that the configuration is viewed as a
continuous-time Markov process where particles are randomly created and anni-
hilated according to an infinite reservoir with a given chemical potential.

Our main goal is to study the metastable behaviour of the dynamic WR model
in the regime of low temperature when the chemical potential is supercritical. In
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particular, we start with the empty torus (which represents the vapour phase) and
are interested in how the dynamics tunnels to the configuration in which the torus
is full, i.e., the torus is fully covered by disks (which represents the liquid state).
In order to achieve the transition from empty to full, the system needs to create a
sufficiently large droplet of overlapping disks, which plays the role of the critical
droplet that triggers the crossover. In the limit as the temperature tends to zero,
we

• characterize the size and the shape of the critical droplet, which is created
in the condensation process under the above dynamics

• compute the average crossover time which the system takes to pass from
the empty to the full configuration and identify its asymptotics.

In the average crossover time we compute not only the leading order term (which
corresponds to the classical Arrhenius law) but also the correction term, which is
large and represents a substantial deviation from this law. While the first one
represents the volume free energy of the critical droplet, the second one is instead
a surface free energy contribution. The above results rely on a detailed study
of the fluctuations of the surface of the critical droplet in the static WR model.
In order to analyze the mesoscopic fluctuations for the critical droplet, we find
asymptotics for the partition function on the configurations where the union of
the disks is close to the critical disk both in volume and in Hausdorff distance. In
order to control the mesoscopic fluctuations, we need also to prove the existence of
the free energy associated with the microscopic fluctuations of the surface. This
relies on the study of a model for a 1 + 1-dimensional interface, which arises as an
effective interface model for the WR model. This model is a variant of the discrete
one-dimensional Gaussian free field, where the underlying deterministic lattice is
replaced by a random point configuration on the line and where an additional
multy-body hard-core interaction coming from a geometric constraint is added.
This project is in collaboration with F. den Hollander, S. Jansen and R. Kotecký.

References

[1] A. Bovier, F. den Hollander, Metastability - A Potential-Theoretic Approach, Springer,
Cham (2015).
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[3] F. den Hollander, S. Jansen, R. Kotecký, E. Pulvirenti, The Widom–Rowlinson model: I.
Metastability, manuscript in preparation.
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Gradient fields for non-linear elasticity

Stefan Adams

(joint work with Simon Buchholz, Roman Kotecký, and Stefan Müller)

We study gradient fields as effective models for non-linear elasticity. The talk
is based on recent work with S. Müller and R. Kotecký joined by S. Buchholz
this year, see [1, 2, 3]. We consider models of discrete elasticity and analyse local
convexity properties of the free energy. We consider vector-valued fields ϕ : Λ → Rd

on some torus Λ in the integer lattice and interactions beyond nearest neighbour
interactions. An additional difficulty in discrete non-linear elasticity is that the
invariance under rotations leads a degeneracy of the quadratic form in the measure
usually considered. We will overcome this difficulty by adding a suitable discrete
null Lagrangian, see [3]. Gradient systems are defined as Gibbs distributions for
Hamiltonian functions depending solely on the gradients of the given field ϕ, where
ϕx is the displacement of atom with label ’x’. The logarithm of the normalisation
of these Gibbs distributions, called partition function in statistical mechanics, is
the free energy. Our aim is to show that the free energy is uniformly convex
as a function of the applied boundary condition. The strong dependence on the
boundary condition, which in our case is given by F : Fd → Rd, is different from
typical models in statistical mechanics. For the setting, let A be a finite subset
of Zd and let U : (Rd)A → R be an interaction potential. The Hamiltonian with
boundary F is then

(1) HΛ(ϕ) =
∑

x∈Λ

U
((
ϕ+ F

)
τx(A)

)
,

where τx(A) denotes the set A translated by x ∈ Λ, τx(A) = A+ x. For simplicity
(and without loss of generality), we suppose that the support set A of the potential
U contains the unit cell of Zd, {0, 1}d ⊂ A. For a linear map F : Rd → Rd we
consider the extension to (Rd)A given by (Fψ)(x) = F (ψ(x)). Gradient models
are well understood when the interaction potential is quadratic. Then the Gibbs
distributions are Gaussian measures and are a model for linear elasticity due to the
quadratic nature of the interaction. In [2], using renormalisation group techniques
in conjunction with [1], it was shown that models for real-valued fields ϕ : Λ → R

with non-convex potentials can be analysed, showing in particular that the free
energy is strictly convex as a function of the applied boundary condition, extending
well-known results in [5] to a class of non-convex potentials. Recently, this study
has been extended to non-linear discrete elasticity using vector-valued fields under
a certain class of non-convex potentials U . We assume that the potential U satisfies
the following conditions.

(H1) Invariance under rotations and shifts: We have

U(ψ) = U(R(taψ))

for any ψ ∈ (Rd)A and any R ∈ SO(d), a ∈ Rd, with R(taψ)(x) =
R(ψ(x) + a).
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(H2) Ground state: U(ψ) ≥ 0 and U(ψ) = 0 if and only if ψ is a rigid body
rotation, i.e., there exists R ∈ SO(d) and a ∈ Rd such that ψ(x) = Rx+a
for any x ∈ A.

(H3) Smoothness and convexity: Let 1 ∈ (Rd)A denote the identity configura-
tion 1(x) = x. Assume that U is a C2 function and D2U(1) is positive
definite on the subspace orthogonal to shifts and infinitesimal rotations
given by skew-symmetric linear maps.

(H4) Growth at infinity:

lim inf
|ψ|→∞

U(ψ)

|ψ|d > 0.

(H5) Additional smoothness and sub-gaussian bound: U ∈ Cr0+r1 with r0 ≥ 3
and r1 ≥ 0 and

lim
|ψ|→∞

|ψ|−2 ln
( ∑

2≤|α|≤r0+r1

1

α!
|∂αψU(ψ)|

)
= 0 .

The first four conditions are the same as in [4]. The last condition is a minor
additional regularity assumption for the potential. It was stated as a separate
item to make clear that it is only required in the renormalisation group analysis.

In [4] these assumptions are used to prove that the Cauchy–Born rules holds
at zero temperature.

Here we use this result as a starting point for a study of the Gibbs distribu-
tion for the Hamiltonian HΛ at low temperatures using the renormalisation group
approach. The ground state in the setting of discrete elasticity corresponds to
the affine deformation given by the identity. Therefore we consider deformations
F ∈ Rd×d for which F −1 is small. For a linear function F , its restriction to A and
to τx(A) differ by the constant vector F (x) ∈ Rd and thus U(F |A) = U(F |τx(A)).

We define the free energy as

WN,β(F ) := − lnZN,β(F, 0)

βLNd
.

Note that WN,β inherits the rotational invariance of U .

Theorem:

Suppose the potential U satisfies the assumptions (H1) to (H5) with r0 = 3 and
r1 ≥ 0. There exists a subsequence (Nℓ) such that WNℓ,β converges in Cr1−1

to the free energy Wβ(F ). For r1 ≥ 3 the second derivative D2Wβ(1) is strictly
positive on the subspace orthogonal to the skew-symmetric matrices.

Remark:

The second part of the theorem asserts that WN,β is uniformly convex near 1

modulo rotational invariance. Equivalently this can be stated as follows. Since
WN,β is rotational invariant there exists a smooth function ŴN,β , defined in a

small neighbourhood of 1 such thatWN,β(F ) = ŴN,β(F
TF ). Then Ŵ is uniformly

convex in a neighbourhood of 1, uniformly in N .
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