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Introduction by the Organizers

The meeting was very well attended with 53 participants from around the globe,
including the US, Israel, Canada, Brazil, and many European countries. In addi-
tion, many excellent mathematicians who would have loved to participate could
not be invited, for lack of space. The program consisted of 7 main lectures, 20
shorter talks, and a problem session, with plenty of time for discussion.

The workshop started appropriately with a talk by Deryk Osthus on the Res-
olution of the Oberwolfach Problem (joint work with Stefan Glock, Felix Joos,
Jaehoon Kim and Daniela Kühn). The Oberwolfach problem refers to a problem
posed by Ringel in Oberwolfach in 1967 that generalizes the Oberwolfach meal
problem: assume n people are to be seated around round tables for n−1

2 meals,
where the total number of seats is equal to n, but the tables may have different
sizes. Is it possible to find a seating chart such that every person sits next to any
other person exactly once?
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Another spectacular highlight of the workshop was the presentation of An-
nika Heckel who solved a long-standing problem about the (anti-)concentration of
the chromatic number of a random graph: she sketched a proof that shows that
χ(Gn,1/2) is w.h.p. not concentrated in an interval of size n1/4−ε. In addition,
Peter Keevash presented a seminal new result on sharp thresholds and expanded
hypergraphs. In particular, he and his co-authors Noam Lifshitz, Eoin Long and
Dor Minzer prove a slight variant of the Kahn–Kalai conjecture that characterizes
properties with coarse thresholds resp. Boolean functions of small influence.

Richard Montgomery presented a beautiful and surprisingly short proof that
the random directed graph D(n, p) almost surely contains a copy of every oriented
n-vertex cycle, whenever p = (logn + ω(1))/n. Frank Mousset (joint work with
Matan Harel and Wojciech Samotij) presented a major step forward in under-
standing the probability that the number of triangles in a random graph Gn,p

exceeds its expectation by a factor of 1 + δ. In particular, they pin down the
dependence on δ for a large range of densities. Mohsen Ghaffari (joint work with
Krzysztof Nowicki) presented an improvement of Karger’s classical min-cut con-
traction algorithm that brings down the runtime to O(m + n(logn)3), where m
and n denote the number of edges resp. vertices. This is the first algorithm to
achieve an optimal time complexity for sufficiently dense graphs.

As always, and on behalf of all participants, the organizers would like to thank
the staff and the director of the Mathematisches Forschungsinstitut Oberwolfach
for providing such a stimulating and inspiring atmosphere.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
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Sparse resilience results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1117
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Julia Böttcher (joint with Peter Allen, Dennis Clemens, Anusch Taraz)
Perfectly packing degenerate graphs with many leaves . . . . . . . . . . . . . . . . 1121

Amin Coja-Oghlan (joint with Alperen Ergür, Pu Gao, Samuel Hetterich,
Maurice Rolvien)
The rank of sparse random matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1123

David Conlon (joint with Oliver Janzer and Joonkyung Lee)
Extremal numbers of subdivisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1124

Jacob Fox (joint with David Conlon, Andrey Grinshpun, Xiaoyu He)
Online Ramsey Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1127

Ehud Friedgut
Regular graphs with regular connected neighborhoods . . . . . . . . . . . . . . . . . 1131

David Gamarnik
Explicit construction of RIP matrices is Ramsey-hard . . . . . . . . . . . . . . . . 1132

Mohsen Ghaffari (joint with Krzysztof Nowicki)
Faster Algorithms for Minimum Cut via Radom Out Contractions . . . . . 1136

Lior Gishboliner (joint with Asaf Shapira)
Testing Graphs against an Unknown Distribution . . . . . . . . . . . . . . . . . . . . 1137

Bernhard Haeupler (joint with Amirbehshad Shahrasbi)
Synchronization Strings: Codes for Insertions and Deletions Approaching
the Singleton Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1140

Annika Heckel
Non-concentration of χ(Gn, 12

) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1141

Peter Keevash (joint with Noam Lifshitz, Eoin Long, Dor Minzer)
Sparse hypercontractivity and sharp thresholds . . . . . . . . . . . . . . . . . . . . . . . 1144
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Abstracts

Sparse resilience results

Peter Allen

(joint work with Julia Böttcher)

We are interested in studying which graphs H are contained in random graphs
G(n, p), and how robustly. Resilience is one measure of how robustly a random
graph contains a given H : we would like to know that a copy of H is present even
after some adversarial edge deletion, or present monochromatically after adver-
sarial edge colouring. It is also interesting to know universality results— to show
that G(n, p) is likely to contain not just one given H , but simultaneously all H
from some large class of graphs. Finally, if we can prove that G(n, p) is likely to
contain some given H , but the argument is nonconstructive (such as the second
moment method) we would like to have a constructive, ideally algorithmic proof.

Broadly, we know how to give constructive proofs, or universality results, pro-
vided a vertex-by-vertex greedy embedding does not obviously fail—that is, pro-
vided that when we want to embed a new vertex (or small collection of vertices)
having fixed a partial embedding, the expected number of ways to continue the
embedding is growing with n. In particular, letting H(cn,∆) denote the class
of cn-vertex graphs with maximum degree at most ∆, and H(cn,D,∆) denote
the subclass with degeneracy at most D, Conlon, Ferber, Nenadov and Škorić [3]
proved that G(n, p) is a.a.s. universal for H(cn,∆) for any fixed c < 1 provided

p ≫ n−1/(∆−1) log5 n, and Conlon and Nenadov [5] proved that G(n, p) is a.a.s.
universal for H(n,D,∆) provided p ≫ n−1/Dpolylog n. In the former result, the
‘natural’ n−1/∆ barrier is broken by clever use of the observation that any graph
with maximum degree ∆ is ‘almost’ (∆ − 1)-degenerate (i.e. one can obtain a
(∆ − 1)-degenerate graph by removing a relatively short induced cycle), but this
observation cannot be pushed further. The first result is rather far from the best
lower bounds we know: potentially G(n, p) becomes H(n,∆)-universal at the same
p for which it contains a perfect K∆+1-factor, which by the Johansson-Kahn-Vu
Theorem [6] occurs at p ≈ n−2/(∆+1) (ignoring log factors). But the latter result
is almost tight—for p ≪ n−1/D a simple first moment argument shows G(n, p)
typically does not even contain any given graph with close to Dn edges.

For resilience type results, we are not quite so advanced, because currently
these results rely on maintaining regularity properties throughout an embedding
process and these regularity properties cannot be guaranteed for small sets of
vertices. To take one example, Kohayakawa, Rödl, Schacht and Szemerédi [7]
proved that for any given r, if the constant c > 0 is sufficiently small and p ≫(
logn
n

)−1/∆
, then a.a.s. in any r-edge-colouring of G(n, p), there is a colour class

which simultaneously contains every graph of G(cn,∆). We do not know how
to reach the n−1/(∆−1) improvement corresponding to [3]. Similarly, Conlon and
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Nenadov [5] could show that if p ≫ n−1/(D+2)polylog n then a.a.s. in any r-edge-
colouring of G(n, p), there is a colour class which is H(cn,D,∆)-universal, but
they could not match their probability bound for universality of G(n, p) itself.

In this talk, I outline an approach to the last of these, proving the following.
Given r and γ > 0 there exists c > 0 such that if p ≥ nγ−1/D, then a.a.s. in any
r-edge-colouring of G(n, p) there is a colour class which is H(cn,D,∆)-universal.
The key idea of the proof is not to attempt to preserve any regularity properties,
but rather to identify before embedding H ∈ H(cn,D,∆) some ‘bad sets’ of ver-
tices, and argue that since there are few such, one can perform a vertex-by-vertex
embedding such that for any v in H , the vertices close to v in H and preceding
it in degeneracy order are not embedded to a bad set; this allows the embedding
of v. This general strategy comes from [1]. Here, we need to use a strengthened
version of the Sparse Regularity Lemma (in the style of Alon, Fischer, Krivelevich
and Szegedy [2]) and the counting K LR conjecture proved by Conlon, Gowers,
Samotij and Schacht [4] to show that there are initially few bad sets, a theorem
of Spencer [8] on counting rooted subgraphs of fixed size in G(n, p) to show that
one can avoid bad sets locally, and a beautiful method of Conlon and Nenadov [5]
which shows that a large well-behaved collection of homomorphisms into G(n, p)
necessarily contains at least one injective map.

References

[1] P. Allen, E. Davies and J. Skokan, Regularity inheritance in hypergraphs. Manuscript at
arXiv:1901.05955.

[2] N. Alon, E. Fischer, M. Krivelevich and M. Szegedy, Efficient Testing of Large Graphs,
Combinatorica, 20(4) (2000), 451–476.

[3] D. Conlon, A. Ferber, R. Nenadov, and N. Škorić, Almost-spanning universality in random
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On Erdős Covering systems

Paul Balister

(joint work with Béla Bollobás, Robert Morris, Julian Sahasrabudhe, and
Marius Tiba.)

A covering system is a finite collection A1, . . . , Ak, of arithmetic progressions,

Ai = ai + diZ, that cover the integers, i.e., that satisfy
⋃k

i=1 Ai = Z. The study of
covering systems with distinct differences (or moduli) d1 < · · · < dk was initiated
in 1950 by Erdős [3], who used them to answer a question of Romanoff, and posed
a number of problems regarding their properties. For example, Erdős [3] asked
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whether there exist such systems with minimum modulus d1 arbitrarily large,
Erdős and Selfridge (see, e.g., [5]) asked if there exists a covering system with all
moduli distinct and odd, and Schinzel [9] conjectured that in any covering system
there exist a pair of moduli, one of which divides the other. In 1980, Erdős and
Graham [4] initiated the study of the density of the uncovered set; in particular,
they conjectured that if the moduli d1 < · · · < dk all lie in the interval [n,Cn],
where n ≥ n0(C) is sufficiently large, then the uncovered set has density at least
ε for some ε = ε(C) > 0.

The first significant progress on these problems was made by Filaseta, Ford,
Konyagin, Pomerance and Yu [6] in 2007, who proved (in a strong form) the
conjecture of Erdős and Graham, and took an important step towards solving
Erdős’ minimum modulus problem by showing that the sum of reciprocals of the
moduli of a covering system with distinct moduli grows quickly with the minimum
modulus. Building on their work, and in a remarkable breakthrough, Hough [7]
resolved the minimum modulus problem in 2015, showing that in every covering
system with distinct moduli, the minimum modulus is at most 1016. The method
of [7] was further refined by Hough and Nielsen [8], who used it to prove that every
covering system with distinct moduli contains a modulus that is divisible by either
2 or 3. However, Hough’s method does not appear to be strong enough to resolve
the problem of Erdős and Selfridge, and it moreover gives little information about
the density of the uncovered set.

Our main result is a general technique for bounding the density of the uncovered
set. Our method, which is based on that of Hough, but is actually somewhat
simpler, turns out to be sufficiently powerful and flexible to allow us to also make
further progress on the problem of Erdős and Selfridge, and to prove Schinzel’s
conjecture. Our starting point is the following natural and beautiful question of
Filaseta, Ford, Konyagin, Pomerance and Yu [6].

Question. Is it true that for each C > 0, there exist constants M > 0 and ε > 0
such that the following holds: for every covering system whose distinct moduli
satisfy

(1) d1, . . . , dk ≥ M and

k∑

i=1

1

di
< C,

the uncovered set has density at least ε?

We answer this question negatively for every C ≥ 1, by constructing (a sequence
of) families of arithmetic progressions with arbitrarily large moduli, for which the

density of the uncovered set is arbitrarily small, and
∑k

i=1
1
di

< 1. However, we

can prove the following positive result [1].

Theorem 1. Let ε > 0 and let µ be the multiplicative function defined by

(2) µ(pi) = 1 +
(log p)3+ε

p
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for all primes p and integers i ≥ 1. There exists M > 0 so that if A1, . . . , Ak are
arithmetic progressions with distinct moduli d1, . . . , dk ≥ M , and

C =

k∑

i=1

µ(di)

di
,

then the density of the uncovered set R := Z \⋃k
i=1 Ai is at least e−4C/2.

Note that Hough’s theorem is an immediate consequence of Theorem 1. Our
proof of Theorem 1 was inspired by that of Hough [7], but is simpler in various im-
portant ways (for example, we do not need to appeal to the Lovász Local Lemma,
and do not need his notion of quasi-randomness), and as a result we obtain a some-
what simpler proof of his theorem, with a better bound on the minimum modulus
(less than 106). We also prove that the theorem is close to best possible in the
following much stronger sense. We show that if (2) is replaced by

µ(pi) = 1 +
λ

p

for any fixed λ > 0, then there exists a constant C = C(λ) > 0 such that the follow-
ing holds: for every M > 0 and ε > 0, there exists a finite collection of arithmetic

progressions, with distinct moduli d1, . . . , dk ≥ M satisfying
∑k

i=1
µ(di)
di

≤ C, such
that the uncovered set has density less than ε. It would be extremely interest-
ing to characterize the functions µ such that, under the conditions of Theorem 1,
the density of the uncovered set is bounded from below by a constant δ(C) > 0
depending only on C.

Although our sieve was developed to control the density of the uncovered set,
it turns out that it can be used to prove a number of additional interesting results
about covering systems. We will focus here on the two classical examples men-
tioned above: the question of Erdős and Selfridge, and the conjecture of Schinzel.
Over 50 years ago, Erdős and Selfridge (see [5] or [9]) asked whether or not there
exist covering systems with distinct odd moduli. Schinzel [9] showed that if no
such covering system exists, then for every polynomial f(x) ∈ Z[X ] with f 6≡ 1,
f(0) 6= 0 and f(1) 6= −1, there exists an (infinite) arithmetic progression of values
of n ∈ Z such that xn + f(x) is irreducible over the rationals. He also showed
that this would imply the following statement: in any covering system, one of
the moduli divides another. We prove this latter statement, known as Schinzel’s
conjecture.

Theorem 2. If A is a finite collection of arithmetic progressions that covers the
integers, then at least one of the moduli divides another.

Unfortunately, our method does not seem to be strong enough to resolve the
Erdős–Selfridge problem. However, it does allow us to make some further progress
towards a solution; in particular, we can prove that no such covering system exists
under the additional constraint that the moduli are square-free [2].

Theorem 3. If A is a finite collection of arithmetic progressions with distinct
square-free moduli that covers the integers, then at least one of the moduli is even.
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A different strengthening of the condition in the Erdős–Selfridge problem was
considered recently by Hough and Nielsen [8], who showed that in any covering
system with distinct moduli, one of the moduli is divisible by either 2 or 3. Their
proof required careful optimization of their techniques, and it seems difficult to
use it to strengthen their result. Using our methods, we give a short proof of the
following strenthening of their theorem [1].

Theorem 4. Let A = {Ad : d ∈ D} be a finite collection of arithmetic progressions
with distinct moduli that covers the integers, and let Q = lcm(D) be the least
common multiple of the moduli. Then either 2 | Q, or 9 | Q, or 15 | Q.

In other words, either there is an even d, a d divisible by 32 = 9, or there are
d1, d2 ∈ D (possibly equal) with 3 | d1 and 5 | d2. We remark that we are unable
to prove that a single d ∈ D has 15 | d in this last case.
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Perfectly packing degenerate graphs with many leaves

Julia Böttcher

(joint work with Peter Allen, Dennis Clemens, Anusch Taraz)

Let G = {G1, G2, . . . , Gs} be a collection of graphs, and H be a graph. We say
that G packs into H if we can find pairwise edge-disjoint copies in H of the graphs
G1, . . . , Gs. If in addition we have

∑
i∈[s] e(Gi) = e(H), we call the packing perfect.

In this case, each edge of H is used in a copy of exactly one Gi.
We show the following result, obtaining a perfect packing of degenerate graphs

with many leaves, where a graph G is D-degenerate if its vertices can be ordered
so that each vertex has at most D neighbours among all the vertices that precede
it in this order.
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Theorem 1. For all µ > 0, D ∈ N there are c > 0 and n0 ∈ N such that for
n ≥ n0. Let G1, . . . , Gt be a family of D-degenerate graphs such that for all i ∈ [t]

• v(Gi) ≤ n,

• ∑t
i=1 e(Gi) ≤

(
n
2

)
,

• ∆(Gi) ≤ cn/ logn,

and for all i > t− µn

• v(Gi) ≤ (1 − µ)n,
• Gi has at least µn leaves.

Then G1, . . . , Gt pack into Kn.

This work is motivated by the following tree packing conjectures.

Conjecture 2 (Ringel [10], Gyárfás [5]).

• 2n− 1 copies of any given n-vertex tree pack into K2n−1.
• If T2, . . . , Tn is any sequence of trees such that v(Ti) = i, then {T2, . . . , Tn}

packs into Kn.

In both cases, the packing is necessarily perfect, which makes these conjectures
difficult. Joos, Kim, Kühn and Osthus [6] proved that both conjectures hold when
the trees have constant maximum degree ∆ and n is large enough. Montgomery,
Pokrovskiy and Sudakov [9] proved an approximate version of Ringel’s conjecture,
proving that K2n−1 can be packed with 2n− 1 copies of any tree T with n− o(n)
vertices. Previously, related results were obtained in [1, 2, 3, 4, 7, 8].

It is not difficult to show that if T is a uniform random labelled n-vertex tree,
then for each c > 0, with probability 1−e−O(n) the tree T will have at least n/100
leaves and maximum degree at most cn

logn . Hence, our result proves almost all

cases of the tree packing conjectures

Corollary 3. Let T be a uniform random n-vertex tree. With probability 1 −
e−O(n), there is a packing of 2n− 1 copies of T into K2n−1.

Let T2, . . . , Tn be chosen independently and uniformly at random such that Ti is
an i-vertex tree for each 2 ≤ i ≤ n. With probability 1− e−O(n), there is a packing
of {T2, . . . , Tn} into Kn.

Further, we can replace the complete graph Kn in our theorem by any (ξ, 4D+

7)-quasirandom graph H with density p > 0 (and with
∑t

i=1 e(Gi) ≤
(
n
2

)
replaced

by
∑t

i=1 e(Gi) ≤ e(H)), where a graph H is (ξ, A)-quasirandom if for all d ≤
A every collection v1, . . . , vd of distinct vertices in H satisfies |NH(v1) ∩ · · · ∩
NH(vd)| = (1±ξ)pdv(H). For this variant of our result the degree bound ∆(Gi) ≤
cn/ logn is optimal up to the constant.

We prove our result by using random embedding methods, and therefore obtain
a polynomial-time randomised algorithm for embedding the given graphs.
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The rank of sparse random matrices

Amin Coja-Oghlan

(joint work with Alperen Ergür, Pu Gao, Samuel Hetterich, Maurice Rolvien)

We determine the rank of a random matrix A over an arbitrary field F with
prescribed numbers of non-zero entries in each row and column. As an application
we obtain a formula for the rate of low-density parity check codes. This formula
verifies a conjecture of Lelarge [1]. The proofs are based on coupling arguments.

Specifically, let χ 6= 0 be a random variable that takes values in a field F . More-
over, let d ≥ 1, k ≥ 3 be integer-valued random variables such that E[dr ]+E[kr] <
∞ for a real r > 2 and set d̄ = E[d], k̄ = E[k]. Let n > 0 be an integer divisible by
the greatest common divisor of the support of k and let m ∼ Po(dn/k). Further,
let (di, ki, χi,j)i,j≥1 be copies of d, k, χ, respectively, mutually independent and
independent of m. Given

∑n
i=1 di =

∑m
i=1 ki, draw a simple bipartite graph G

comprising a set {a1, . . . , am} of check nodes and a set {x1, . . . , xn} of variable
nodes such that the degree of ai equals ki and the degree of xj equals dj for all
i, j uniformly at random. Then let A be the m× n-matrix with entries

Aij = 1{aixj ∈ E(G)} · χi,j .

Since d, k have finite means the matrix A is sparse, i.e., the expected number of
non-zero entries is O(n).

The following theorem provides a formula for the asymptotic rank of A. Let
D(x) and K(x) denote the probability generating functions of d and k, respectively.
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Theorem 1. Let

Φ(α) = D
(
1 −K ′(α)/k̄

)
+

d̄

k̄
(K(α) + (1 − α)K ′(α) − 1).

Then

lim
n→∞

rk(A)

n
= 1 − max

α∈[0,1]
Φ(α) in probability.

The upper bound on the rank already follows from [1].
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Extremal numbers of subdivisions

David Conlon

(joint work with Oliver Janzer and Joonkyung Lee)

For a graph H , the extremal number ex(n,H) is the maximal number of edges in
an H-free graph on n vertices. The celebrated Erdős–Stone–Simonovits theorem

states that ex(n,H) =
(

1 − 1
χ(H)−1 + o(1)

)
n2, where χ(H) is the chromatic num-

ber of H . This determines the asymptotics of ex(n,H) for any H of chromatic
number at least 3. However, for bipartite graphs H , it only gives ex(n,H) = o(n2).
One of the central problems in extremal combinatorics is to obtain more precise
bounds in this case.

Our starting point here lies with one of the few general results in the area, first
proved by Füredi [4] and later reproved by Alon, Krivelevich and Sudakov [1] using
the celebrated dependent random choice technique.

Theorem 1 (Füredi, Alon–Krivelevich–Sudakov). Let H be a bipartite graph such
that in one of the parts all the degrees are at most r. Then ex(n,H) = O(n2−1/r).

This result is known to be tight, since, for s sufficiently large in terms of r,
ex(n,Kr,s) = Ω(n2−1/r). Moreover, it is conjectured that this should already hold
when s = r. On the other hand, a recent conjecture of Conlon and Lee [3] says
that containing Kr,r as a subgraph should be the only reason why Theorem 1 is
tight up to the constant.

Conjecture 2 (Conlon–Lee). Let H be a bipartite graph such that in one of the
parts all the degrees are at most r and H does not contain Kr,r as a subgraph.

Then there exists some ¿. 0 such that ex(n,H) = O(n2−1/r−δ).

To say more, recall that the k-subdivision of a graph L is the graph obtained by
replacing the edges of L by internally disjoint paths of length k+1. We shall write
Lk for the k-subdivision of L and L′ for the 1-subdivision. It is easy to see that
any C4-free bipartite graph in which every vertex in one part has degree at most
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two is a subgraph of K ′
t for some positive integer t. Conlon and Lee [3] verified

their conjecture in the r = 2 case by proving the following result.

Theorem 3 (Conlon–Lee). For any integer t ≥ 3, ex(n,K ′
t) = O(n3/2−1/6t).

Our first result gives some small progress towards Conjecture 2 when r > 2.

Theorem 4. Let H be a bipartite graph such that in one of the parts all the
degrees are at most r and H does not contain C4 as a subgraph. Then ex(n,H) =
o(n2−1/r).

The proof of this result relies on ideas of Janzer [5], who found a simpler proof of
Theorem 3 with much improved bounds. Since K ′

3 = C6 and ex(n,C6) = Θ(n4/3),
this result is tight up to the implied constant for t = 3 and it is plausible that it
is also tight for all other t.

Theorem 5 (Janzer). For any integer t ≥ 3, ex(n,K ′
t) = O(n3/2− 1

4t−6 ).

Improving another result of Conlon and Lee [3], Janzer [5] also obtained the
following bound for the extremal number of K ′

s,t, the 1-subdivision of Ks,t.

Theorem 6 (Janzer). For any integers 2 ≤ s ≤ t, ex(n,K ′
s,t) = O(n3/2− 1

4s−2 ).

This theme was again taken up in a recent paper of Kang, Kim and Liu [7],
where they made the following conjecture about the 1-subdivision of a general
bipartite graph.

Conjecture 7 (Kang–Kim–Liu). Let H be a bipartite graph. If ex(n,H) =
O(n1+α) for some α > 0, then ex(n,H ′) = O(n1+α

2 ).

In particular, as ex(n,Ks,t) = O(n2− 1
s ), they conjectured that ex(n,K ′

s,t) =

O(n3/2− 1
2s ), though they were only able to push their methods to give an alterna-

tive proof of Theorem 6. Our next result is a proof of this latter conjecture.

Theorem 8. For any integers 2 ≤ s ≤ t, ex(n,K ′
s,t) = O(n3/2− 1

2s ).

Moreover, this result is tight when t is sufficiently large compared to s.

Corollary 9. For any integer s ≥ 2, there exists some t0 = t0(s) such that if

t ≥ t0, then ex(n,K ′
s,t) = Θ(n3/2− 1

2s ).

We now turn to another central conjecture in extremal graph theory. Following
Kang, Kim and Liu [7], we say that r ∈ (1, 2) is realisable (by H) if there exists a
graph H such that ex(n,H) = Θ(nr). The rational exponents conjecture of Erdős
and Simonovits states that every rational between 1 and 2 is realisable.

Conjecture 10 (Rational exponents conjecture). For every rational number r ∈
(1, 2), there exists a graph H with ex(n,H) = Θ(nr).

In a recent breakthrough, Bukh and Conlon [2] have proved that for any rational
number r ∈ (1, 2) there exists a finite family H of graphs such that ex(n,H) =
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Θ(nr), where ex(n,H) denotes the maximal number of edges in an n-vertex graph
which does not contain any H ∈ H as a subgraph.

However, Conjecture 10 remains wide open. In fact, until very recently only a
few realisable numbers were known, namely, 1 + 1

m and 2 − 1
m for m ≥ 2. Just

a few months ago, Jiang, Ma and Yepremyan [6] enlarged the class of realisable
exponents by proving that 7/5 and 2 − 2

2m−1 for m ≥ 2 are also realisable. Sub-

sequently, Kang, Kim and Liu [7] proved that for each a, b ∈ N with a < b and
b ≡ ±1 (mod a), the number 2 − a

b is realisable, a result which then included
all known examples of realisable exponents. Their main result was a tight up-
per bound on the extremal number of certain graphs from which the result just
mentioned for b ≡ −1 (mod a) follows fairly easily. We now define this family of
graphs.

Consider a graph F with a set R ⊂ V (F ) of root vertices. The ℓ-blowup of
this rooted graph is the graph obtained by taking ℓ vertex-disjoint copies of F
and identifying the different copies of v for each v ∈ R. We let Hs,1(r) be the
graph consisting of vertices xi (1 ≤ i ≤ r − 1), y, zj (1 ≤ j ≤ s) and wj,k

(1 ≤ j ≤ s, 1 ≤ k ≤ r − 1) and edges xiy for all i, yzj for all j and zjwj,k

for all j, k. Then Hs,t(r) is the rooted t-blowup of Hs,1(r), with the roots being
{xi : 1 ≤ i ≤ r − 1} ∪ {wj,k : 1 ≤ j ≤ s, 1 ≤ k ≤ r − 1}. The result of Kang, Kim
and Liu [7, Lemma 3.2] is now as follows.

Theorem 11 (Kang–Kim–Liu). For any integers s, t ≥ 1, r ≥ 2, ex(n,Hs,t(r)) =

O(n2− s+1
r(s+1)−1 ).

We give a new proof of this result which is significantly shorter than the original
one. Combined with results of Bukh and Conlon [2], Theorem 11 easily implies
that 2 − s+1

r(s+1)−1 is realisable for every s ≥ 1, r ≥ 2. Therefore, following Kang,

Kim and Liu, we see that 2 − 1
r is a limit point of the set of realisable exponents

for every integer r ≥ 2.
To go further, we define Ls,t(k) to be the graph which is the (k−1)-subdivision of

Ks,t with an extra vertex joined to all vertices in the part of size t. Put differently,
this graph is the rooted t-blowup of Ls,1(k), where Ls,1(k) has vertices u, v, wi,j

(1 ≤ i ≤ k, 1 ≤ j ≤ s) and edges uv, vw1,j (1 ≤ j ≤ s), wi,jwi+1,j (1 ≤ i ≤ k − 1,
1 ≤ j ≤ s), with roots u,wk,1, . . . , wk,s. We have the following result.

Theorem 12. For any integers s, t, k ≥ 1, ex(n, Ls,t(k)) = O(n1+ s
sk+1 ).

This result has several interesting corollaries. The first is a complete resolution
of Problem 5.2 from [7].

Corollary 13. For any integers s, k ≥ 1, there exists some t0 = t0(s, k) such that

if t ≥ t0, then ex(n, Ls,t(k)) = Θ(n1+ s
sk+1 ). In particular, the exponent 1 + 1/k is

a limit point of the set of realisable numbers.

Recall that Hk denotes the k-subdivision of the graph H . Conlon and Lee [3]
have conjectured that the following estimate should hold.
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Conjecture 14 (Conlon–Lee). Let k ≥ 2 be an even integer and let H be a graph.
Then there exists some δ > 0 such that ex(n,Hk−1) = O(n1+1/k−δ).

Our Theorem 12 establishes this conjecture for bipartite H , since Kk−1
s,t is a

subgraph of Ls,t(k).

Theorem 15. For any integers s, t, k ≥ 1, ex(n,Kk−1
s,t ) = O(n1+ s

sk+1 ). In par-

ticular, for any bipartite graph H, there exists δ > 0 such that ex(n,Hk−1) =
O(n1+1/k−δ).

Even for subdivisions of general graphs, we obtain a good estimate for Conjec-
ture 14 using that Hk−1 = (H1)k/2−1 and H1 is bipartite.

Theorem 16. Let k ≥ 2 be an even integer and let H be a graph. Then there
exists some ¿. 0 such that ex(n,Hk−1) = O(n1+2/k−δ).
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Online Ramsey Numbers

Jacob Fox

(joint work with David Conlon, Andrey Grinshpun, Xiaoyu He)

The Ramsey number r(m,n) is the minimum integer N such that every red/blue-
coloring of the edges of the complete graph KN on N vertices contains either a
red Km or a blue Kn. Ramsey’s theorem guarantees the existence of r(m,n) and
determining or estimating Ramsey numbers is a central problem in combinatorics.
Classical results of Erdős–Szekeres and Erdős imply that 2n/2 ≤ r(n, n) ≤ 22n for
n ≥ 2. The only improvements to these bounds over the last seventy years have
been to lower order terms (see [9, 26]), with the best known lower bound coming
from an application of the Lovász local lemma [14].

Off-diagonal Ramsey numbers, where m is fixed and n tends to infinity, have also
received considerable attention. In progress that has closely mirrored and often
instigated advances on the probabilistic method, we now know that r(3, n) =
Θ(n2/ logn). The lower bound here is due to Kim [21] and the upper bound
to Ajtai, Komlós and Szemerédi [1]. Recently, Bohman and Keevash [8] and,
independently, Fiz Pontiveros, Griffiths and Morris [18] improved the constant in
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Kim’s lower bound via careful analysis of the triangle-free process, determining
r(3, n) up to a factor of 4 + o(1).

More generally, for m ≥ 4 fixed and n growing, the best known lower bound

is r(m,n) = Ωm(n
m+1

2 /(logn)
m+1

2 − 1
m−2 ), proved by Bohman and Keevash [7] us-

ing the H-free process, while the best upper bound in this setting is r(m,n) =
Om(nm−1/(logn)m−2), again due to Ajtai, Komlós and Szemerédi [1]. Here the
subscripts denote the variable(s) that the implicit constant is allowed to depend
on.

There are many interesting variants of the classical Ramsey problem. One such
variant is the size Ramsey number r̂(m,n), defined as the smallest N for which
there exists a graph G with N edges such that every red/blue-coloring of the
edges of G contains either a red Km or a blue Kn. It was shown by Chvátal (see
Theorem 1 in the foundational paper of Erdős, Faudree, Rousseau and Schelp [13])
that r̂(m,n) is just the number of edges in the complete graph on r(m,n) vertices,
that is,

r̂(m,n) =

(
r(m,n)

2

)
.

We will be concerned with a game-theoretic variant of the size Ramsey number,
introduced independently by Beck [4] and by Kurek and Ruciński [25]. The (m,n)-
online Ramsey game is a game between two players, Builder and Painter, on an
infinite set of initially isolated vertices. Each turn, Builder places an edge between
two nonadjacent vertices and Painter immediately paints it either red or blue.
The online Ramsey number r̃(m,n) is then the smallest number of turns N that
Builder needs to guarantee the existence of either a red Km or a blue Kn.

It is a simple exercise to show that r̃(m,n) is related to the usual Ramsey
number r(m,n) by

(1)
1

2
r(m,n) ≤ r̃(m,n) ≤

(
r(m,n)

2

)
.

In the diagonal case, the upper bound in (1) has been improved by Conlon [10],
who showed that for infinitely many n,

r̃(n, n) ≤ 1.001−n

(
r(n, n)

2

)
.

Our main result is a new lower bound for online Ramsey numbers.

Theorem 1. If, for some m,n,N ≥ 1, there exist p ∈ (0, 1), c ≤ 1
2m, and d ≤ 1

2n
for which

p(m
2 )−c(c−1)(2N)m−c + (1 − p)(

n
2)−d(d−1)(2N)n−d ≤ 1

2
,

then r̃(m,n) > N .

In particular, if r̃(n) := r̃(n, n) is the diagonal online Ramsey number, Theo-
rem 1 can be used to improve the classical bound r̃(n) ≥ 2n/2−1 by an exponential
factor. Indeed, taking p = 1

2 and c = d ≈ (1 − 1√
2
)n in Theorem 1, we get the

following immediate corollary.
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Corollary 2. For the diagonal online Ramsey numbers r̃(n),

r̃(n) ≥ 2(2−
√
2)n−O(1).

As for the off-diagonal case, when m is fixed and n → ∞, Theorem 1 can be
also used to substantially improve the best-known lower bound. In this case, we
take c ≈ (1 − 1√

2
)m, d = 0, and p = Cm logn

n for a sufficiently large C > 0 to

obtain the following corollary.

Corollary 3. For fixed m ≥ 3 and n sufficiently large in terms of m,

r̃(m,n) ≥ n(2−
√
2)m−O(1).

For general m, Corollary 3 gives the best known lower bounds for the off-
diagonal online Ramsey number. However, it is possible to do better for m = 3 by
using a smarter Painter strategy which deliberately avoids building red triangles.

Theorem 4. For n → ∞,

r̃(3, n) = Ω

(
n3

log2 n

)
.

Roughly speaking, Painter’s strategy is to paint every edge blue initially, but
to switch to painting randomly if both endpoints of a freshly built edge have high
degree. Also, when presented with an edge that would complete a red triangle,
Painter always paints it blue. The bound given in Theorem 4 is n times the
bound on the usual Ramsey number that comes from applying the Lovász Local
Lemma [14]. However, our argument is closer in spirit to an earlier proof of the
same bound given by Erdős [12] using alterations. This method for lower bounding
r(3, n) was later generalized to all r(m,n) by Krivelevich [22] and we suspect that
Theorem 4 can be generalized to r̃(m,n) in the same way.

In the other direction, we prove a new upper bound on the off-diagonal online
Ramsey number.

Theorem 5. For any fixed m ≥ 3,

r̃(m,n) = Om

(
nm

(logn)
⌊m/2⌋−1

)
.

In particular, note that Theorems 4 and 5 determine the asymptotic growth
rate of r̃(3, n) up to a polylogarithmic factor, namely,

Ω

(
n3

log2 n

)
≤ r̃(3, n) ≤ O

(
n3
)
.

Theorem 5 has a similar flavor to the improvement on diagonal online Ramsey
numbers made by the first author [10] and work on the so-called vertex online
Ramsey numbers due to Conlon, Fox and Sudakov [11]. It is obtained by adapting
the standard Erdős–Szekeres proof of Ramsey’s theorem to the online setting and
applying a classical result of Ajtai, Komlós and Szemerédi [1] bounding r(m,n).
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In order to prove Theorem 1, we specialize to the case where Painter plays ran-
domly. This is sufficient because Builder, who we may assume has unlimited com-
putational resources, will always respond in the best possible manner to Painter’s
moves. Therefore, if a random Painter can stop this perfect Builder from winning
within a certain number of moves with positive probability, an explicit strategy
exists by which Painter can delay the game up to this point. This motivates the
following key definition.

Definition 6. For m,n ≥ 3 and p ∈ (0, 1), define r̃(m,n; p) to be the number of
turns Builder needs to win the (m,n)-online Ramsey game with probability at least
1
2 against a Painter who independently paints each edge red with probability p and
blue with probability 1− p. The online random Ramsey number r̃rand(m,n) is the
maximum value of r̃(m,n; p) over p ∈ (0, 1).

We note that there is a rich literature on simplifying the study of various combi-
natorial games by specializing to the case where one or both players play randomly
(see [5, 20, 23]). For example, a variant of the online Ramsey game with random
Builder instead of random Painter was studied by Friedgut et al. [19].

We make the following conjectures about the growth rate of r̃rand(m,n).

Conjecture 7. The diagonal online random Ramsey numbers satisfy

r̃rand(n, n) = 2(1+o(1)) 2
3n.

The off-diagonal online random Ramsey numbers (m ≥ 3 fixed and n → ∞) satisfy

r̃rand(m,n) = n(1+o(1)) 2
3m.
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Regular graphs with regular connected neighborhoods

Ehud Friedgut

As usual, we will say that a graph is (d1)-regular if every vertex has degree precisely
d1. We will say that it is (d1, d2, ....dr)- regular if it is d1 regular and the graph
induced on the neighborhood of every vertex is (d2, ...dr)-regular. The main chal-
lenge is constructing such graphs where the graphs themselves, and those induced
on the neighborhoods (and so on, by recursion) are connected, and if possible also
with good expansion. In principle one would like to fix (d1, ...dr) and construct an
infinite family of (d1, ...dr)-regular graphs with the number of vertices tending to
infinity.

Following a method of Kaufman and Oppenheim we construct, for every positive
integer s a tripartite (2

(
3s
s

)
,
(
2s
s

)
)-regular graph which is the union of Cayley graphs

coming from a symmetry group of triangulations of Rn. For every integer t and ε >
1/t we give a construction of a (n1−ε, n1−2ε, ..., n1−tε- regular graph on n vertices
using a generalization of the above method and subgroups of the symmetric group.
Finally, we prove that one can take increasing finite quotients of a tessellation of
the four-dimensional hyperbolic space to get an infinite family of (120, 12, 5, 2)-
regular graphs.
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It is an open question whether there exist infinite families of (a, b, c, d, e)-regular
graphs, with connected links of all orders (the neighborhood of every vertex, edge,
triangle, K4 and K5 is connected) for any integers (a, b, c, d, e).

Explicit construction of RIP matrices is Ramsey-hard

David Gamarnik

1. Background

An n×p real valued matrix Φ with unit norm column vectors is said to satisfy (s, δ)
Restricted Isometry Property (RIP) for s ≤ p and δ ∈ (0, 1) if |‖Φx‖22−1| ≤ δ for all
x ∈ Rp, ‖x‖2 = 1 which are s-sparse, namely have at most s non-zero coordinates.
In this case we simply say that the matrix Φ is RIP. The RIP is of fundamental
importance in compressive sensing methods [FR13],[BVDG11]. Provided Φ is
RIP, the linear programming based method enable efficient (polynomial time)
unique recovery of the solution x of the linear system y = Φx, from y and Φ,
whenever x ∈ Rp is 2s-sparse. It is known that generating entries of Φ i.i.d.
from a common distribution, satisfying minor properties such as sub-Gaussianity
and then normalizing columns of Φ to unit norm, guarantees RIP provided n =
Ω(s log(p/s)) [FR13]. Here O(·),Ω(·) and Θ(·) are standard order of magnitude

notations. This includes the case when s = logO(1) p. As a result it suffices to

have poly-log values of n as well: n = logO(1) p.
At the same time, verifying whether a given matrix Φ satisfies the RIP is

tricky, as the problem of certifying RIP of a matrix in the worst case is NP-
hard [BDMS13]. Furthermore, even determining the RIP value δ up to a certain
approximation factor is hard in the average case sense, as shown in [KZ14] by
reduction from the Planted Clique Problem. Motivated by this complications,
the researchers have sought to obtain explicit deterministic constructions of ma-
trices satisfying the RIP. While there are constructions of RIP matrices when
s = O(

√
n) [AHSC09], [DeV07],[FMT10], most methods however break down when

s is at least some constant times
√
n, see Bandeira et al. [BFMW13] for a survey of

the known methods, leaving this case as an open problem. This problem since then
was popularly dubbed as the so-called ”square root bottleneck” problem. It was
also raised in Tao’s blog [Taoa], as well as in a blog discussion by Moreira [Mor]. A
notable exception to the square root bottleneck is the construction by Bourgain et

al. [BDF+11] which breaks this barrier by achieving s = Θ(n
1
2+ε) for some small

constant ε > 0, in the regime n = Ω(p1−δ) and with matrix containing complex
valued entries. Thus the cases of poly-logarithmic n and s, or even polynomial n
and s with real valued entries remain open.

In this short note we give a very simple argument that this problem is “Ramsey-
hard” so to speak, see [GGRS90] for a book reference on Ramsey theory and
[CFS15] for a survey. Specifically, we show that an explicit construction of an RIP

matrix when n = O(log2 p) and s ≥ 2
√
n + 1 implies an explicit construction of a

3-colored Ramsey graph on p nodes with monochromatic clique sizes bounded by
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O(log2 p). To elaborate, a complete graph Kp on p nodes with p(p − 1)/2 edges
colored using q colors is called R(m1, . . . ,mq) Ramsey if the largest monochromatic
clique with respect to color r (a subset of nodes with all induced edges colored r)
is at most mr for all 1 ≤ r ≤ q. When all mr are identically m we simply write
R(m; q). While the uniform random coloring provides an easy construction of
R(m; q) Ramsey graphs with m = O(log p) w.h.p. as p → ∞, explicit construction
of such graphs is a major open problem in the extremal combinatorics even for
larger order of magnitude m. The best known construction for q = 2 gives m =

(log p)log log logO(1) p [Coh17]. The case m = logO(1) p is believed to be out of reach
using the known methods, and the problem of explicit construction of graphs
satisfying this Ramsey type property has been open since the celebrated work of
Erdös [Erd47].

2. Construction

Suppose Φ ∈ Rn×p is a matrix with unit norm column vectors, Φ = (ui, 1 ≤ i ≤ p),
‖ui‖2 = 1, which satisfies the (s, δ)-RIP with δ ∈ (0, 1) and s ≥ 2

√
n+1. Consider

the complete graph K[p] on the set of nodes [p] = {1, 2, . . . , p}. We color all of

the
(
p
2

)
edges of this graph with three colors, white, blue and red, as follows. For

each 1 ≤ i 6= j ≤ p, the color of (i, j) is white if |〈ui, uj〉| ≤ 1/(2
√
n), blue if

〈ui, uj〉 > 1/(2
√
n) and red if 〈ui, uj〉 < −1/(2

√
n). Here 〈·, ·〉 denotes standard

inner product in Rn.

Theorem 1. The graph G is R(2n, 2
√
n + 1, 2

√
n + 1; 3) Ramsey.

Proof. The following proposition is a simplified version of Kabatjanskii-Levenstein
bound [KL78] discussed in Tao’s blog [Taob]. We reproduce the proof from there
for completeness.

Proposition 2. For any set of unit norm vectors u1, . . . , u2n ∈ Rn,
max1≤i6=j≤2n |〈ui, uj〉| > 1

2
√
n
.

Proof. Consider the symmetric matrix U = (〈ui, uj〉, 1 ≤ i, j ≤ 2n) ∈ R2n×2n of

inner products. This is a rank-n matrix in R
2n×2n and as such Ū , U − I2n×2n

has an eigenvalue −1 with multiplicity at least n. Thus the trace of Ū2 which is∑
1≤i6=j≤2n(〈ui, uj〉)2 is at least n, implying maxi6=j |〈ui, uj〉| ≥ 1√

2(2n−1)
. �

Now suppose C ⊂ [p] is a white clique. Then by Proposition 2, |C| < 2n.
Suppose C ⊂ [p] is a blue clique which for the purposes of contradiction satisfies
|C| ≥ 2

√
n + 1. Take any subset of C with cardinality 2

√
n + 1. For simplicity

denote it by C as well. Let x ∈ Rp be the unit norm ‖x‖2 = 1 vector defined by

xi = 1/
√
|C|, i ∈ C and xi = 0 otherwise. This vector is |C| ≤ s-sparse. Since C

supports a blue clique then

‖Φx‖22 − ‖x‖22 =
1

|C|
∑

i6=j∈C

〈ui, uj〉 ≥
|C| − 1

2
√
n

= 1,
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which contradicts RIP. The same argument applies for red cliques. We conclude
that our graph is R(2n, 2

√
n+1, 2

√
n+1; 3) Ramsey, and therefore crudely R(2n; 3)

Ramsey.
�

Now find C > 0 and δ ∈ (0, 1) so that for n ≥ Cs log p the random n × p
matrix Φ is RIP w.h.p. for all large enough p for sparsity s and parameter δ. Set
n = 9C2 log2 p and s = 9C log p = 3

√
n > 2

√
n + 1. Then n = Cs log p. The

explicit construction of RIP matrix Φ ∈ Rn×p for this choice of n, sparsity s, and
parameter δ implies, by the above, an explicit construction of an R(2n; 3) Ramsey

graph on p nodes with n = 9C2 log2 p = O(log2 p) – the task which appears not
yet reachable with known techniques.

We note that if the entries of the matrix Φ are assumed to be non-negative,
and in fact some known explicit constructions are based on non-negative en-
tries [BFMW13] (see below for one such construction), then we can restrict our
construction above to just two colors, corresponding to the cases 0 ≤ 〈ui, uj〉 ≤
1/(2

√
n) and 〈ui, uj〉 > 1/(2

√
n). Thus in this case the explicit construction of a

matrix Φ satisfying the stated RIP implies an explicit construction of a R(2n; 2)
graph - an explicit 2-coloring of edges of a complete graph on p nodes with largest
monochromatic cliques of sizes at most O(log2 p).

The case n = pO(1), covered by [BDF+11] remains open for general s = n
1
2+ε.

It would be also interesting to see if, conversely, the Ramsey graphs can be used to
construct the RIP matrices. It also would be interesting to see if the construction
above can be extended to the complex valued matrices in the poly-logarithmic
case.

We close this note by suggesting one additional open question. While the case
of explicit constructions is solved in the regime s ≥ c

√
n for sufficiently small

constant c > 0, all of the known constructions are in the polynomial regime n =
pO(1), s = pO(1). This raises a potential issue as to whether the square root is

even achievable in the polylogarithmic regime n = logO(1) p, or alternatively, in
this regime the problem is even more challenging. We now show that the answer
is essentially no, but closing this gap entirely is an open question. The following

construction due to deVore [DeV07] leads to an example satisfying s ≥ n
1
2−ε for

every ε > 0 in the polylogarithmic regime n = logO(1) p. Fix a prime number z
and a positive integer r. Let p = zr+1 be the number of all degree ≤ r polynomials
with coefficients in Zz = {0, 1, . . . , z−1}. Consider the z2×p matrix Φ constructed
as follows. The rows are indexed by pairs (x, y) ∈ Z2

z . Thus the number of rows
is n = z2. The columns are indexed by polynomials described above. For every
such polynomial P and every pair (x, y), the matrix entry corresponding to the
location ((x, y), P ) is set to 1/

√
z if y = P (x) and = 0 otherwise. It is clear

that the columns uj, 1 ≤ j ≤ p of this matrix are unit length ‖u‖2 = 1 as they
contain precisely z non-zero entries, each valued at 1/

√
z. For every two distinct

columns ui, uj, i 6= j we have |〈ui, uj〉| ≤ r/z. Indeed, the row (x, y) has non-
zero (namely 1/

√
z) entries in columns indexed by polynomials P and Q only if
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y = P (x) = Q(x), that is x is a root of P − Q, of which only r exist. Thus the
coherence of this matrix, defined as maxi6=j |〈ui, uj〉| is at most r/z. As a result,
the matrix satisfies the (s, δ) RIP when sr/z ≤ δ (see [DeV07] for details).

Now we fix arbitrary ε > 0. For each sufficiently large z we set r = zε and
consider the z2 × p matrix described above with p = zr+1. We have n = z2 and
the sparsity level satisfying the RIP can be taken as

s = (1/2)(z/r) = (1/2)z1−ε = (1/2)n
1
2− ε

2 .

Namely, the construction almost achieves the square root barrier. At the same
time

p = zr+1 > zr = zz
ε

= exp(zε log z),

implying

n = z2 =

(
log p

log z

) 2
ε

≤ (log p)
2
ε .

Namely, the sample size n is indeed poly-logarithmic in the number of columns p.
It would be interesting to obtain a construction which truly achieves the square

root barrier s ≥ C
√
n in the polylogarithmic regime n = logO(1) p.
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Faster Algorithms for Minimum Cut via Radom Out Contractions

Mohsen Ghaffari

(joint work with Krzysztof Nowicki)

Computing the minimum cut in a graph — i.e., the smallest number of edges whose
removal disconnects the graph — is one of the classic problems in graph algorithms,
and it has been studied extensively since the 1950s. We provide a new variant of
Karger’s celebrated random contraction approach [1], which leads to improved
algorithms for sequential, distributed, and parallel models of computation.

The core new ingredient is a simple random contraction process that transforms
any n-node simple undirected graph into a (multi-)graph with O(n) edges, while
preserving any particular non-trivial1 minimum cut with a large constant prob-
ability. That is, even if the original graph has as many as O(n2) edges, we can
easily turn it to one with only O(n) edges, while preserving any particular non-
trivial minimum cut with a constant probability. We can then solve the minimum
cut problem on this sparsified graph, and use repetitions to amplify the success
probability, if desired.

The claimed random process is as simple as this: First, each node samples
three of its incident edges randomly (chosen with replacement, and independently
among all vertices), and we contract all of these sampled edges (and erase self-
loops). Then, we iteratively contract one random sampled edge from the entire
remaining graph, one by one, until the number of remaining edges drops below
10n. We can show that with a constant probability, any particular non-singleton
minimum-cut is preserved in this contracted graph, that is, none of its edge is
contracted and therefore it is a minimum cut of the new graph.

This random process, combined with some other algorithmic ideas, leads to im-
proved algorithms for minimum cut in a number of computation models, includ-
ing an O(m + n log3 n) time sequential algorithm, where m denotes the number

1A trivial cut is one that is defined by removing all edges incident to one vertex. Since
identifying the minimum degree is easy, the computational problem can focus on non-trivial cuts
and assume that the minimum cut has size strictly less than the minimum degree.
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of edges. This is the first algorithm to achieve an optimal time complexity for
sufficiently dense graphs and it provides an improvement on a long line of de-
velopments ending with the state of the art O(m log2 n(log logn)2) algorithm of
Henzinger, Rao, and Wang [2].
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Testing Graphs against an Unknown Distribution

Lior Gishboliner

(joint work with Asaf Shapira)

Property testers are fast randomized algorithms whose goal is to distinguish (with
high probability, say, 2/3) between objects satisfying some fixed property P and
those that are ε-far from satisfying it. Here, ε-far means that an ε-fraction of the
input object should be modified in order to obtain an object satisfying P . Problems
of this nature have been studied in so many areas that it will be impossible to
survey them here. Instead, the reader is referred to the recent monograph [2] for
more background and references.

The classical property testing model assumes that one can uniformly sample
entries of the input. In distribution-free testing one assumes that the input is
endowed with some arbitrary and unknown distribution D, which also affects the
way one defines the distance to satisfying a property. As discussed in [3], one
motivation for this model is that it can handle settings in which one cannot pro-
duce uniformly distributed entries from the input. Another motivation is that the
distribution D can assign higher weight/importance to parts of the input which
we want to have higher impact on the distance to satisfying the given property.

In this work we study a distribution-free variant of the adjacency matrix model,
also known as the dense graph model. The adjacency matrix model was first defined
and studied in [4], where the area of property testing was first introduced. This
model has been extensively studied in the past two decades, see Chapter 8 of [2].

Instead of defining the adjacency matrix model of [4], let us directly define its
distribution-free variant which was introduced recently by Goldreich [3]. Since
the distribution in this model is over the input’s vertices, it is called the Vertex-
Distribution-Free (VDF) model . The input to the algorithm is a graph G and
some arbitrary and unknown distribution D on V (G). We will thus usually refer
to the input as the pair (G,D). For a pair of graphs G1, G2 on the same vertex-set
V , and for a distribution D on V , the (edit) distance between G1 and G2 with
respect to D is defined as

∑
{x,y}∈E(G1)△E(G2)

D(x)D(y). We say that (G,D) is
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ε-far from satisfying a graph property P if for every G′ ∈ P , the distance between
G and G′ with respect to D is at least ε. A tester for a graph property P is an
algorithm that receives as input a pair (G,D) and a proximity parameter ε, and
distinguishes with high probability (say 2

3 ) between the case that G satisfies P and
the case that (G,D) is ε-far from P . The algorithm has access to a device that
produces random vertices from G distributed according to D. The only1 other
way the algorithm can access G is by performing “edge queries” of the form “is
(u, v) an edge of G?”. We say that property P is testable in the VDF model if
there is a function q(ε) and a tester for P that always performs a total number of
at most q(ε) vertex samples and edge queries to the input. We stress again that
D is unknown to the tester, so (in particular) that q should be independent of D.
The function q is sometimes referred to as the sample (or query) complexity of
the tester. A tester has 1-sided error if it always accepts an input satisfying P .
Otherwise it has 2-sided error.

If we restrict the distribution D to be the uniform distribution2, then the result-
ing model is “basically” equivalent to the adjacency matrix model, which was intro-
duced in [4]. Here we will refer to this model as the standard model. A very elegant
result proved in [3], states that if P is testable in the VDF model then it is testable
in the standard model with one-sided error. A natural follow-up question, raised
by Goldreich in [3], asks whether every property which is testable with one-sided
error in the standard model, is also testable in the VDF model. A characterization
of the properties testable with one-sided error in the standard model was given
in [1], where it was shown that these are precisely the semi-hereditary properties
(see [1] for the definition of this term). We show that if P is testable in the VDF
model then P is hereditary. Since there are properties which are semi-hereditary
but not hereditary, this implies a negative answer to Goldreich’s question. Thus,
it is natural to ask the following revised version of Goldreich’s question:

Problem 1. Are all hereditary graph properties testable in the VDF model?

It might be natural to guess3 that every hereditary property is testable in the
VDF model, the justification being that all lemmas that were used in [1] should
also hold for weighted graphs. As it turns out, this is indeed the case. However,
putting all these lemmas together does not seem to work in the VDF model. As our
main result, Theorem 2 below, shows, it is no coincidence that the proof technique
of [1] does not carry over as is to the weighted setting.

We start with an important definition. Let us say that a graph property P is
extendable if for every graph G satisfying P there is a graph G′ on |V (G)| + 1
vertices which satisfies P and contains G as an induced subgraph. In other words,
P is extendable if whenever G is a graph satisfying P and v is a “new” vertex (i.e.
v /∈ V (G)), one can connect v to V (G) in such a way that this larger graph will

1Note that the algorithm does not receive |V (G)| as part of the input.
2In particular, G is ε-far from P if one needs to change at least εn2 edges to turn G into a

graph satisfying P.
3This was at least our initial guess.
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also satisfy P . Note that if P is extendable then in fact for every graph G ∈ P
and for every n > |V (G)|, there is an n-vertex graph satisfying P which contains
G as an induced subgraph. Our main result is the following:

Theorem 2. A graph property is testable in the VDF model if and only if it is
hereditary and extendable.

Let us mention some immediate consequences of Theorem 2. Since a graph
cannot have both an isolated vertex and a vertex connected to all other vertices, the
(hereditary) property of induced H-freess is extendable for every graph H . Hence:

Corollary 3. The property of being induced H-free is testable in the VDF model
for every fixed H.

It is also clear that the property of being H-free is extendable if and only if H
has no isolated vertices. We thus infer that:

Corollary 4. The property of being H-free is testable in the VDF model if and
only if H has no isolated vertices.

We end this section with the following problem.

Problem 5. Is it true that every extendable hereditary property P can be tested
in the VDF model with the same (or close to the same) sample complexity as in
the (standard) dense graph model?

While we can give a positive answer to Problem 5 for some properties, there
are many natural properties for which we cannot, such as H-freness for H which
is not a clique and has no isolated vertices.

1. VDF models with restricted distributions

The proof of the “only if” part of Theorem 2, showing that if P is either non-
extendable or non-hereditary then P is not testable in the VDF model, relies
on allowing the input graph to have only O(1) vertices (where the constant is
independent of ε), as well as on having distributions D that assign to some vertices
weight Θ(1) and to some vertices weight o(1/|V (G)|). This raises the natural
question of what happens if we only require the tester to work on sufficiently large
graphs, or if we forbid D from assigning such very low or very high weights. As
the following three theorems show, either one of these restrictions has a dramatic
effect on the model, since it then allows all hereditary properties to be testable.

We start with the setting in which the input graph is guaranteed to be large
enough. In a revised version of [3], Goldreich asked whether every hereditary
property P is testable (in the VDF model) on graphs of order at least M = MP ,
for M which is independent of ε. While the answer to this question turns out to
be negatvie, we can show that under the stronger assumption that the input size
is at least MP(ε) (where MP : (0, 1) → N), all hereditary properties are testable.

Theorem 6. If |V (G)| ≥ Ω(1) then every hereditary property is testable in the
VDF model.
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We now move on to settings in which we pose restrictions on the weights that
the distribution D can assign.

Theorem 7. If maxv∈V (G) D(v) = o(1) then every hereditary property is testable
in the VDF model.

Theorem 8. If minv∈V (G) D(v) = Ω
(
1
n

)
then every hereditary property is testable

in the VDF model.
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Synchronization Strings: Codes for Insertions and Deletions
Approaching the Singleton Bound

Bernhard Haeupler

(joint work with Amirbehshad Shahrasbi)

We introduce synchronization strings, which provide a novel way of efficiently
dealing with synchronization errors, i.e., insertions and deletions. Synchro-
nization errors are strictly more general and much harder to deal with than more
commonly considered half-errors, i.e., symbol corruptions and erasures. For ev-
ery ε > 0, synchronization strings allow to index a sequence with an ε−O(1) size
alphabet such that one can efficiently transform k synchronization errors
into (1 + ε)k half-errors. This powerful new technique has many applications.
In this paper, we focus on designing insdel codes, i.e., error correcting block codes
(ECCs) for insertion-deletion channels.

While ECCs for both half-errors and synchronization errors have been intensely
studied, the later has largely resisted progress. As Mitzenmacher puts it in his
2009 survey: “Channels with synchronization errors . . . are simply not adequately
understood by current theory. Given the near-complete knowledge we have for
channels with erasures and errors ... our lack of understanding about channels
with synchronization errors is truly remarkable.” Indeed, it took until 1999 for
the first insdel codes with constant rate, constant distance, and constant alphabet
size to be constructed and only since 2016 are there constructions of constant
rate insdel codes for asymptotically large noise rates. Even in the asymptotically
large or small noise regime these codes are polynomially far from the optimal
rate-distance tradeoff. This makes the understanding of insdel codes up to this
work equivalent to what was known for regular ECCs after Forney introduced
concatenated codes in his doctoral thesis 50 years ago.

A straight forward application of our synchronization strings based indexing
method gives a simple black-box construction which transforms any ECC into
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an equally efficient insdel code with only a small increase in the alphabet
size. This instantly transfers much of the highly developed understanding for
regular ECCs into the realm of insdel codes. Most notably, for the complete noise
spectrum we obtain efficient “near-MDS” insdel codes which get arbitrarily close
to the optimal rate-distance tradeoff given by the Singleton bound. In particular,
for any δ ∈ (0, 1) and ε > 0 we give insdel codes achieving a rate of 1 − δ − ε
over a constant size alphabet that efficiently correct a δ fraction of insertions or
deletions.
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Non-concentration of χ(G
n,

1

2

)

Annika Heckel

The question of the chromatic number of a random graph was raised in one of
the seminal papers of Erdős and Rényi [6]. Grimmett and McDiarmid [8] first
found the order of magnitude of χ(Gn, 12

) and in a breakthrough paper in 1987 [2],

Bollobás established the asymptotic value: whp χ(Gn, 12
) ∼ n

2 log2 n .

Several improvements of these bounds were obtained [11, 12, 7], most recently
in [9]: whp,

(1) χ(Gn, 12
) =

n

2 log2 n− 2 log2 log2 n− 2
+ o

(
n

log2 n

)
.

While these bounds give an explicit interval of length o
(

n
log2 n

)
which contains

χ(Gn, 12
) whp, much narrower concentration is known to hold. The classic result

of Shamir and Spencer [14] states that for any sequence p = p(n), χ(Gn,p) is whp
contained in a (non-explicit) sequence of intervals of length about

√
n. For p = 1

2 ,

this can be improved slightly to about
√
n

log n (see [13]).

For sparse random graphs, much more is known: Shamir and Spencer [14]

showed that for p < n− 5
6−ε, χ(Gn,p) is whp concentrated on five consecutive

values;  Luczak [10] improved this to two consecutive values and finally Alon and

Krivelevich [1] showed that two point concentration holds for p < n− 1
2−ε.

However, while there are numerous sharp concentration results, there have been
no non-trivial cases where χ(Gn,p) is known not to be extremely narrowly con-
centrated. (Alon and Krivelevich [1] note that it is trivial that χ(Gn,p) is not
concentrated on fewer than Θ(

√
n) values for p = 1 − 1/(10n).)

In 2004, Bollobás [4] asked for any non-trivial examples of non-concentration,
specifically suggesting the dense random graph Gn,m with m =

⌊
n2/4

⌋
(which

corresponds to p = 1
2 ) and noting that even the weakest results claiming non-

concentration would be of interest.
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We sketch an argument which shows that χ(Gn, 12
) is not whp concentrated on

fewer than n
1
4−ε consecutive values.

Theorem 1. For any constant ε > 0, there is no sequence of intervals of length

n
1
4−ε which contain χ(Gn, 12

) whp.

Independence number. The chromatic number of Gn, 12
is closely linked to its

independence number α(Gn, 12
), which is very well understood (see [5]). Let

α0 := 2 log2 n− 2 log2 log2 n− 1 +
2

log 2
and a := ⌊α0⌋ ,

then whp α(Gn, 12
) = ⌊α0 + o(1)⌋, and for most values n, whp α(Gn, 12

) = a.

Furthermore, if we let Xa denote the number of independent sets of size a in
Gn, 12

, then the distribution of Xa is known to be approximately Poisson with

mean µa = E[Xa] (see Theorem 11.9 in [3]). A straightforward calculation shows

µa :=

(
n

a

)
2−(a2) = nx where o(1) 6 x(n) 6 1 + o(1).

In particular, Xa is not whp contained in any sequence of intervals of length shorter
than

√
µa = nx/2.

It is plausible that an optimal colouring of Gn, 12
contains all or almost all

independent a-sets, because such colourings maximise the expectation for a fixed
number of colours. Therefore, intuitively χ(Gn, 12

) should vary at least by about√
µa (up to a log-factor). We show that this is indeed the case for some values n.

Proof sketch for Theorem 1. Suppose we have a sequence of intervals [sn, tn]
so that whp χ(Gn,p) ∈ [sn, tn]. In light of (1), we may assume

(2) sn =
n

2 log2 n− 2 log2 log2 n− 2
+ o

(
n

log2 n

)
.

It is not hard to show that there are infinitely many values n where x = x(n)

is slightly less than 1
2 , so that µa is slightly less than n

1
2 . Fix such an n. Then by

a first moment argument, whp all independent a-sets in Gn, 12
are disjoint.

Let r =
⌊√

µa

⌋
∼ nx/2 be roughly the standard deviation of Xa, let n′ = n+ar,

denote by X ′
a the number of independent a-sets in Gn′, 12

and let µ′
a = E[X ′

a].

Then µ′
a = µa + o(1) = nx + o(1), so X ′

a and Xa both have essentially the same
distribution, namely Poiµa , and whp all a-sets are disjoint in Gn, 12

and Gn′, 12
.

Fix some A ≈ µa such that

P

(
χ(Gn, 12

) ∈ [sn, tn]
∣∣∣ Xa = A, all a-sets disjoint

)
= 1 − o(1),(3)

P

(
χ(Gn′, 12

) ∈ [sn′ , tn′ ]
∣∣∣ X ′

a = A + r, all a-sets disjoint
)

= 1 − o(1).(4)

(Both of these statements hold for almost all A under Poiµa .)
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The proof now relies on constructing a coupling of essentially the two conditional
distributions in (3) and (4), so that the conditional Gn, 12

lies within the conditional

Gn′, 12
and their difference consists of exactly r independent a-sets.

For this, let V ′ = [n′], fix some arbitrary disjoint vertex subsets S1, . . . , SA+r

of size a, and let V = V ′ \ ⋃r
i=1 Si. Include every edge between vertices in V ′

independently with probability 1
2 , and then condition on the sets S1, . . . , SA+r be-

ing independent and no other independent a-sets being present. Call the resulting
random graph G′, and let G be the induced subgraph of G′ on the vertex set V .

Now note that, if we obtain Ĝ′ by randomly permuting the vertex labels of
G′, then by symmetry Ĝ′ has exactly the conditional distribution in (4) . This is
because, if we condition Gn′, 12

to contain exactly A+ r disjoint a-sets, all possible

fixed such collections of a-sets are equivalent. Therefore, whp χ(G′) ∈ [sn′ , tn′ ].

If we obtain Ĝ by randomly permuting the vertex labels of G, then Ĝ does not
have exactly the conditional distribution in (3). This is because the distribution
of G is also conditional on the event that no independent a-sets with some vertices
from

⋃r
i=1 Si and some vertices from V are present. As the expected number of

such independent sets is o(1), however, it is possible to show that the random
graph distributions are contiguous. Therefore, whp χ(G) ∈ [sn, tn].

Since any colouring of G can be extended to a colouring of G′ by adding
S1, . . . , Sr as colour classes, we have χ(G′) 6 χ(G) + r. So whp,

(5) sn′ 6 χ(G′) 6 χ(G) + r 6 tn + r = sn + (tn − sn) + r.

Recall the estimate for sn given in (2). Note that

n′

2 log2 n
′ − 2 log2 log2 n

′ − 2
− n

2 log2 n− 2 log2 log2 n− 2
= r + Θ

(
r

logn

)
.

Without the error term o
(

n
log2 n

)
in (2), together with (5) this would imply

tn − sn > Θ

(
r

logn

)
= Θ

(
n

x/2

logn

)
> n

1
4−ε.

To beat the error term, we need to repeat the argument for a sequence n1 < n2 <

n3 < ..., to get
∑

i(tni − sni) > o
(

n
log2 n

)
+
∑

i Θ
(

ri
logni

)
. Carefully checking we

only need to increase n so much that the assumption that µa is less than n
1
2 remains

valid throughout, we find some n∗ > n such that tn∗−sn∗ > Θ
(

r∗

logn∗

)
> (n∗)

1
4−ε

.
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Sparse hypercontractivity and sharp thresholds

Peter Keevash

(joint work with Noam Lifshitz, Eoin Long, Dor Minzer)

The sharp threshold phenomenon has led to fundamental insights spanning a va-
riety of areas of Mathematics, including Combinatorics (pioneered by Margulis
in Random Graphs), and Probability (by Russo in Percolation). The interpreta-
tion of the sharpness of a threshold as the influence of a Boolean function has
led to a further wealth of connections through the Analysis of Boolean functions
and its many applications in Mathematics (Gaussian Geometry and Isoperimetry),
Computer Science (Computational Complexity) and Economics (Social Choice).

A prominent open problem at the interface of Geometry, Analysis and Com-
binatorics is to understand the stability of isoperimetric problems. The meta-
problem is to characterise sets whose boundary is close to the minimum possible
given their volume. The relevant setting for our paper is that of the cube {0, 1}n,
endowed with the p-biased measure µp, in which we choose a vector by letting
its coordinates be independent random variables each taking the value 1 with
probability p. We identify any subset of {0, 1}n with its characteristic Boolean
function f : {0, 1}n → {0, 1}, and define its ‘boundary’ as the (total) influence
I [f ] =

∑n
i=1 Ii [f ], where each Ii [f ] = Prx∼µp [f (x⊕ ei) 6= f (x)], i.e. the ith in-

fluence Ii [f ] of f is the probability that f depends on bit i at a random input
according to µp. In the case p = 1/2 this is equivalent to the classical combi-
natorial notion of edge-boundary,1 for which stability results showing that any

1For the vertex boundary, stability results showing that approximately isoperimetric sets are
close to Hamming balls were obtained independently by Keevash and Long [8] and by Przykucki
and Roberts [11].
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approximately isoperimetric set is close to a union of few subcubes were obtained
independently by Keller and Lifshitz [9] and Keevash and Long [7]. In particular,
the characteristic function is a junta (meaning that it depends on few co-ordinates).

However, the case of general p seems significantly more challenging. The prob-
lem is somewhat understood in the dense regime (where µp(f) is bounded away
from 0 and 1) for Boolean functions f that are monotone (satisfy f (x) ≤ f (y)
whenever all xi ≤ yi). Roughly speaking, most results in the dense regime say
that monotone Boolean functions of small influence have some ‘junta-like’ be-
haviour (see the seminal works of Friedgut–Kalai [3], Friedgut [1, 2], Bourgain [2,
Appendix], and Hatami [4]). In particular, Bourgain [2, Appendix] showed that
for any monotone Boolean function f with µp (f) bounded away from 0 and 1

and I [f ] ≤ K
p(1−p) there is a set J of O (K) co-ordinates such that µp (fJ→1) ≥

µp (f) + e−O(K2), where fJ→1 denotes the function on {0, 1}J obtained from f by
setting all bits in J equal to 1. This was strengthened by Hatami [4] who showed
that one can even obtain µp (fJ→1) ≥ 1 − o(1), where |J | may be considerably
larger (but still dimension-free). Our first result strengthens Bourgain’s Theorem

in a different way: we replace the term e−O(K2) by e−O(K), which is sharp.

Theorem 1. Let f : {0, 1}n → {0, 1} be a monotone Boolean function with µp (f)

bounded away from 0 and 1 and I [f ] ≤ K
p(1−p) . Then there is a set J of O (K)

co-ordinates such that µp (fJ→1) ≥ µp (f) + e−O(K).

On the other hand, the sparse regime (allowing any value of µp(f)), seemed out
of reach of previous methods in the literature (bar [9, 7] for the case p = 1/2). Here
Kahn and Kalai [5] made a series of interconnected conjectures that have been very
influential on subsequent research. One of these (Conjecture 4.1(a)) is that for any

C > 0 there are K, δ > 0 such that if pI [f ] ≤ Cµp (f) logµp (f)−1 then there is a

set J of ≤ K logµp (f)
−1

co-ordinates such that µp (fJ→1) ≥ (1 + δ)µp(f). Our
second theorem establishes a variant of this conjecture without the log factors
(which is also a natural question alluded to by remarks in [5]). Moreover, our
lower bound on µp (fJ→1) is significantly stronger than that conjectured in the
sparse regime µp(f) = o(1), and it is sharp.

Theorem 2. Let f be a monotone Boolean function with p(1− p)I [f ] < Kµp (f).
Then there is a set J of ≤ CK co-ordinates, where C is an absolute constant, such
that µp (fJ→1) ≥ e−CK .

The results of Friedgut and Bourgain mentioned above also had the striking
consequence that any ‘global’ Boolean function has a ‘sharp threshold’, which was
a breakthrough in the understanding of this phenomenon, as it superceded many
results for specific functions. Let f be a monotone Boolean function. We say that
f has a coarse threshold in an interval [p, q] if µq (f) = O (µp (f)); otherwise, we
say f has a sharp threshold in [p, q]. The classical approach for understanding

sharp thresholds is based on the Margulis-Russo formula
dµp(f)

dp = Iµp (f). Here

one notes that if q = Θ(p), µp(f) = Θ(1) and µq(f) < Kµp(f) then by the
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Mean Value Theorem there is some p′ ∈ [p, q] where p′Iµp′
(f) = Θ(1). Thus

Bourgain’s Theorem implies that there is a set J of O (K) co-ordinates such that

µp′ (fJ→1) ≥ µp′ (f) + e−O(K2), and Hatami’s Theorem that there is a set J of
OK(1) co-ordinates such that µp′ (fJ→1) ≥ 1 − o(1). Our main sharp threshold
result is as follows.

Theorem 3. For any ζ > 0 there is C > 0 so that for any p, q ∈ (0, 1/2) with
q = (1 + ζ)p, if f is a monotone Boolean function with µq(f) < Kµp(f), where
K > 2, then there is a set J of ≤ C logK co-ordinates such that µp(fJ→1) > K−C.

The most significant new feature of our theorem in comparison to the previous
sharp threshold results is that it applies in the sparse regime (we allow any µq(f)),
but nevertheless we can (e.g.) obtain an absolute constant bump in the measure
by fixing only a constant number of co-ordinates. Furthermore, the theorem is
effective for much larger values of K, even µp(f)−Θ(1), which will be important
for our combinatorial applications in [6]. We also remark that J need grow only
logaritheoremically in K, and that our conclusion applies to µp(fJ→1), not just
to µp′(fJ→1) for some unknown p′ ∈ [p, q]. The latter point reflects our use of
the recent new approach of Lifshitz [10] for obtaining sharp threshold results from
noise sensitivity.

Many of the fundamental results in the Analysis of Boolean functions, including
the characterisations of sharp thresholds discussed above, are based on a classi-
cal hypercontractive inequality for the noise operator obtained independently by
Bonami, Gross and Beckner. The results were first proved for the uniform (1/2-
biased) measure, but can be extended to any p, and so imply sharp threshold
results in intervals [p, q] where p and q are bounded away from 0 and 1. These hy-
percontractive inequalities are necessarily ineffective in the sparse regime, but our
key insight is that the only obstructions to a better inequality are junta-like func-
tions. The most fundamental contribution of this paper is a new hypercontractive
theorem for quasiregular functions that is applicable for establishing noise sensi-
tivity, and so sharp thresholds, in the sparse regime. We also apply our results to
obtain a version of the Invariance Principle of Mossel, O’Donnell and Oleszkiewicz
that is effective in the sparse regime.
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The maximum length of Kr-Bootstrap Percolation

Gal Kronenberg

(joint work with József Balogh, Alexey Pokrovskiy, and Tibor Szabó)

Weak saturation of graphs was introduced by Bollobás in 1968 [8]. A graph G on
n vertices is weakly saturated with respect to a graph H , if G has no copies of H ,
but there exists an ordering of E(Kn)\E(G) = {e1, . . . , et} such that the addition
of ei to G ∪ {e1, . . . , ei−1} will create a new copy of H , for every i ∈ [t]. It was
later noticed by Balogh, Bollobás and Morris [2] that weak saturation is strongly
related to the so-called bootstrap percolation process, which is a type of cellular
automata introduced in 1979 by Chalupa, Leath, and Reich [10].

For our setting, we first redefine the notion of a weakly saturated graph in terms
of an infection process, known as the graph-bootstrap percolation. For graphs F,H
we describe the (F,H)-bootstrap process as follows. We start with an initial infected
set of edges E0 ⊆ E(F ) and write G0 := (V (F ), E0) (sometimes called the starting
graph). At each step, an edge of F becomes infected if it completes an infected
copy of H . More formally, denote by nH(G) the number of copies of H in a graph
G. Let

Gt = Gt−1 ∪ {e ∈ E(F ) | nH(Gt−1 ∪ {e}) > nH(Gt−1)}
and Et = E(Gt). We say that the running time of the (F,H)-bootstrap process
is t, if t is the minimum integer such that Gt+1 = Gt. In this case we say that
〈G0〉(F,H) := Gt is the final graph (also called the closure of the starting graph G0

under the (F,H)-bootstrap percolation). We say that E0 percolates if every edge
of F is eventually infected, that is, if the final graph 〈G0〉(F,H) = F . In the special
case when F = Kn, we refer to the (Kn, H)-bootstrap percolation process as the
H-process.

Much work has been done on the extremal properties of the Kr-process. Alon [1],
Frankl [11], and Kalai [12], showed that the smallest percolating set of edges in
the Kr-process in Kn has size

(
n
2

)
−
(
n−r+2

2

)
, thus confirming a conjecture of Bol-

lobás [8]. This question was also studied for other graphs F and H , see [1, 3, 4,
14, 15].

Despite missing almost all the
(
n
2

)
edges of Kn, the smallest percolating starting

graph in the Kr-process percolates very fast: every non-edge is the sole missing
edge from a copy of Kr, so is added simultanously in the very first step of the
process. Nevertheless, in applications the speed of percolation is quite relevant.
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In this direction Bollobás raised the extremal problem of determining the slow-
est percolating set in the bootstrap process (i.e. the one that has the maximum
running time). Benevides and Przykucki [6, 7, 16] studied this problem in the
related setting of neighborhood percolation. The question for the Kr-process on
the edges was investigated independently by Bollobás, Przykucki, Riordan and
Sahasrabudhe [9] and Matzke [13]. They defined

Mr(n) = max{t | ∃G0 ⊆ Kn such that Gt 6= Gt−1 in the Kr-bootstrap process}
to be the maximum running time for the Kr-bootstrap percolation on n vertices
until it stabilizes, taken over all starting graphs. Again it is easy to see that in the
K3-process the diameter of the infected graph decreases at least by a factor of two
in each step, and hence M3(n) = ⌈log2(n − 1)⌉. For the K4-process the precise
answer was found and turned out to be linear in n.

Theorem 1 ([13, 9]). M4(n) = n− 3 for all n ≥ 3.

For r ≥ 5 Bollobás, Przykucki, Riordan and Sahasrabudhe gave subquadratic
polynomial lower bounds with the exponents tending to 2 as r tends to infinity.

Theorem 2 (Theorem 2 in [9]). For each fixed r ≥ 5, we have Mr(n) ≥
n2− 1

λ(r)
−o(1) as n → ∞, where λ(r) =

(r
2)−2

r−2 .

As for an upper bound, in [9] it was conjectured that the running time of any
Kr-bootstrap percolation process should be subquadratic for r ≥ 5.

Conjecture 3. [9] For all r ≥ 5 we have Mr(n) = o(n2).

In our first main result, we disprove Conjecture 3 for all r ≥ 6.

Theorem 4. For every r ≥ 6 and large enough n, we have Mr(n) ≥ n2

2500 .

Our construction of the starting graph for the slow Kr-process does not obvi-
ously extend to r = 5. Nevertheless, some of the ideas can be salvaged by utilizing
sets of integers having no arithmetic progression of length three. Using the rel-
evant constructions from additive number theory allows us to improve the lower
bound of [9] for M5(n) to almost quadratic.

A set B of numbers is called 3-AP-free if for any b1, b2, b3 ∈ B with 2b1 = b2+b3,
we have 2b1 = b2+b3. Let r3(n) denote the largest cardinality of a 3-AP-free subset
of [n]. The estimation of r3(n) (and its generalization for k-AP-free subsets) is
a cornerstone of additive number theory, with a rich history that also involves
inspiring a significant portion of modern combinatorics. Behrend [5] showed that

there are 3-AP-free subsets of [n] of size n1−1/O(
√
logn). From the other side the

function r3(n) was shown to be o(n) by Roth in 1953 using analytic number theory.
Later this was also proved by various other methods, including combinatorics,
ergodic theory, and non-standard analysis. The current best upper bound is due
to Bloom.

Here we connect r3(n) to the extremal function M5(n) of slow K5-bootstrap
percolation.
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Theorem 5. M5(n) ≥ nr3(n)
1200 . In particular, M5(n) ≥ n2−O(1/

√
logn).

Note that Conjecture 3 is still open for r = 5 and we tend to agree with the
authors of [9] about its validity. Our optimism stems from our combinatorial Key
Lemma, which connects M5(n) to the maximum number of edges of a graph with
certain combinatorial properties. There are several other combinatorial upper
bounds on r3(n) of similar nature, which were succesfully bounded from above.
For example, the maximum number of edges in an n-vertex graph with every
edge participating in exactly one triangle is known to be o(n2) by the Regularity
Lemma. The positive resolution of Conjecture 3 would closely tie the classic
additive number theoretic function r3(n) to percolation.
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Anticoncentration for subgraph counts in random graphs

Matthew Kwan

(joint work with Jacob Fox, Lisa Sauermann)

Fix a graph H and some p ∈ (0, 1), and let XH be the number of copies of H
in a random graph G(n, p). Subgraph-counting random variables of this form
are central objects of study in the theory of random graphs, going back to the
foundational work of Erdős and Rényi [5].

In the setting where p ∈ (0, 1) is a constant, XH has an asymptotically normal
distribution (this was proved by Nowicki and Wierman [12] and Ruciński [13]).
Further work by Barbour, Karoński and Ruciński [1] provided quantitative bounds
on the rate of convergence to the normal distribution. However, this asymptotic
normality only characterises the “large-scale” behaviour of the distribution of XH ,
and is basically due to the fact that XH closely correlates with the number of edges
in G (n, p).

Recently, there has been more attention on “local” aspects of the distribution
of XH . Following work by Loebl, Matoušek and Pangrác [10] for the case where
H is a triangle, it was proved by Kolaitis and Kopparty [9] (see also [4]) that
if we fix some p ∈ (0, 1), some prime q ∈ N and some connected graph H with
at least one edge, then XH mod q has an asymptotically uniform distribution
on {0, . . . , q − 1}. Even more recently, local central limit theorems have begun
to emerge, giving asymptotic formulas for the point probabilities Pr (XH = x) in
terms of a normal density function. Such a theorem was first proved for the case
where H is a triangle by Gilmer and Kopparty [7] (see also [2]), and this was
extended by Berkowitz [3] to the case where H is any clique.

A somewhat looser question was suggested by Meka, Nguyen and Vu [11], and
is the subject of this abstract: what can be said about the anticoncentration be-
haviour of XH? Roughly speaking, this is asking for uniform upper bounds on the
point probabilities Pr (XH = x), or more generally on the small ball probabilities
Pr (XH ∈ I), where I is an interval of prescribed length. As one of the main ap-
plications of the polynomial anticoncentration inequalities they developed in their
paper, Meka, Nguyen and Vu used the polynomial structure of XH to prove the
bound Pr (XH = x) ≤ n−1+o(1) for constant p ∈ (0, 1) and any H that contains at
least one edge. However, this seems to be far from optimal. A natural conjecture
is as follows.

Conjecture 1. Fix p ∈ (0, 1) and fix a graph H with no isolated vertices. Then

max
x∈N

Pr (XH = x) = O
(
n1−v(H)

)
.

The motivation for Conjecture 1 is that if p is fixed then VarXH = Θ
(
n2v(H)−2

)
,

so XH is concentrated on an interval of length Θ
(
nv(H)−1

)
. Provided that the

distribution of XH is sufficiently “smooth”, we should expect each value in this
interval to have comparable probability. Note that this line of reasoning implies
that Conjecture 1, if true, is best possible: any stronger bound would contradict
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the central limit theorem known to hold for XH . Also, observe that the assump-
tion that H has no isolated vertices is necessary: if H ′ is obtained from H by
removing isolated vertices then XH is a deterministic multiple of XH′ , so inherits
its point probabilities.

Recently, we made two new contributions to this area. First, we were able to
use ideas related to Erdős’ combinatorial proof of the Erdős–Littlewood–Offord
theorem (see [6]) to give a simple proof of the following general bound, improving
on the aforementioned result of Meka, Nguyem and Vu.

Theorem 2. Fix p ∈ (0, 1) and fix a graph H with at least one edge. Then

max
x∈N

Pr
(
|XH − x| ≤ nv(H)−2

)
= O(1/n).

Second, we were able to prove an approximate version of Conjecture 1 for all
connected H .

Theorem 3. Fix p ∈ (0, 1) and fix a connected graph H. Then

max
x∈N

Pr (XH = x) = n1−v(H)+o(1).

The proof of Theorem 3 proceeds via an inductive decomposition of XH into
random variables which are “almost” independent and which fluctuate at “different
scales”. There are several other ingredients; one that is perhaps worth highlighting
is a combinatorial anticoncentration inequality for vector-valued random variables
that behave “almost linearly”, in the spirit of some anticoncentration theorems
due to Halász [8].
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Distinct degrees in induced subgraphs

Eoin Long

(joint work with Peter Keevash, Matthew Jenssen and Liana Yepremyan)

Given a graph G we write

hom(G) := max
{
|U | : U ⊂ V (G) with G[U ] complete or empty

}
.

The quantitative form of Ramsey’s theorem due to Erdős and Szekeres [6] shows
that any N -vertex graph G satisfies hom(G) ≥ 1

2 log2 N . On the other hand, Erdős
[5] showed that N -vertex graphs exist with hom(G) ≤ 2 log2 N . In this context,
G is said to be C-Ramsey if hom(G) ≤ C log |V (G)|; simply a ‘Ramsey graph’ if
hom(G) = O(log |V (G)|).

One challenge in narrowing the gap between the upper and lower bounds in
the Ramsey problem is a lack of examples. Indeed, all known examples of graphs
with hom(G) = O(log |V (G)|) are inexplicit, arising as the result of some random
process. It is an old problem of Erdős to explicitly construct such graphs and
much effort has gone into furthering our understanding here (see [1], [8]).

Motivated in part by the difficulty in providing such explicit constructions,
a focus of study has been on understanding the intrinsic properties of Ramsey
graphs. Since all known Ramsey graphs are randomly generated – often according
to the Erdős-Renyi random graph G(N, p) – these random models provide natural
benchmarks. This indirect study has been very fruitful, and it is known that
N -vertex Ramsey graphs and G(N, 1/2) display similar behaviour in a number
of respects: the edge density by Erdős and Szemerédi [7]; universality of small
induced subgraphs by Prömel and Rödl [13]; the number of non-isomorphic induced
subgraphs by Shelah [14]; the sizes and orders of induced subgraphs by Kwan and
Sudakov [9, 10], and Narayanan, Sahasrabudhe and Tomon [12].

Here we focus on another parameter that has been studied in this context.
Given a graph G, let

f(G) := max
{
k ∈ N : G has an induced subgraph with k distinct degrees

}
.

A simple argument gives that G(N, 1/2) typically has Ω(N1/2) distinct degrees,
proving that f

(
G(N, 1/2)

)
= Ω(N1/2) and it was conjectured by Erdős, Faudree

and Sós [4] that this bound also holds for Ramsey graphs. This was confirmed by
Bukh and Sudakov [2], who showed that an N -vertex graph G with hom(G) ≤
C logN has f(G) = ΩC(N1/2).

Although Ω(N1/2) gives a natural lower bound for f
(
G(N, 1/2)

)
, Bukh and

Sudakov noted in [2] that no known upper bound of this order is known, and pro-
vided an upper bound f

(
G(N, 1/2)

)
= O(N2/3). An unpublished result of Conlon,
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Morris, Samotij and Saxton [3] shows that this is in fact correct for G(N, 1/2);
whp f

(
G(N, 1/2)

)
= Θ(N2/3).

Our first theorem shows that Ramsey graphs essentially match this behaviour.

Theorem 1. Let G be an N -vertex C-Ramsey graph. Then f(G) = ΩC

(
N2/3

log1/3 N

)
.

The relationship between hom(G) and f(G) was also investigated by Narayanan
and Tomon [11]. For example, they proved that if given ε ∈ (0, 1/2) then every
N -vertex G with hom(G) ≤ Nε satisfies f(G) = Ω(N1/2−ε). They also proved
that the relationship between hom(G) and f(G) significantly simplifies provided
hom(G) ≫ f(G): given k ∈ N and ε > 0, every N -vertex graph G with f(G) < k
has hom(G) ≥ N/(k − 1 + ε), provided N ≥ N0(k, ε) = 2Ωε(k). This is almost
optimal, as for k < ℓ then the (k − 1)-partite Turán graph on N = (k − 1)(n− 1)
vertices has f(G) ≤ k − 1 and hom(G) ≤ n− 1 = N/(k − 1).

Narayanan and Tomon conjectured that in fact this Turán graph determines
the optimal relationship between hom(G) and f(G), provided f(G) ≪ |V (G)|.
Our second theorem confirms this conjecture.

Theorem 2. Suppose G is an N -vertex graph with N > (n − 1)(k − 1) where
n = Ω(k9). Then either hom(G) ≥ n or f(G) ≥ k.
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Spanning cycles in random digraphs

Richard Montgomery

A foundational result in the study of random graphs is the determination of the
threshold for a Hamilton cycle to appear in the binomial random graph G(n, p),
achieved independently by Pósa [7] and Korshunov [5] in 1976. Independently,
Bollobás [1], and Komlós and Szemerédi [4] showed in 1983 that, if p = (log n +
log logn + ω(1))/n, then G(n, p) is almost surely Hamiltonian. This is the same
probability needed to ensure that, almost surely, δ(G(n, p)) ≥ 2, and thus the
obstruction to Hamiltonicity in the random graph is that every vertex need have
at least 2 neighbours. The key method behind these results is Pósa rotation,
introduced in [7], which has been crucial in many subsequent results concerning
Hamiltonicity in random graphs.

Questions involving Hamiltonicity have also been studied in the directed ran-
dom graph, D(n, p), where each possible directed edge among n vertices is chosen
independently at random with probability p. In the directed setting, the most nat-
ural cycle to consider is the directed Hamilton cycle, where the edge directions run
consistently around the cycle, but we can consider any orientation of an n-vertex
cycle, and study its appearance in D(n, p).

McDiarmid [6] gave a beautiful coupling argument which demonstrates that, for
any p, D(n, p) is at least as likely to contain a directed Hamilton cycle as G(n, p) is
to contain an (undirected) Hamilton cycle. However, the natural local obstruction
to Hamiltonicity in D(n, p) is that every vertex need have both an in- and an out-
neighbour. This property almost surely occurs in D(n, p) if p = (logn + ω(1))/n,
and almost surely does not occur if p = (logn − ω(1))/n. Frieze [3] confirmed
that this is also when Hamiltonicity is likely to occur in D(n, p). That is, if
p = (log n + ω(1))/n, then D(n, p) almost surely contains a directed Hamilton
cycle.

When studying arbitrarily oriented directed cycles, Ferber and Long [2] ob-
served that McDiarmid’s coupling argument shows that, given any oriented n-
vertex cycle C, a copy of C is likely to appear in D(n, p) if p = (logn+ log logn+
ω(1))/n. Furthermore, they conjectured that this should be true if p = (logn +
ω(1))/n. Another interesting direction of enquiry begins by asking when the ran-
dom digraph D(n, p) is likely to contain a copy of every possible oriented n-vertex
cycle.

In this talk, we discussed how to use McDiarmid’s coupling in conjuction with
constructive methods, including Pósa rotation, to confirm the conjecture of Fer-
ber and Long, while finding all such cycles simultaneously. These methods can,
moreover, be used to give a more accurate result in the directed random graph
process (generalising a similar result for directed Hamilton cycles by Frieze [3]).
However, this talk concentrated on showing that, if p = (logn + ω(1))/n, then
D(n, p) almost surely contains a copy of every oriented n-vertex cycle. The key
method is to show that a pseudorandom digraph with additional pairs of random
edges added between random vertex pairs is likely to contain any specific n-vertex
cycle, with probability at least 1 − exp(−n). Using McDiarmid’s coupling and
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a union bound over all possible orientations of an n-vertex cycle then gives our
result.

References

[1] B. Bollobás. Almost all regular graphs are Hamiltonian. European Journal of Combinatorics,
4(2):97–106, 1983.

[2] A. Ferber and E. Long. Packing and counting arbitrary Hamilton cycles in random digraphs.
Random Structures & Algorithms, 2015.

[3] A.M. Frieze. An algorithm for finding Hamilton cycles in random directed graphs. Journal
of Algorithms, 9(2):181–204, 1988.
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The upper tail for triangles in random graphs

Frank Mousset

(joint work with Matan Harel, Wojciech Samotij)

This talk is based on a recent joint paper [8] with M. Harel and W. Samotij. Let
X = Xn,p be the number of triangles in the random graph Gn,p. Perhaps the
simplest question that can be asked about the typical behaviour of X is whether
it is concentrated around its expectation. Once this is established, it is natural
to ask for quantitative estimates of the tail probabilities Pr(X ≤ (1 − δ)E[X ])
and Pr(X ≥ (1 + δ)E[X ]). As it turns out, these two probabilities are governed
by very different phenomena. On the one hand, using a combination of Harris’s
inequality [9] and Janson’s inequality [10], one can show that

(1) − log Pr
(
X ≤ (1 − δ)E[X ]

)
= Θδ(min {n2p, n3p3})

On the other hand, there are no comparably simple tools that allow one to easily
obtain similar estimates on the logarithm of the upper tail probability, which is
the topic of this talk.

An important reason for this difficulty is that, unlike the lower tail, the upper
tail is susceptible to the influence of small subgraphs whose appearance increases
the value X atypically, a phenomenon that we refer to as localisation. To give
a somewhat extreme example, observe that there are graphs with n vertices and
Oδ(n2p2) edges that contain contain (1+δ)E[X ] triangles (consider a clique of size
Cδnp for a large enough Cδ). The upper tail probability is at least the probability
that Gn,p contains such a graph, that is,

(2) − log Pr
(
X ≥ (1 + δ)E[X ]

)
≤ Oδ(n2p2 log(1/p)).
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A sequence of papers [11, 12, 13, 15], culminating in the work of Chatterjee [2]
and DeMarco–Kahn [6], established that

− log Pr
(
X ≥ (1 + δ)E[X ]

)
= Θδ(min {E[X ], n2p2 log(1/p)}),

which matches the upper bound (2) in the range p ≥ n−1 logn. This leaves open
the problem of determining the dependence of the upper tail on the constant δ.

In order to quantify this dependence, define

(3) ΦX(δ) = min
{
eG log(1/p) : G ⊆ Kn and E[X | G ⊆ Gn,p] ≥ (1 + δ)E[X ]

}
.

It is not difficult to show that

(4) − log Pr
(
X ≥ (1 + δ)E[X ]

)
≤ (1 + o(1)) · ΦX(δ).

The last decade has seen the development of an increasingly powerful theory
of ‘nonlinear large deviations’ [1, 3, 4, 5, 7] that provides a variational description
of the dependence of the upper tail probability on δ in a certain range of p. In
particular, these results show that the upper bound (4) is asymptotically optimal
in the range n−1/2(logn)O(1) ≪ p ≪ 1 [1, 5, 14]. Our main results for triangles
pin down the dependence on δ in a much larger range of densities.

Theorem 1. Let X denote the number of triangles in Gn,p. Then, for every fixed
positive constant δ and all p = p(n) satisfying n−1 logn ≪ p ≪ 1,

− log Pr
(
X ≥ (1 + δ)E[X ]

)
= (1 ± o(1)) · ΦX(δ).

Theorem 2. Let X denote the number of triangles in Gn,p. Then, for every fixed
positive constant δ and all p = p(n) satisfying n−1 ≪ p ≪ n−1 logn,

lim
n→∞

− log Pr
(
X ≥ (1 + δ)E[X ]

)

E[X ]
= (1 + δ) log(1 + δ) − δ.

Together, these theorems resolve the upper tail problem for X nearly com-
pletely. At the heart of the proof of Theorem 1 lies a general method for proving
bounds on the upper tail probability of ‘low-complexity’ functions of i.i.d. Bernoulli
variables. The proof uses an adaptation of the classical moment argument of
Janson, Oleszkiewicz, and Ruciński [11], which we use to formalise the intution
that the upper tail event is dominated by the appearance of near-minimisers of
the combinatorial optimisation problem (3). Roughly speaking, we say that a
graph G ⊆ Kn is a core if it is a feasible set for the above optimisation prob-
lem, its size is O

(
ΦX(δ)

)
, and it satisfies a certain natural rigidity condition. We

show that the upper tail probability is approximately equal to the probability of
the appearance of a core. In particular, when the number of cores of size m is
(1/p)o(m), a property we term entropic stability, then a union bound implies that
− log Pr

(
X ≥ (1 + δ)E[X ]

)
is well-approximated by ΦX(δ); this turns out to be

the case precisely when n−1 logn ≪ p ≪ 1. The proof of Theorem 2 involves a
change of measure and factorial moment estimates.
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The asymptotics of ΦX(δ) are given by the following theorem, which extends
an earlier result due to Lubetzky–Zhao [14]. For positive reals δ and c, we define

ϕ(δ, c) = min

{
δ2/3

2
,
⌊δc/3⌋ + {δc/3}1/2

c
,
⌊δc/3⌋

c
+

(r{δc/3}/c)2/r
2

}
.

Theorem 3. Let X denote the number of triangles in Gn,p. Then, for every fixed
positive constant δ and all p = p(n) satisfying n−1 ≪ p ≪ 1,

lim
n→∞

ΦX(δ)

n2p2 log(1/p)
=






δ2/3/2 if np2 → 0,

ϕ(δ, c) if np2 → c ∈ (0,∞),

min
{
δ2/3/2, δ/3

}
if np2 → ∞.

The different possible values for this limit correspond to different types of sub-
graphs achieving the minimum in the definition of ΦX(δ). Our methods also allow
us to show that if one conditions Gn,p on the upper tail event, then with high
probability, Gn,p contains a graph closely resembling one of these minimisers. The
results mentioned above extend to the case where one replaces triangles by larger
cliques and, to some extent, by nonbipartite regular graphs.
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Resolution of the Oberwolfach Problem

Deryk Osthus

(joint work with Stefan Glock, Felix Joos, Jaehoon Kim, and Daniela Kühn)

A central theme in Combinatorics and related areas is the decomposition of large
discrete objects into simpler or smaller objects. In graph theory, this can be traced
back to the 18th century, when Euler asked for which orders orthogonal Latin
squares exist (which was finally answered by Bose, Shrikhande, and Parker [1]).
This question can be reformulated as the existence question for resolvable trian-
gle decompositions in the balanced complete tripartite graph. (Here a resolvable
triangle decomposition is a decomposition into edge-disjoint triangle factors.) In
the 19th century, Walecki proved the existence of decompositions of the complete
graph Kn (with n odd) into edge-disjoint Hamilton cycles and Kirkman formu-
lated the school girl problem. The latter triggered the question for which n the
complete graph on n vertices admits a resolvable triangle decomposition, which
was finally resolved in the 1970s by Ray-Chaudhuri and Wilson [8] and indepen-
dently by Jiaxi. This topic has developed into a vast area with connections e.g. to
statistical design and scheduling, Latin squares and arrays, graph labellings as well
as combinatorial probability.

A far reaching generalisation of Walecki’s theorem and Kirkman’s school girl
problem is the following problem posed by Ringel in Oberwolfach in 1967.

Problem 1 (Oberwolfach problem). Let n ∈ N and let F be a 2-regular graph on
n vertices. For which (odd) n and F does Kn decompose into edge-disjoint copies
of F?

Addressing conference participants in Oberwolfach, Ringel fittingly formulated
his problem as a scheduling assignment for diners: assume n people are to be
seated around round tables for n−1

2 meals, where the total number of seats is
equal to n, but the tables may have different sizes. Is it possible to find a seating
chart such that every person sits next to any other person exactly once?

We answer this affirmatively for all sufficiently large n. Note that the Ober-
wolfach problem does not have a positive solution for every odd n and F (indeed,
there are four known exceptions).

A further generalisation is the Hamilton-Waterloo problem; here, two cycle
factors are given and it is prescribed how often each of them is to be used in the
decomposition. We also resolve this problem in the affirmative (for large n) via
the following even more general result. We allow an arbitrary collection of types of
cycle factors, as long as one type appears linearly many times. This immediately
implies that the Hamilton-Waterloo problem has a solution for large n for any
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bounded number of given cycle factors. (In [5], we actually state and prove an
even more general result.)

Theorem 2 ([5]). For every α > 0, there exists an n0 ∈ N such that for all odd
n ≥ n0 the following holds. Let F1, . . . , Fk be 2-regular graphs on n vertices and
let m1, . . . ,mk ∈ N be such that

∑
i∈[k] mi = (n − 1)/2 and m1 ≥ αn. Then

Kn admits a decomposition into graphs H1, . . . , H(n−1)/2 such that for exactly mi

integers j, the graph Hj is isomorphic to Fi.

The Oberwolfach problem and its variants have attracted the attention of many
researchers, resulting in more than 100 research papers covering a large number of
partial results. Most notably, Bryant and Scharaschkin [2] proved it for infinitely
many n. Most classical results in the area are based on algebraic approaches, often
by exploiting symmetries. More recently, major progress for decomposition prob-
lems has been achieved via absorbing techniques in combination with approximate
decomposition results (often also in conjunction with probabilistic ideas). In [5],
at a very high level, we also pursue such an approach. As approximate decomposi-
tion results, we exploit a hypergraph matching argument due to Alon and Yuster
(which in turn is based on the Rödl nibble via the Pippenger-Spencer theorem)
and a bandwidth theorem for approximate decompositions due to Condon, Kim,
Kühn, and Osthus [3]. Our absorption procedure utilizes as a key element a very
special case of a recent result of Keevash on resolvable designs [6].

Earlier, Kim, Kühn, Osthus, and Tyomkyn [7] considered approximate decom-
positions into graphs of bounded degree in host graphs G satisfying weaker quasir-
andom properties (namely, ε-superregularity). Their resulting blow-up lemma for
approximate decompositions was a key ingredient for [3] (and thus for Theorem 2).
It already implies that an approximate solution to the Oberwolfach problem can
always be found (the latter was obtained independently by Ferber, Lee, and Mous-
set [4]).

While considerably more general than the Oberwolfach problem, Theorem 2
may be just the tip of the iceberg, and it seems possible that the following is true.

Conjecture 3. For all ∆ ∈ N, there exists an n0 ∈ N so that the following holds
for all n ≥ n0. Let F1, . . . , Ft be n-vertex graphs such that Fi is ri-regular for
some ri ≤ ∆ and

∑
i∈[t] ri = n− 1. Then there is a decomposition of Kn into

F1, . . . , Ft.
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Asymptotic Enumeration and Limit Laws for Multisets

Konstantinos Panagiotou

(joint work with Leon Ramzews)

Let C be a combinatorial class, that is, a countable set endowed with a size function
|·| : C → N0 such that Cn := {C ∈ C : |C| = n} contains only finitely many objects
for all n ∈ N0. Assume that C0 = ∅. Then the combinatorial class of multisets
G = Mset(C) is given by the collection of all objects of the form

{(C1, d1), . . . , (Ck, dk)}, Ci ∈ C, di ∈ N, k ∈ N

for some k ∈ N, where (Ci)1≤i≤k are pairwise distinct objects from C and di de-
scribes the multiplicity of Ci in the multiset. Given G = {(C1, d1), . . . , (Ck, dk)} ∈
G we denote by

|G| :=
∑

1≤i≤k

di|Ci| and κ(G) :=
∑

1≤i≤k

di

the size and the number of components of G. Let further Gn := {G ∈ G : |G| = n}
and Gn,N := {G ∈ Gn : κ(G) = N} for n,N ∈ N. We associate to C and G the
(ordinary) generating series in two formal variables x and y

C(x) :=
∑

k∈N

|Ck|xk and G(x, y) :=
∑

k,ℓ∈N

|Gk,ℓ|xkyℓ.

We thus have |Gn,N | = [xnyN ]G(x, y) for all n,N ∈ N. These two power series are
known to fulfil the fundamental relation, see for example [5],

G(x, y) = exp




∑

j≥1

yj
C(xj)

j



 .(1)

The described setting encompasses a variety of situations, and in particular the
(asymptotic) magnitude of gn := |Gn| = [xn]G(x) := [xn]G(x, 1) has been studied
intensively in various works. For example, the most basic case that C = N, where
G is then the class of integers partitions, was already studied in 1918 by Hardy
and Ramanujan [4]. Since then, the asymptotic value of gn for general C has been
the topic of study in several works, and we refer to [2, 3, 6, 7] for some more recent
developments.
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Here we will study a situation that is frequently encountered in asymptotic
enumeration. In particular, we assume that C(x) is subexponential with radius of
convergence 0 < ρ < 1, that is, setting (ck)k∈N := (|Ck|)k∈N, we assume that

cn−1

cn
∼ ρ and c−1

n

∑

1≤k≤n

ckcn−k ∼ 2C(ρ) < ∞, n → ∞.

A crucial assumption here is that C converges at ρ. A prototypical situation
where this is satisfied is when cn ∼ c ·L(n) ·n−α ·ρ−n, for some c > 0, some slowly
varying function L, and some α > 1. Such counting sequences are ubiquitous
in enumerative combinatorics, with examples being the number the number of
(unlabeled) trees or more general the number of graphs with n vertices in some
subcritical class [8].

An important result in the asymptotic enumeration of multisets with subexpo-
nential C(x) was obtained in [1]. There it was shown that the number of multisets
of size n with N components behaves like

gn,N ∼ [yN−1]G(ρ, y)

G(ρ, 1)
gn, as N → ∞.

Here we resolve the counting problem for (essentially) all values of N . Let m ≡
m(C) ∈ N be such that cm > 0 and c1 = · · · = cm−1 = 0. This allows for
restricting the class C to only have elements of size at least m.

Theorem 1. As n, n−N → ∞,

[xnyN ]G(x, y) ∼ A ·N cm−1 · cn−m(N−1),

where

A =
1

Γ(cm)
exp





∑

j≥1

C(ρj) − cmρjm

jρjm




 .

Let us take a closer look at this formula. Suppose for simplicity that m = cm = 1.
Then the theorem asserts that the number of multisets of size n with N components
is (asymptotically) proportional to cn−N . On the other hand, there is a very simple
way of creating such a multiset: take an object of size n−N + 1 (cn−N+1 ways)
an N − 1 objects of size 1 (one way, as c1 = 1). Then Theorem 1 says that this is
essentially the only possible way; the next result makes this more precise.

We consider an object Gn,N drawn uniformly at random from Gn,N , such that
Pr[Gn,N = G] = |Gn,N |−1 for G ∈ Gn,N . Let Ln,N denote the size of a largest
component in Gn,N .

Theorem 2. As n → ∞ we have Ln,N = n−mN + Op(1).

In other words, a typical object in Gn,N looks as follows: it contains a large
component of size n − mN + O(1), N + O(1) components of (smallest possible)
size m, and another O(1) components of size > m but still O(1). It is also possible
to study the exact shape of the remainder, but this is omitted here.
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Approximate counting and sampling at low temperatures via the
cluster expansion

Will Perkins

(joint work with Tyler Helmuth, Guus Regts, Matthew Jenssen, Peter Keevash)

We give efficient algorithms to approximate the partition function of and sample
from certain statistical physics models on lattices and expander graphs at suf-
ficiently low temperatures. As an example, consider the q-state, ferromagnetic
Potts model, a probability distribution on q-colorings of a graph G given by

µG(σ) =
e−βm(G,σ)

ZG(β)

where m(G, σ) is the number of bichromatic edges of G under the coloring σ, β > 0
is the ‘inverse temperature’, and

ZG(β) =
∑

σ

e−βm(G,σ)

is the partition function, or normalizing constant of the probability distribution.
The approximate counting problem is to output a number Ẑ so that e−εẐ ≤
ZG(β) ≤ eεẐ, and the approximate sampling problem is to output a coloring σ
with distribution µ̂ so that ‖µ̂− µG‖TV < ε. We say an approximate counting or
sampling algorithm is efficient if it runs in time polynomial in |V (G)| and 1/ε.

In general there are several algorithmic approaches to these problems, includ-
ing Markov Chain Monte Carlo (MCMC), the method of correlation decay, and
polynomial interpolation. These approaches generally work efficiently in the high
temperature regime (weak interactions, or small β in the Potts example). How-
ever, for certain families of graphs (including lattices and expander graphs), these
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approaches provably fail at low temperatures due to the phase transition phenom-
enon.

We develop an efficient algorithmic framework for approximate counting and
sampling that exploits the phase transition phenomenon for models with a bounded
number of ground states (e.g. the ferromagnetic Potts model, the hard-core model
on bipartite graphs, the Widom-Rowlinson model). Our approach is based on
rewriting a given model as an abstract polymer model or contour model, expressing
the partition function in terms of deviations from the ground states. This refor-
mulation transforms a low-temperature model into an auxiliary high-temperature
model.

Probabilistically the most detailed understanding of spin models is obtained
when the cluster expansion, a power series for the log partition function, converges.
The cluster expansion is the multivariate Taylor series for the log partition function
in the weights of polymers in an abstract polymer model, and has many connections
to combinatorics (see e.g. [6]).

A convenient sufficient condition for convergence of the cluster expansion is
given by Kotecký and Preiss [5]. Inspired by the polynomial interpolation method
of Barvinok [1], in [3] we show how truncating the cluster expansion leads to effi-
cient counting and sampling algorithms when the Kotecký-Preiss condition holds,
and we apply this to obtain efficient algorithms at low temperatures on Zd. In [4],
we apply this to expander graphs. A representative result is the following. Recall
that an α-expander is a graph G so that |∂ES| ≥ α|S| for all S ⊂ V (G) with
|S| ≤ |V (G)|/2.

Theorem 1. For all β ≥ 5 log(q∆)
α , there are efficient approximate counting and

sampling algorithms for the q-state ferromagnetic Potts model at inverse temper-
ature β on all α-expander graphs of maximum degree ∆.

Several directions related to low-temperature algorithms remain wide open.
First, one would like to develop Markov chain based algorithms at low tempera-
tures, since MCMC algorithms tend to be much faster and simpler than algorithms
based on series truncations. Some initial steps in this direction are taken in [2],
but analyzing the most natural algorithms remains open.

Second, the worst-case computational complexity of approximate counting and
sampling in models such as the ferromagnetic Potts model and the hard-core model
on bipartite graphs is an open problem: there is no polynomial-time algorithm
known but no NP-hardness known either. These problems are captured by the
complexity class #-BIS (bipartite independent set) and resolving its complexity is
a major open problem in the field of approximate counting.
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The Structure and Number of Erdős Covering Systems

Julian Sahasrabudhe

(joint work with Paul Balister, Béla Bollobás, Robert Morris, Marius Tiba)

A covering system is a finite collection of arithmetic progressions that covers1

the integers. Erdős [4] initiated the study of covering systems in 1950, and since
numerous beautiful questions have been asked about their properties (see, for
example, [4, 5, 6, 7, 8, 9, 10, 11, 12, 19, 20]). Until recently, little progress had
been made on many of these problems, but following the groundbreaking work of
Filaseta, Ford, Konyagin, Pomerance and Yu [12] in 2007, a fundamental result
was obtained by Hough [15], who resolved a problem from the original paper of
Erdős [4] by proving that there do not exist covering systems with distinct moduli
and arbitrarily large minimum modulus. Building on his work, the authors of this
paper [1, 2] recently made further progress on several related open problems.

In this talk we turn our attention to a problem of a somewhat different flavor,
whose study was initiated by Erdős [5] in 1952 (and re-asked, for example, in
1980 [9]):

How many minimal covering systems of size n are there?

Erdős [5] gave a simple proof that there are only finitely many minimal2 covering
systems of size n, but the bound he obtained on their number was doubly expo-
nential. A more reasonable upper bound follows from a result of Simpson [21],
who proved in 1985 that the largest modulus in a minimal covering system of size
n is at most 2n−1. Indeed, it is not hard to see that this gives an upper bound of

2O(n2). We answer Erdős’ question on the number of minimal covering systems,
up to lower order terms in the exponent.

Theorem 1. The number of minimal covering systems of Z of size n is

(1) exp

((
4
√
τ

3
+ o(1)

)
n3/2

(logn)1/2

)

1We emphasize that we do not require the progressions to be disjoint - although this systems

with this additional condition has been studied [13, 14, 18, 22].
2A covering system A is minimal if no proper subset of it covers Z. Without this restriction

there are infinitely many covering systems of size 2, since we can take A = {Z, A} for any
arithmetic progression A.



Combinatorics, Probability and Computing 1165

as n → ∞, where

τ =

∞∑

t=1

(
log

t + 1

t

)2

.

In order to motivate the form of the formula (1), let us begin by describing a
simple construction that gives a slightly weaker lower bound. Let p1 < . . . < pk
be the first k primes and, for each i ∈ [k], choose pi − 1 arithmetic progressions

A
(i)
1 , . . . , A

(i)
pi−1 with the following properties: for each j ∈ [pi− 1], the modulus of

A
(i)
j is divisible by pi and divides Qi := p1 · · · pi, and A

(i)
j contains j ·Qi−1. It is not

hard to see that, for each such choice, by adding the progression
{

0 (mod Qk)
}

we

obtain a distinct minimal covering system of size n =
∑k

i=1(pi − 1) + 1 ≈ k2 log k.

Since we have 2i−1 choices for the progression A
(i)
j for each i ∈ [k] and j ∈ [pi−1],

this implies that there are at least

k∏

i=1

2(i−1)(pi−1) = exp
(

Ω
(
k3 log k

))
= exp

(
Ω
(
n3/2

)

(log n)1/2

)

minimal covering systems of Z of size n. To obtain the lower bound in Theorem 1
we need a more complicated construction; however, the construction is still of this
general form.

To prove our upper bound on the number of minimal coverings our approach is
structural: we show that almost all covering systems must have a very particular
structure. Indeed, we are motivated by the following (imprecise) conjecture

“Almost every minimal covering system of size n is close to a frame.”

While we don’t prove exactly this, we show a result that is sufficient for our pur-
poses and is in some ways stronger as it pertains to all covering systems. Roughly
speaking it says that every “efficient” covering is close to a frame-like-object. Be-
low we state the main structural theorem without explaining precisely the main
structure in the conclusion: the δ-generalized frame. The reader should understand
this to be a more general notion of “frame”.

For the statement of the theorem, we define the least common multiple lcm(A)
of a covering system A to be the least common multiple of the differences of the
progressions in A.

Theorem 2. For every C, ε > 0 there exists δ = δ(C, ε) so that every minimal
covering system A with lcm(A) = pγ1

1 · · · pγk

k , which satisfies

(2) |A| ≤ C

k∑

i=1

γi(pi − 1),

contains a δ-generalized frame (F1, . . . ,Fk), with

(3)

k∑

i=1

|Fi| ≥ (1 − ε)

k∑

i=1

γi(pi − 1).
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We note that the covering systems that we constructed in our example above
have least common multiple p1 · · · pk and

|A| = 1 +

k∑

i=1

(pi − 1).

One can think of Theorem 2 as saying that any covering covering system that
covers roughly as efficiently as a “frame” (that is, up to a large constant factor)
must contain a large (δ-generalized) frame.
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[6] P. Erdős, Problems and results in combinatorial number theory, A survey of combinatorial

theory, J. N. Srivastava, ed., North-Holland, Amsterdam, 1973, 117–138.
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Lower tails via relative entropy

Wojciech Samotij

(joint work with Gady Kozma)

Suppose that X1, . . . , XN are i.i.d. (independent, identically distributed) random
variables and let X = X1 + · · · + XN . A problem of interest to both theoretical
and applied mathematicians is to estimate, for every δ > 0, the logarithmic tail
probabilities

(1) − log Pr
(
X ≥ (1 + δ)E[X ]

)
and − log Pr

(
X ≤ (1 − δ)E[X ]

)
.

This was achieved by the famous result of Cramér, which determines these two
quantities asymptotically (as N → ∞) under mild assumptions on the distribution
of the Xis. The proof of Cramér’s theorem essentially uses the assumption that
X1, . . . , XN are independent, whereas the assumption that these variables share
the same distribution is less important. In particular, the theory of large deviations
has developed many general tools that allow one to estimate the quantities in (1)
when X is a linear functional of a vector of independent random variables. In spite
of this progress, developing a unified approach that could handle the case where
X depends on X1, . . . , XN in a nonlinear way remains a formidable challenge.

A natural class of ‘simple’ nonlinear functionals that serve as a ‘test case’ are
low-degree polynomials. The following concrete challenge arises from the theory
of random graphs.

Problem 1. Determine the asymptotics of the logarithmic tail probabilities in (1)
when X = NK3(Gn,p) is the number of triangles in the random graph Gn,p.

Observe that NK3(Gn,p) can be expressed as a degree-three polynomial in
(
n
2

)

independent Bernoulli(p) random variables. A relaxation of Problem 1 was first
studied almost exclusively by the random graphs community. The challenge was to
determine the logarithmic tail probabilities in (1) up to a multiplicative constant.
This was eventually achieved, but not without significant effort.

The subsequent work of Chatterjee and Varadhan [3] solved Problem 1 in the
dense regime, that is, when the edge density p is independent of the number of
vertices n; it also popularised the problem in the large deviations community. As
for the sparse regime, p → 0 as n → ∞, it had been been known for some time
that the lower and the upper tail problems exhibit very different phenomenology.
Here, we focus exclusively on the lower tail and only remark that the upper tail
problem has a very rich history.
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Let X = NK3(Gn,p). Janson,  Luczak, and Ruciński [7] were the first to prove
that, when p ≤ 1 − Ω(1),

− log Pr(X = 0) = Θ
(

min{n2p, n3p3}
)
.

The difficult part of the above two-sided estimate is the lower bound; the upper
bound is an easy consequence of Harris’s inequality. Soon afterwards, Janson [6]
proved a general inequality that implies that, for every δ ∈ (0, 1],

(2) − log Pr
(
X ≤ (1 − δ)E[X ]

)
= Θ

(
min{n2p, n3p3}

)
,

provided that p ≤ 1 − Ω(1). As the right-hand side of (2) suggests, the lower tail
problem undergoes a ‘phase transition’ at p = Θ(n−1/2). Here, we restrict our
attention to the case n−1/2 ≪ p ≤ 1−Ω(1), where the logarithmic tail probability
has order n2p.

In the extreme case δ = 1, the function implicit in the asymptotic notation in
the right-hand side of (2) was determined by  Luczak [8]; in fact,  Luczak obtained
a structural characterisation of the tail event {X = 0} that easily implies

− log Pr(X = 0) =

(
1

4
+ o(1)

)
n2 log

1

1 − p
.

Chatterjee and Varadhan [3] and Dembo (unpublished) were the first to seek simi-
lar asymptotic estimates of the logarithmic tail probabilities for arbitrary δ ∈ (0, 1].
For p ∈ (0, 1) and q ∈ [0, 1], let

Ip(q) = q log
q

p
+ (1 − q) log

1 − q

1 − p
.

In other words, Ip(q) is the Kullback–Leibler divergence (also called relative en-
tropy) of the Bernoulli(q) distribution from the Bernoulli(p) distribution. Further,
given a function q : E(Kn) → [0, 1], let Gn,q be the random subgraph of Kn ob-
tained by independently retaining each edge e ∈ E(Kn) with probability qe and
let

ΦK3(δ, n, p) = min





∑

e∈E(Kn)

Ip(qe) : E[NK3(Gn,q)] ≤ (1 − δ)E[NK3(Gn,p)]




 .

A standard measure-tilting argument can be used to show that

(3) − log Pr
(
X = (1 − δ)E[X ]

)
≤ (1 + o(1)) · ΦK3(δ, n, p).

(In the more general context of subgraph counts in Gn,p, this was first observed by
Dembo.) Chatterjee and Varadhan [3] proved that (3) holds with equality when
p ∈ (0, 1) is a constant.

The method of [3] relies on a combination of Szemerédi’s regularity lemma and
the associated counting lemma and therefore the assumption that p is a constant
cannot be relaxed significantly. It is therefore of great interest to develop methods
that would extend the results of [3] to the sparse regime. This was first achieved
by Chatterjee and Dembo [2], who showed that (3) holds with equality as long as
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p ≥ n−α for some (small) constant α > 0. Subsequent works of Eldan [5], Cook–
Dembo [4], and Augeri [1] refined the methods of [4], allowing for larger and larger
values of α. However, the real focus of these works was the upper tail problem
and thus the exact assumptions on p that make (3) hold with equality were not
explicitly stated. We resolve the lower tail problem under the optimal assumption
p ≫ n−1/2.

Theorem 2. If n−1/2 ≪ p ≤ 1 − Ω(1), then, for every δ ∈ (0, 1],

− log Pr
(
NK3(Gn,p) = (1 − δ)E[NK3(Gn,p)]

)
= (1 + o(1)) · ΦK3(δ, n, p).

In fact, we prove a much more general theorem in the setting of bounded-
degree polynomials of independent Bernoulli random variables that establishes
an analogous large deviation principle under natural assumptions on the partial
derivatives of the respective polynomial. One corollary of our general theorem is
the resolution of the lower tail problem for a general nonempty graph H . Let
NH(G) denote the number of copies of H in a graph G and let m2(H) denote the
so-called 2-density of H , that is, the maximum ratio (eJ − 1)/(vJ − 2) over all
subgraphs J of H with at least three vertices.

Theorem 3. Let H be a nonempty graph. If n−1/m2(H) ≪ p ≤ 1 − Ω(1), then,
for every δ ∈ (0, 1],

− log Pr
(
NH(Gn,p) = (1 − δ)E[NH(Gn,p)]

)
= (1 + o(1)) · ΦH(δ, n, p),

where

ΦH(δ, n, p) = min





∑

e∈E(Kn)

Ip(qe) : E[NH(Gn,q)] ≤ (1 − δ)E[NH(Gn,p)]



 .
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The inducibility problem for random Cayley graphs of abelian groups

Lisa Sauermann

(joint work with Jacob Fox, Fan Wei)

1. Background

In 1975 Pippenger and Golumbic [7] asked the following question: Given a k-
vertex graph H , what is the maximum number of k-vertex subsets in an n-vertex
graph that induce a copy of H? Denoting this number by ind(H,n) we have
0 ≤ ind(H,n) ≤

(
n
k

)
. Pippenger and Golumbic defined the inducibilty of H

as ind(H) = limn→∞(ind(H,n)/
(
n
k

)
). This limit exists because ind(H,n)/

(
n
k

)

is monotone decreasing in n (for n ≥ k). Note that 0 ≤ ind(H) ≤ 1.
In general, determining ind(H) is very hard and the precise value is only known

for a few (explicit) classes of graphs H . Pippenger and Golumbic [7] showed that
for every k-vertex graph H the lower bound

(1) ind(H) ≥ k!

kk − k

holds. This lower bound can be obtained from considering balanced iterated blow-
ups of H , which we will formally define below. Fox, Huang, and Lee [4] proved
that for a randomly chosen graph H this bound is almost surely tight. In fact,
for a random graph H , they proved that the n-vertex graphs with the maximum
number of induced copies of H are precisely the balanced iterated blow-ups of H .

Independently, Yuster [8] obtained the latter result for n ≤ 2
√
k and concluded

that almost surely ind(H) ≤ (1 + ok(1)) · k!/(kk − k) for a random k-vertex graph
H .

Let us now define balanced iterated blow-ups, see also [4]. Given a graph H ,
a blow-up of H is a graph Γ whose vertex set can be partitioned into non-empty
subsets Wi for i ∈ V (H) such that for distinct i, j ∈ V (H) the graph Γ is complete
between Wi and Wj if i and j are adjacent in H and otherwise Γ is empty between
Wi and Wj . The graph Γ is a balanced blow-up of H , if the sets Wi can be chosen
in such a way that their sizes differ by at most one. We call Γ a balanced iterated
blow-up of H , if |V (Γ)| < |V (H)| or if it is a balanced blow-up of H where for
each of the subsets Wi the induced subgraph on Wi is again a balanced iterated
blow-up of H .

The problem of determining ind(H) when H is a path or cycle has received much
attention. For cycles Ck with k ≥ 5, Pippenger and Golumbic [7] conjectured that
(1) is sharp, in other words ind(Ck) = k!/(kk − k). For k ≥ 6, the currently best
known upper bound is ind(Ck) ≤ 2k!/kk proved by Král’, Norin, and Volec [6]
improving on earlier bounds by Pippenger and Golumbic [7] and by Hefetz and
Tyomkyn [5]. For k = 5, Balogh, Hu, Lidický, and Pfender [1] proved ind(Ck) =
5!/(55 − 5) using the Flag algebra method.

For paths, however, the situation is significantly different. Exoo [3] observed
that for a path Pk on k ≥ 4 vertices, for large n an n-vertex balanced iterated
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blow-up of the cycle Ck+1 contains more induced copies of Pk than an n-vertex
balanced iterated blow-up of Pk itself. This is because in the blow-up of the cycle
one can “rotate” the path in different ways (and this overcompensates the fact
that the parts of the blow-up are slightly smaller). In particular, the lower bound
(1) is not sharp for paths Pk on k ≥ 4 vertices. For k = 4 and k = 5, even
better constructions were obtained by Even-Zohar and Linial [2], building upon a
construction of Exoo [3] for k = 4. For large k, the balanced iterated blow-up of
Ck+1 is the best known construction. The question of determining ind(Pk) is still
open for all k ≥ 4.

Note that a path Pk on k vertices can be obtained from deleting one vertex
from a cycle Ck+1 on k + 1 vertices. The reason for balanced iterated blow-ups
of Ck+1 having more induced copies of Pk than balanced iterated blow-ups of Pk

is that the cycle Ck+1 has a lot of symmetries (and so there are many ways to
embed Pk into Ck+1). Put in a different way, Ck+1 is a Cayley graph of the abelian
group Z/(k + 1)Z with generator 1. Let us consider more generally the situation

where H is a graph obtained by deleting a few vertices from a Cayley graph H̃
of an abelian group. Then, if H is prime, which is usually the case, the n-vertex

balanced iterated blow-ups of H̃ contain more induced copies of H than n-vertex
balanced iterated blow-ups of H (as long as we deleted sufficiently few vertices).

2. Results

In this talk, we discuss the case where H̃ is a random Cayley graph of an abelian

group and H is obtained from H̃ by deleting a few vertices. Our main result is that
in this case, almost surely all n-vertex graphs maximizing the number of induced

copies of H are balanced iterated blow-ups of H̃ (see Theorem 3 below).
Formally, a Cayley graph of an abelian group is defined as follows.

Definition 1. Given an abelian group G and a subset Λ ⊆ G \ {0} with Λ = −Λ,
the Cayley graph Cayley(G,Λ) is the graph with vertex set G in which two vertices
x, y ∈ G are connected if and only if x− y ∈ Λ.

Note that due to Λ = −Λ and 0 6∈ Λ, this is indeed a well-defined undirected
graph (without loops).

For a given abelian group G (additively written) and 0 < p < 1, we construct a
random Cayley graph with vertex set G by choosing a subset Λ ⊆ G\{0} randomly
as follows.

Procedure 2. Let us choose a random subset Λ ⊆ G \ {0} by including each
{g,−g} ⊆ G \ {0} into Λ independently with probability p.

Note that the random set Λ by construction always satisfies Λ = −Λ.
Now, we are ready to state our main result. Roughly speaking, it states that for

a graph H which is obtained from a random Cayley graph of an abelian group by
deleting a few vertices, the n-vertex graphs Γ maximizing the number of induced

copies of H are balanced iterated blow-ups of the Cayley graph H̃ .
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Theorem 3. Let G be an abelian group with k̃ elements and assume that 0 < p < 1
satisfies min(p, 1 − p) ≥ 106(log k̃)6/5k̃−1/5. If Λ ⊆ G is chosen according to

Procedure 2, then with probability 1 − o(1) the Cayley graph H̃ = Cayley(G,Λ)

satisfies the following: For every induced subgraph H of H̃ on k ≥ k̃ − 1
4 log k̃

vertices and for all n, every n-vertex graph Γ with the maximum number of induced

copies of H is a balanced iterated blow-up of H̃.

Here, the o(1)-term tends to zero as k̃ → ∞, independently of p.

If H̃ is as in Theorem 3, but H is an induced subgraph on k = k̃ − ⌈log k̃⌉ − 1
vertices, then almost surely for large n, the n-vertex balanced iterated blow-ups of
H contain more induced copies of H than the n-vertex balanced iterated blow-ups

of H̃ . Therefore, the assumption k ≥ k̃ − 1
4 log k̃ in Theorem 3 is tight up to the

constant factor 1
4 .

When taking H = H̃ in Theorem 3, we obtain that for min(p, 1 − p) ≥
106(log k̃)6/5k̃−1/5 almost surely the n-vertex graphs Γ maximizing the number

of induced copies of H̃ are the balanced iterated blow-ups of H̃ . This implies the
following corollary.

Corollary 4. Under the assumptions of Theorem 3, with probability 1 − o(1) the

Cayley graph H̃ = Cayley(G,Λ) has inducibility ind(H̃) = k̃!/(k̃k̃ − k̃).

We remark that the results for random graphs of Fox, Huang, and Lee [4] do not
apply for the graphs H we are considering in the theorems above. This is because
they only consider graphs that are far from having any symmetries, but in our
case by construction H is close to having symmetries coming from symmetries of

H̃ . In fact, even the answer is different, because in our case the optimal structures

are not balanced iterated blow-ups of H , but of the Cayley graph H̃.
Our proof uses some of the ideas in [4]. However, many of the techniques in [4]

do not apply in our situation. Therefore a new approach is required here.
We remark that we did not optimize the absolute constants in our statements.
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Covering random graphs by monochromatic trees and Helly-type
results for hypergraphs

Benny Sudakov

(joint work with M. Bucić and D. Korándi)

1. Introduction

Given an r-edge-coloured graph G, how many monochromatic paths, cycles or
general trees does one need to cover all vertices of G? The study of such problems
has a very rich history going back to the 1960’s for examples and detailed history,
we refer the reader to a recent survey by Gyárfás [4].

We study the problem of covering graphs using monochromatic connected com-
ponents. Let us denote by tcr(G) the minimum m such that in any r-edge-
colouring of G, there is a collection of m monochromatic trees that cover the
vertices of G. We write tcr(G) = ∞ if such an m does not exist. The question of
covering graphs with monochromatic components was first considered by Lovász
in 1975 [9] and Ryser in 1970 [5], who conjectured that tcr(Kn) = r−1, or in other
words, given any r-edge-colouring of Kn we can cover its vertices using at most
r − 1 monochromatic components. It is easy to see that tcr(Kn) ≤ r by fixing a
vertex and taking the r monochromatic components containing it in each of the
colours. On the other hand, it is not hard [1] to construct classes of graphs that
only miss very few edges but admit no cover with a number of monochromatic
components that is even bounded by a function of r.

A common theme in the combinatorics of recent years is to obtain sparse ran-
dom analogues of extremal or Ramsey-type results. For some examples, see Conlon
and Gowers [2] and Schacht [10] and references therein. With this in mind, Bal
and DeBiasio [1] initiated the study of covering random graphs by monochro-
matic components. They proved that the number of components needed becomes

bounded when p is somewhere between
(

r logn
n

)1/r
and

(
r log n

n

)1/(r+1)

.

Theorem 1 (Bal, DeBiasio). Let r be a positive integer. Then for G ∼ G(n, p),

(a) if p ≪
(

r logn
n

)1/r
, then w.h.p. tcr(G) → ∞, and

(b) if p ≫
(

r logn
n

)1/(r+1)

, then w.h.p. tcr(G) ≤ r2.

They also made the conjecture that tcr(G(n, p)) ≤ r when p ≫
(

r logn
n

)1/r
.

This was subsequently proved by Kohayakawa, Mota and Schacht [6] for r = 2.
On the other hand, [6] presents a far from trivial construction, due to Ebsen, Mota,

and Schnitzer, showing that tcr(G(n, p)) ≥ r + 1 for p ≪
(

r logn
n

)1/(r+1)

, which

disproves the conjecture for r ≥ 3. Since this example forces just one additional
component and only applies for slightly larger values of edge probability, it was still
generally believed that the conjecture is close to being true. In fact, Kohayakawa,
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Mota and Schacht ask if r components are enough to cover G(n, p) when p is

slightly larger than
(

r logn
n

)1/(r+1)

.

We show that the conjecture is quite spectacularly wrong in both parameters,
and obtain a good understanding of the behaviour of tcr(G(n, p)) throughout the
probability range. In particular, we find that tcr(G) only becomes equal to r when
the density is exponentially larger than conjectured.

Theorem 2. Let r be a positive integer. There are constants c, C such that for
G ∼ G(n, p),

(a) if p <
(

c log n
n

)√r/2r−2

, then w.h.p. tcr(G) > r, and

(b) if p >
(

C log n
n

)1/2r
, then w.h.p. tcr(G) ≤ r.

It is easy to see that tcr(G) ≥ r holds whenever α(G) ≥ r (see e.g. [1]). So
the second part of the theorem actually implies that tcr(G(n, p)) = r for all larger
values of p, so long as α(G(n, p)) ≥ r.

Moreover, we show that near the threshold where tcr(G) becomes bounded (and
for quite some time after that), its value is not linear, as had been conjectured,
but is of order Θ(r2).

Theorem 3. Let r be a positive integer, d > 1 a constant and G = G(n, p).

There are constants c, C such that if
(

C log n
n

) 1
r

< p <
(

c logn
n

) 1
d(r+1)

then w.h.p.

tcr(G) = Θ(r2).

Note that Theorems 1 and 3 together establish a threshold of
(

logn
n

)1/r
for the

property of having tcr bounded by a function of r.
The lower bound in Theorem 3 answers a question of Lang and Lo [8], who

following in the footsteps of Korándi, Mousset, Nenadov, Škorić and Sudakov
[7], considered the problem of partitioning G(n, p) into cycles, and ask if o(r2)

monochromatic cycles are enough for p = O

((
log n
n

)1/r)
. Our result shows that

not only is the answer no, it is not even possible for much larger values of p, even
if we only need to cover the vertices and are allowed to use trees instead of cycles.

The above two theorems describe the value of tcr(G(n, p)) when p is quite small
or quite large. We also obtain a very good understanding of the behaviour of
tcr(G(n, p)) in the range between.

2. The connection to covering partite hypergraphs

Our proofs of the above results, in most of the regimes, rely on a surprising con-
nection to a problem of independent interest about hypergraph covers. Loosely
speaking, the question asks how big a cover of a hypergraph H can be if any
subgraph of H with few edges has a small cover. Here by a (vertex) cover of a
hypergraph H , we mean a set of vertices that has a non-empty intersection with
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all edges of H . The minimum size of such a cover is called the cover number of H ,
and is denoted by τ(H). In our case, we consider a variant for r-partite r-graphs
(r-uniform hypergraphs). A transversal cover is then defined as a cover containing
exactly one vertex in each part of the r-partition.

We denote by hpr(k) the largest possible τ(H) for an r-partite r-graph H for
which any subgraph of H with at most k edges has a transversal cover, if such a
maximum exists, and set hpr(k) = ∞ otherwise. The following result describes
the aforementioned relation between these two seemingly unrelated problems.

Theorem 4. Let k > r ≥ 2 be integers, and let G ∼ G(n, p). There are constants
C, c > 0 such that:

(1) If npk > C logn then w.h.p tcr(G) ≤ hpr(k).
(2) If npk+1 < c logn then w.h.p tcr+1(G) ≥ hpr(k) + 1.

What this is saying is that for
(

logn
n

)1/k
≪ p ≪

(
logn
n

)1/(k+1)

the value

of tcr(G(n, p)) is essentially determined by hpr(k). We determine hpr(k) up to a
O(log r) factor, allowing us to obtain the results mentioned in the previous section.

2.1. Covering by components of different colours. The connection men-
tioned above does not only apply to random graphs. For example part (1) of
Theorem 4 also applies to graphs with large minimum degree. Covering such
graphs using monochromatic components was first considered in [1]. A partic-
ularly nice conjecture they raised is that any graph G with minimum degree
δ(G) ≥ (1 − 1/2r)n can be covered by monochromatic components of distinct
colours. They gave an example showing that if true, this conjecture is best pos-
sible. Girão, Letzter and Sahasrabudhe [3] proved the conjecture for r ≤ 3. Our
connection enables us to prove this conjecture for all values of r.
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Large girth approximate Steiner triple systems

Lutz Warnke

(joint work with Tom Bohman)

A Steiner triple system is a 3-uniform hypergraph H with the property that every
2-element subset of its vertex-set V (H) is contained in exactly one triple of H
(so H decomposes the complete graph with vertex-set V (H) into edge-disjoint tri-
angles). Steiner triple systems and their many natural generalizations are central
to combinatorics, and have been studied since the work of Plücker, Kirkman, and
Steiner in the mid-nineteenth century (see [27, 17, 12, 13, 19]).

We shall consider a ‘high-girth’ generalization of Steiner triple systems proposed
by Erdős [8]. We define the girth of a 3-uniform hypergraph to be the smallest g ≥
4 for which there is a set of g vertices that spans at least g − 2 triples. All known
constructions of Steiner triple systems have small girth (see, e.g., [15, 28, 11, 10]),
and there seems to be no simple reason to believe that this should be necessary. It
thus is natural to ask whether or not there are Steiner triple systems of arbitrarily
large girth (also called ‘locally sparse’).

Question (Erdős, 1973). Let ℓ ≥ 4. Does there exist n0 = n0(ℓ) such that there
are n-vertex Steiner triple systems with girth greater than ℓ for every n ≥ n0

with n ≡ 1, 3 mod 6?

This question remains largely open (the partial results [15, 28, 11, 10] answer this
question only for ℓ ≤ 6). Erdős [8] also asked an approximate version of Question .
A 3-uniform hypergraph H is called a partial Steiner triple system if every 2-
element vertex-subset is contained in at most one triple of H. Note that any partial
Steiner triples system on n vertices has at most 1

3

(
n
2

)
= n2/6 − Θ(n) triples.

Question (Erdős, 1973). For which ℓ ≥ 4 and c ∈ (0, 1/6) are there n-vertex
partial Steiner triple systems with at least cn2 triples and girth larger than ℓ for
all n ≥ n0(ℓ, c)?

In 1993 Lefmann, Phelps, and Rödl [21] showed that for any ℓ ≥ 4 one can take c =
cℓ > 0 with cℓ → 0 as ℓ → ∞, and raised the question whether one can take
a constant c > 0 that does not depend on ℓ. This natural question was also
formulated more recently by Ellis and Linial [7]; see also [23].

We answer Erdős’ Question from 1973, by showing existence of approximate
Steiner triple systems with arbitrary high girth. Regarding the above-mentioned
questions from [21, 7], this implies that one can take cℓ ∼ 1/6 for any ℓ ≥ 4. These
results were obtained independently by Glock, Kühn, Lo, and Osthus [14].

Theorem 1 (Bohman and Warnke [6]). For every ℓ ≥ 4 there are nℓ, βℓ > 0 such
that, for all n ≥ nℓ, there exists an n-vertex partial Steiner triple system with at
least

(
1 − n−βℓ

)
n2/6 triples and girth larger than ℓ.

In [6] we prove Theorem 1 by showing that the following natural (see [20]) con-
strained random process is very likely to produce the desired object for fixed ℓ ≥ 4.
Beginning with the empty 3-uniform hypergraph H0 on n vertices we sequentially
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set Hi+1 := Hi + ei+1, where the added triple ei+1 is chosen uniformly at random
from the collection of triples xyz 6∈ Hi with the property that the girth of Hi+xyz
remains larger than ℓ (i.e., that Hi + xyz contains no set of 4 ≤ a ≤ ℓ vertices
that spans at least a− 2 triples). This process terminates with a maximal partial
Steiner triple system with girth larger than ℓ.

Our differential equation method based analysis of this random process is mo-
tivated by a pseudo-random heuristic for divining the trajectories that govern the
evolution of various key parameters. Such heuristics play a central role in our un-
derstanding of several other constrained random processes that produce interesting
combinatorial objects (such as the triangle-free process [1, 4, 9, 16], the triangle
removal process [2, 3], and the H-free process [5, 24, 25, 26, 22]). A surprising con-
sequence of our proof is that the general case only introduces minor modifications
of the trajectories compared to the ℓ = 4 case, i.e., adding the arbitrary high-girth
constraint does not affect the evolution significantly. See [6] for more details.
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[21] H. Lefmann, K. Phelps, and V. Rödl. Extremal problems for triple systems. J. Combin.

Des. 1 (1993), 379–394.
[22] M. Picollelli. The Final Size of the Cℓ-free process. SIAM J. Discrete Math. 28 (2014),

1276–1305.
[23] J. Solymosi. The (7, 4)-Conjecture in Finite Groups. Combin. Probab. Comput. 24 (2015),

680–686.
[24] L. Warnke. Dense subgraphs in the H-free process. Disc. Math. 333 (2011), 2703–2707.
[25] L. Warnke. When does the K4-free process stop? Rand. Struct. Algor. 44 (2014), 355–397.
[26] L. Warnke. The Cℓ-free process. Rand. Struct. Algor. 44 (2014), 490–526.
[27] R. Wilson. The early history of block designs. Rend. Sem. Mat. Messina Ser. II 9 (2003),

267–276.
[28] A. Wolfe. 5-sparse Steiner triple systems of order n exist for almost all admissible n. Electron.

J. Combin. 12 (2005), #R18.

A reverse Sidorenko inequality

Yufei Zhao

(joint work with Ashwin Sah, Mehtaab Sawhney, and David Stoner)

Let i(G) denote the number of independent sets of G, cq(G) the number of proper
vertex-colorings of G using q labeled colors, and hom(G,H) the number of graph
homomorphisms from G to H (we allow H to have loops as well as vertex- and edge-

weights). Note that i(G) = hom(G, ) and cq(G) = hom(G,Kq). Consider the
following questions:

Q1. Fix d. Among d-regular graphs, which G maximizes i(G)1/|V (G)|?
Q2. Fix d and q. Among d-regular graphs, which G maximizes cq(G)1/|V (G)|?
Q3. Fix d and H . Among d-regular graphs, which G maximizes

hom(G,H)1/|V (G)|?

Question 1 was answered by Kahn [3] and Zhao [6]. The maximizing G is Kd,d

(or a disjoint union of copies of Kd,d). In other words, for all n-vertex d-regular
graph G,

i(G) ≤ i(Kd,d)n/(2d).

A partial answer to Questions 2 and 3 had been given by Galvin and Tetali [2],
who showed that the maximizing G among bipartite graphs is also Kd,d. One of
our main results is that the bipartite hypothesis can be dropped for Question 2
on colorings, i.e., for all n-vertex d-regular graph G,

(1) cq(G) ≤ cq(Kd,d)n/(2d).

More generally, for Question 3 without the bipartite assumption on G, the
problem is wide open, lacking even good conjectures for most H . We show that the
bipartite hypothesis on G can be replaced by triangle-free, proving a conjecture of
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Cohen, Csikvári, Perkins, and Tetali [1], i.e., for all triangle-free n-vertex d-regular
G, and all H (allowing loops and weights)

(2) hom(G,H)1/|V (G)| ≤ hom(Kd,d, H)1/(2d).

Furthermore, the triangle-free hypothesis on G is best possible for general H .
We also prove analogous inequalities for irregular graphs G, initially conjectured

by Kahn [3]. For example, for the number of independent sets, we prove that for
every graph G without isolated vertices, letting dv denote the degree of vertex v
in G, one has

i(G) ≤
∏

uv∈E(G)

i(Kdu,dv)1/(dudv),

and similarly for the number of colorings cq(G). We establish a more general
list-coloring version of the inequality that plays an essential role as a stronger
induction hypothesis in our proof of (1), which starts by removing a maximum
degree vertex of G.

Allowing weights on H , we conjecture that the triangle-free hypothesis in (2)
can be dropped if H is anti-ferromagnetic, i.e., all eigenvalues of the edge-weight
matrix of H except the top one are nonpositive. We also prove that if H is
ferromagnetic, i.e., the edge-weight matrix of H is positive semidefinite, then the
answer to Question 3 is G = Kd+1.

More details can be found in [4, 5].
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Problem Session

(1) (Nati Linial) Girth vs. Diameter of Graphs

We consider here only graphs without vertices of degree 1 or 2.
It is an easy observation that in every such graph G there holds

diam(G) ≥ ⌊girth(G)/2⌋
I have asked many times what is

lim sup
diam(G)→∞

girth(G)

diam(G)

By the above this number is at most 2. It is also at least 1 as first shown
in [1], but I know nothing beyond that.

However, it has recently occurred to me that I do not even know what
is

lim sup
diam(G)→∞

girth(G) − diam(G).

It is hard to believe that this lim sup is finite, but that remains unknown
at present.
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Natur. Reihe 12 1963 251–257.

(2) (Yufei Zhao) Does vertex percolation preserve max cut?

Let G = Gn be graphs with e(G)/v(G) → ∞. Let S be a random subset of
V (G) where every vertex is included with probability 1/2 independently.

Prove or disprove: with probability 1 − o(1),

maxcut(G[S])

e(G[S])
=

maxcut(G)

e(G)
+ o(1).

Here G[S] is the subgraph induced by S and maxcut(G) is the maximum
number of edges of a bipartite subgraph of G.

Remarks:
(a) The e(G)/v(G) → ∞ hypothesis is necessary since a disjoint union of

n triangles does not have the above property.
(b) The statement is true if G is sufficiently dense. A regularity lemma

argument proves the statement for constant density graphs. More
advanced results on approximating max-cut via sampling (e.g., Alon–
Fernandez de la Vega–Kannan–Karpinski) implies the statement for
e(G) ≥ v(G)2−c, where c > 0 is some constant.
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(3) (Lior Gishboliner)

For a pair of graphs H1, H2 and ε ∈ (0, 1), let δ = δH1,H2(ε) be the maximal
δ ∈ (0, 1) such that for every graph G, if G is δ-close to being induced
Hi-free for each i = 1, 2, then G is ε-close to being induced {H1, H2}-free
(recall that an n-vertex graph G is ε-close to a graph property P if one can
turn G into a graph satisfying P by adding/deleting at most εn2 edges).

A theorem of Alon-Shapira [1] implies that δH1,H2(ε) is well-defined.
The problem is to understand the “correct” dependence of δH1,H2(ε) on ε.
More precisely:

Problem 1. Is it true that for every H1, H2, δH1,H2(ε) = poly(ε)?

Problem 2. Is it true that for every a > 0 there are graphs H1, H2 for
which δH1,H2(ε) ≤ O(εa)?

Comments:
(a) The result of [1] gives a tower-type dependence of δH1,H2(ε) on ε (due

to use of regularity lemma).
(b) The answer to Problem 1 is positive in cases where the removal lemma

for induced {H1, H2}-freeness has polynomial dependence.
(c) The answer to Problem 2 is positive for a = 2.
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(4) (Matthew Kwan) Hypergraph cuts above the average

Fix k ≥ r ≥ 2, and let G be a k-uniform hypergraph. An r-cut of G is
a partition of the vertex set into r parts, and the size of the cut is the
number of edges of G which have at least one vertex in each part. Erdős
and Kleitman [2] observed via a simple averaging argument that if G has m
edges, then it has an r-cut of size at least αr,km, where αr,k = S(k, r)r!/rk

and S(k, r) is the number of unlabelled partitions of {1, . . . , k} into r
nonempty sets.

It is not hard to improve this to αr,km+ Ω(
√
m), noting that the stan-

dard deviation of the size of a random r-cut is Ω(
√
m). This bound turns

out to be best-possible if (k, r) ∈ {(2, 2), (3, 2)}, but with David Conlon,
Jacob Fox and Benny Sudakov [1] we proved that in all other cases there
is actually an r-cut of size at least αr,km + Ω(m5/9). We conjectured the
following stronger bound.

Conjecture 1. Fix k ≥ r ≥ 2 such that r ≥ 3 or k ≥ 4. Then every
k-uniform hypergraph G with m edges has an r-cut of size at least αr,km+

Ω(m2/3).
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If true, Conjecture 1 is best-possible, as can be seen by considering an
appropriate random hypergraph.
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(5) (Alexey Pokrovskiy)

Problem 1. Prove or disprove: There is some ε > 0, such that every

ordered graph G has an increasing path of length Ω((e(G)/|G|) 1
2+ε).

This problem was asked by Bucić, Kwan, Pokrovskiy, Sudakov, Tran, Wag-
ner in [1]. In that paper this problem is solved when G is reasonably dense.
Because of this the interesting case is when e(G)/|G| = d for a fixed num-
ber d and n is very large.
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(6) (Tibor Szabó) List Ramsey number of cliques

For a graph H and list assignment L : E(H) → {K ⊆ N} of colors to the
edges, we call a function c : E(H) → N an L-edge-coloring if c(e) ∈ L(e)
for every edge e ∈ E(H). For a graph H and positive integer k the k-color
list Ramsey number RL(H, k) of H is the smallest number n of vertices
such that there exists a list assignment L on E(Kn) such that every L-
coloring of E(Kn) contains a monochromatic copy of H . The list Ramsey
number is clearly at most the ordinary Ramsey number.

Question 1: Is RL(Kk, 2) = R(Kk, 2) or not?
Question 2: Is RL(K3, r) = R(K3, k) or not?

Literature: Alon, Bucić, Kalvari, Kuperwasser, Szabó: List Ramsey num-
bers, submitted.

(7) (Lutz Warnke) Phase transition in random graphs evolving by degrees

As suggested by Erdős and Rényi [2] and Lovász [4], it is natural to study
random graph processes where the probability of joining v and w in the
next step depends on the current degrees dv and dw. To be more con-
crete, given a function f = fn : N → [0,∞), we write (Gf

n,m)m≥0 for
the random graph process with fixed vertex set [n] = {1, . . . , n} where
new edges are added one-by-one (starting with no edges) such that the
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next edge connects two currently non-adjacent v and w with probability
proportional to f(dv)f(dw). Note that Gf

n,m has m edges. Similarly, we

write (Gf,∗
n,m)m≥0 for the multigraph variant where the next edge connects

distinct v and w with probability proportional to 2f(dv)f(dw), and forms
a loop at v with probability proportional to f(dv)f(dv + 1).

This general class of dynamic network models not only contains the clas-
sical Erdős–Rényi process via f(k) := 1, but also the configuration model
for d-regular graphs and the Steger–Wormald algorithm [6] via f(k) :=
max{d− k, 0}, a ‘fixed vertex-set’ preferential attachment process [4, 1, 3]
via f(k) := k +α, and the well-known random d-process [5, 7] via f(k) :=
1{k<d}; see [3] for more details.

We are interested in the emergence of a ‘linear’ size giant component
in such models, which is one of the most important and fascinating phase
transitions in random graph theory. This is well-understood in the Erdős–
Rényi reference model f(k) = 1, where around m ≈ n/2 many steps the
largest component typically changes from size Θ(logn) to size Θ(n). Sim-
ilar results have also been recently established for the above-mentioned
preferential attachment process f(k) = k + α by Pittel [4] and Janson–
Warnke [3], and for the random d-process f(k) = 1{k<d} by Warnke–
Wormald [7]. In all of the aforementioned cases the corresponding func-
tion f is approximately linear (by which we here mean a polynomial of
degree at most one in k), which motivates the following conceptually in-
teresting research problem; see also Section 5.2.2 and Problem 5.1 in [3].

Problem 1. Study the giant component problem for Gf
n,m or Gf,∗

n,m when f
is ‘truly’ non-linear.
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(8) (Jacob Fox) Edge-ordered Ramsey numbers

An edge-ordered graph is a graph with a linear ordering of its edges.
Two edge-ordered graphs are equivalent if there is an isomorphism be-
tween them preserving the ordering of the edges. The edge-ordered Ramsey
number redge(H) of an edge-ordered graph H is the smallest N for which
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there exists an edge-ordered graph G on N vertices such that, for every
two-coloring of the edges of G, there is a monochromatic subgraph of G
equivalent to H . Recently, Balko and Vizer proved that redge(H) exists,

and Fox and Li proved redge(H) = 2n
O(1)

for every edge-ordered graph on
n vertices. The following question asks if this can be improved.

Question. Does every edge-ordered graph H on n vertices satisfy

redge(H) = 2O(n)?

The Burr-Erdős conjecture, proved recently by Lee, states that every
d-degenerate graph has Ramsey number linear in the number of vertices.
Fox and Li also proved that every d-degenerate edge-ordered graph H on
n vertices satisfies redge(H) ≤ nC(d) for some C(d) only depending on d.
The following question asks if the bound can be improved to linear as in
the Burr-Erdős conjecture.

Question. Does every d-degenerate edge-ordered graph H on n vertices
satisfy

redge(H) = O(C(d)n)?

We conjecture the answer is no.
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(9) (Asaf Ferber)

Let H(n) be the number of n × n Hadamard matrices. It is a relatively

simple exercise to show that H(n) ≤ 2n
2/2+o(n2), and it is a notoriously

hard conjecture to show H(n) > 0 for all n which is divisible by 4.
Following an attempt by Jain, Zhao and myself I propose the following

problem:

Show that H(n) = 2o(n
2).

Reporter: Charlotte Knierim
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ETH-Zürich
ETH-Zentrum
8092 Zürich
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ETH Zürich, CAB G 39.2
Universitätstrasse 6
8092 Zürich
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