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Introduction by the Organizers

The workshop Geometry and Physics of Higgs Bundles, organized by Lara Ander-
son (Virginia Tech), Tamas Hausel (IST, Austria), Rafe Mazzeo (Stanford) and
Laura Schaposnik (University of Illinois at Chicago) was attended by 46 partic-
ipants, with broad representation from Europe, Asia, North and South America
and India. Quite a few of these participants were either young postdocs or grad-
uate students, and 16 of the 46 were women. Notably, the two founders of the
subject, Nigel Hitchin and Carlos Simpson, both attended. The topic of Higgs
bundles is distinctly interdisciplinary, drawing on algebraic geometry, geometric
topology, geometric analysis, mathematical physics and beyond. The goal of this
meeting was to draw together researchers working on various aspects of this gen-
eral area. There were 18 talks in all, with reports from senior mathematician,
leaders in the field, to promising young researchers.
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One of the beguiling features of the subject is that the main object of study, the
moduli space of Higgs bundles, can be interpreted both in this initial way, in the
language of algebraic geometry, but can also be regarded as the space of solutions
of the Hitchin equations, using the language of gauge theory, and in addition as
a character variety, i.e. a class of representations of the fundamental group of a
surface into a complex Lie group, modulo conjugation. These aspects appeared
singly or together in all of the lectures. Several talks addressed the connection
between the mathematical aspects and physical interpretations of Higgs bundles
directly. This connection of course has stimulated many new and appealing prob-
lems in the subject. Other talks addressed more classical themes in the subject,
including the algebro-geometric structures on various related moduli spaces, in-
vestigations of the topology of these moduli spaces, as well as some related moduli
problems. Another recent theme in the subject is the study of large-scale structure
of the Higgs bundle moduli space, centering around a string-theoretic conjecture
by Gaiotto-Moore-Neitzke; this was well-represented by several talks. The inves-
tigation of interesting submanifolds (branes) in these moduli spaces appeared in
several lectures.

There were several dramatic results announced during the meeting, including an
unexpected new stratification of the moduli space by branes and a near-resolution
of the Gaiotto-Moore-Neitzke conjecture. The workshop was very successful in
promoting new contact between researchers as well as providing an outstanding
forum for ongoing collaborations. The talks provided high-level expositions of
their topics, but by and large also excellent introductions to each set of problems.
Long afternoon breaks and evenings were spent in small group working sessions.
The organizers were quite satisfied that the goals of this conference were achieved.
Although there have been other meetings involving similar themes in the past
few years, this workshop had a particularly successful distribution of people from
across various areas of the subject, which led to new and useful interactions. All
participants agreed that the MFO is a singularly successful venue for meetings.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Qiongling Li and Sara Maloni in the “Simons Visiting
Professors” program at the MFO.
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Abstracts

Hyperpolygons and Higgs bundles

Steven Rayan

(joint work with Laura Schaposnik, Hartmut Weiß)

The moduli space of semistable Higgs bundles on a fixed algebraic curve is an
infinite-dimensional hyperkähler quotient that has been investigated from various
points of view. These include: (1) its topology, (2) its integrable system, (3)
its geometry (captured by the natural hyperkähler metric), and (4) its mirror
symmetry. Nakajima quiver varieties are finite-dimensional hyperkähler quotients
that share much in common with Higgs bundle moduli spaces. Hyperpolygon
spaces, in particular, come closest to bridging the gap between Nakajima quiver
varieties and Higgs bundles. Themes 1 and 2 above are studied for hyperpolygons
in [2]. We report on 3 and 4 in joint work with H. Weiß and L. Schaposnik,
respectively.

For us, a hyperpolygon is a representation of the star-shaped quiver:

2

1

1

1

1

1

1

1

· · ·

The quiver has n+1 ≥ 4 vertices in total. A representation of a solid (ingoing)
arrow is a linear map xi ∈ Hom(C,C2). Once xi is chosen, a representation of a
dashed (outgoing) arrow involving the same nodes is a linear map

yi ∈ T ∗
xi
Hom(C,C2) ∼= Hom(C,C2)∗ ∼= Hom(C2,C).

We denote a representation by [x|y], where x is an n-tuple of column vectors xi
in C2 and y is an n-tuple of row vectors yi in (C2)∗. We now choose a sufficiently
generic vector α ∈ Rn with positive entries and define the hyperpolygon equations :

n∑

i=1

(xix
∗
i − y∗i yi)0 = 0, |xi|2 − |yi|2 = αi, for each i ∈ {1, . . . , n},

n∑

i=1

(xiyi)0 = 0, yixi = 0, for each i ∈ {1, . . . , n},

where the subscript 0 is an instruction to remove the trace, and norms |xi| and
|yi| are the standard Euclidean ones. The left-hand sides of these equations can
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be interpreted as moment maps. The first n+ 1 equations are (rescaled) moment
maps for the action of G = (SU(2)×U(1)n)/± 1 on the representation data (with
the action encoded by the quiver) and the latter n+1 equations are moment maps
for the corresponding GC-action. We define hyperpolygon space Xn(α) to be the
solution set of the hyperpolygon equations modulo G. The name “hyperpolygon”
is motivated by the fact that, when we restrict to the level set y = 0, we obtain a
space parametrizing equivalence classes of polygons in R3.

The quotient Xn(α) is a smooth quasiprojective variety of dimension 2(n−3) and
its hyperkähler metric is complete whenever α is sufficiently generic [12, 8, 4, 2].
As with the moduli space of Higgs bundles, the space Xn(α) comes equipped with
a Hamiltonian U(1)-action that acts through the rotation [x|y] 7→ [x| exp(iθ)y]
[8, 2]. Regarding cohomology, in [2] we show that a class of Nakajima quiver
varieties that includes Xn(α) has the hyperkähler Kirwan surjectivity property.1

Now, choose an affine coordinate z on the complex projective line P1 and a divi-

sorD =
∑n

i=1 zi of pairwise distinct points zi 6= ∞. The map Φ(z) =

n∑

i=1

(xiyi)0
z − zi

dz

defines from [x|y] a parabolic Higgs field for the trivial bundle E = P1 × C2. The
map respects stability (for sufficiently generic α) and notions of equivalence, and
so we obtain an embedding of moduli spaces [2]. The target moduli space is that
of β-semistable strongly parabolic Higgs bundles of rank 2 and degree 0 on P1

punctured along D, for some choice of parabolic weights β at the punctures (cf.
[4]). The embedding map is not surjective, as only parabolic Higgs bundles with
the trivial underlying bundle are obtained. The map is also not hyperkähler, as
the Nakajima hyperkähler metric on Xn(α) is complete while the Higgs bundle
one pulled back to Xn(α) is not.

Geometry. A sequence of hyperpolygons [xk|yk] that escapes to infinity under
the L2-norm µ([x|y]) = ∑n

i=1 |yi|2 will satisfy a rescaled version of the hyperpoly-

gon equations with each αi replaced by αi/
√
µ([xk|yk]). The limit will thus satisfy

the equations with αi = 0. We call these objects limiting hyperpolygons, which are
analogous to the limiting Higgs bundles of [10]. The limiting hyperpolygons are
parametrized, up to G-isomorphism, by the singular hyperkähler variety Xn(0).
This can be regarded as the “tangent cone at infinity” to Xn(α) with α generic.
For n = 4, i.e. the affine D4 quiver, the tangent cone X4(0) is classically known
to be C2/Γ, where Γ = Q8 is a quaternion subgroup of order 8 in SU(2). This
fits neatly into the classification of ALE gravitational instantons, which can be
regarded as a geometrization of the McKay correspondence. Here, a moduli space
of gravitational instantons is determined by their geometry at infinity, given by
the tangent cone. This is essentially the result of [9]. The geometry at infinity is
a Du Val / Kleinian singularity produced by the action on C2 of a finite group
Γ < SU(2). This group in turn determines an (affine) ADE Dynkin type, via
McKay. Taking us back from the Dynkin quiver to a gravitational instanton in
the original moduli space is the Nakajima quiver variety construction [12].

1This has been extended recently to all Nakajima quiver varieties in [11].
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For n = 5, we are no longer in a Dynkin type and the quotient is now an 8-
manifold. However, we do know there is a stratification of X5(0) by “edge collapse”,
as pairs (xi, yi) are allowed to tend to 0 now. Hence, there are 5 lower-dimensional
strata corresponding to embeddings of X4(0). Using this information, can we
realize X5(0) as C4/Γ for some finite subgroup Γ < SL(4,C)? How about for
general n? A positive answer to these questions will establish the decay rate of
Nakajima’s hyperkähler metric to the Euclidean metric as being quasi-ALE, in the
sense of [6]. This is joint work in progress with H. Weiß.

Mirror Symmetry. Because Xn(α) is a smooth, noncompact Calabi-Yau man-
ifold for generic α, and because the Calabi-Yau structure arises from a hyperkähler
structure, we can ask about the existence of different types of triple branes, as
motivated by [7]. For example, a (B,A,A) brane is one that is a complex sub-
manifold with regards to the I complex structure and Lagrangian with regards to
the ωJ and ωK symplectic forms. We note that constructions of triple branes in
Nakajima quiver varieties appear in [5, 3]. As expected, they arise generally from
holomorphic and anti-holomorphic involutions on the [x|y] data that descend to
the quotient, consistent with the picture for Higgs bundles in, for instance, [1].
For Xn(α), we aim to characterize these branes explicitly as subvarieties contain-
ing hyperpolygons of special type (e.g. polygons with no y data). At the same
time, we want to understand how mirror symmetry interacts with various kinds
of hyperpolygon branes. This is joint work in progress with L. Schaposnik.
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The asymptotic geometry of the Hitchin moduli space

Laura Fredrickson

Hitchin’s equations [6] are a system of gauge-theoretic equations on a Riemann
surface. The Hitchin moduli space M – the spaces of solutions of Hitchin’s equa-
tions – is a noncompact hyperkähler space that is also an algebraic completely
integrable system. Near the ends of the Hitchin moduli space, we prove that the
hyperkähler metric gL2 on the Hitchin moduli space can be approximated up to
exponentially-decaying errors by a simpler hyperkähler metric known as the semi-
flat metric gsf which come from the integrable system structure. This addresses
Gaiotto-Moore-Neitzke’s [5, 4, 9] conjectural description of the asymptotic geom-
etry of the Hitchin moduli space coming from N = 2 4d supersymmetric field
theory.

The SU(n)-Hitchin moduli space M is parameterized by the underlying moduli
space of SL(n,C)-Higgs bundles. Higgs bundles are holomorphic objects consisting
of a holomorphic vector bundle E → C of rank n and a holomorphic Higgs field
ϕ ∈ Ω1,0(C,EndE). Given a Higgs bundle (E , ϕ), Hitchin’s equations are a non-
linear coupled system of partial differential equations for a hermitian metric h on
E . The hyperkähler metric gL2 at (E , ϕ, h) ∈ M is defined in terms of the variation
of the Higgs bundle (E , ϕ) but also the variation of the hermitian metric h. The
main difficulty in proving results about gL2 is describing the hermitian metric h for
a Higgs bundle (E , ϕ) near the ends of the Hitchin moduli space and controlling
the variation of h associated to a given variation of the Higgs field (E , ϕ). We
prove the following theorem in [2].

Theorem. Fix a generic SL(n,C)-Higgs bundle (∂E , ϕ) in M, and a Higgs bundle

variation ψ̇ = (η̇, ϕ̇). Consider the deformation ψ̇t = (η̇, tϕ̇) ∈ T(∂E ,tϕ)M over the

ray (∂E , tϕ, ht). As t→ ∞, the difference between the hyperkähler L2-metric gL2

on M and the semiflat metric gsf is exponentially-decaying. In particular, there
is some constant γ > 0, such that

(1) gL2(ψ̇t, ψ̇t) = gsf(ψ̇t, ψ̇t) +O(e−γt).

A number of previous papers made progress towards proving Gaiotto-Moore-
Neitzke’s conjecture when n = 2. Mazzeo-Swoboda-Weiss-Witt [8] showed that
along a generic ray gL2 − gsf decays polynomially in t. Dumas-Neitzke [1] showed
that—restricted to the image of Hitchin section— gL2 − gsf decays exponentially
in t. We discuss the key ideas behind the proofs of these theorems.

Idea 1. One crucial observation is the analogy

Hitchin’s hyperkähler L2-metric gL2 : the harmonic metric ht

::

the semiflat metric gsf : the limiting metric h∞.

The Hitchin moduli space consists of triples [(∂E , ϕ, h)] where h is the harmonic
metric. Define the moduli space of limiting configurations to be the space of
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triples [(∂E , ϕ, h∞)] where we replace the harmonic metric with the limiting metric
h∞ = limt→∞ ht. Just as Hitchin’s hyperkähler L2-metric gM is the L2-metric
on M, the semiflat metric gsf is the natural hyperkähler L2-metric on the moduli
space of limiting configurations M′

∞, for deformations in Coulomb gauge.

Idea 2. Mazzeo-Swoboda-Weiss-Witt’s result for the SU(2)-Hitchin moduli space
in [8] relies on their description of the harmonic metrics near the ends of the Hitchin
moduli space in [7]. Mazzeo-Swoboda-Weiss-Witt build a family of approximate
solutions of Hitchin’s equations (∂E , tϕ, h

app
t ) that are exponentially close to the

actual solutions of Hitchin’s equations (∂E , tϕ, ht).The approximate metric happt is
constructed by desingularizing the singular metric h∞ by gluing in model solutions
on disks around the zeros of q2 = − detϕ. Analogous results for the the SU(n)-
Hitchin moduli space appear in [3]. Fix a polystable SL(n,C)-Higgs bundle (E , ϕ)
in the regular locus M′. In both cases, the authors prove that along the ray
(E , tϕ, ht) the associated family of harmonic metrics ht satisfies

ht(w1, w2) = happt (e−κtw1, e
−κtw2)

for κt satisfying ‖κt‖H2(isu(E)) ≤ Ce−δt. I.e. the actual harmonic metric ht is very
close to the approximate metric happt .

Thus, define the “approximate Hitchin moduli space” M′
app to be the moduli

space of triples [(∂E , tϕ, h
app
t )]. It too has a natural (non-hyperkähler) L2-metric

gapp. Decompose the difference gM − gsf into two pieces

gM − gsf = (gM − gapp) + (gapp − gsf) .(2)

Because ht and h
app
t are exponentially close, gM − gapp is exponentially-decaying.

Idea 3. The more problematic term is gapp − gsf . Dumas-Neitzke have a clever
way of proving that gapp − gsf is exponentially-decaying. Since h

app
t = h∞ on the

complement of disks around the zeros of q2, the difference of the two metrics gapp−
gsf reduces to an integral on these disks. Mazzeo-Swoboda-Weiss-Witt’s possible
polynomial terms are from variations in which the zeros of the quadratic differential
q2 + εq̇2 = − det(ϕ+ εϕ̇) move. Dumas-Neitzke use a local biholomorphic flow on
the disks around each zero of q2 that perfectly matches the changing location of
the zero of q2 + εq̇2. Moreover, surprisingly, the most seemingly problematic piece
of the integrand for the difference gapp−gsf turns out to be an exact form that they
can control. Though Dumas-Neitzke only proved that gapp−gsf was exponentially-
decaying for Higgs bundles in the image of the SU(2)-Hitchin section, this strategy
can be extended to generic Higgs bundles in the SU(n)-Hitchin moduli space.
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Parabolic Higgs bundles and gravitational instantons

Hartmut Weiß

(joint work with Laura Fredrickson, Rafe Mazzeo, Jan Swoboda)

Parabolic Higgs bundle moduli spaces provide examples of hyper-Kähler manifolds
in low dimensions. More specifically, for SL(2,C)-Higgs bundles the moduli space
of ordinary Higgs bundles on a closed Riemann surface of genus g ≥ 2 has real
dimension 12g − 12 ≥ 12, whereas the moduli space of parabolic Higgs bundles
on the 4-punctured sphere (or the once-punctured torus) is 4-dimensional over
the reals. The construction of the hyper-Kähler metric on the ordinary Higgs
bundle moduli space goes back to the seminal article of Hitchin [8], in the case
of parabolic Higgs bundles it was achieved by Konno [9] in the strongly parabolic
and by Nakajima [14] in the general case. The study of the asymptotic geometry
of the hyper-Kähler metric on the Higgs bundle moduli space (in the following
called Hitchin metric) has recently attained some attention, see [13, 4, 5] and the
contribution of Laura Fredrickson to this volume. The following picture, based on
predictions by Gaiotto, Moore and Neitzke [6], has been established in the above
mentioned works, the final statement being contained in [5]: On the regular part
of the Hitchin system the Hitchin metric is exponentially close to a semiflat model
metric adapted to the torus fibration. However, it has not been possible yet to
establish the predicted value of the rate of exponential decay.

4-dimensional complete hyper-Kähler manifolds are also known as gravitational
instantons. Under the additional assumption of faster than quadratic curvature
decay, i.e.

|Rm(p)| ≤ r(p)−(2+ε)

for some ε > 0, where r(p) = d(p, o) is the geodesic distance to some fixed base
point o, gravitational instantons have recently been shown by Chen and Chen to
admit a classification into spaces of type ALE, ALF, ALG or ALH [1, 2, 3]. ALE
spaces have Euclidean volume growth and are completely described in work of
Kronheimer [10, 11]. ALF, ALG and ALH spaces have cubic, quadratic and linear
volume growth respectively. If one drops the assumption of faster than quadratic
curvature decay, then fractional volume growth rates may occur. Examples of

http://arxiv.org/abs/0807.4723
http://arxiv.org/abs/0907.3987
http://arxiv.org/abs/1405.5765
http://arxiv.org/abs/1709.03433
http://arxiv.org/abs/1308.2198
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that nature were constructed by Hein [7]. ALG spaces also have a semiflat model
geometry at infinity, which in this case is actually flat. Possible models are bundles
of flat tori of modulus τ ∈ H over the flat cone of angle 2πβ and monodromy
e2iβ , which fit in to the Kodaira classification of singular fibers of elliptic surface
fibrations according to the following table:

D Regular I∗0 II II∗ III III∗ IV IV∗

β 1 1
2

1
6

5
6

1
4

3
4

1
3

2
3

τ ∈ H ∈ H e2πi/3 e2πi/3 i i e2πi/3 e2πi/3

However, the rate of decay of the ALG-metric to the model metric is generically
polynomial.

Motivating for this work was the following question, raised by Nigel Hitchin
2015 in a conference talk at the Newton Institute:

Is the moduli space of strongly parabolic SL(2,C)-Higgs bundles on the
4-punctured sphere a gravitational instanton of type ALG?

In this work we give a positive answer to this question. The main new technical tool
is a gluing theorem for solutions of Hitchin’s equation for parabolic Higgs bundles
with large Higgs fields in the regular part of the Hitchin system, generalizing the
one in [12] for ordinary Higgs bundles. More specifically, for t sufficiently large we
wish to solve the equation

Fht + t2[Φ ∧Φ∗ht ] = 0

for a hermitian metric ht which is asymptotic to

ht(z) =

(
|z|2α1

|z|2α2

)

near the punctures. Here 0 ≤ α1 < α2 < 1 are the parabolic weights and we
assumed that the parabolic degree of the Higgs bundle vanishes. This involves
the construction of limiting configurations and corresponding desingularizations
adapted to the parabolic structure. The actual analysis of the gluing problem
then has to be carried out in weighted spaces, which requires some more advanced
techniques. As in the case of ordinary Higgs bundles, we obtain that the Hitchin
metric on the parabolic Higgs bundle moduli space is exponentially close to a
semiflat metric on the regular part.

A distinctive feature of the moduli space of strongly parabolic SL(2,C)-Higgs
bundles on the 4-punctured sphere is that the discriminant locus consists of 0 ∈ C
alone, i.e. the regular part of the Hitchin system is the whole complement of
the nilpotent cone, and the regular fibers are identified by the C×-action. The
nilpotent cone itself is a union of five 2-spheres, intersecting according to the
affine D4 diagram. This means that the asymptotic description of solutions and in
particular the approximation of the Hitchin metric by the semiflat metric applies
to a whole neigbourhood of infinity. Furthermore, it follows that the semiflat
metric is the model metric corresponding to Kodaira type I∗0 , where β = 1

2 and
the modulus τ ∈ H is determined by the conformal location of the 4 points which
make up the parabolic divisor. The Hitchin metric attains a special place in the
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moduli space of ALG metrics since it exhibits exponential asymptotics. We’re
confident to be able to establish the expected rate of exponential decay in this
special case very soon. The following question is the subject of ongoing joint work
by the authors: Which portion of the moduli space of ALG metrics is filled out by
Hitchin metrics, e.g. by varying the parabolic weights or by allowing semisimple
residues?

References

[1] G. Chen, X. Chen, Gravitational instantons with faster than quadratic curvature decay I,
arXiv:1505.01790

[2] G. Chen, X. Chen, Gravitational instantons with faster than quadratic curvature decay II,
arXiv:1508.07908

[3] G. Chen, X. Chen, Gravitational instantons with faster than quadratic curvature decay III,
arXiv:1603.08465

[4] D. Dumas, A. Neitzke, Asymptotics of Hitchin’s metric on the Hitchin section,
Comm. Math. Phys. 367 (2019), no. 1, 127–150.

[5] L. Fredrickson, Exponential decay for the asymptotic geometry of the Hitchin metric,
arXiv:1810.01554.

[6] D. Gaiotto, G. Moore, A. Neitzke, Wall-crossing, Hitchin systems, and the WKB approxi-
mation, Adv. Math. 234 (2013), 239–403.

[7] H. Hein, Gravitational instantons from rational elliptic surfaces, J. Amer. Math. Soc. 25
(2012), no. 2, 355–393.

[8] N. Hitchin, The self-duality equations on a Riemann surface, Proc. London Math. Soc. (3)

55 (1987), no. 1, 59–126.
[9] H. Konno, Construction of the moduli space of stable parabolic Higgs bundles on a Riemann

surface, J. Math. Soc. Japan 45 (1993), no. 2, 253–276.
[10] P.B. Kronheimer, The construction of ALE spaces as hyper-Kähler quotients, J. Differential

Geom. 29 (1989), no. 3, 665–683.
[11] P.B. Kronheimer, A Torelli-type theorem for gravitational instantons, J. Differential

Geom. 29 (1989), no. 3, 685–697.
[12] R. Mazzeo, J. Swoboda, H. Weiß, F. Witt, Ends of the moduli space of Higgs bundles, Duke

Math J. 165 (2016), no. 12, 2227–2271.
[13] R. Mazzeo, J. Swoboda, H. Weiß, F. Witt, Asymptotic geometry of the Hitchin metric,

Comm. Math. Phys. 367 (2019), no. 1, 151–191.
[14] H. Nakajima, Hyper-Kähler structures on moduli spaces of parabolic Higgs bundles on Rie-

mann surfaces, Moduli of vector bundles (Sanda, 1994; Kyoto, 1994), 199–208, Lecture
Notes in Pure and Appl. Math., 179, Dekker, New York, 1996.

Limiting Configurations and Pleated Surfaces

Michael Wolf

(joint work with Andreas Ott, Jan Swoboda, Richard Wentworth)

1. Introduction

In this extended abstract, we report on ongoing joint work with Andreas Ott,
Jan Swoboda, and Richard Wentworth. Let S = Sg denote a closed differen-
tiable surface of genus g on which we will put various geometric structures.
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We seek to interpret a stratum in the frontier of the character variety χg =
Hom(π1(S), SL(2,C))//SL(2,C) of (irreducible) genus g surface group represen-
tations into SL(2,C). In particular, we refer to a recent work [MSWW16] of
Mazzeo-Swoboda-Weiss-Witt. These authors fix a Riemann surface structure, say
X , on S, and consider the moduli space M of stable SL(2,C-Higgs bundles (up to
gauge equivalence) over X . They then consider those Higgs bundles for which the
Higgs field, say Φ, has determinant q = det(Φ) ∈ H0(X,K2

X), a holomorphic qua-
dratic differential on X, to have but simple zeroes. Roughly, they continue from
this restricted space to define a frontier for this portion of the moduli space by
adjoining to the associated portion of χg a moduli space M∞ consisting of (equiv-
alence classes of) limiting configurations. These limiting configurations are pairs
(Φ∞, A∞) of a singular Higgs field Φ∞ and singular connection A∞: together the
pair satisfy a degenerate decoupled system of equations that is a limiting version
of the Hitchin system. See [MSWW16] for complete details.

In this talk, we seek to address two questions:

(1) What is the dependence of this stratum of limiting conditions on the initial
choice of Riemann surface X? For example, if (Φ∞, A∞) is a limit, under the
correspondences above, of a sequence ρn ∈ χg of (of equivalence classes of)
representations where we have chosen X as the background Riemann surface,
and if (Φ′

∞, A
′
∞) is an accumulation point of those classes of representations

when we have chosen X ′ as a background Riemann surface, then how does
(Φ′

∞, A
′
∞) relate to (Φ∞, A∞)?

(2) The Hitchin theory (see [Hit87]) proceeds via consideration of ρn-equivariant

harmonic maps un : X̃ → SL(2,C)/SU(2). The latter symmetric space is
isometric to the hyperbolic three-space H3, so we seek an interpretation of the
limiting configuration pair (Φ∞, A∞) in terms of hyperbolic-geometric objects.

The theme of our work is then the reconciliation of two traditions of perspec-
tives on the character variety χg: gauge theoretic, wherein the monodromy of
a connection on a rank two complex bundle over the Riemann surface X lies in
SL(2,C), and synthetic-hyperbolic, in which SL(2,C) is the isometry group of H3,
and the group π1(S) acts equivariantly by isometries on H3. There are then also
two notions of bending which we will unite: one relating to parallel transport of a
connection and the other relating to the dihedral angle of two half-planes in H3

meeting along a geodesic.
We address the questions above by, roughly, relating limiting configurations

(Φ∞, A∞) to classes of shearings of a pleated surfaces Σ = (f̃ , (S, σ), ρ, λ). Here
the pleated surface Σ is defined by the following data: the surface S is equipped
by a hyperbolic metric σ for which λ is a geodesic laminations, and the map
f : S̃ → H3 is an isometry on complement S \λ of λ in S, as well as an isometry of
λ onto its image (geodesic). For full details, see [Bon96] and the papers referenced
within.

Given a pleated surface Σ = (f̃ , (S, σ), ρ, λ) and a number s, we create a pleated

surface Σs = (f̃s, Ss, ρs, λ) as follows. Set Ξλ
s to be the transverse cocycle associ-

ated to a left earthquake of S along λ. Then set Σs = Σs,µq,ver
= Ξλ

sΣ, the result
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of shearing Σ along the lamination λ for a measure of sµq,ver, where here µq,ver

denotes the measure for the vertical foliation of q. Note that this operation results
in a pleated surface Σs with the same bending cocycle as the original surface Σ.
(Naturally, a similar construction of Σs,n = Ξλn

s Σn can be made for laminations
λn and measures µq1n,ver

.)

2. The pleated surface for a limiting configuration

Let ρn denote a sequence of irreducible SL(2,C) surface group representations
which leave all compact sets in the character variety χg, converging to a limiting

configuration (Φ∞, A∞) relative to a choice X of Riemann surface. Let hn : X̃ →
H3 denote the associated family of equivariant harmonic maps from the universal
cover X̃ to hyperbolic 3-space H3, normalized by some fixed choice of frames.

Let qn = det(Φn) be the Hopf differential of the harmonic map hn; here Φn refers
to the Higgs field. Our assumption that the limiting configuration (Φ∞, A∞) has
detΦ∞ a quadratic differential with simple zeroes implies that we may assume, for
n sufficiently large, that the differential qn also has only simple zeroes. We adopt
the notation that X̃ denotes the universal cover of X , and q̃n (respectively q̃)

denote the lifts to the universal cover X̃ of qn (resp. q), and so on. Let q1n = qn
‖qn‖

denote the unit norm quadratic differential which is a multiple of the quadratic
differential qn. We might as well assume that ‖q‖ = 1 so that q1n → q.

For simplicity, we assume that q has no horizontal saddle connections: the
statements in that case are both essential but also require substantial more detail,
and we omit them in the talk.

Let X× denote the complement in X̃ of the zeroes of q̃ and the horizontal leaves
that emanate from those zeroes.

OnX×, let π denote the natural map which takes horizontal leaves ℓ of q to their
geodesic representatives π(ℓ) in the lamination λ, with an analogous definition for
πn : X× → λn. We continue to denote this map by π (resp. πn).

Proposition 1. There is a pleated surface Σ = (f̃ , S, ρ, λ) with the following
properties. The measured lamination λ is projectively equivalent to the measured
lamination naturally associated to the horizontal measured foliation of q = det(Φ).

Let s = s(n) = 2E(hn)
1

2 , and let Σs = ΞsΣ be as in the previous paragraph. We
then have the following estimates depending upon whether the Hopf differentials
qn are proportional or not.

(i) Suppose that q1n is independent of n. Then, for every ǫ, and on any compact

set K ⊂ X̃, we may choose n sufficiently large so that the images hn(X̃) are within

distance ǫ of f̃s(X̃) on K; moreover, on the complement of any neighborhood of
q−1(0) in K, the map hn nearly agrees with the projection fs◦π from the punctured

surface X̃ to the lamination λ, i.e. when d|q1n|(p, q
−1
n (0)) > ǫ, we have for n

sufficiently large that dH3(hn(p), πn(p)) < ǫ.
(ii) In general, with no restriction on q1n other than q1n → q, we conclude that for

every (large) constant C and every ǫ, there is an n so that we have for n sufficiently
large for points p so that d|q1n|(p, q

−1
n (0)) > ǫ, then dH3(hn(p), πn(p)) < 2s− C.
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The proof of Proposition 1 uses estimates on high energy harmonic maps to
H2 and H3 from [Wol91] and [Min92]: the constructions borrow heavily from the
easier parts of Minsky’s thesis [Min92].

Remarks 1.
(1) In effect, the construction in this proposition results in a family ρs of repre-
sentations defining the pleated surfaces Σs that track a subsequence of the repre-
sentations induced by hn.

(2) One can understand the second statement in the proposition in the following
way. A consequence of the first estimate is that if one takes a ’ray’ of represen-
tations ρn whose Hopf differentials qn are all multiples of a single unit quadratic
differential q1n, then the harmonic map images hn(X̃) are tracked very closely by
shearings Σs = ΞsΣ of a single pleated surface Σ. Thus, if one were to take a
second family of representations ρ

′

n whose Hopf differentials q
′

n are all multiples

of a single unit quadratic differential q1
′

n , then the harmonic map images h
′

n(X̃)

are tracked very closely by shearings Σ
′

s = ΞsΣ of a single pleated surface Σ
′

. But

those shearings Σs and Σ
′

s are bent along measured laminations which typically
make some non-zero angle with other, so even for quadratic differentials qn and
q
′

n whose zeroes are close the distances between the images hn(p) and h
′

n(p) of

a point p far from the zeroes will distance dH3(hn(p), h
′

n(p)) = 2s − O(1). This
last estimate is because hn(p) will lie close to one geodesic and be moved by the

shearing along that geodesic by a distance s+O(e−cs) and h
′

n(p) will lie close to
another distinct geodesic and be moved by the shearing along that geodesic by a
distance s+O(e−cs). By elementary hyperbolic geometry, even if those geodesics

intersect, the distance between the points hn(p) and h
′

n(p) will be at least 2s−C0

for some absolute constant C0.
(3) The reference to a compact set K ⊂ X̃ is just for convenience in the state-

ment; the issue is that the estimates on the geometry of the harmonic map have
an error estimate in them, so we can account for the imprecision in the estimates
by referencing an estimate that is uniform in compacta or by slightly adjusting
the approximating pleated surface.

3. Bending Cocycles

With this basic correspondence in hand, we rapidly sketch the remainder of the
discussion.

The space of limiting configurations {(Φ∞, A∞)} fibers into Prym varieties
which share a common singular Higgs field Φ∞: in this construction a singu-
lar connection A∞ differs from another singular connection A0

∞ by a form α ∈
H1(X×, LΦ∞

), where LΦ∞
= {γ ∈ su(2) : [γ,Φ∞] = 0} is a line bundle over X×

(the Riemann surface X punctured at Φ−1
∞ (0)). There is an equivalence relation

among the elements α ∈ H1(X×, LΦ∞
) given by an integral relation among the

periods of the forms. Again, see [MSWW16] for full details on the structure of the
space of limiting configurations. We note that these forms may be construed as
Prym differentials on a spectral curve constructed from (X, detΦ∞).
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We show two results, which we summarize a bit informally, using only the
terminology developed so far.

Proposition 2. A form α ∈ H1(X×, LΦ∞
) formally defines a bending cocycle b[α]

for a geodesic lamination λ ⊂ S corresponding to the horizontal foliation for Φ∞.

Let (Φ∞, A
0
∞) denote the limiting configuration corresponding to the Hitchin

section of χg: these are also often referred to as the Fuchsian representations. Here
the associated pleated surface from Proposition 1 has a vanishing bending cocycle.

Thus, associated to a form α ∈ H1(X×, LΦ∞
), we now have two pleated surfaces

(or more precisely, classes of shearings of pleated surfaces. The first, Σα is defined
via Proposition 2 by bending the Fuchsian pleated surface along λ = λ(Φ∞) so
that the resulting bending cocycle is α.

The second pleated surface Σα is obtained from α ∈ H1(X×, LΦ∞
) by applying

the construction of Proposition 1 to the limiting configuration (Φ∞, A
0
∞ + α).

A main result in the talk is that

Theorem 1. The pleated surfaces Σα and Σα agree up to shearing along λ.

The proof involves giving a hyperbolic geometry interpretation of the bundle
LΦ∞

and the elements α ∈ H1(X×, LΦ∞
) (cf. Donaldson [Don87]), and then

combining these with some of the estimates on high energy harmonic maps as
well as some elementary observations as to the geometry of highly sheared pleated
surfaces.

Remark 1. The results of the proposition in the second section and the theorem
in the present section is that the space of limiting configurations may be defined
topologically in terms of the bending of a pleated surface along a lamination dual
to the vertical measured foliation of the quadratic differential obtained as the
determinant of the Higgs field defining the fiber Prym variety.

4. Limits of opers.

We recall the definition of opers (see [Dum09]), which we approach from the per-

spective of Schwarzian derivatives and complex projective (CP1) structures on a
Riemann surface X . Let ψ ∈ H0(X,K2

X) be a holomorphic quadratic differential
on X . We consider the ordinary differential equation on X given by

(1) u′′(z) +
1

2
ψ(z)u(z) = 0

and let u1(z) and u2(z) denote a basis for the solution space. The lifted map

f̃ = [ũ1(z) : ũ2(z)] : X̃ → CP1 develops the universal cover X̃ to CP1, and one
checks that the Schwarzian derivative

S(f) = [(
f ′′

f ′
)′ − 1

2
(
f ′′

f ′
)2]dz2

(say, with respect to an initial identification of X̃ with a Fuchsian development)

inverts (1) in the sense that S(f̃) = ψ. A different choice of basis for the solution
space to (1) would precompose f by a Mobius transformation and hence not affect
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S(f), so the holonomy representation defined by the developing map f̃ is defined
only by (1), hence only by ψ.

In this section, we study the asymptotics of the family of representations defined
by the holonomies ρt associated to the oper family

(2) u′′(z) +
1

2
tψ(z)u(z) = 0.

Of course, as holonomies, this family determines a family Oper(tψ) of (equivalence)
classes of Higgs bundles, and we seek to understand, for example, its accumulation
set within the space of limiting configurations.

Now, Dumas [Dum07] explains the asymptotics of these oper representations
via the asymptotics of graftings and hence pleated surfaces, while our results in the
prior sections relate limiting configurations to the asymptotics of pleated surfaces.
The upshot is that we may interpret Dumas’ work in terms of the accumulation
sets of the oper families on limiting configurations.
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Unitary Representations of 3-manifold Groups and the Atiyah-Floer
Conjecture

Aliakbar Daemi

(joint work with Kenji Fukaya and Maksim Lipyanskyi)

Inspired by ideas in quantum Field theory and Morse theory, Floer developed
a series of important constructions in low dimensional topology and symplectic
geometry. In one direction, he built on the groundbreaking work of Donaldson
to construct an invariant for certain 3-manifolds which is called instanton Floer
homology [7]. In a different direction, Floer defined an invariant, known as La-
grangian Floer homology, for pairs of Lagrangians in a symplectic manifold [8].
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Suppose Y is a 3-manifold with the same homology groups as S3. Suppose
also E is the trivial SU(2) bundle on Y . An appropriate count of the number of
flat connections1 on E produces a numerical invariant of Y , which is called Casson
invariant [2, 14]. The simplest version of instanton Floer theory, denoted by I∗(Y ),
is a homology theory associated to the pair (Y,E), and its Euler characteristic is
equal to twice the Casson invariant of Y . It is reasonable to expect that one can
perform similar constructions by replacing (Y,E) with more general pairs. We
say a pair (Y,E) is admissible if E is a Hermitian bundle of rank 2 on Y such
that c1(E) has a no-trivial pairing with an element of H1(Y,Z). Then a version of
instanton Floer homology, denoted by I∗(Y,E), can be also defined for admissible
pairs (Y,E) [9].

Suppose M is a closed manifold with a symplectic form ω. Suppose also L0

and L1 are Lagrangian submanifolds of M , i.e., ω vanishes on half-dimensional
submanifolds L0 and L1 of M . In addition to his instanton homology, Floer
defined a homology group HF∗(L0, L1) under some restrictive assumptions on
L0 and L1. This homology group is called Lagrangian Floer homology [8], and
categorifies the intersection number of L0 and L1. Floer’s original construction
has been generalized in various directions and part of the assumptions that he
made on M , L0 and L1 subsequently have been relaxed [13, 10, 11, 1].

The Atiyah-Floer conjecture states that instanton Floer homology and La-
grangian Floer homology are related to each other. Suppose H0 and H1 are two
handlebodies of genus g. Then the boundaries of H0 and H1 are diffeomorphic to
Σg, the Riemann surface of genus g. Therefore, gluing these two 3-manifolds along
their boundaries determines a closed 3-manifold Y . This decomposition of Y into
two handlebodies is called a Heegaard splitting of Y . Any 3-manifold Y admits a
Heegaard splitting as H0∪Σg

H1. Let χ(Σg) be the space of SU(2)-representations
of π1(Σg) modulo the conjugation action. Let also Li be the subspace of χ(Σg)
consisting the representations that can be extended toHi. The space χ(Σg) admits
a symplectic structure and the subspaces L0 and L1 are Lagrangian with respect
to this symplectic structure. The space χ(Σg) is called the character variety and
L0, L1 are called the handlebody Lagrangians. According to the Atiyah-Floer
conjecture, for an integral homology sphere Y , the Lagrangian Floer homology
HF∗(L0, L1) is an invariant of Y which is called symplectic instanton homology.
Furthermore, the Atiyah-Floer conjecture states that the symplectic instanton ho-
mology of Y is isomorphic to the instanton homology group I∗(Y ) [3].

Part of the difficulty with the Atiyah-Floer conjecture is to define symplectic
instanton homology. The spaces χ(Σg), L0 and L1 are singular and the standard
definitions of Lagrangian Floer homology cannot be applied to these spaces. One
way to avoid this issue is to replace the Lie group SU(2) with SO(3). The space
of SO(3)-representations of π1(Σg), up to an appropriate conjugation action, has
two connected components. One component can be identified with χ(Σg). The
other component is a smooth symplectic manifold denoted by χodd(Σg) which
is called the odd character variety of Σg. For a possibly disconnected Riemann

1In general, we might need to perturb the flat equation for a connection
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surface Σ, let χodd(Σ) be the product of the odd character varieties associated to
the connected components of Σ.

Suppose N is a 3-manifold with boundary Σ, and F is a Hermitian bundle
of rank 2 on N . Suppose V is the bundle of skew-adjoint homomorphisms of
F . Then V is a real vector bundle of rank 3 with inner product, i.e., an SO(3)-
bundle. Assume that the restriction of V to each connected component of Σ is
non-trivial. Then the space of flat connections on the bundle V gives rise to
a subspace of χodd(Σ). After a small perturbation, this subspace turns into an
immersed Lagrangian submanifold denoted by L [12]. Suppose N ′ is another 3-
manifold with boundary Σ and F ′ is a Hermitian bundle of rank 2 onN ′, satisfying
the same properties as F . Suppose also L′ is the immersed Lagrangian of χodd(Σ)
associated to (N ′, F ′). The manifolds N and N ′ can be glued to each other along
Σ to form a closed 3-manifold Y . Also, gluing F and F ′ defines a U(2)-bundle E on
Y . Then (Y,E) is an admissible pair and any admissible pair can be constructed
in this way.

In my talk, I mainly discussed the following theorem [4, 5], which is an instance
of the Atiyah-Floer conjecture for admissible pairs, and it generalizes Dostoglou
and Salamon’s result in [6]:

Theorem 1. If the immersed submanifolds L and L′ of χodd(Σ) are embedded,
then they are monotone Lagrangian submanifolds of χodd(Σ) with minimal Maslov
numbers 4. Moreover, the Lagrangian Floer homology group HF∗(L,L

′) is an in-
variant of (Y,E) and is isomorphic to the instanton Floer homology group I∗(Y,E).

A Lagrangian submanifold L of a symplectic manifold (M,ω) is monotone, if
there exists a positive constant c such that for any α ∈ π2(M,L):

µL(α) = cω(α).

Here µL is the Maslov index associated to the Lagrangian manifold L. The minimal
Maslov number of a Lagrangian is the positive integer that generates the image
of µL. In [13], Oh defines Lagrangian Floer homology for compact monotone
Lagrangians of a closed symplectic manifold whose minimal Maslov numbers are
greater than 2. In particular, this version of Lagrangian Floer homology can be
used to define HF∗(L,L

′) in Theorem 1.
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Higgs bundles for the geometric Langlands correspondence

Carlos Simpson

(joint work with R. Donagi, T. Pantev)

The program of Ron Donagi and Tony Pantev [1] proposes a general method for
constructing the Higgs bundles over the moduli of stable bundles on a Riemann
surface, that should correspond to the local systems predicted by the geometric
Langlands correspondence.

We note that Donagi and Pantev have treated the case of P1 minus 5 points,
this article is currently in preparation [2].

Here, we’ll treat the case of rank 2 bundles on genus 2 curves.
Consider a smooth projective curve C of genus 2 over the complex numbers

with p ∈ C a Weierstrass point.
Let X be the moduli space of rank 2 stable bundles on C, of degree either 0 or

1 (cases denoted X(0) and X(1) respectively). By Narasimhan-Ramanan [6], we
have

X(0) = P3, X(1) ⊂ P5 intersection of two quadrics.

The Hecke correspondences between these moduli spaces come from the quadric
line complex.

The Hitchin moduli space has been studied by Previato and Van Geemen [7].
There are two fibrations

MH
f−→ A3

|
↓
X

where the vertical arrow is only a rationally defined map.
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Consider a general point b in the Hitchin base A3, corresponding to a spectral

curve C̃ ⊂ T ∗C. The Hitchin fiber

Y0 = f−1(b) = {line bundles L/C̃ such that detπ∗(L) = OC or OC(p)}
is an abelian threefold, the Prym of C̃/C. In order to obtain a map to X we need
to resolve the singularities of the rational projection, by blowing up Y0 to obtain
a variety Y with exceptional divisor E ⊂ Y . The locus to be blown up is Q ∩ Y0
where Q ⊂ MH is the incoming or stable variety to the higher level fixed point
locus of the C∗ action. In MH(0) the fixed point locus consists of 16 points and in
MH(1) it is a curve with a 16 : 1 etale cover C → C. Then Q ∩ Y0 is respectively

again 16 points, or the curve Ĉ = C ×C C̃.
Let π : Y → X denote the resulting map.
The wobbly locus W ⊂ X is the locus where the geometric Langlands local

systems will have singularities. It is the locus where the other components of the
nilpotent cone meet X , and also includes the strictly semistable locus in the case
of degree 0.

Birationally, MH identifies with the cotangent bundle of X . More concretely
we get an inclusion

Y →֒ T ∗X(logW ).

Therefore, choosing a line bundle L over Y will result in BNR spectral data needed
to define a Higgs sheaf V = π∗L over X with Higgs field Φ having logarithmic
singularities along W .

The Donagi-Pantev program consists of the idea of adding an additional par-
abolic structure to V along the wobbly locus W , in order to obtain a parabolic
logarithmic Higgs sheaf on X that will satisfy the Chern class criteria, so we can
then apply Mochizuki’s existence theorem [5] to get a local system on X−W . The
second part of the program is to verify the Hecke eigensheaf property of this local
system with respect to the initial point in MH for the Langlands dual group.

In the case of a genus 2 curve, the moduli space X and wobbly locus are
very classical objects. For example, in the case of degree 0 the wobbly locus
inside X(0) ∼= P3 is the union of the Kummer surface with the 16 trope planes
of the Kummer 166 configuration. In the case of degree 1, W is the image of its
normalization given by a map C×P1 → X(1). In this caseW has cusps and nodes
as its codimension 1 singularities.

We have been able to understand how to choose the parabolic structure in these
cases: notably, the parabolic weight is just α = 1/2. The quotient sheaf involved
in the parabolic structure comes from the ramification of the map Y → X over
the wobbly locus W . Note that there are other components of ramification that
move as we move b, these don’t get parabolic structures.

Furthermore, with a few special techniques we can calculate the Chern classes,
notably the parabolic ∆par-invariant. For this choice of parabolic structure and
parabolic weight, ∆par = 0. The Higgs sheaf is automatically stable since its
spectral variety Y is irreducible. Hence we obtain a local system on X −W by
applying [5].
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Here are a few of the current and future issues involved. A first question is how
to extend across the singularities of W that are codimension 2 in X . This is all
that is needed in order to get a local system. However, W is not normal crossings
in codimension 2; in the odd case it has cusps as well as nodes, and in the even
case the trope planes form tacnodes with the Kummer surface. For the odd case,
we pass to a Kawamata-Viehweg covering space that has order two ramification
along W , thereby removing the parabolic weight, and we can calculate the locally
free extension of the bundle upstairs to get the Chern class calculation by GRR.
In the even case, we make use of the observation by Heu and Loray [4] (following
Goldman) that X(0) has a degree 2 covering ramified along the Kummer surface
that is the moduli of parabolic bundles on P1 with respect to 6 points (and the same
forMH). Upstairs, this resolves the parabolic structure along the Kummer surface,
and the trope planes become normal crossings, again allowing the calculation by
GRR.

A next problem is to consider the Hecke correspondences. We would like to
show that the local system constructed over X −W satisfies the Hecke eigensheaf
property. This is work that is still in progress; it was the motivation for our
preprint about higher direct images of parabolic logarithmic Higgs bundles [3].

Beyond this case of genus 2 and rank 2, several more general questions may be
considered. There are several phenomena that make the higher rank and higher
genus cases more difficult, including the problem of multiple weights in the C∗

action at the tangent spaces to the fixed point loci; here weights −1, 0, 1, 2 con-
tributed to the order two ramification of the map Y → X over W . Another ques-
tion is to understand the singularities of W at codimension 2 in X , and whether
the phenomenon of strings of fixed point loci (not present here) contributes singu-
larities.

In the spirit of the workshop, we can isolate questions such as compatibility
with real structures, monodromy groups, asymptotics of monodromy, behavior
with respect to the Hitchin components, as well as the relationship with other
existing constructions of the geometric Langlands local systems.
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Geometric models for moduli spaces of parabolic Higgs bundles in
genus 0

Claudio Meneses

Moduli spaces of parabolic Higgs bundles on compact Riemann surfaces are very
interesting examples of hyperkähler manifolds with a rich geometry that has been
thoroughly studied over the last decades from multiple points of view. The intro-
duction of parabolic structures allows the possibility of small dimensional examples
[12, 5], while giving rise to new phenomena such as their dependence on parabolic
weights [14].

Several exceptional features arise when the base is the Riemann sphere; in such
case the rigidity of the underlying holomorphic bundles leads to rather simple and
explicit geometric models for the moduli spaces in question, which we will describe
briefly in the following paragraphs. The basic idea is to reduce the problem to
the study of actions of groups of bundle automorphisms on suitable model spaces
[6]. By construction, these models depend on a choice of parabolic weights, and
such dependence is in fact the key ingredient for their explicit description: the
combinatorial structure of the weight polytopes, seen through their semi-stability
walls and interior open chambers, plays the role of a “set of instructions” for
the model’s construction, elucidating geometrically the dependence on parabolic
weights and wall-crossing behavior under variations of parabolic weights.

Consider a set of n ≥ 3 points z1, . . . , zn ∈ CP1 and denote D = z1 + · · ·+ zn.
A parabolic Higgs bundle on CP1 is a pair (E∗,Φ) where E∗ denotes a rank r
holomorphic vector bundle π : E → CP1 together with a collection of descending
flags and associated weights

E|zi = Ei1 ⊇ Ei2 ⊇ · · · ⊇ Eir ⊃ {0}, 0 ≤ αi1 ≤ αi2 · · · ≤ αir < 1,

where Eij = Eik if and only if αij = αik, and Φ is a (strongly) parabolic Higgs

field, i.e., an element Φ ∈ H0
(
CP1,End(E)⊗KCP1(D)

)
, with nilpotent residues

{Reszi Φ ∈ EndE|zi}ni=1 satisfying the compatibility condition

(Reszi Φ) (Eij) ⊆ Eij+1, ∀ 1 ≤ i ≤ n, 1 ≤ j ≤ r.

The notion of parabolic stability, depending on a choice of parabolic weights,
leads to moduli spaces of parabolic bundles N and parabolic Higgs bundles M ,
together with a non-abelian Hodge correspondence to suitable character varieties
when the parabolic degree is 0 [11, 10]. However, not every admissible set of
parabolic weights determines a non-empty moduli space, leading to the notion of
weight polytopes [1, 4]. Every weight polytope possesses a finite collection of semi-
stability walls, whose complement is a finite collection of open chambers. While
the complex structure of M and N is an invariant of each open chamber, further
analytic invariants may be sensitive to variations of parabolic weights within any
given open chamber. We will focus our attention on the natural Kähler structure
whose underlying complex structure makes the embedding N →֒ M holomorphic,
and denote its Kähler form (in both cases) by Ω.
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The underlying bundle of any parabolic Higgs bundle possesses an intrinsic
Harder–Narasimhan filtration, leading to stratifications of moduli spaces. Over
the Riemann sphere, Harder–Narasimhan filtrations can be understood in terms
of Birkhoff–Grothendieck splittings E ∼= EN := O(m1)⊕ · · · ⊕ O(mr). Hence, we
can label different strata by their Birkhoff–Grothendieck splitting coefficients

M =
⊔

MN , N =
⊔

NN .

Our motivation is the study of the relation between the pairs (N ,Ω) and certain
non-compact WZNW models [9]. After a choice of isomorphism E ∼= EN , the
Mehta–Seshadri theorem can be interpreted as the equivalence between parabolic
stability and the existence of a map h : CP1 \ {z1, . . . , zn} → Hr (valued on
hermitian and positive-definite matrices), with suitable asymptotic behavior at
each puncture, that satisfies the zero-curvature equation

∂̄
(
h−1∂h

)
= 0,

which is the Euler–Lagrange equation for a non-compact WZNW action. There is
a Zariski open set N0 ⊆ N (depending on a given weight chamber, and in turn a
subset of the largest stratum NN0

⊆ N ) for which the map S : N0 → R defined
as the critical values of the non-compact WZNW action satisfies

√
−1

2
∂̄∂S =


Ω−

∑

i,j

βijΩij



∣∣∣∣∣∣
N0

where Ωij are Chern forms of tautological line bundles Lij → N [13]. The
real coefficients βij depend linearly on parabolic weights. Hence, the cohomology
class [Ω|N0

] is an analytic invariant depending explicitly on parabolic weights
within the weight polytope. In fact, there exist a finite number of open chambers
for which N0 = N . In those cases, the result holds globally, and leads to the
potential computation of recursive formulae for the associated symplectic volumes
[16] through the intersection theory of tautological classes [15].

In order to describe the idea of a geometric model, we will consider the rank
2 case only, although the discussion generalizes to arbitrary rank with a little bit
of work. From each choice of open chamber, we can list the finite collection of
splittings {EN} that admit stable parabolic Higgs bundles for the corresponding
parabolic weights. Over any such splitting EN , we can parametrize parabolic
Higgs fields explicitly in terms of their residues and an additional matrix-valued
polynomial. While these structures would depend on the choice of isomorphism
E ∼= EN , their orbits under the group of bundle automorphisms Aut (EN ) are
an invariant of a quasi-parabolic Higgs bundle. Hence, at each marked point,
let n (Ei) be the subspace of nilpotent endomorphisms of the fiber Ei := EN |zi .
Its blow-up at 0 is naturally a line bundle ñ(Ei) → P(Ei) isomorphic to O(−2).
Consider the model space

PN =
(
ñ(E1)× · · · × ñ(En)× Pol

)s

0
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consisting of residue data at z1, . . . , zn together with a holomorphic germ on
CP1 \ {∞}, defining a parabolic Higgs field Φ for which (EN ,Φ) stable. Let
P (Aut (EN )) := Aut (EN ) /Z (Aut (EN )) be the projectivization of Aut (EN ).

Theorem 1. For any choice of parabolic weights within an open chamber in a
given weight polytope, the action of the group P (Aut (EN )) on PN is free and
proper. Moreover, there is an isomorphism

MN
∼= PN/P (Aut (EN )) .

Further details will appear elsewhere [7, 8]. Theorem 1 should be understood
within the framework of the recently developed theory of non-reductive GIT [2] and
variations of non-reductive GIT [3]. However, a complete construction mechanism
requires the glueing of different strata into M , which is always a smooth complex
manifold for parabolic weights inside any open weight chamber. We expect this
construction to elucidate the relation between Ω and tautological forms in M .
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Fixed point branes, singular loci and mirror symmetry

Ana Peón-Nieto

(joint work with Emilio Franco, Peter B. Gothen, André G. Oliveira)

Higgs bundles [Hi1] are a vast subject with many ramifications, of which we hereby
focus on mirror symmetry. More specifically, we focus on two pieces of work by
the author and collaborators [FP, FGOP1], where we consider related families of
branes meaningful in topologial mirror symmetry and towards the understanding
of mirror symmetry beyond the generic locus.

Let MX be the moduli space of Higgs bundles on a Riemann surface X , that
is, the scheme parametrizing pairs (E, φ) where E −→ X is a holomorphic vector
bundle of rank n and φ ∈ H0(X,End(E)⊗KX), with KX the canonical bundle of
X [Hi1, Ni]. The non abelian Hodge correspondence [S] endows it with 3 complex
structures I (naturally induced by the complex structure of X), J (coming from
the character variety) and K := I ◦ J , which underlie a hyperkähler structure.

A key tool in the study of MX is the Hitchin map, associating to a pair (E, φ)
the characteristic polynomial of φ. The fibers of this map can be identified with the
Jacobian of a suitable spectral cover of X [Hi2, DG], and are Lagrangian for the
I-homolorphic symplectic form ΩI . So after a hyperkähler rotation, they become
special Lagrangian. Thus we have a hyperkähler (hence Calabi–Yau) manifold
admitting a special Lagrangian torus fibration, which together with autoduality
of Jacobian varieties gives an example of SYZ-mirror symmetry (between MX and
MX). More generally, for any complex reductive Lie group G, the moduli space of
G-Higgs bundles MG is mirror to MǦ, where Ǧ denotes the Langlands dual group
of G [DP, HT]. Indeed, their Hitchin systems are dual Lagrangian torus fibrations,
duality realised by a Fourier–Mukai equivalence D(MG) ∼= D(MǦ) [DP].

In terms of the homological mirror symmetry conjecture [Ko], predictions from
physics allow us to interpret mirror symmetry for Hitchin systems as a corre-
spondence between branes [KW]. These can be of type A (that is Lagrangian
submanifolds with a flat bundle) or B (complex submanifolds with a holomorphic
bundle) in each of the distinguished Kähler structures. Particularly important are
BBB-branes, and their dual BAA-branes.

All of the above applies over smooth spectral curves. But the global statement
of mirror symmetry for Hitchin systems is not well understood. In [FP], we explore
this phenomenon over the singular locus of MX . From another point of view, a
way to evidence for global dualities is by producing global invariants [HMP]. A
remarkable example of the above is the equality of the (stringy) E-polynomials of
MPGL(n,C) and MSL(n,C) [HT, GWZ]. The former can be expressed in terms E-
polynomials of some branes inMSL(n,C), investigated in [FGOP1], whose geometry
brings us back to the branes of singular loci from [FP].
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Singular loci and their conjectural duals

The singular locus of MX may be covered with BBB-branes [FP]. These are given
by Higgs bundles whose structure group reduces to the Levi subgroup Ln of the
standard parabolic Pn associated to the partition n. Hypercomplexity of these
subspaces MX(Lr) ⊂ MX follows from the non abelian Hodge correspondence.
For the partition (1, . . . , 1) we produce a family of hyperholomophic bundles L

on MX(L1) paramerized by Jac(X).
We next investigate what the duals of the branes (M(L1),L ) should be, the

idea being the potential existence of a stacky Fourier–Mukai transform of L .
With this in mind, given F1, . . . , Fs stable vector bundles of rank rk(Fi) = ni

(where
∑

i ni = n), we consider MX(Pn) ⊂ MX given by Higgs bundles whose
structure group reduces to the parabolic subgroup Pn. Letting Un < Pn be the
unipotent radical, let

(1) DX
n (F ) =

{
(E, φ) ∈ MX(Pn) : E/U ∼=

⊕

i

Fi

}
.

Under suitable conditions on the Fi’s, D
X
n (F ) is Lagrangian. In relation with

singular loci, these Lagrangians look very much like Fourier–Mukai transforms.
This, together with the existence of such a transform on the level of generic points
of both branes, led us to conjecture the duality between them.

Branes in topological mirror symmetry

Let Γ ⊂ Jac(X) be the n-torsion subgroup. Given γ ∈ Γ, we consider its action
on MX by tensorization γ · (E, φ) = (E ⊗ γ, φ). The fixed point set Mγ is easily
seen to be hypercomplex [NR], thus defining the support of a brane of type BBB.
These are the branes appearing in the expression of the (stringy) E-polynomial of
MPGL(n,C), which motivated us to further study them.

When γ ∈ Γ is of maximal order, we produce hyperholomorphic bundles F on
Mγ parametrised by F ∈ Jac(Xγ), where pγ : Xγ → X is the étale cover associ-
ated with γ. Since generic spectral curves are generically integral (although always
singular), we may generically perform a Fourier–Mukai transform to compute the
support of the dual branes DX

γ (F ) using the constructions in [A]. Unfortunately,

we do not have a good global understanding of DX
γ (F ). In fact, in order to prove

they are Lagrangian, we check that pullback by pγ yields a local isomorphism from

DX
γ (F ) into D

Xγ

(1,...,1)(F ) (see (1)).

More generally, given γ ∈ Γ of order m|n, and a F a rank n′ := n/m vector
bundle on m, we define an isotropic subscheme DX

γ (F ) which is Lagrangian under
suitable conditions on F . Again, isotropicity follows from the fact that

p∗γ : Dγ(F )
X −→ D

Xγ

(n′,...,n′)(F )

is a local isomorphism. Thus, in a certain sense, the geometry of singular loci and
their conjectural duals determines that of fixed point branes and their duals.
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Future directions

An important gap in our constructions, both in [FP] and [FGOP1], is the lack
of a construction of hyperholomorphic bundles beyond the simplest case (Higgs
bundles for Cartan subgroups and points fixed by maximal order line bundles).
An immediate improvement (in progress) would consist in extending these results.

Another natural step is to compute stacky Fourier–Mukai duals of singular loci
and check whether stability is preserved. We will undertake this in the rank two
case [FP2], using [L].

Finally, it should be pointed out that the study of Mγ is but a first step in a
long term project aiming at understanding topological mirror symmetry in terms
of branes. To this aim, we carefully study in [FGOP2] the rank two case, and
verify that a variation of the hyperholomorphic bundle allows to recover all the
meaningful points in the nilpotent cone.
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Stratifications of the Hitchin and de Rham moduli spaces

Richard Wentworth

(joint work with Brian Collier)

In this talk we report on some of the results in the paper [1]. Let X be a closed
Riemann surface of genus g ≥ 2, and let MH (resp.MdR) denote the moduli space
of SL(n,C) Higgs bundles (resp. flat connections) on X . Then MH and MdR are
holomorphic symplectic varieties, and the nonabelian Hodge correspondence gives
a homeomorphism between the two. Moreover, MH admits a C∗-action, giving a
Bialynicki-Birula stratification. The fixed points [E0,Φ0] of the action are complex
variations of Hodge structure (VHS). We will be interested in the stable manifolds

W 0(E0,Φ0) =

{
[E ,Φ] ∈MH | lim

ξ→0
ξ · [E ,Φ] = [E0,Φ0]

}

While MdR does not admit a C∗-action, it has a “stratification” given by the
partial oper structures defined by Simpson [4]. Namely, a holomorphic bundle V
with an algebraic connection ∇ always admits a filtration

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vℓ = V
satisfying a Griffiths transversality condition and such that the associated graded
bundle

GrV := ⊕ℓ
i=1Vi/Vi−1

with the Higgs field ΦV induced from ∇ is semistable. We can thus define

W 1(E0,Φ0) = {[V ,∇] ∈MdR | [GrV ,ΦV ] = [E0,Φ0]}
A particular case is when [E0,Φ0] is the Fuchsian or uniformizing Higgs bun-
dle. That is, one coming from composing the constant curvature metric on X ,
regarded as a solution to Hitchin’s equations, with the principal embedding of
SL(2,C) in SL(n,C). Then W 0(E0,Φ0) is by definition the Hitchin component,
and W 1(E0,Φ0) is the space of opers. Both are parametrized by the Hitchin base
of holomorphic differentials:

n⊕

i=2

H0(X,Ki
X)

In [3], Gaiotto conjectured that a certain rescaling limit of flat connections called
the conformal limit gives a biholomorphic correspondence between the Hitchin
component and the space of classical opers. This conjecture was recently proven
in [2].

The goal of this talk is to explain that the conformal limit exists in much
more generality and gives a correspondence between strata for every stable VHS.
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The correspondence itself may be viewed as arising from a generalization of the
Hitchin section. Namely, we identify a subcomplex of the deformation complex at
a VHS, and a corresponding slice in the space of Higgs bundles, which parametrizes
W 0(E0,Φ0). The first cohomology of this subcomplex plays the role of the vec-
tor space of holomorphic differentials above. Like the Hitchin component, this
parametrization is global. Furthermore, as in the case of opers, the same slice
parametrizes W 1(E0,Φ0). We go on to prove that this identification is precisely
the conformal limit of Gaiotto. Along the way, we show that W 0(E0,Φ0) and
W 1(E0,Φ0) are holomorphic Lagrangian submanifolds of MH and MdR, respec-
tively.
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On type-preserving representations of the thrice punctured projective
plane group

Sara Maloni

(joint work with Frederic Palesi, Tian Yang)

This talk is about dynamics on character varieties X(Γ, G) = Hom(Γ, G)//G. We
will study the action of the outer automorphism group Out(Γ) on X(Γ, G) given by
θ([ρ]) = [ρ◦θ−1]. This question is motivated by the classical example of the action
of the mapping class group MCG(Σ) on the Teichmüller space T (Σ) of a closed
orientable surface Σ. Fricke proved that MCG(Σ) acts properly discontinuously
on T (Σ) (that is, for every compact set K in T (Σ) there is only a finite number of
elements g ∈ MCG(Σ) such that K∩g(K) 6= ∅), and Goldman [2] conjectured that
MCG(Σ) acts ergodically on all the other components of X(π1(Σ),PSL2(R)). So
the geometrical (discrete vs non-discrete) and the dynamical (proper discontinuous
vs ergodic action) decomposition of the character variety coincide, at least conjec-
turally. The conjectural picture is the same for representations π1(Σ) → PSL2(C).

On the other hand, if one considers surfaces Σg,b with non empty boundary,
then the fundamental group π1(Σg,b) is a free group Fn and the mapping class
group MCG(Σg,b) is a subgroup of Out(Fn). While the action of Out(Fn) on X

is well-known to be properly discontinuous on the set of discrete, faithful, convex-
cocompact (i.e. Schottky) characters, the action on the complement of these char-
acters is more mysterious. Minsky [8] proved that the set of primitive-stable rep-
resentations Xps is an open domain of discontinuity for the action of Out(Fn)
which is strictly larger than the set of discrete, faithful, convex-cocompact (i.e.
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Schottky) characters. Hence the geometrical and dynamical decomposition of
X(Fn,PSL2(C)) are different.

Another approach in the study of the character varieties X(Fn, SL(2,C)) was
introduced by Bowditch in [1] and later generalized by Tan, Wong and Zhang [9],
Maloni, Palesi and Tan [5] and Maloni and Palesi [4]. Bowditch’s idea was to use
a combinatorial viewpoint using trace functions on simple closed curves. They
defined a domain of discontinuity XQ, the Bowditch set of representations, which
contains the set Xps, and hence is also strictly larger than the set of discrete,
faithful, convex-cocompact (i.e. Schottky) characters.

In this talk, after discussing some general results about mapping class group
actions on character varieties, we will focus on type-preserving representations
of a (possibly non-orientable) punctured surface S into Isom(H) = PGL(2,R).
A representation ρ : π1(S) −→ PGL(2,R) is said type-preserving if peripheral ele-
ments are mapped to parabolic isometries and 1–sided [resp. 2–sided] elements are
mapped to orientation reversing [resp. preserving] isometries. In this paper we will
work on the space X(S) = {type-preserving ρ : π1(S) −→ PGL(2,R)}/PSL(2,R)
of representation up to conjugation by PSL(2,R). One can obtain the PGL(2,R)–
character variety of S from X(S) as a further quotient, which identifies certain
connected components.

1.1. Connected components of the character variety. For each type-preserv-
ing representation ρ, one can define its Euler class e(ρ) as its representation area
divided by 2π. It is know that the Euler class satisfies the Milnor-Wood inequality
χ(Σg,n) 6 e(ρ) 6 −χ(S), see [7, 10]. For closed surfaces, they proved that the Eu-
ler class defines a one-to-one correspondence between the connected components
of X(S) and the integers e with |e| 6 −χ(S). For a punctured orientable surface
Σg,n, the number of connected components of X(Σg,n) is more subtle to describe
since for an integer e with |e| 6 −χ(S), the spaces Xe(S) of (conjugacy classes
of) type-preserving representations of Euler class e can either be empty or non-
connected, see [3]. In the orientable case Kashaev [3] conjectured that it should
be determined by the Euler class and an extra invariant which corresponds to the
PSL(2,R)–conjugacy classes of the holonomy representations of the boundary el-
ements. More precisely, a parabolic element in PSL(2,R) is, up to ±I, conjugate
to an upper-triangular matrix, and its conjugacy class is distinguished by whether
the sign of the nonzero off diagonal element is positive or negative. We respectively
call the two conjugacy classes of parabolic elements the positive and the negative
conjugacy classes. For a type-preserving ρ : π1(S) → PGL(2,R), we say that the
sign of a puncture v is positive (resp. negative), denoted by s(v) = +1 (resp.
s(v) = −1), if ρ sends a peripheral element around this puncture into a positive
(resp. negative) conjugacy class of parabolic elements. For s ∈ {±1}n, we denote
by Xs

e(S) the space of conjugacy classes of type-preserving representations with
Euler class e and signs of the punctures s.

Theorem 1. Let s ∈ {±1}3.
(1) Xs

0(N1,3) is nonempty if and only if s contains exactly one or two +1’s.
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(2) Xs
+1(N1,3) is nonempty if and only if s contains exactly two or three +1’s.

(3) Xs
−1(N1,3) is nonempty if and only if s contains exactly two or three −1’s.

(4) All the nonempty spaces above are connected.

As a consequence, X0(N1,3) has six connected components, while X+1(N1,3) and
X−1(N1,3) each have four connected components. Surprisingly, different connected
components will have different geometric properties.

1.2. Hyperbolicity of simple closed curves. Bowditch [1] asked the following
question: Given a non-elementary type-preserving representation ρ : π1(S) −→
PGL(2,R), is it true that if ρ sends every non-peripheral 2–sided simple closed
curve to an hyperbolic element of PSL(2,R), then ρ is Fuchsian?

Theorem 2.

(1) If s ∈ {±1}3 contains exactly two +1’s, then every type-preserving ρ in a full
measure subset of Xs

1(N1,3) and X−s
−1(N1,3) sends every non-peripheral simple

closed curve to a hyperbolic element.
(2) Let s = (+1,+1,+1). Then every representation in Xs+

1 (N1,3) and in Xs
1(N1,3)

and X−s
−1(N1,3) sends some non-peripheral 2-sided simple closed curve to a non-

hyperbolic element.
(3) Every non-elementary type-preserving representation ρ : Γ1,3 −→ PGL(2,R)

with relative Euler class e(ρ) = 0 sends some non-peripheral simple closed
curve to a non-hyperbolic element.

In particular, the representations in Xs+
1 (N1,3), X

s−
−1(N1,3) and X0(N1,3) are not

Fuchsian, so Theorem 2 gives a negative answer to Bowditch’s question for these
six components. On all the other components, the answer is affirmative.

1.3. Ergodicity of the mapping class group action. The pure (extended)
mapping class group Mod(Nk,n) naturally acts on X(Nk,n) preserving the Euler
class e and the sign of the boundary holonomy s. In the case of closed oriented
surfaces Goldman [2] conjectured that this action is ergodic on each non-extremal
and non-zero component. Marché and Wolff [6] proved that a positive answer to
Bowditch’s question implies Goldman conjecture and used this to prove Goldman
conjecture for Σ2. In the case of punctured surfaces, since Bowditch’s Conjecture
is no longer true for all the connected components, the proof of Goldman’s result
is more difficult.

Theorem 3. The mapping class group Mod(N1,3) acts ergodically on the connected

components Xs+
1 (N1,3), and Xs−

−1(N1,3) on every connected component of X0(N1,3).
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[6] J. Marché and M. Wolff, “The modular action on PSL(2,R)-characters in genus 2”, Duke
Math. J., 165 (2016), no. 2, 371–412.

[7] J. Milnor, “On the existence of a connection with curvature zero”, Commentarii Mathe-
matici Helvetici, 32 (1958), no. 1, 215–223.

[8] Y. N. Minsky, “On dynamics of Out(Fn) on PSL(2,C) characters”, Israel J. Math., 193

(2013), no. 1, 47–70.
[9] S. P. Tan, Y. L. Wong and Y. Zhang, “Generalized Markoff maps and McShane’s identity”,

Adv. Math., 217 (2008), no. 2, 761–813.
[10] J. W. Wood, “Bundles with totally disconnected structure group”, Commentarii Mathe-

matici Helvetici, 46 (1971), no. 1, 257–273.

Equivariant minimal surfaces and their Higgs bundles.

Ian McIntosh

(joint work with John Loftin)

To fix notation, N will denote an irreducible noncompact symmetric space and
G will denote the connected component of the identity of its group of isometries,
with a choice of maximal compact subgroup H so that N = G/H . We use Σ to
denote a smooth orientable surface of genus g ≥ 2. Its universal cover (the unit
disc model), equipped with the Poincaré metric, will be denoted by D. Given a
Fuchsian representation c : π1Σ → PU(1, 1), which we identify with a point in the
Teichmüller space TΣ of Σ, we denote by Σc the compact Riemann surface D/c.
The following definition was introduced in [7].

Definition. An equivariant minimal surface in N is the equivalence class [f, c, ρ]
of a triple (f, c, ρ) consisting of: (i) a Fuchsian representation c, (ii) an irreducible
representation ρ : π1Σ → G, (iii) a minimal (i.e., conformal and harmonic) im-
mersion f : D → N which intertwines these:

f ◦ c(δ) = ρ(δ) ◦ f, ∀δ ∈ π1Σ.

The natural action by conjugacy of PU(1, 1)×G on (c, ρ) extends to an action on
triples (f, c, ρ) and the orbit is the equivalence class [f, c, ρ].

The existence theorems of Donaldson [4] and Corlette [3] for equivariant har-
monic maps ensure that, since ρ is irreducible, [f, c, ρ] is uniquely determined by
the conjugacy classes of c and ρ. Therefore we can embed the set M(Σ, N) of
equivariant minimal surfaces into the product of Teichmüller space TΣ and the
character variety R(π1Σ, G),

F : M(Σ, N) → TΣ ×R(π1Σ, G), [f, c, ρ] 7→ ([c], [ρ]).

We use this embedding to equip M(Σ, N) with a topology, and a smooth structure
away from singularites.

By exploiting the non-abelian Hodge correspondence, we have been able to
describe some of the structure of this moduli space for the low dimensional cases
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where N is RH3, RH4 or CH2 [6, 7]. For either RHn (G = SO0(n, 1)) or CHn

(G = PU(n, 1)) the Higgs bundles are well understood (see, e.g., [1, 2]) and can
be thought of as a holomorphic rank n + 1 vector bundle E = V ⊕ 1, the direct
sum of a holomorphic rank n bundle V and the trivial line bundle 1, with Higgs
field

Φ ∈ H0(K ⊗ (Hom(1, V )⊕Hom(V, 1))).

We write Φ = (Φ1,Φ2) to denote the two components. The case RHn requires
additionally that V have an orthogonal structure with respect to which Φ2 is the
adjoint of Φ1. Each stable G-Higgs bundle produces an equivariant harmonic map
f : D → N whose differential ∂f : T (1,0)D → TCN is essentially Φ, and thus f is
an immersion when Φ is nowhere vanishing, and conformal (hence minimal) when
tr(Φ2) = 0. There are now two cases to consider.

Case A. When neither Φ1 nor Φ2 are identically zero the Higgs field determines
(and is determined by) two holomorphic subbundles im(Φ1), ker(Φ2) ⊂ V and the
maps

0 → K−1(D1)
Φ1→ V, V

Φ2→ K(−D2) → 0,

where D1, D2 are the divisors of zeroes of Φ1,Φ2 respectively. To obtain an im-
mersion we require D1∩D2 = ∅, otherwise the map is branched at the intersection
points. For RHn the orthogonal symmetry means D1 = D2 and thus both must
be empty to obtain an immersion. The key now is to understand the holomorphic
structure of V as a perturbation of the smooth decomposition

V = K−1(D1)⊕W ⊕K(−D2), W = ker(Φ2)/ im(Φ1).

Case B. Either Φ1 = 0 (f is anti-holomorphic) or Φ2 = 0 (f is holomorphic).
This can only happen for CHn, and without loss of generality we need only con-
sider when Φ2 = 0, since complex conjugation of CHn swaps between the two
possibilities.

When the rank of V is low enough we have succeeded in analysing these cases
further. This report will concentrate on the CH2 case, G = PU(2, 1) [6].

First recall that reductive representations ρ into PU(2, 1) come equipped with
an invariant which indexes the connected components of the character variety
(equally, the Higgs bundle moduli space). This is the Toledo invariant, τ(ρ) and it
equals − 2

3 deg(V ). It is bounded by |τ(ρ)| ≤ 2(g − 1). One knows from Toledo [8]
that τ(ρ) = 2(g−1) (resp. τ = −2(g−1)) corresponds precisely to totally geodesic
holomorphic (resp. anti-holomorphic) embeddings. Each corresponding represen-
tation is reducible, the product of a Fuchsian representation into PU(1, 1) and
a representation into S1. The definition above therefore excludes these maximal
cases from M(Σ,CH2).

For Case A the pair (E,Φ) is completely determined by the two effective divisors
D1, D2 and an extension class

ξ ∈ H1(Hom(K(−D2),K
−1(D1))) = H1(K−2(D1 +D2)),
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which we can relate to the differential geometric invariants of the minimal im-
mersion, namely, the induced metrics on K−1(−D1) and K

−1(−D2) and a cubic
holomorphic differential coming from the second fundamental form.

We showed that the Higgs bundle over Σc with data (D1, D2, ξ) is polystable if
and only if the degrees d1, d2 of D1, D2 satisfy

2d1 + d2 < 6(g − 1), d1 + 2d2 < 6(g − 1).

Together with the conformal structure c on Σ, the data (c,D1, D2, ξ) gives 8g − 8
complex parameters regardless of the degrees d1, d2. We denote the set of this
data for fixed degrees (d1, d2) by V(d1, d2).

Theorem A ([6]). The set V(d1, d2) has the natural structure of a non-singular com-
plex manifold of complex dimension 8g−8, which is a complex analytic family over
TΣ. It parametrizes the open set in M(Σ,CH2) of all equivariant minimal immer-
sions which are neither holomorphic nor anti-holomorphic, have τ(ρ) = 2

3 (d2 − d1)

and whose normal bundle TΣ⊥ has Euler number 2(g − 1)− d1 − d2.

The family V(0, 0) consists of all minimal Lagrangian immersions. In V(0, 0)
we identified a locus of minimal Lagrangian embeddings which we call almost
Fuchsian: each is properly embedded and ρ is quasi-Fuchsian (equally, convex
cocompact) with CH2/ρ ≃ TΣ⊥. Moreover, the almost Fuchsian embedding is the
unique equivariant minimal immersion admitted by ρ. At present virtually nothing
is known about the representations corresponding to points in M(Σ,CH2) outside
this case, and this is an area of study which deserves serious attention.

For Case B each equivariant holomorphic (unbranched) immersion [f, c, ρ] with
irreducible ρ is uniquely determined by data (c, L, η) where L is a holomorphic
line of degree l satisfying 0 < l < 3(g − 1), and η ∈ H1(Σc,K

−2L) determines V
and Φ = (Φ1, 0) through the extension

0 → K−1 Φ1→ V → KL−1 → 0.

Theorem B ([6]). The parameter space W(l) of data (c, L, η) is a complex manifold
of dimension 9(g − 1)− l and a complex analytic family over TΣ. It parametrizes
all holomorphic minimal immersions which are equivariant with respect to an
irreducible representation with Toledo invariant τ(ρ) = 2

3 l.

Remarks. The definition of M(Σ, N) given above post-dates [6]: in [6] we in-
cluded branched minimal surfaces in M(Σ,CH2). I now believe that excluding
these makes each V(d1, d2) a connected component, and the branched immer-
sions appear along common boundaries. How these fit together is an interesting
question, intimately related to understanding the limit points of the C×-action
t · (E,Φ) = (E, tΦ). I believe I can show that such limit points always possess
branch points (except where in the limit Φ = 0, when the map has collapsed to a
constant map).
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Higgs bundles and quantum enveloping algebras

Ben Davison

Let C be a projective genus g curve over C, and let Higgsssr,d(C) denote the stack
of rank r degree d semistable Higgs bundles. To start with, assume that r, d
are coprime, then although Higgsssr,d(C) really is a stack (not a scheme), it is

a stack in a pretty mild way — if we denote by Higgsssr,d(C) the fine moduli

scheme of semistable Higgs bundles, Higgsssr,d(C) is the stack-theoretic quotient

Higgsssr,d(C)/C
∗ by the trivial action. We will mostly be interested in cohomology,

and this fact translates to the following isomorphism

H(Higgsssr,d(C),Q) ∼= H(Higgsssr,d(C),Q)⊗H(pt/C∗)

where H(pt/C∗) ∼= HC∗(pt) ∼= Q[z]. Say d′ also satisfies (r, d′) = 1. Let ζr
be a primitive rth root of unity. Let Repr(π1(C′))ζ

e
r be the moduli stack of

representations of the fundamental group of the punctured surface C′ such that
the monodromy around the puncture is given by multiplication by ζer . Then we
have the following square

H(Higgsssr,d(C),Q)
∼=

nAHT
//

��

H(Repr(π1(C′))ζ
d
r ,Q)

•∼=•Cσ

��

H(Higgsssr,d′(C),Q)
∼=

nAHT
// H(Repr(π1(C′))ζ

d′

r ,Q).

The horizontal arrows are isomorphisms by the nonAbelian Hodge correspondence
due to Corlette, Donaldson and Hitchin. The rightmost vertical arrow is an isomor-
phism after tensoring by C — this isomorphism comes from the deRham theorem,
and the fact that the two stacks are Galois conjugate via some σ ∈ Gal(C/Q).
Finally the leftmost arrow is some mysterious isomorphism: we know it exists
because, from the rest of the diagram we know that these two cohomologically
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graded vector spaces have the same graded dimensions. But we have said nothing
so far that might help to explicitly construct it.

The real challenge is to understand this same phenomenon in the case (r, d) 6= 1.
For this we need a bit more notation. Recall that Exp is the unique operation on
formal power series making the following diagram commute

K0(D
b(VectN>0⊕Z))

χq,t

��

K0(Sym)
// K0(D

b(VectN⊕Z))

χq,t

��

tZ((q1/2))[[t]]
Exp

// Z((q1/2))[[t]]

where χq,t(V ) :=
∑

i,j dim(Vi,j)t
iqj/2 and the superscript “b” means: whatever

restriction we have to make in order to make the vertical maps well defined and
isomorphisms. More concretely: Exp(

∑
ai,jq

j/2ti) =
∏

i,j(1 − qj/2ti)−ai,j . The
slogan is: “plethystic exponential is the decategorification of passing from a graded
vector space to the free supercommutative algebra generated by it”.

Set HC,τ :=
⊕

d/r=τ Hc(Higgsssr,d(C),Q)⊗L(1−g)r2)∗. Then Schiffmann conjec-

tured [6], and Mellit proved [5], that if the rank-degree r piece of HC,τ is nonzero,
then the tr coefficient of Log(χq,t(HC,τ )) doesn’t depend on τ . If we unravel this,
it recovers the fact that for (r, d) = (r, d′) = 1 the Poincaré polynomial of the
Higgs moduli spaces are the same.

There are two mysteries here:

(1) Why does the gigantic bigraded vector space HC,τ seem to be isomor-
phic to the symmetric algebra generated by something reasonably “small”
(via the above slogan regarding Exp), namely something of the form⊕

r|r/d∈N
AC,r,d ⊗H(pt/C∗) for each AC,r,d finite-dimensional?

(2) Assuming there is such a presentation, why doesn’t AC,r,d seem to depend
on d?

The reason for the word “seem” in both questions is that the preceeding discussion
only justifies the “decategorified” versions of these speculations — i.e. it was a
discussion about generating series and plethystic exponentials, not cohomology
and symmetric algebras.

To fast forward to the punchline: the first mystery is partly explained by the
fact that HC,τ can be made into a universal enveloping algebra (then we can apply
the PBW theorem). If we could solve the second mystery, that would finish the
solution of the first, as it would take care of finite-dimensionality. But the second
mystery remains a bit of a mystery, with the rest of the talk providing a hint for
a way out, via an analogous geometric situation.

Via the BNR correspondence, the study of Higgs bundles becomes the study
of sheaves on the CY2 surface Tot(ωC). For the rest of the talk we take instead
a CY2 surface that is more amenable to noncommutative geometry and thus to
cohomological DT theory. Let Q′ be an ADE quiver, i.e. an orientation of an
ADE graph Γ, and let Q be its affine version. Then Q′ corresponds to a Kleinian
subgroup GΓ ⊂ SL2(C) and we let X → C2/GΓ be the minimal resolution of the
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quotient singularity. The exceptional locus of this resolution is a tree of P1s, with
incidence graph given by Γ.

Rather than study the cohomology of stacks of coherent sheaves on X directly,
we study representations of ΠQ = CQ/〈∑a∈Q1

[a, a∗]〉, which is a related thing to
do, via the derived equivalence

Db(Coh(X))
∼−→ Db(mod−ΠQ).

Actually, for the purposes of cohomological DT theory, studying the cohomology
of such stacks is the wrong thing to do for a couple of reasons. Firstly, we should
study sheaves on a 3-fold, not a 2-fold, and secondly we should study vanishing
cycle cohomology. We resolve both of these issues at the same time: Let Q̃ be the
quiver obtained from Q by adding a loop ωi at i for every vertex i ∈ Q0, and let
W̃ =

∑
i∈Q0

ωi

∑
a∈Q1

[a, a∗], and let Jac(Q̃, W̃ ) be the Jacobi algebra obtained

by taking the quotient of CQ̃ by all of the noncommutative derivatives of W̃ .
Then once you know what all these terms mean (see [2]) it is easy to check that

there is an isomorphism B := Jac(Q̃, W̃ ) ∼= ΠQ[ω], the polynomial algebra in one
variable with coefficients in ΠQ. In terms of the above derived equivalence, this
amounts to considering X × A1, obtaining a 3-fold. Furthermore, the stack of all
finite-dimensional B-modules carries the vanishing cycles (perverse) sheaf φTr(W̃ ),

and finally by [1] there is (up to a Tate twist) an isomorphism

H(Repγ(B), φTr(W̃ ))
∼= Hc(Repγ(ΠQ),Q)∗

so that the cohomological DT theory of this 3d setup really does capture the
cohomology we are interested in studying.

One extra structure that the passage to 3d buys us is a factorization structure.
Put pithily, it is possible to show that the direct image of φTr(W ) along the map

to Sym(A1) taking a representation to the union (with multiplicities) of the eigen-
values of the operator ·ω is a factorization sheaf, and moreover an algebra in the
category of such sheaves via a relative version of the Kontsevich–Soibelman critical
CoHA construction [3]. Formally, it has a cocommutative coproduct, which by it-
self is enough to partially solve the first mystery, since it implies that this algebra
is a universal enveloping algebra of some NQ0 -graded Lie algebra gQ̃,W̃ ⊗H(pt/C∗).
The “quantum” in the title comes from the fact that there is an extra C∗-parameter
that scales all of the eigenvalues, inducing a non-cocommutative deformation.

Exactly the same trick applies in the case of semistable Higgs bundles of fixed
slope, where instead one studies the “3d-ification” of the Hall algebra of [7].

For the analogue of “mystery 2” we need some setup. Firstly, let δ be the
imaginary simple root of Q. Under the derived equivalence, this dimension vector
corresponds to the numerical class of [Ox] for x ∈ X × A1. Then it can be
shown that gQ̃,W̃ ,δ

∼= H(X) ⊗ H(pt/C∗), and in particular there is an element

1⊗ z ∈ gQ̃,W̃ ,δ. Then it turns out (extending old work of Nakajima and Lehn (see

[4] for an overview)) that [1⊗z, •] : gγ → gγ+δ is an isomorphism. The analogue of
this statement in terms of Higgs bundles would be exactly what we are after: that
there is a (canonical) isomorphism AC,r,d

∼= AC,r,d+1 obtained from the CoHA.
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Existence of good moduli spaces for algebraic stacks and applications

Jochen Heinloth

(joint work with Jarod Alper, Daniel Halpern-Leistner)

The aim of the joint work [2] is to give criteria for the existence of separated
and proper good moduli spaces that only depend on the geometry of the moduli
problem itself. Let me try to explain why this is useful. The problem to con-
struct moduli spaces in algebraic geometry has often been solved using methods
of geometric invariant theory (GIT), a very effective method. However, to use this
method one usually has to pass to an auxiliary space that on the one hand does
not contain all objects of the original problem and on the other hand often adds
an additional boundary parameterizing objects that did not appear in the origi-
nal question and sometimes lack a nice modular description. This often makes it
difficult to compare stability notions formulated in terms of a moduli problem to
stability notions appearing in GIT. In some sense, it is surprising that these turn
out to agree in a long list of known constructions. Moreover, when starting to work
on the problem we had encountered some moduli problems for which convenient
GIT candidates seemed to be lacking and for these we wanted to find a way to
avoid the introduction of auxiliary spaces.

As the workshop brought together researchers from different backgrounds I
would like to describe the notions used in algebraic geometry to describe the
geometry of moduli problems informally, before stating our the main theorem.

In general a moduli problem M comes as the question of identifying a certain
class of objects as the points of a space, which depending on the setup could be a
topological space, a manifold, a variety or a scheme. To equip the set of objects
with a geometric structure one usually specifies the notion of a family of objects
parametrized by a space T . A moduli space should then be a universal parameter
space for the objects, i.e., giving a map from T → M should be the same as
specifying a family of objects parameterized by T .

The notion of a moduli stack takes this condition as a definition ofM, using the
idea that to know a space M you only need to know what maps into it are. The



1396 Oberwolfach Report 23/2019

precise definition is then made in such a way, that also automorphisms of families
are recorded in the data, as these are essential to glue locally defined families to
globally defined families.

A toy example of such a construction are quotients by group actions. If G is
a group acting on say a manifold or a scheme X , sometimes the quotient X/G
may be hard to construct in the category. However, for very well behaved actions
the map X → X/G even turns X into a G-bundle over X . This means that for
any map T → X/G the pull-back of this G-bundle is a G-bundle P → T that
comes equipped with an equivariant map P → X and the data of the bundle
P → T together with the equivariant map P → X uniquely determines the map
T → X/G. This means that whether or not a nice quotient exists we can simply
define a stack [X/G] by requiring that maps into this object are given by such a
datum.

The notion of algebraic stacks specifies a class of stacks that at least locally look
like a space. More precisely, algebraic stacks are characterized by the additional
property that for any fixed object F there exists a versal family, i.e., a model
family such that for every family containing F there exists a neighborhood of F
that appears in the model family.

A final condition that is often used is to assume that a stack has affine diagonal,
which is a condition on the automorphism groups of objects, i.e. one requires that
these should be subgroups of linear groups.

Let me now state our main existence result which contains a few additional
notions that will be discussed afterwards. In case the automorphism groups of
objects happen to be finite, this result was known before by the Keel-Mori theorem
[4].

Theorem. [2, Theorem A] Let M be an algebraic stack locally of finite type with
affine diagonal over a quasi-separated and locally noetherian algebraic space. Then
M admits a good moduli space if and only if

(1) M is locally linearly reductive
(2) M is Θ-reductive
(3) M has unpunctured inertia

The good moduli space is separated if and only if M is S-complete, and proper
if and only if M is S-complete and satisfies the existence part of the valuative
criterion for properness.

Assume in addition that M is defined over an algebraic space of characteristic
0 and M is quasi-compact. If M is S-complete, then M admits a separated good
moduli space if and only if M is Θ-reductive and S-complete.

In addition to this result we also prove that if M arises as the semistable
subspace of a larger algebraic stack equipped with a nice Θ-stratification, then
it suffices to prove any of the conditions S-completeness, Θ-reductivity or the
existence part of the valuative criterion for the larger stack. This gives a convenient
method to prove semistable reduction theorems.

Let us briefly sketch the meaning of the additional conditions appearing above.
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First, Θ refers to the quotient obtained by dividing the affine line by the action
of the multiplicative group [A1/Gm]. The symbol Θ was chosen as it resembles
the standard picture of the two orbits of this action. It follows from the Reees-
construction that giving a map from this stack into a moduli problem can usually
be interpreted as choosing a filtration on an object and degenerating this filtration
into an associated graded object.

A stack is called Θ-reductive if for any family parameterized by a disc, together
with a filtration over the punctured disc, the filtration extends canonically over
the puncture.

Similarly S-completeness is a condition that allows to compare opposite filtra-
tions. For this one considers a local version of the quotient of the plane divided
by the anti-diagonal action of the multiplicative group STA1 := [A2/Gm, (z, z

−1)]:

The condition to be S-complete is then that families defined over the punctured
quotient in which the origin has been removed, extend over the origin, which as in
the case of Θ-reductivity is a condition on the existence of a canonical extension
over a subset of codimension 2. Implicitly this condition already appears in GIT.
Formulated as above, this notion allows to give a rather short proof of Cartan-
Iwahori-Matsumoto decomposition in reductive groups [3].

Finally, the notion of unpunctured inertia is a condition on the specialization
behavior of connected components of automorphism groups. In particular this
property is automatically satisfied if all automorphism groups happen to be con-
nected.

One of the key ingredients that allowed us to prove our result is a recent local
structure theorem for algebraic stacks from [1], which as a starting point for the
construction gives local descriptions of algebraic stacks as quotient stacks. For
these quotient stacks good moduli spaces are available and it turns out that the
conditions of the theorem allow to use these as local charts for the good moduli
space of M that we want to construct.

In the article we also describe how these conditions can be checked for vari-
ous moduli problems, such as moduli spaces of coherent sheaves, or Bridgeland
semistable objects in suitable abelian categories. It also allows us to prove that
analogs of Hitchin’s morphism for moduli spaces of Higgs bundles with poles over
curves are proper.
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Stratifications and coarse moduli spaces for the stack of Higgs bundles

Eloise Hamilton

Given a compact Riemann surface Σ of genus g and a line bundle L → Σ of
positive degree, an L-twisted Higgs bundle on Σ is a pair (E, φ : E → E ⊗ L)
where E → Σ is a holomorphic vector bundle. The moduli stack of L-twisted
Higgs bundles of coprime rank r and degree d on Σ (called Higgs bundles from
here on) is denoted by Hr,d(Σ, L), and the open stratum consisting of semistable
Higgs bundles by H ss

r,d(Σ, L). A moduli space for semistable Higgs bundles can

be constructed using Geometric Invariant Theory (GIT) [7]. Denoted Mss
r,d(Σ, L),

it is a quasi-projective variety which is a coarse moduli space for the semistable
stratum H ss

r,d(Σ, L) and it is widely studied thanks to its rich geometric structure.
The question we aim to answer is whether there are other strata inside the stack

which can similarly be identified with varieties, and if so whether these varieties
admit a similarly rich structure.

1. Stratifications on the stack of Higgs bundles

Higgs Harder-Narasimhan (HHN) stratification. A Higgs bundle has a
HHN type, which is a vector recording the slopes and ranks of the destabilising
subbundles appearing in its HHN filtration. Denoting by H

µ
r,d(Σ, L) the sub-

stack of Higgs bundles of HHN type µ and by µss the HHN type associated to a
semistable Higgs bundle, the HHN stratification of Hr,d(Σ, L) is:

Hr,d(Σ, L) = H
ss
r,d(Σ, L) ⊔

⊔

µ6=µss

H
µ
r,d(Σ, L).

Harder-Narasimhan (HN) stratification. The stack of Higgs bundles can
also be stratified according to the instability type of its underlying vector bundle,
giving its HN stratification:

Hr,d(Σ, L) = F−1(V ss
r,d(Σ)) ⊔

⊔

τ 6=τss

F−1(V τ
r,d(Σ)),

where Vr,d(Σ) denotes the stack of vector bundles of rank r and degree d on Σ,
V ss
r,d(Σ) the substack of semistable vector bundles, V τ

r,d(Σ) that of vector bundles

of Harder-Narasimhan type τ , and F : Hr,d(Σ, L) → Vr,d(Σ) the forgetful map.
The HN stratification of the semistable stratum has been studied in [4].

Guiding questions. The first question we ask is the following: can coarse moduli
spaces be constructed for the HHN and HN strata, as for the semistable stratum?
Since an unstable Higgs bundle limits to its HHN graded, any coarse moduli space
for a HHN stratum would have to identify a Higgs bundle with its HHN graded, to

http://arXiv.org/abs/1903.00128
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which it need not be isomorphic. Thus, in contrast to the semistable stratum, fur-
ther stratification is needed to obtain coarse moduli spaces. This can be achieved
using Non-Reductive GIT, and doing so raises two follow-on questions:

1) How do the refined HHN and HN stratifications compare? In particular, does
the refined HN stratification take into account the HHN type, and vice versa?

2) Do the coarse moduli spaces for the refined strata admit a similarly rich struc-
ture to the moduli space of semistable Higgs bundles? In particular, which
properties of the C∗-action, the Hitchin fibration and the forgetful map carry
over to the new coarse moduli spaces?

2. Refinements and coarse moduli spaces using Non-Reductive GIT

The semistable case. The GIT construction of the moduli space of semistable
Higgs bundles proceeds as follows [7]. For d≫ 1, the semistable stratum H ss

r,d(Σ, L)
can be identified as a quotient stack for the action of a reductive group Gr,d on a
quasi-projective variety F ss

r,d:

H
ss
2,d(Σ, L)

∼= [F ss
r,d/Gr,d].

Moreover, and again for d≫ 1, the variety F ss
r,d can be embeddedGr,d-equivariantly

into a projective variety Xr,d admitting a linearised Gr,d-action, in such a way
that the image is contained in the GIT-semistable locus Xss

r,d. The moduli space

Mss
r,d(Σ, L) of semistable Higgs bundles is then defined as the pull-back of the GIT

quotient Xr,d//Gr,d under the embedding F ss
r,d →֒ Xss

r,d.

The unstable case. We now fix a HHN type µ. As is the case for H ss
r,d(Σ, L),

we can show that H
µ
r,d(Σ, L) can be identified as a quotient stack for d≫ 1:

H
µ
r,d(Σ, L)

∼= [Fµ
r,d/Gr,d],

where Fµ
r,d is a quasi-projective variety parametrising Higgs bundles of HHN type

µ. For d≫ 1, the variety Fµ
r,d can also be embedded Gr,d-equivariantly inside Xr,d.

The projective varietyXr,d admits a GIT-instability stratification and we can show
that there exists a correspondence between HHN types µ and GIT-instability types

β so that Fµ
r,d →֒ X

β(µ)
r,d ⊆ Xr,d where X

β(µ)
r,d denotes a GIT-unstable stratum for

the linearised action of Gr,d on Xr,d.
Non-Reductive GIT can be used to construct a geometric Gr,d-quotient for an

open subset of X
β(µ)
r,d . Indeed, the action of Gr,d on X

β(µ)
r,d can be reduced to

the action of a parabolic subgroup Pβ(µ) ⊆ Gr,d on a quasi-projective subvariety

Y ss
β(µ) ⊆ X

β(µ)
r,d [6]. The main theorem of Non-Reductive GIT applies to actions of

such parabolic subgroups and can be used to construct an open subset of Y ss
β(µ)

admitting a quasi-projective geometric Pβ(µ)-quotient [1]. Pulling back along the

inclusion Fµ
r,d →֒ X

β(µ)
r,d yields an open subset Fµ,ŝ

r,d ⊆ Fµ
r,d which has a quasi-

projective geometric Gr,d-quotient. It is a coarse moduli space for an open stratum

H
µ,ŝ
r,d (Σ, L) of H

µ
r,d(Σ, L).
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By induction, it is possible to stratify H
µ
r,d(Σ, L) in such a way that each stra-

tum admits a coarse moduli space [2]. Non-Reductive GIT can similarly be applied
to refine the HN stratification and obtain coarse moduli spaces for each refined
stratum. These refined stratifications can be described explicitly in rank 2.

3. The rank 2 case

The refined stratifications. Given δ ∈ N, we let H
µ,δ,indec
2,d (Σ, L) ⊆ H

µ
2,d(Σ, L)

denote the substack of (E, φ) such that (E, φ) ≇ gr(E, φ) = (E1, φ1) ⊕ (E2, φ2)

and dimHom((E2, φ2), (E1, φ1)) = δ. We let H
µ,dec
2,d (Σ, L) ⊆ H

µ
2,d(Σ, L) denote

the substack of (E, φ) ∼= gr(E, φ). These substacks admit quasi-projective coarse

moduli spaces, denoted by Mµ,δ,indec
2,d (Σ, L) and Mµ,dec

2,d (Σ, L) respectively (this is

an extension of a corresponding result for vector bundles appearing in [5]). The
refined HHN stratification provided by Non-Reductive GIT is therefore given by:

H2,d(Σ, L) = H
ss
2,d(Σ, L) ⊔

⊔

µ6=µss

⊔

δ∈N

H
µ,δ,indec
2,d (Σ, L) ⊔ H

µ,dec
2,d (Σ, L).

Moreover, we can show that the refined HN stratification prescribed by Non-
Reductive GIT is the intersection of the HN stratification with the HHN stratifi-
cation. The refined stratifications and their relationship in the higher rank case
are more complicated and describing them remains work in progress.

When Σ = P1. By considering L-twisted Higgs bundles on P1, it is possible to

explicitly describe the coarse moduli spaces Mµ,δ,indec
2,d (P1, L) and Mµ,dec

2,d (P1, L)

for the HHN strata, using methods similar to those used in [8].

General Σ. We can show that for δ 6= 0, the C∗-action is circle-compact as in
the semistable case, but differs in that it is not semiprojective. This is because
a component of the fixed point locus can be identified with a moduli space of
unstable vector bundles, constructed in [3] and more generally in [5], which is only
quasi-projective. The C∗-action can nevertheless still be used to compute suitable

motivic topological invariants of Mµ,δ,indec
2,d (Σ, L).

For δ = 0, the C∗-action is not even circle-compact, which raises the question
of whether a boundary involving the moduli spaces for δ 6= 0 can be constructed
so that circle-compactness of the C∗-action is preserved.
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[1] G. Bérczi, T. Hawes, F. Kirwan and B. Doran, Projective completions of graded unipotent
quotients, arXiv:1607.04181 [math.AG] (2018).

[2] G. Bérczi, F. Kirwan and V. Hoskins, Stratifying quotient stacks and moduli stacks, Geom-
etry of Moduli, Springer International Publishing (2018), 1-33.

[3] L. Brambila-Paz, O. Mata and N. Nitsure, Moduli stacks and moduli schemes for rank 2
unstable bundles, arXiv:0911.2301 [math.AG] (2009).
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Branes, moduli spaces, and quantization

Ingmar Saberi

(joint work with Sergei Gukov, Peter Koroteev, Satoshi Nawata, Du Pei)

Let me open with a brief expression of gratitude, both to the organizers of the
Oberwolfach workshop for the opportunity to speak and for their hard work orga-
nizing such a pleasant meeting, and to the coauthors of the work in progress which
I will discuss here. Any merit that these ideas may have is to be credited fully to
them; any shortcoming or misunderstanding is certainly my own contribution.

Quantization has long been a source of interesting new interactions between
mathematics and theoretical physics. With the advent of quantum mechanics, the
study of linear unitary representations of groups found its place in physics [1, 2];
later, in the guise of the orbit method in geometric representation theory, the idea
that unitary G-representations are inherently quantum-mechanical objects, and
ought to correspond to G-invariant classical dynamics, was developed further in
the mathematics literature. For discussion of the orbit method, as well as further
references to the literature, we refer to [5].

Despite its successes and its—at least from a physical perspective—conceptual
elegance, the orbit method has obvious drawbacks: it proposes an equivalence
between two mathematical structures (coadjoint orbits and irreducible unitary
representations) that “should” be related, but, in many cases, do not in fact pre-
cisely line up. No obvious construction or functor allows one to pass between the
two types of objects; the difficulties that arise are analogous to those that appear
in giving a general or functorial treatment of quantization, which no one has done,
likely for good reasons. The method thus still has the status of a “damaged trea-
sure map,”1 rather than a complete or fully-developed theory. Furthermore, as is
often the case in physics, the topic is strongly influenced by a list of important ex-
amples where the technique works relatively well—more so than is perhaps typical
in mathematics.

In the physics literature, the orbit method is most closely related to geometric
quantization, which attempts to construct the Hilbert space quantizing a symplec-
tic manifold P as, speaking very roughly, a space of certain sections of a “pre-
quantum” line bundle over P , equipped with a connection of curvature ω. There
are other approaches to quantization in the physics literature, with other advan-
tages and drawbacks; one notable approach is deformation quantization, which
attempts to produce a deformation of the (commutative) Poisson algebra of clas-
sical observables—something like A0 = C∞(P )—through a formal one-parameter

1The description is due to David Vogan, Jr.
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family of noncommutative algebras A~, with noncommutativity at leading ~-order
determined by the Poisson bracket. Such a formal deformation is given by the
Groenewold–Moyal–Weyl star product [6], later extended to general Poisson man-
ifolds by Kontsevich [7]; while this process is clear-cut and algorithmic in precisely
the way the orbit method is not, it does not naturally produce any Hilbert space
on which A~ acts. Moreover, the formal deformation is not guaranteed to arise
from the series expansion of an actual one-parameter family.

An attempt to unite these two approaches, at least in certain examples, was
given in the brane quantization proposal of Gukov and Witten [3]. (For related
work in the mathematics literature, as well as discussion of quantization in the
context of the orbit method, see [4].) The central idea of this work is to embed
both constructions as part of a much larger and (at least at first sight) more
baroque problem: the topological A-model on a particular target space Y [8]. Y
plays the role of a “complexification” of P ; in the examples of interest here, we
can just take P to be the real points of an affine algebraic variety carrying an
algebraic symplectic form, and Y to be the complex points of the same variety.
The important structural features are that Y carries a holomorphic symplectic
form Ω, whose restriction to P is the real symplectic form ω; that it is equipped
with a unitary line bundle, with a connection of curvature re(Ω), extending the
prequantum line bundle on P ; and that it is equipped with an antiholomorphic
involution τ such that P is contained in the fixed-point set Y τ . (τ plays a role
only in the construction of the Hilbert-space structure on the quantization.)

The topological A-model is a topological twist of the N = (2, 2) supersymmetric
theory of maps from a Riemann surface into the target manifold Y ; the salient fea-
ture of this theory is that it is expected to have a category of boundary conditions,
which are referred to as A-branes, and thought of as physical objects in the target
manifold. Objects in this category, which is a close relative of the Fukaya category
of Y , are labeled by a coisotropic submanifold of Y together with some additional
data; the general description was given in [10]. To be precise, an object consists
of a coisotropic submanifold M ⊆ Y up to Hamiltonian isotopy, together with a
unitary line bundle E →M , equipped with a connection of curvature F ∈ Ω2(M).
We let

(1) LM = ker (ω|M ) ⊆ TM, FM = TM/LM ;

by the coisotropic condition, FM is a bundle whose fiber dimension equals the
codimension of M in Y , and ω descends to a nondegenerate section of ∧2FM .
For this data to define an A-brane, we also require that F descend to a section
of ∧2FM , and furthermore that

(2) (ω−1F )2 = −1,

when identified with an endomorphism of FM using the metric. (As such, M
is a foliated manifold equipped with a transverse holomorphic structure.) As a
special case, a Lagrangian submanifold equipped with a unitary line bundle with
flat connection defines an (ordinary) A-brane. Morphisms between coisotropic
objects were studied, among others, by [9].
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Returning to our quantization problem above, one can then construct a object
B0 in the A-brane category of Y , equipped with the symplectic form im(Ω), in
a fairly canonical fashion: its support is all of Y , and we choose the unitary line
bundle E → Y with a connection of curvature re(Ω) mentioned previously. The
transverse complex structure then just becomes the given complex structure on Y
itself. One then expects [3] that the endomorphisms of B0 in the A-brane category
are given precisely by a “quantum” deformation of the Dolbeault cohomology of Y ,
which (in degree zero) precisely reproduces the deformation quantization of the
coordinate ring of Y with respect to Ω:

(3) End(B0) −−−→
q→1

H0,∗(Y, ∂̄).

We then expect to obtain, for every other object B of the A-brane category, a
module for this algebra, simply by taking Hom(B0, B) with the obvious left ac-
tion by composition. P itself is Lagrangian with respect to im(Ω), and so defines
such an object; Gukov and Witten identify Hom(B0, P ) with the geometric quan-
tization of P . However, one can also abandon the idea of P as a distinguished
object, and just attempt to study representations of End(B0) by studying A-branes
in Y . Gukov and Witten do this to give geometric constructions of representations
of SL(2,R), generalizing the orbit method.

With all of this lengthy introduction out of the way, the logic of our investigation
is hopefully clear: we intend to study the relationship between the A-brane cate-
gory of a particular holomorphic symplectic manifold, on the one hand, and the
category of representations of its quantized coordinate ring (or really Dolbeault co-
homology) on the other. The relevant manifold is the moduli space of flat SL(2,C)
connections on the once-punctured torus; this is Hitchin’s moduli space, viewed in
complex structure J with holomorphic symplectic form ΩJ . As for the deforma-
tion quantization of its coordinate ring, Oblomkov [11] proved that this is nothing

other than the spherical double affine Hecke algebra Ḧ , which is Morita equivalent
to the full double affine Hecke algebra as studied by Cherednik [12]. Ḧ has two
parameters, one controlling the “quantum” deformation q = exp(2πi~), and the
other (t) labeling the monodromy of the connection at the puncture. (In fact,
there is a five-parameter deformation of this algebra, but we do not consider that
in full generality.) In general, finite-dimensional representations of Ḧ only exist
when these parameters satisfy certain special shortening conditions.

Our work identifies these finite-dimensional representations with compact branes
of type (B,A,A), whose support arises as (components of) fibers of the Hitchin

fibration. The shortening conditions on parameters of Ḧ are identified with con-
ditions for existence of the corresponding A-branes. Physically speaking, the con-
struction can be thought of in the context of theories of class S, which arise from
the six-dimensional N = (2, 0) theory associated to a semisimple, simply-laced
Lie algebra, compactified on a Riemann surface Σ. The Coulomb branch of this
theory on S1 × R3 is precisely the moduli space of G-Higgs bundles on Σ; in the
presence of a so-called omega deformation, the algebra of line operators wrapping
S1 can be shown to realize the deformation quantization of the coordinate ring
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of the Coulomb branch with respect to Ω [13]. A similar setting was considered
in [14], where the relation to the topological A-model was clarified; after identify-
ing a plane in R3 with a circle bundle over R+, degenerating at the origin, one can
think of the resulting theory as the topological A-model on R × R+ with target
the Hitchin moduli space, and with appropriate boundary conditions or A-branes
at zero and infinity.

Many open questions remain: One expects that Hom(B0,−) is a functor from

A-branes to Ḧ-modules, but the precise characterization of this functor remains
unclear. Our hope is to be able to demonstrate an equivalence between compact
A-branes and finite-dimensional Ḧ-modules, but a precise understanding of even
this part of the damaged treasure map remains as work in progress. For example,
the image of B0 under this functor is clearly Ḧ as a module over itself, but it is
not even clear that B0 is a projective object in the A-brane category! Of course, it
would also be interesting to explore generalizations to other Riemann surfaces Σ;
the deformation quantization of flat GC-connections should give an algebra with an
action of the mapping class group of Σ by automorphisms, whose representations
are connected to (B,A,A)-branes and therefore to the Hitchin fibration. We hope
that these speculations will prove to be fertile stimuli for further exploration, like
the original damaged treasure map itself.
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Automorphisms of moduli spaces of semistable parabolic bundles on
the projective line

Inder Kaur

(joint work with Carolina Araujo, Thiago Fassarella, Alex Massarenti)

Let C be a smooth, projective curve and p1, . . . , pn ∈ C distinct points, which we
call parabolic points. A parabolic vector bundle (E,v) on C of rank 2 is a vector
bundle E of rank 2 with a weighted flag on the fibre Epi

over each parabolic
point pi, given by a one-dimensional subspace Vi ⊂ Epi

, which we call a parabolic
direction. Slope stability for such bundles depends on the choice of a weight vector
A = (a1, . . . , an) of real numbers 0 ≤ ai ≤ 1. The parabolic slope of (E,v) with
respect to A is

µA(E) =
degE +

∑n
i=1 ai

2
.

In [10], Mehta and Seshadri proved the existence of moduli spaces of semistable
parabolic vector bundles (of any rank) over a curve of genus g ≥ 2. The case of
g = 0 and rank 2 was studied extensively by Bauer in [3].

Fix n ≥ 5 distinct, general points on P1. We denote by MA the moduli space of
rank 2 parabolic vector bundles (E,v) on P1 with trivial determinant, which are
parabolic semistable with respect to the weight vector A = (a1, . . . , an). Our goal
is to determine the automorphism group of the moduli space MA. We assume the
points to be general because any nontrivial automorphism φ : P1 → P1 permuting
the parabolic points induces a nontrivial automorphism of MA sending (E,v) to
φ∗(E,v). The weight vector AF =

(
1
2 , . . . ,

1
2

)
is especially interesting as the

corresponding moduli space MAF
is a Fano variety (see [11]). It is smooth if n is

odd, and has isolated singularities if n is even.
Recall that for the moduli space of rank 2 stable vector bundles with fixed de-

terminant Λ over a smooth, projective curve C of genus g ≥ 3, the automorphisms
have been described by [9], [8] and [4]. Explicitly, an automorphism of the moduli
space either sends a vector bundle E to E ⊗ L, where L is a line bundle on C
with L2 ≃ OC or to E∨ ⊗ L, where L is a line bundle on C with L2 ≃ Λ2. Since
there are no 2-torsion line bundles on P1, a similar description for MA cannot be
expected.

One way of obtaining a new parabolic vector bundle from a given bundle (E,v)
is to blow-up the ruled surface PE at the parabolic direction P(Vi) ∈ P(Epi

) and
then blow down the strict transform of the fibers P(Epi

). We call this operation an
elementary transformation centred at the parabolic point pi. For the weight vector
AF , the elementary transformations preserve the stability condition. It is easy
to show that an elementary transformation centred at even number of parabolic
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points (with number of points ≥ 5) induces a non-trivial automorphism of MAF
.

Elementary transformations are involutions and form a group under composition.
Denote by El the group generated by elementary transformations centred at even
number of points. We show the following:

Theorem 1. [2, Theorem 1.2] Fix n ≥ 5 general points p1, . . . , pn ∈ P1 and let
MAF

be the moduli space of rank 2 parabolic vector bundles with trivial determi-
nant on P1 which are semistable with respect to the weight vector AF =

(
1
2 , . . . ,

1
2

)
.

Then
(

Z

2Z

)n−1

≃ El = Aut
(
MAF

)
.

Let ϕ ∈ Aut(MAF
) be an automorphism sending a general rank 2 parabolic

vector bundle (E,v) to (E′,v′). Since El ⊂ Aut(MAF
) is finite, in order to prove

that the groups coincide, it suffices to show that there is an elementary trans-
formation sending (E,v) to (E′,v′). We do this by first showing the blow-up of
P(E) at the finite set of points {P(Vi)}i=1,...,n can be seen as the projectivization
of the nilpotent cone associated to E. We then use the properties of the Hitchin
morphism to prove that the corresponding nilpotent cones of E and E′ are iso-
morphic over P1. The proof of Theorem 1 in fact holds for any genus with minor
substitutions (for rank 2). For example, we use the Torelli theorem for parabolic
bundles on P1 given in [6] but this can be substituted by a similar result for higher
genus given in [5].

For n = 5, the moduli space MAF
is isomorphic to a del Pezzo surface of degree

four and its automorphism group is classically known ([7, Section 8.6.4]). For n
odd, the cardinality of the automorphism group was also proven in [1, Proposition
1.9] but using different methods. It is natural to ask whether Theorem 1 holds for
other weights. Bauer described in [3] the weight polytope ∆ ⊂ [0, 1]n called demi-
hypercube consisting of weight vectors A for which the moduli space MA 6= ∅.
The polytope ∆ is generated by the even vertices of the hypercube [0, 1]n, where
the parity of a vertex is the parity of the set of its coordinates that equal 1.
The weight vector AF =

(
1
2 , . . . ,

1
2

)
is the centre of the polytope ∆. Bauer gave

a wall-and-chamber decomposition on ∆ corresponding to the variation of GIT
for the moduli spaces MA, and described the birational maps between models
corresponding to different chambers. He showed that there are weight vectors A
for which MA ≃ Pn. So in general, El 6= Aut

(
MAF

)
.

However, we can extend Theorem 1 to certain other weights. For every vertex
v of ∆, let Hv ⊂ Rn be the hyperplane spanned by those vertices of ∆ that are
adjacent to v. We obtain an open sub-polytope Π from ∆ by chopping off each
vertex v of ∆ with the hyperplane Hv. The polytope Π contains in its interior
weight vectors defining the same stability condition as AF . From the view point
of birational geometry, these are the weight vectors A such that the corresponding
moduli space MA is a small modification (i.e a birational map that restricts to an
isomorphism on the complement of closed subsets of codimension at least two) of
the Fano variety MAF

. Moreover, for 1
n−2 < ε < 1

n−4 and Aǫ = (1 − ǫ, ǫ, . . . , ε),
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the moduli space MAε
is isomorphic to the blow-up of Pn−3 at n general points.

We show the following:

Corollary 2. Fix n ≥ 5 general points p1, . . . , pn ∈ P1 and let A be a weight
vector in the interior of the polytope Π defined above. Let MA be the moduli space
of rank 2 parabolic vector bundles with trivial determinant which are semistable
with respect to the weight vector A. Then

ElA = Aut
(
MA

)
.
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Intersection cohomology of the moduli space of Higgs bundles on a
curve of genus 2

Camilla Felisetti

Introduction

We consider the moduli space of semistable Higgs bundles of rank 2 with trivial
determinant on a curve C of genus 2 . This is a singular irreducible quasi-projective
variety of complex dimension 6 which real analytic isomorphic to the character
variety of representations of the fundamental group of C into SL(2,C). In the
smooth case of bundles of degree 1, corresponding to a twisted character variety,
De Cataldo, Hausel and Migliorini [dCHM] have proved the so called P = W
conjecture, that asserts that the Weight filtration W· coming from the natural
Mixed Hodge structure on the cohomology of the character variety corresponds
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in the above isomorphism to another filtration, the Perverse filtration, on the
cohomology of the Higgs moduli space. In fact the weight filtration on the Higgs
side turns out to be trivial.

We are interested in finding an analogous statement in the singular case and
theory suggest that we should replace ordinary cohomology groups with the Inter-
section cohomology groups introduced by Goresky and MacPherson in [GM] and
[GM1]. We prove the following theorem.

Theorem 1. Let C be a smooth projective curve of genus 2 and let MDol be the
corresponding moduli space of Higgs bundles with trivial determinant. Then the
mixed Hodge structure on the intersection cohomology groups is trivial, and the
intersection Poincaré polynomial is

IPt(MDol) = 1 + t2 + 17t4 + 17t6.

Sketch of the proof

The singular locus of MDol consists of the strictly semistable elements. We can
stratify the singular locus with respect to the stabilizer of the points and get

Σ :=
{

(L, φ)⊕ (L−1
,−φ) | L ∈ Pic

0(C), φ ∈ H
0(KC) such that (L, φ) 6∼= (L−1

,−φ)
}

Ω :=
{

(L, 0)⊕ (L, 0) | L ∈ Pic
0(C), such that L2 = OC

}

.

Observe that Σ ∼= Pic0(C) × H0(KC)/Z2 where Z2 acts as the involution that
exchange the two summands.

Clearly Ω ⊂ Σ, moreover the points in Ω have stabilizer SL(2,C) while the
points in Σ \ Ω have stabilizer C∗.
Following strategies by O’ Grady [OG] and Kiem-Yoo [KY], we construct a semis-

mall desingularization M̃Dol of MDol and apply the decomposition theorem by
Beilinson, Bernstein and Deligne [BBD] to express the cohomology of M̃Dol as a
direct sum of the intersection cohomology of MDol with some other summands
supported respectively on Σ and Ω.

Call Ω̃ and Σ̃ the preimages of Ω and Σ with respect to the desingularization
map π̃ : M̃Dol → MDol.

Proposition 3. Keep the notation as above.

(i) Ω̃ is the union of 16 copies of a smooth irreducible hypersurface S in CP4;

(ii) Σ̃ \ Ω̃ is a CP1 bundle over Σ \Ω.
Applying the decomposition theorem we obtain the following decomposition of

the cohomology of M̃Dol:

H∗(M̃Dol) = IH∗(MDol)⊕H∗−2(Σ, ICΣ(LΣ))⊕H∗−6(Ω, ICΩ(LΩ))

with

ICΣ(LΣ)|Σreg
∼= Q[4](−1) ICΩ(LΩ) ∼= Q(−3)⊕16.

Here Σreg is the smooth part of Σ and the shifts (−1) and (−3) correspond to
the Hodge structures Q(−1) and Q(−3) of respectively P1 and S.
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Remark 2. Observe that since Ω is nonsingular and Σ have finite quotient singu-
larities intersection cohomology and cohomology coincide.

Using a description of the singularities due to Simpson [Sim], we can prove that
any step of desingularization is obtain by blowing up a C∗- fixed subset, as a result
one can extend the natural C∗ action on MDol to M̃Dol.
This tell us that the variety MDol is semi-projective and the contraction induced
by the C∗ action yields an isomorphism between the cohomology of M̃Dol and the
cohomology of the fixed locus, which is compact.
Now we can take advantage of some properties of the weight filtration W· of a
mixed Hodge structure: on the one hand, given an algebraic variety X , if X is
nonsingular then WiH

k(X) = 0 for all i < k, i.e. we have weights higher or equal
than k; on the other hand if X is compact then WiH

k(X) = Hk(X) for any i ≥ k,
i.e. we have weights lower or equal than k.
In our case M̃Dol is nonsingularH

k(M̃Dol) have weights≥ k. However, because of
the isomorphism with the fixed locus, which is compact, the weights in Hk(MDol)
are also ≤ k. As a result, Hk(MDol) have precisely weight k, that is the Mixed
Hodge structure on it is actually a pure Hodge structure of weight k .
Since the Hodge structure on IH∗(MDol) is a sub-Hodge structure of that on

H∗(M̃Dol), if the latter is pure so is the former and this proves the first part of
the theorem.

We are now in a position to use a beautiful trick. Recall that the E-polynomial
of a variety X is defined as

E(X)(u, v) =
2 dimX∑

h=0

(−1)k
∑

h,p,q

hk,p,qc upvq

where hk,p,qc = dimGrpFGr
W
p+qH

k
c (X) and satisfies the following properties:

(i) if Z ⊂ X then E(X) = E(Z) + E(X \ Z)
(ii) E(X × Y ) = E(X)E(Y )

Similarly we can define the same invariant IE(X) for intersection cohomology,
however it will not satisfy the above properties.
Now we just need to compute the E−polynomial of M̃Dol and subtract the contri-
butions in the decomposition theorem coming from the summands supported on
the singular locus. In this way we will end up with the intersection E−polynomial
of MDol. Since the mixed Hodge structure on IH∗(MDol) is pure, in order to get
the intersection Betti numbers we just need to sum up all the summands of the
same weight and apply Poincaré-Verdier duality.

We have
E(M̃Dol) = E(Ms

Dol) + E(Σ̃) + E(Σ̃ \ Ω̃),
where Ms

Dol denotes the smooth locus of MDol consisting of stable Higgs bundles.
The last two summands can be computed with proposition (3) while the first one
is computed by stratifying it with respect to the underlying vector bundle.
Therefore we will divide stable Higgs pairs in following three strata:
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• pairs (V,Φ) with V stable vector bundle;
• pairs (V,Φ) with V strictly semistable vector bundle;
• pairs (V,Φ) with V unstable vector bundle.

In the case of strictly semistable objects we have to distinguish four different cases:

(i) V = L⊕ L−1 where L ∈ Pic0(C) and L 6∼= L−1;

(ii) V is a non trivial extension 0 // L // V // L−1 // 0 with L 6∼=
L−1;

(iii) V = L⊕ L−1 where L ∈ Pic0(C) and L ∼= L−1;

(iv) V is a non trivial extension 0 // L // V // L−1 // 0 with L ∼=
L−1;

By computing the E− polynomial of each stratum we have:

E(M̃Dol) = u6v6 + 2u5v5 + 21u4v4 + u5v3 + u3v5 + 34u3v3,

IE(MDol) = u6v6 + u5v5 + 15u4v4 + u5v3 + u3v5 + 17u3v3.

Applying Poincaré duality and summing up the pieces of the same weight have

IPt(MDol) = 1 + t2 + 17t4 + 17t6.
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On two generalisations of Hitchin’s equations in four dimensions from
Theoretical Physics

Yuuji Tanaka

This report is about two types of generalisations of Hitchin’s prominent equations
on compact Riemann surfaces [H] in four dimensions, both of which have the origin
in N = 4 super Yang–Mills theory in Theoretical Physics.
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Hitchin’s equations look for a pair (A,Φ) consisting of a connection A on a
hermitian vector bundle E over a Riemann surface Σ and a section Φ of End(E)⊗
Λ1,0
Σ , where Λ1,0

Σ := (T ∗Σ⊗ C)1,0, satisfying

∂̄AΦ = 0, FA + [Φ ∧Φ∗] = 0.

If one wishes to generalise these in higher dimensions, there could be perhaps at
least two directions, as we can think of Λ1,0

Σ as either

(A) the canonical bundle KΣ, which is a complex line bundle; or
(B) the cotangent bundle Ω1

Σ, which is a vector bundle in complex dimension
greater than one

They are exactly the cases incarnated by the ones coming from the N = 4 super
Yang–Mills theory, which we describe below.

To set the stage for what we discuss in this report, let X be a closed, oriented,
smooth 4-manifold, and let P be a principal SU(2) or SO(3)-bundle.

(A) Vafa–Witten equation on closed four-manifolds. Vafa andWitten [VW]
introduced the following set of equations1 for a pair (A,B) consisting of a connec-
tion on P and a section B of Λ+ ⊗ gP :

d∗AB = 0, F+
A +

1

8
[B.B] = 0,

where F+
A is the self-dual part of the curvature of A, the bracket [B.B] is again a

section of Λ+ ⊗ gP (see [M] or [Tan3] for more detail of this). They conjectured
that the generating function of invariants, which could be defined through the
moduli space of solutions to the above equations, would be modular forms as a
consequence of S-duality in the N = 4 super Yang–Mills theory.

On a compact Kähler surface with Kähler form ω, the above equations become:

∂̄Aϕ = 0, F 0,2
A = 0, F 1,1

A ∧ ω + [ϕ ∧ ϕ∗] = 0,

where ϕ ∈ Γ(X,End(E)⊗KX), and E is the associated complex vector bundle with
hermitian metric. Note that the integrability condition [ϕ∧ϕ] = 0 is automatically
satisfied asKX is a line bundle. This is the formmentioned in the above as (A), and
by the Hitchin–Kobayashi correspondence [AG], [Tan2], solutions to the equations
correspond to stable Higgs pairs. Furthermore, Richard Thomas and the reporter
[TT1], [TT2] constructed a symmetric perfect obstruction theory on the moduli
space of this and defined deformation invariants by using virtual techniques in
Algebraic Geometry. We also checked the modular properties of the generating
functions of the invariants conjecture by Vafa and Witten in examples.

(B) Kapustin–Witten equations on closed four-manifolds. From a different
topological twist of the sameN = 4 super Yang–Mills theory, Kapustin andWitten
[KW] introduced the following set of equations for a pair (A, a) consisting of a
connection A and a section a of Λ1 ⊗ gP :

d∗Aa = 0, (dAa)
− = 0, F+

A − [a ∧ a]+ = 0,

where “-” or “+” indicates the anti-self-dual or self-dual part respectively.

1To be more precise, there is one other variable C ∈ Γ(X, gP ) in their equations, however we
assume that this vanishes for simplicity in this report.
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More precisely, there are two super charges in this twist, in fact, they introduced
the equations parametrized by τ ∈ P1, which is a linear combination of them. The
above corresponds to τ = 0 (or τ = ∞ with orientation reversed) version of them.
Note that, if τ is not real, they are overdetermined. Siqi He, Mazzeo, Walpuski
and Witten made significant progress for τ = −1 version of them with Nahm
pole boundary condition. One other remark is that τ = ±i version is relevant for
geometric Langlands programme as originally described in [KW].

On a compact Kähler surface with Kähler form ω, the above equations become:

∂̄Aφ = 0, [φ ∧ φ] = 0, F 0,2
A = 0, Λ

(
F 1,1
A + 2[φ ∧ φ∗]

)
= 0,

where φ ∈ Γ(X,End (E)⊗Ω1
X), and Λ := (∧ω)∗ (see [N], [Tan3] for its derivation).

This is the form mentioned as (B), and they are the same equations considered by
Simpson in [S], hence solutions to them correspond to stable Higgs bundles on X .

Non-compactness issue in the direction of Higgs fields. Both of Vafa–
Witten and Kapustin–Witten equations with a gauge fixing equation form elliptic
systems, thus the moduli problem in gauge theory might be well posed. However,
there is a non-compactness phenomena in the direction of the Higgs fields denoted
as B or a in the above, in addition to the Uhlenbeck bubbling. This is because we
do not have a priori bound for the L2-norm for these Higgs fields.

If the underlying manifold is a compact Kähler surface, we could make use of
C∗-action on the moduli space and its fixed loci, as performed in [TT1], [TT2].
For general cases, perhaps a way to sort this issue out might be to take rescaling
Φ′ := Φ/||Φ||L2 , where Φ is B in the Vafa–Witten case and a in the Kapustin–
Witten case. This idea is not quite new, for example, Simpson used this to obtain
destabilizing sheaves in his renowned proof of the Hitchin–Kobayashi correspon-
dence in [S]. A series of fascinating breakthrough in this direction has been estab-
lished by Taubes, in particular, he obtained the following:

Theorem 1 ([Tau2], [Tau3]). Let {(Ai, ai)} be a sequence of solutions to the
Kapustin–Witten equations with ||ai||L2 → ∞. Denote by a′i := ai/||ai||L2 . Then
there exist a finite set of points Θ := {p1, . . . , pk} and a closed subset Z ⊂ X with
finite two-dimensional Hausdorff measure, such that a subsequence of {(Ai, a

′
i)}

converges in L2
1 on X \ {Z ∪Θ} after gauge transformations.

Taubes also proved a similar result for the Vafa–Witten case [Tau4]. For the
original Hitichin’s equations on a compact Riemann surface, Fredrickson, Mazzeo,
Mochizuki, Swoboda, Weiss and Witt made wonderful progress in the same spirit.
Note that this Z could be thought of as a recurrence of that appeared in SW = Gr
by Taubes [Tau1], in which it was a pseudo-holomorphic submanifold.

The reporter clarified the situation for the Vafa–Witten case, assuming that
there are no bubbling of connections, in the following manner:

Theorem 2 ([Tan2]). Assume that X is simply-connected for simplicity. Let
{(Ai, Bi)} a sequence of solutions to the Vafa–Witten equations with “no bub-
bling condition” with ||Bi||L2 → ∞. Then a subsequence of {Ai} converges to
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an anti-self-dual connection A⋄ weakly in the L2
1-topology after gauge transforma-

tions. If the limit is not reducible, then there exists a constant C > 0 such that∫
X |Bi|2dvolg ≤ C for all i; and a subsequence of {(Ai, Bi)} converges in the C∞-
topology to a solution to the Vafa–Witten equations after gauge transformations.

As for the structure of the singular set Z both in Vafa–Witten and Kapustin–
Witten cases, we proved:

Theorem 3 ([Tan3]). In both Vafa–Witten and Kapustin–Witten cases, the sin-
gular set Z has the structure of an analytic subvariety, if the underlying 4-manifold
X is a compact Kähler surface.
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Université de Geneve
Case Postale 64
2-4 rue du Lievre
1211 Genève 4
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