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Abstract. The recent explosion of data that is routinely collected has led
scientists to contemplate more and more sophisticated structural assump-
tions. Understanding how to harness and exploit such structure is key to
improving the prediction accuracy of various statistical procedures. The ul-
timate goal of this line of research is to develop a set of tools that leverage
underlying complex structures to pool information across observations and
ultimately improve statistical accuracy as well as computational efficiency
of the deployed methods. The workshop focused on recent developments in
regression and matrix estimation under various complex constraints such as
physical, computational, privacy, sparsity or robustness. Optimal-transport
based techniques for geometric data analysis were also a main topic of the
workshop.
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Introduction by the Organizers

The workshop Statistical and Computational Aspects of Learning with Complex
Structure, organized by Sara van de Geer (ETH Zürich), Markus Reiß (Humboldt
Universität) and Philippe Rigollet (MIT) was held May 5th – May 11th, 2019. The
aim of this workshop was to highlight recent achievements in modern statistical
problems where more and more complex structure arise by bringing together statis-
ticians, mathematicians and computer scientists that work on the cutting-edge of
these questions. These goals were largely achieved.
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The workshop was well attended by diverse pool of 51 participants (20% were
women) with broad geographic representation from eight countries. The work-
shop featured twenty one hour-long presentations of noted excellent quality: the
speakers made an effort to reach out to the diverse audience of the workshop which
fostered sustained discussions between the participants. On Monday evening, PhD
students offered short lightening talks to present their most recent achievements.
The talks can be roughly clustered into the following topics, which the workshop
was focused on.

Complex signals in structured models: Florentina Bunea discussed a regression
model that accomodates a latent low-dimensional structure. John Duchi presented
recent results in collaboration with Apple on the statistical limitations associated
to private learning. Richard Nickl introduced a new model for the estimation of
a signal known to evolve according to a non-abelian PDE. David Donoho derived
the optimal spectral threshold for high-dimensional principal component analysis.
Alexandre Tsybakov derived minimax rates for functional estimation in various
sparse regression models. Elizaveta Levina presented a natural model for net-
work data and an associated hierarchical clustering method with strong statistical
guarantees. Alexandra Carpentier discussed support estimation in sparse linear
regression.

Computational aspects of structured learning: Ankur Moitra discussed a computa-
tionally efficient estimation of Gaussian graphical models. Francis Bach and An-
drea Montanari gave complementary presentations on the computational aspects
of two-layer neural networks and the limitations of some existing simplifications
of such neural networks. Soledad Villar presented a semidefinite relaxation for the
classification-aware dimension reduction.

Learning from heterogeneous datasets: A noticeably growing theme in statistics
is that of data integration whereby several datasets believed to contain similar
information are combined to boost statistical efficiency. For this task, optimal
transport has emerged as a powerful tool and several talks discussed mathematical
and statistical aspects of optimal transport (Axel Munk, Jonathan Weed, Alexan-
dra Suvorikova, Facundo Memoli and Jean-Michel Loubes). Other techniques for
similar questions were also discussed by Genevera Allen and Peter Bühlmann.

Inference from wild data: Another theme featured in this workshop was the possi-
bility of learning from data that violates commonly assumed assumptions such as
independence. In this context, new techniques still allow to perform reliable infer-
ence. To achieve these goals, Emmanuel Candes and Rina Foygel-Barber presented
new methods for conformal prediction under minimal assumptions and Alessandro
Rinaldo discussed the inference from data collected by a bandit algorithm.
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Abstracts

Learning GGMs without Condition Number Bounds

Ankur Moitra

(joint work with Jonathan Kelner, Frederic Koehler and Raghu Meka)

A Gaussian Graphical Model (GGM) in n dimensions is a probability distribution
with density

p(X = x) =
1√

(2π)n detΣ
exp

(
−(x− µ)TΣ−1(x− µ)/2

)

where µ is the mean and Σ is the covariance matrix. Let Θ = Σ−1, which is called
the precision matrix. We can associate a graph to Θ which connects two nodes i, j
when Θij 6= 0. Now each node i only interacts directly with its neighbors in the
sense that Xi is conditionally independent of every other node in the graphical
model given its neighbors (Xj)i∼j . An important measure of complexity for a
GGM is its sparsity d, which measures the largest number of non-zero off-diagonal
entries in Θ in any row.

GGMs have wide-ranging applications in machine learning and the natural and
social sciences where they are one of the most popular ways to model the statistical
relationships between observed variables. For example, they are used to infer the
structure of gene regulatory networks and to learn functional brain connectivity
networks. In most of the settings in which they are applied, the number of observed
samples is much smaller than the dimension. This means it is only possible to learn
the GGM in a meaningful sense under some sort of sparsity assumption.

There is a vast literature on learning the sparsity pattern of Θ assuming some
sort of lower bound on the strength of non-zero interactions. A popular approach
is the Graphical Lasso [2] which solves the following convex program:

max
Θ≻0

log det(Θ)− 〈Σ̂,Θ〉 − λ‖Θ‖1

where Σ̂ is the empirical covariance matrix and ‖Θ‖1 is the ℓ1 norm of the matrix
as a vector. Ravikumar et al. [4] showed that under various incoherence as-
sumptions that Graphical Lasso succeeds in recovering the sparsity pattern from
O((1/α2)d2 log(n)) samples where α is an incoherence parameter (omitting the de-
pendence on some additional terms, and assuming the non-zero entries are bounded
away from 0 and the variances are O(1)). Another popular approach is the CLIME
estimator [1] which solves the following linear program

min
Θ
‖Θ‖1 s.t. ‖Σ̂Θ− I‖∞ ≤ λ

The analysis of CLIME assumes a bound M on the maximum ℓ1-norm of any row
of the inverse covariance (given that the Xi’s are standardized to unit variance).
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This is also a type of condition number assumption, although of a different nature
than RE. It succeeds at structure recovery when given

m ≥ CM4 logn

samples, again assuming the Θij are either 0 or bounded away from 0.
While these works show that sparse GGMs can be estimated when the number

of samples is polylogarithmic in the dimension, there is an important caveat in
their guarantees. They need to assume that Θ is in some sense well-conditioned.
However in the high-dimensional setting, this is a strong assumption which is
violated by simple and natural models (e.g. a graphical model on a path), where
these bounds turn out to be polynomial in the dimension. Furthermore, it is a
fragile assumption that behaves poorly even under a seemingly benign operation
like rescaling the variables.

We show that for some popular and widely-used classes of GGMs, it is possible
to achieve both logarithmic sample complexity (the truly high-dimensional setting)
and computational efficiency, even when Θ is ill-conditioned. First we study the
class of attractive GGMs, in which the off-diagonal entries of Θ are non-positive.
In terms of the correlation structure, this means that the variables are positively
associated. A well-studied special case is the discrete Gaussian Free Field (GFF)
where Θ is a principal submatrix of a graph Laplacian (i.e. we set some non-empty
set of reference variables to zero as their boundary condition). This is a natural
model because the Laplacian encourages “smoothness” with respect to the graph
structure — if we think of the samples as random functions on the graph, then by
integration by parts we see the log-likelihood of drawing a function is proportional
to the L2 norm of its discrete gradient. In the GFF setting, Θ will be ill-conditioned
whenever some pair of vertices have large effective resistance between them (e.g.,
paths, rectangular grids, etc.,) as for example happens whenever there are nested
sparse cuts which when collapsed lead to a long path resulting in variables having
large (polynomial in n) variance.

We show that for attractive GGMs the conditional variance of some variable Xi

when we condition on a set XS is a monotonically decreasing and supermodular
function of S. This fact was previously only observed in the GFF case. We give a
new, short proof of this fact using a walk expansion, which can be derived using
just basic linear algebra. Using this key result, we show the following:

Theorem 1 (Informal). [3] Fix a κ-nondegenerate attractive GGM. There is an
algorithm that runs in polynomial time and returns the true neighborhood of every
node i with high probability with m ≥ C(d+1/κ2)d log(1/κ) log(n) samples, where
C is a universal constant.

In fact our algorithm achieves the information-theoretically optimal sample com-
plexity, up to constant factors as long as d = O(1/κ2) (a natural assumption,
as the average degree is always O(1/κ)) and otherwise is close to optimal. In
order to achieve this essentially optimal sample complexity, we need to care-
fully analyze the alignment between the true decrement of conditional variance
in one step, Var(Xi|XS) − Var(Xi|XS∪{j}), and the noisy empirical decrement
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V̂ar(Xi|XS) − V̂ar(Xi|XS∪{j}) without assuming too much accuracy on the esti-

mates V̂ar(Xi|XS) themselves; the key insight here is to relate these decrements
to the population risk of Ordinary Least Squares (OLS) and then use a suitable
non-asymptotic risk bound. We also need to use an electrical argument, based on
the SDD to Laplacian reduction and effective resistances, to bound the conditional
variance after the first step of greedy, so that only a bounded number of iterations
of greedy are required to learn a superset of the neighborhood.

While attractive GGMs are natural in some contexts, in others they are not.
For example, in Genome Wide Association Schemes (GWASs) genes typically have
inhibitory effects too. Walk-summable models are known to be a strict gener-
alization, and to include other important cases like pairwise normalizable and
non-frustrated models. A number of equivalent definitions are known for walk-
summability — perhaps the easiest to work with is that making all off-diagonal
entries negative preserves the fact that Θ is positive definite. We observe a key
equivalence that, rather surprisingly, does not seem to be known in the litera-
ture: Walk-summable GGMs are exactly those that can be made SDD under an
appropriate rescaling of coordinates. We prove this through elementary Perron-
Frobenius theory.

Using the reduction from SDD to generalized Laplacians we are able to give
algorithms for learning all, even ill-conditioned, walk-summable models (using
that our greedy algorithms are naturally scale-invariant).

Theorem 2 (Informal). [3] Fix a walk-summable, κ-nondegenerate GGM. There
is an algorithm that runs in polynomial time and returns the true neighborhood of
every node i with high probability with m ≥ C(d2/κ4) log(n) samples, where C is
a universal constant.

We show examples of walk-summable GGMs where, unlike for attractive GGMs,
the variance of Xi conditioned on XS is not a supermodular function of S. Nev-
ertheless, through some detailed calculations (and using properties of effective
resistances) we are able to show that the greedy algorithm makes enough progress
in each step that we quickly learn a superset of the neighborhood of each node,
at which point we can do some post processing to find the true neighborhood, by
iteratively trying out removing a variable and seeing if the conditional variance
changes noticeably.
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Essential Regression

Florentina Bunea

(joint work with Xin Bing and Marten Wegkamp)

1. Introduction

We introduce the Essential Regression (E-Regression) model, as an alternative to
the ubiquitous sparse high-dimensional linear regression on p variables. It is a class
of regression models tailored to applications where the relation between the depen-
dent variable Y and representatives of groups of components of the independent
variables X , rather than between Y and the components of X , is of main interest.
A specific challenge addressed within the E-Regression framework is the definition
of representatives in a mathematically coherent and practically interpretable way.

Formally, E-Regression is a new variant of the more classical factor regression
model, introduced by [5], which postulates the existence of an unobserved, zero
mean, random vector Z ∈ RK , for some unknown K < p, that is connected to the
observed pair (X,Y ) ∈ Rp × R via the model

Y = ZTβ + ε(1)

X = AZ +W.(2)

The dimension K, matrix A ∈ Rp×K and vector β ∈ RK are unknown, and Z, ε
and W are independent. Furthermore, ε and W have zero mean, and unknown
variance σ2 and diagonal covariance matrix Γ, respectively. In contrast to sparse
regression, where only few components of the observableX are assumed to directly
influence Y , our framework allows for all p-components of X to influence Y , but
mediated through the lower dimensional random vector Z. The mediator Z is not
observed, and made interpretable via a modeling assumption through which each
component of Z is given the physical meaning of a small group of the X-variables.

Factor regression models, and their many variants have been introduced to
improve the prediction of Y ∈ R from X ∈ Rp, when p is very large and the
components of X are highly correlated. For this purpose, the matrix A in (2) need
only be unique up to generic invertible matrix transformations. This no longer
suffices for the primary goal of this work, inference on the lower dimensional vector
β, when two other aspects become important:

• Z must be interpretable so that regression model (1) is interpretable;
• β must be uniquely defined.

Both desiderata are met by placing the following assumptions on A and the covari-
ance matrix Σz of Z, which differ from popular assumptions in the factor analysis
literature.

Assumption 1.

(A0) ‖Aj·‖1 ≤ 1 for all j ∈ [p].
(A1) For every k ∈ [K], there exists at least two j 6= ℓ ∈ [p], such that |Ajk| =

|Aℓk| = 1 and Ajk′ = Aℓk′ = 0 for any k′ 6= k.
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(A2) The covariance matrix Σz := Cov(Z) is positive definite. There exists a
constant ν > 0 such that

min
1≤a<b≤K

( Σz
aa ∧ Σz

bb − |Σz
ab| ) > ν.

Assumption 1, first introduced in [4], guarantees that A and Σz are identifiable,
up to signed permutations. To the best of our knowledge, factor regression models
under Assumption 1 have not been studied.

1.1. Our contributions. We begin by summarizing the model parameters, the
nature of the data, as well as the relation between parameter dimensions and
sample size. Throughout this work we assume that we have access to an i.i.d.
sample (X1, Y1), . . . , (Xn, Yn) of (X,Y ) ∈ Rp × R.

We denote by I ⊆ {1, . . . , p} the index set of the pureX-variables. The following
quantities are unknown and will be estimated from the data, under the Essential
Regression model: A, I, K, β, σ2, Σw, Σz. We allow for p > n, while K < p. In
this work, we consider the case of non-sparse β, and K < n, but allow K to grow
with the sample size n. The complementary cases of K > n and β sparse will be
studied in a follow-up work.

1.1.1. Estimation and inference for β. Under E-Regression, the coefficient β sat-
isfies

(3) β = (Σz)−1(AT
I AI)

−1AT
I Cov(XI , Y ),

where AI is the sub-matrix of A with row indices corresponding to indices in the
pure variable set I. We use the representation (3) and plug-in estimators of the

unknown quantities to construct our proposed estimator β̂. We employ the LOVE
algorithm developed in [4] to estimate I, its partition, and K.

To benchmark the quality of estimation of β, under the Essential Regression
framework, we prove that the minimax optimal rate of estimating β in the ℓ2-norm
in RK is (1 ∨ ‖β‖/√m)

√
K/n in our model with K < n. The quantity m is the

size of the smallest group of pure variables. We show that the proposed estimator

β̂ is minimax rate optimal, up to logarithmic factors in n and p. Moreover, β̂ is
component-wise asymptotically normal. Its asymptotic variance agrees in order
with the information bound in our Essential Regression model and can be consis-

tently estimated. The analysis of β̂ relies on being able to consistently identify
the pure variables. This is done by using the sample X1, . . . , Xn alone, without
using Y1, . . . , Yn, and consequently, inference for β, at the coarser resolution level
provided by the essence Z, is valid uniformly over β. This is in contrast with
inference in direct sparse regression of Y on X , after consistently estimating the
support of β, which is valid only for regression coefficients above the minimax
optimal O(

√
log p/n) level, see for instance [1, 2, 3].
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1.1.2. Prediction of Y from X via Essential Regression. In general factor regres-
sion (FR) models (1) – (2), at the population level, the best linear predictor of Y
takes the form

(4) Y ∗
FR = XTA[Cov(ATX)]−1Cov(ATX,Y ).

We use the above expression, combined with a plug-in estimate of A, to construct

in-sample predictors Ŷ of the observed data vector Y ∈ Rn. The in-sample pre-
diction risk bound is

(5)
1

n
E

[
‖Ŷ − Zβ‖2

]
≤ C × K

n
σ2 +

‖β‖2
Λmin

{
1 + sJ

log(p ∨ n)

n

}
.

Analysis of this bound reveals improvements in the prediction risk that are possible
under the E-Regression model, relative to model-free prediction via the principal
components of X .

1.1.3. Essential Regression as Regression with Clustered Predictors. E-Regression
can be used as a vehicle for model-based clustering and subsequent regression
on cluster-related quantities. Within our E-Regression framework, we distinguish
between two post-clustering problems: inference and prediction. We can inter-
pret the matrix A as a cluster allocation matrix and the inference carried out at
the level of the latent factors Z, as inference carried out at the level of the clus-
ter centers, but caution against replacing components of Z by cluster averages.
Indeed, we prove that replacing Z by weighted averages X̄ and subsequently re-
gressing on X̄, would not estimate β. However, this can be immediately corrected

by regression on predictors Z̃ of Z, obtained from appropriate cluster averages,
exercising care when clusters overlap. With this correction, we obtain exactly the
estimator of β analyzed above, and we can interpret the newly developed infer-
ential tools as tools for post-clustering inference in regression. Prediction of Y
requires less care as the cluster (weighted) averages X̄ have the same prediction

error as that relative to Z̃. The resulting predictor corresponds to the one already
explained above and our model formally justifies prediction from cluster averages.
Moreover, prediction with clustered variables, whenever appropriate, provides an
alternative to prediction via sparse regression in high dimensions, with differences
particularly pronounced whenever the level of sparsity is not high and when the
multi-collinearity among the X-variables is strong.
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Integrated Principal Components Analysis

Genevera I. Allen

(joint work with Tiffany M. Tang)

Data integration, or the strategic analysis of multiple sources of data simultane-
ously, can often lead to discoveries that may be hidden in individualistic analyses
of a single data source. We develop a new statistical data integration method
named Integrated Principal Components Analysis (iPCA), which is a model-based
generalization of PCA and serves as a practical tool to find and visualize com-
mon patterns that occur in multiple datasets. The key idea driving iPCA is the
matrix-variate normal model, whose Kronecker product covariance structure cap-
tures both individual patterns within each dataset and joint patterns shared by
multiple datasets:

Xk ∼ N(µk,Σ⊗∆k)

where for data source Xk, Σ represents the common sample / row dependencies
shared across all k data sources and ∆k represents the separate column / feature
dependencies unique to each data source. We then define the integrated principal
components to be:

U← eigenvectors(Σ)

Vk ← eigenvectors(∆k)

where U gives the shared iPCs and Vk gives the iPC loadings unique to each data
set.

Building upon this model, we develop several penalized (sparse and non-sparse)
covariance estimators for iPCA and study their theoretical properties. We show
that our sparse iPCA estimator consistently estimates the underlying joint sub-
space, and using geodesic convexity, we prove that our non-sparse iPCA estimator
converges to the global solution of a non-convex problem. We also demonstrate
the practical advantages of iPCA through simulations and a case study application
to integrative genomics for Alzheimer’s Disease. In particular, we show that the
joint patterns extracted via iPCA are highly predictive of a patient’s cognition
and Alzheimer’s diagnosis.
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On the Global Convergence of Gradient Descent for

Over-parameterized Models using Optimal Transport

Francis Bach

(joint work with Lénäıc Chizat)

Many tasks in machine learning and signal processing can be solved by minimizing
a convex function of a measure. This includes sparse spikes deconvolution or
training a neural network with a single hidden layer. For these problems, we
study a simple minimization method [1]: the unknown measure is discretized into
a mixture of particles and a continuous-time gradient descent is performed on their
weights and positions. This is an idealization of the usual way to train neural
networks with a large hidden layer. We show that, when initialized correctly and
in the many-particle limit, this gradient flow, although non-convex, converges to
global minimizers. The proof involves Wasserstein gradient flows, a by-product
of optimal transport theory. Numerical experiments show that this asymptotic
behavior is already at play for a reasonable number of particles, even in high
dimension. While our results are qualitative, there are already works showing
a quantitative analysis of the required number of neurons needed to reach the
mean-field limit [3].

Moreover, in a series of recent theoretical works, it has been shown that strongly
over-parameterized neural networks trained with gradient-based methods could
converge linearly to zero training loss, with their parameters hardly varying. In
this note, our goal is to exhibit the simple structure that is behind these results. In
a simplified setting, we prove that “lazy training” essentially solves a kernel regres-
sion. We also show that this behavior is not so much due to over-parameterization
than to a choice of scaling, often implicit, that allows to linearize the model around
its initialization. These theoretical results complemented with simple numerical
experiments make it seem unlikely that lazy training is behind the many successes
of neural networks in high dimensional tasks [2].
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Optimality in locally private estimation

John Duchi

I present new optimality results for estimation problems in local privacy models,
when data is kept private even from the collector of data. I will give both funda-
mental limits - lower bounds - building out of communication complexity, allowing
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the limits to apply to any level of desired privacy and any mode of data collection.
I will also give commensurate optimality results, showing in particular applications
to large scale estimation currently employed in a number of real-world scenarios.

Note: abstract copied by the reporter from the book of abstracts at the MFO.

Consistent inversion of noisy non-Abelian X-ray transforms

Richard Nickl

(joint work with F. Monard, G.P. Paternain)

We discuss the results obtained in the recent preprint [3].
For M a simple surface, the non-linear and non-convex statistical inverse prob-

lem of recovering a matrix field Φ : M → so(n) from discrete, noisy measurements
of the SO(n)-valued scattering data CΦ of a solution of a matrix ODE is consid-
ered (n ≥ 2). Injectivity of the map Φ 7→ CΦ was established by [Paternain, Salo,
Uhlmann; Geom. Funct. Anal. 2012, [4]].

A statistical algorithm for the solution of this inverse problem based on Gauss-
ian process priors is proposed, and it is shown how it can be implemented by
infinite-dimensional MCMC methods. It is further shown that as the number N
of measurements of point-evaluations of CΦ increases, the statistical error in the
recovery of Φ converges to zero in L2(M)-distance at a rate that is algebraic in

1/N , and approaches 1/
√
N for smooth matrix fields Φ. The proof relies, among

other things, on a new stability estimate for the inverse map CΦ → Φ.
Key applications of our results are discussed in the case n = 3 to polarimetric

neutron tomography, see [Desai et al., Nature Sc. Rep. 2018, [1]] and [Hilger et al.,
Nature Comm. 2018, [2]].
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Central Limit Theorems for Wasserstein Distance between empirical

distributions

Jean-Michel Loubes

(joint work with E. del Barrio)

Consider P , Q probabilities on Rd and c(x, y) = ‖x− y‖p, p ≥ 1.

Wp
p (P,Q) = min

π∈Π(P,Q)

∫
‖x− y‖pdπ(x, y)

Π(P,Q) probabilities on X × Y with marginals P and Q.
Wp is a metric on Fp, probabilities on Rd with finite p-th moment.

Set X1, . . . , Xn ∈ Rd, Pn = 1
n

∑n
i=1 δXi Our aim is to provide a Central

Limit Theorem for the Empirical transportation cost: Wp
p (Pn, Q) and extend it to

Wp
p (Pn, Qm).

For d = 2, (Ajtai-Komlos-Tusnady, 1984; Talagrand & Yukich, 1993)

c(p)
(

logn
n

)1/2

≤ E(Wp(Pn, U([0, 1]2))) ≤ C(p)
(

logn
n

)1/2

.

For d ≥ 3, Talagrand, Yukich, 1992-1994

E(Wp(Pn, U([0, 1]d))) ≤ C(d, p)
1

n1/d
.

Extensions to compactly supported P with ‘regular’ density

If d = 1 and P ∼ f s.t.
∫ 1

0

(
(t(1−t))1/2

f(F−1(t))

)p

dt <∞ (E. del Barrio, E. Giné and C.

Matrán, 1999 and 2005)

√
nWp(Pn, P )→w

[∫ 1

0

(
B(t)

f(F−1(t))

)p

dt
]1/p

,

B(t) Brownian bridge on [0, 1]
No results for P 6= Q

CLT :
rn
(
Wp

p (Pn, Q)− an)
rn,m

(
Wp

p (Pn, Qm)− an,m)

}
⇒Computation of approximate p−values

• d = 1, p = 2: A. Munk and C. Czado (1998) W2 for trimmed version
• d ≥ 1, p ≥ 1:

- M. Sommerfeld and A. Munk (2018): P,Q finitely supported
- A. Tameling, M. Sommerfeld and A. Munk (2018): P,Q countable
support

In the Gaussian case results in Kroshnin, Spokoiny and Suvorikova (2019)

Here CLTs for W2
2 (Pn, Q) and W2

2 (Pn, Qm) for general P , Q and d
Assume P , Q ∈ F2 and

(1) Q has a positive density in the interior of its convex support.
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Theorem If P,Q ∈ F4+δ and satisfy (1), ϕ0 o.t. potential from P to Q and Pn

empirical measure on X1, . . . , Xn, i.i.d. P r.v.’s then

nVar(W2
2 (Pn, Q))→ σ2(P,Q)

with

σ2(P,Q) =

∫

Rd

(‖x‖2 − 2ϕ0(x))
2dP (x)−

( ∫

Rd

(‖x‖2 − 2ϕ0(x))dP (x)
)2

and
√
n
(
W2

2 (Pn, Q)− EW2
2 (Pn, Q))→

w
N(0, σ2(P,Q))

Furthermore, if Qm empirical measure on Y1, . . . , Ym i.i.d. Q r.v.’s, independent
of the Xi’s, n→∞, m→∞ with n

n+m → λ ∈ (0, 1), then

nm
n+mVar(W2

2 (Pn, Qm))→ (1− λ)σ2(P,Q) + λσ2(Q,P )

√
nm
n+m

(
W2

2 (Pn, Qm)− EW2
2 (Pn, Qm))→

w
N(0, (1− λ)σ2(P,Q) + λσ2(Q,P ))

d = 1 : Wp
p (Fn, G) =

n∑

i=1

∫ i
n

i−1

n

|X(i) −G−1(t)|pdt.

Other tools : strong approximation of quantile process

Theorem[Central Limit Theorem for Wp with p > 1] Assume that F,G ∈ F2p

and G−1 is continuous on (0, 1) and p > 1. Then

(i) If X1, . . . , Xn are i.i.d. F and Fn is the empirical d.f. based on the Xi’s

√
n(Wp

p (Fn, G)− EWp
p (Fn, G))→w N(0, σ2

p(F,G)).

(ii) If, furthermore, F−1 is continuous, Y1, . . . , Ym are i.i.d. G, independent of
the Xi’s, Gm is the empirical d.f. based on the Yj ’s and

n
n+m → λ ∈ (0, 1)

then
√

nm
n+m (Wp

p (Fn, Gm)− EWp
p (Fn, Gm))→w N(0, (1− λ)σ2

p(F,G) + λσ2
p(G,F )).

Assume p ≥ 2. Under the assumptions of the CLT,

(i) if F satisfies I) to IV) then
√
n(Wp

p (Fn, G)−Wp
p (F,G))→w N(0, σ2

p(F,G)).
(ii) if, furthermore, G satisfies I) to IV) and n

n+m → λ ∈ (0, 1) then

√
nm
n+m (Wp

p (Fn, Gm)−Wp
p (F,G))→w N(0, (1− λ)σ2

p(F,G) + λσ2
p(G,F )).

Results are taken from [1], [2], [3].
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Distributional Replicability*

Peter Bühlmann

(joint work with Dominik Rothenhäusler, Nicolai Meinshausen, Jonas Peters)

The common notion of replicability in statistics quantifies how well a finding from
one data set generalizes to a new unseen data set having the same data-generating
distribution as the original one. Typically, the quantification is in terms of statisti-
cal uncertainties. We consider here the problem when the new data set comes from
a different distribution than the one generating the observed data. It is related to
distributional robustness, and hence called “distributional replicability”.

Distributional robustness deals with the problem of estimating and optimizing
an unknown parameter (or function) θ with respect to a worst case risk over a
class of probability distributions

θ̂ = argminθ sup
P∈F

EP [ℓ(Z; θ)],(1)

where ℓ(.; .) is a loss function and Z represents a random variable generating a
data point. The choice of the class F is important as it encodes models for data-
generating distributions of a new unseen data set. We focus here on regression
where the class F is induced by causal-type (structural equation) models estimated
from observed data. The latter is assumed to be heterogeneous with different
observed environments or regimes which allows to construct F in a data-driven
way. The optimization in (1) can be achieved by causal regularization in terms
of the observed data distribution(s). The corresponding methodology is called
anchor regression [1]. Anchor regression itself is motivated by invariant causal
prediction [2], a conceptual framework and methodology which connects causality
with distributional invariance (and hence) robustness properties.

Anchor regression provides a novel methodology for distributional (and pre-
dictive) robustness and replicability, with provable guarantees; and it leads to
interesting results on a large-scale data set from proteomics.

* Dedicated to Sara van de Geer whose birthday has been celebrated during the
workshop.
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Estimation of functionals in sparse vector model

Alexandre Tsybakov

(joint work with Laëtitia Comminges, Olivier Collier, Mohamed Ndaoud)

Assume that we have the observations yi = θi + εξi, i = 1, . . . , d, where θ =
(θ1, . . . , θd) ∈ Rd is a vector of unknown parameters, ε > 0, and ξi are independent
identically distributed (i.i.d.) random variables. Assume also that θ belongs to
the class B0(s) of all s-sparse vectors, that is, vectors in Rd with not more than s
non-zero components, s ∈ {1, . . . , d}. We first consider the problem of estimation

of ‖θ‖γ =
(∑d

i=1 |θi|γ
)1/γ

, γ > 0, based on observations y = (y1, . . . , yd). We

prove that, if ε > 0 is known and ξi are i.i.d. standard Gaussian variables, the
minimax risk for estimation of ‖θ‖γ under the squared loss on the class B0(s)
satisfies (cf. [1]):

inf
T̂

sup
θ∈B0(s)

Eθ[(T̂ − ‖θ‖γ)2/ε2] ≍





s2/γ log(1 + d/s2), if s ≤
√
d,

s2/γ

log(1 + s2/d)
, if s >

√
d and γ 6∈ E,

d1/γ , if s >
√
d and γ ∈ E,

where E is the set of all even integers, and Eθ denotes the expectation with
respect to the distribution of y, and inf T̂ is the infimum over all estimators. We
also construct estimators achieving this minimax rate, see [1]. This generalizes the
previous results of [2] (case γ = 2) and of [3] (case γ = 1 and s = da, a > 1/2).

Next, for the same sparse vector model, when the noise is not necessarily Gauss-
ian and ε is not necessarily known, we consider adaptive estimation of θ, of the
norm ‖θ‖2 and of the noise variance ε2. We construct adaptive estimators and es-
tablish the optimal rates when adaptation is considered with respect to the triplet
”noise level - noise distribution - sparsity”. We consider classes of noise distri-
butions with polynomially and exponentially decreasing tails as well as the case
of Gaussian noise. The obtained rates turn out to be different from the minimax
non-adaptive rates when the triplet is known. A crucial issue is the ignorance of
the noise variance. Moreover, knowing or not knowing the noise distribution can
also influence the rate. For example, the rates of estimation of the noise variance
can differ depending on whether the noise is Gaussian or sub-Gaussian without a
precise knowledge of the distribution. Estimation of noise variance in our setting
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can be viewed as an adaptive variant of robust estimation of scale in the contam-
ination model, where instead of fixing the nominal distribution in advance, we
assume that it belongs to some class of distributions.
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Hierarchical community detection by recursive partitioning

Elizaveta Levina

(joint work with Tianxi Li, Lihua Lei, Sharmodeep Bhattacharyya, Purnamrita
Sarkar, Peter J. Bickel)

Network data have become increasingly common in many fields, with interesting
scientific phenomena discovered through the analysis of biological, social, ecolog-
ical, and various other networks. Among various network analysis tasks, com-
munity detection (the task of clustering network nodes into groups with similar
connection patterns) has been one of the most studied, due to the ubiquity of
communities in real-world networks and the appealing mathematical formulations
that lend themselves to analysis. For the most part, community detection has been
formulated as the problem of finding a single partition of the network into some
“correct” number of communities. However, it is both well known in practice and
supported by theory that nearly all the algorithms and models proposed for this
type of community detection do not work well when the number of communities is
large. We argue that for large networks, a hierarchy of communities is preferable
to such a partition, since multiple partitions at different scales frequently make
more sense in real networks, and the hierarchy can be scientifically meaningful, like
an evolutionary tree. A hierarchical tree, with larger communities subdivided into
smaller ones, offers a natural and very interpretable representation of community
structure, and simplifies the problem of estimating the potentially large number of
communities from the entire network. In addition, a hierarchy gives us much more
information than any “flat” partition, by indicating how close communities are
through their tree distance. Finally, recursive splitting is more computationally
efficient, and, as we show, in some settings is more accurate. In particular, we
show that even when the full community structure corresponding to the leaves of
the tree is below the recovery threshold, we can still consistently recover the top
levels of the tree as long as they are well separated, giving us partial but accurate
information where a flat partition method would fail.
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Many existing algorithms for hierarchical clustering can be modified to apply
to networks. We adopt a simple top-down recursive partitioning algorithm, once
popular in the clustering literature. It requires two tools that, in turn, can be
chosen among many existing methods: an algorithm to partition a given network
into two, and a stopping rule to decide whether there is more than one commu-
nity in a given subnetwork. Given these two tools, the recursive (bi-)partitioning
algorithm proceeds by starting with all nodes in one community, applying the
stopping rule to decide whether a split is needed, applying the splitting algorithm
to split into two communities if so, and continuing to apply this to every resulting
subnetwork until the stopping rule indicates there are no further splits to make.
This class of algorithms can be made model-free and tuning-free, and is compu-
tationally efficient, with the computational cost growing logarithmically in the
number of communities rather than linearly, which is the case for most flat parti-
tion methods. We implement recursive partitioning by using regularized spectral
clustering as the splitting rule, and the Bethe-Hessian estimator of the number of
communities as the stopping rule, although any other consistent method can be
used instead.

We analyze the algorithm’s theoretical performance under a natural framework
for this setting, the binary tree stochastic block model. Under this model, we
prove that the algorithm correctly recovers the entire community tree under mild
growth assumptions on the average degree, allowing for sparse networks. Further,
the assumptions to recover each level of the tree, which we make explicit, get
strictly stronger as we move down the tree, illuminating the regime where recursive
partitioning can correctly recover mega-communities at the higher levels of the
hierarchy even when it cannot recover every community at the bottom of the
tree. We show that in practice recursive partitioning outperforms “flat” spectral
clustering on multiple performance metrics when the number of communities is
large, and illustrate the algorithm on a dataset of statistics papers, constructing
a highly interpretable tree of statistics research communities.
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Conformalized Quantile Regression

Emmanuel Candes

(joint work with Evan Patterson, Yaniv Romano)

Conformal prediction is a technique for constructing prediction intervals that at-
tain valid coverage in finite samples, without making distributional assumptions.
Despite this appeal, existing conformal methods can be unnecessarily conserva-
tive because they form intervals of constant or weakly varying length across the
input space. In this talk we propose a new method that is fully adaptive to het-
eroscedasticity. It combines conformal prediction with classical quantile regression,
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inheriting the advantages of both. We establish a theoretical guarantee of valid
coverage, supplemented by extensive experiments on popular regression datasets.
We compare the efficiency of conformalized quantile regression to other conformal
methods, showing that our method tends to produce shorter intervals.

Suppose we are given n training samples {(Xi, Yi)}ni=1 and we must now pre-
dict the unknown value of Yn+1 at a test point Xn+1. We assume that all the
samples {(Xi, Yi)}n+1

i=1 are drawn exchangeably—for instance, they may be drawn
i.i.d.—from an arbitrary joint distribution PXY over the feature vectors X ∈ Rp

and response variables Y ∈ R. We aim to construct a marginal distribution-free
prediction interval C(Xn+1) ⊆ R that is likely to contain the unknown response
Yn+1. That is, given a desired miscoverage rate α, we ask that

P{Yn+1 ∈ C(Xn+1)} ≥ 1− α

for any joint distribution PXY and any sample size n. The probability in this
statement is marginal, being taken over all the samples {(Xi, Yi)}n+1

i=1 .
To accomplish this, we build on the method of conformal prediction [5, 6, 7, 1,

8, 9]. We first split at random the training data into two disjoint subsets, a proper
training I1 set and a calibration set I2.

• We fit two quantile regressors q̂αlo
(·) and q̂αhi

(·) on the proper training set
to obtain initial estimates of the lower and upper bounds of the prediction
interval by applying tools from quantile regression. Quantile regression
estimates a conditional quantile function qα of Yn+1 given Xn+1=x by
solving the optimization problem

q̂α(x) = argmin
f∈F

1

n

n∑

i=1

ρα(Yi, f(Xi)) +R(f),

where f(x) is the quantile regression function and the loss function ρα is
the “check function” or “pinball loss” [3, 4], defined by

ρα(y, ŷ) :=

{
α(y − ŷ) if y − ŷ > 0,

(1 − α)(ŷ − y) otherwise.

Above, F is a class of functions (either parametric or nonparametric) and
R(·) is a possible regularizer.
• Then, using the calibration set, we correct the prediction interval calcu-
lated above (we “conformalize” it). We introduce conformity score for
each data point in the calibration set:

Ei = max{q̂αlo
(Xi)− Yi, Yi − q̂αhi

(Xi)}, i ∈ I2.
These scores are signed distances to the boundaries: the score is negative if
the calibration point lies within the empirical quantile range and positive
if it lies outside.

Given a new input data Xn+1, we construct the prediction interval for Yn+1 as

C(Xn+1) = [q̂αlo
(Xn+1)−Q, q̂αhi

(Xn+1) +Q] ,
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where

Q := (1− α)(1 + 1/|I2|)-th empirical quantile of {Ei : i ∈ I2}
conformalizes the plug-in prediction interval. We refer to this method as the split
CQR algorithm.

Our main result is this:

Theorem 1. If (Xi, Yi), i = 1, . . . , n + 1 are exchangeable, then the prediction
interval C(Xn+1) constructed by the split CQR algorithm satisfies

P{Yn+1 ∈ C(Xn+1)} ≥ 1− α.

Moreover, if the conformity scores Ei are almost surely distinct, then the prediction
interval is nearly perfectly calibrated:

P{Yn+1 ∈ C(Xn+1)} ≤ 1− α+
1

|I2|+ 1
.

Our method differs from the standard method of conformal prediction [1, 9]
in that we calibrate the prediction interval using conditional quantile regression,
while the standard method uses only classical, conditional mean regression. The
result is that our intervals are adaptive to heteroscedasticity whereas the standard
intervals are not. In [2] we evaluate the statistical efficiency of our framework
by comparing its miscoverage rate and average interval length with those of other
methods. Based on extensive experiments across eleven datasets, we conclude that
conformal quantile regression yields shorter intervals than the competing methods.
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Predictive inference with the jackknife+

Rina Foygel Barber

(joint work with Emmanuel Candès, Aaditya Ramdas, Ryan Tibshirani)

Given a training data set (X1, Y1), . . . , (Xn, Yn) ∈ Rd × R, consider the problem
of constructing a prediction interval at a new point Xn+1 that is likely to contain
the new response value Yn+1. Our aim is to construct prediction intervals that are
distribution-free, meaning that we do not need to rely on any assumptions about
the data distribution to ensure that the prediction intervals achieve the desired
coverage probability. To introduce some notation, we would like to ensure that

P

{
Yn+1 ∈ Ĉn,α(Xn+1)

}
≥ 1− α

for some target error level α. Implicitly, this probability is also taken with re-
spect to the training data points, which are used in the construction of the data-

dependent prediction interval Ĉn,α. We will assume that the training and test
data points (X1, Y1), . . . , (Xn, Yn), (Xn+1, Yn+1) are drawn i.i.d. from some dis-
tribution, but place no conditions on the distribution. (More generally, we can
assume simply that these n+ 1 data points are exchangeable.)

Many popular prediction methods take the form

Ĉn,α(Xn+1) = µ̂(Xn+1)± (margin of error),

where µ̂ : Rd → R is a regression function fitted to the training data,

µ̂ = A
(
(X1, Y1), . . . , (Xn, Yn)

)
,

for some regression method A (such as linear regression or a neural net—we treat
A as a black box and assume only thatA is invariant to the ordering of the training
data points). If the margin of error is calculated using the training data residuals,
however, then the predictive intervals are likely to undercover. This is because
many algorithms will overfit to training data, leading to training residuals that are
quite low relative to the prediction error on a new unseen test point (Xn+1, Yn+1).
It is well known that data splitting can be used to address this problem—the
regression function is fitted on one portion of the training data, while the margin
of error is calculated using the remaining portion. Specifically, let n = n0 + n1,

define µ̂split = A
(
(X1, Y1), . . . , (Xn0

, Yn0
)
)
, define Rsplit

i = |Yi− µ̂split(Xi)| for the
holdout set i = n0 + 1, . . . , n, and let

Ĉsplit
n,α (Xn+1) = µ̂split(Xn+1)±(

the ⌈(1− α)(n1 + 1)⌉-th smallest value of Rsplit
n0+1, . . . , R

split
n

)
.

This method, known also as “split conformal prediction prediction” or “inductive
conformal prediction”, achieves distribution-free predictive coverage because the

residuals on the holdout set, Rsplit
n0+1, . . . , R

split
n , are exchangeable with the test

point residual |Yn+1− µ̂split(Xn+1)| [1, 2, 3]. One potential problem with the data
splitting approach, however, is that when the training size n is not very large,
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Figure 1. Illustration of the jackknife and jackknife+ methods.

fitting the regression function µ̂split on an even smaller sample size n0 < n can
reduce accuracy (leading to wider prediction intervals). On the other hand, we do
need to make n0 substantially smaller than n, since an extremely small holdout
set size n1 = n− n0 would lead to high variance in the margin of error.

To avoid this tradeoff we can instead consider the jackknife method (also known
as leave-one-out cross-validation). Let µ̂−i = A

(
(Xj , Yj) : j 6= i

)
, fitted on the

training data with point i removed, and let RLOO
i = |Yi − µ̂−i(Xi)| be the corre-

sponding leave-one-out (LOO) residual. The jackknife interval is then given by

Ĉjackknife
n,α (Xn+1) = µ̂(Xn+1)±(

the ⌈(1− α)(n+ 1)⌉-th smallest value of RLOO
1 , . . . , RLOO

n

)
.

Since point i was not included when fitting the regression function µ̂−i, we have
avoided overfitting and so in general expect to see good coverage. Unfortunately,
however, coverage cannot be guaranteed without further assumptions. For exam-
ple, A might perform better when the training data size is n− 1 rather than n—
while this type of behavior seems implausible, it is actually the case for “ridgeless”
least squares (i.e., ridge regression with penalty parameter tending to zero), when
n < d [4]. On the other hand, if the algorithm is assumed to satisfy stability [5]—
informally, this means that asymptotically we will have µ̂(Xn+1) ≈ µ̂−i(Xn+1),
i.e., our predictions will not be sensitive to adding a single point to the training
data—then this ensures asymptotically valid coverage for the jackknife [6].

In order to achieve predictive coverage without assumptions on the data distri-
bution or the regression algorithm, we propose the jackknife+ method, which is
defined as follows:

Ĉjackknife+
n,α (Xn+1) =

[
the ⌊α(n+ 1)⌋-th smallest value of µ̂−i(Xn+1)−RLOOi ,

the ⌈(1− α)(n+ 1)⌉-th smallest value of µ̂−i(Xn+1) +RLOOi

]
.
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This construction differs from the usual jackknife by replacing the point estimate
µ̂(Xn+1) with the leave-one-out values µ̂−i(Xn+1). The difference between the
two methods is illustrated in Figure 1. The proposed jackknife+ method is closely
related to the cross-conformal method [7, 8].

Our main result proves that the jackknife+ method has, at most, a factor of 2
inflation in its error rate:

Theorem 1. Let A be any regression method that is invariant to the ordering of

the training data, and let (X1, Y1), . . . , (Xn, Yn), (Xn+1, Yn+1)
iid∼ P for an arbi-

trary distribution P . Then the jackknife+ method satisfies

P

{
Yn+1 ∈ Ĉjackknife+

n,α (Xn+1)
}
≥ 1− 2α.

The factor of 2 cannot be removed—we verify this with an explicit matching bound:

Theorem 2. For any dimension d ≥ 1, there exists an algorithm A that is in-
variant to the ordering of the data, and a distribution P on Rd ×R, such that for

(X1, Y1), . . . , (Xn, Yn), (Xn+1, Yn+1)
iid∼ P ,

P

{
Yn+1 ∈ Ĉjackknife+

n,α (Xn+1)
}
≤ 1− 2α+O

(√
log(n)/n

)
.

Our paper [9] also includes generalizations of this procedure—first, to a K-fold
cross-validation method (for jackknife+, we choose K = n, and use leave-one-
out cross-validation), and second, to construct asymmetric intervals with signed
residuals rather than using the absolute value residuals for a symmetric margin of
error, with analogous theoretical results for these modifications as well.
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Data analysis based on optimal transport: Theory,

algorithms, applications

Axel Munk

(joint work with Marcel Klatt, Jörn Schrieber, Max Sommerfeld, Carla Tameling,
Yoav Zemel)

The optimal transport distance (OTD) between two probability measures (see e.g.,
[11] or [17] for a comprehensive treatment) is a fundamental concept in mathemat-
ical sciences including probability and statistics, with respect to both theory and
practice. The p-th OTD between two probability measures µ and ν on a Polish
metric space (X , d) is given by

(1) Wp(µ, ν) =

(
inf

∫

X×X
dp(x, y)dπ(x, y)

)1/p

for p ∈ [1,∞), the infimum is taken over all probability measures π (couplings) on
the product space X ×X with marginals µ and ν. Despite its long standing history
in mathematics and related disciplines, such as physics and economics, statistical
OTD based data analysis is a relatively new emerging field and challenged mainly
by two issues:

(1) Its routine use in many real world applications as a measure to compare
complex objects relies on fast computation of the empirical OTD (i.e. when
the marginal measures are estimated from data by empirical counterparts
µn, νn, denoted as EOTD).

(2) Methods for statistical inference are lacking to a large extent.

Addressing (2) there is a long standing interest in distributional limits for EOTD.
However, most of this work is restricted to the univariate case X ⊂ R (see e.g.
[9, 5, 2]) A major reason of the limitation to dimension D = 1 is that in gerneral
only for X ⊂ R (or more generally a rooted tree) the coupling which solves (1)
is known explicitly. For X ⊂ R this can be expressed in terms of the quantile
functions F−1 and G−1 of µ and ν, respectively, as π = (F−1×G−1)#L, where L
is the Lebesgue measure on [0, 1]. For higher dimensions only in specific settings
such a coupling can be computed explicitly and then can be used to derive limit
laws as well (see e.g. [12]). Already for D = 2 it is well known that the scaling
rate for the limiting distribution (if it exists) of W1(µ̂n, µ) when µ is the uniform
measure on X = [0, 1]2 must be of complicated nature as it is bounded from above

and below by a rate of order
√
n log(n). Recently, [6] gave distributional limits for

the quadratic EWD for the euclidean space in general dimension with a scaling
rate

√
n. This yields a (non-degenerate) normal limit in the case µ 6= ν, i.e., when

the data generating measure is different from the measure to be compared with
(extending [9] to D > 1). Their result centers the EOTD with its expectation and
requires µ and ν to have a positive Lebesgue density on the interior of their convex
support. However, in the case µ = ν, their distributional limit degenerates to a
point mass at 0, underlining the fundamental difficulty of this problem again.
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An alternative approach has been advocated recently in [14, 16, 8] who restrict
to finite / countable spaces X = {x1, . . . , xN} (N can be ∞). Such limit laws
for the EOTD for µ = ν then require a different scaling rate n1/2p. The proof is
based on the one hand on weak convergence of the underlying multinomial process
associated with µ̂n with respect to a weighted ℓ1-norm (if N =∞)

||x|| =
∑

x∈X
dp(x, x0)|rx|+ |rx0

|,(2)

and on the other hand to (infinite dimensional) sensitivity analysis of the corre-
sponding linear program [3]. Here, x0 ∈ X is fixed, but arbitrary. For the delta
method to work here weak convergence in the weighted ℓ1-norm (2) of the un-
derlying empirical process

√
n(µn − µ) is required as the directional Hadamard

differentiability is proven w.r.t. this norm. In turn the well known summability
condition

(3)
∑

x∈X
dp(x, x0)

√
rx <∞

is necessary and sufficient for weak convergence of the EOTD, which is known to
be necessary and sufficient for the discrete empirical process

√
n(µn − µ) to be

Donsker according to the well known Borisov-Durst Theorem.
In summary, the discretized OT allows to obtain such limit laws in large gener-

ality and therefore offers a perspective to various statistical applications, such as
OT based ANOVA or confidence statements for the OTD [14, 16].

We further argue that for many applications the transport plan itself is a quantity
which can be very helpful for a meaningful data analysis. However, if it comes
to asymptotic laws of the underlying transport plan, limit theorems are entirely
lacking (D = 1 is an exception again) and only for the entropy regularized plan [4]
asymptotic normality has been shown recently for finite number of support points
[8]. This is based on a pertubation analysis of the regularized EOT and highlights
an interesting link to a computational burden recently noticed [1, 7] when approx-
imating the linear program underlying the original OT problem by regularized
solutions. As the regularization parameter λ vanishes, the computational effort
scales quadratically. This coincides with the scaling rate we obtain for p = 2 [8].

Finally, we address (1) and discuss resampling schemes for the statistical compu-
tation of the EOTD. These can be combined with any state of the art back end
solver [15] in a simple way. We show that subsampling allows to approximate the
OTD with controllable statistical accuracy at a given computational cost which
can be magnitudes smaller than for the original problem. In particular, when ap-
proximating a d dimensional cube by an equidistant grid of size N the expected L1

loss of the EOTD is independent of the size N of the underlying problem as long
as the spatial dimension of the cube is 1 ≤ D ≤ 3. When D = 4 the discretization
size enters logarithmically, and for larger d polynomially at a specific rate, see [15].
It is not known to us whether this is sharp, in particular for large dimensions.
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Wasserstein Projection Pursuit

Jonathan Weed

(joint work with Philippe Rigollet)

Given two probability measures µ and ν supported on Rd, the Wasserstein dis-
tance Wp(µ, ν) between them can be estimated by the empirical quantity
Wp(µ̂n, ν̂n). Standard results [3, 1] imply that if d > 2p, then this plug-in es-
timator satisfies

E|Wp(µ̂n, ν̂n)−Wp(µ, ν)| ≤ EWp(µ, µ̂n) + EWp(ν, ν̂n)

≤ Cd,pn
−1/d ,

and this rate can be shown to be tight for certain µ and ν. This estimator therefore
suffers from the curse of dimensionality. However, this analysis does not preclude
the possibility that given n i.i.d. samples from µ and ν, one can construct a different
estimator Ŵ that achieves a significantly better rate of convergence. We therefore
ask whether the n−1/d rate can be improved.

We define the minimax risk

R(n,P) := inf
Ŵ

sup
µ,ν∈P

Eµ,ν |Ŵ −Wp(µ, ν)| ,

where the infimum is taken over estimators Ŵ constructed from n independent
samples from µ and n independent samples from ν. We are aware of only one lower
bound on R(n,P) in the literature, due to [2], who prove that R(n,P) & n−3/2d

when P is the set of measures supported on [0, 1]d. Our main result is to sharpen
this bound considerably.

Theorem 1. Let P be the set of distributions supported on [0, 1]d. If d > 2p, then

R(n,P) ≥ Cd,p(n logn)−1/d .

This result immediately implies that the plug-in estimator is optimal up to
logarithmic factors.

1. Proof technique

The core idea of our lower bound is to relate estimating the Wasserstein distance
to the problem of estimating total variation distance, sharp rates for which are
known [11, 4]. Lower bounds for the total variation estimation problem are gener-
ally obtained by constructing a pair of distributions p and q as well as a reference
distribution u on [m] such that tv(p, u) ≥ 2ε and tv(q, u) < ε but such that n
samples from p and q are indistinguishable. The existence of such a pair implies
that no estimator can obtain accuracy better than ε.

In order to apply this technique to the Wasserstein distance, a first attempt is
to embed p, q, and u in [0, 1]d by letting them be supported on an equally spaced
grid of size [m]. Given two distributions µ and ν on such a grid, it is easy to see
that

m−1/dtv(µ, ν)1/p . Wp(µ, ν) . tv(µ, ν)1/p .
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Unfortunately, the lower and upper bounds in the above embedding differ by a
factor ofm1/d, and neither inequality can be sharpened in general. As a result, such
an embedding is too coarse to be useful in constructing lower bounds. However,
we show that this approach can be salvaged when one of the distributions is the
uniform measure on [m] as long as the χ2-divergence between the two distributions
is not large.

Proposition 1. Assume d > 2p ≥ 2, and let m be a positive integer. Let u be the
uniform distribution on [m]. There exists a random function F : [m] → X such
that for any distribution q on [m],

cm−1/dtv(q, u)
1
p ≤Wp(F♯q, F♯u) ≤ Cd,pm

−1/d(χ2(q, u))1/dtv(q, u)
1
p− 2

d

with probability at least .9.

We then show a modified lower bound for a testing problem involving the to-
tal variation distance over the class of distributions on [m] close to the uniform
measure in χ2 divergence, inspired by a strategy of [10] and [12]. Combining these
results yields the lower bound.

2. Spiked Transport Model

We propose a model analogous to the spiked covariance model, where we plant
low-dimensional structure in an otherwise high-dimensional model. Let us fix a
subspace U ⊆ Rd of dimension k ≪ d. Let X(1) and X(2) be two random variables
supported on U with arbitrary distribution, and let Z be a third random variable,
independent of X(1) and X(2), such that Z is supported on U⊥, the orthogonal
complement of V . We let µ(1) and µ(2) be the law of X(1) + Z and X(2) + Z,
respectivey. Though µ(1) and µ(2) are high-dimensional distributions, they differ
only on the low-dimensional subspace U . We call this the spiked transport model.

This model suggests the following estimator. Given any probability distribution
µ on Rd and a k × d matrix U with orthonormal rows, if Y ∼ µ, we write µU for
the distribution of UY . Given samples from µ(1) and µ(2), we define

(1) Ŵ := sup
U∈Vk

Wp(µ̂
(1)
U , µ̂

(2)
U ) .

where the maximization is taken over the Stiefel manifold Vk of k × d matrices
with orthonormal rows. We call this procedure Wasserstein projection pursuit.
This procedure has also been considered by [8] and [5].

We show that under the spiked transport model, our proposed estimator per-
forms well.

Theorem 2. Let p ∈ [1, 2]. Under the spiked transport model, if µ(1) and µ(2)

satisfy Tp(σ
2), then the estimator Ŵ defined in (1) satisfies

E|Ŵp −Wp(µ
(1), µ(2))| . σ ·

(
n−1/k +

√
d logn

n

)
.
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Strikingly the rate n−1/d achieved by the näıve estimator has been replaced by
n−1/k—in other words, this estimator enjoys the rate typical for k-dimensional
rather than d-dimensional measures.

Our assumption is that the measures in question satisfy a transport inequality:
µ satisfies Tp(σ

2) if

Wp(ν, µ) ≤
√
2σ2D(ν‖µ) ∀ν ∈ P(Rd) .

Since the pioneering work of [6, 7] and [9], transport inequalities have played a
central role in the analysis of the concentration properties of high-dimensional
measures.
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The high-dimensional behavior of linearized neural networks

Andrea Montanari

(joint work with Behrooz Ghorbani, Song Mei, Theodor Misiakiewicz)

Consider the classical statistical learning problem, whereby we are given indepen-
dent and identically distributed (i.i.d.) pairs (yi,xi), i ≤ n, with xi ∈ Rd a feature
vector and yi ∈ R a label or response variable. We assume a simple model in which
feature vectors are uniformly distributed over the sphere with radius

√
d in Rd,

xi ∼ Unif(Sd−1(
√
d)), and labels aregiven by yi = f∗(xi), for some unknown func-

tion f∗ ∈ L2(Sd−1(
√
d)). We would like to construct a function f which allows us
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to predict future responses. The quality of a predictor f is measured via its square
prediction error (risk): E{(f∗(x)− f(x))2}.

Current practice supports the use of neural networks, the simplest example
being two-layers neural networks:

FNN ≡
{
f(x) =

N∑

i=1

ai σ(〈wi,x〉) : ai ∈ R,wi ∈ R
d ∀i ≤ N

}
.(NN)

Here N is the number of neurons, and σ : R→ R is a nonlinear activation function.
While it is well understood that FNN can approximate a broad class of functions f∗,
it is unclear what subset of these functions can be learnt using practical algorithms,
and in particular using stochastic gradient descent.

Over the last several years, considerable attention has been devoted to two
classes of models that can be regarded as linearizations of two-layers networks.
The first class is the random features model of Rahimi and Recht [6], which only
optimizes over the weights ai’s, while keeping the first layer fixed:

FRF(W ) ≡
{
f(x) =

N∑

i=1

ai σ(〈wi,x〉) : ai ∈ R ∀i ≤ N
}
.(RF)

Here W ∈ Rn×d is a matrix whose i-th row is the vector wi. In the RF model,
this is chosen randomly, and independent of the data.

The second model is the neural tangent kernel of Jacot, Gabriel and Hongler
[5], which we define as

FNT(W ) ≡
{
f(x) =

N∑

i=1

〈ai,x〉σ′(〈wi,x〉) : ai ∈ R
d ∀i ≤ N

}
.(NT)

Again, W is a matrix of weights that is not optimized over, but instead drawn at
random. Further σ′ is the (weak) derivative of the activation function with respect
to its argument.

Both FRF(W ) and FNT(W ) are proper subsets of FNN, that are tractable:
optimizing the square loss over these classes reduces to a least squares problem.
We define the minimum population risk over these classes by

RM(f∗,W ) = inf
f∈FM(W )

E
[
(f∗(x)− f(x))2

]
, M ∈ {RF,NT} .(1)

Notice that this is a random variable because of the random features encoded in
the matrix W ∈ Rn×d. We assume (wi)i≤N ∼iid Unif(Sd−1). For ℓ ∈ N, we

denote by P≤ℓ : L
2(Sd−1(

√
d))→ L2(Sd−1(

√
d) the orthogonal projector onto the

subspace of polynomials of degree at most ℓ. (We also let P>ℓ = I−P≤ℓ.) In other
words, P≤ℓf is the function obtained by linear regression of f onto monomials of
degree at most ℓ.

The tradeoff between prediction error and the number of hidden units N in
the model RF has been been studied in the past, see in particular [2, 1, 3, 7].
In the paper recent paper [4] we obtain a sharp characterization holding in the
high-dimensional regime N, d→∞, both for the RF and the NT model.
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For RF, assuming N ≤ dℓ+1+δ for an integer ℓ and any δ > 0, we have

RRF(f∗,W ) = RRF(P≤ℓf∗,W ) + ‖P>ℓf∗‖2L2 + oP(‖f∗‖2L2) .

This result holds under minimal conditions on the activation function σ.
For NT, assuming N ≤ dℓ+1+δ for an integer ℓ and any δ > 0, we have

RNT(f∗,W ) = RNT(P≤ℓ+1f∗,W ) + ‖P>ℓ+1f∗‖2L2 + oP(‖f∗‖2L2) .

This result holds under a technical condition on the Hermite coefficient of σ, which
can be checked to hold for activation functions of common use.
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On Central limit theorem for Bures-Wasserstein barycenters

and beyond

Alexandra Suvorikova

(joint work with A.Kroshnin, V.Spokoiny)

Space of finite-dimensional Hermitian operators H(d) provides a powerful toolbox
for data representation. For instance, in quantum mechanics it is used for math-
ematical description of physical properties of a quantum system, also known as
observables. A subspace S(d) ⊂ H(d) of real-valued symmetric matrices is also of
great interest: points in S(d) are widely used for description of systems in engi-
neering applications, medical studies, neural sciences, evolutionary biology e.t.c.
Usually such data sets are considered to be randomly sampled from an unknown
distribution P [1, 2, 3], and statistical characteristics of P such as, in particular,
mean and variance, appear to be of interest for further planning of an experiment
and analysis of obtained results, used for further development of natural science
models. The talk is mainly based on the paper [5]. There we investigate in more de-
tails the concept of Bures-Wasserstein barycenter Q∗, that is essentially a Fréchet
mean of some distribution P supported on a subspace of positive semi-definite
Hermitian operators H+(d) endowed with Bures-Wasserstein distance introduced
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in a seminal paper [4]. Namely, for any pair of positive semi-definite matrices
Q,S ∈ H+(d) it is written as:

d2BW (Q,S) = trQ+ trS − 2tr
(
Q1/2SQ1/2

)1/2

.

We allow a barycenter to be constrained to some affine subspace of H+(d), A,
and provide conditions ensuring its existence and uniqueness. Given some P,
supp(P) ⊆ H+(d), its Bures-Waserstein barycenter is written as

Q∗ ∈ argmin
Q∈H+(d)∩A

∫

supp(P)

d2BW (Q,S)dP(S).

Moreover, given an i.i.d. set of matrices S1, ..., Sn sampled from P, we can con-
struct its empirical counterpart Qn

Qn ∈ argmin
Q∈H+(d)∩A

1

n

∑

i

d2BW (Q,Si).

In the first part of the talk we investigate convergence and concentration prop-
erties of an empirical counterpart of Q∗ in both Frobenius norm and Bures-
Wasserstein distance, and explain, how obtained results are connected to optimal
transportation theory and can be applied to statistical inference in quantum me-
chanics. The second part of the talk is based on a working paper “Geometry of
multiplier bootstrap in the space of Hermitian matrices”. There we explain how
the framework of classical resampling techniques (see e.g. [6]) can be extended
to the case of Bures-Wasserstein space, and introduce some geometrical intuition
behind the idea. The work develops an idea presented in [7].
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The Gromov-Wasserstein distance and distributional invariants of

datasets

Facundo Mémoli

In many applications datasets can be regarded as metric measure spaces (mm-
spaces for short): triples X = (X, dX , µX) where (X, dX) is a compact metric
space and µX is a fully supported Borel probability measure on X .

Two mm-spaces X and Y are said to be isomorphic if there exists an isometry
ϕ : X → Y such that ϕ#µX = µY .

Let M denote the collection of all mm-spaces. One possible metric structure on
M is the Gromov-Wasserstein distance [3]: for each p ≥ 1,

dGW,p(X ,Y) :=
1

2
inf
µ

disp(µ)

where µ ranges over all couplings µ between µX and µY and for each coupling µ,

disp(µ) :=

(∫∫

X×Y ×X×Y

|dX(x, x′)− dY (y, y
′)|p µ(dx × dy)µ(dx′ × dy′)

)1/p

is called the p-distortion of µ. This definition can be extended to the case p = +∞.

Remark 1. Note that when X and Y are finite, the above minimization leads to
a quadratic functional on the linearly constrained variable µ.

Theorem 1 ([3]). For each p ∈ [1,+∞] dGW,p defines a metric M modulo iso-
morphism.

There is a distinguished object in M: the one point mm-space ∗; it’s underlying
set is the one point set {∗}, the metric is (0), and the reference probability measure
is δ∗. Notice that given any other X ∈M there exists exactly one measure coupling
between µX and δ∗: the product measure µX⊗δ∗. The p-distortion of this coupling
is therefore (∫∫

X×X

(dX(x, x′))
p
µ(dx)µX(dx′)

)1/p

which only depends on X . This quantity is clearly an isomorphism invariant of X ,
is called the p-diameter of X , and is denoted as diamp(X ). Thus, dGW,p(X , ∗) =
1
2diamp(X ), and, since by Theorem 1 dGW,p satisfies the triangle inequality, we

find that as a map M→ R+, diamp is 2-Lipschitz:1

2 · dGW,p(X ,Y) ≥ |diamp(X ) − diamp(Y)|.
There are other more interesting invariants of mm-spaces. One would expect

that the collection {diamp(X )}p∈[0,∞] of p-diameters of X coincides with the mo-
ments of some distributional invariant associated to X . This motivates the defini-
tion of the so called global distribution of distances of X :

dHX := (dX)# µX ⊗ µX ,

1One also more informally says that the p-diameter invariant is stable.
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a probability measure on the real line. The global distribution of distances is also
stable:

Proposition 2 ([3]). For all X ,Y ∈M,

2 · dGW,p(X ,Y) ≥ d
R+

W,p

(
dHX , dHY

)
.

(Above, the right hand side is the p-Wasserstein distance between the respective
global distance distributions.)

Global distance distributions have been used extensively in applications (see [4]
and references therein). One question that arises is whether these invariants are
injective, perhaps inside some suitably restricted class of mm-spaces. It is known
that without further qualification the answer is negative [3, Section 5]. There are
even finite subsets X and Y of the real line, with the same cardinality such that
when endowed with uniform measure and with the euclidean distance they have
the same global distribution of distances. One example follows from a construction
described in [1]: Let X = {0, 1, 4, 10, 12, 17} and Y = {0, 1, 8, 11, 13, 17}. Then,
one can check that

dHX = dHY =
3

18
δ0 +

1

18

∑

a∈A

δa

where A = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17}.
Recent work has attempted to clarify whether one may be able to achieve injec-

tivity by restricting dH• to suitable (but interesting) subclasses C ⊂M, or even a
notion of local injectivity: given a class C identify the mm-spaces {Xα ∈ A} ⊂ C

such that if some other Y ∈ C satisfies dHY = dHXα for some α ∈ A, then Y must
be isomorphic to Xα.

For example, in [2] is is proved that if C denotes the collection of all smooth
simple plane curves C (endowed with euclidean distance and normalized arc length
measure), then dHC = dHS1 if and only if C is isometric to the unit circle S1 ⊂ R2.

However, the following interesting phenomenon was also observed in [2]:

Proposition 3. For arbitrary ǫ > 0, there exist two curves Cǫ and C′
ǫ in C such

that:

(1) both Cǫ and C′
ǫ are ǫ-close to S1 in say the Gromov-Hausdorff sense,

(2) dHCǫ = dHC′

ǫ
, but

(3) Cǫ is not isomorphic to C′
ǫ.
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Label aware dimensionality reduction with applications to genetic

marker selection

Soledad Villar

(joint work with B. Dumitrascu, C. McWirther, D. Mixon, B. Engelhardt)

1. Label-aware dimensionality reduction by convex programming

Structure-preserving dimensionality reduction techniques are central to data sci-
ence and had been long-studied. They take many forms, from Johnson-Linden-
strauss projections to manifold learning. In this work we focus on a dimensionality
reduction technique that preserves the classification structure of the data.

Problem. Projection factor recovery
Let Π denote the orthogonal projection onto some unknown subspace T ⊆ Rd

of some unknown dimension. What conditions on f : T → [k] := {1, . . . , k}
and X ⊆ R

d enable exact or approximate recovery of Π from data of the form
{(x, f(Πx))}x∈X ?

In words, assuming the classification function factors through some unknown
orthogonal projection operator Π (i.e. labels y = f(Πx)), the objective is to
reconstruct Π. Consider a sequence of labeled data D = {(xi, yi)}i∈I in Rd × [k]
and denote Z(D) := {xi − xj : i, j ∈ I, yi 6= yj}. The following program finds the
best orthogonal projection for factor recovery purposes:

(1) minimize rankΠ subject to ‖Πz‖ ≥ ∆ ∀z ∈ Z(D), Π⊤ = Π, Π2 = Π

Here, Π is the decision variable, whereas ∆ > 0 is a parameter that prescribes a
desired minimum distance between projected points Πxi and Πxj with differing
labels. This parameter reflects a fundamental tension: ∆ should be large so as to
enable classification, but also rankΠ should be small so that we can reduce the
dimension. Since it is not clear how to tractably implement (1), together with
collaborator Dustin Mixon and Culver McWhirter we propose a convex relaxation
referred to as SqueezeFit:

(2) sqz(D,∆) : minimize trM subject to z⊤Mz ≥ ∆2 ∀z ∈ Z(D), 0 �M � I

If Z(D) is finite, then sqz(D,∆) is a semidefinite program, otherwise sqz(D,∆)
is a semi-infinite program. Figure 1 illustrates how SqueezeFit is well suited for
projection factor recovery.

When formulating SqueezeFit, we took inspiration from the metric learning
literature.

1.1. Theoretical analysis of SqueezeFit. In [6] provide theoretical guarantees
for SqueezeFit in the context of projection factor recovery. The analysis considers
geometric features of SqueezeFit and derives conditions that allow for recovering
the projection factor successfully. The geometric properties of SqueezeFit are used
to characterize when the SqueezeFit semi-infinite program satisfies strong duality.
A sensitivity analysis of its dual certificate provides theoretical guarantees for
exact recovery under certain models of random data where a true projection Π
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Figure 1. (far left) Plot of 60 data points in R
3, half in one class,

half in another. These points were drawn according to a random model
with an unknown planted projection factor Π. (middle left) Princi-
pal component analysis (PCA) suggests one-dimensional structure in
the data. Projecting onto this subspace (which was identified with-
out regard for the points’ classes) results in an undesirable mixture of
the classes. (middle right) Unlike PCA, linear discriminant analy-
sis (LDA) actually considers which class each point belongs to. Since
there are two classes, the result is projection onto a 1-dimensional sub-
space, obtained by applying the classes’ inverse covariance matrix to
the difference of class centroids. Unfortunately, the result is again
an unhelpful mixture of classes. (far right) Unlike PCA and LDA,
SqueezeFit finds a low-rank projection that maintains some amount of
distance between points from different classes. The resulting projection
is a close approximation to the planted projection factor.

is planted and noise is added. The SNR thresholds found are optimal up to
logarithmic factors.

1.2. Scientific relevance: marker selection. Recent technological develop-
ments in genetics and molecular biology have generated a wealth of data allowing
researchers to measure and quantify RNA levels of individual cells. Compared
to traditional bulk RNA sequencing (RNA-seq) in which information from thou-
sands of cells is averaged, single-cell RNA sequencing (scRNA-seq) studies yield
invaluable insights regarding cell type. Such information is critical to understand-
ing complex human diseases and to understanding cell trajectories underlying cell
development [9].

Data from single-cell RNA sequencing presents itself as matrices of size d× n,
where n, the number of cells queried, ever increasing, can now span hundreds of
thousands, and where d, the number of genes, building blocks in the genetic alpha-
bet, is close to 40, 000. Analyzing scRNA-seq itself is a very active field of research
which has spun many dimensionality reduction methods exist for analyzing and
clustering. However, the cell type information alone can not cast light into the
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Figure 2. t-SNE visualization of results from single-cell expression
profiles of cord blood mononuclear cells (CBMC, [8]) given a partition
of labels. SqueezeFit-LP reveals that 15 marker genes are sufficient to
distinguish 13 distinct cell populations.

spatial information underlying how the cell types are organized within tissues, or
within tumor cells. To address this issue, imaging methods have been recently de-
veloped to visualize cells at unprecedented resolutions in a spatial setting [3, 1, 5].
These methods rely on a technique called single-molecule fluorescence in situ hy-
bridization (smFISH), in which fluorescent probes bind near genes of interest called
markers [7]. When the genes bound by probes are expressed, fluorescence can be
detected using microscopy. Visualizing diverse and easily distinguishable sets of
cells using this technique is often challenged by choosing the probes for the ap-
propriate gene markers. State of the art methods can usually employ a set of
at most 20 markers [2], and choosing these among the total of 40, 000 genes is a
combinatorially challenging problem.

Together with Bianca Dumitrascu, Dustin Mixon and Barbara Engelhardt [4]
we propose a linear programming version of SqueezeFit towards the problem of
identifying genetic markers that separates labeled data. For instance, in order
to identify the markers that separate a test group from a control group, one can
write a projection factor recovery problem where the decision variable M is diag-
onal. The SqueezeFit relaxation greatly simplifies to a linear program and can be
implemented efficiently. See Figure 2 for a visualization of our results.
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On the bias and risk of sample means in multi-armed bandits

Alessandro Rinaldo

(joint work with Jaehyeok Shin and Aaditya Ramdas)

Mean estimation is one of the most fundamental problems in statistics. In the
classic non-adaptive setting, the target of estimation is the true mean µ, assuming
it exists, of a fixed distribution that is chosen in advance. In this case, if a fixed
number of observations are sampled in an i.i.d. manner, then the sample mean is
arguably the most natural choice for an estimator due to its favorable properties.
In particular, it is unbiased, consistent, and converges almost surely to µ. Under
tail assumptions such as sub-Gaussian or sub-exponential conditions, the sample
mean is tightly concentrated around µ. Lastly, the sample mean has minimax
optimal risk with respect to suitable loss functions such as the Kullback-Leibler
(KL) loss for distributions in a natural exponential family.

However, in many cases the data are collected and analyzed in an adaptive
manner, a prototypical example being the stochastic multi-armed bandits (MAB)
framework. During the data collecting stage, in each round an analyst can draw a
sample from one among a finite set of available distributions (arms) based on the
previously observed data (adaptive sampling). The data collecting procedure can
also be terminated based on a data-driven stopping rule rather than at a fixed time
(adaptive stopping). Further, the analyst can choose a specific target distribution
based on the collected data (adaptive choice), for example choosing to focus on the
arm with the largest empirical mean at the stopping time. Lastly, in hindsight,
the analyst may wonder what the bias of the sample mean of the chosen arm was
at some past time (adaptive rewinding).

We decouple these different sources of selection bias: adaptive sampling of arms,
adaptive stopping of the experiment, and adaptively choosingw hich arm to study.
Through a new notion called “optimism” that captures certain natural monotonic
behaviors of algorithms, we provide sufficient conditions for adaptive procedures
to lead to biased sample means, with the bias taking either sign, depending on
whether their combined effect is “monotone”. To complement the qualitative char-
acterization of the sign of the bias, we derive sharp bounds on teh risk (expected
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Bregman divergence between the sample and true mean) under adaptive sam-
pling and stopping. Next, we derive sharp risk bounds for sample means in the
fully adaptive setting that includes an adaptive arm choice and adaptive rewind-
ing. These bounds hold for a large class of underlying distributions, including all
univariate exponential families, sub-Gaussian and sub-exponential distributions.
Finally, we specify sufficient conditions for the consistency of a sequence of sample
means in the fully adaptive setting

Sparsity testing in the linear regression model

Alexandra Carpentier

(joint work with Nicolas Verzelen)

We consider the problem of sparsity testing in the high-dimensional linear regres-
sion model, as done in the Gaussian vector model in [2].

Let us write the random design high-dimensional linear regression model

Y = Xθ∗ + σǫ ,(1)

where the unknown parameter θ∗ belongs to R
p, the noise vector ǫ ∈ R

n follows a
standard normal distribution and where the rows of X are i.i.d. sampled according
to the normal distribution N (0,Sigma). In the sequel, Pθ∗,Sigma,σ stands for the
distribution of (Y,X) in (1).

Given a non-negative integer k0 ∈ [0, p], write B0[k0] = {θ ∈ Rp : ‖θ‖0 ≤ k0}
for the set of k0-sparse vectors θ. Rephrasing our aim, we want to test whether θ∗

belongs to B0[k0].
We aim at characterizing the smallest distance ρ, such that some tests achieve

a small type I error probability and reject the null with high probability whenever
minu∈B0[k0]) ‖θ∗−u‖2 is larger than ρσ, under the assumption that θ∗ ∈ B0[k0+∆]
for a fixed integer ∆ > 0. The following tables provide the rates in two different
settings. Table 1 displays the rate in the case where Σ = Ip and σ = 1. Table 2
displays the rate in the case where Σ has eigenvalues upper and lower bounded by
a constant and σ is unknown.

Along the way, we also build a variable selection method based on iteratively
projected square-root Lasso. This variable selection scheme is of independent
interest. Up to our knowledge, it is the first provably polynomial time scheme
that correctly selects the non-zero entries of θ∗ whenever all of them are large

compared to σ
√

log(p) log(n)
n (see [4, 1] for a discussion), this uniformly over the

class of covariance matrices with bounded eigenvalues upper and lower bounded
by a constant. We then provide another test based on this construction, which is
running in polynomial time (depending on p, n).
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Table 1. Square minimax separation distances in the case where
Σ = Ip and σ = 1, when p ≥ n1+ζ with a fixed ζ > 0.

k0 ∆ ρ∗2γ [k0,∆]

k0 ≤ p1/2−ζ 1 ≤ ∆ ≤ k0 +
√
n

log(p)
∆ log(p)

n

k0 +
√
n

log(p) ≤ ∆ ≤ p− k0
1√
n
+ k0 log(p)

n

p1/2+ζ ≤ k0 ≤ cγ
n

log(p) 1 ≤ ∆ ≤ k0p
−ζ ∆ log(p)

n

k0 ≤ ∆ ≤ p− k0
k0

n log(p)

Table 2. Square minimax separation distances in the case where
Σ has eigenvalues upper and lower bounded by a constant and σ
is unknown. We report in this table only the case where n1+ζ ≤
p ≤ n2−ζ , where ζ ∈ (0, 1) can be chosen arbitrarily small. LB
stands for Lower bound and UB stands for upper bound.

k0 ∆ ρ∗2
g,γ [k0,∆]

k0 ≤ p1/2−ζ 1 ≤ ∆ ≤ p1/2−ζ ∧ k0
∆ log(p)

n

p1/2+ζ ∧ k0 ≤ ∆ ≤ p− k0
√
p

n

p1/2+ζ ≤ k0 ≤ cγ
n

log(p) 1 ≤ ∆ ≤ k0p
−ζ ∆ log(p)

n

k0 ≤ ∆ ≤ p− k0 LB : k0

n log(p)

UB : k0 log(p)
n
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SWITZERLAND

Dr. Soledad Villar

NYU Center for Data Science
Office 621
60 5th Avenue
New York, NY 10011
UNITED STATES



1356 Oberwolfach Report 22/2019

Dr. Martin Wahl

Institut für Mathematik
Humboldt Universität zu Berlin
Unter den Linden 6
10117 Berlin
GERMANY

Sven Wang

Centre for Mathematical Sciences
University of Cambridge
Wilberforce Road
Cambridge CB3 0WB
UNITED KINGDOM

Dr. Jonathan Weed

Department of Mathematics
Massachusetts Institute of Technology
77, Massachusetts Avenue
Cambridge, MA 02139-4307
UNITED STATES

Prof. Dr. Ji Zhu

Department of Statistics
University of Michigan
439 West Hall
1085 South University
Ann Arbor MI 48109-1107
UNITED STATES


