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Abstract. The workshop Tropical Geometry: New Directions was devoted
to a wide discussion and exchange of ideas between the leading experts repre-
senting various points of view on the subject, notably, to new phenomena that
have opened themselves in the course of the last 4 years. This includes, in
particular, refined enumerative geometry (using positive integer q-numbers in-
stead of positive integer numbers), unexpected appearance of tropical curves
in scaling limits of Abelian sandpile models, as well as a significant progress
in more traditional areas of tropical research, such as tropical moduli spaces,
tropical homology and tropical correspondence theorems.
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Introduction by the Organizers

The workshop Tropical Geometry: New Directions, organized by Ilia Itenberg
(Paris), Hannah Markwig (Tübingen), Grigory Mikhalkin (Genève), and Eugenii
Shustin (Tel Aviv), was held April 28th–May 5th, 2019.

The workshop was well attended by 50 participants from around the world.
The program of the workshop consisted of 19 one-hour talks given by leading
experts in the subject as well as 4 quarter an hour talks delivered by perspective
young researchers. In addition, three informal discussions on open problems and
on questions related to the main topics of the workshop were run during this
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week. Extended abstracts of the talks and reports on the discussions follow these
introductory notes.

Tropical geometry has appeared as an ultimately successful approach to classi-
cal enumerative geometry, and up to date this direction remains very active and
promising, though nowadays various other fields of mathematics and physics use
methods and ideas born in tropical geometry and, on the other hand, suggest new
challenging problems and research directions. The main goal of the workshop was
to discuss and elaborate new directions in tropical geometry that have opened
themselves in the course of the last years as well as new developments in related
areas of mathematics which potentially may be linked to tropical geometry. We
shortly comment on new and traditional trends in tropical geometry and on how
they were reflected in the talks and discussions during the workshop.

Enumerative geometry is a traditional area of applications of tropical geometry,
and it is still one of leading research directions revealing new challenging problems
and perspective developments. It was closely addressed in the talks by H. Ruddat,
R. Cavalieri, and L. Goettsche. In the talk by H. Ruddat the famous 2875 straight
lines on a quintic threefold appeared on the other side of the mirror in the form
of Lagrangian submanifolds diffeomorphic to 3-spheres and other graph-manifolds
so that the total size of their first homology groups add up to 2875. This came
as an illustration of the correspondence between tropical curves and Lagrangian
submanifolds also presented in the talk by Diego Matessi. The tropical computa-
tion of psi-classes in moduli spaces of stable rational and elliptic marked curves
as well as possible extension of these methods to higher genera were discussed in
the talk by R. Cavalieri. The talk of L. Goettsche provided a detailed account
of the refined count of algebraic and tropical curves. It contained both, several
fascinating results in this topic and some conjectural relations to the geometry of
moduli spaces of stable marked curves and their stable maps.

New connections to integrable systems, unexpected appearance of tropical
curves in scaling limits of Abelian sandpile models, and the dynamics of tropical-
like formations in more complicated models was the subject of the informal discus-
sion led by N. Kalinin, M. Shkolnikov, and A. Sportiello. Exciting results linking
these physical models with tropical geometry and further deep questions on the
behavior of more general systems make this research direction very promising.

The core of most important applications of tropical geometry to the algebraic
and symplectic geometry are correspondence relations between “classical” geomet-
ric objects and their tropical analogues. Various forms of such correspondences
were reflected in several talks delivered during the workshop. In particular, I.
Tyomkin presented a tropicalization and lifting procedures in the framework of
Berkovich geometry, P. Bousseau showed how to compute Euler characteristics,
Betti numbers and (intersection) Hodge numbers of moduli spaces of semistable
vector bundles on the projective plane using relations to tropical geometry, D.
Matessi considered Lagrangian fibrations of toric and Calabi-Yau varieties and
analyzed the convergence of families of Lagrangian submanifolds to certain tropi-
cal limits. At last, I. Zharkov led a discussion on new enhanced tropical varieties
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that combine features of phase tropical varieties, complex amoebas and coamoe-
bas, which potentially should reflect more geometry of their algebraic counterparts
and might be more convenient in applications.

The classical-tropical correspondence relations yield important tasks to study
geometry of tropical varieties towards new actual and potential applications to
algebraic, symplectic and polyhedral geometry. Such problems were touched in
the talks by K. Adiprasito, J. Rau, K. Shaw, M. Ulirsch, and D. Maclagan. A
very interesting result was presented by K. Adiprasito, who addressed the problem
of counting faces in polyhedral complexes from the point of view of a polyhedral
version of the Lefschetz hyperplane section theorem largely influenced by tropical
geometry. In turn, the talks by J. Rau and K. Shaw demonstrated applications
of the tropical homology techniques for obtaining tropical analogues of Lefschetz
theorems in classical algebraic geometry. In the talk by M. Ulirsch it was ex-
plained how to enhance the usual tropicalization of Riemann surfaces in order to
catch the mapping class groups. D. Maclagan presented newly discovered connec-
tivity properties of tropical varieties and their possible applications to polyhedral
geometry.

Short communications of PhD students and postdocs Y. Ren, A. Gross, M.
Hahn, and Y. Yamamoto demonstrated that a new generation of researchers ac-
tively works in various directions of tropical geometry, from computational aspects
to delicate intrinsic geometry of tropical varieties in view of promising applications
to classical geometry.

An integral part of the Oberwolfach workshops in tropical geometry has been
formed by presentations of topics which are not elaborated by tropical geometry
yet, but may designate perspectives for the future research. This time more than
a third part of the program was scheduled for such presentations given in talks
by E. Brugallé, X. Chen, P. Georgieva, T. Nishinou, A. Degtyarev, S. Finashin,
O. Viro, and M. Temkin, and in an informal discussion led by V. Fock. The
talks by E. Brugallé, X. Chen, and P. Georgieva were devoted the open Gromov-
Witten/Welschinger theory, which is very natural application area for tropical
geometry techniques as well as an important source of new ideas. The talks by A.
Degtyarev, S. Finashin, and O. Viro exhibited new results and raised new questions
in topology in real algebraic geometry, which has been an equally important source
of new developments in tropical geometry. T. Nishinou presented new results
in deformation theory, which seem to be quite interesting for establishing new
correspondences between algebraic and tropical curves. The talk by M. Temkin
was devoted to a new functorial algorithm of resolution of singularities, whose
combinatorial nature definitely points to a potentially existing tropical version. An
informal presentation by V. Fock brought together challenging relations between
deformations of real singularities, cluster algebras and stable solutions of certain
singular differential operators. None of this subjects has been well understood in
the framework of tropical geometry, which makes the tasks to link this stuff with
tropical geometry even more attractive.
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We hope that the very intensive and substantial exchange of a broad spectrum
of ideas during the workshop will stimulate the further research in the variety of
discussed problems, which still are far from being completely settled.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Renzo Cavalieri in the “Simons Visiting Professors”
program at the MFO.



Tropical Geometry: new directions 1249

Workshop: Tropical Geometry: new directions

Table of Contents

Karim Adiprasito
Generic intersection theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1251

Johannes Rau (joint with Philipp Jell, Kristin Shaw)
Lefschetz (1, 1)-theorem in tropical geometry . . . . . . . . . . . . . . . . . . . . . . . . 1252

Renzo Cavalieri (joint with Andreas Gross, Hannah Markwig)
Towards a theory of tropical ψ classes in genus one. . . . . . . . . . . . . . . . . . 1254

Erwan Brugallé
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Abstracts

Generic intersection theory

Karim Adiprasito

The hard Lefschetz theorem, in almost all cases that we know, is connected to
rigid algebro-geometric properties. Most often, it comes with a notion of an ample
class, which not only induces the Lefschetz theorem but the induced bilinear form
satisfies the Hodge-Riemann relations as well, which give us finer information
about its signature (see for instance Voisin, CUP 2002).

Even in the few cases that we have the hard Lefschetz without the Hodge-
Riemann relations, they are often at least conjecturally present in some form, as
for instance in the case of Grothendieck’s standard conjectures and Deligne’s proof
of the hard Lefschetz standard conjecture. This connection is deep and while we
understand Lefschetz theorems even for singular varieties, to this day, we have no
way to understand the Lefschetz theorem without such a rigid atmosphere for it
to live in.

My goal and result in [A] is to provide a different criterion for varieties to
satisfy the hard Lefschetz theorem that goes beyond positivity, and abandons the
Hodge-Riemann relations entirely (but not the associated bilinear form); instead of
finding Lefschetz elements in the ample cone of a variety, we give general position
criteria for an element in the first cohomology group to be Lefschetz. The price I
pay for this achievement is that the variety itself has to be sufficiently ”generic”.

For the current results I therefore turn to toric varieties, which allow for a
sensible notion of genericity without sacrificing all properties of the variety, most
importantly, without changing its Betti vector. Specifically, I consider varieties
with a fixed equivariant cohomology ring, and allow variation over the Artinian
reduction, i.e., the variation over the torus action. The main result can be sum-
marized as follows:

Theorem 1. [A] Consider a PL (d − 1)-sphere Σ, and the associated graded
commutative face ring R[Σ] (see Stanley, Birkhäuser Prog. in Math. 1996). Then
there exists an open dense subset of the Artinian reductions R of R[Σ] and an
open dense subset L ⊂ A1(Σ), where A(Σ) ∈ R, such that for every k ≤ d

2 , we
have:

(1) Generic Lefschetz theorem: For every A(Σ) ∈ R and every ℓ ∈ L, we have
an isomorphism

Ak(Σ)
·ℓd−2k

−−−−−→ Ad−k(Σ).

(2) Hall-Laman relations: The Hodge-Riemann bilinear form

Qℓ,k : Ak(Σ) × Ak(Σ) −→ Ad(Σ) ∼= R

a b 7−→ deg(abℓd−2k)

is nondegenerate when restricted to any squarefree monomial ideal in A(Σ),
as well as the annihilator of any squarefree monomial ideal.
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The Lefschetz theorem is therefore as announced valid for generic Artinian
reductions. In particular, the more algebrao-geometric reader may consult the
following Corollary for easier visualization.

Corollary 1. Consider F a complete simplicial fan in Rd. Then, after perturbing
the rays of F to a suitable rational fan F′, the Chow ring of the toric variety XF′

satisfies the hard Lefschetz theorem with respect to a generic degree one element,
while the equivariant Chow ring remains unchanged from XF to XF′ .

These results have a myriad of consequences, among them:

(1) g-conjecture, McMullen Isr. J. Math. 1971: It proves that the f -vector,
i.e. the number of vertices, edges, two-dimensional faces etc. of a simplicial
sphere is also the f -vector of some simplicial polytope.

(2) Grünbaum conjecture, J. Comb. Theor. 1970: It generalizes a result of
Déscartes: If ∆ is a simplicial complex of dimension d that allows a PL
embedding into R2d then

fd(∆) ≤ (d+ 2)fd−1(∆)

References

[A] Karim Adiprasito, Combinatorial Lefschetz theorems beyond positivity, arXiv:1812.10454

Lefschetz (1, 1)-theorem in tropical geometry

Johannes Rau

(joint work with Philipp Jell, Kristin Shaw)

The classical Lefschetz (1, 1)-theorem gives a description of the cohomology classes
of complex projective varieties which arise as Chern classes of complex line bun-
dles. The theorem asserts that these classes are exactly the integral (1, 1)-classes.
It implies the Hodge conjecture (over Z) for the degree 2 cohomology classes of
a complex projective variety. In my talk, I will discuss analogous results for ra-
tional polyhedral and tropical spaces. These results are based on tropical homol-

ogy groups and the tropical eigenwave operators φ, φ̂ introduced in [MZ14] and
[IKMZ16].

In our setting, a rational polyhedral space is a topological space whose local
models are of the form Y × Ts, with Y ⊂ Rn a rational polyhedral fan and
T = [∞,+∞) the tropical affine line. (For technical reasons, we mostly assume
the existence of a global polyhedral stratification of X). A tropical space (or
sometimes tropical cycle) is a rational polyhedral space for which in addition each
local fan Y satisfies the balancing condition. Finally, a tropical manifold is a
tropical space if all local fans Y are degree one fans (equivalently, matroidal fans).
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The tropical situation can be summarized in the following diagram:

CaDiv(X)
π //

div

��

Pic(X)
c1 // H1,1(X,Z)

∩[X]

��

φ̂
// H0,2(X,R)

∩[X]

��
Zn−1(X)

cyc
// HBM

n−1,n−1(X,Z)
φ

// HBM
n,n−2(X,R)

Note that the row maps exists for any rational polyhedral space, while the top-
bottom maps are only defined in the case when X is a tropical space. Our main
results, in decreasing level of generality, are as follows.

Theorem 1. If X is a rational polyhedral space, then any α ∈ H1,1(X ;Z) with

φ̂(α) = 0 is the first Chern class of a tropical line bundle,

im(c1) = ker(φ̂).

Theorem 2. If X is a tropical space, then for any α ∈ H1,1(X ;Z) with φ̂(α) = 0,

the class α∩ [X ] ∈ HBM
n−1,n−1(X,Z) is the fundamental class of a codimension one

tropical cycle in X,

ker φ̂ ∩ [X ] ⊂ im(cyc).

Theorem 3. If X is a tropical manifold X, then any α ∈ HBM
n−1,n−1(X,Z) with

φ̂(α) = 0 is the fundamental class of a codimension one tropical cycle in X,

im(cyc) = ker(φ).

The tropical (co)homology groups (and their Borel-Moore variants) are denoted

by Hp,q(X,Q) and HBM
p,q (X,Q). The maps φ and φ̂ are called tropical eigenwave

operators. They have a purely combinatorial definition, but are related to Hodge-
theoretic monodromy operators in the case of tropicalisations. By Pic(X) and
CaDiv(X) we denote the groups of line bundles and line bundles with (rational)
sections, respectively. The Chern class map c1 is induced by the exact sequence
of sheaves

(1) 0→ R→ AffZ → T ∗X → 0

from constant functions to affine Z-linear functions to covectors. The map cyc
associates to a tropical subspace Y its fundamental class cyc(Y ) = [Y ], and ∩[X ]
denotes the cap product with the fundamental class of X . Finally, the tropical
divisor construction div associates to a rational section of a line bundle a tropical
cycle of codimension one. For details, see [MZ14, IKMZ16, AR10, MR]. I will
briefly present the necessary definitions and deduce the main theorems from the
following key statements about the above diagram.

Theorem 4.

(1) Up to sign, the tropical eigenwave φ̂ coincides with the coboundary map of
(1).

(2) Every tropical line bundle admits a rational section. Equivalently, the map
π is surjective.
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(3) If X is a tropical space, then the diagram commutes.
(4) If X is a tropical manifold, then Poincaré duality over Z holds (i.e., the

maps ∩[X ] : Hp,q(X,Z)→ HBM
n−p,n−q(X,Z) are isomorphisms).

Finally, we briefly discuss two applications/examples.

Theorem 5. Let X = Rn/Λ be a tropical torus and α =
∑
aije

∗
i e

∗
j ∈ H1,1(X,Z) =

(Zn)∗ ⊗ Λ∗. Then α can be represented by a tropical cycle if and only if (aij) is
symmetric. If, in addition, (aij) is positive definite, then α can be represented by
an effective cycle, namely the associated tropical theta divisor.

Theorem 6. For every 1 ≤ ρ ≤ 19 there exists a smooth tropical quartic surface
with Picard rank ρ. Moreover, such surfaces can be chosen to have the same
combinatorial type.

Open questions in this context are: Can the positivitiy criterion in Theorem 5
be inverted? Are there tropical counterparts to the Nakai–Moishezon/ Kleiman
criteria? What are criteria for combinatorial types of hypersurfaces in order to
admit a large/small range of Picard ranks?
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Towards a theory of tropical ψ classes in genus one.

Renzo Cavalieri

(joint work with Andreas Gross, Hannah Markwig)

The class ψi is a degree one Chow class on the moduli space of curves defined
as the first Chern class of the i-th tautological (or cotangent) line bundle. These
classes control the non-transversal intersections of boundary strata, but besides
being important classes for the geometry of the moduli spaces of curves, they were
brought to the spotlight by Witten’s conjecture [5] (now Kontsevich’s theorem),
which predicts that a generating function for top intersections of ψ classes is a
τ -function for the KdV hierarchy. A somewhat simplistic interpretation of such
statement is that the intersection theory of ψ classes is highly combinatorial and
related to the boundary stratification of the moduli spaces of curves. It is therefore
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unsurprising that we would like to have a parallel theory of tropical ψ classes,
together with some correspondence theorems.

Such a theory of tropical ψ classes exists in genus zero. It was initially en-
visioned and described by Mikhalkin in [4], and further developed in [3]. It is
simultaneously a purely combinatorial theory, and a mirror of the classical theory
via the ”operational”/toric intersection theory point of view. By this we mean

(1)
∏

(ψtrop
i )ki =

∑(∏

ψki

i ·∆τ

)

τ,

where τ ranges among all cones of M trop
0,n and ∆τ denotes the stratum in the

algebraic moduli space which is dual to the cone τ .
What makes everything work in genus 0 is that M trop

0,n is naturally embedded

in a real vector space as a balanced fan, and one can use tools of toric/tropical
intersection theory [2]. For higher genus, such an embedding is not possible. At

a very basic level, M trop
1,1 consists of a single ray, which as such may not possibly

become a balanced fan. This talk describes ongoing joint work with Andreas Gross
and Hannah Markwig that aims at developing and computing a theory of ψ classes
in genus 1.

We wish to exploit the fact that moduli space of tropical curves have been
given a stack structure ([1]) that makes them into fine moduli spaces. In algebraic
geometry, any geometric concept on a stack may be defined by looking at all of
its pull-backs from representable maps from schemes to the stack. The technical
heart of this project consists in accurately identifying the appropriate notion of
representable morphism of tropical objects. In our specific case, we are concerned
with maps:

f : C →M trop
1,n ,

where C belongs to a class C of well-behaved tropical objects, and f should be
representable in the sense that the family Xf should also belong to the class C.

As a minimal requirement we would like to make sure that our definitions in-
clude realizable families of tropical stable maps to toric targets, where the base of
the family may need to be given a balanced structure as additional information.We
also want the following forgetful morphisms to be representable:

M trop
1,n (RN ,∆)→M trop

1,n+|∆|

and

M trop
1,n+1 →M trop

1,n .

Then tropical ψ classes may be defined as follows: for any diagram where f is
a “good” map,

Γ

π

��
C

f
//

s

AA

M trop
1,n
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define

(2) f∗ψ := −π⋆(Im(s)2),

where s denotes the section corresponding to the i-th mark.
This prescription will define ψ on the stack. Further, after showing compatibil-

ity with fiber products (and therefore that the class is well-defined) it should be
sufficient to describe f∗ψ

• for one good atlas (i.e. f surjective), OR
• for enough curves mapping into the stack,

to completely determine ψ.
Once we have defined tropical ψ classes this way, similarly we wish to define

intersection cycles by:

f⋆ψI := (f⋆ψ)I

(the RHS of this equation lives on C where we know how to do intersection theory).
In order to compute the theory, we envision a two step approach: first we

compute the degree of the class ψ1 on M trop
1,1 to be 1

24 [v]. We choose as an atlas for

M trop
1,1 a one-dimensional family of realizable tropical stable maps of degree three

to the tropical projective plane, passing through 8 fixed general points:

(3) [γf ] =

8∏

i=1

ev∗i (Pi)|[RMtrop
1,8 (TP2,3)] ∈ A1(M trop

1,8 (TP2, 3)).

(here we are denoting by RM trop
1,8 (TP2, 3)] the representable locus in the moduli

space of tropical stable maps, which is thought somehow like a virtual class).
The above cycle gives rise to a map

(4) f : T →M trop
1,1 ,

where T is a trivalent tree endowed with the standard planar balanced local struc-
ture. We studied in detail the map f arising when we choose the points Pi to be
in horizontally stretched position, and computed the degree of the map to be 12
and the self intersection of a section to be −1, thus recovering via a purely tropical
intersection theoretic computation the degree of ψ1 to be 1/24 (It is 1/12 the class

of a point on the ray of M trop
1,1 , which carries a Bµ2 structure.)

To compute the theory for more points and in higher codimension, we do not
want to rely on explicit computations, but rather on the development of tatuto-
logical relations. In fact it would suffice to establish the tropical version of:

pull-back: the pull-back relation

ψi = π∗
n+1(ψi) + Si,

where Si is a suitable version of a cycle arising from the i-th section.
string:

πn+1,∗

n∏

i=1

ψki

i =
n∑

j=1

ψ
kj−1
j

∏

i6=j

ψki

i .
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dilation:

πn+1,∗

(

ψn+1

n∏

i=1

ψki

i

)

= n

n∏

i=1

ψki

i .

The resulting theory should be an operational theory which is very similar to the
genus zero theory. The operational class ψi should be expressed as a tropical cycle
as the sum of all cones where the i-th points lies on a four-valent, genus zero
vertex.

Once the program is completed, we expect to recover a theory which corresponds
to the classical one in the sense of equation (1). The main contribution of this
work is to make such a theory arise from purely tropical intersection theoretic
constructions, as opposed to just being a definition.
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On the invariance of Welschinger invariants

Erwan Brugallé

A real symplectic manifold XR = (X,ωX , τX) is a symplectic manifold (X,ωX)
equipped with an anti-symplectic involution τX . The real part of (X,ωX , τX),
denoted by RX , is by definition the fixed point set of τX . An almost complex
structure J on X is called τX-compatible if it is tamed by ω, and if τX is J-
anti-holomorphic. In what follows, the manifold XR will always be compact of
dimension 4 with a non-empty real part, and rational. We denote by H−τX

2 (X ;Z)
the space of τX -anti-invariant classes. A non-singular projective real algebraic
variety is always implicitly assumed to be equipped with some Kähler form which
turns it into a real symplectic manifold. All algebraic surfaces considered here are
assumed to be projective and non-singular.

Let XR = (X,ωX , τX) be a real rational compact symplectic manifold of di-
mension 4, and denote by L1, · · · , Lk the connected components of RX . Choose
a class d ∈ H2(X ;Z), and a vector ρ = (r1, · · · , rk) ∈ Zk

≥0 such that

c1(X) · d− 1−
k∑

i=1

ri = 2s ∈ 2Z≥0.
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Choose a configuration x made of ri points in Li for i = 1, · · · k, and s pairs of
τX -conjugated points in X \RX . Given a τX -compatible almost complex structure
J , we denote by CXR

(d, x, J) the set of real rational J-holomorphic curves in X
realizing the class d, and passing through x. Then we define the integer

WXR,ρ(d; s) =
∑

C∈CXR
(d,x,J)

(−1)m(C),

where m(C) is the number of nodes of C in RX with two τX -conjugated branches.
For a generic choice of J , the set CXR

(d, x, J) is finite, and WXR,ρ(d; s) depends
neither on x, J , nor on the deformation class of XR (see [Wel05, Wel15]). We call
these numbers the Welschinger invariants of XR. Our main result, Theorem 1
below, is that when XR is a real rational algebraic surface, Welschinger invariants
eventually only depends on s and some homological data of XR.

Two real rational algebraic surfaces X1,R and X2,R are said to be homologically
equivalent if both are obtained, up to deformation, as a real blow-up πi : Xi,R →
X0,R of a real minimal algebraic surface X0,R at p distinct real points and q distinct
pairs of τX0 -conjugated points. We emphasize that the distributions of the p real
points among connected components of RX0 may not coincide for π1 and π2. Note
nevertheless that

χ(RX1) = χ(RX2) = χ(RX0)− p.
Furthermore, the two maps π1 and π2 provide an identification of the groups
H2(X1;Z) and H2(X2;Z) commuting with both intersection forms and action of
the anti-symplectic involutions. We denote by [XR] the homological equivalence
class of a real rational algebraic surface XR.

Theorem 1. If XR is a real rational algebraic surface, then WXR,ρ(d; s) does not
depend on ρ, nor on a particular representative of [XR].

As a consequence of Theorem 1, we simply denote by W[XR](d; s) the invariant
WXR,ρ(d; s).

Remark 1. Loosely speaking, Theorem 1 states that WXR,ρ(d; s) only depends on s
and the lattice H2(X ;Z) equipped with the intersection form and the action of τX,∗.
It may be interesting to work this out more rigorously. It may also be interesting to
study generalizations of Theorem 1 to modified Welschinger invariants introduced
in [IKS13], as well as to to higher genus Welschinger invariants introduced in
[Shu14], or to the higher dimensional invariants recently defined in [Geo16, GZ15].

Theorem 1 easily implies next corollary, which generalizes [BP15, Theorem
1.1(1)] in the case F = [RXR \ L].

Corollary 1. Let XR be a compact real rational algebraic surface with a discon-
nected real part. Suppose that XR is a real blow-up of another real rational algebraic
surface in at least two real points, and denote by E1 and E2 the corresponding ex-
ceptional divisors. Then for any d ∈ H2(X ;Z) such that both d · [E1] and d · [E2]
are odd, one has W[XR](d; s) = 0.
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Combining Theorem 1 with [Wel07, Theorem 1.1], we obtain the following.

Theorem 2. Let XR be a compact real rational algebraic surface with a discon-
nected real part, and assume that c1(X) · d− 1− 2s > 0. Then one has

(−1)
d2−c1(X)·d+2

2 ·W[XR](d; s) ≥ 0.

Furthermore, the invariant W[XR](d; s) is sharp in the following sense: there exists
a compact real rational algebraic surface YR in [XR], a real configuration x of
c1(X) ·d−1 points in Y with |x∩RY | = c1(Y ) ·d−2s, and a generic τY -compatible
almost complex structure J on Y such that

Card(CYR
(d, x, J)) = |W[XR](d; s)|.

Remark 2. A configuration x and a τY -compatible almost complex structure J
as in Theorem 2 may not exist for any representative YR of [XR], even up to
deformation, see [Bru15, Remark 6.13].

One of the main ingredients in our proof of Theorem 1 is a formula relating
Welschinger invariants of two real symplectic 4-manifolds differing by a so-called
surgery along a real Lagrangian sphere. This latter formula partially generalizes
both [IKS15, Corollary 4.2] and [Bru18, Theorem 1.1, Remark 1.3]. We point
out that our proof is an easy adaptation of the proof of [IKS15, Corollary 4.2],
using [BP15, Theorem 2.5(1)]. It just required to believe in the correctness of the
statement to prove it.

In its turn, this formula is obtained thanks to a real version of a (very simple
instance) of the symplectic sum formula. It turns out that the same strategy
provides a formula similar to Theorem 1 for relative Gromov-Witten invariants
of symplectic 4-manifolds. This observation suggests a possible connection of our
work to tropical refined invariants defined in [BG16, GS16]. In particular, we
provide an alternative explanation for the specializations in q = ±1 of the tropical
refined descendant invariants from [GS16]. We also show that a refined version
of a conjecture by Itenberg, Kharlamov and Shustin [IKS04, Conjecture 6] holds,
although it was known to be wrong in the non-refined case.

Acknowledgment. This work is partially supported by the grant TROPICOUNT
of Région Pays de la Loire, and the ANR project ENUMGEOM NR-18-CE40-0009-
02.

References
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Clusters and singularities

Vladimir Fock

This informal discussion brought together challenging relations between deforma-
tions of real singularities, cluster algebras and stable solutions of certain singu-
lar differential operators, coming from deformations of plane curve singularities.
These relations shed a new light on the conjectural equivalence between the topo-
logical classifications of plane curve singularities and mutational equivalence of
quivers recently pointed by S. Fomin et al.
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From algebraic curves to tropical curves to Lagrangian submanifolds

Helge Ruddat

(joint work with Travis Mandel, Cheuk Yu Mak)

Abstract

A quintic threefold is the hypersurface in complex projective 4-space cut out by a
homogeneous polynomial equation of degree 5. It is the most famous Calabi-Yau
manifold and the source of many interesting discoveries in pure mathematics and
mathematical physics. A general quintic threefold contains 2875 straight lines.
Katz studied where these lines move when one deforms the quintic into the union
of the coordinate hyperplanes of projective 4-space. From here, for each line
contained in a hyperplane, we may map it under the component-wise logarithm
map (C\{0})3 → R3 and find that the spine of its image is what is called a tropical
line, a piecewise linear graph. Each of these tropical lines can in turn be used to
construct a Waldhausen graph manifold fibering in 2-tori over the tropical curve.
These graph manifolds embed as Lagrangian submanifolds in another Calabi-Yau
manifold, the mirror dual of the quintic! They have many interesting properties.

1. Tropical lines in 3-space and their multiplicity

Consider a tropical tropical line γ in R3 with unbounded legs in the directions of
the rays of the fan for P3, i.e. the standard basis vector directions e1, e2, e3 and
e0 := −e1 − e2 − e3. These lines move in a four-dimensional parameter space:
translations give an R3 and, additionally, we can scale the length of the compact
edge in γ. Let Ai ⊂ R3 be an affine two-plane in general position with the property
that Ai contains a translate of Rei. Requiring for γ that the unbounded leg with
direction ei be contained in Ai uniquely fixes the parameters, so there is a unique
tropical line γ with this property. We say γ is rigid. We assume that the tangent
space of Ai is integrally generated, that is, if we identify R3 = N ⊗ZR for N = Z3

and set M = Hom(N,Z), then Ai is a translate of m⊥
i for some mi ∈ M and

i = 0, ..., 4.

1.1. Siebert-Nishinou multiplicity of γ. From the correspondence theory of
tropical curves with log Gromov-Witten invariants [3] (pioneered in [7, 8]), one
associates the Siebert-Nishinou multiplicity to the line γ as follows. We consider
the homomorphism of Z-modules

Φ : N ⊕N → N/Zue ⊕N/m⊥
0 ⊕ ...⊕N/m⊥

4

where ue ∈ N is a primitive generator of the tangent space to the compact edge
e of γ. If the vertices v1, v2 of e have the unbounded legs spanned by e0, e1 and
e2, e3 attached, respectively, as in the above figure, then Φ is given by

Φ : (a, b) 7→ (a− b, a, a, b, b).
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The Siebert-Nishinou multiplicity mult(γ) of γ is defined by

mult(γ) = | coker(Φ)|

and is easily seen to depend on the choice of mi.

1.2. New interpretation for mult(γ) via the first homology of a 3-manifold.
The Strominger-Yau-Zaslow conjecture suggests that a mirror symmetry pair X, X̌
arises as fibrations X → B ← X̌ over an affine base space B. An algebraic curve
C in X projects to an amoeba in B whose spine is a tropical curve γ in the base
B from which the mirror dual object to Č shall be constructed, a Lagrangian
Lγ ⊂ X̌. Given a tropical line γ ⊂ R3 as above, we now propose a topological

model for Lγ based on the construction in [9]. Let X̌ denote the quotient T ∗
B/Λ̌

of the cotangent bundle T ∗
B by the local system Λ̌ of integral cotangent vectors,

so the stalks of Λ̌ are isomorphic to Z3. In this particular situation, the cotangent
bundle is trivial, so we may identify

X̌ = T ∗
B/Λ̌ = R3

︸︷︷︸

B

×R3/Z3.

To each edge e of γ, we consider the co-normal plane e⊥ ⊂ R3, i.e. the set of
cotangent vectors that evaluate to zero on tangent vectors to e. The co-normal
torus is the quotient 2-torus Te := e⊥/(e⊥∩ Λ̌) and we obtain a Lagrangian 3-fold
Le := e×Te ⊂ X̌ where we view X̌ as a symplectic manifold with symplectic form
inherited from the standard symplectic form of the cotangent bundle. The goal is
to glue the disjoint union of all Le to obtain a closed 3-manifold Lγ (a priori no

longer as embedded in X̌). For a vertex v ∈ γ, we want to connect the three Le

for e the edges that meet v. Indeed, as a connecting patch, we may glue in the
three-fold H × S1 for H a 3-punctured sphere. This can be done entirely inside
the fiber F of X̌ → B over the point v because the sum of the three tori Te for e
an edge meeting v is zero in H2(Z,Z) by the balancing condition of γ at v, hence
indeed a filling H × S1 at v exists, topologically. Finally, we want to cap off the
remaining open endings (for the unbounded edges of γ) by solid tori. A solid torus
is the 3-manifold D× S1 where D denotes a two-dimensional disk. The boundary
of a solid torus is Te ∼= (S1)2 and to say how this boundary gets filled by the solid
torus is to say which (of the many) homology classes of circles in Te becomes the
meridian of the solid torus, i.e. the boundary of D. Any choice produces a closed
3-manifold but the resulting topological type is sensitive
to the choice, so we want to be more explicit here. This is
where the incidence planes Ai come into play. Note that
H1(Tei ,Z) = ei

⊥ ∩ Λ̌, so mi gives a non-trivial element
and hence determines a homology class of a circle in Tei .
We choose the class given bymi to become the meridian of
the to-be-glued-in solid torus to obtain a three-manifold
Lγ unique up to diffeomorphism. Consider the cover of γ
by open sets Uα displayed on the right.
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Let π : Lγ → γ be the projection (adding vertices at infinity to the unbounded

edges of γ to make this work). From a Čech complex consideration for this cover,
one deduces

H2(Lγ) = coker




⊕

α

H1
(
π−1(Uα)

)
→
⊕

α<β

H1
(
π−1(Uα ∩ Uβ)

)



 = coker(Φ)

where Φ is the map given §1.1, so using the universal coefficient theorem, we
conclude the following result

Theorem 1 (R.-Mak [2]).

mult(γ) = |H1(Lγ ,Z)tor|
Here, the decoration tor refers to the torsion subgroup which can be omitted

in this particular example because Lγ is a homology sphere, so H1 consists of
torsion only (no free part). For a Lagrangian homology sphere L, Joyce called the
quantity |H1(L,Z)| the weight w(L) of the Lagrangian L, conjecturing this to be
the correct multiplicity when counting special Lagrangian spherical objects.

1.3. Realizing Lγ as a Lagrangian submanifold. For suitable choices of Ai,
we want to embed Lγ as a Lagrangian submanifold in the mirror quintic threefold

X̌, a symplectic 6-manifold. Similar ideas have been followed in [6, 5]. To see
how, we first go back to the mirror dual side: to curves C in the quintic X ; more
precisely lines on the quintic. Recall that γ above is also a line and we want to
view it as the tropicalization of a complex line on the quintic. Sheldon Katz [1]
studied lines on the quintic threefold by considering the degeneration

tf5(z0, ..., z4) = z0z1z2z3z4

where f5 is the equation of a general quintic hypersurface and t is the pencil pa-
rameter. For t = 0, the quintic degenerates to the union of coordinate hyperplanes
X0. The general quintic contains 2875 lines and Katz determined this number as
follows. First note that X0 contains ten plane quintic curves Zij , namely as the
intersection of {f5 = 0} with each of the ten coordinate 2-planes zi = zj = 0. The
degenerate quintic X0 obviously contains infinitely many lines but only some of
them deform into the nearby fibers when making t non-zero. The condition for
a line ℓ ⊂ X0 to deform to t 6= 0 is that it meets four of the ten plane quintics
Zij but is disjoint from any coordinate P1 given by zi = zj = zk = 0 for i, j, k
pairwise distinct. So if ℓ is contained in the component P3 ∼= {z0 = 0} of X0 then
it needs to meet the four plane quintics contained in this component and not meet
the coordinate lines inside. By a simple inclusion-exclusion argument combined
with the knowledge that 2 · 54 lines meet four quintics in P4, one comes up with
the number of 575 lines in each P3-component of X0 that deforms to t 6= 0. This
yields a total of 5 · 575 = 2875 lines as claimed above.

Tropicalizing the situation means looking for tropical lines in R3 so that its
four legs lie on four tropical quintics (at tropical infinity). Assuming the tropical
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quintics to be generically perturbed, all tropical lines can be expected to meet
only edges but not vertices of the quintics. Indeed, after removing garbage lines
that are non-rigid, one finds a count of 575 tropical lines and most interestingly,
this is a count with multiplicities and lines of multiplicity 1 and 2 both occur.
This also means that the actual count of lines is slightly smaller than 575 since
each multiplicity two line counts as two obviously. The multiplicity of each line γ
is computed by the methods introduced in the previous sections, that is we have
incidence conditions A0, ..., A3 where Ai is the unique affine two-plane spanned
by the corresponding leg ei of γ and the edge of the tropical quintic that is met
by this leg. The lines were found with a computer search. Taking into account
the tropicalizations of all five components of X0, the total tropical count with
multiplicity is

2875 = 2695 + 90 · 2,
i.e. 2695 lines of multiplicity one and 90 lines of multiplicity two. In terms of
the three-manifold of §1.2, the multiplicity one lines γ give Lγ

∼= S3 and the
multiplicity two lines γ give Lγ

∼= RP3. A tropical line is admissible if it meets
only compact edges of the plane quintics. This holds for a bit more than half of
the found tropical lines (precisely for 45 multiplicity two lines).

Theorem 2 (R.-Mak [2]). For each admissible tropical line γ meeting four tropical
quintics as described above, there is a Lagrangian Lγ of the diffeomorphic type

given in §1.2 embedded in the mirror quintic X̌. If two such tropical lines are
disjoint, so are the associated Lagrangians.

Interestingly, many tropical lines meet one another; the incidence matrix is full
rank; each tropical line meets at least one other. However, still more than 350
disjoint Lagrangians can be obtained by the theorem. All these Lagrangians are
spherical in the sense of having the Betti numbers of a 3-sphere and these can be
used to make Dehn-twists along them. Furthermore, one can show they are all
homologous. We hence found an Abelian subgroup of rank > 350 in the symplectic
automorphism group of the mirror quintic X̌ .
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Tropical Lagrangian sumbanifolds inside toric and Calabi-Yau varieties

Diego Matessi

In this talk we describe a construction of Lagrangian submanifolds which lift trop-
ical subvarieties in the base of a Lagrangian fibration on a symplectic manifold.
We start with the cotangent bundle of a real torus T = V/Λ, where V is a real n-
dimensional vector space and Λ ∼= Zn an n-dimensional sublattice. The cotangent
bundle is T ∗T = V ∗ × V/Λ. The projection map π : T ∗T → V ∗ is a Lagrangian
torus fibration with respect to the canonical symplectic form on T ∗T .

Let us now consider a d dimensional tropical subvariety Γ of V ∗. To a first
approximation we can lift Γ to a piecewise linear (PL) Lagrangian lift Γ̂PL ⊂ T ∗T

of Γ. The projection map π restricts to a map Γ̂PL → Γ. The shape of the fibres
Fb of this map over a point b ∈ Γ depend on the dimension of the smallest stratum
containing b. If b lies only in the top dimensional stratum of Γ, i.e. it is a smooth
point of Γ, then Fb is just the conormal bundle

Fb =
(TbΓ)⊥

(TbΓ)⊥ ∩ Λ
.

Notice that Fb is isomorphic to an (n−d)-dimensional torus. When b lies in smaller
dimensional strata, the fibres Fb are certain simplicial chains whose boundaries
match the fibers of adjacent larger strata. We call such fibres Lagrangian coamebas
and they exist thanks to the balancing conditions of Γ. Under certain conditions,
e.g. if Γ is smooth, these coamebas can be chosen so that Γ̂PL is a topological
submanifold of T ∗T . Moreover Γ̂PL is Lagrangian at smooth points. In [1, 2] we
proved the following

Theorem 1. If the torus T is 2 or 3 dimensional and Γ is a smooth tropical hyper-
surface of V ∗, then there exists a one parameter family Lt of smooth Lagrangian
submanifolds of T ∗T such that

a) Lt is homeomorphic to Γ̂PL;

b) Lt converges to Γ̂PL in the Hausdorff topology as t goes to zero.

Mikhalkin [3] also proved a similar result for tropical curves in any codimension
and Mak and Ruddat [4] have a similar construction of Lagrangian submanifolds
lifting tropical curves in the mirror of the quintic Calabi-Yau.

There are various interesting examples of tropical Lagrangians inside toric va-
rieties. When a tropical hypersurface is considered inside the moment polytope
of a toric variety, one needs to check what happens to the Lagrangian lift as the
tropical variety hits the boundary of the polytope. Does it compactify nicely to
a smooth Lagrangian submanifold without boundary? In general this is rare, for
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instance, in two dimensional toric varieties this happens only when the tropical
curve hits a corner along its bisectrice or an edge along a multiplicity two direction
(see [3]). In the case of a tropical surface inside a three dimensional polytope, a
delicate technical issue it to check what happens in the case of what we may call
a “trisectrice” hitting a corner. A “trisectrice” is the tropical hypersurface inside
(R≥0)3 traced out by the union of the three positive coordinate axes as we trans-
late it along the ray with direction (1, 1, 1). We believe that the Lagrangian lift
of the trisectrice compactifies smoothly inside C3 and we will write up a proof in
forthcoming work. Using this construction we can produce a monotone tropical
Lagrangian in P3 diffeomorphic to S1 × S2.

One of the main motivations for our construction comes from mirror symmetry.
Indeed the Strominger-Yau-Zaslow conjecture claims that a pairX and X̌ of mirror
Calabi-Yau manifolds should admit dual (special)-Lagrangian fibrations f : X →
B and f̌ : X̌ → B over the same base B. If ∆ ⊂ B is the discriminant locus
of f , the set B0 = B − ∆ has an integral affine structure, therefore it makes
sense to speak about tropical subvarieties of B0. It is expected that tropical
subvarieties of B0 can be lifted (some times) to complex subvarieties of X̌ and
to Lagrangian subvarieties of X . Indeed it is expected that this correspondence
can be refined so to give an equivalence between the Fukaya category of X and
the derived category of coherent sheaves on X̌ , as predicted by the homological
mirror symmetry conjecture. A precise prediction of this correspondence in some
examples was described in [5] and recent work of J. Hicks [6] confirms this idea to
an even deeper level. Indeed Hicks proves that there is a Lagrangian cobordism
between a Lagrangian lift of a tropical hypersurface and a pair of Lagrangian
sections. The sections are mirror to line bundles and the Lagrangian cobordim
gives a cone in the Fukaya category which is mirror to a short exact sequence of
the type 0→ O(−D)→ O → OD → 0, where D is the divisor lifting the tropical
hypersurface.

Currently we are working on a construction of tropical Lagrangian spheres on
a symplectic manifold (X,ω) with X diffeomorphic to a quintic in P4 and with a
Lagrangian fibration f : X → B constructed in work of Gross [7] and Castano-
Bernard, Matessi [8]. These spheres lift tropical hypersurfaces of B with boundary
on the discriminant locus ∆ and we expect to be able to construct enough La-
grangian spheres to generate H3(X,Z), which is 204 dimensional. The base B of
the fibration can be identified with the boundary of the 4-simplex P in R4 with cor-
ners the points (−1,−1,−1,−1), (4,−1,−1,−1), (−1, 4,−1,−1), (−1,−1, 4,−1),
(−1,−1,−1, 4). This simplex is a reflexive polytope and the fan Σ constructed
over a maximal unimodal subdivision of ∂P gives a four dimensional toric variety
YΣ. The mirror X̌ of the quintic X is an anticanonical section of YΣ.

The discriminant locus ∆ is contained in the 2-skeleton (∂P )[2]. Inside each
two dimensional face of ∂P , ∆ looks like a tropical quintic curve in the moment
polytope of P2. Each edge of ∆ which goes out to the 1-skeleton (∂P )[1] ends
at a 3-valent vertex of ∆. The tropical hypersurfaces which we consider are the
connected components of (∂P )[2]−∆. They are in one to one correspondence with
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the integral points of (∂P )[2] and we call them of type I, II or III depending on
whether the integral point is respectively in the interior of a two face, of an edge
or is a vertex of P . We claim that each of these tropical hypersurfaces lifts to a
Lagrangian sphere. An easy count gives 60 tropical hypersurfaces of type I, 40
of type II and 5 of type III. This gives at least 105 Lagrangian spheres, plus we
have the zero section of the Lagrangian fibration which gives 106. Not enough to
generate H3(X,Z)! On the other hand, each tropical hypersurface can be lifted to
a Lagrangian submanifold in many different ways which are described by a similar
combinatorics as the classification of line bundles on a toric variety (see [5]). We
expect to be able to obtain enough different lifts so to generate all of H3(X,Z).

We believe that it is possible to predict the mirror sheaves to each Lagrangian
sphere. Indeed each integral point p ∈ (∂P )[2] corresponds to a toric divisor Dp in

YΣ and hence to a divisor Wp = X̌ ∩Dp in X̌. Each Lagrangian lift of the tropical
hypersurface corresponding to p should be mirror to a sheaf supported on Wp. We
think there are a finite number of sheaves of this type which, together with the
structure sheaf OX̌ , split generate the derived category of X̌.
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Lefschetz section theorems for tropical hypersurfaces

Kristin Shaw

(joint work with Charles Arnal and Arthur Renaudineau)

Tropical homology is a homology theory with non-constant coefficients for polyhe-
dral spaces. Under suitable conditions, the dimensions of the Q-tropical homology
groups of the tropical limit of a family of complex projective varieties are equal
to the corresponding Hodge numbers of a generic member of the family [2]. In
this talk, I explain the proof that the integral tropical homology groups of a non-
singular tropical hypersurface in a toric variety satisfy a version of the Lefschetz
hyperplane section theorem. Our main goal for proving a tropical version of the
Lefschetz section theorem is establish conditions under which the integral tropical
homology groups of hypersurfaces are torsion free. The motivation behind proving
the torsion freeness of the integral tropical homology groups is to establish equality
of the dimensions of the Z2-tropical homology groups and the Hodge numbers of
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complex hypersurfaces of toric varieties. By [5], the dimensions of the Z2-tropical
homology groups bound Betti numbers of real algebraic hypersurfaces near the
tropical limit.

The (p, q)-th tropical homology group of a polyhedral complex Z is denoted
Hq(Z;FZ

p ) and the Borel-Moore homology group is denoted HBM
q (Z;FZ

p ). When

a polyhedral space Z is compact then Hq(Z;FZ
p ) = HBM

q (Z;FZ
p ). Here FZ

p

is the p-th multi-tangent cosheaf on the polyhedral space Z. For a non-singular
tropical hypersurfaceX in a tropical toric variety Y to satisfy the Lefschetz section
theorems we require two main assumptions. Firstly, the hypersurface must be
combinatorially ample in Y . in short this condition implies that each connected
component of the complement Y \X has the tropical homology of Rr × Ts for
some r and s, where T = [−∞,∞). We also require that the pair (Y,X) be a
cellular pair. This means that the polyhedral complex obtained by considering
the subdivision of Y induced by X satisfies that its one point compactification is
a regular CW complex. This condition is required in order to use the description
of tropical homology as cellular cosheaf homology. The tropical Lefschetz section
theorem for hypersurfaces is the following.

Theorem 1. Let X be a non-singular and combinatorially ample tropical hyper-
surface of an n+ 1 dimensional non-singular tropical toric variety Y . Then there
are maps

i : HBM
q (X ;FX

p )→ HBM
q (Y ;FY

p )

which are isomorphisms when p+ q < n and surjections when p+ q = n.
If moreover (Y,X) is a cellular pair, then there are maps

i : Hq(X ;FX
p )→ Hq(Y ;FY

p )

which are isomorphisms when p+ q < n and surjections when p+ q = n.

The proof of this theorem is established by considering the following exact
sequences of cosheaves:

0→ FY
p |X → FY

p → Qp → 0 and 0→ FX
p → FY

p |X → Np → 0.

Once we establish the vanishing of the homology of the cosheaves Qp and Np up
to the appropriate degrees, the main theorem follows from the long exact sequence
in homology.

The assumption that the tropical hypersurface be combinatorially ample is nec-
essary for Theorem 1 to hold, just as ampleness of the divisor in question is nec-
essary for the classical Lefschetz section theorem to hold. Consider the standard
tropical hyperplane X ⊂ Rn+1. We can compactify X in the tropical toric variety
Y corresponding to the blow up of Pn+1 in a toric invariant fixed point. It can be
computed that rankH1(X,FX

1 ) = 1 whereas rankH1(Y,FY
1 ) = 2. Therefore, the

map H1(X,FX
1 )→ H1(Y,FY

1 ) is not an isomorphism.
Tropical homology with real or rational coefficients is the homology of the

cosheaf of real vector spaces Fp ⊗ R or Fp ⊗ Q, respectively. We wish to re-
mark that a variant of Theorem 1 holds in the case of tropical homology with real
coefficients for a singular tropical hypersurface X in a tropical toric variety Y .



Tropical Geometry: new directions 1269

To conclude torsion freeness of tropical homology in the case when X is compact
we combine Theorem 1 with the integral version of tropical Poincaré duality from
[3].

Corollary 1. The integral tropical homology groups of a non-singular tropical
hypersurface of a non-singular compact tropical toric variety are torsion free.

The following theorem establishes a relation between the Euler characteristics of
the chain complexes of tropical chains and the χy-characteristics using the tropical
description of the motivic nearby fibre from [4].

Theorem 2. Let X be an n-dimensional non-singular tropical hypersurface in a
non-singular tropical toric variety Y . Let XC be a complex hypersurface torically
non-degenerate in the complex toric variety YC such that X and XC have the same
Newton polytope. Then

(−1)pχ(CBM
• (X ;FX

p )) =

n∑

q=0

ep,qc (XC),

and thus

χy(XC) =

n∑

p=0

(−1)pχ(CBM
• (X ;FX

p ))yp.

As corollaries of Theorems 1 and 2, we can relate the ranks of the tropical
homology groups to the Hodge numbers of complex hypersurfaces in the compact
case, and to the Hodge-Deligne numbers for hypersurfaces in the torus for tropical
hypersurfaces in Rn+1 [1].

Corollary 2. Let X be a non-singular and combinatorially ample compact tropical
hypersurface in a non-singular compact toric variety Y and assume that X has
Newton polytope ∆. Let XC be a torically non-degenerate complex hypersurface in
the compact toric variety YC also with Newton polytope ∆. Then for all p and q
we have

dimHp,q(XC) = rankHq(X ;FX
p ).

Corollary 3. Let X be a non-singular tropical hypersurface in Rn+1 and assume
that X has Newton polytope ∆. Let XC be a torically non-degenerate complex
hypersurface in (C∗)n+1 also with Newton polytope ∆. Then

rankHBM
n−p(X ;Fp) =

n−p
∑

q=0

hp,q(Hn
c (XC)).
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[1] V. I. Danilov and A. G. Khovanskĭı. Newton polyhedra and an algorithm for calculating
Hodge-Deligne numbers. Izv. Akad. Nauk SSSR Ser. Mat., 50(5):925–945, 1986.

[2] Ilia Itenberg, Ludmil Katzarkov, Grigory Mikhalkin, and Ilia Zharkov. Tropical homology.
arXiv preprint arXiv:1604.01838, 2016.

[3] Philipp Jell, Johannes Rau, and Kristin Shaw. Lefschetz (1,1)-theorem in tropical geometry.
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What is the fundamental group of a tropical curve?

Martin Ulirsch

(joint work with Yoav Len, Mattia Talpo, and Dmitry Zakharov)

An (abstract) tropical curve Γ is a finite metric graph Γ = (G = (V,E, L), |.| : E →
R>0) (multi-edges, loops, and legs, denoted by L, are allowed) together with an
integer vertex weight h : V → Z. Suppose further that G is connected. The topo-
logical fundamental group π1(G) of the underlying graph G is a finitely generated
free group that classifies all topological covers. One might suspect that this is all
there is. We argue, however, that there are at least three other candidates that
answer the question in the title.

The crucial technical ingredient to make sense of these answers is the theory
of graphs of groups, originally due to Bass [Bas93] and Serre [Ser77]. A graph of
groups G consists of the following data:

• a finite graph G;
• groups Gv for every vertex v ∈ V (G), Ge for every finite edge e ∈ E(G),

and Gl for every leg l ∈ L(G), as well as
• injective homomorphisms ie,v : Ge → Gv and ie,v′ : Ge → Gv′ for every

edge e connecting v to v′ and an injective homomorphism il : Gl → Gv for
every leg l emanating from v.

This datum formalises the original heuristic that graphs of groups are a graph-
theoretic analogue of orbifolds. We may define the fundamental group π1(G) as
the amalgamated product of π1(G) (generated by the edge classes [e] in a comple-
ment of a spanning tree) with all the Gv (for v ∈ V (G)) subject to the relations
[e]ie,v′(ge)[e]

−1 = ie,v′(ge) for all edges e = [v, v′] and ge ∈ Ge.
We associate to a tropical curve Γ a graph of groups G(Γ) and and think of

the fundamental group of G(Γ) as the fundamental group of Γ. There are at least
three ways of doing so:

(1) Endow every vertex v ∈ V (G) with the free group Fh(v) and every edge and
leg with the trivial group. This approach turns out be very useful when
trying to give a modular interpretation of tropical Teichmüller space, as
introduced in [CMV13].

(2) Endow every edge with a copy of Z and every vertex with the group
Zval(v). With this approach one finds a fundamental group that classifies
unramified finite harmonic morphisms to the metric graph (G, |.|) (joint
work in progress with Y. Len and D. Zakharov).

(3) Endow every edge with a copy of Z and every vertex with the fundamental
group of val(v)-pointed Riemann surface of genus h(v). This fundamental
group classifies realizations of admissible covers of tropical curves in the



Tropical Geometry: new directions 1271

sense of [CMR16] (joint work in progress with M. Talpo). This idea is
already present in the work of Ekedahl [Eke95] and Säıdi [Säı97].

The last approach allows for several applications: For once, we can use this
to reprove the classical correspondence between algebraic and tropical Hurwitz
numbers as in [BBM11, CJM10]. It also allows us to find a logarithmic/tropical
reinterpretation of the compactification of the moduli space of curves with Te-
ichmüller level structures constructed in [ACV03].
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Tropical geometry appearing in sandpile model

Nikita Kalinin, Mikhail Shkolnikov, Andrea Sportiello

The discussion concerned the relation between tropical geometry and sandpile
models. The Abelian Sandpile [8] is a cellular automaton, popular because of
its connections with combinatorics, number theory, and statistical mechanics. In
its most basic realisation, it is defined by an underlying graph, and an initial
configuration (that relaxes through an ‘avalanche’). As common in lattice models
of statistical mechanics, we are interested in the asymptotic properties as the
lattice mesh goes to zero, so in particular we will have a family of graphs and
initial configurations. Here is one of its versions, in which the graph is a portion
of the square grid: we consider a convex domain Ω ⊂ R2, and let the graph be
Γh = Ω∩hZ2 where h, the lattice spacing, will tend to zero in the limit. Choose a
finite subset P in Ω, and set the initial configuration at mesh parameter h as equal
to three on every vertex of Γh, except for the points which best approximate P
on the graph, where it is valued four. We think of these numbers as the numbers
of grains at the corresponding vertices. Then, perform a relaxation: while it is
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possible, choose a vertex with at least four grains and redistribute four grains from
it to its neighbours in hZ2. Grains falling outside of Γh disappear.

It was noted long ago [7] that processes in this fashion produce outcome con-
figurations with peculiar regular patterns. In particular, it is frequent to observe
linear defects in otherwise locally biperiodic configurations, these defects meet in
(generically) trivalent vertices, which satisfy remarkable conservation laws [9, 2],
implied by circuitation arguments on the function that records the number of top-
plings of the avalanche (which, in these cases, is piece-wise linear). A striking fact
is that these rules are analogous to the ones which describe tropical curves in the
plane in terms of their elementary linear portions, the sole modification being due
to the intrinsic discreteness of the underlying space. The special initial configura-
tions described above are taylored as to isolate the features of these defect lines,
from other features, such as the emergence of two-dimensional fractals filled with
biperiodic patterns, which are present in the Sandpile Model, but, as far as we
presently know, have no counterpart in the tropical context.

In particular, Kalinin and Shkolnikov showed in [5, 4, 3] that, for these graphs
and initial configurations, the result of the relaxation is a state which is equal to
three everywhere except a set Ch of vertices of Γh which are close to a tropical
curve C ⊂ Ω passing through P , and Ch tends to C as h→ 0. The curves resulting
from this procedure have a number of marked points, |P |, equal to the genus of
the closure C of the curve.

Caracciolo, Paoletti and Sportiello [10] enlarge the spectrum of the analogy
with tropical curves, by introducing ‘anti-toppling’ operators (which consist of
removing one grain, and then perform an inverse avalanche). A toppling at a give
site, followed by the anti-toppling at the same site, in a sandpile configuration
appearing as the discrete counterpart of a tropical curve, produces a modification
of the curve analogous to the ‘breathe’ operation in Knutson–Tao honeycombs (see
e.g. [11]). As emerging from observations of Mikhalkin, the significance of the anti-
toppling operations in the tropical context is that they allow to explore the space
of moduli of tropical curves in which the number of marked points is smaller than
the genus of C. Furthermore, the use of anti-toppling operators makes feasible the
study of the sandpile/tropical curve analogy also for curves on the torus, where, in
absence of anti-topplings, the sandpile avalanches would become infinite, and the
outcome configurations would not be defined. We performed a preliminary study of
the steady-state probability distribution for genus-2 curves with no marked points,
on a generic torus, under the Markov dynamics of random breathe operations
induced by the uniform measure on the torus. The results suggested a complex
situation, in which the relation between the steady-state probability distribution
and the measure induced by the natural parametrisation of the curves is still to
be clarified.

On top of these conversations, M. Shkolnikov also presented his recent results
[1] on the extended sandpile group: namely, the sandpile group can be naturally
embedded to a real torus, and in this framework rescaling of the domain and a con-
tinuous flow make sense. Numerical explorations of special “harmonic” directions
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Figure 1. On the left: the outcome configuration, when Ω is
a rectangle and P consists of a single point, in the position of te
yellow arrow. On the right: the configuration resulting from an
anti-toppling at the previous position, followed by the addition
of an extra grain of sand in the position of the new arrow. Note
that the genus of the curve has increased. The dotted trapezoid
illustrates an instance of the breathe operation.

in this flow see again the emergence of regular fractal structures (which are present,
for example, not only in the identity configuration zid, but also in configurations
which are of small order in the sandpile group, say z such that z ⊕ · · · ⊕ z = zid
for a number Θ(1) of summands). In particular, one can prove that there is a
monomorphism between the sandpile group of the squares if a certain divisibility
condition is satisfied, see [6].
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Relative Orientability, Lifted Cobordisms, and WDVV-Type Relations
for Real Gromov-Witten Invariants

Xujia Chen

The Gromov-Witten (or GW) invariants of a symplectic manifold (X,ω) are counts of
(pseudo-) holomorphic curves arising from classical enumerative geometry, sym-
plectic topology, and string theory. These invariants enumerate J-holomorphic
curves, for an ω-tame almost complex structure J on X , that represent a fixed
element of H2(X) and pass through submanifolds H1, . . . , Hl ⊂ X . The result-
ing numbers do not depend on J or the choices of Hi in their homology classes
[Hi] ∈ H∗(X).

WDVV equations of string theory relate genus 0 GW-invariants representing
different elements ofH2(X); they are equivalent to the associativity of the quantum
product on H∗(X). These equations determine all counts of rational curves in
many important smooth projective varieties. Kontsevich’s recursion, proved by
Ruan-Tian in the early 90s, explicitly demonstrates this phenomenon in the case
of the complex projective plane P2.

A real symplectic manifold (X,ω, φ) is a symplectic manifold together with an
anti-symplectic involution φ. We denote by J φ

ω the space of ω-tame almost com-
plex structures J on X such that φ∗J = −J . The fixed locus Xφ is then a
Lagrangian submanifold of (X,ω) which is totally real with respect to any J ∈J φ

ω .
A curve C⊂X is called real if φ(C) = C.

Welschinger [8, 9] defined invariant signed counts of real genus 0 J-holomorphic
curves in real symplectic manifolds (X,ω, φ) of dimensions 4 and 6. Solomon
interpreted Welschinger’s invatiants as holomorphic disk counts in [6] and proposed
WDVV-type relations for them in [7]. He also suggested an adaption of Ruan-
Tian’s homotopy style approach for proving his relations.

My recent work [2] established Solomon’s relations for Welschinger’s invariants
of real symplectic 4-folds and led to their analogues for real symplectic 6-folds with
some symmetry in [4]. As indicated in [3], these relations determine all counts of
real rational curves in many important real projective varieties. They also recover
the predictions of Alcolado [1] for extended Frobenius manifold structures for P2 and
P3 and establish their existence for other real symplectic 4- and 6-folds. The proofs
of these relations, outlined below, are based on lifting homology relations via the
usual forgetful morphisms together with suitably chosen cobordisms; this makes it
possible to determine the wall-crossing effects coming from the obstructions to the
relative orientability of the relevant morphisms.

For B∈H2(X), let Mk,l(B; J) be the moduli space of irreducible degree B real
rational J-holomorphic curves in X with k real marked points and l conjugate
pairs of marked points and Mk,l(B; J) be its stable map compactification. The
latter is a stratified space with Mk,l(B; J) as the top-dimensional stratum. The
codimension 1 strata consist of curves with two real components. The domain and
target of the natural evaluation morphism

ev : Mk,l(B; J) −→ (Xφ)k×X l
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may not be orientable, but this morphism becomes relatively orientable (i.e. the
pull-back of the first Stiefel-Whitney class w1 of the target is the w1 of the do-
main) after removing certain codimension 1 strata from the domain. We call these
codimension 1 strata bad strata.

LetMk′,l′ be the Deligne-Mumford moduli space of k′ real marked points and l′

conjugate pairs of marked points on P1 with the standard real structure (i.e. z→z).
For k ≥ k′ and l ≥ l′, let

f : Mk,l(B; J) −→Mk′,l′

be the natural forgetful morphism (forgetting all data except for the first k′ real
and l′ conjugate pairs of marked points). We choose a bordered hypersurface Υ
in Mk′,l′ , with (k′, l′) being (1, 2) or (0, 3), so that ∂Υ consists of certain curves
with three components and a conjugate pair of nodes.

Let C⊂Xk,l be a generic constraint so that the intersection

Mk,l(B; J)
ev×fk′,l′−−−−−→ Xk,l×Mk′,l′ ⊃ C×Υ

is transverse and

dim Mk,l(B; J) + dim
(
C×Υ

)
= dim

(
Xk,l×Mk′,l′

)
+ 1 .

The intersection numbers then satisfy

(∗) Mk,l(B; J) · (C×∂Υ) = ± 2 (bad strata) · (C×Υ);

see also Figure 1 in [2]. The right-hand side of (∗) is the wall-crossing correction
to lifting the homology relation on Mk′,l′ determined by ∂Υ via the forgetful

morphism f. This correction arises from crossing the bad strata of Mk,l(B, J),
i.e. the strata that obstruct the orientability of the evaluation morphism. The
identity (∗) and the splitting formulas, which express the counts of reducible curves
appearing in (∗) in terms of counts of their irreducible components, yield the
desired WDVV relations.

In order to obtain a splitting formula for the counts of two-component curves on
the right-hand side of (∗), the bounding hypersurface Υ needs to be chosen subject
to certain topological conditions. If dimX=4, the counts of the three-component
curves on the left-hand side of (∗) reduce to counts of irreducible curves just as
in [5]. If dimX=6, a splitting formula for the curve counts on the left-hand side
of (∗) is obtained in the presence of a finite group G of automorphisms of (X,ω, φ)
satisfying some conditions; see Definition 1.1 in [4]. If (X,ω, φ) is P3 with the
Fubini-Study symplectic form and its standard conjugation, G can be taken to be
the group generated by a reflection about a real hyperplane. Mikhalkin used such
a reflection in 2003 to note that Welschinger’s invariants of P3 in even degrees
vanish. A similar vanishing phenomenon underpins the splitting formula for the
right-hand side of (∗) in [4].
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The local real Gromov-Witten theory of curves

Penka Georgieva

In the talk we present the results of a joint work with E. Ionel on the real Gromov-
Witten theory of local 3-folds over real curves. We show that this gives rise to a
2-dimensional Klein TQFT defined on an extension of the category of unorientable
surfaces. We use this structure to completely solve the theory by providing a closed
formula for the local RGW invariants in terms of representation theoretic data,
extending earlier results of Bryan and Pandharipande. As a consequence we obtain
the local version of the real Gopakumar-Vafa formula that expresses the connected
real Gromov-Witten invariants in terms of integer invariants. In the case of the
resolved conifold the partition function of the RGW invariants agrees with that of
the SO/Sp Chern-Simons theory.

Computing zero-dimensional tropical varieties

Yue Ren

This talks touches upon some recent algorithmic and computational developments
regarding tropicalizations of affine varieties. In particular, we will discuss the
challenges of computing zero-dimensional tropical varieties. The motivation is
twofold:

(1) Zero-dimensional tropical varieties play a central role in the computation
of general tropical varieties [5].

(2) The recent resurgence of activity in the study of tropical lines on cubic
surfaces, tropical bitangents to plane quartic curves, tropical tritangents to
space sextic curves, etc, all of which are zero-dimensional tropical varieties.
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We will show how zero-dimensional tropical varieties can be efficiently com-
puted using projections, similar to Hept-Theobald’s algorithm for general tropical
varieties and Chan’s specialised algorithm for tropical curves. Analysing this idea,
we provide a brief argument for why the complexity of computing tropical varieties
is dominated by the Groebner walk, and how tropical algebraic computations over
p-adics can be orders of magnitudes faster by exploiting modular techniques [2].
All algorithms have been implemented in Singular [3].

We conclude the talk with a light demo of 3D printing tropical curves, tropical
surfaces and combinations theoreof using the newest release of polymake [4] and
blender [1].

The first part of the talk is joint work with Paul Görlach (MPI MiS Leipzig),
Leon Zhang (UC Berkeley), the second part of the talk is joint work with Ronald
Kriemann (MPI MiS Leipzig) and Henryk Nagel (TU Berlin).
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Properties of the tropical cycle class map

Andreas Gross

(joint work with Farbod Shokrieh)

Introduced by Itenberg, Katzarkov, Mikhalkin, and Zharkov [1], tropical homol-
ogy groups are a new tool to associate algebraic invariants to the spaces appearing
in tropical geometry. They are generalizations of the singular homology groups
of these spaces that takes into account the piecewise linear structures appearing
in tropical geometry. Eventually, one would like the theory of tropical homology
groups to be similarly well-developed as the theory of singular homology groups
in the sense that it satisfies certain functoriality properties and identities. In our
work, we take a big step in this direction by relating the tropical homology groups
to invariants coming from sheaf theory. More precisely, we exhibit the tropical
homology groups as certain Ext-groups of the sheaves of tropical forms and the
dualizing complex. The desired functoriality properties then follow directly from
the functoriality properties of tropical forms and the dualizing complex. For exam-
ple, we immediately obtain a proper push-forward and tropical cross products for
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tropical homology classes. We also obtain a very general definition of the tropical
cycle class map which associates a tropical homology class to every tropical cycle.
As we work in a sheaf-theoretic setup that is local by nature, our definition does
not involve any global choices like that of polyhedral structures of triangulations.
Most of the identities we want to prove about the tropical cycle class map reduce
to local computations in our setup. For example, we show that the tropical cycle
class map respects cross products, proper push-forwards, and intersections with
tropical Cartier divisors. Unfortunately, not all identities are immediately reduced
to local computations. Notably, this fails when one wants to prove that the cycle
class of an intersection product is the intersection of the cycle classes. The reason
for this failure is that the intersection of the cycle classes is of a global nature,
even though the tropical intersection product is local. We are thus forced to take
a different approach in proving this, and we strongly believe it is possible via a
cocycle class map that associates a tropical cohomology class to every tropical
cocycle. The first problem we encountered here is that the notion of tropical co-
cycles has not been known to be dual to the notion of tropical cycles on tropical
manifolds. This is a local statement and we proved it by using the isomorphism
between tropical cocycles on a tropical linear space respecting a given polyhedral
structure and the Chow rings of the associated toric variety. We then showed that
the Chow ring (with integer coefficients) of a toric variety whose fan is supported
on a tropical linear space is a Poincaré duality ring, a statement which we believe
is of independent interest. Poincaré duality for these Chow rings then implies the
duality between cycles and cocycles on tropical manifolds.
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Tropical Jucys Covers and applications

Marvin Anas Hahn

(joint work with D. Lewanski; F. Leid, J.W. van Ittersum)

Hurwitz numbers enumerate branched morphisms between Riemann surfaces with
fixed genera and fixed ramification data. These topological invariants play a sig-
nificant role in several areas of mathematics, such as algebraic geometry, algebraic
topology, representation theory, Gromov-Witten theory and many more. There
are several interesting cases of Hurwitz numbers, obtained by specifying a certain
kind of ramification data. In this talk, we discuss two of the most important cases:
Double Hurwitz numbers and simple Hurwitz numbers for elliptic base curves. In
order to define double Hurwitz numbers, we consider a non-negative integer g
and partitions µ, ν of a positive integer d. We say branched degree d morphisms
f : S → P1 is of type (g, µ, ν), if S is of genus g, f ramifies with profile µ over
0, ν over ∞ and (2, 1, . . . , 1) over b = 2g − 2 + ℓ(µ) + ℓ(ν) fixed points on P1.
Furthermore, we call two covers f : S → P1, f ′ : S′ → P1 equivalent, if there exists
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an isomorphism g : S → S′, such that f = f ′ ◦ g. We then define the double
Hurwitz numbers as Hg(µ, ν) =

∑

[f ]
1

|Aut(f)| , where we sum over all equivalence

classes of branched morphisms of type (g, µ, ν).
It turns out that double Hurwitz numbers admit a piecewise polynomial struc-

ture. To be more precise, we define the parameter space of all tuples of partitions
(µ, ν) of the same positive integer and with fixed lengths m,n as

(1) Wm,n = {(µ, ν) ∈ Nm × Nn |
∑

µi =
∑

νj}.
Furthermore, for fixed I ⊂ {1, . . . ,m}, J ⊂ {1, . . . , n}, we consider the hyper-

plane HI,J in W cut out by
∑

i∈I µi −
∑

j∈J νj = 0. The complement of the

hyperplane arrangement (HI,J)I,J for all possible choices I, J yields finitely many

open chambers Ci, such that W\{(HI,J)I,J} =
⊔
Ci. It was proved in [8] that

the function Hg : Ci → Q, (µ, ν) 7→ Hg(µ, ν) is polynomial, i.e. there exists
a polynomial Pi ∈ Q[x1, . . . , xm, y1, . . . , yn], such that Pi(µ, ν) = Hg(µ, ν) for all
(µ, ν) ∈ Ci. Furthermore, for adjacent chambers Ci, Cj , it was proved in [17, 3, 16]
that Pi − Pj may be expressed in terms of Hurwitz numbers with smaller input
data. We want to highlight the approach taken in [3], which starts from a tropical
expressions of double Hurwitz numbers and proceeds with an involved combina-
torial analysis of the space of possible weightings of the corresponding tropical
covers.

We further note that there is a beautiful description of double Hurwitz numbers,
which is essentially due to Hurwitz [15]. Namely, we have that Hg(µ, ν) is equal
to 1

d! times the numbers of tuples (σ1, σ2, τ1, . . . , τb) of elements in the symmetric
group Sd, such that

• σ2 = τb · · · τ1σ1;
• the cycle type of σ1 (resp. σ2) is µ (resp. ν) and the τi are transpositions
• the group generated by σ1, σ2, τ1, . . . , τb is a transitive subgroup of Sd.

We now turn our attention to so-called simple Hurwitz numbers for elliptic base
curves. The term simple stems from the fact that one calls branch points with
profile (2, 1, . . . , 1) simple branch points and that we will only allow such ramifica-
tion. More precisely, we fix positive integers g, d ≥ 1, an elliptic curve E and call a
branched degree d morphism f : S → E elliptic of type (g, d) if S is of genus g and
f ramifies with profile (2, 1, . . . , 1) over 2g − 2 fixed points in E. With the same
notion of equivalence of covers as before, we define Ng,d =

∑

[f ]
1

|Aut(f)| , where we

sum over all elliptic branched morphisms of type (g, d). A remarkable result due
to Dijkgraaf [4] states that for g ≥ 2 the generating function

(2)
∑

d

Ng,dq
d

is a quasimodular form, i.e. it may be expressed as polynomials in Eisenstein series.
In particular, Dijkgraaf’s result implies that for fixed g there exists dg, such that
the numbers Ng,d with d ≤ dg determine all numbers Ng,d. There are now many
different proofs for this result (and various generalisations). We want to highlight
the following result (conjectured in [2] and proved in [9]), which is a refinement of
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(2): The numbers Ng,d may be naturally written as finite sums of contributions
NΣ

g,d of tropical covers with combinatorial type Σ, such that
∑

d>0N
Σ
g,dq

d is a
quasimodular form as well. In particular, this gives a new proof of Dijkgraaf’s
theorem.

Similar to double Hurwitz numbers, simple Hurwitz numbers for elliptic base
curves admit a description in terms of factorisations in the symmetric group.
More precisely, the invariant Ng,d is equal to 1

d! times the number of tuples
(τ1, . . . , τ2g−2, α, β) with τi ∈ Sd transpositions and α, β ∈ Sd arbitrary, such
that

• we have τb · · · τ1 = αβα−1β−1;
• the group generated by τ1, . . . , τb, α, β is a transitive subgroup of Sd.

In recent years several variants of Hurwitz numbers have appeared in the litera-
ture. One of the most inticing ones are the variants called monotone Hurwitz num-
bers. Surprisingly, they originate from the theory of random matrix theory where
they appear as coefficients in the Maclaurin expansion of the Harish-Chandra–
Itzykson–Zuber integral [7].

These enumerants are analogues of classical Hurwitz numbers where we ob-

tain the monotone double Hurwitz numbers ~Hg(µ, ν) and the monotone Hurwitz

numbers for elliptic base curves ~Ng(µ, ν) by considering the above enumerations
of factorisations in the symmetric group with the additional condition that for
τi = (risi) with ri < si, we have si ≤ si+1. A common theme in monotone Hur-
witz theory is that monotone Hurwitz numbers share a lot of structural properties
with their classical analogues, although the proofs may be quite different.

In this spirit, we want to study the polynomial behaviour of ~Hg(µ, ν) (see
[6, 10, 11] for several advances to this problem) and the quasimodular behaviour of
~Ng(µ, ν). Motivated by the success of the tropical theory in studying the classical
numbers, we start by deriving a tropical correspondence theorem for the monotone
enumerants. While a tropical interpretation already appeared in [5, 10], it is
not suitable for our purpose. Therefore, in a joint work with D. Lewanski [13],
we start with a representation theoretic expression of monotone double Hurwitz
numbers derived in [1] in terms of the fermionic Fock space. Via the Boson-
Fermion correspondence, we obtain an expression in terms of the bosonic Fock
space, which is well-known to yield an interpretation in the language of tropical
covers. Surprisingly, the tropical covers involved may have less branch points than
their classical analogues and are weighted by Gromov-Witten invariants. This
points to an unknown non-trivial geometric connection. Furthermore, for partitons
λ (resp. λ′) of 2g− 2 + ℓ(µ) + ℓ(ν) (resp. 2g − 2), we find natural decompositions
~Hg(µ, ν) =

∑

λ
~Hλ
g (µ, ν) and ~Ng,d =

∑

λ′

~Nλ′

g,d, such that

• the function ~Hλ
g : Ci → Q (µ, ν) 7→ ~Hλ

g (µ, ν) is given by a polynomial Qλ
i .

Moreover, for adjacent chambers the difference Qλ
i −Qλ

j may be expressed

in terms of the numbers Hλ
g with smaller input data (see [14])

• for g ≥ 2, the generating series
∑

dN
λ
g,dq

d is a quasimodular form (see

[12]).
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Periods of tropical K3 hypersurfaces

Yuto Yamamoto

Let M be a free Z-module of rank 3 and N := Hom(M,Z) be the dual lattice. We
set MR := M ⊗Z R and NR := N ⊗Z R = Hom(M,R). Let ∆ ⊂ MR be a smooth
reflexive polytope of dimension 3, and ∆̌ ⊂ NR be the polar polytope of ∆. Let
further Σ be the normal fan to ∆. We consider a tropical Laurent polynomial

f(x) = max
n∈∆̌∩N

{a(n) + n1x1 + n2x2 + n3x3} .

Let V (f) ⊂ R3 be the tropical hypersurface defined by f . We construct a 2-sphere
B equipped with an integral affine structure with singularities by contracting V (f)
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in the way of Gross–Siebert program [1], [2]. Let ι : B0 →֒ B denote the comple-
ment of singularities of B. Let further TZ be the local system on B0 of integral
tangent vectors. The cohomology group H1(B, ι∗TZ) has the cup product

∪ : H1(B, ι∗TZ)⊗H1(B, ι∗TZ)→ H2(B, ι∗ ∧2 TZ) ∼= Z

induced by the wedge product. Let Y be an anti-canonical hypersurface of the
complex toric variety XΣ associated with Σ, and

Pic(Y )amb := Im (Pic(XΣ) →֒ Pic(Y ))

be the sublattice of Pic(Y ) coming from the Picard group of the ambient space.
Each element n ∈

(
∆̌ ∩N

)
\{0} is the primitive generator of a 1-dimensional cone

in Σ. We write the toric divisor corresponding to this cone as Dn ∈ Pic(XΣ).

Theorem 1. (1) There is a primitive embedding

ψ : Pic(Y )amb →֒ H1(B, ι∗TZ),

that preserves the pairing.
(2) The radiance obstruction cB of B is given by

cB =
∑

n∈(∆̌∩N)\{0}

{a(n)− a(0)}ψ(Dn).

Let K := C {t} be the convergent Puiseux series field, and f =
∑

n∈∆̌∩N knx
n ∈

K[x±1 , x
±
2 , x

±
3 ] be a Laurent polynomial over K in three variables. For a sufficiently

large R ∈ R>0, we set fR := f |t=1/R ∈ C
[
x±1 , x

±
2 , x

±
3

]
, and let VR denote a mini-

mal model of {fR = 0}. Here VR is mirror to Y . We consider the one-parameter
family {VR}R of complex K3 hypersurfaces. The period map of this family can be
written as

P : (R0,∞)→{[σ] ∈ P ((U ⊕ Pic(Y )amb)⊗ C)|(σ, σ) = 0, (σ, σ) > 0}
∼= {σ ∈ Pic(Y )amb ⊗ C|(Reσ,Re σ)> 0} ,

where U denotes the hyperbolic plane. Let V (trop(f)) be the tropical hypersurface
defined by the tropicalization of f . We construct a 2-sphere B with an integral
affine structure with singularities by contracting V (trop(f)).

Corollary 1. The leading term of the period map P(R) is given by

P(R) ∼ logR · ψ−1(cB) (R→ +∞).

We can regard the element ψ−1(cB) ∈ Pic(Y )amb ⊗Z R as the “tropical period”
of B ∼= V (trop(f)).

Corollary 2. The element ψ−1(cB) ∈ Pic(Y )amb ⊗Z R satisfies

(ψ−1(cB), ψ−1(cB)) > 0.

This inequality is the one which ψ−1(cB) should satisfy in order to make the
leading term of the period map satisfy Hodge–Riemann bilinear relation. Hence,
it can be regarded as the tropical version of Hodge–Riemann bilinear relation.
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There are several previous studies on the relationship between periods and
tropical geometry. It is known that the valuation of the j-invariant of an elliptic
curve over a non-archimedean valuation field coincides with the cycle length of
the tropical elliptic curve obtained by tropicalization [4], [5]. The definition of
periods for general tropical curves was given in [6]. It was also shown in [3]
that the leading term of the period map of a degenerating family of Riemann
surfaces is given by the period of the tropical curve obtained by tropicalization.
Ruddat–Siebert computed periods of toric degenerations constructed from wall
structures [7]. They calculated the integrations of holomorphic volume forms over
cycles constructed from tropical 1-cycles on the intersection complex of the central
fibers.
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Reduction and lifting of Berkovich curves with differentials

Ilya Tyomkin

(joint work with Michael Temkin)

In a recent paper [3], Bainbridge, Chen, Gendron, Grushevsky, and Möller studied
what they called Incidence compactification of strata of abelian differentials. For a
given pattern of zeroes (and poles) µ ∈ Nr, they considered pairs (C, p;ω) consist-

ing of a smooth projective curve C with r marked points p, and a (meromorphic)
differential form ω up-to a multiplicative scalar, such that div(ω) =

∑
µipi. The

incidence compactification then is the closure of this locus in the projectivized
Hodge bundle on Mg,r. The main result of [3] provides an explicit description of
complex points of the incidence compactification in terms of level graphs (func-
tions) and twisted differentials satisfying the usual compatibilities and a new strik-
ing condition introduced in [3] - the global residue condition for twisted differentials
with respect to a level function.
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The results of [3] have many important applications. In particular, Möller,
Ulirsch, and Werner used [3] to provide a description of the liftable loci in the
canonical systems on tropical curves [5]. More explicitly, given a tropical curve Γ
and a divisor D in the canonical system on Γ, Möller, Ulirsch, and Werner provide
a purely combinatorial necessary and sufficient condition for the pair (Γ, D) to
be the tropicalization of a smooth curve X over a non-Archimedean field of zero
equicharacterstic and an effective canonical divisor K on X .

In our work we studied meromorphic differential forms on nice k-analytic curves,
i.e., quasi-smooth connected compact separated strictly k-analytic curves. One of
our motivations was to find a Berkovich analytic proof of the main result of [3].
Starting with a nice curve X equipped with a non-zero meromrphic differential
ω we describe a natural tropicalization datum associated to the pair. If (X,ω) is
the analytification of an algebraic pair then the datum we associate to it almost
coincides with the datum of [3] and [5], but in addition we associate a canonically
defined residue function on the set of oriented edges of the skeleton Γ of (X, div(ω))
with values in k. The residue function R satisfies the very common in Berkovich ge-
ometry harmonicity condition: for any vertex x of Γ we have

∑

e∈Star(x)R(e) = 0.

If (X,ω) is the analytification of an algebraic pair then the harmonicity condition
of R together with its compatibility with the residues of the associated twisted
differential implies the global residue condition of [3].

Our main result is the lifting theorem asserting that given a tropical datum
satisfying natural compatibility conditions and such that the residue function is
harmonic, there exists a nice k-analytic curveX with a meromorphic differential ω,
whose tropicalization coincides with the given datum. The proof of the theorem is
based on the key lemma asserting that for any differential form ωA on an analytic
annulus A = M{t, rt−1} that has neither zeroes nor poles, there exists a good
analytic coordinate s on A such that ωA = adsn+Rds

s . The main conclusion from
the key lemma is that a differential form on an annulus without zeroes and poles
is determined by its norm and its residue uniquely up-to an orientation preserving
automorphism. We shall emphasize that a similar lemma about the existence of
good coordinates in the case of differential forms on small punctured complex discs
was one of the ingredients also in the complex-analytic proof of the main theorem
in [3]. Good coordinates allow us to patch local liftings along annuli similarly to
the patchings of coverings of curves in the work of Amini, Baker, Brugallé, and
Rabinoff [1, 2] in characteristic zero, and in the work of Brezner and Temkin [4]
in positive characteristic. Also in the problem of patching of coverings of curves
there were similar key lemmas providing explicit description of isomorphism classes
of coverings of annuli, see e.g., [4, Thm. 4.3.8, Cor. 4.3.9]. To the best of our
understanding, the patching technique we use in the Berkovich-analytic setting is
a close analogue of the plumbing technique used in [3].

We shall also mention, that our tropical reduction datum contains one more
ingredient. Namely, for any oriented edge e of Γ with head x and tail y, consider
an open annulus whose skeleton is the edge e. Then the set of good coordinates
on the annulus induces a canonical identification of the torsors of good formal
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coordinates for the reduction (Cx, ωx) and (Cy, ωy) at the points corresponding to
e. This extra “stacky” piece of reduction is not needed in the proof of the lifting
theorem, but as it is absolutely canonical, we expect it to be useful for other
applications. The situation here is analogues to the tropical and stacky tropical
reductions introduced in [6]. In [6], one could prove the lifting result for regular
non-stacky tropical reductions, but for a correspondence theorem one had to work
with the stacky reductions.

A version of this talk was given previously at Oberwolfach during the Workshop
on Non-Archimedean Geometry and Applications in February 2019, [7].
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Connectivity of tropical varieties

Diane Maclagan

(joint work with Josephine Yu)

A key to the success of tropical geometry is that the tropicalization of a variety
has combinatorial structure. The goal of this talk was to describe some extra
structure (d-connectivity of the underlying complex) when the original variety is
irreducible.

Throughout we assume that X is a d-dimensional irreducible subvariety of
the algebraic torus, and trop(X) ⊂ Rn is the non-archimedean amoeba of X :
trop(X) = cl(X(K ′)), where K ′/K is a nontrivially valued algebraically closed
field.

A key result in this version of tropical geometry is the Structure Theorem, which
states that when X is irreducible of dimension d, the tropical variety trop(X) is
the support of a pure d-dimensional polyhedral complex that is connected through
codimension one. This connectivity means that one can walk from any facet of
the complex to any other by passing only through codimension one faces (ridges),
or equivalently that if every closed codimension-two face is removed, the space
remains connected.
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We note that the proof of this connectivity is significantly harder than the rest
of the theorem. Over an arbitrary field, there are versions using the connectivity
of the Berkovich space Xan [EKL06], or using tropical compactifications and deep
connectivity results from algebraic geometry [CP12]. The hardest part is the
connectivity of curves; one reduces to that case by slicing [BJSST07], [CP12].

The fact that tropical varieties are connected in this fashion has important
computational implications. The main software, gfan [Jen], to compute tropical
varieties makes crucial use of this fact, as it computes tropical varieties by (hy-
per)graph traversal. It is also an important part of the definition of an abstract
embedded tropical variety as the support of a pure weighted balanced R-rational
polyhedral complex that is connected through codimension one.

We now generalize this condition.

Definition 1. For a pure d-dimensional polyhedral complex, the facet-ridge hyper-
graph has vertices the facets (d-dimensional polyhedra) and hyperedges the ridges
(d− 1-dimensional polyhedra).

Example 1. When trop(X) is the standard tropical line in R2, the hypergraph
has three vertices, labelled 0, 1, 2, and one hyperedge {0, 1, 2} corresponding to the
origin.

When trop(X) is the standard tropical plane in R3, the hypergraph has six
vertices, which we label {01, 02, 03, 12, 13, 23}, and four hyperedges: {01, 02, 03},
{01, 12, 13}, {02, 12, 23}, and {03, 13, 23}. The vertices correspond to the two-
dimensional cones: 12 corresponds to pos(e1, e2. The hyperedges correspond to
the ridges, which are the rays of the fan, spanned by e0 = (−1,−1,−1), e1, e2 and
e3.

A hypergraph is connected if there is a path from any vertex to any other vertex
where each step connects two vertices that are both in some hyperedge. It is d-
connected if the hypergraph resulting from removing any d − 1 vertices and all
hyperedges containing them is still connected.

Theorem 1. Let K be a field of characteristic 0 which is either algebraically
closed, complete, or real closed with convex valuation ring. Let X be a d-dimensio-
nal irreducible subvariety of (K∗)n. The tropicalization trop(X) is the support
of a pure d-dimensional polyhedral complex Σ that is (d − ℓ)-connected through
codimension one, where ℓ is the dimension of the lineality space of Σ. In other
words, the facet-ridge hypergraph of this complex is (d− ℓ)-connected.

Most requirements on the field come from the requirement that the tropical-
ization of a curve be connected, and are already present in the presentation given
in [CP12]. This result can be considered a generalization of Balinski’s theorem
[Bal61] that the edge graph of a d-dimensional polytope is d-connected.

Example 2. The standard tropical line is the tropicalization of a line, which is
one-dimensional, so we expect the corresponding hypergraph to be 1-connected,
which means connected. This is the case. Similarly, the standard tropical plane in
R3 is the tropicalization of a plane, which is two-dimensional. The corresponding
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hypergraph remains connected when we remove any vertex and the two adjacent
hyperedges, so is 2-connected.

The idea of the proof is to slice to the curve case. This makes key use of a
toric Bertini theorem by Fuchs, Mantova, and Zannier [FMZ18], with additions
by Amoroso and Sombra [AS17] to prove a “tropical Bertini theorem”: (under
appropriate hypotheses) if Σ is the tropicalization of an irreducible variety, then
set of hyperplanes H for which Σ∩H is the tropicalization of an irreducible variety
is dense in the Grassmannian.
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Real algebraic curves with large finite number of real points

Alex Degtyarev

(joint work with Erwan Brugallé, Ilia Itenberg, Frédéric Mangolte)

We are interested in the maximal number δ(k) of real points of a real algebraic
curve C ⊂ P2 of degree d := 2k with finite real part RC. (With the usual abuse of
the language, we call C a finite real curve.) Asymptotically, we have

4

3
k2 . δ(k) .

3

2
k2.

For small degrees, the more precise upper and lower bounds are as follows:

k 1 2 3 4 5 6 7 8 9 10
δ(k) ≤ 1 4 10 19 31 46 64 85 109 136
δ(k) ≥ 1 4 10 19 30 45 59 78 98 123

Thus, the precise values are known only for k ≤ 4. We also have a bound

δg(k) ≤ k2 + g + 1

on the number of real points of a finite real curve C ⊂ P2 of degree 2k and a fixed
genus g; this bound is sharp if g ≤ k− 3. (Note that we do not assume the curves
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irreducible; therefore, the genus is defined via the relation 2−2g(C) = χ(C̃), where

C̃ is the normalization of C.)
Most upper bounds are of purely topological nature (essentially, the Petrovsky–

Comessatti inequality) and often are attained by pseudo-holomorphic curves. The
examples for the lower bounds are mainly constructed using patchworking and
squaring the coordinates (passing from a curve f(x, y) = 0 to f(x, y2) = 0 or
even f(x2, y2) = 0); the “elementary pieces” are curves in appropriate Hirzebruch
surfaces constructed via the techniques of dessins d’enfants.

Some of our results extend to finite real curves in other surfaces, most notably
rational ruled. For example, given a lattice polygon ∆ ⊂ R2, we construct a
sequence of curves Ck ⊂ Tor(∆), k ∈ Z+, in the corresponding toric variety, with
the Newton polygon 2k∆ and such that

|RCk| ≈
4

3
k2 Area(∆).

Most of these results are published in [1].
Our bounds are closely related to Hilbert’s 17-th problem. Denote by P2k the

cone of positive semi-definite ternary forms of degree 2k, and let Σ2k ⊂ P2k be
the subcone of the forms representable as a sum of squares of forms of degree k.
Given p ∈ P2k, let

hm(p) := min{h | pq ∈ Σ2h for some q ∈ P2h−2k},

and denote h(k) := max{hm(p) | p ∈ P2k}. Then, clearly,

δ(k) ≤ h(k)2.

The best known upper bound, due to Hilbert, is h(k) ≤ 2k − 2, and our bounds
on δ(k) imply the lower bound

h(k) &
2k√

3
.
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Round dances of points on a curve

Oleg Viro

In Russian folklore there are dances called khorovod’s . In a khorovod, dancers
move along a closed curve. The word khorovod is translated to English as round
dance. In this talk khorovods of points on a real algebraic curve are studied.
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1. Problems

Let X be a non-singular projective real algebraic curve, A = P1 + · · · + Pd,
P1, . . . , Pd ∈ RX be a simple real divisor. How can A move staying simple real
and belonging to the same linear equivalence class?

Denote by Emb(A,X) the space formed by such divisors. What is the funda-
mental group π1(Emb(A,X))?

Each loop L in Emb(A,X) is formed of d paths on RX . Considered as singular
1-simplices, the paths form a singular 1-cycle. The homology class of this 1-
cycle is called the trace of L, denoted by τ(L). It gives rise to a homomorphism
τ : π1(Emb(A,X))→ H1(X). What can it be?

2. Warm up problems and result

Say, let X be a plane projective M-curve of degree 3, d = 9 and A be the transverse
intersection of X with other curve of degree 3. Is π1(Emb(X,A)) trivial?

Sometimes yes, sometimes no, it depends on A. If A is contained in one com-
ponent of RX , then π1(Emb(A,X)) = 0. Otherwise π1(Emb(A,X)) = Z.

Under a loop move, trajectories of points cover the components of RX the same
number of times count according to a complex orientation of RX . In other words,
Im(τ) = Z.

The first examples and observations which led to this picture on cubic curves
belong to Ayşegül Öztürkalan, Abdullah Gül Üniversitesi, Turkey.

3. Main results

Recall: a non-singular real algebraic curve X
¯

is said to be of type I if RX bounds
in CX and type II otherwise.

Let A = P1 + · · ·+Pd, P1, . . . , Pd ∈ RX be a simple real divisor. Let D(X,A)
denote the linear equivalence class of divisors that contains A. Let DR(X,A) ⊂
D(X,A) be formed by divisors contained in RX .

Recall that Emb(A,X) is the subset of D(X,A) formed by simple real divisors.
Obviously, τ : π1(Emb(A,X))→ H1(RX) factors through τ : π1(DR(X,A))→

H1(RX).
Main Theorem. τ(π1(DR(X,A))) = 0, unless X is of type I and A meets each

connected component of RX, when τ(π1(DR(X,A))) is either trivial or infinite
cyclic generated by the complex orientation.

Lemma 1. The inclusion homomorphism H1(RX)→ H1(CX) maps
τ(π1(DR(X,A))) ⊂ H1(RX) to zero.

Lemma 1 and Main Theorem above are corollaries of the following:
Lemma 2. For any divisor A on a complex curve X,

τ(π1(D(X,A))) ⊂ H1(CX) is zero.
Indeed, D(X,A) is a complex projective space, and π1(D(X,A)) = 0. �
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Discussion: Phase tropical varieties

Ilia Zharkov

In addition to an affine complex hypersurface and its phase tropical counterpart
we are going to introduce two new objects: amplitude tropical and obertropical.
All four of these are homeomorphic to each other and can serve different geometric
purposes.

Let H ⊂ (C∗)n be a generic hypersurface with Newton polytope Q. We assume
that Q is coherently triangulated and H is close to its tropical limit. The Viro’s
patchworking method will induce a pair-of-pants decomposition of H according to
the triangulation, see [1]. If the triangulation is not unimodular then the pieces are
abelian covers of the standard pairs-of-pants P . For the rest we will concentrate
on one pair-of-pants as a building block for H .

We think of points in the pair-of pants as non-zero solutions of the homogeneous
equation:

z0 + z1 + · · ·+ zn = 0,

and consider the map (C∗)n → (R+)n+1/R+ × (S1)n+1/S1 given by

(z0, z1, . . . , zn) 7→ (|z0|, |z1|, . . . , |zn|)× (Arg(z0),Arg(z1), . . . ,Arg(zn)).

Let P denote the closure of the image of the pair-of-pants in ∆ × T n, where ∆
is the standard simplex. We further subdivide P as a regular CW complex by
cyclicly ordering the variables such that their arguments θ0, θ1, . . . , θn are ordered
counter clock wise on the circle. We fix one such order, then we can assume that
(after relabeling the variables) the vectors z0, z1, . . . , zn form a convex polygon.
Let B ⊂ P be the closure of the part of the pair-of-pants with our fixed order.
With G. Kerr [2] we showed that B is a closed ball of codimension 2.

To achieve complete symmetry between amoeba and coamoeba we can replace
the arguments θi by the exterior angles αi in the polygons and dehomogenize the
simplex ∆ by setting

∑ |zi| = 2π. Then the image of B in the product of two
simplices ∆1 ×∆2 lies in the product of two hypersimplices O1 ×O2 defined by

0 ≤ |zi| ≤ π,
∑

|zi| = 2π and 0 ≤ αi ≤ π,
∑

αi = 2π,

respectively.
Each of the O1 and O2 have a nice skeleton in it. The skeleton S ⊂ O1,

also known as the tropical hyperplane is spanned by the baricenters of faces I ⊆
{0, 1, . . . , n} of ∆ for the subsets I with at least two elements. The faces FI,J

of S are indexed by pairs of subsets I ⊆ J ⊆ {0, 1, . . . , n}. The most famous
skeleton Σ ⊂ O2 (known as the boundary of the permutahedron) has the same
face structure but with a little bit off balance baricenters.

The part B1 of the phase tropical pair-of-pants lies in the product S×O2 where
the fiber of the face FI,J is given by there restriction of the reduced coamoeba
Arg({∑i∈I zi = 0}) to B. It has a nice combinatorial description as a polyhedral
complex in terms of alcoves. We will omit the details. The point is that B1 is also
a codimension 2 ball in O1 ×O2.
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The new, amplitude tropical object B2 is the same as B1 but with the roles of
amoeba and coamoeba switched. It lies in O1 × Σ and it is also a codimension 2
ball in O1 ×O2.

Finally, the ober tropical ball

B3 =
⋃

FI ×GK

where the sets I of edges of the polygon and K of exterior angles (vertices) are
interlacing. That means that not all vertices in K lie between two elements of
I, that is there is a vertex-edge-vertex-edge combination in I,K. This is the
ultimate tropical object, which is (n−1)-polyhedral in both amoeba and coamoeba
directions.

One can also easily describe the obertropical pair-of-pants in its entirety not
broken into balls. Indeed, the faces of the premutahedral skeleton are parameter-
ized by the cyclicly ordered partitions σ of the set {0, 1, . . . , n}. The condition for
the face σ to lie over the tropical face FI is that I has elements in at least two
parts of σ.

All these four types of ball can be glued naturally to produce four homeomorphic
objects, the first being the original complex hypersurface, the other three are
polyhedral complexes of various degree of complexity.
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A dream desingularization algorithm

Michael Temkin

(joint work with Dan Abramovich, Jaros law W lodarczyk)

In a joint project with Abramovich and W lodarczyk, we construct a new desin-
gularization algorithm in characteristic zero, which does not use history and ex-
ceptional divisors. It was well known for decades that such an algorithm does
not exist in the usual setting, and the key of our success is in using orbifolds and
non-representable weighted blow ups. Similar results were independently obtained
by McQuillan and Marzo.

1. Classical embedded methods

1.1. Reduction to principalization. Until our works [1] and [2], all functorial
(or canonical) desingularization methods followed the general framework of Hiron-
aka and worked as follows. First, one locally embeds a singular variety X into a
smooth variety Y = Y0 and then only operates with sequences Yn → . . . Y1 → Y0
of blow ups whose centers Ci →֒Yi are smooth. One takes J0 ⊂ OY0 to be the
ideal of X0 = X and updates it via Ji+1 = (JiOYi+1)(IiOYi+1)−d, where Ii is the
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ideal of Ci on Yi and Ci lies in the locus where the order of Ji is at least d (or,
equivalently, Ji ⊆ Idi ).

The goal is to principalize J0 ⊆ OY by finding a sequence such that Jn = 1. In
this case, the last non-empty strict transform Xm →֒Ym of X is smooth and hence
resolves the singularities of X . This reduces the desingularization problem to the
principalization problem.

1.2. Dream algorithms. In the above framework, one only needs to choose the
centers Ci of the blow ups. The most natural approach is to look for an algorithm
of the following type, that we call a dream algorithm: each time just take Ci to
be the locus where the singularity is worst. Formally, this means that one should
define an invariant invy(J ) which measures the singularity of J at y ∈ Y and
accepts values in a totally ordered set, and each time one blows up the maximality
locus of inv.

1.3. Invariants and maximal contact. Probably, the most natural attempt is
to take a lexicographically ordered string (d1, . . . ,dl), where d1 is the order of J at
y, d2 is a “secondary order” obtained by eliminating the first coordinate, etc. In the
classical algorithms this is provided by the theory of maximal contact: one chooses
x1 to be a coordinate of “maximal contact” to J , restricts a so called homogenized
coefficient ideal C(J ) of order d1! onto H2 = V (x1) obtaining an ideal J2, finds
maximal contact x2 to J2, etc., and defines invy(J ) = (d1!, invy(J2)) recursively.
Thus, (d1, d2, . . .) is the string of normalized orders of Ji.
1.4. The counterexample: Whitney’s umbrella. Whitney’s umbrella V (x2−
zy2) ∈ A3 is a classical example showing that dream algorithms do not exist in
the usual setting. Indeed, the pinch point O at the origin is clearly the worst
point. For example, the above invariant equals (2, 3, 3) at O, while it equals (2, 2)
at the other points of the singular locus S = V (x, y). Blowing up O produces
the same singularity on the z-chart as x′ = x/z and y′ = y/z satisfy x2 − zy2 =
z2(x′2 − zy′2) and the transform divides by z2. In other simple examples, such as
V (x2 + y2 + zmtm), the natural invariant can even get worse.

1.5. Classical solution. Hironaka’s solution of the above problem is to take the
history into account. One worries that the exceptional divisor E is always snc
and the invariant becomes of the form (d1, s1, d2, s2, . . .), where si is the number
of components of E through y. The si are not related to the nature of the cur-
rent singularity, and are needed to encode the history. The Whitney umbrella,
for example, is resolved by blowing up the pinch twice, and then (once enough
“historical evidence” is accumulated) by blowing up the singular line.

2. Logarithmic algorithms

2.1. Logarithmic smoothness. In our work on resolution of morphisms, see
[1, 2], it was important to replace varieties by log varieties and smoothness by log
smoothness. In particular, instead of a smooth ambient variety Y we worked with
a log smooth one, which étale locally looks as Spec(k[M ][t1, . . . ,tn]) for a toric
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monoid M . The natural class of blow ups preserving log smoothness is wider: the
centers are of the form (m1, . . . ,mr, t1, . . . ,tl) for any monomials mi.

2.2. Kummer centers and blow ups. To our surprise, the algorithm insisted

to work with “fractional monomials” m
1/d
i and, what we called, Kummer centers

I = (m1/d, t) = (m
1/d
1 , . . . ,m

1/d
r , t1, . . . ,tl). The technical solution was to work log

étale locally: such I is an ideal for the Kummer log-étale topology on Y . Moreover,
it is an honest ideal on the Kummer cover Z = Y [m1/d] of Y . The corresponding
Kummer blow up along I is also defined log étale locally: one would like to define
Y ′ = BlI(Y ) to be the quotient of Z ′ = BlI(Z) by the Galois group G of Z/Y .

2.3. Appearance of orbifolds. The scheme theoretic quotient Y ′ is nothing but
the normalized blow up of (m, td) or the weighted blow up of (m, t) with weights
(d, 1). In general it is not log smooth, and we had to consider the finer orbifold
quotient, which is log smooth. Thus, the Kummer blow up is defined as a non-
representable modification Y ′ → Y such that the pullback of I to Y ′ becomes a
usual invertible ideal. It might be viewed as a refinement of Y ′, which is the course
moduli space of Y ′.

Remark 1. An important discovery of [1] and [2] was that there exist wider con-
texts, where principalization and embedded resolution can run. Using a larger
supply of spaces and their modifications one can construct new algorithms. The
use of generalized ideals and orbifolds seems almost inevitable.

3. Weighted Hironaka and the dream algorithm

Kummer blow ups only use weighted blow ups of weights 1 and d, and the goal of
the current project was to describe the natural algorithm in the context of arbitrary
weighted blow ups. It turned out that this is a dream algorithm. Moreover, the
coordinates defining the center are the classical iterative maximal order coordinates
from §1.3. The only novelty is that one should blow them up with the weights
they naturally come equipped with. Needless to say, this only becomes possible in
the context of orbifolds.

3.1. h-ideals and weighted blow ups. The new algorithm operates with gener-

alized ideals of the form I = (t
1/w1

1 , . . . ,t
1/wn
n )l. This time there is no log structure,

so we view them as ideals for the h-topology, or simply ideals on fine enough alter-
ations of Y . Any ideal on Y is invertible as an h-ideal since it becomes invertible
on an appropriate modification. By the same reason, any finitely generated h-ideal
is invertible. This reminds valuation rings, and not by accident – valuation rings
are stalks of OY in the h-topology. In addition, different ideals may generate the

same h ideal, in particular, (t
1/w1

1 , . . . ,t
1/wn
n )l = (t

l/w1

1 , . . . ,t
l/wn
n ) as h-ideals. We

define weighted blow ups along such h-ideals similarly to Kummer blow ups.

3.2. Admissible centers. By a J -admissible center we mean an h-ideal I locally
given by (td1

1 , . . . ,t
dn
n ) with d1 ≤ d2 ≤ . . . ≤ dn and such that J ⊆ I.
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3.3. The dream algorithm. The following theorem constructs a dream algo-
rithm:

Theorem 1. Let J ⊆ OY be an ideal, then
(i) There exists a unique J -admissible center I = (td1

1 , . . . ,t
dn
n )

such that inv(J ) := (d1, . . . ,dn) is maximal possible with respect to the lexico-
graphic order.

(ii) Consider the weighted blow up Y ′ = BlI(Y ) and the transform J ′ =
(JOY ′)(IOY ′)−1. Then inv(J ′) < inv(J ).

3.4. Justification. The proof of our main theorem is based on the maximal con-
tact theorem and perhaps can be viewed as its quintessence. In particular, coordi-
nates (t1, . . . ,tn) are just iterative maximal contact elements, and the weights are
the corresponding (appropriately normalized) orders.

3.5. Whitney’s umbrella revisited. Returning to the example of Whitney’s
umbrella given by J = (x2 − zy2), the invariant is (2, 3, 3) and the center is I =
(x2, y3, z3) = (x1/3, y1/2, z1/2)6. The weighted blow up along I indeed decreases
the invariant. For example, the z-chart is given by x′ = x/w3, y′ = y/w2, z = w2,
the transform is (x2 − zy2)w−6 = x′2 − y′2, and the invariant drops to (2, 2).

3.6. Destackification. Similarly to the log principalization of [1, 2], the weighted
principalization of [3] principalizes ideals on orbifolds even when it starts with an
ideal on a smooth variety. On the level of varieties (or coarse moduli spaces) its
output has quotient singularities, but the latter can be easily resolved by combi-
natorial methods. This can be also obtained by a slightly more general destacki-
fication procedure. So, our method produces a classical desingularization as well.
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Tropical geometry and coherent sheaves on the projective plane

Pierrick Bousseau

Tropical geometry is known to be an efficient way to describe holomorphic curves
in SYZ Lagrangian torus fibrations. The goal of this talk was to describe an alter-
native way how tropical geometry can emerge as an answer to algebro-geometric
questions.

Following some general conjectural picture due to Kontsevich-Soibelman [KS14]
and some previous work of Bridgeland [Bri17] in the context of quivers, we con-
struct a tropical picture, a scattering diagram, in the space of stability condi-
tions on the derived category of coherent sheaves on the complex projective plane
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P2. This scattering diagram provides a new algorithm computing Hodge numbers
(for intersection cohomology) of the classical moduli spaces of Gieseker semistable
sheaves on P2.

Moduli spaces of Gieseker semistable sheaves on P2 form a family of possibly
singular projective varieties Mγ , indexed by some γ ∈ Z3 keeping track of the
topological data (Chern classes). Using intersection cohomology, we can define
Hodge numbers Ihp,q(Mγ), reducing to usual Hodge numbers when Mγ is smooth.

A natural idea to study the Hodge numbers Ihp,q(Mγ) is to try to modify
the notion of stability, in order to change and possibly simplify the geometry
of the moduli spaces of semistable objects. One way to do that is to consider
Bridgeland stability conditions on the derived category of coherent sheaves [Bri07].
For surfaces like P2, there is a standard way to construct stability conditions. The
upshot is an upper half-plane U of stability conditions. For every σ ∈ U , we have
moduli spaces Mσ

γ of σ-semistable objects, which for an appropriate range of σ
coincide with the moduli spaces Mγ we wish to study. Along some particular
curves in U , called walls, the geometry of the moduli spaces Mσ

γ changes.
In order to get a tropical picture, the main idea is to consider rays Lγ in

U defined by the condition that σ ∈ Lγ if and only of Mσ
γ is nonempty and the

central charge Zσ
γ is purely imaginary. Furthermore, we do a change of coordinates

on U such that the rays Lγ become straight lines: the resulting U becomes the
upper-part of a parabola in R2. To a ray Lγ and a point σ ∈ Mγ , we attach the
numerical data of the Hodge numbers Ihp,q(Mγ).

When several rays cross, it means that we are on a wall. An essential point
is that knowing the rays with their numerial data on one side of the wall, there
is a completely algorithmic way to produce the rays with their numerical data
on the other side of the wall, called the Kontsevich-Soibelman wall-crossing for-
mula [KS08]. This formula is expected to be satisfied due to the connection with
Donaldson-Thomas theory of the non-compact Calabi-Yau 3-fold KP2 . The proof
of this formula in the precise setting we care about is a technical part of the story,
and uses previous work of Meinhardt-Reineke [MR17] and Li-Zhao [LZ19b].

If we wish to obtain an algorithm computing all the rays Lγ with their numerical
data, it is then enough to find all the rays existing in a particular region of U .
We show that it is possible using a quiver description of the derived category of
coherent sheaves on P2.

We can use our algorithm to get concrete results such that a new proof of
the fact that Ihp,q(Mγ) = 0 if p 6= q (a previous proof follows from the work of
Manschot-Mozgovoy [MM18]), or a proof that the Euler characteristic of Mγ for
γ corresponding to dimension one degree d sheaves of holomorphic Euler charac-
teristic one, is divisible by 3d (a result previously conjectured by Choi).

Finally, we remark that the tropical picture we obtain in fact coincides with a
previously known tropical picture, but coming from the more traditional perspec-
tive of holomorphic curves in SYZ Lagrangian torus fibrations. More precisely,
this tropical picture is the Gross-Siebert picture for P2 relative to a smooth cubic
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E [CPS10], and so the scattering diagram is expected to compute relative Gromov-
Witten invariants of (P2, E). This expectation is proved in some recent work of
Gabele.

The fact that the same tropical picture has two very different interpretations, as
computing relative Gromov-Witten invariants and as computing numerical invari-
ants of moduli spaces of sheaves, makes possible to use it as a bridge to transfer
information from the sheaf side to the Gromov-Witten side and vice-versa. In par-
ticular, using knowledge on the sheaf side, it becomes possible to prove a roughly
15 years old conjecture due to Takahashi [Tak01] on the multicovering structure
of relative Gromov-Witten invariants of (P2, E).
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Obstructions to deforming maps from curves to surfaces

Takeo Nishinou

Nearly 100 years ago, Severi [4, 5] proved that a compact smooth complex curve C
on a compact smooth complex surface S is unobstructed in the sense that its first
order infinitesimal deformation can be extended to any higher order, provided the
curve is semiregular. The curve C is called semiregular if the natural restriction
map H0(S,KS)→ H0(C, ι∗KS) is surjective, here KS is the canonical sheaf of S.

The notion of semiregularity and the associated result were generalized by Ko-
daira and Spencer [2] to smooth divisors on higher dimensional complex manifolds.
Later, Bloch [1] extended the notion of semiregularity to local complete intersec-
tion subvarieties, and related it to the smoothness of the Hilbert scheme at the
corresponding point as well as to variation of Hodge structures. In particular, the
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semiregularity of a local complete intersection subvariety guarantees the vanishing
of the obstruction to the deformation.

Although these results are striking, often it is not easy to check whether a given
subvariety is semiregular or not, and even if we can check it, there is little control
of the deformation beyond its existence. On the other hand, since the obstruction
to deformations is in principle determined by the information of a neighborhood
of the subvariety, it would not be too optimistic to expect that we can extend the
notion of semiregularity from the original cohomological (in other words, global)
condition to a more local one.

We show that this is in fact the case for curves on surfaces, and we extend the
notion of semiregularity to maps rather than subvarieties, see [3].

Theorem 1. Let ϕ : C → X be a map from a reduced complete complex curve to a
smooth complex surface, which is locally embedding. Assume that ϕ is semiregular,
that is, the natural map H0(X,KX)→ H0(C,ϕ∗KX) is surjective. Then the map
ϕ is unobstructed in the sense that any first order deformation can be extended to
arbitrary higher order.

Here, a map ϕ : C → X which is locally embedding is called semiregular if
the natural map H0(S,KS)→ H0(C,ϕ∗KS) is a surjection. In this theorem, the
surface S need not be compact, reflecting the local nature of its proof.

In practical situations, starting from a few embedded curves on a surface for
which the classical semiregularity condition holds, we may construct new curves by
putting these together in a simple combinatorial way. Then the constructed curves,
seen as the images of suitable maps, often satisfy the (extended) semiregularity
again, and we can deform such curves on the surface. Note that although ϕ is
locally embedding, the image ϕ(C) need not be reduced.

The case where Theorem 1 is most effective would be when the target X has
the trivial canonical sheaf. In this case, any reduced curve on X is semiregular.
Thus, any map ϕ from a reduced curve which is locally embedding is unobstructed.
Based on this observation, we can prove the following.

Corollary 1. A generic complex polarized K3 surface contains infinitely many
g dimensional families of irreducible nodal curves of geometric genus g, for any
positive integer g.
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Chirality of real cubic fourfolds

Sergey Finashin

(joint work with Viatcheslav Kharlamov)

In our previous work [FK1] we have classified real non-singular cubic hypersurfaces
in the 5-dimensional projective space up to equivalence that includes both real
projective transformations and continuous variations of coefficients preserving the
hypersurface non-singular. Here, we perform a finer classification giving a full
answer to the chirality problem: which of real non-singular cubic hypersurfaces
can not be continuously deformed to their mirror reflection.

Both deformation equivalence relations emerge naturally in the study of real
non-singular projective hypersurfaces in the framework of 16th Hilbert’s prob-
lem. More precisely, the pure deformation equivalence assigns hypersurfaces to
the same equivalence class if they can be joined by a continuous path (called a real
deformation) in the space of real non-singular projective hypersurfaces of some
fixed degree. Another one is the coarse deformation equivalence, in which real
deformations are combined with real projective transformations.

If the dimension of the ambient projective space is even, then the group of
real projective transformations is connected, and the above equivalence relations
coincide. By contrary, if the dimension of the ambient projective space is odd,
this group has two connected components, and some of coarse deformation classes
may split into two pure deformation classes. The hypersurfaces in such a class are
not pure deformation equivalent to their mirror images and are called chiral. The
hypersurfaces in the other classes are called achiral, since each of them is pure
deformation equivalent to its mirror image.

The first case where a discrepancy between pure and coarse deformation equiv-
alences shows up is that of real non-singular quartic surfaces in 3-space (achirality
of all real non-singular cubic surfaces is due to F. Klein [Kl]). In this case it was
studied in [Kh1, Kh2], where it was used to upgrade the coarse deformation classi-
fication of real non-singular quartic surfaces obtained by V. Nikulin [N] to a pure
deformation classification.

Real non-singular cubic fourfolds is a next by complexity case. Their defor-
mation study was launched in [FK1], where we classified them up to coarse de-
formation equivalence. Then in [FK2] we began studying of the chirality phe-
nomenon and gave complete answers for cubic fourfolds of maximal, and almost
maximal, topological complexity. The approach, which we elaborated and applied
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in [FK2] relies on the surjectivity of the period map for cubic fourfolds established
by R. Laza [La] and E. Looijenga [Lo].

Recall that according to [FK1] there exist precisely 75 coarse deformation classes
of real non-singular fourfold cubic hypersurfaces X ⊂ P 5 (throughout the paper X
stands both for the variety itself and for its complex point set, while XR = X ∩P 5

R

denotes the real locus). These classes are determined by the isomorphism type
of the pairs (conj∗ : M(X) → M(X), h ∈ M(X)) where M(X) = H4(X ;Z) is
considered as a lattice, h ∈ M(X) is the polarization class that is induced from
the standard generator of H4(P 5;Z), and conj∗ is induced by complex conjugation
conj : X → X . This result can be simplified further and expressed in terms of a
few simple numerical invariants. Namely, it is sufficient to consider the sublattice
M0

+(X) ⊂ M(X), M0
+(X) = {x ∈ M(X) : conj∗ x = x, xh = 0}, and to retain

only the following three invariants: the rank ρ of M0
+, the rank d of the 2-primary

part discr2 M
0
+ of the discriminant discrM0

+, and the type, even or odd, of the
discriminant form on discr2 M

0
+.

Thus, to formulate the pure deformation classification of real non-singular cubic
fourfolds, it is sufficient to list the triples of invariants (ρ, d, parity) which specify
the coarse deformation classes and to indicate which of the coarse classes are chiral,
and which ones are achiral.

Theorem 1. Among the 75 coarse deformation classes precisely 18 are chiral,
and, thus, the number of pure deformation classes is 93. The chiral classes have
pairs (ρ, d) satisfying ρ+d ≤ 12. The only achiral classes with ρ+d ≤ 12 are three
classes with 4 ≤ ρ = d ≤ 6 and one class with (ρ, d) = (8, 4) and even pairity.

A complete description of the pure deformation classes is presented in Table 1,
where the coarse deformation classes are marked by letters c and a: by c, if the
class is chiral, and by a, if it is achiral. We use ρ and d as Cartesian coordinates
and employ bold letters to indicate even parity, while keeping normal letters for
odd. For some pairs (ρ, d) there exist two coarse deformation classes, one with
even discriminant form, and another with odd, and in this case, we put the even
one in brackets.

In fact, the values of ρ and d determine the topology of the real locus of the
cubic fourfold and are determined by it. Namely, for all pairs (ρ, d) except one the

real locus of the fourfold is diffeomorphic to RP
4#a(S2 × S2)#b(S1 × S3), where

a = 1
2 (ρ − d), b = 1

2 (22 − ρ − d). The exception is (ρ, d, parity) = (12, 10, even),

in which case the real locus is diffeomorphic to RP4 ⊔ S4 (see [FK3]). Comparing
this with Table 1 we come to the following conclusion.

Corollary 1. Chirality of a cubic X ⊂ P 4 is determined by the topological type
of its real locus XR unless XR = RP4#2(S2 × S2)#5(S1 × S3), or equivalently,
(ρ, d) = (8, 4). If (ρ, d) = (8, 4), then X is achiral in the case of even parity, and
chiral in the case of odd. �
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Table 1. Pure deformation classification via chirality

d
11 a
10 a a(a)
9 a a a
8 a(a) a a(a) a
7 a a a a a
6 a a(a) a a(a) a a
5 a c a a a a a
4 a c c(a) a a(a) a a(a) a
3 c c c c a a a a a
2 c c(c) c c c a(a) a a a a(a)
1 c c c a a a
0 c c a

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 ρ
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Tropical refined curve counting

Lothar Göttsche

(joint work with Florian Block, Franziska Schroeter, Vivek Shende)

In the talk I reviewed our work on tropical refined curve counting and a number
of related developments.

1. Refined curve counting

Let S be a smooth projective surface and L a line bundle on S. The Severi
degree n(S,L),δ is the number of δ-nodal curves in |L| through dim |L| − δ points
in S, where |L| is the complete linear system of L. In [9] a conjectural generating
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function for the Severi degrees n(S,L),δ was given, valid whenever L is sufficiently

ample with respect to δ. In [10] refined curve counting invariants N (S,L),δ were
defined in terms of the χy-genera of the relative Hilbert schemes of points C[n]
of the universal curve over |L|. These are symmetric Laurent polynomials in y,
which for L sufficiently ample with respect to δ interpolate between the Severi
degrees n(S,L),δ (at y = 1) and the (totally real) Welschinger numbers counting
real algebraic curves though configurations or real points (at y = −1). In [10] also
a conjectural generating function for these refined invariants is given. In [1] these
refined curve counting invariants are interpreted as refined K-theoretic Donaldson-
Thomas invariants of the total space of the canonical line bundle on S, which is a
local Calabi-Yau threefold.

2. Refined tropical curve counting

In tropical geometry curves on toric surfaces S in a linear system |L| can be counted
by piecewise linear objects in R2, the tropical curves Γ (the pair (S,L) is encoded
in the directions of the unbounded edges of Γ). These curves Γ are counted with
certain vertex multiplicities µ(v), associated to every vertex v of Γ, the multiplicity
of µ(Γ) is the product of µ(v) over all vertices v of Γ. Counting tropical curves
through dim |L| − δ general points in R2 using the Mikhalkin multiplicity m(v)

as vertex multiplicities, one obtains the tropical Severi degrees ntrop
(S,L),δ, which

coincide with the Severi degrees n(S,L),δ for toric surfaces. In the same way using
the Welschinger multiplicities as vertex multiplicities, one obtains the totally real
tropical Welschinger invariants, which coincide with the totally real Welschinger
numbers for suitable point configurations on S.

In [3] a new polynomial vertex multiplicity is introduced, the quantum version

[m(v)]y = ym(v)/2−y−m(v)/2

y1/2−y−1/2 of the Mikhalkin multiplicity m(v). We define the re-

fined tropical Severi degres N trop
(S,L),δ(y) as the count of curves with this multiplicity.

They interpolate between the tropical Severi degrees (at y = 1) and the (totally
real) tropical Welschinger invariants (at y = −1). Furthermore it is conjectured
that if L is sufficiently ample, the refined Severi degrees coincide with the refined
curve counting invariants of [10]. There is an approach towards proving this con-
jecture via non-Archimedian motivic integration [14]. In [12] it is shown that the
refined tropical Severi degrees are indeed tropical invariants, i.e. independent of
the tropical configuration of points. In [13] it is shown that under special condi-
tions the tropical refined curve count can be interpreted as counting real curves C,
counting each C as a monomial yw(C), with the weight w(C) expressed in terms
of the signed area of the amoeba of C.

3. Fock space

The refined Severi degrees can for many toric surfaces (given by h-transversal
lattice polygons) be computed in terms of the operation of a Heisenberg algebra
on a Fock space. This was shown in [4] motivated by the work in [6] for the usual
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Severi degrees. The Heisenberg algebra H is generated by operators an, bn for
n ∈ Z with commutation relations

[an, am] = 0 = [bn, bm], [an, bm] = [n]yδn,−m, [n]y =
yn/2 − y−n/2

y1/2 − y−1/2
.

The corresponding Fock space F (H) is the space of all polynomials with coeffi-
cients in Q[y±1/2] in the creation operators a−i b−j with i, j > 0. The refined
Severi degrees are obtained as vacuum expectation values of certain operators in
H on F (H). The reason for this result is the following. The vacuum expectation
values can be computed in terms of Feynman diagrams, counted with certain mul-
tiplicities. On the other hand the refined tropical Severi degrees can be computed
in terms of floor diagrams, which encode in a simplified way the combinatorics
of the tropical curves. One can show that the Feynman diagrams and the floor
diagrams are the same, and both are counted with the same multiplicities.

4. Logarithmic Gromov-Witten invariants with λ-classes

Bousseau [5] relates refined Severi degrees to log-Gromov-Witten invariants with
λ-classes of toric surfaces S. The refined Severi degree corresponding to the count
of genus g curves is obtained from the generating function of Gromov-Witten
invariants with λ-classes of curves of all genera g′ ≥ g by a change of variables.
The expected dimension of the moduli space M = Mg′,n(S,L) of genus g′ maps to
S is too large to obtain a finite count of curves by g′−g. One integrates against the
Chern class λg′−g = cg′−g(ΩC/M ) of the relative dualizing sheaf of the universal
curve over M to obtain a class of the right dimension.

5. Refined descendent invariants

The refined tropical Severi degrees interpolate between the Severi degrees and
the totally real Welschinger invariants counting real curves through configurations
of real points. More general Welschinger invariants count real genus 0 curves
through configurations of real points and pairs of complex conjugated points. For
toric surfaces S these numbers can be computed via tropical geometry. For sim-
plicity I restrict to the case that S = P2, then W 0

d,r,s counts degree d curves

through r real points and s pairs of complex conjugated points. In [11] a refine-

ment N0,trop
d,r,s (y) of this tropical invariant is given. Roughly speaking the definition

is as follows: the same tropical curves are counted as for the usual tropical Sev-
eri degrees, however the point conditions are changed: Let P be a configuration
of r thin and s fat points in R2. We say that a tropical curve Γ of degree d
passes through P if the thin points of P lie on Γ and the fat points of P are
vertices of Γ. These tropical curves are again counted with a vertex multiplicity.
A vertex of Γ which is not a fat point of P is counted with the refined multiplicity

[m(v)]y =
ym(v)/2 − y−m(v)/2

y1/2 − y−1/2
, where m(v) is the Mikhalkin multiplicity and a ver-

tex containing a fat point with the new multiplicity {m(v)}y = ym(v)/2+y−m(v)/2

y1/2+y−1/2 .
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This is in general only a rational function in y1/2, but it is shown that the mul-
tiplicity of any tropical curve is a Laurent polynomial in y. Furthermore one
obtains in this way a tropical invariant, which coincides with the Welschinger in-
variant W 0

d,r,s at y = −1, and its value at y = 1 are the primary descendent

Gromov Witten invariants
∫

M0,n(P2,d)
ψa1
1 ev∗1(pt) · · ·ψan

n ev∗n(pt) with ai ∈ {0, 1}.
Here M0,n(P2, d) = {f : (C, x1, . . . , xn)→ P2} is the moduli space of genus 0 sta-
ble maps and ψi = c1(Li), with Li the line bundle on M0,n(P2, d) with fibre T ∗

C,xi

at (f, C, x1, . . . , xn). In [2] higher order refined tropical descendent invariants are
defined. These are again polynomial invariants in a variable y, which at y = 1 spe-
cialize to the higher order descendents

∫

M0,n(P2,d) ψ
a1
1 ev∗1(pt) · · ·ψan

n ev∗n(pt) with ai
arbitrary.
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Département G.É.I.I.
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