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Abstract. The workshop on “Mathematical Methods in Quantum Molecu-
lar Dynamics” has brought together chemists, mathematicians, and physicists
developing new mathematical methods for studying the motion of atoms in
molecules and in reacting chemical systems. Thereby, the main focus was
on dynamical properties of quantum molecular systems in many dimensions.
The development of mathematical methods for quantum molecular systems
is an intrinsically interdisciplinary field of research, whose progress can be
improved by opening additional channels of communication between the dif-
ferent disciplines. The workshop has contributed to advance the exchange of
ideas related to development of new methods as well as the creation of per-
sonal links between mathematicians and theorists in chemistry and physics.

Mathematics Subject Classification (2010): 82C10.

Introduction by the Organizers

The workshop on “Mathematical Methods in Quantum Molecular Dynamics” was
devoted to mathematical methods for solving the many-body Schrödinger equation
in high dimensions. Such methods are essential in quantum molecular dynamics.
32 talks were presented by an interdisciplinary group of speakers comprised of
mathematical physicists, numerical analysts, and chemical physicists.

The many-body Schrödinger equation of quantum molecular dynamics poses sev-
eral mathematical challenges: The curse of the high dimensionality is accompanied
by high frequency oscillations in time and space. When non-adiabatic coupling,
which prevents one from solving separate Schrödinger equations for electrons and
nuclei, is important, the problem is even harder. Conical intersections of potential
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energy surfaces introduce new complexities. Many numerical approaches require
solving non-linear equations, even though the original Schrödinger equation is lin-
ear. The interdisciplinary mixture of participants, some of whom had met at
an earlier Oberwolfach workshop, stimulated the development of new ideas and
a common vision. Some of the younger participants presented new provocative
ideas.

The mathematical methods considered can be grouped as numerical methods,
analytical methods and modelling methods. The main topics and results in these
three overlapping groups have been the following:

Numerical methods: Many of the numerical methods discussed at the workshop
are designed to solve high-dimensional Schrödinger equations for nuclear vibrations
and are based on tensor decompositions. At the workshop, participants discussed
various aspects and extensions of the multi-configuration time-dependent Hartree
method (Hans-Dieter Meyer and Uwe Manthe). Other tensor decompositions (CP
and Tensor Train) used with some form of rank reduction were used to solve both
the time-dependent and the time-independent Schrödinger equations (Tucker Car-
rington, Ivan Oseledets, and Victor Batista). Meshless discretization based on
variationally determined Gaussian ansatz functions were proposed and applied to
non adiabatic systems (Irene Burghardt and GrahamWorth) as well as analysed in
terms of accuracy and structure preservation (Christian Lubich). Highly successful
stochastic approaches were presented for the electronic Schroedinger equation (Ali
Alavi). Errors introduced by using Monte Carlo to compute integrals were studied
and analysed (Reinhold Schneider). Radial basis function methods were discussed
for the interpolation of high-dimensional potential energy surfaces (Elisabeth Lars-
son) and the solution of the Schroedinger equation (Tucker Carrington). Domain
decomposition methods were proposed for studying the effects of coupling between
a molecular system and a solvent (Benjamin Stamm). For the time-discretization,
geometric numerical integration (Jiri Vanicek) was addressed as well as higher or-
der splitting methods (Vasile Gradinaru). Improved adiabatic surfaces were used
with numerical methods to compute highly accurate energy levels of H2 (Edit
Matyus).

Analytical methods: The analytical methods considered included space adiabatic
theory (Stefan Teufel and Ben Goddard). Analytic methods were also applied to
the semi-classical analysis of Fourier integral operators based on continuous frame
decompositions (Clotilde Fermanian-Kammerer).

Modelling methods: Semi classical path integral methods were analysed (Stuart
Althorpe) and numerical path integral techniques were applied to highly com-
plex systems (Pierre-Nicholas Roy). Quasi-classical modelling was carried out for
nuclear non-adiabatic transitions (Bill Miller). Quantum-classial coupling was ad-
dressed from the structural point of view (Ray Kapral). It was shown that by
adding approximations similar ideas can be used to model very complex systems
(Aaron Kelly).
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Most participants made a significant effort to make their presentations comprehen-
sible and as a result there was considerable discussion both during the talks and in
the afternoons. The heterogeneous background of the workshop participants and
the many open and constructive discussions after the talks and during the breaks
made it possible to build important bridges.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
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Abstracts

Two strategies for computing vibrational spectra (molecules with up
to 18 atoms): tensor formats and collocation

Tucker Carrington

In the first part of my talk, I presented the Hierarchical Intertwined Reduced-
Rank Block Power Method (HI-RRBPM) for solving the vibrational Schrödinger
equation. The memory cost of this method scales linearly with the number of
atoms in the molecule. The HI-RRBPM has been used to compute vibrational
spectra of uracil and naphthalene, with 12 and 18 atoms, respectively. It uses a
tensor product basis but: 1) it is not necessary to store a tensor-product-basis
matrix representation of the Hamiltonian matrix; 2) it is not necessary to store
vectors whose length is equal to the size of the tensor-product basis. In the HI-
RRBPM, a shifted power method is used to build a basis. In the original RRBPM,
after each matrix-vector product, the rank of the resulting tensor is reduced. This
rank reduction is costly. The cost is reduced by breaking the problem into pieces
and using the RRBPM in a hierarchical fashion. It can be further reduced by
intertwining the rank reduction and the matrix-vector products. Rakhuba and
Oseledets modified two aspects: they use a different tensor format (Tensor Train)
and a different eigensolver (inverse iteration). Multiconfiguration time-dependent
Hartree also uses a tensor format (Tucker format). Methods that exploit tensor
formats and rank reduction can be used only if the potential energy surface (PES)
has a simple form, e.g. CP format or Tensor Train format.

In the second part of my talk, I presented new ideas for using collocation to solve
the Schrödinger equation when the PES does not have a simple form. When the
potential energy surface does not have a special form (e.g. a sum of products), it
is common to use quadrature to compute a vibrational spectrum. Direct-product
quadrature grids are most popular. The size of a direct-product grid scales expo-
nentially with the number of atoms and it is not not possible to store values of
the PES for molecules with more than 5 atoms. I presented collocation methods
we are developing. Collocation has advantages: 1) point selection is less impor-
tant; 2) no integrals, no quadratures, no weights; 3) easy to use with complicated
kinetic energy operators; 4) it can be used with any (the best possible) coordi-
nates and basis functions; 5) in many cases fewer collocation than quadrature
points are required; 6) the length of the vectors one must store is reduced; 7) it
is not necessary to use basis functions that are non-zero wherever wavefunctions
have signicant amplitude; 8) collocation points need not cover all regions in which
wavefunctions have signicant amplitude.

Collocation can be used with the Multiconfiguration Time-Dependent Hartree
(MCTDH) approach. When the basis is good, the accuracy of collocation solu-
tions to the Schrödinger equation is not sensitive to the choice of the collocation
points. The original collocation-MCTDH (C-MCTDH) method [J. Chem. Phys.
148, 044115 (2018)] uses, as is also true in standard MCTDH, a tensor product
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basis. Because we do not rely on having a sum-of-products potential energy sur-
face, we also have a tensor product grid. By using generalized hierarchical basis
functions, that span the same space as the single particle functions we introduced
in the first C-MCTDH paper, and a Smolyak grid, we have developed C-MCTDH
approach that makes it possible to prune both the basis and the grid. In some cases
it is advantageous to use more points than basis functions. In this ”rectangular
collocation” method, elements of the matrix for the PES have the form of quad-
rature approximations for integrals, but accurate energies can be obtained even
when these quadrature approximations are poor. We have shown that accurate
vibrational energy levels of CH2O can be computed using radial basis functions
and collocation points that are localized in a small region of configuration space.
Similar ideas are used to solve the electronic Schrödinger equation.

Multiconfigurational Gaussian wavepacket dynamics: Interpolating
between accurate quantum dynamics and the quantum-classical limit

Irene Burghardt

(joint work with David Picconi, Pierre Eisenbrandt, Matteo Bonfanti)

The variational Gaussian-based multiconfiguration time-dependent Hartree (G-
MCTDH) approach [1] and its variational multiconfigurational Gaussian (vMCG)
[2] variant have proven versatile tools for the explicit representation of system-
bath problems [3, 4, 5] as well as on-the-fly calculations [6]. However, the Frozen
Gaussian (FG) basis sets employed in these methods are far less flexible than
the single-particle function (SPF) representation of standard MCTDH, such that
a significantly larger number of Gaussian wavepackets (GWPs) are generally re-
quired to reach convergence. Against this background, the present contribution
addresses several directions that make the variational GWP approach suitable for
high-dimensional situations.

First, to remedy the lack of flexibility of the FG basis sets, we recently intro-
duced a hierarchical two-layer approach – denoted 2L-GMCTDH – along with its
multi-layer generalization [7]. Here, the first layer is composed of flexible SPFs,
while the second layer consists of low-dimensional FGs. We report on the first
implementation of the method in an in-house code, along with applications to
vibrational energy transport and high-dimensional nonadiabatic dynamics [8, 9].

Second, a hybrid quantum-classical variant of the G-MCTDH approach has
been formulated [10], which takes a subset of (potentially many) coordinates to the
classical limit. This formulation is shown to yield a multiconfigurational Ehrenfest
(MCE) type dynamics [10, 11].

Finally, the combination of the G-MCTDH approach with dissipative dynamics
is illustrated, leading to the ρG-MCTDH scheme [12]. Here, we employ a varia-
tional ansatz which expresses statistical mixtures in terms of population weighted
natural states which are in turn expanded in G-MCTDH type configurations. This
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approach circumvents undesirable properties of the standard variational formula-
tion for density matrices, based upon the Hilbert-Schmidt norm, which does not
generally lead to energy conservation.

In the general context of variational formulations, we further comment on recent
developments initiated by Ch. Lubich, related to the formulation the MCTDH
equations from the perspective of tangent space projections [13, 14].
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Quantum Boltzmann-conserving classical dynamics: new
developments in path-integral theory and methodology

Stuart C. Althorpe

(joint work with Michael J. Willatt, Timothy J.H. Hele, George Trenins)

The main subject of this talk is a new result in path-integral theory, which we
obtained in 2015 [1]. This result still appears strange to us and it may be that a
mathematician can help us to understand it better and link it to the bigger picture.
It interests us because, first, it solves the conceptual problem of how Newtonian
dynamics can conserve the quantum Boltzmann distribution, and second, it has
helped us to push path-integral dynamics simulations to lower temperatures (for
liquid water and ice) [2].

Fig. 1 Raw and smoothed imaginary-time Feynman paths.

Figure 1 shows two imaginary-time Feynman paths. The path on the left is a
”raw” Feynman path, which is jagged and discontinuous; the path on the right has
been Fourier-filtered to make it smooth and continuous. It is well known [3] that
the smooth paths give equivalent static averages to the jagged paths. The new
result [1] is that the real-time dynamics of the smooth paths is classical, whereas
real-time dynamics of the raw paths is quantum mechanical. In other words,
smoothing the imaginary-time paths makes the real-time dynamics classical.

We do not understand this result, except in a handwaving way, namely that
the smooth and continuous space is not big enough to support fluctuations of the
real-time Feynman paths (around the classical paths); so the effective ~ for the
dynamics is zero.

The smoothness of the paths makes them imaginary-time-translation invari-
ant. This symmetry ensures that, in addition to conserving energy, the (classical)
dynamics of the paths also conserves the non-classical pieces of the quantum Boltz-
mann distribution.

The smooth-path dynamics cannot be simulated directly (except for toy mod-
els) because of a phase problem. But it is proving useful. We have found that
two practical simulation methods (centroid molecular dynamics (CMD) and ring-
polymer molecular dynamics (RPMD)) which were first obtained heuristically, are
in fact approximations to the smooth-path dynamics [4]. This has helped us to
develop methods that correct for deficiencies in CMD at low temperatures, giving
improved line positions and shapes in the infrared spectrum of liquid water and
ice at temperatures down to 150 K [2, 5].
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Quantum-classical wave functions and densities

Raymond Kapral

Systems comprising a subsystem S coupled to a bath or environment B are consid-
ered. For such systems two routes to the construction of mixed quantum-classical
dynamics are described. In the first route one starts with a quantum description
of both the subsystem and bath whose evolution is governed by the quantum Li-
ouville equation. Following a partial Wigner transform over the bath, the limit
in which the bath is described classically is taken giving the quantum-classical
Liouville equation. [1] It is shown that equations of motion for quantum-classical
wave functions derived by such methods are not closed but instead depend on the
quantum-classical density.

In the second route one starts from a fully classical description of the sys-
tem described by the classical Liouville equation. From this starting point, an
evolution equation for a classical Koopman wave function is derived [2]. This pre-
quantum equation may be quantized, and the Schrödinger equation is obtained
after a quantization procedure is carried out [3]. When this procedure is applied
to the composite system and only the subsystem S is quantized [4], one obtains a
quantum-classical wave function. The equation of motion for the quantum-classical
density obtained from this wave function is not closed but depends on the wave
function [5]. The quantum-classical wave functions may be expressed in any basis
and representation in the adiabatic basis provides a description of nonadiabatic
dynamics that differs from that of the quantum-classical Liouville equation.
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Nonadiabatic transitions through avoided crossings

Benjamin Goddard

(joint work with Volker Betz, Tim Hurst, Uwe Manthe, Stefan Teufel)

For many molecular dynamics applications, the Born-Oppenheimer (infinite nu-
clear mass) approximation is used; it is assumed that the electronic energy levels
are well-separated. However, in many chemical systems this is not valid. Typ-
ical examples are ultra-fast chemical reactions, such as the photodissociation of
sodium iodide and the reception of light in the retina. We consider the fundamen-
tal case of two electronic energy levels with one nuclear degree of freedom x, with
Schrödinger equation

iǫ∂t

(
ψ1(x, t)
ψ2(x, t)

)
=

(
− ǫ

2

2
∂2xI +

(
X(x) Z(x)
Z(x) −X(x)

)
+ d(x)I

)(
ψ1(x, t)
ψ2(x, t)

)
,

where I is the 2 × 2 unit matrix, ǫ2 is the nuclear-electron mass ratio, and ψ =
(ψ1, ψ2)

T ∈ L2(dx,C2).
An interesting physical case is where the two Born-Oppenheimer energy levels

become close but do not cross — an avoided crossing. It is natural to change to the
adiabatic representation in which the potential matrix becomes diagonal, and the
two levels decouple up to errors of order ǫ. Interest lies in starting a wavepacket on
the upper level and investigating the (exponentially small) part transmitted, via
the avoided crossing, to the lower level, far away from the crossing (in the scattering
limit). This exponential smallness, coupled with the highly oscillatory nature of
the wavepackets, makes numerical simulations very computationally expensive.
However, such transitions are chemically crucial, e.g., in catalysing other reactions.

One typical feature of the adiabatic representation is the non-monotonicity in
time of the mass on the lower level. In fact, it can be shown that globally in
time this mass is of order ǫ, whereas in the scattering regime, it is exponentially
small in both 1/ǫ and the separation of the energy levels. From a numerical
perspective, one essentially relies on the cancellation of many large numbers to
produce a small value, which is generally an unstable approach. In addition, any
absolute errors in the numerical scheme quickly swamp the exponentially small
transmitted wavepacket. What is desirable is a methodology which requires only
one-level computations (which can be performed to high accuracy) and produces
a monotonically-increasing population on the lower level.
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By considering generalizations of the adiabatic representation [1], known as supera-
diabatic representations, we derived a closed form approximation to the transmit-
ted wavepacket, which is in excellent agreement (around 2–3% relative error) with
high-precision numerics for a wide range of potentials and wavepackets. The cen-
tral idea is to find representations in which the off-diagonal elements of the Hamil-
tonian are of order ǫn for a given n. In this way, one moves the complexity of the
dynamics into the complexity of the representation. In such cases, direct numeri-
cal methods are impractical, but one may take advantage of the fact that all such
representations agree (also with the adiabatic one) well away from the avoided
crossing. Due to the simplicity of the transition, it may be well-approximated
mathematically. This results in an algorithm analogous to surface hopping: The
wavepacket is first transported on the upper level (using one’s preferred numerical
scheme). Once the centre of mass reaches the avoided crossing, a wavepacket is
initialised on the lower level, using the formula below. Finally, this wavepacket is
evolved on the lower level until it is well away from the avoided crossing.

In contrast to most previous mathematical results, it is highly suited to numer-
ical implementation, with the computation of the lower-level wavepacket requiring
only multiplication in momentum space. When the slope of the potential near the
crossing, given by λ = dd

dx |x=0, is small the formula is

ψ̂−

ǫ
(k, t) = e

−i
ǫ
tĤ−

χ{k2>4δ}
η + k

2|η| e
iτδ
2δǫ

|k−η|φ̂ǫ(η),

where Ĥ− is the Born-Oppenheimer propagator on the lower level, ·̂ǫ denotes a
scaled Fourier transform, χ is the characteristic function (corresponding to energy

conservation), η = sgn(k)
√
k2 − 4δ is the classical incoming momentum for outgo-

ing momentum k, φ is the wavepacket on the upper level at the avoided crossing
(at t = 0), and τ and δ are constants easily derivable from X and Z. When λ is
not small, the formula is analogous but more complicated [2, 3].

Recently, we have applied this approach to the real-world example of sodium
iodide, NaI, which has one effective degree of freedom, namely the inter-nuclear
distance. The results are given in Figure 1; the relative error is once again around
3% [4]. One crucial advantage of the method is that it preserves the full information
of the wavepacket, including phase. Hence it allows the accurate computation of
interfering wavepackets,for example during multiple transitions; see Figure 2. This
is not the case with standard surface-hopping methodologies.

We have also generalised the approach to arbitrary dimension, essentially by
“slicing” the problem into a number of 1D systems near the avoided crossing [5]. In
higher dimensions, we are interested in tackling the dynamics near a true crossing,
in the case that the centre of the wavepacket travels along a path well away from the
crossing, resulting in a type of avoided crossing with a non-zero gap. Along with
applying the methodology to real-world systems of higher dimension, we intend to
compare to surface-hopping approaches, and to implement the algorithm in one
or more quantum molecular dynamics packages.
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Figure 1. (a) The wavepacket on the upper level at the cross-
ing point (subplot), along with the transmitted wavepacket (blue,
solid, left axis) and relative error (red, dashed, right axis). (b)
Phase of the wavepackets, and error in the phase; axes as in (a).

Figure 2. Combined transmitted wave packets for second and
third transitions. Exact solution (black, dotted), the result of
the formula (blue, solid), with the Landau-Zener rate (red, short
dashes) and neglecting the prefactor (green,dashed-dotted).
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An adaptive interpolation scheme for molecular potential energy
surfaces

Elisabeth Larsson

(joint work with Markus Kowalewski, Alfa Heryudono)

Evaluating a potential energy surface for quantum dynamics using ab initio calcu-
lations is computationally expensive. To reduce the computational cost, different
methods of approximation or interpolation have been introduced [10, 9, 8, 6, 3, 7,
11, 2, 1, 4].

The objective of such methods is twofold. In order to save computational effort,
the number of function evaluations (ab initio calculations) should be minimized,
and for the method to be useful, the representation should be accurate.

The method we propose [5] is an adaptive partition of unity method with local
polyharmonic spline approximations. Polyharmonic splines were chosen because
they minimize oscillations between data points. Partition of unity methods allows
for local interpolants to be computed independently, and are hence suitable for
parallelization. The global surface is then computed as a weighted combination of
the local interpolants.

The adaptivity is based on a division of the computational domain into cells
that can be refined recursively. To determine where to refine, an interpolant of
the error is computed that can be used in place of actual potential evaluations.

We show that the adaptive algorithm provides significant savings compared with
a full grid calculation, and that the gain increases with the number of dimensions.
We also show that the error can be controlled accurately in relation to a user
defined tolerance. The methods is tested for problems in two, three and four
dimensions. We expect that the method can be used for up to six space dimensions,
but for higher dimensions it should be combined with other techniques, as for
example a many-body expansion, to reduce the dimensionality.
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Classical Molecular Dynamics Simulations of Electronically
Non-Adiabatic Processes

William H. Miller

A recently described symmetrical quasi-classical (SQC) windowing methodology
for classical trajectory simulations has been applied to the Meyer-Miller (MM)
model for the electronic degrees of freedom in electronically non-adiabatic dynam-
ics. The approach treats nuclear and electronic degrees of freedom (DOF) equiv-
alently (i.e., by classical mechanics, thereby retaining the simplicity of standard
molecular dynamics), providing ”quantization” of the electronic states through
the symmetrical quasi-classical (SQC) windowing model. The approach is seen
to be capable of treating extreme regimes of strong and weak coupling between
the electronic states, as well as accurately describing coherence effects in the elec-
tronic DOF (including the de-coherence of such effects caused by coupling to the
nuclear DOF). It is able to provide the full electronic density matrix from the one
ensemble of trajectories, and the SQC windowing methodology correctly describes
detailed balance (unlike the traditional Ehrenfest approach). Calculations can
be (equivalently) carried out in the adiabatic or a diabatic representation of the
electronic states, and most recently it has been shown that a modification of the
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canonical equations of motion in the adiabatic representation eliminates (without
approximation) the need for second-derivative coupling terms.

Variational Gaussians revisited

Christian Lubich

(joint work with Caroline Lasser)

The talk reviewed Gaussian wave packets that evolve according to the Dirac–
Frenkel time-dependent variational principle for the semi-classically scaled Schrö-
dinger equation. Old and new results on the approximation to the wave function
were given, in particular an L2 error bound that goes back to Hagedorn (1980) in
a non-variational setting, and a new error bound for averages of observables with
a Weyl symbol, which shows the double approximation order in the semiclassical
scaling parameter in comparison with the norm estimate.

The variational equations of motion in Hagedorn’s parametrization of the Gauss-
ian were presented. They show a perfect quantum–classical correspondence and
allow us to read off directly that the Ehrenfest time is determined by the Lyapunov
exponent of the classical equations of motion.

A variational splitting integrator was formulated and its remarkable conserva-
tion and approximation properties were discussed. A new result shows that the
integrator approximates averages of observables with the full order in the time
stepsize, with an error constant that is uniform in the semiclassical parameter.

The material presented here for variational Gaussians is part of a review article
on computational methods for quantum dynamics in the semiclassical regime,
which is currently in preparation [1].
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Second quantization and the multi-configurational time-dependent
Hartree approach

Uwe Manthe

The multi-configurational time-dependent Hartree (MCTDH) approach and its
multi-layer extension facilitate accurate high-dimensional quantum dynamics sim-
ulations. In the MCTDH approach, the wavefunction is expanded in a direct
product of self-adapting time-dependent single-particle functions (SPFs) and the
SPFs are represented using a time-independent, “primitive” basis. The equations
of motion which govern the time-dependence of all expansion coefficients are ob-
tained via the Dirac-Frenkel variational principle. The approach was originally
designed to describe the quantum dynamics of a set of distinguishable particles or
coordinates.
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Quantum mechanical systems of indistinguishable particles show specific sym-
metry properties, the total wavefunction is either totally symmetric or totally anti-
symmetric with respect to the pairwise exchange of two identical particles, and are
typically described in second quantization. Here operators describing the creation
or annihilation of specific single-particle states replace the basis function employed
to describe distinguishable particles dynamics. Different strategies have employed
by different groups of researchers to utilize the MCTDH approach in this context:
the multi-layer MCTDH-second quantization representation (MCTDH-SQR) ap-
proach, which relies on the efficiency of the tensor contraction of the multi-layer
representation, and the MCTDHB, MCTDHF, and MCTDHX approaches, which
focus on an optimized time-dependent linear combination of the creation or an-
nihilation operators. Recently, the (multi-layer) MCTDH approach in optimized
second quantization representation (MCTDH-oSQR) has been introduced which
combines elements of both groups of methods.

In the present talk, the theory of the MCTDH approach in second quantiza-
tion will be discussed in detail. Difference to the standard distinguishable parti-
cle (“first quantization”) MCTDH approach will be outlined and interesting con-
nections between unitary transformations in second quantization and coordinate
transformations in first quantization will be highlighted.

Regularizing the MCTDH and ML-MCTDH equations of motion

Hans-Dieter Meyer

(joint work with Haobin Wang and David Mendive-Tapia)

The Multi-Configuration Time-Dependent Hartree (MCTDH) method [1, 2, 3, 4, 5]
is a very efficient algorithm for solving the time-dependent Schrödinger equation
in several dimensions. In this approach the wave function is expanded in a direct
product of self-adapting time-dependent Single-Particle Functions (SPFs). The
equations of motion (EOM) for both the expansion coefficients and the SPFs are
derived from a variational principle. In the multi-layer extension of MCTDH
(ML-MCTDH) [6, 7, 8] there are several layers of SPFs, the SPFs of one layer are
expanded into the SPFs of the layer below. This procedure allows to treat many
degrees of freedom.

The EOM of the SPFs can be plagued by singularities. This has led some
researches to question the validity of the MCTDH approach. A physical inter-
pretation of the singularities will be presented and it will be argued that the
singularities can be removed by regularization. However, it will be shown that the
standard approach of EOM-regularization by regularizing the density matrix is not
the optimal one. A new regularization scheme, based on a singular value decom-
position of the coefficient tensor, will be discussed and it will be shown [9, 10] that
this new scheme leads to a faster convergence with respect to the regularization
parameter.

The new regularization scheme is tested on a 2D model [11] of coupled oscilla-
tors, and on a series of spin-boson models with up to 70 bath oscillators [9, 10].
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As an alternative we investigated a spawning approach where SPFs are added
when needed. Inspired by an idea of Uwe Manthe [11] we derived equations for
optimal unoccupied SPFs and for an optimal form of the corresponding columns
of the coefficient tensor. By giving these added optimal columns a small norm
ǫA (typically 10−7 · · · 10−8), the density matrix becomes regular and there is no
need to regularize. The price one has to pay is that the norm of the wavefunction
is artificially increased by ǫA, but this is a negligible quantity. The advantage of
this approach is that it simplifies the use of MCTDH. The user no longer needs
to specify the numbers of SPFs, he/she only needs to provide a threshold for the
lowest natural population (i.e. a measure for the accuracy of the propagation),
the algorithm itself will determine the necessary numbers of SPFs. The method
is tested by propagating a locally vibrationally excited state of the HONO mole-
cule. This feature will be particularly useful for ML-MCTDH, where otherwise a
multitude of numbers of SPFs has to be specified.
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Gauges-Conditions in Multi-Configuration Time-Dependent Hartree
Approaches

Thomas Weike

(joint work with Uwe Manthe)

The multi-configuration time-dependent Hartree (MCTDH) approach is an effi-
cient scheme to solve the time dependent multi-particle Schrödinger equation. In
the MCTDH approach the wave function is a time dependent linear combination
of direct products of time dependent single particle functions. Due to this ansatz
the wave function is invariant under unitary transformations of the single particle
functions. This ’gauge’ freedom is fixed by choosing a gauge condition.

One extension of the MCTDH approach, which deals with the Schrödinger equa-
tion for indistinguishable particles, is the MCTDH approach in optimized second
quantisation (MCTDH-oSQR). Any wave function including indistinguishable par-
ticles must be symmetric or anti-symmetric with respect to the pairwise exchange
of identical particles. This condition is fulfilled if the wave function is represented
in second quantisation:

|Ψ〉 =
∑

i1..if

Ai1..if (t)

(
b†1

)i1

√
i1!

..

(
b†f

)if

√
if !

|0〉 .

The operators b†i commute in the symmetric (bosonic) case and anti-commute in
the anti-symmetric (fermionic) case. In the MCTDH-oSQR approach both the

coefficients Ai1..if and the operators b†i are time dependent. The MCTDH-oSQR
ansatz is similar to the usual MCTDH ansatz, but it introduces some new features.
The MCTDH-oSQR approach is not invariant under unitary transformations of

the operators b†i and thus is gauge dependent. Nevertheless the analog of a gauge
condition can be introduced. The quality of calculations employing the MCTDH-
oSQR method depend on this condition.

In the usual MCTDH approach the ansatz for the wave function is gauge in-
variant, but the numerical integration depends on the gauge condition. Therefore
the choice of the gauge is important in the MCTDH approach. Gauge conditions
in MCTDH approaches will be discussed.

Vibrational quantum graphs and their application to the quantum

dynamics of CH+
5

Csaba Fábri

The first application of quantum graphs [1] to vibrational quantum dynamics
of molecules is reported [2]. The usefulness of the quantum-graph approach is
demonstrated for the molecular ion CH+

5 , an enigmatic system of high-resolution
molecular spectroscopy and molecular physics, challenging our traditional under-
standing of chemical structure and rovibrational quantum dynamics. The vertices
of the quantum graph correspond to the different symmetry-equivalent versions
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of the molecule (5! = 120 in total for CH+
5 ), while the differently colored edges

represent different collective nuclear motions transforming the distinct versions
into one or another (see Figure 1). These definitions allow the mapping of the
complex low-energy vibrational quantum dynamics of CH+

5 onto the motion of
a one-dimensional particle confined in a quantum graph. The time-independent
Schrödinger equation describing free motion on the quantum graph is solved and
the energy levels are quantized by imposing an appropriate set of boundary condi-
tions on the eigenstates of the Hamiltonian. The quantum-graph model provides
a simple and intuitive qualitative understanding of the intriguing low-energy vi-
brational dynamics of CH+

5 and is able to reproduce the lowest vibrational energy
levels of CH+

5 and CD+
5 [2, 3, 4, 5] with remarkable accuracy.

Figure 1. Structure of the quantum graph applied to the vibra-
tional quantum dynamics of CH+

5 .
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Tree Tensor Network States for Vibrational Quantum Calculations

Henrik R. Larsson

One of the main fundamental challenges in computing quantum systems is the
exponential scaling of the high-dimensional wavefunction coefficient tensor with
dimensionality. A highly successful strategy for reducing or even obviating the
exponential scaling is to decompose the coefficient tensor into chunks of lower-
dimensional tensors that are connected via virtual dimensions. Tensor decom-
positions are used in different disciplines. In molecular quantum dynamics, the
tensor-decomposition based multilayer multiconfiguration time-dependent Hartree
method (ML-MCTDH) has been proven to be very efficient [1]. However, highly
nonlinear differential equations have to be solved. In condensed matter physics,
the ML-MCTDH-based tensor decomposition is called tree tensor network states
(TTNS) [2]. In this talk, an application of an algorithm from condensed mat-
ter physics [3] to the computation of accurate vibrational spectra is presented.
By employing sequential isometrizations of the tensors in the TTNS, the prob-
lem of solving nonlinear differential equations is transformed into a sequence of
Hermitian eigenvalue problems. This reduces the computational requirements and
improves the robustness of the method. Computations for vibrational spectra of
a 12-dimensional system are presented.

References

[1] H. Wang, Multilayer Multiconfiguration Time-Dependent Hartree Theory, J. Phys. Chem.A,
119 (2015), 7951-7965.

[2] Y.-Y. Shi, L.-M. Duan, G. Vidal, Classical simulation of quantum many-body systems with
a tree tensor network, Phys. Rev. A, 74 (2006) 022320.

[3] M. Gerster, P. Silvi, M. Rizzi, R. Fazio, T. Calarco, S. Montangero,Unconstrained tree
tensor network: An adaptive gauge picture for enhanced performance, Phys. Rev. B 90

(2014), 125154.

Effective non-adiabatic Hamiltonians for the quantum nuclear motion
over coupled electronic states

Edit Mátyus

(joint work with Stefan Teufel)

Recent developments in molecular high-resolution and precision-spectroscopy ex-
periments [1] make it necessary to revise and to go much beyond the usual ap-
proximations in quantum chemistry. In particular, relativistic, radiative, and non-
adiabatic ‘effects’ must be explicitly accounted for in the theoretical description
[2]. In turn, should similarly precise experimental and theoretical results become
available, it may be possible to refine fundamental physical constants, used in the
computations, based on molecular spectroscopy experiments.

The proposed talk will focus on the computation of non-adiabatic effects impor-
tant when we look at molecular transitions under a high energy resolution. The
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non-relativistic limit can be approached arbitrarily close through a direct varia-
tional solution of the Schrödinger equation. This route, which we call pre-Born–
Oppenheimer (pre-BO) theory [3], is currently feasible for selected quantum states
of the smallest systems, although we observe a rapid and continuing progress [4]
in this important direction, which provides benchmark values for non-relativistic
molecular energies.

Many of the small molecular paradigms are dominated by a single electronic
state in the traditional BO picture, and it has been known for a long time that
with some ‘appropriate’ corrections to the mass of the nuclei, most of the small
non-adiabatic effects important for high-resolution spectroscopy can be efficiently
modeled, thereby giving access to accurate rovibrational energies over a broad
dynamical range. The ‘mass correction’ has been a somewhat obscure concept
and was discovered and re-discovered many times. In the meanwhile, everyone
working on the numerical solution of the rovibrational Schrödinger equation, have
been using atomic masses (instead the nuclear masses which would be dictated
by the BO approximation) with the simple argument that the ‘extra mass’ of the
electrons approximately accounts for the small non-adiabatic effects.

First, I will review part of the earlier literature and present the numerical
computation of the rigorous mass-correction functions. I will demonstrate for the
case of the 4He+2 molecular ion that it is important to use these functions [5]
instead of some average mass correction value (a näıve choice would be 1.5 times
the electron’s mass in this case) to arrive at an agreement with the most recent
experimental observations [6].

Then, I will speak about the rigorous derivation of the mass-correction terms
starting from the full electron-nucleus Hamiltonian [7]. The initial idea for our
derivation is a general system which may be dominated by not only a single- but
a multi-dimensional electronic subspace, which is separated by a gap from the
rest of the electronic spectrum. We have block-diagonalized the electron-nucleus
Hamiltonian up to O(ǫn+1) – where ǫ is the square root of the ratio of the electron
to nuclear mass –, through a unitary transformation of the electronic subspace to
obtain the corresponding nth-order effective Hamiltonian for the quantum nu-
clear motion. As a special case, the second-order Hamiltonian corresponding
to an isolated electronic state is recovered from the general expressions. For a
multi-dimensional, explicitly coupled electronic band, the second-order Hamilton-
ian contains the usual Born–Oppenheimer terms and non-adiabatic corrections
but generalized mass-correction terms appear as well. These, earlier neglected,
corrections perturbatively account for the outlying (discrete and continuous) elec-
tronic states not included inthe explicitly coupled electronic subspace. By adapting
the numerical implementation of the single-state expression [5] to this multi-state
Hamiltonian molecular applications should follow in the near future.



1216 Oberwolfach Report 20/2019

References
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[5] E. Mátyus, Non-adiabatic mass-correction functions and rovibrational states of
4He+

2
(X 2Σ+

u ), J. Chem. Phys. 149 (2018) 194111; E. Mátyus, Non-adiabatic mass cor-
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Nonadiabatic Charge and Energy Transfer

Aaron Kelly

Recently developed approximate approaches for simulating nonequilibrium quan-
tum dynamics in nanoscale systems will be discussed. The feature unifying these
methods is the statistical ensemble of trajectories that is employed in order to con-
struct observables and transport properties for real-time nonadiabatic quantum
processes, such as charge and energy transfer. We will explore the performance of
selected techniques of this type in a variety of scenarios, including exciton trans-
port, polaron formation, charge separation at donor-acceptor interfaces, and heat
transport through molecular junctions.
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Non-unitary Quantum Chemistry

Ali Alavi

(joint work with Aron Cohen, Hongjun Luo, Kai Guther, Werner Dobrautz,
David Tew)

We investigate the use of non-unitary similarity transformations of the electronic
Schrodinger Hamiltonian, based on Jastrow and Gutzwiller factorisation of the
electronic wavefunction. This is done as a means to incorporate explicitly-correlat-
ed information from the wavefunction into an effective Hamiltonian. It helps in
simplifying the problem of obtaining accurate energies in two significant ways.
First, by removing Coulomb singularities from the potential terms, basis set con-
vergence is greatly accelerated. Second, the presence of non-Hermitian terms in
the effective leads to right eigenvectors which are numerically sparser compared
to the ground-state eigenvector of the original Hamiltonian [1].

In more specific terms, we write the wavefunction in the form:

(1) Ψ = eτΦ

where τ =
∑

i<j u(ri, rj) with u(ri, rj) = u(rj , ri) is a symmetric correlation
function over electron pairs, and Φ is the associated many-body function which is
a solution to the H̃Φ = EΦ, with

(2) H̃ = e−τ Ĥeτ = Ĥ + [Ĥ, τ ] +
1

2
[[Ĥ, τ ], τ ]

With the Jastrow form of correlators, the commutator expansion terminates at
second order, and results in additional (non-hermitian) two-body and (hermitian)
three-body terms, which are numerically computable.

The resulting eigenvalue problem can be treated in the full configuration inter-
action quantum Monte Carlo formalism, adapted to the non-hermitian setting [2].
This is a projective diagonalisation method based on a stochastic realisation of the
Power method, and is well suited to the similarity transformed Hamiltonian, since
the three-body terms, though numerous in number, are mostly small in magnitude
individually, and need only be sampled infrequently.

We show that very flexible correlation factors of the Boys-Handy form:

(3) u(ri, rj) =

m+n+o≤6∑

mno

cmno(r̄
m
i r̄

n
j + r̄mj r̄

n
i )r̄

o
ij , r̄ =

r

1 + r

can be employed in this formalism, with the parameters of the correlation factor
obtained through independent variational Monte Carlo calculations. Use of such
correlation factors, in conjunction with standard quantum chemical basis sets (of
the form cc-pVXZ), lead to extremely accurate atomic total energies, for the first
row atoms.

This formalism is now being extended to molecular systems.
The main bottleneck of the methodology is the storage of the 6-index 3-body

integrals, and tensor decomposition methods are being investigated to alleviate
this.



1218 Oberwolfach Report 20/2019

References

[1] Dobrautz, Werner and Luo, Hongjun and Alavi, Ali, Compact numerical solutions to the
two-dimensional repulsive Hubbard model obtained via nonunitary similarity transforma-
tions, Phys. Rev. B 99 (2019), 075119.

[2] Luo, Hongjun and Alavi, Ali, Combining the Transcorrelated Method with Full Configura-
tion Interaction Quantum Monte Carlo: Application to the Homogeneous Electron Gas, J
Comput and Theor Chem 14 (2018), 1403-1411

Suitable sparse grid scheme for the calculation of the
vibration-translation-rotation eigenstates of confined molecular system

Yohann Scribano

(joint work with D. Lauvergnat)

The quantum dynamics studies of molecular bound states are actually limited by
the well known dimensionality problem. Indeed even for molecules of medium
size, usual quadrature techniques have already reached their limit since a multi-
dimensional direct-product grid can be very large. An alternative to avoid the
direct-product grid is to use the Smolyak sparse-grid techniques, recently investi-
gated by Avila and Carrington [1] for the calculation of vibrational bound states
of semi-rigid molecules. Lauvergnat and Nauts [2] have proposed a new imple-
mentation of such sparse grid for the study of the torsional levels of methanol in
full dimensionality in order to treat one large amplitude motion. The efficiency
of this kind of grid is related to the substitution of a single large direct-product
grid by a sum of small direct-product grids. We will present a recent adapta-
tion of this kind of sparse grid scheme for the calculation of six-dimensional (6D)
vibration-translation-rotation bound states of confined molecule such as H2 (and
its isotopologues) in water clathrate [3]. In particular, we are able to use a combi-
nation of 2D-grids associated to spherical harmonic basis functions and the usual
1D-gaussian quadrature grids to form the Smolyak sparse-grid [4]. We will discuss
the efficiency of this approach for the calculation the intramolecular vibrational
shift of H2 as well as the effect of the condensed phase environment.
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Modelling quantum systems on classical computers: approximation
and high-performance computing

Ivan Oseledets

(joint work with Roman Schutsky, Danil Lykov, Maxim Rakhuba, Alexander
Novikov)

This talk consists of two main parts. In the first part, we consider the problem of
modelling quantum circuits on classical high-performance computers. This topic
has attracted a lot of attention in the recent years, due to the challenge of quantum
supremacy: the size of the problem, which can be solved by a quantum computer,
but can not be solved by the existing HPC machines. Mathematically, this boils
down to the the contraction of a tensor-network. A natural formalism of for these
contraction is the formalism of graphical models, where the edges correspond to
contracted indices, and tensors correspond to the cliques of the graph. For the
computation of the full tensor, the complexity of the contraction depend on the
order, in which the variables are used, and the optimal order is determined by
the treewidth of the graph. We have proposed a new heuristics for the partial
computation of the amplitudes, which outperform state-of-the art approaches. In
short, current simulators are more efficient, than current quantum computers.

The second part covers the results of the paper [1] and is devoted to the effi-
cient modelling of high-dimensional Hamiltonians using tensor-train approxima-
tion. The proposed eigensolver combines the best of both worlds: methods for
low-rank tensor approximation, and iterative methods for solving eigenproblems.
The idea is to use an apriori assumption that eigenvectors can be well approxi-
mated by low-rank tensors as a preconditioner for the classical iterative methods.
This information is incorporated by the projection of all involved vectors onto the
tangent plane to the manifold of low-rank tensors at some point. This projection
effectively “flattens” the manifold, and the computation of all the quantities in-
volved becomes very cheap even if many eigenvectors are involved. This projection,
whoever makes the variational property of the method invalid, thus we proposed
a simple correction term, that always adds the current iterate to the basis. As
the result, we need to solve an auxiliary problem for the coefficients, which is no
longer a generalized eigenvalue problem, but it is very small.

All the algorithms were implemented in Tensor Train for Tensorflow (t3f) tool-
box, which makes possible efficient execution of this code on GPU. The total
speed-up of a GPU running time compared to the CPU running time is more than
100 times for the large number of eigenvalues and eigenvectors to be computed.
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Propagation of Wave Packets and Application to
Herman-Kluk Propagator

Clotilde Fermanian Kammerer

(joint work with Caroline Lasser and Didier Robert)

Wave packets, also called coherent states, provide with initial data which are highly
concentrated in the phase space. The main example of such families consists in the
frame of Gaussian states with varying cores and width, such as those used in several
methods of quantum chemistry. In this talk, we describe how wave packets prop-
agate through systems of Schrödinger equations, including situations with smooth
eigenvalue crossings, and we emphasize the specific case of Gaussians states. We
then explain how this can be used to deduce Herman-Kluk’s type representa-
tions of the propagators associated with these systems of equations, combining
the Herman-Kluk approach with ideas issued from Surface Hopping Semi-Groups,
and we describe the mathematical results available in terms of convergence and
convergence rate.
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Higher order time-dependent Born-Oppenheimer approximation

Stefan Teufel

(joint work with Edit Matyus)

In a recent work [1] with Edit Matyus we develop a systematic perturbation scheme
that allows to compute higher order corrections to effective nuclear Hamiltonians
for groups of electronic bands in molecules that take into account the coupling
to all other electronic states to any desired order in ε :=

√
m/M . Here m is

the electron mass and M the mass of the lightest nuclei in the molecule. The

key idea is to approximately block diagonalise the molecular Hamiltonian Ĥ =
−ε2∆R + Hel(R) with respect to superadiabatic subspaces and to then evaluate
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the relevant block using a suitably constructed unitary transformation. While this
is a well known procedure, earlier works (e.g. [2, 3, 4, 5, 6]) heavily relied on the
use of pseudodifferential calculus with operator-valued symbols. As a consequence,
these works were rather technical and did not spread to the physical chemistry
community. Moreover, computing higher order terms in the expansion explicitly
was a formidable task. Our new approach is rather elementary as it uses merely
expansions of exponential series and we are able to explicitly compute, for the first
time, the second and third order corrections to the effective nuclear Hamiltonian
even in the case of groups of electronic bands.

Let me briefly describe the general form of the second order effective non-

adiabatic Hamiltonian H
(2) for a group of d electronic levels E1(R), . . . , Ed(R)

that are separated by a gap from the rest of the spectrum. Our analysis implies
for example that its eigenvalues approximate the eigenvalues of the full molecular
Hamiltonian up to order ε3. It thus captures all second order contributions.

After choosing d electronic states ψ1(R), . . . , ψd(R) that are smooth functions
of R and pointwise form an orthonormal basis of the selected electronic subspace
(i.e. an adiabatic or weakly diabatic basis set for the selected electronic subspace),

the effective non-adiabatic Hamiltonian H
(2) takes the form of an operator acting

on wave functions on the nuclear configuration space R3N that take values in Cd,

and thus can be written as a d×d-matrix of operators (H(2))αβ acting on functions
on R3N :

(H(2))αβ =

3N∑

i,j=1

[
1
2 (−iε∂i1+ εAi)

(
δij1+ ε2Mij

)
(−iε∂i1+ εAi)

]
αβ

+(E+ ε2Φ)αβ .

Here the boldface objects are d × d-matrix valued functions on the nuclear con-
figuration space, with (1)αβ := δαβ denoting the identity matrix, and the others
given as follows in terms of the electronic states ψ1(R), . . . , ψd(R).

The coefficients of the non-abelien Berry connection, are as expected, Aαβ,i(R)
= −i〈ψα(R)|∂iψβ(R)〉. The ”diabatic” electronic level matrix becomes Eαβ(R) =
〈ψα(R)|Hel(R)|ψβ(R)〉, where Hel(R) is the electron Hamiltonian for fixed nuclear
configuration R. The second order diagonal correction is

Φαβ(R) =
1
2

3N∑

i=1

〈∂iψα(R)|P⊥(R)|∂iψβ(R)〉 ,

where P⊥(R) = 1 − P (R) projects onto the orthogonal complement of the se-
lected electronic subspace, i.e. onto the orthogonal complement of the span of
ψ1(R), . . . , ψd(R).

While the matrix versions of the terms discussed up to now could have been
easily guessed from the single band (d = 1) case, the determination of the sec-
ond order mass correction matrix requires the systematic perturbation approach
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developed by us. The resulting expression is

Mαβ,ij =

d∑

a,b=1

〈ψα|Pa(∂jP )(Ra +Rb)(∂iP )Pb|ψβ〉 ,

where for better readability we dropped the argument R in all the functions. Here
Ra(R) := (Hel(R)− Ea(R))

−1 P⊥(R) is the reduced resolvent of the level Ea(R)
acting as a bounded operator on the range of P⊥(R), and Pa(R) is the projection
onto the eigenspace of Hel(R) corresponding to the eigenvalue Ea(R). In the
special case that ψ1(R), . . . , ψd(R) form an adiabatic basis set, i.e. Hel(R)ψα(R) =
Eα(R)ψα(R) for α = 1, . . . , d, the expression for the mass correction term simplifies
to Mab,ij(R) = 〈∂jψa(R)|Ra(R) +Rb(R)|∂iψb(R)〉.

While Edit Matyus implemented the second order terms and obtained extremely
accurate theoretical predictions for spectra of small molecules (see her talk for
references), in my talk I discussed, how our approximation scheme can be used
to obtain highly accurate approximations over very long times also in the case of
time-dependent problems. Finally I also present numerical tests on a simple toy
problem performed by Daniel Weber in his master’s thesis [7]. His results show
that the theoretical error bounds obtained by our method describe the asymptotic
behaviour of the true approximation error in this toy model very well.
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Obtaining Potentials for Molecular Excited States: The Vibronic
Coupling Model and Beyond

Graham Worth

The non-equilibrium time evolution of a molecular system can be described by the
solving the time-dependent Schrödinger equation (TDSE). Efficient algorithms
exist for the general solution of this equation, but a significant bottleneck in these
studies is that potential energy functions are required that are non-trivial to obtain.

After photo-excitation, a molecular wavepacket evolves in a manifold of elec-
tronic states. Potential energy functions for these states can be described by a
set of coupled potential energy surfaces. These surfaces and couplings, however,
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are difficult to obtain for molecules beyond three atoms due to the size of the
space to be covered. In addition, the non-adiabatic coupling between the surfaces
is singular at nuclear configurations where the potential surfaces are degenerate,
points known as conical intersections. Two approaches were presented to provide
realistic potential functions. In each case the approximations being made were
discussed along with the advantages and disadvantages of each.

The first approach is to use the Vibronic Coupling Model. This used diaba-
tization by ansatz to provide a simple Hamiltonian. It is useful for an accurate
description of the short-time dynamics and photophysics of a system, but fails
to correctly describe the long-time dynamics required to describe photochemistry.
This is because the model functions are short polynomial expansions around the
Franck-Condon point, and thus are not accurate once the system is far from this
geometry, which happens on the order of a few picoseconds. It can, however, be
used with grid based methods, such as the multi-configurational time-dependent
Hartree (MCTDH algorithm), to solve the TDSE for polyatomic molecules and has
had much success in describing absorption spectra and short-time non-adiabatic
dynamics [1].

The second approach is to use the direct dynamics variational multi-configura-
tional Gaussian (DD-vMCG) method [2]. This uses a localised Gaussian function
basis set to describe the evolving wavepacket and the potential functions are cal-
culated on-the-fly in the vicinity of the Gaussian functions as the nuclei evolve.
Standard quantum chemistry programs can be used to calculate the potential
energies and gradients required, making the method flexible and alleviating the
problem of calculating the global surfaces a priori. It does, however require an
on-the-fly diabatisation procedure that is not rigourously defined [3]. The method
shows promise but requires further testing.
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Confined Molecules

Pierre-Nicholas Roy

We introduce numerical methods to compute the Quantum molecular dynam-
ics of systems under confinement. Both path integrals and basis set approaches
are considered. We introduce a symbolic representation of different path integral
topologies for applications to finite temperature, ground state, bosonic exchange,
rotations, and entanglement estimation. We illustrate the Langevin Equation Path
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Integral Ground state method for the harmonic oscillator and present an appli-
cation of the approach for the prediction of Raman vibrational shifts of parahy-
drogen clusters. [1] The concept of Rényi Entanglement entropies is introduced in
the context of the path integral ground state method [2, 3]. Results for the spatial
Entanglement in liquid helium are shown [4]. Following this example of atomic
entanglement, the quantum of entanglement between molecules is addressed. Con-
fined rotors are chosen to explore molecular entanglement. A model Hamiltonian
is introduced for chains od confined rotors with dipole interactions. The effects of
basis truncation on ground state energies and entanglement entropies are discussed
[5]. A new approach based on path integral Monte Carlo and the replica trick for
interacting rotors is presented. The method is amenable to calculations in two
and three spatial dimensions. We show that for one dimension, the Density Ma-
trix Renormalization Group (DMRG) can be used to obtain accurate ground state
properties of chains of dipolar rotors over a broad range of interaction strengths
[6]. The DMRG results can in turn be used to train Restricted Boltzmann ma-
chines and allow machine learning tools to be used in the description of confined
molecules.
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Calculation of global, high-dimensional Potential Energy Surface fits
in CANDECOMP form using Monte-Carlo Methods

Markus Schröder

(joint work with Hans-Dieter Meyer, Oriol Vendrell)

We propose a novel method for obtaining global representations of high-dimension-
al potential energy surfaces evaluated on discrete grid points in a sum-of-products
form, more precisely in canonical polyadic decomposition form. To this end we
modify a standard method for obtaining canonical polyadic decompositions of
arbitrary tensors. The standard method employs an alternating least squares
method to iteratively optimize single degrees of freedom. Our modification replaces
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numerically exact integrals with Monte-Carlo integrals. This allows integration of
correlated weights straight forwardly. We demonstrate the power of the method by
transforming the 15D potential [1] of the protonated water dimer (Zundel cation)
in a sum-of-products form while preserving all symmetries of the original potential.
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Time Dependent Schrödinger Equation: Semiclassical Type
Propagation of Order 6 at the Price of Order 2

Vasile Gradinaru

(joint work with Sergio Blanes)

The talk gave a short overview on the recently improved algorithms for the time
integration of the semiclassical Schrödinger equation.
The time–dependent Schrödinger equation in its semiclassical formulation is

i ε2 ∂tψ = H(ε)ψ .

Here, ψ = ψ(x, t) is the wave function that depends on the spatial variables
x = (x1, . . . , xd) ∈ Rd and the time variable t ∈ R. The Hamiltonian

H(ε) = − ε4

2
∆x + V (x)

involves the Laplace operator ∆x and a smooth real potential V . The standard
techniques for the numerical solution of this equation were known to be able to
give only convergence of order hk/ε2, see [3, 2, 4]. Hence, in order to have phys-
ically relevant solutions, we are forced to use very small time-steps h and also a
very fine grid in space. However, significant progress has been made recently in
improving the pessimistic behavior in ε, see [1] and [6]. Instead of a Fourier basis,
we use Hagedorn wavepackets, which provide a spectral, meshless and time de-
pendent basis of L2. If the exact solution stays localized in space or in frequency
domain, good approximations in terms of ε are possible: concrete assumptions
and results are in [7]. Starting from these ideas, [5] made the foundations of the
algorithms based on Hagedorn wavepackets. The advantages of the spectral ap-
proximation were used in order to attack higher dimensional problems; [6] defines
the semiclassical splitting, which is rigorously proven to be of order ε h2. The
order of convergence was improved in the same work to ε h4 via a combination of
the semiclassical splitting with a Magnus integration step, which roughly triples
the computational time. We recently found a way to systematically improve the
convergence order, even to order 6 in time only at the expense of the computa-
tional effort of the semiclassical splitting. A paper on these new algorithms is in
preparation.
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Automatic Computation of Global Potential Energy Surfaces in
Sum-of-Products Form using Specific Reaction Hamiltonians

Daniel Peláez

(joint work with Ramón L. Panadés-Barrueta, Emilio Mart́ınez-Núñez)

Quantum phenomena are ubiquitous and cannot be neglected if a physically correct
molecular simulation is aimed for [1, 2]. However, despite the current boost in the
development of dynamical methods, semiclassical or fully quantal, the availability
of a Potential Energy Surface (PES) is still a major bottleneck. For grid-based
ones, the PES is represented globally, formally as a multidimensional tensor. In
the case of on-the-fly approaches, the PES is expressed in a local representation
at every time-step. In the first category, the limitation lies on the possibility of
fitting the PES to an appropriate functional form for a large number of degrees
of freedom. Powerful and accurate as the existing methods are, a high degree of
expertise is still required to master and apply these techniques, particularly when
considering medium-large systems (≥6D), thus preventing a wider-spread use. In
the second case, the limiting factor is the number of electronic structure calls
(energies, gradients, Hessians, properties, etc.) needed to perform the propagation.
Consequently, on-the-fly approaches are constrained to modest levels of theory.

In this talk, we present Specific Reaction Parameter Multigrid POTFIT (SRP-
MGPF), a method which constitutes a well-balanced solution to the aforemen-
tioned issues. SRP-MGPF allows in a single fitting process the generation of
a potentially chemically-accurate (<1 kcal/mol) global (molecular or intermolec-
ular) PES and same-level-of-theory molecular properties surfaces at the cost of
semiempirical potentials. SRP-MGPF relies on three steps: (i) a fully automated
topographical characterisation of the PES in terms of all minima and transition
states [3, 4]; (ii) a global reparametrization of a semiempirical Hamiltonian (SRP)
using reference geometries derived from the set of stationary points; and (iii) direct
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tensor-decomposition of the SRP PES into sum-of-products form with the MGPF
algorithm [8]. It should be noted that a SRP PES can be directly interfaced to any
on-the-fly method. As preliminary results, we compare Multiconfiguration Time-
Dependent Hartree (MCTDH) [5] vibrational eigenstate calculations on a SRP-
MGPF PES for the benchmark HONO (6D) system [6, 7]. Finally, we discuss the
interface of SRP PES with the Direct-Dynamics Variational Multiconfigurational
Gaussian (DD-vMCG) method as well as with the Second Quantization extension
of the Multilayer MCTDH (ML-MCTDH-SQR) algorithm [10].
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A pruned collocation-based multi-configuration time-dependent
Hartree approach using a Smolyak grid for solving the Schrödinger

equation with a general potential energy surface

Robert Wodraszka

(joint work with Tucker Carrington Jr.)

The multi-configuration time-dependent Hartree (MCTDH) method is one of the
most prominent and efficient approaches for rigorous quantum dynamics studies.
[1] The key idea behind MCTDH is to use variationally optimised bases (single
particle functions, SPFs) to represent quantum mechanical wave functions and
operators. The standard MCTDH wavefunction is given as

Ψ (x1, . . . , xD, t) =

n1∑

i1=1

. . .

nD∑

iD=1

Ai1,...,iD (t)ϕ
(1)
i1

(x1, t) . . . ϕ
(D)
iD

(xD, t) ,(1)

where the SPFs are,

ϕ
(k)
ik

(xk, t) =

Nk∑

jk=1

c
(k)
jk,ik

(t)χ
(k)
jk

(xk) ∀ k = 1 . . .D.(2)

Due to the optimisation, the SPF basis set sizes required for exact computations
can often be significantly smaller than the number of fixed (non-optimised) basis
functions typically employed in standard calculations. Working equations for the
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A-tensor and the SPFs can be derived employing the Dirac-Frenkel variational
principle, [2]

0 = 〈δΨ|i∂t − Ĥ |Ψ〉 .(3)

The original MCTDH approach uses a direct product SPF basis and relies on
the potential energy surface (PES) being in sum of products (SOP) form, i.e,

V =
∑

s

D∏

k=1

v(k)s (xk) .(4)

This set-up has two critical shortcomings. First, the basis size scales exponentially
with the number of dimensions of the system and second, using accurate PESs,
which are often not given in SOP form, requires introducing approximations.

We present an MCTDH approach that mitigates both deficiencies. [3] We use
an optimised non-direct product basis, which includes only a fraction of the direct
product basis functions, and we solve MCTDH differential equations with a col-
location technique, which obviates the need for any integrals or quadratures; only
the evaluation of the potential (given in any form) at the collocation grid points is
required. To derive the corresponding working equations, we use a Petrov-Galerkin
scheme, which, in the standard MCTDH case, yields the same equations as those
obtained with the more common Dirac-Frenkel variational principle. The pruned
collocation-based MCTDH A-tensor equation is (for brevity, we do not present
here the equation for the SPFs)

∑

g(i1,...,iD)≤H

i Ȧi1,...,iD (t)
D∏

k=1

ϕ
(k)
ik

(
r(k)ak

(t) , t
)

=
∑

g(i1,...,iD)≤H

〈r(1)a1
(t)| . . . 〈r(D)

aD
(t)| Ĥ |ϕ(1)

i1
(t)〉 . . . |ϕ(D)

iD
(t)〉Ai1,...,iD (t) .(5)

The collocation point set
(
r
(1)
a1 (t) , . . . , r

(D)
aD (t)

)
is chosen to be a Smolyak grid [4]

built from nested sets of 1-D grid points. The potential function matrix elements
can now simply be evaluated as

〈r(1)a1
(t)| . . . 〈r(D)

aD
(t)|V |ϕ(1)

i1
(t)〉 . . . |ϕ(D)

iD
(t)〉 = V

(
r(1)a1

(t) , . . . , r(D)
aD

(t)
)∏

k

B
(k)
ak,ik

,

(6)

where

B
(k)
ak,ik

= ϕ
(k)
ik

(
r(k)ak

(t) , t
)
.(7)

Hence, only values of the potential function at the sparse grid points are required.
The only approximations are the finite basis and point set. A simple choice for
the function restricting the multi-indices of the basis is

g (i1, . . . , iD) =

D∑

k=1

(ik − 1) .(8)



Mathematical Methods in Quantum Molecular Dynamics 1229

The SPF bases are converted into so-called hierarchical bases. They simplify
computing the matrix-vector product with the inverse of the (large) matrix whose
elements are basis functions evaluated at points,

Ba1,...,aD

i1,...,iD
=

D∏

k=1

B
(k)
ak,ik

(9)

g (a1, . . . , aD) ≤ H ∧ g (i1, . . . , iD) ≤ H,(10)

which is required to transform from the grid to the basis representation in Eq. (5).
Very importantly, it is possible to evaluate all matrix-vector products by doing

sums sequentially. In particular, one can show that, when using hierarchical 1-D
basis functions, the B(k) matrices become lower-triangular and that

∑

g(a1,...,aD)≤H

[
B−1

]
i1,...,iD
a1,...,aD

za1,...,aD

(11)

=

iD∑

aD=1

[(
B(D)

)−1
]

iD ,aD

. . .

i2∑

a2=1

[(
B(2)

)−1
]

i2,a2

i1∑

a1=1

[(
B(1)

)−1
]

i1,a1

za1,...,aD

(note that the upper limits on the sums correspond to the case where the re-
striction function is given by Eq. (8), though a generalisation is straightforward).
The right hand side of this equation can be efficiently evaluated by doing the
sums sequentially, i.e, by first summing over a1 to obtain an intermediate vector

z
(1)
i1,a2,...,aD

, then over a2 to obtain z
(2)
i1,i2,a3,...,aD

, and so on. The cost (assuming

Eq. (8) is used to restrict the indices) then scales as

O
(
D

[
H

D + 1
+ 1

]
Nprune

)
,(12)

where Nprune =
(
D+H
D

)
. The numerical cost thus scales almost linearly with

the number of sparse grid points Nprune (or, equivalently, non-direct product ba-
sis functions). This technique could also be useful outside the field of chemical
physics. [5] The validity of the new pruned, collocation-based (PC-)MCTDH ap-
proach is confirmed by calculating the first 50 vibrational eigenenergies of CH2NH.
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Local singularities and Lie algebra within a nonadiabatic context

Benjamin Lasorne

(joint work with Benjamin Gonon, Aurelie Perveaux, Fabien Gatti, David
Lauvergnat)

Conical intersections and nonadiabatic couplings are essential concepts in quantum
molecular dynamics when photoinduced processes involve a manifold of electronic
states (eigenvectors) with crossings, i.e., local degeneracies, among their energies
(eigenvalues) along continuous variations of the molecular geometry.

However, they essentially correspond to singularities with ill-defined local deriva-
tives. In principle, the adiabatic representation can be unitarily transformed into
a regular one, called diabatic, which is more convenient from a practical point of
view but suffers from the lack of a global definition.

The primal definition of nonadiabatic couplings among electronic states relies
on the knowledge of how electronic wavefunctions vary to first order with nu-
clear coordinates. However, such derivatives cannot always be computed from
first principles, according to the method used in quantum-chemistry calculations.
We discuss here how nonadiabatic couplings can be obtained in the vicinity of a
conical intersection from energies only, even in cases where wavefunctions are not
available explicitly. This approach is based on the diagonalisation of the Hessian
of the squared energy half-difference at a conical intersection. Two eigenvalues are
outstanding; the corresponding eigenvectors can be identified to the branching-
space vectors that span the plane along which degeneracy is lifted to first order
[1].

We also show how to extend the seminal two-state model to more general situ-
ations with a formulation based on Lie group homomorphisms [2]. In particular,
three-state Hamiltonians can be expressed in terms of Gell-Mann basic matri-
ces, which generalise the well-known Pauli matrices of two-state systems. This
approach essentially consists in a matrix vectorisation that turns unitary simi-
larity transformations into rotations, thus allowing for less intricate relationships
between rotation angles and matrix entries.

References

[1] B. Gonon, A. Perveaux, F. Gatti, D. Lauvergnat, and B. Lasorne, On the applicability of a
wavefunction-free, energy-based procedure for generating first-order non-adiabatic couplings
around conical intersections, J. Chem. Phys. 147 (2017), 114114.

[2] B. Lasorne, On the use of Lie group homomorphisms for treating similarity transformations
in nonadiabatic photochemistry, Adv. Math. Phys. 2014 (2014), 795730.



Mathematical Methods in Quantum Molecular Dynamics 1231

Excited-State Molecular Dynamics with the exact factorization of the
electron-nuclear wavefunction

Federica Agostini

(joint work with E. K. U. Gross, Ali Abedi, Neepa T. Maitra, Seung Kyu Min,
Ivano Tavernelli, Giovanni Ciccotti, Rodolphe Vuilleumier)

Excited-state dynamics is at the heart of Photophysics and Photochemistry. Nona-
diabatic transitions are induced by the strong coupling between electronic dy-
namics and the ultrafast motion of the nuclei, and are observed in phenomena
such as photosynthesis, photovoltaics, and exciton transport in π-conjugated com-
plexes. An essential part of the research efforts in these fields is directed towards
developing theoretical and computational approaches to describe conformational
changes, energy dissipation, or quantum decoherence, i.e., the signature aspects of
excited-state processes. In this context, among the most successful frameworks for
molecular dynamics simulations of excited-state processes stand trajectory-based
quantum-classical methods, as they give access to the study of complex molecular
systems. Trajectory-based approaches combine a classical description of nuclear
dynamics with a quantum-mechanical description of electronic dynamics. How-
ever, the approximations underlying quantum-classical methods are sometimes se-
vere, and are at the origin of controversies as well as of continuous developments.

In this talk I will present a recently-developed trajectory-based approach to
nonadiabatic dynamics [1, 2]. The actual numerical scheme has been derived from
the exact factorization of the electron-nuclear wavefunction [3, 4], a new frame-
work proposed to investigate, interpret and approximate the coupled dynamics
of electrons and nuclei beyond the Born-Oppenheimer approximation. The exact
factorization provides a new perspective to analyze nonadiabatic processes: (i) it
proposes an alternative [5] to the standard Born-Oppenheimer framework, that
pictures excited-state processes in terms of wavepackets moving on and transfer-
ring between static potential energy surfaces; (ii) it suggests new interpretations [6]
of molecular geometric-phase effects, related to conical intersections; (iii) it pro-
vides guidelines for developing simulation algorithms in different [7] nonadiabatic
regimes. These points will be discussed during the talk and briefly illustrated on
low-dimensional models and molecular systems.
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Efficient geometric integrators for nonadiabatic quantum dynamics

Jiř́ı Vańıček

(joint work with Seonghoon Choi, Julien Roulet)

Geometric integrators of the Schrödinger equation conserve exactly many invari-
ants of the exact solution. Among these integrators, the split-operator algorithm
is explicit and easy to implement, but, unfortunately, is restricted to systems
whose Hamiltonian is separable into a kinetic and potential terms. Here [1], we
describe several implicit geometric integrators applicable to both separable and
non-separable Hamiltonians, and, in particular, to the nonadiabatic molecular
Hamiltonian in the adiabatic representation. These integrators combine the dy-
namic Fourier method with recursive symmetric composition of the trapezoidal
rule or implicit midpoint method, which results in an arbitrary order of accu-
racy in the time step. Moreover, these integrators are exactly unitary, symplectic,
symmetric, time-reversible, and stable, and, in contrast to the split-operator al-
gorithm, conserve energy exactly, regardless of the accuracy of the solution. The
order of convergence and conservation of geometric properties are proven analyti-
cally and demonstrated numerically on a two-surface NaI model in the adiabatic
representation. Although each step of the higher order integrators is more costly,
these algorithms become the most efficient ones if higher accuracy is desired; a
thousand-fold speedup compared to the second-order trapezoidal rule (the Crank-
Nicolson method) was observed for wavefunction convergence error of 10−10. I
will also discuss analogous, arbitrary-order compositions of the split-operator al-
gorithm and show the application of both types of geometric integrators to a
higher-dimensional system, i.e., a three-state three-dimensional model of pyrazine
in the diabatic representation [2].
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Tensor train algorithms for quantum dynamics simulations of excited
state nonadiabatic processes and quantum control

Victor S. Batista

(joint work with Samuel Greene and Alex Gorodetsky)

We introduce tensor train algorithms for quantum dynamics simulations of excited
state nonadiabatic processes and quantum control, including the ”tensor-train
split-operator Fourier transform” (TT-SOFT) method for simulations of multidi-
mensional nonadiabatic quantum dynamics [1], and a continuous analogue tensor-
train implementation of the Chebyshev propagation method.

The TT-SOFT method integrates the time-dependent Schrödinger equation,

i~
∂ψ

∂t
= Ĥψ,

for the d-dimensional wavefunction ψ(x1, x2, · · · , xd) evolving according to the

Hamiltonian Ĥ = T̂ + V̂ , with T̂ =
∑d

j=1

p̂2
j

2mj
the kinetic energy operator defined

by momenta pj = −i~ ∂
∂xj

and masses mj , where ~ = h/(2π), with Planck’s con-

stant h. The potential energy V̂ (x1, x2, · · · , xd) defines the interactions between
the physical variables.

We represent the time-dependent wavefunction ψ as a tensor-train [2],

ψ(x1, x2, . . . , xd) =

r1∑

α1=1

r2∑

α2=1

· · ·
rd−1∑

αd−1=1

ψ1(x1, α1)ψ2(α1, x2, α2) · · ·ψd(αd−1, xd),

and we evolve it by applying the short-time approximation of the time-evolution
operator, as given by the second order Strang splitting (Trotter) expansion:

e−
i
~
Ĥτ = e−

i
~
T̂ τ

2 e−
i
~
V̂ τe−

i
~
T̂ τ

2 +O(τ3),

with V̂ and T̂ in tensor-train format in coordinate and momentum representations,
respectively.

Substituting the Trotter expansion into the integrated form of the Schrödinger
equation, we obtain the time-evolved wavepacket in tensor train format, as follows:

Ψ(t+ τ) = IFT
[
e−iT̂ τ/2 FT

[
e−iV̂ τ/~ IFT

[
e−iT̂ τ/2 FT [Ψ(t)]

]]]
.

FT and IFT denote the Fourier transform and inverse Fourier transform of the
tensor trains corresponding to the arguments of the brackets, which are efficiently
computed by-passing the ”curse of dimensionality” in terms of the corresponding
1-dimensional FT and IFT of the core arrays of individual physical variables. Mul-
tiplications and additions of tensor trains are implemented as usual by element wise
multiplications and additions, followed by rounding with rank adaptation. The
rank is therefore adapted along the propagation to compress the representation
and minimize the memory requirements and number of floating-point operations
along the propagation.
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The resulting TT-SOFT method is essentially the grid-based split-operator
Fourier transform method implemented in dynamically adaptive tensor-train rep-
resentations. In the same spirit of all matrix product states, the tensor-train format
enables the representation, propagation, and computation of observables of multi-
dimensional wave functions in terms of grid-based wavepacket tensor components,
bypassing the need of actually computing the wave function in its full-rank tensor
product grid space. We demonstrate the accuracy and efficiency of the TT-SOFT
method as applied to propagation of 24-dimensional wave packets, describing the
S1/S2 interconversion dynamics of pyrazine after UV photoexcitation to the S2

state. Our results show that the TT-SOFT method is a powerful computational
approach for simulations of quantum dynamics of polyatomic systems since it
avoids the exponential scaling problem of full-rank grid-based representations.

The tensor train Chebyshev (TTC) method is introduced and demonstrated as
applied to both real and imaginary time propagation of high-dimensional model
systems in terms of both the discrete tensor-train representation [2], and the con-
tinuous analogue tensor-train implementation [4]. The time evolution operator is
applied, as follows [3]:

ψ(t+ τ) = e−iĤτψ(t) =

N∑

k=0

(2 − δk,0)Jk(τ)(−i)kTTk(t),

with Jk the Bessel functions of the first kind, and TTk(t) = Tk(Ĥ)ψ(t) the tensor

trains corresponding to the Chebyshev polynomials of the Hamiltonian Tk(Ĥ),
applied to ψ(t). In the continuous version, the tensor-product structure is im-
posed only upon the data structure of core matrix valued functions rather than
upon the parameters of the constituent univariate functions stored by the discrete
tensor train format as two- and three-way core arrays. The continuous version is
particularly suitable for efficient differentiation and optimization as necessary by
algorithms for quantum or classical control [5, 6].
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Recent progress on continuum solvation models

Benjamin Stamm

In this talk, we have given an introduction to numerical methods based on a
domain decomposition strategy to solve problems arising in Continuum Solvation
models (CSMs) [1, 2, 3, 4, 5] which are nowadays part of the standard toolbox
of computational chemists. Historically, in the quantum chemistry community,
polarizable CSMs such as the Polarizable Continuum Model (PCM) [1] or the
Conductor-like Screening Model (COSMO) [6] have been developed as a cheap,
but physically sound way, to include solvation effects in the quantum mechanical
(QM) description of a molecule and its properties.

As the computational cost is usually dominated by the solution of the QM equa-
tions, the computational performance of CSM have not been historically taken into
much consideration, as the setup and solution of the CSM equations, which are
equivalent in some way to solving Poisson’s equation in a heterogeneous dielectric
medium (see below), has always been assumed to be a negligible additional com-
putational cost. Due to advances in hardware, more efficient implementations and
the spread of linear scaling techniques within quantum chemistry, such an assump-
tion started to be less and less true in the last decade. Further, the diffusion of
multiscale methods such as quantum mechanics/molecular mechanics (QM/MM)
has made large to very large systems accessible to computational chemists. For
such systems, the computational cost associated with continuum solvation, which
scales as the second or even third power of the size of the system, can easily become
the real bottleneck of the calculation [9].

From a modeling viewpoint, there are two main-ingredients for an implicit sol-
vation model. First, the shape of the solute’s cavity Ω, or equivalently its surface
∂Ω, is introduced and determines the region where the implicit solvent is present.
The second ingredient is the macroscopic description of the solvent that is used
to model the (electrostatic) interaction between the solute and the continuum sol-
vent region. More precisely, the electrostatic potential V generated by the solute’s
charge ρ is then the solution of

(1) −div(ε∇V ) + κ2V = 4πρ, in R
3,

and the electrostatic interaction energy is given by

Es =
1

2

∫

R3

ρ V.

Here, the dielectric and Debye-Hückel constants of the solvent are given by εs and
κs so that

(2) ε =

{
0 in Ω,

εs in Ωc,
κ =

{
0 in Ω,

κs in Ωc.

In this talk, we have given the derivation of the domain decomposition method for
COSMO [7, 8, 9, 10], i.e. with εs = ∞ and κs = 0 in (1). Indeed, in this particular
case, the problem is reduced to the bounded domain Ω (the solute’s cavity) which
is then split into the union of overlapping and possibly scaled Van der Waals
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balls Ωi and equation (1) is solved inside each ball and coupled through appropriate
boundary conditions. Numerical illustrations were underlying the efficiency of the
present method compared to the state-of-the-art.

We also discussed in detail the extension [16] of the domain decomposition
method to the linearized Poisson-Boltzmann equation (1) and discussed numerical
results. In this case, the problem is reformulated as an integral equation based on
Dirichlet-to-Neumann maps which, in turn, can be computed very efficiently using
the domain decomposition techniques introduced for the COSMO equation.
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Variational Monte Carlo Methods for Eigenvalue Problems

Reinhold Schneider

(joint work with K. Fackeldey, F. Nüske and F. Noé)

In a variational framework, we are searching for a function Ψ ∈ V as a minimizer
of the target functional

J (Φ) : V → R ,

that is we aim to find

Ψ = argminΦ∈VJ (Φ) .

In typical applications the space V is infinite- dimensional Hilbert space, or at
least an infeasibly large space. Since we cannot solve this problem, we are instead
interested in an approximate solution. This approximate minimizer is sought by re-
stricting the minimization problem to a compact model class (or hypothesis space)
M ⊆ V . The optimization problem though becomes

Ψh := argmin {J (Φ) : Φ ∈ M ⊂ V} .
The choice of the model classes (and the regularization) plays an essential role

and certainly depends on the concrete applications. The compactness assumption
is essential for the present analysis. For example, if Vh is a finite-dimensional
subspace of V . Since this is not a compact set we have to restrict further to a
ball centered e.g. at 0 of sufficiently large radius R choosing M := Vh ∩ BR.
This yields the classical Ritz-Galerkin treatment of variational problems. What
we have in mind are tensor product parametrizations, see e.g. [2] which are no
longer linear. However one might think about other methods used in statistical
learning e.g. kernel methods and/or (deep) neural networks.

In many applications, and that the case in the applications we have in mind,
the exact functional J is not (explicitly) known or at least unfeasible or expensive
to compute. Even more for PDEs in high spatial dimensions the required integrals
cannot cannot computed exactly.

Instead, we consider the empirical optimization problem only on the model class

ΨN,h := argmin {JN (Φ) : Φ ∈ M ⊂ V} .
If the function ℓ : Ω → R is continuous and M is compact there exists at least
one minimizer. At the moment, we will defer from the problem of finding such a
minimizer, although this problem can be extremely hard in practice. Let us only
remark, that local optimization by gradients methods requires the computability
of the gradient ∇(ℓ(Φ)(x)), w.r.t. the unknown parameter in Φ, and ℓ(Φ)(x), at
x = xi, and not more. With this knowledge a local optimization scheme can be
set up easily.

For example, if the target functional has the form

J (Φ) =

∫

Ω

ℓ(Φ(x))ρ(x) dx , Φ ∈ M ,

we replace the exact integral by its approximation using Monte Carlo integration.
For the latter part, we suppose that samples, sampled i.i.d. from a probability
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distribution xi ∼ ρ can be calculated relatively inexpensive, or are provided by
other means. That is, we are using Monte Carlo integration to built the surrogate
functional JN : M → R. The eigenvalue problem cannot be cast directly in the
form of a simple integral, but its variational formulation according to the Rayleigh
Ritz principle is a quotient of two integrals of the form above.

For a variational framework computing the invariant subspace of the first m
eigenfunctions ψj , j ≤ m, of a symmetric operator T : V → V ′ eigenfunctions,
simultanously, we consider Ψ = (ψj)

m
j=0 ∈ Vm subordinated to the orthogonality

constraints

〈〈Ψ,Ψ〉〉 := (〈ψj , ψk〉ρw)mj,k=1 = δi,k

optimization problem

Ψ = argmin {J (Φ) : Φ ∈ Vm subject to 〈〈Φ,Φ〉〉ρ = I}

J (Φ) := −〈〈Tτ ⊗ IΦ,Φ〉〉 := −
m∑

j=0

〈φj , Tτφj〉φ0

The minimum is attained at minJ (Φ) = J (Ψ) = −
∑m

j=0 λj , the sum of the
m lowest eigenvalues. We rewrite this constraint minimization problem by an
unconstraint optimization problem in Rayleigh quotient form.

We are searching for a function Ψ ∈ Vm as a minimizer of the target functional

J (Φ) =

m−1∑

j=0

m−1∑

k=1

( ∫

Ω

tj,k(Φ(x))ρ(x)dx
)
j,k

(

∫

Ω

mj,k(Φ)ρ(x)dx
)−1

k,j

=

m−1∑

j=0

m−1∑

k=1

Tj,k(M
−1)k,j

where

tj,k(Ψ(x))(x) := ψj(x)(Tψk)(x)w(x) , mj,k(Ψ)(x) := ψj(x)ψk(x)w(x)

that is we seek to find

Ψ = argminΦ∈VmJ (Φ) .

On our model class Mm we can define an empirical target functional or surro-
gate functional by replacing the exact expectation by the mean, i.e. an empirical
expectation, for given samples xℓ, ℓ = 1, . . . , N , distributed according to a given
density ρ, this is given by

JN (Φ) =
m−1∑

j=0

m−1∑

k=1

( 1

N

N∑

ℓ=1

tj,k(Φ(x
ℓ))

)
(
1

N

N∑

ℓ=1

mj,k(Φ(x
ℓ))

)−1

k,j
.

Error Analysis

We are finally interested to estimate the error of the corresponding minimizers,
i.e. ‖Ψ − ΨN‖V . Assuming local strong convexity of the functional this can be
achieved (at least locally) indirectly by estimating the error in the functional values
J (ΨN)− J (Ψ).
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A principal disadvantage of the sampling or Monte Carlo approach is that,
in general, we cannot obtain worst case error estimates. However we can try
to prove error estimates which hold with high probability, i.e. with a certain
confidence which can be improved exponentially fast by increasing the number of
samples. Therefore we pursue the concept of convergence in probability see e.g.
[1]. This theory has been developed in statistical for the purpose of regression and
classification, and be carried out with only slight modifications in [4].

In statistics, e.g. for regression and classification, the present approach is al-
ready established. We pursue to apply this approach to (deterministic) problems
in numerics, and Monte Carlo sampling is only used as a numerical tool. It en-
ables the treatment of high-dimensional problems which have not been feasible
by purely deterministic approaches, or at least simplifies the numerical treatment
drastically. In particular, it allows the treatment of non-linear problems and sim-
plifies the handling of complex PDE’s enormously. On the other hand, this comes
at a price that we have accept convergence results in terms of probability. For
problems concerning Fokker Planck equation, or quantum mechanics this seems
to be a legal perspective. Indeed this approach is systematic reformulation of
Variational Monte Carlo Methods already used in quantum physics since decades.

The error |J (ΨN)− J (Ψ)| can be decomposed into three parts,

J (ΨN)− J (Ψ) ≤ Eappr + Egen + Eopt
≤ |J (Ψ)− J (Ψh)|︸ ︷︷ ︸

Eappr

+ |J (Ψh)− J (ΨN )|︸ ︷︷ ︸
Egen

.

The first term is called the approximation error - a pure deterministic quantity
due to our modeling. The second is called the generalization error and is a result
of the use of the empirical surrogate functional. Let us highlight that for given
Φ ∈ Mh we cannot compute J (Φ) but only its empirical surrogate JN (Φ).

LEMMA: The generalization error Egen := |J (Ψh)−J (ΨN )| can be estimated
by

Egen ≤ 2 sup
Φ∈M

|J (Φ)− JN (Φ)|

The approximation error is the error of the exact or deterministic numerical
scheme. For strongly convex problems it governed locally by the error a quasi-
best approximation of Ψ by functions from the model class Φh ∈ Mh

Eapprox = J (Ψh)− J (Ψ) = inf Φ∈M|J (Φ)− J (Ψ)| ≤ Cinf Φ∈M‖Φ−Ψ‖2V
For a wide range of functionals and linear subspaces a rigorous analysis is available
at text-book level. Estimating the approximation error will not be considered here
in more details. It is the central issue in approximation theory and a precise math-
ematical formulation for the power of expressivity of the model class in connection.
with the present applications. In principle, the generalization error cannot be es-
timated deterministically. Therefore we are going to estimate the probability for
this bound with a given confidence.
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We will assume that the following basic assumptions hold:

(1) Boundedness: For all Φ ∈ M
|ℓ(Φ)(x)| ≤ C1 for almost all x ∈ Ω

(2) Lipschitz continuity: For all Φ1,Φ2 ∈ M
|J (Φ1(x)) − J (Φ2(x))| ≤ C2‖Φ1 − Φ2‖V

For example both estimates hold for many functionals if M ⊂ L∞. Otherwise
this can be considered as an additional restriction to M. For a further analysis
we need the definition of the Covering Numbers of M.

DEFINITION: The covering number ν(M, δ), is the minimal number of balls
of radius δ covering M, w.r.t. to ‖.− .‖V .

Roughly speaking, the covering numbers quantifies the degree of compactness
of the embedding M ⊂ V . It is also a measure of the (intrinsic) complexity of
the model classes M. Covering numbers of hierarchical tensors (HT/TT) were
considered in [3]. Our main result in [5] is an error estimate holding with a certain
confidence of the following form.

THEOREM: For all ǫ > 0 and ΨN sufficiently closed to Ψ,

• the generalization error Egen = |J (Ψh)− J (ΨN )| can be estimated by

P
[
Egen > ǫ

]
≤ 2νρ(M,

1

4C2
ǫ)e−cǫ2N where c = (32C2

1 )
−1 .

• the bound for the function

P
[
‖Ψ−ΨN‖2V > ǫ

]
≤ 2νρ(M,

1

4C
ǫ)e−cCǫ2N

provided that infΨh∈M‖Ψ−Ψh‖2V ≤ ǫ
2
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Université de Nantes
BP 92208
2, rue de la Houssinière
44322 Nantes Cedex 3
FRANCE

Prof. Dr. Hans-Dieter Meyer

Institute of Physical Chemistry
Heidelberg University
Im Neuenheimer Feld 229
69120 Heidelberg
GERMANY

Prof. Dr. William H. Miller

College of Chemistry
University of California
419 Latimer Hall
Berkeley CA 94720-1460
UNITED STATES

Prof. Dr. Ivan Oseledets

Skolkovo Institute of Science and
Technology
Bolshoy Boulevard 30, bld. 1
Moscow 121 205
RUSSIAN FEDERATION

Prof. Dr. Daniel Peláez-Ruiz
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