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Abstract. While causal inference is established in some disciplines such as
econometrics and biostatistics, it is only starting to emerge as a valuable tool
in areas such as machine learning and artificial intelligence. The mathemati-
cal foundations of causal inference are fragmented at present. The aim of the
workshop Foundations and new horizons for causal inference was to unify
existing approaches and mathematical foundations as well as exchange ideas
between different fields. We regard this workshop as successful in that it
brought together researchers from different disciplines who were able to learn
from each other not only about different formulations of related problems,
but also about solutions and methods that exist in the different fields.
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Introduction by the Organizers

The workshop Foundations and new horizons for causal inference, organised by
Nicolai Meinshausen (ETH Zurich), Jonas Peters (University of Copenhagen),
Thomas Richardson (University of Washington) and Bernhard Schölkopf (MPI
Tübingen) was well attended with 52 participants from a broad geographic back-
ground.

The problem of inferring causal relationships from statistical data arises in many
different fields of science and technology. However, abstract formal mathemati-
cal frameworks for reasoning about causality have been developed comparatively
recently, at least within the history of probability and statistics as disciplines.
Consequently, in the absence of generally accepted theoretical foundations, each
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area has developed specific (“autochthonous”) approaches, each with their own
terminology and assumptions.

One of the goals of this workshop was to bring together researchers from a wide
range of different areas to facilitate communication and cross-pollination. In this
regard, the workshop was undeniably very successful. It attracted researchers from
Artificial Intelligence, Biostatistics, Computer Science, Economics, Epidemiology,
Machine Learning, Mathematics and Statistics. New collaborations were initiated
between researchers who probably would not have crossed paths were it not for
this workshop. Likely this success is due in large part to the fact that the workshop
took place under the prestigious auspices of theMathematisches Forschungsinstitut
Oberwolfach.

Four broad areas of causal inference were discussed at the workshop.

(1) Mathematical foundations. Purely statistical models aim at describing
the underlying distribution of a data generating process. Causal models,
however, go beyond that goal. They try to model the effect of perturba-
tions of that system, too. Formulating such models, including the notion
of interventions, thus lies at the core of causality research. Even though
several frameworks exist, this is still a topic of current research, in partic-
ular, when considering dynamical models, extreme valued processes or the
question of which variables to include in the model, say. Talks covering
this topic include the ones from Niels Hansen, Dominik Janzing, Steffen
Lauritzen, Karthika Mohan, Emilija Perkovic, Rajen Shah, Ilya Shpitser,
Jin Tian, and Sebastian Weichwald.

(2) Causal discovery. While many causal inference methods assume a known
causal structure for the causal model (often, a directed acyclic graph),
there is also large interest in using causal discovery to estimate structure
from complex data such as, for example, time-series in biological appli-
cations. Research goals include to develop methods that are robust with
respect to model misspecification, scale to large data sets, deal with the ex-
istence of hidden variables or incorporate the information of interventional
experiments. Talks covering this topic include the ones from Mathias Dr-
ton, Aapo Hyvarinen, Nicola Gnecco, Marloes Maathuis, Linbo Wang, and
Kun Zhang.

(3) Machine Learning and causality. There is growing interest to ad-
just Machine Learning methods from a purely association-based learning
approach towards causal inference. The hope is to obtain methods for
classical machine learning problems such as prediction or semi-supervised
learning that generalize better to test data (that may come from the same
or from a related distribution as the training data) or are more sample-
efficient. Moreover, causality can provide means to better understand
classical machine learning paradigms and their applicability.

Talks covering this topic include the ones from Leon Bottou, David
Blei, Julius von Kügelgen, Niklas Pfister, Christina Heinze-Deml, Ludwig
Schmidt, Michele Sebag, David Sontag, and Fan Yang.
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(4) Applications. Numerous applications were discussed, including person-
alised medicine, biological causal network discovery and climate science.
Talks covering applications include the ones from Gregory Cooper, Sara
Geneletti, Jakob Runge, and Sach Mukherjee.

Machine learning methods are currently successfully applied to a wide range
of applications. Impressive empirical results are obtained in areas such as image
classification or speech recognition. Many scientific problems, however, go beyond
the task of iid prediction. In some domains such as public health, biology or Earth
system science, we are usually interested in finding policies that yield a better
outcome. In other areas, we expect that the test data will differ significantly from
the training data. Causal concepts have the potential to play a role in solving
many of these problems. We therefore expect to see more research on causality.
While many of the goals connected to research on causality are ambitious, any
advance in this area will potentially have a large impact not only in mathematics
but in the natural sciences in general.

The workshop brought together experts on causal inference working on foun-
dations and applications in Econometrics, Machine Learning, Statistics and the
Natural Sciences. The talks and discussions at the workshop will help to shape
the field in the coming years.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
Moreover the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Fan Yang and Kun Zhang in the “Simons Visiting
Professors” program at the MFO.
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Abstracts

Causal Discovery with Arbitrary Nonlinear Dependencies using
Nonlinear ICA

Aapo Hyvärinen

(joint work with R. P. Monti and K. Zhang)

Causal discovery in a linear Bayesian network, or a linear structural equation
model, has been earlier shown to be possible by using the theory of indepen-
dent component analysis (ICA). In fact, performing ICA on the data and further
processing the results leads to one possible method for estimation of causal re-
lationships, in the form of the LiNGAM framework. Here, we show how recent
advances in nonlinear forms of ICA, in particular time-contrastive learning, en-
able identification of nonlinear structural equation models, and thus, of general
nonlinear causal relationships. Importantly, we do not constrain the form of the
nonlinear functions in this framework, and in particular we do not assume any kind
of additivity. Instead, we require the data to have a richer statistical structure in
the sense that the data must come from different conditions, in other words, they
should be non-stationary in a general sense. The ensuing method can be shown
to find the correct causal direction in the presence of general nonlinear relations
in a bivariate setting. Thus we achieve a generalization of LiNGAM to the case of
arbitrary nonlinearities.

References

[1] S. Shimizu, P. O. Hoyer, A. Hyvärinen, and A. Kerminen. A linear non-Gaussian acyclic
model for causal discovery. J. of Machine Learning Research, 7:2003–2030, 2006.

[2] A. Hyvärinen and H. Morioka. Unsupervised feature extraction by time-contrastive learning
and nonlinear ICA. In Advances in Neural Information Processing Systems (NIPS2016),
Barcelona, Spain, 2017.
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tionships using non-linear ICA. In Proc. 35th Conf. on Uncertainty in Artificial Intelligence
(UAI2019), 2019. In press.

Hypothesis generation through three principles of data science:
predictability, computability and stability (PCS)

Bin Yu

(joint work with Karl Kumbier, Sumanta Basu, Ben Brown, Jamie Murdoch,
Chandan Singh, Reza Abbassi-Asl)

We propose a framework in [4] that draws from three principles of data science:
predictability, computability, and stability (PCS) to extract reliable, reproducible
information from data and guide scientific hypothesis generation. The PCS frame-
work builds on key ideas in machine learning, using predictability as a reality check
and evaluating computational considerations in data collection, data storage, and
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algorithm design. It augments predictability and computability with an overar-
ching stability principle, which expands statistical uncertainty considerations to
assesses how results vary with respect to choices (or perturbations) made across
the data science life cycle.

Building on PCS, we develop inference procedures to investigate the stability
of data results relative to problem formulation, data cleaning, and modeling de-
cisions. We compare PCS inference with existing methods in high-dimensional
sparse linear model simulations to demonstrate that our approach compares fa-
vorably to others in terms of ROC curves over a wide range of simulation settings.
Finally, we propose PCS documentation based on R Markdown or Jupyter Note-
book, with publicly available, reproducible codes and narratives to back up human
choices made throughout an analysis. The PCS workflow and documentation are
demonstrated in a genomics case study available on Zenodo.

Stability is aso a minimum requirement for interpretability and reproducibility
as advocated in [1]. Machine-learning models have demonstrated great success in
learning complex patterns that enable them to make predictions about unobserved
data. In addition to using models for prediction, the ability to interpret what a
model has learned is receiving an increasing amount of attention. However, this in-
creased focus has led to considerable confusion about the notion of interpretability.
In particular, it is unclear how the wide array of proposed interpretation methods
are related, and what common concepts can be used to evaluate them. We aim in
[3] to address these concerns by defining interpretability in the context of machine
learning and introducing the Predictive, Descriptive, Relevant (PDR) framework
for discussing interpretations. The PDR framework provides three overarching
desiderata for evaluation: predictive accuracy, descriptive accuracy and relevancy,
with relevancy judged relative to a human audience. Moreover, to help manage the
deluge of interpretation methods, we introduce a categorization of existing tech-
niques into model-based and post-hoc categories, with sub-groups including spar-
sity, modularity and simulatability. To demonstrate how practitioners can use the
PDR framework to evaluate and understand interpretations, we provide numer-
ous real-world examples. These examples highlight the often under-appreciated
role played by human audiences in discussions of interpretability. Finally, based
on our framework, we discuss limitations of existing methods and directions for
future work. We hope that this work will provide a common vocabulary that will
make it easier for both practitioners and researchers to discuss and choose from
the full range of interpretation methods.

As a case study of PCS, we propose in [2] iterative Random Forests (iRF).
Genomics has revolutionized biology, enabling the interrogation of whole tran-
scriptomes, genome-wide binding sites for proteins, and many other molecular
processes. However, individual genomic assays measure elements that interact
in vivo as components of larger molecular machines. Understanding how these
high-order interactions drive gene expression presents a substantial statistical chal-
lenge. Building on random forests (RFs) and random intersection trees (RITs) and
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through extensive, biologically inspired simulations, we develope the iterative ran-
dom forest algorithm (iRF). iRF trains a feature-weighted ensemble of decision
trees to detect stable, high-order interactions with the same order of computa-
tional cost as the RF. We demonstrate the utility of iRF for highorder interaction
discovery in two prediction problems: enhancer activity in the early Drosophila
embryo and alternative splicing of primary transcripts in human-derived cell lines.
In Drosophila, among the 20 pairwise transcription factor interactions iRF identi-
fies as stable (returned in more than half of bootstrap replicates), 80% have been
previously reported as physical interactions. Moreover, third-order interactions,
e.g., between Zelda (Zld), Giant (Gt), and Twist (Twi), suggest high-order rela-
tionships that are candidates for follow-up experiments. n human-derived cells,
iRF rediscovered a central role of H3K36me3 in chromatin-mediated splicing reg-
ulation and identified interesting fifth- and sixth-order interactions, indicative of
multivalent nucleosomes with specific roles in splicing regulation. By decoupling
the order of interactions from the computational cost of identification, iRF opens
additional avenues of inquiry into the molecular mechanisms underlying genome
biology.

References

[1] B. Yu Stability, Bernoulli 19(4) (2013), 1484-1500.
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Instance-Specific Causal Bayesian Network Structure Learning

Gregory F. Cooper

(joint work with Chunhui Cai, Fattaneh Jabbari, Xinghua Lu,
Shyam Visweswaran)

This article describes our recently published research in developing an instance-
specific approach for learning causal Bayesian network structures from data and
in applying the approach to molecular cancer data [7, 2].

A Bayesian network (BN) is a directed, acyclic graphical model that represents
probabilistic relationships among a set of variables V . A causal Bayesian network
(CBN) is a BN in which arcs are interpreted as direct causation, relative to V [9].

Most CBN structure learning algorithms are designed to recover the structure
that models the relationships that are shared by the instances in a population.
While learning accurate population-wide CBNs is useful, learning CBNs that are
specific to a given instance can also be important.
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We use CBNs that represent context-specific independence (CSI). CSI captures
independence relationships that hold between the causes (parents) and their effect
(child) in a CBN in particular contexts (i.e., when the cause variables take on
particular values) [1]. In a CBN with CSI, the CBN structure of an instance
depends on the values of the variables in that instance. In this way, CSI provides
a representation that supports instance-specific modeling.

A number of algorithms have been developed that learn from data a population-
wide BN with CSI, as for example the algorithms described in [5, 10, 8, 11]. To our
knowledge, however, none of the algorithms published by other researchers learn
a CSI model that is specific to a given instance T (e.g., a given patient), which
is the approach we have been investigating [4]. Doing so in learning CBNs has at
least two advantages. First, the learned instance-specific causal model provides a
relatively precise representation of the causal processes that are ongoing specifically
in T . Second, searching for an instance-specific model will usually be much more
efficient than searching for all (or at least many) possible instance-specific models
and subsequently choosing the one that best matches T .

For example, a lung-cancer tumor T in a patient is an instance that can have
a set of causal mechanisms that are different from that of another lung-cancer
tumor, either in the same patient or in a different patient. To determine the
most effective treatment for a tumor in the current patient, it is important to
know the particular causal mechanisms that are driving that specific tumor to be
cancerous. In reality, a given tumor is likely to be composed of a set of cellular
mechanisms that rarely all occur together, yet each individual mechanism may
appear relatively commonly in other tumors. A population-wide CBN would at
best capture the more common mechanisms operating in lung cancer and not all
of the particular mechanisms that are active in the current patient's lung-cancer
tumor T . The task, then, is to construct the joint set of mechanisms of a given
tumor from the individual mechanisms seen in previous tumors. To do so, we use
the known features (i.e., the variable values) of the current tumor T to help identify
and construct the individual mechanisms that compose the set of mechanisms that
are jointly driving the current tumor.

In [7], we describe an adapted version of the GES search algorithm [3] that
is able to learn an instance-specific CBN structure from data. We also devel-
oped a more specialized instance-specific method called the Tumor-specific Causal
Inference (TCI) algorithm that searches over bipartite CBNs in which one parti-
tion contains somatic genomic alterations (SGAs) in a given tumor, such as gene
mutations; the other partition contains abnormal cellular processes indicative of
cancer, such as aberrant transcriptomic changes, which suggest the cancer disease
mechanisms [2].

We applied TCI to tumors from The Cancer Genome Atlas (TCGA) [6] and
estimated for each tumor the SGAs that causally regulate the differentially ex-
pressed genes (DEGs) in that tumor. On a set of more than 5,000 tumors, TCI
identified over 600 SGAs that are predicted to cause (drive) cancer-related DEGs
in a significant number of tumors, including most of the previously known drivers
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and many novel candidate cancer drivers [2]. On the whole, the inferred causal
relationships are statistically robust and biologically sensible, and the selected ex-
periments we have performed provide support for the validity of the candidate
drivers that are predicted by TCI. As an example, TCI inferred that the gene
CSMD3 is a likely cause of cancerous behavior in tumors, although it was not
designated as such in previous studies. In [2], we report examining whether ex-
perimental manipulations of CSMD3 affect oncogenic phenotypes. In particular,
we identified the cancer cell line HGC27 as having CSMD3 amplification, and we
knocked down the expression of that gene using siRNAs, followed by monitoring
cellular phenotypes, including cell proliferation and cell migration. The results
show that knocking down CSMD3 significantly attenuated both proliferation and
migration. These results provide support that CSMD3 is involved in producing
cancer-related cellular phenotypes in this cell line, and by extension, possibly in
some human in vivo cancers.

This article describes an initial approach to tailoring the construction of a causal
model to a given instance. Our results in applying the approach to molecular
cancer data provide support that the method yields valuable causal insights. There
are undoubtedly many additional ways in which causal learning can be tailored
to better discover the causal structure and mechanisms of a given instance. We
believe that the exploration of such prospects is an important open area of causal
discovery research.
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Checking Assumptions in Causal Inference from Observational Data

David Sontag

(joint work with Fredrik Johansson, Uri Shalit, Michael Oberst, Dennis Wei,
Tian Gao, Kush Varshney)

Evaluating intervention decisions is a key question in many diverse fields including
medicine, economics, and education. In medicine, an optimal choice of treatment
for a patient in the intensive care unit may mean the difference between life and
death. In public policy, job reforms have impact on the unemployment rate and
the economy of a nation. To evaluate such interventions we must study their
causal effect – the difference in an outcome of interest under alternative choices
of intervention. Since only one option may be carried out at a time, any data to
support such evaluations only reveals the outcome of the action taken and never
the outcome of the action not taken, which remains an unknown counterfactual. To
estimate causal effects, we must therefore infer what would have happened had we
made another decision. Furthermore, to decide on personalized interventions, such
as tailoring treatments to patients, we must understand individual-level causal
effects, conditioned on the available information on an individual recorded prior
to intervention.

We study the problem of estimating individual-level causal effects from non-
experimental, observational data. An observational dataset consists of historical
records of interventions, the contexts in which they were made, and the observed
outcomes. For example, in the setting of health care, these would correspond to
medications, medical records, and the outcome of treatment, such as mortality.
An individual-level effect measures the causal effect of medication choice, con-
ditioned on what is known about the patient. There are two assumptions that
most approaches to causal inference from observational data make: that there
is 1) common support (also called overlap), and 2) no unmeasured confounders
(ignorability).

In the first part of the talk, I showed how techniques from learning theory
and unsupervised domain adaptation can be used to give bounds on the error
in estimated causal effects [1]. This is in contrast from typical results in causal
inference which focus on proving consistency and do not provide any guarantees
when the potential outcome functions are misspecified. Our bounds are based on
distance measures between groups receiving different treatments. I then showed
how these bounds can be minimized by sample re-weighting and representation
learning, leading to a new class of causal inference algorithms. An important
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direction for future research is how to further reduce the sample complexity for
estimating conditional average treatment effect.

In the second part of the talk, I asked whether it may be possible in some cases
to develop checks for the assumptions, such as overlap [2]. When overlap does not
hold globally, characterizing local regions of overlap can inform the relevance of any
causal conclusions for new subjects, and can help guide additional data collection.
To have impact, these descriptions must be interpretable for downstream users
who are not machine learning experts, such as clinicians. I formalized overlap
estimation as a problem of finding minimum volume sets and suggested a method
to solve it by reduction to binary classification with Boolean rules. I then described
a case study in which we learned to describe treatment group overlap for post-
surgical opioid prescriptions. As an open question, I asked whether instead of
requiring overlap (which in many respects seems too strong of an assumption), we
could give conditions under which it is OK to extrapolate predictions of potential
outcomes.
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Refuting the inferential validity of causal estimators empirically
(and inconsistently)

Lin Liu

(joint work with Rajarshi Mukherjee, James M. Robins)

For many causal effect parameters ψ of interest doubly robust machine learning

(DR-ML) [1] estimators ψ̂1 are the state-of-the-art, incorporating the benefits of
the low prediction error of machine learning (ML) algorithms; the decreased bias of
doubly robust estimators; and.the analytic tractability and bias reduction of sam-
ple splitting with cross fitting. Nonetheless, even in the absence of confounding
by unmeasured factors, when the vector of potential confounders is high dimen-

sional, the associated (1 − α) Wald confidence intervals ψ̂1 ± zα/2ŝe[ψ̂1] may still
undercover even in large samples, because the bias of the estimator may be of the
same or even larger order than its standard error of order n−1/2.

In this paper, we introduce novel tests that (i) can have the power to detect

whether the bias of ψ̂1 is of the same or even larger order than its standard
error of order n−1/2, (ii) can provide a lower confidence limit on the degree of

under coverage of the interval ψ̂1 ± zα/2ŝe[ψ̂1] and (iii) strikingly, are valid under

essentially no assumptions whatsoever. We also introduce an estimator ψ̂2 =

ψ̂1 − ÎF22 with bias generally less, and often much less, than that of ψ̂1, yet whose

standard error is not much greater than ψ̂1’s. The tests, as well as the estimator
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ψ̂2, are based on a U-statistic ÎF22 that is the second-order influence function for

the parameter that encodes the estimable part of the bias of ψ̂1. For the definition
and theory of higher order influence functions see [2, 3]. When the covariance

matrix of the potential confounders is known, ÎF22 is an unbiased estimator of
its parameter. When the covariance matrix is unknown, we propose several novel

estimators of ÎF22 that perform almost as well as the known covariance case in
simulation experiments.

Our impressive claims need to be tempered in several important ways. First
no test, including ours, of the null hypothesis that the ratio of the bias to its
standard error is small can be consistent [without making additional assumptions
(e.g. smoothness or sparsity) that may be incorrect]. Furthermore the above
claims only apply to parameters in a particular class. For the others, our results
are unavoidably less sharp and require more careful interpretation.
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Towards scalable causal learning

Sach Mukherjee

(joint work with Steven Hill, Chris Oates, Umberto Noè and Bernd Taschler)

Causal structure learning is concerned with learning causal relationships between
variables. Consider a set of p variables indexed by V = {1 . . . p}. We focus on the
task of determining, for a subset of (ordered) pairs (i, j) ∈ K ⊆ V×V , whether or
not node i exerts a causal influence on node j. In particular, our focus is on the
binary ‘detection’ problem (of learning whether or not i exerts a causal influence
on j) rather than estimation of the magnitude of any causal effect. We frame
the problem as a machine learning task: the idea is to treat discrete indicators
of causal relationships between variables as ‘labels’ (in a discriminative learning
sense) and to exploit available data on the variables of interest to provide features
for the labelling task.

Many causal learning methods are based on graphical models, with models based
on directed acyclic graphs (DAGs) playing a key role [1, 2]. The PC algorithm is
a prominent example of such a method [1]. It estimates an equivalence class of
DAGs – encoded as a completed partially directed acyclic graph or CPDAG – via
a series of conditional independence tests. The PC output can in turn be used to
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estimate bounds on quantitative total causal effects between nodes [3]. Related
methods, including score-based approaches, are available for interventional data
and problem settings with latent variables. In contrast to these approaches, which
are rooted in data-generating models of the causal system, there has been recent
work with an emphasis on telling apart causal and non-causal relationships. Work
in this ‘discriminative’ direction has included [4] and [5] and our work follows in
this line.

In a nutshell, our approach works as follows. Available information on some causal
relationships (via background knowledge or experimental data) are treated as ‘la-
bels’ that are combined with a featurization of the data to train a learner that gives
labels across the entire problem. This gives, for each pair (i, j) ∈ K, a label (or

probabilistic score) Ĝij that is intended to encode its causal status. These labels
can be viewed as specifying a directed graph in which the presence of a directed
edge between vertices i and j means that the variable with index i is inferred to
have a causal influence on the variable with index j.

Within this overall scheme, we consider a semi-supervised formulation using mani-
fold regularization (following [6]) as well as supervised approaches that are suitable
for very high dimensional data. We show empirical results on several biological
datasets, including examples where causal effects can be verified by experimen-
tal intervention. This allows us to empirically quantify performance in terms of
agreement with unseen interventional experiments. We compare performance with
a range of existing causal approaches and non-causal baselines. Taken together,
these results demonstrate the empirical efficacy of the proposed approaches, as
well as their generality and simplicity from a user’s point of view.

Although effective at the specific tasks considered, in contrast to graphical models-
based methods, the approaches proposed are less general in the sense that they
only learn discrete indicators of causal status, but cannot by themselves provide a
full range of probabilistic output (e.g. all post-intervention distributions). Never-
theless, our results suggest that machine learning-based schemes can be effective
and that it may be fruitful to investigate combining them with graphical models-
based approaches in the future.
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Causal Inference with Unmeasured Confounding: A New Look at
Instrumental Variable

Linbo Wang

(joint work with Eric Tchetgen Tchetgen)

Observational studies are often used to infer treatment effects in social and biomed-
ical sciences. In these studies, the treatment assignment may be associated with
various background variables that are associated with the outcome, causing the
unadjusted treatment effect estimate to be biased. These background variables
are often called confounders. A major challenge of causal inference in observa-
tional studies is that in practice, these confounding variables are often not fully
observed, making it impossible to identify the treatment effect in view. In such
settings, instrumental variable (IV) methods are useful in dealing with unmeasured
confounding and have gained popularity among econometricians, statisticians and
epidemiologists. Intuitively, conditional on baseline covariates, a valid IV affects
the outcome through its effect on the treatment but is otherwise unrelated to the
outcome.

However, under the standard IV model, the average treatment effect (ATE) is
only partially identifiable. Traditionally, researchers have assumed additionally a
system of linear structural equation models (SEMs); see [1] for a recent review.
One such SEM can be inferred from the following system of linear regression
models:

D = α0 + α1Z + α2X + α3U + ǫD,(1)

Y = β0 + β1D + β2X + β3U + ǫY ,(2)

where Z is an instrumental variable, D is a continuous treatment, Y is a con-
tinuous outcome, X and U denote observed and unobserved baseline covariates,
respectively, Z |= U | X and the error terms are independent: ǫD |= ǫY . However,
(1) and (2) impose strong parametric assumptions on the underlying data gener-
ating process. Moreover, a fundamental limitation with relying on models like (1)
and (2) is that they impose one set of assumptions, which conflates the definition,
identification and estimation of the treatment effect.

To address these problems, we propose two alternative no-interaction assump-
tions involving the unobserved confounders that allow for identification of the
ATE. Our first assumption is a generalization of linear model (1); our second as-
sumption is guaranteed to hold under the null of no treatment effect. We also
allow for instruments that are confounded with the treatment. Our identification
assumptions are clearly separated from model assumptions needed for estimation,
so that researchers are not required to commit to a specific observed data model
in establishing identification. Moreover, under both of our identification assump-
tions, the ATE can be represented by the same observed data functional so that in
the estimation stage, we can target a single statistical parameter. This parameter
is called the average Wald estimand, a generalization of the Wald estimand ([2])
to accommodate baseline covariates X . We then construct multiple estimators



Foundations and new horizons for causal inference 1517

that are consistent under three different observed data models, and triply robust
estimators that are consistent in the union of these observed data models. We pay
special attention to the case of binary outcomes, for which we obtain bounded es-
timators of the ATE that are guaranteed to lie between -1 and 1. Our approaches
are illustrated with simulations and a data analysis evaluating the causal effect of
education on earnings.
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Towards more reliable causal discovery and prediction

Kun Zhang

This talk was concerned about how to make causal discovery from observational
data more reliable and how to improve prediction in nonstationary environments
from a causal perspective. Since the 1990’s, conditional independence relation-
ships in the data have been exploited to recover the underlying causal structure.
Typical (conditional independence) constraint-based algorithms include PC and
Fast Causal Inference (FCI) [1]. Such approaches are widely applicable because
they can handle various types of data distributions and causal relations, given
reliable conditional independence testing methods. However, they do not neces-
sarily provide complete causal information because they output (independence)
equivalence classes, i.e., a set of causal structures satisfying the same conditional
independences.

In the past 13 years it has been further shown that algorithms based on properly
defined Functional Causal Models (FCMs) are able to distinguish between different
potential graphical structures in the same equivalence class. This benefit is owed
to additional assumptions on the data distribution than conditional independence
relations. Without constraints on the form of the functional causal model, then for
any two variables one can always express one of them as a function of the other and
independent noise [2, 3]. However, this is not the case anymore if the functional
classes are properly constrained. Such FCMs include the Linear, Non-Gaussian,
Acyclic Model (LiNGAM) [4], the post-nonlinear (PNL) causal model [5, 6], and
the nonlinear additive noise model (ANM) [7], where causes have nonlinear effects
and noise is additive.

Causal discovery exploits observational data. The data are produced by not
only the underlying causal process, but also the sampling process. In practice, to
achieve reliable causal discovery, one needs to address specific challenges posed in
the causal process or the sampling process, depending on the application domain.
Such challenges include nonlinear causal interactions, much lower data acquisition
rate compared to the underlying rate of changes [8, 9], feedback loops in the
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causal model [10], existence of measurement error [11], and possible unmeasured
confounding causes. In clinical studies, we often have a large number of missing
data [12]. Data collected on Internet or in hospital often suffer from selection
bias [13]. Some data sets involve both mixed categorical and continuous variables,
which may pose difficulties in conditional independence tests and specification
of appropriate forms of the FCM [14]. Many of these issues have recently been
considered, with corresponding methods proposed to address them. In the talk I
particularly focused on how causal discovery benefits from nonstationarity of time
series data of heterogeneity of multi-domain data [15].

On the other hand, causal information describes properties of the process that
render a set of constraints on the data distribution, and is able to facilitate under-
standing and solving a number of learning problems involving distribution shift or
concerning the relationship between different factors of the joint distribution. In
particular, for learning under data heterogeneity, it is naturally helpful to learn
and model the properties of data heterogeneity, which then benefits from causal
modeling. Such learning problems include domain adaptation (or transfer learn-
ing) [16], semi-supervised learning [17], and learning with positive and unlabeled
examples. Leveraging causal modeling for recommender systems [18] and Rein-
forcement learning has been becoming an active research field in recent years.
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Causal structure learning for partially observed multivariate event
processes

Niels Richard Hansen

(joint work with Søren Wengel Mogensen, Daniel Malinsky)

Structural causal models of event processes imply certain local independencies
among the coordinates of the processes. The local independencies form an inde-
pendence model that can be encoded as a graphical separation model in a directed
graph via δ- or µ-separation. If only some of the process coordinates are observed,
we ask what can be learned about the causal structure in terms of the local inde-
pendence model?

Some notation is required to formulate our main results. We consider event
processes indexed by V = {1, . . . , d}. The time dynamics of the k-th event process
is given in terms of its intensity,

P (one k-event ∈ (t, t+ δ] | Ft) ≃ λkt δ, k ∈ V, and small δ > 0,

where Ft denotes the history of all events up to time t, and λkt depends on Ft.
For C ⊆ V we define FC

t as the history of events in C up to time t, and

λk,Ct = E(λkt | FC
t )

is the optional projection of the intensity of the k-th process onto the history of
processes indexed by C.

For A,B,C ⊆ V , B is conditionally locally independent of A given C, denoted

A 6→ B | C,

if λk,A∪C
t = λk,Ct for k ∈ B. This defines an abstract independence model as a

ternary relation on subsets of V ,

〈A,B | C〉 ∈ ICLI(V ) ⇔ A 6→ B | C

We would like to encode this independence model as a graphical independence
model, that is, find a graph and a separation criterion on the graph such that
separation in the graph implies conditional local independence.
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Definition (Local Independence Graph). A graph G = (V,E) is a local indepen-
dence graph if

(j, k) 6∈ E =⇒ j 6→ k | V \{j}.

The local independence graph is a directed graph, that may have cycles, and
we define a separation criterion in terms of the following definition.

Definition (µ-connecting walk). A nontrivial walk from j to k in G is said to be
µ-connecting given C if j /∈ C, every collider is an ancestor of C, no noncollider is
in C, and there is an arrow head at k.

A set B is then said to be µ-separated from A given C if there is no µ-connecting
walk from any j ∈ A to any k ∈ B given C in the graph. The corresponding
graphical independence model is denoted IG(V ). Note that requiring an arrow
head at k in the above definition makes the independence model different from
d-separation and asymmetric.

Theorem (Global Markov Property, [1]). Let G denote the local independence
graph. Under some regularity conditions it holds that if C µ-separates A from B
in a local independence graph then A 6→ B | C. That is, IG(V ) ⊆ ICLI(V ).

The global Markov property (using δ-separation) was proved for event processes
first in [2], but we give more general results in [1] based on abstract semigraphoid
properties.

To represent the independence model among observed processes when there are
also latent processes, we need a notion of projection. This is achieved by extending
µ-separation to directed mixed graphs (DMGs). The main results from [3] are

• A latent projection maps a DMG with vertices V to a DMG with ver-
tices O ⊆ V . The µ-separation properties are preserved among observed
variables.

• All Markov equivalent DMGs on O have a common Markov equivalent
supergraph.

• The maximal DMG representing a Markov equivalence class can be con-
structed from the independence model.

• Edge status in the equivalence class is characterized via the directed mixed
equivalence graph (DMEG).

The proof in [3] that the maximal DMG exists is constructive, and provides, in
principle, a learning algorithm. In [1] we propose a more efficient learning algo-
rithm of the DMEG that is shown to be sound and complete under a faithfulness
assumption, that is, assuming that IG(V ) = ICLI(V ).

Two open problems, that we are currently pursuing, are

• a characterization of faithfulness for some model classes
• and practical statistical tests of conditional local independence.
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Questions about ML and AI

Léon Bottou

The purpose of this talk is to explain the relevance of causation to research in
artificial intelligence. Despite the promises of pundits, there is indeed a large gap
between the technological capabilities of machine learning (ML) and the vague and
elusive goals of artificial intelligence (AI). The first part of the talk reviews some
of the common issues with ML methods and shows how they display many of the
characteristic issues one encounters in causal inference research. The second part
of the talk is an attempt to name many of the nuances of causation in the hope
to provide a roadmap to approach artificial intelligence.

Success and shortcomings of ML — The current interest for artificial intelligence
results from a couple success stories in machine learning. Thanks to the avail-
ability of large datasets and powerful computing infrastructure, supervised ma-
chine learning and reinforcement learning were able to deliver striking advances
in several domains, such as computer vision [6], speech recognition [3], Go playing
software [10], machine translation [1]. These striking successes however come with
shortcomings that cleary impede our progress towards AI:

• Training state-of-the-art ML models often demands inhuman amounts of
data. Humans learn much more quickly and are more adaptable. They
do not only use training data but also are able to reason how their past
experiences can be transferred to new problems.

• ML systems replace imprecisely specified problems (which images repre-
sent a bird?) by well defined statistical proxies (minimizing a training
cost). However, because large training dataset are poorly curated, ML
systems often capture spurious correlations and learn nonsense.

• Humans know the importance of the logical and compositional structure
of a visual scene or a natural language sentence. In contrast, ML systems
seem unable to positively leverage such knowledge. A possible way to un-
derstand this paradox is to remember that, for instance, the compositional
structure of language is more useful for composing new sentences or inter-
pretint rare ones than it is useful for modeling the skewed distribution of
observed sentences. This is not about what has been told (the observed)
but about could have been told (the counterfactual.)
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In conclusion, although they can precisely replicate the observed training distri-
bution, ML systems lack in common sense because they cannot easily infer what
could have been observed under closely related circumstances.

The many faces of causation — On the one hand, the above description of the ML
shortcomings emphasizes their similarity with fundamental issues in causation.
On the other hand, none of these problems come with a causal graph or with well
defined interventions. This means that we may not be able to understand them
using solely the manipulative definition of causation that is common statistics.
Fortunately, an abundant literature in epistemology, metaphysics, and psychology
offers alternative ways to understand causation, a catalogue of ideas for future
research. The following is an attempt to name some of them.

• Manipulative causation focuses on predicting the outcome of well defined
interventions on a causal system. See [9, 5] and references therein.

• Causal invariance investigates which properties of a system are conserved
when affected by explicit or implicit interventions. See, for instance, [12,
chap 6] and [2].

• Causal reasoning focuses on causal statements as elements of reasoning
chains. Statements that cannot be verified experimentally acquire value
when they take part in chains that make verifiable predictions.

• Causal explanation provides causal commentaries that help understanding
an observed phenomena but may not be complete enough to make sensible
predictions [11].

• Dispositional causation and affordances associates objects with the causal
relationship they enable [8, 4].

• Causal intuition take advantage of observed data to suggest short lists
of plausible causal models whose validity can later be investigated using
more direct experiments. See [7] and references therein.
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Causal KinetiX: Learning stable structures in kinetic systems

Niklas Pfister

(joint work with Stefan Bauer, Jonas Peters)

Learning kinetic systems from data is one of the core challenges in many fields.
Efficient computational methods to identify a robust underlying model from data
are essential for the extrapolation and generalization capabilities of data driven
modeling approaches. Existing data driven approaches infer the parameters of
ordinary differential equations by considering the goodness-of-fit of the integrated
systems as a loss function. Due to the complex structure of these systems the in-
ferred models often do not generalize well to unobserved conditions. In particular,
they perform poorly when predicting the system under interventions. We propose
a novel framework to identify structure in causal kinetic models. Instead of solely
focusing on predictive performance, our framework explicitly incorporates hetero-
geneity and optimizes for good generalization performance. To achieve this, we
assume an underlying causal model for the dynamics of the target process (yt)t.
Such a model induces additional structure into the problem by the well-known
concept of causal invariance, autonomy or modularity [1, 2]. In the setting consid-
ered here, this concept implies that the conditional dynamics of a target process
(yt)t given a set of predictors (xt)t remains constant across different experiments,
i.e, there exists a fixed function f such that

d
dty

e
t = f(xe

t ),

for all experiments e. We argue that such an assumption is reasonable in a wide
range of physical systems and is a natural requirement whenever one is interested
in predicting the intervention effect on a target process after intervening on the
predictors.

Our proposed procedure is based on a combination of smoothing techniques
and model based structure search which explicitly incorporates this invariance
property as a learning principle. In particular, it does not require any numerical
integration and thus remains computationally feasible and robust to model mis-
specifications. Furthermore, given sufficient conditions on the underlying noise
model and assuming sufficiently heterogeneous observations it is possible to prove
that our procedure asymptotically recovers the true causal parents for the target
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process. Numerical experiments on simulated data, verify this theoretical result
and illustrate that our method out-performs standard techniques and is feasible for
practically relevant data sets. We also apply the method to a real-world biological
data set related to a signaling pathway and show that it is able to find models
which are capable of predicting several types of unobserved interventions. We
believe these results suggest that learning the structure of kinetic systems indeed
benefits from a causal perspective.
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The Blessing of Multiple Causes: Extended Abstract

David Blei

(joint work with Yixin Wang)

Here is a frivolous, but perhaps lucrative, causal inference problem. Table 1 con-
tains data about movies. For each movie, the table shows its cast of actors and how
much money the movie made. Consider a movie producer interested in the causal
effect of each actor; for example, how much does revenue increase (or decrease) if
Oprah Winfrey is in the movie?

The producer wants to solve this problem with the potential outcomes approach
to causality [10, 33, 34]. Following the methodology, she associates each movie to
a potential outcome function, yi(a). This function maps each possible cast a to
its revenue if the movie i had that cast. (The cast a is a binary vector with one
element per actor; each element encodes whether the actor is in the movie.) The
potential outcome function encodes, for example, how much money Star Wars
would have made if Robert Redford replaced Harrison Ford as Han Solo. When
doing causal inference, the producer’s goal is to estimate something about the
population distribution of Yi(a). For example, she might consider a particular
cast a and estimate the expected revenue of a movie with that cast, E [Yi(a)].

Classical causal inference from observational data is a difficult enterprise and
requires strong assumptions. The challenge is that the dataset is limited; it con-
tains the revenue of each movie, but only at its assigned cast. However, what this
paper is about is that the producer’s problem is not a classical causal inference.
While causal inference usually considers a single possible cause, such as whether a
subject receives a drug or a control, our producer is considering a multiple causal
inference, where each actor is a possible cause. This paper shows how multiple
causal inference can be easier than classical causal inference. Thanks to the mul-
tiplicity of causes, the producer can make valid causal inferences under weaker
assumptions than the classical approach requires.
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Title Cast Revenue

Avatar {Sam Worthington, Zoe Saldana, Sigourney Weaver, Stephen
Lang, . . . }

$2788M

Titanic {Kate Winslet, Leonardo DiCaprio, Frances Fisher, Billy Zane,
. . . }

$1845M

The Avengers {Robert Downey Jr., Chris Evans, Mark Ruffalo, Chris
Hemsworth, . . . }

$1520M

Jurassic World {Chris Pratt, Bryce Dallas Howard, Irrfan Khan, Vincent
D’Onofrio, . . . }

$1514M

Furious 7 {Vin Diesel, Paul Walker, Dwayne Johnson, Michelle Rodriguez,
. . . }

$1506M

.

.

.
.
.
.

.

.

.

Table 1. Top earning movies in the TMDB dataset

Let’s discuss the producer’s inference in more detail: how can she calculate
E [Yi(a)]? Naively, she subsets the data in Table 1 to those with cast equal to
a, and then computes a Monte Carlo estimate of the revenue. This procedure is
unbiased when E [Yi(a)] = E [Yi(a) |Ai = a].

But there is a problem. The data in Table 1 hide confounders, variables that
affect both the causes and the effect. For example, every movie has a genre, such
as comedy, action, or romance. This genre has an effect on both who is in the
cast and the revenue. (E.g., action movies cast a certain set of actors and tend to
make more money than comedies.) When left unobserved, the genre of the movie
produces a statistical dependence between whether an actor is in it and its revenue;
this dependence biases the causal estimates, E [Yi(a) |Ai = a] 6= E [Yi(a)].

Thus the main activities of classical causal inference are to identify, measure,
and control for confounders. Suppose the producer measures confounders for each
movie wi. Then inference is simple: use the data (now with confounders) to
take Monte Carlo estimates of E [E [Yi(a) |Wi,Ai = a]]; this iterated expectation
“controls” for the confounders. But the problem is that whether the estimate is
equal to E [Yi(a)] rests on a big and uncheckable assumption: there are no other
confounders. For many applied causal inference problems, this assumption is a
leap of faith.

We develop the deconfounder, an alternative method for the producer who wor-
ries about missing a confounder. First the producer finds and fits a good latent-
variable model to capture the dependence among actors. It should be a factor
model, one that contains a per-movie latent variable that renders the assigned
cast conditionally independent. (Probabilistic principal component analysis [40]
is a simple example, but there are many others.) Given the model, she then esti-
mates the per-movie variable for each cast in the dataset; this estimated variable
is a substitute for unobserved confounders. Finally, she controls for the substitute
confounder and obtains valid causal inferences.

The deconfounder capitalizes on the dependency structure of the observed casts,
using patterns of how actors tend to appear together in movies as indirect evidence
for confounders in the data. Thus the producer replaces an uncheckable search for
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possible confounders with the checkable goal of building a good factor model of
observed casts.

All methods for causal inference using observational data are based on assump-
tions. Here we make two. First, we assume that the fitted latent-variable model is
a good model of the assigned causes. Happily, this assumption is testable; we will
use predictive checks to assess how well the fitted model captures the data. Second,
we assume that there are no unobserved single-cause confounders, variables that
affect one cause (e.g., actor) and the potential outcome function (e.g., revenue).
While this assumption is not testable, it is weaker than the usual assumption of
ignorability, i.e., no unobserved confounders.

Beyond making movies, many causal inference problems, especially from obser-
vational data, also classify as multiple causal inference. Such problems arise in
many fields.

• Genome-wide association studies (GWAS). In GWAS, biologists want to
know how genes causally connect to traits [39, 42]. The assigned causes are
alleles on the genome, often encoded as either being common (“major”) or
uncommon (“minor”), and the effect is the trait under study. Confounders,
such as shared ancestry among the population, bias naive estimates of the effect
of genes.

• Computational neuroscience. Neuroscientists want to know how specific
neurons or brain measurements affect behavior and thoughts [3]. The possible
causes are multiple measurements about the brain’s activity, e.g., one per neu-
ron, and the effect is a measured behavior. Confounders, particularly through
dependencies among neural activity, bias the estimated connections between
brain activity and behavior.

• Social science. Sociologists and policy-makers want to know how social pro-
grams affect social outcomes, such as poverty levels and upward mobility [25].
However, individuals may enroll in several such programs, blurring information
about their possible effects. In social science, controlled experiments are difficult
to engineer; using observational data for causal inference is typically the only
option.

• Medicine. Doctors want to know how medical treatments affect the progression
of disease. The multiple causes are medications and procedures; the outcome
is a measurement of a disease (e.g., a lab test). There are many confounders—
such as when and where a patient is treated or the treatment preferences of
the attending doctor—and these variables bias the estimates of effects. While
gold-standard data from clinical trials are expensive to obtain, the abundance
of electronic health records could inform medical practices.

Causal inference in each of these fields can use the deconfounder. Fit a good
factor model of the assigned causes, infer substitute confounders, and use the
substitutes in causal inference.

Related work. The deconfounder relates to several threads of research in
causal inference.
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Probabilistic modeling for causal inference. [24] use Gaussian processes to depict
causal mechanisms; [45] study post-nonlinear causal models and their identifiabil-
ity; [22] builds on sparse methods to infer causal structures; [23] use factor models
to generalize the self-controlled case series method to multiple causes and multi-
ple outcomes. [19] use variational autoencoders to infer unobserved confounders,
[36] develop projection-based techniques for high-dimensional covariance estima-
tion under latent confounding, and [13] leverages information theory principles to
differentiate causal and confounded connections.

With a related goal, [41] build implicit causal models. They take an ex-
plicit causal view of genome-wide association studies (gwas), treating the single-
nucleotide polymorphisms (snps) as the multiple causes. They connect implicit
probabilistic models and nonparametric structural equation models for causal in-
ference [26], and develop inference algorithms for capturing shared confounding.
[8] studies the same scenario with linear regression, where observing many causes
makes it possible to account for shared confounders. Multiple causal inference and
latent confounding was also formalized by [29], who take an information-theoretic
approach.

These papers use Pearl’s framework [26]; they hypothesize a causal graph with
confounders, causes, and outcomes. This paper complements these works. We
develop the deconfounder in the potential outcomes framework [10, 33, 34].

Analyzing gwas. In gwas, latent population structure is an important unob-
served confounder. [28] propose a probabilistic admixture model for unsupervised
ancestry inference. [27] and [1] estimate the unobserved population structure us-
ing the principal components of the genotype matrix. [43] and [14] estimate the
population structure via the “kinship matrix” on the genotypes. [38] and [7] rely
on factor analysis and admixture models to estimate the population structure.
[6] adopt a similar idea to study the effect of genetic variations on gene expres-
sion levels. These methods can be seen as variants of the deconfounder. The
deconfounder gives them a rigorous causal justification, provides principled ways
to compare them, and suggests an array of new approaches.

Assessing the ignorability assumption. [32] demonstrates that ignorability and a
good propensity score model are sufficient to perform causal inference with obser-
vational data. Many subsequent efforts assess the plausibility of ignorability. For
example, [31, 5, 9] develop sensitivity analysis in various contexts, though focusing
on data with a single cause. In contrast, this work uses predictive model checks
to assess unconfoundedness with multiple causes. More recently, [37] leveraged
auxillary outcome data to test for confounding in time series data; [12, 11, 17]
developed tests for non-confounding in multivariate linear regression. Here we
work without auxiliary data, focus on causal estimation, as opposed to testing,
and move beyond linear models.

The (generalized) propensity score. [35, 21, 16] and many others develop and
evaluate different models for assigned causes. In particular, [2] introduce a semi-
parametric assignment model; they propose a principled way of correcting for the
bias that arises when regularizing or overfitting the assignment model. This work
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introduces latent variables into the model. The multiplicity of causes enables us
to infer these latent variables and then use them as substitutes for unobserved
confounders.

Classical causal inference with multiple treatments. [18, 20, 44, 30, 15, 4] extend
classical matching, subclassification, and weighting to multiple treatments, always
assuming ignorability. This work relaxes that assumption.
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Causality in heavy-tailed models

Nicola Gnecco

(joint work with Nicolai Meinshausen, Jonas Peters and Sebastian Engelke)

In recent years, much progress has been made in the analysis of causal relationship
between random variables. These methods are not well suited, however, if the
causal relationships manifest themselves only in extremes. This work aims to
connect the two fields of causal inference and extreme value theory.

The setup is a linear structural causal model, or SCM,

Xj :=
∑

k∈pa(j,G)

βjkXk + εj, j ∈ V,(1)

where G = (V,E) is the underlying DAG with V = {1, . . . , p}, pa(j,G) are the
graphical parents of j ∈ V in G, and βjk > 0. Moreover, we assume that the noise
variables εj have regularly-varying tails, a subclass of heavy-tailed distributions.
For each pair of variables (Xj , Xk) with cumulative distribution functions Fj , Fk,
j, k ∈ V , we define the causal tail coefficient

Γjk = lim
u→1

E [Fk(Xk) | Fj(Xj) > u](2)

that captures asymmetries in the extremal dependence of two random variables. In
the population case, the causal tail coefficient is shown to reveal the causal struc-
ture if the distribution follows the linear structural causal model defined in (1). In
particular, we prove the following result.

Theorem 1. Consider a heavy-tailed linear SCM over p variables including X1

and X2, as described in (1). Then, knowledge of Γ12 and Γ21 allows us to dis-
tinguish the following cases: (a) X1 causes X2, i.e., X1 is an ancestor of X2, (b)
X2 causes X1, (c) there is a j 6∈ {1, 2}, such that Xj causes X1 and X2, (d) none
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of the above, i.e., there is no causal link between X1 and X2. More precisely, we
have the following table.

Table 2. Summary of the possible values of Γ12 and Γ21 and the
implications for causality.

Γ21 = 1 Γ21 ∈ (1/2, 1) Γ21 = 1/2
Γ12 = 1 (a) X1 causes X2

Γ12 ∈ (1/2, 1) (b) X2 causes X1 (c) common cause
Γ12 = 1/2 (d) no causal link

Theorem 1 holds even in the presence of latent common causes, i.e., confounders,
that have the same tail index as the observed variables.

To estimate the causal tail coefficient defined in (2), we introduce the non-
parametric estimator

Γ̂jk =
1

k

n∑

i=1

F̂k(Xik)1{Xij > X(n−k),j},(3)

where k = kn depends on the sample size n, X(n−k),j denotes the (n− k)-th order

statistics of variable Xj , and F̂k is the empirical cumulative distribution function
of Xk, j, k ∈ V . Further, we prove the consistency of the non-parametric estimator
defined above.

Theorem 2. Let kn ∈ N be an intermediate sequence with

kn → ∞ and k2n/n→ 0, n→ ∞.

Then the estimator Γ̂jk defined in (3) is consistent, as n→ ∞, i.e., for every ε > 0

lim
n→∞

P(|Γ̂jk − Γjk| > ε) = 0, j, k ∈ V.

Based on the non-parametric estimator (3), we propose an algorithm, greedy
ancestral search, that infers causal structure from finitely many data. The method
takes as input Γ ∈ Rp×p, a matrix containing the pairwise causal tail coefficients,
and returns a causal order π associated to the underlying DAG G. We show that
greedy ancestral search produces a correct causal order when the input matrix Γ
contains the population coefficients Γjk, j, k ∈ V . Moreover, we prove that the
algorithm retrieves a correct causal order even when the input matrix is based on

the estimated coefficients Γ̂jk, as n→ ∞.
Finally, we compare our method to other well-established approaches in causal

inference on synthetic data. It turns out that our algorithm is robust to the
presence of confounders and misspecifications of model (1).
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Causal discovery in linear non-Gaussian models

Mathias Drton

(joint work with Y. Samuel Wang)

This talk reports on recent work on causal discovery using linear non-Gaussian
models that are also known by the acronym LiNGAM. Specifically, we discuss
two problems: (i) estimation from high-dimensional data, and (ii) estimation in
settings with latent variables. The work on the former problem is described in [1].
Work on the latter problem is still in progress.

The considered graphical causal models are based on recursive systems of linear
structural equations. This implies that there is an ordering, σ, of the variables
such that each observed variable Yv is a linear function of a variable specific error
term ǫv and the other observed variables Yu with σ(u) < σ(v). The precise causal
relationships, i.e., precisely which other variables the linear functions depend on,
can be described using a directed graph, also known as the causal graph. The
graph’s vertex set V is an index set for the observed variables, and an edge u→ v
is drawn for all variables that Yv is a linear function of. Let pa(v) be the set of all
vertices u with u → v in the graph. Then the statistical model is determined by
the equation system

Yv =
∑

u∈pa(v)

βvuYu + ǫv, v ∈ V.

Here, the coefficients βvu are unknokwn parameters, and the error terms ǫv, v ∈ V ,
are independent.

It has been previously shown that when the error terms ǫv are non-Gaussian,
the exact causal graph, as opposed to a Markov equivalence class, can be consis-
tently estimated from observational data. The estimate can be obtained by using
the non-Gaussianity to infer a causal ordering σ and then determining the graph
via variable selection in regression. The ordering may be inferred in step-wise
fashion, identifying in each step an initial/source node r and then forming resid-
uals in regression adjusting for Yr. However, this step-wise regression adjustment
is applicable only in low-dimensional problems in which the sample size exceeds
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the number of studied variables. We propose a modification of the algorithm that
yields consistent estimates of the graph also in high-dimensional settings in which
the number of variables may grow at a faster rate than the number of observations
but in which the underlying causal structure features suitable sparsity; specifically,
the maximum in-degree of the graph is controlled. In a theoretical analysis we give
consistency results in the setting of log-concave error distributions.

In the second part we no longer assume that all relevant variables have been
observed. Instead, some of the relevant variables may be unobserved. We capture
this by allowing some of the errors ǫv in the above equation system to be dependent,
which is commonly visualized by adding bidirected edges to the directed graph that
determines the form of the equations. This yields a mixed graph also termed a path
diagram. In this paradigm we focus on discovering the causal structure for models
given by bow-free acyclic path diagrams. While these diagrams allow for the
presence of latent confounders, they make the simplifying assumption that there
may not be both a direct effect and latent confounding between a pair of variables.
Our main result is an algorithm to recover a bow-free acyclic path diagram from
observational data. The algorithm exploits the fact that in a model given by a
bow-free acyclic path diagram the direct effects can be identified from the second
moment structure in a stepwise fashion that follows the topological/causal ordering
of the variables. Importantly, the identification of the effects no longer proceeds
through regression adjustments.
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Identification And Estimation Via A Modified Factorization Of A
Graphical Model

Ilya Shpitser

(joint work with Thomas S. Richardon, Robin J. Evans, James M. Robins,
Razieh Nabi, and Eli Sherman)

It is well known that in the absence of hidden common causes, identification of
causal effects is given by a truncated factorization known as the g-formula. Our
work shows that much of modern non-parametric identification theory may be
rephrased as a more complex truncated factorization derived from the factorization
of the observed marginal of a hidden variable graphical model defining the nested
Markov model. Further, viewing identified functionals as a modified factorization
directly leads to maximum likelihood inference for causal parameters in hidden
variable models.

The nested Markovmodel is defined on an acyclic directed mixed graph (ADMG)
obtained from a hidden variable DAG by the latent projection operation [5]. AD-
MGs contain directed edges (→) representing a direct causal relationship, and
bidirected edges (↔) representing the presence of unobserved common causes. A
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latent projection represents an infinite class of hidden variable DAG models that
share the set of equality constraints on the observed marginal distribution, and
non-parametric identification theory. The nested Markov model associated with
the latent projection ADMG obtained from the hidden variable DAG is the set
of all distributions that capture all equality constraints, including generalized in-
dependence constraints, induced on the observed margin by the hidden variable
DAG model.

Just as DAG models are defined by factorizations with respect to DAGs, nested
Markov models are defined by factorizations with respect to ADMGs. The DAG
factorization is constructed from conditional distributions corresponding to single-
ton vertices in the DAG (given their parents). The nested factorization is similarly
constructed from Markov kernels [2] corresponding to special sets of vertices in
the ADMG, called intrinsic sets (given their parents not in the set).

An intrinsic Markov kernel qS(S|W ) for every intrinsic set S is a mapping from
values of parents of vertices in the set (not themselves in the set)W to joint distri-
butions over variables S in the set. Each such kernel is a particular function of the
observed marginal distribution, which is not necessarily a conditional distribution.
Every ADMG has a fixed set of intrinsic sets, with the full algorithm for obtaining
them, and the corresponding Markov kernels given in [3].

For example, the ADMG in Fig. 1 (e) has the following intrinsic sets: {A},
{B}, {D}, {Y }, {A,C}, {A,C, Y }, {C, Y }, {B,D}. and the following Markov
kernels: qA(A) ≡ p(A); qB(B|A) ≡ p(B|A); qD(D|C) ≡

∑
B p(D|C,B,A)p(B|A);

qY (Y |D) ≡
∑

A,C p(Y |D,C,B,A)p(C|B,A)p(A); qA,C(A,C|B) ≡ p(C|B,A)p(A);

qA,C,Y (A,C, Y |B,D)≡p(Y |A,B,C,D)p(C|B,A)p(A); qC,Y (C, Y |A,B,D)≡
p(Y |A,B,C,D)p(C|B,A); qB,D(B,D|A,C) ≡ p(D|A,B,C)p(B|A). Markov ker-
nels defining the nested Markov models naturally capture generalized indepen-
dence constraints associated with missing edges in the ADMG, and implied by
the underlying hidden variable DAG. An example of such a constraint is implicit
in the definition of qD(D|C) in terms of

∑
B p(D|C,B,A)p(B|A) that appears at

first glance to depend on values of A, but in fact does not under the model.
The nested Markov factorization expresses the joint distribution, and certain

other distributions derived from the joint, as products of intrinsic Markov kernels.
As an example, the nested Markov model for the ADMG in Fig. 1 implies the
following identities, among others:

p(A,B,C,D, Y ) = qA,C,Y (A,C, Y |B,D)qB,D(B,D|A,C),

p(A,B,C,D) = qA,C,Y (A,C|B,D)qB,D(B,D|A,C),

p(Y (d), C(d),B(d), A(d)) = qA,C,Y (A,C, Y |B,D = d)qB(B|A).

Note that the last object corresponds to a counterfactual distribution. In fact,
counterfactual distributions p(Y (a)) are identified in any hidden variable causal
model with the latent projection ADMG G if and only if p(Y ∗(a)) factorizes
into intrinsic Markov kernels in G, where Y ∗ is all variables with a directed path
into Y not through A in G [3]. In other words, identification of counterfactual
distributions in the presence of hidden variables is closely related to the existence
of the nested Markov factorization for that distribution.
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Figure 1. (a) A hidden variable DAG, and (b) the corresponding
latent projection ADMG.

The nested Markov factorization directly leads to likelihoods where parameters
are associated with intrinsic Markov kernels. For binary data, such parameters
are of the form qS(S = 0|W ), for every intrinsic Markov kernel qS(S|W ) [1]. Such
a parameterization for a binary nested Markov model associated with Fig. 1 yields
25 parameters, while a naive parameterization in terms of conditional probabilities
will yield 31. Just as the case for DAG models, these savings become dramatic
as the dimensionality of the model increases, provided the graph remains sparse.
A parameterization in terms of path coefficients of a linear structural equation
model [6] also exists for Gaussian distributions in the nested Markov model [4].
Maximum likelihood estimation algorithms have been developed for parameters
of these likelihoods. These algorithms directly lead to plug-in estimators for all
non-parametrically identified causal quantities.
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Conditional variance penalties and domain shift robustness

Christina Heinze-Deml

(joint work with Nicolai Meinshausen)

In this work [1], we study the robustness of image classification with deep neural
networks under a certain class of distribution shifts where the distributions of
interest are formulated in terms of a causal model. Conceptually, one can reason
about the latent features that manifest themselves in an image as follows: we can
distinguish between (i) latent ‘core’ features Xcore whose distribution Xcore|Y ,
conditional on the class Y , does not change substantially across domains and (ii)
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latent ‘style’ features Xstyle whose distribution Xstyle|Y can change substantially
across domains. For instance, features like position, rotation, image quality or
brightness are considered style features. We propose an estimator that is robust
under changes in the distribution of these style features.

Our work relates to “classical” distributional robust inference as follows. In
that line of work, the target of inference is

argminθ sup
F∈F

EF (ℓ(Y, fθ(X)))

for a given set F of distributions, twice differentiable and convex loss ℓ, and pre-
diction fθ(x). For instance, F can be of the form F = Fǫ(F0) with

Fǫ(F0) := {distributions F such that D(F, F0) ≤ ǫ},

with a small constant ǫ > 0 and D(F, F0) being, for example, a φ-divergence (e.g.
[2, 3, 4]) or a Wasserstein distance (e.g. [5]). In contrast to considering robustness
with respect to such pre-defined classes of distributions, we express F in terms of a
causal model where F is the set of distributions that are generated by interventions
on the latent style features.

While we expect that the distribution Xstyle|Y may change substantially across
domains, we assume that the domain itself is not observed and hence a latent
variable. Therefore, we do not know a priori which features are subject to distri-
butional shifts and which features have a stable conditional distribution. However,
we do assume that we can sometimes observe a typically discrete identifier or “ID
variable”. In some applications we know, for example, that two images show the
same person, and ID then refers to the identity of the person. The proposed
method requires only a small fraction of images to have ID information. We
group observations if they share the same class and identifier (Y, ID) = (y, id)
and penalize the conditional variance of the prediction or the loss if we condition
on (Y, ID). This conditional variance regularization (CoRe) is shown to protect
asymptotically against shifts in the distribution of the style variables. Empiri-
cally, we show that the CoRe penalty improves predictive accuracy substantially
in settings where domain changes occur in terms of image quality, brightness and
color while we also look at more complex changes such as changes in movement
and posture.
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RSVP-graphs: Fast High-dimensional Covariance Matrix Estimation
Under Latent Confounding

Rajen D. Shah

(joint work with Benjamin Frot, Gian-Andrea Thanei, Nicolai Meinshausen)

We consider the problem of estimating a high-dimensional p×p covariance matrix
Σ, given n observations x1, . . . , xn of confounded data with covariance Σ + ΓΓT ,
where Γ is an unknown p×q matrix of latent factor loadings. We propose a simple
and scalable estimator based on the projection on to the right singular vectors of
the observed data matrix, which we call RSVP. Specifically, the simplest version
of our estimator takes the form V V T where V has as columns the right singular
vectors of the centred data matrix X with ith row xi −

∑
j xj/n.

Our theoretical analysis of this method reveals that the estimator concentrates
around its expectation at the same rate as that of the empirical covariance when
scaled such that the entries are of order 1. Furthermore, the bias in estimating
Σ is shown to be of smaller order than the variance provided we are in the high-
dimensional setting where p≫ n; in this way RSVP exploits a particular blessing
of high dimensionality.

We see that in contrast to approaches based on removal of principal components
such as [2], RSVP is able to cope well with settings where the smallest eigenvalue
of ΓTΓ is relatively close to the largest eigenvalue of Σ, as well as when eigenvalues
of ΓTΓ are diverging fast. It is also able to handle data that may have heavy tails
and our theory only relies on the data having an elliptical distribution. RSVP
does not require knowledge or estimation of the number of latent factors q, but
as a consequence only recovers Σ up to an unknown positive scale factor. We
argue however that this suffices in many applications. Indeed, in many settings it
is the correlation that is of greater interest than the covariance. A further use of
the RSVP estimator is to plug it into an existing approach for estimation of the
conditional independence graph, such as neighbourhood selection [3].

Whilst the theoretical results for the simple form of the RSVP estimator rely
on p ≫ n, we also show that in more general settings that include p ≍ n for
example, we can mimic the high-dimensional setting by computing the estimator
on subsamples of the observations and then averaging the results. Interestingly
this use of subsampling reduces bias in settings where we do not have p≫ n, and
inflates the variance of the estimator by at most a factor of

√
log(p).

We demonstrate the favourable performance of RSVP both for covariance ma-
trix estimation and estimation of the corresponding conditional independence
graph through simulation experiments and an analysis of gene expression datasets
collated by the GTEX consortium [1].
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Perspectives for causal discovery in Earth system sciences

Jakob Runge

(joint work with S. Bathiany, E. Bollt, G. Camps-Valls, D. Coumou, E. Deyle,
C. Glymour, M. Kretschmer, M.D. Mahecha, J. Munoz-Mari, E.H. van Ness,

J. Peters, R. Quax, M. Reichstein, M. Scheffer, B. Schölkopf, P. Spirtes,
G. Sugihara, J. Sun, K. Zhang, J. Zscheischler)

The heart of the scientific enterprise is a rational effort to understand the causes
behind the phenomena we observe. While insight in many areas of physics has
come from experiments and randomized controlled experiments are a standard
approach in medicine and the social sciences, in large-scale complex dynamical
systems such as the Earth system, real experiments are rarely feasible. The main
current alternative within most disciplines of Earth sciences are computer simula-
tion experiments. However, these are very expensive, time-consuming, and require
substantial amounts of expert knowledge, which in turn may impose strong mech-
anistic assumptions on the system[1]. Fortunately, recent decades have seen an
explosion in the availability of large-scale time series data, both from observations
(satellite remote sensing, station-based, or field site measurements), and from
Earth system model outputs[1]. Such data repositories, together with increasing
computational power, open up novel ways to use data-driven methods for the al-
ternative strand of modern science: observational causal discoveries[5]. In recent
years, rapid methodological progress has been made in computer science[2, 7],
physics[4], and machine learning[3] to infer and quantify potential causal depen-
dencies from time series data without intervening in systems. Unfortunately, many
methods are still little known and rarely adopted in Earth system sciences.

In the following, we briefly mention challenges and a way forward for observa-
tional causal inference in Earth system sciences which is further elaborated on in
a recent publication[5]. As illustrated in Fig. 1, the Earth system poses major
challenges to observational causal inference, from characteristics of the underlying
processes to properties of the measured data and computational aspects. These
challenges are rather generic and apply to many other fields. We suggest a num-
ber of avenues for future research: In the short term, the largest potential lies
in combining different conceptual approaches that have already shown practical
use in Earth sciences[6] in order to address multiple challenges. In the mid-term,
it is worth exploring methods that have not been applied to Earth system data,
but whose theoretical properties may render them suitable, for example, meth-
ods that are based on the principle of independent mechanisms[3]. In the long
term, we envision that the two main approaches to understand the Earth system
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Figure 1. Methodological challenges for causal discovery in com-
plex spatio-temporal systems such as the Earth system.

(observational data analysis and Earth system modeling) should become more
and more integrated. Causal inference can improve climate model development[5]
and physical knowledge (e.g., simulation experiments) can be incorporated into
observational causal inference.

A major impediment to a much wider adoption of causal inference methods is
the lack of a reliable benchmark database. A recent causality benchmark platform
(causeme.net) tries to fill this gap with synthetic models mimicking real data and
a call for submissions of real data sets. Sensibly applied causal inference methods
promise to substantially advance the state-of-the-art in understanding complex
dynamical systems from data also in many other fields with similar challenges as
in Earth system sciences, if domain scientists and method developers closely work
together–and join the ‘causal revolution’.
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Relaxed Causality

Dominik Rothenhäusler

(joint work with Nicolai Meinshausen, Peter Bühlmann, Jonas Peters)

We discuss connections between causal inference, distributional robustness and
replicability. It has recently been shown that causal parameters can be written
as the solution of a minimax risk problem, where the maximum is taken over a
range of perturbed distributions [4]. These perturbed distributions arise from ar-
bitrary interventions on the predictors. Estimating causal parameters, i.e. solving
the minimax problem using observational data is only possible under strong as-
sumptions which are often hard to justify in practice. This motivates relaxing the
“causal” minimax problem.

Distributional robustness. As causal parameters solve a minimax risk prob-
lem, causality can be (but of course does not have to be) understood as a prediction
problem with an extreme level of distributional robustness (namely the predictions
will still be equally accurate under arbitrarily strong interventions on the predictor
variables). Hence, from this perspective, we can relax the causal minimax problem
by taking the maximum over a smaller set of interventional distributions. Concep-
tually, solving the minimax problem for different sets of interventional distributions
would allow us to trade off predictive performance under strong perturbations and
predictive performance on unperturbed data. In a linear setting where we have
access to an exogeneous variable A, this can be achieved in practice by “interpo-
lating” between ordinary least squares and the instrumental variables approach.
This motivates anchor regression, which can be seen as a regularization scheme
that encourages the estimator to generalize well to certain perturbed data.

Replicability. There are many reasons why scientific results are often not
replicable across studies. Arguably, the issue of replicability is partially caused
by wrong incentives and a failure of quality control. Here, we look at the issue
of replicability from the perspective of distributional shifts. When a study is
repeated, often the new observations are sampled from a different distribution
than the observations of the original data set. Such distributional shifts may arise
in practice, for example, when data is collected in different locations or at different
timepoints. One may be interested in screening for associations that are invariant
under certain distributional perturbations. We show that if anchor regression and
ordinary least squares provide the same answer, then the relationship between
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target and predictors is unconfounded and the associations are invariant under
certain perturbations. We demonstrate this effect on real-world data.
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Causal Regularization

Dominik Janzing

While regularization in standard prediction problems aims at avoiding overfitting
finite data, I argue that it can also be recommended in the infinite sample limit
if one is interested in causal models rather than purely predictive ones. This
is already suggested by the following high-level arguments: On the one hand,
regularization may help generalizing across different environmental conditions [1]
rather than only across subsamples from the same distribution. On the other
hand, models that generalize better across different environmental conditions are
believed to be more causal and vice versa, see e.g., [2, 3, 4, 5]. Here I don’t
consider different environments but a model with a single data set for which the
causal relation between predictor and target variable is confounded. I show that
for this model the effect of confounding is so similar to the effect of overfitting that
exactly the same regularization techniques help against both, for details see [6].

Scenario 1 (overfitting): We are given a d-dimensional predictor variable X
and a real-valued target variable Y related by the linear statistical model

(1) Y = Xa+ E,

where a ∈ Rd and E is an independent noise term. Then the ordinary least squares
regression vector is given by the empirical covariance matrices:

â := Σ̂XX

−1
Σ̂XY = a+ Σ̂XX

−1
Σ̂XE .

For finite data, â 6= a because the empirical covariance between X and E is non-
zero although we have assumed the covariance to vanish in the population limit.
Regularized least squares regression (e.g. Ridge and Lasso) aims at getting closer
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to a by minimizing training error plus model complexity (in terms of the norm
of a). Indeed, one can show [7] that Ridge and Lasso regression maximizes the
posterior likelihood for a, given appropriate priors for a.

Scenario 2 (confounding): We now assume that (1) describes the causal relation
between X and Y , while it was just describing a statistical model so far. We
assume, moreover, ΣXE 6= 0 due to some common cause of X and E. Therefore,
ordinary least squares regression in the population limit yields

â = Σ−1
XX

ΣXY = a+Σ−1
XX

ΣXE .

While â now describes the statistical relation between X and Y correctly, it fails
to describe the causal relation, which would be described by the vector a.

In both scenarios, recovering a would be the desired result, but ordinary re-
gression fails because of the covariance of X and E. While it is the empirical
covariance in the first case, it is the population covariance in the second one. This
analogy raises the following question: if regularization helps against overfitting
why shouldn’t it likewise help against confounding? Why should the algorithms
care whether â 6= a due to a finite sample effect or due to confounding? We just
need to assume a generating model for confounding for which ΣXE follows the

same distribution as Σ̂XE in the finite sample case. Such a model has been stud-
ied in [8] where the confounder consists of ℓ independent sources (Z1, . . . , Zℓ) =: Z.
Then, X is generated from Z by some fixed mixing matrix M and Y from Z by
a random mixing vector c. Assuming that c is chosen from N (0, σ2

c I) (where σ2
c

controls the strength of confounding), the covariance vector ΣXE is distributed
according to N (0, γΣXX), where γ can be derived from model parameters like σc

and ℓ. For finite sample effects in Scenario 1, one can easily show that Σ̂XE is
distributed according to N (0, σ2

EΣXX), if E ∼ N (0, σ2
E). Hence we have achieved

that ΣXE in Scenario 2 follows the same distribution as Σ̂XE in Scenario 1 if the
noise level σ2

E is replaced with γ. If we choose the same priors for a as for Ridge
and Lasso, the unique estimators for a maximizing the posterior likelihood given
the population covariances, are again given by Ridge and Lasso with non-zero
penalizing term.

The above tight analogy between overfitting and confounding is achieved by
the complexity of the multivariate confounder which generates correlations that
‘appear like noise’. This observation is not restricted to linear relations. I was
able to prove a ‘causal generalization bound’ [6] stating that the error made by
interpreting any non-linear regression as causal model can be bounded from above
whenever functions are taken from a not too rich class. In standard statistical
learning theory [9], exchangeability ensures that predictive models from not too
rich classes generalize from one subsample to another one. Here, symmetries of
the multivariate confounding model ensure that predictive models from not too
rich classes generalize from observational to interventional data.
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Causal mediation with longitudinal mediator and survival outcome

Vanessa Didelez

In causal mediation analysis, we are interested in understanding different mech-
anisms (causal pathways) of a treatment or exposure affecting some outcomes.
Often this is formalised in terms of (in)direct causal effects — popular notions of
these are based on so-called ‘nested counterfactuals’, Y (a,M(a′). Identification
relies crucially on a cross-world independence Y (a,m)⊥⊥M(a′). Because of this,
the concepts of natural (in)direct effects run into difficulties of interpretation in
the particular context of survival analyses, where Y is a survival time and the
mediator is a whole process {Mt}. These problems are:

Problem 1: If survival is shorter, say, under A = a′ than under A = a, then the
second index of Y (a, {Mt(a

′))} is ‘incomplete’; the nested counterfactual is not
well-defined.

Problem 2: Later survival as well as later measurements of the mediator process
depend on prior survival. Hence, prior survival acts like a post-treatment con-
founder and, so, identifiability fails.

In this work, I propose an alternative approach that does not suffer from such
shortcomings [1]: this novel approach follows Robins and Richardson [2], where
mechanisms need to be specified allowing a separation into the different treatment
paths, formalized using an augmented directed acyclic graph (DAG). The graph
is hence augmented with nodes AM and AY and with paths A → AM → Mt and
A → AY → Y replacing the edges A → Mt and A → Y ; observationally we



1544 Oberwolfach Report 25/2019

have that A ≡ AY ≡ AM , but the target of inference becomes an interventional
distribution where AY and AM are set to different values; in contrast to the nested
counterfactual this reformulation yields a manipulable causal parameter [2]. As
this does not involve setting the whole process {Mt} to a ‘value’ and as it separates
the edges emanating from treatment A, the proposed approach does not suffer from
the above two problems. Moreover, under conditional independence assumptions
that can easily be read off the extended DAG, it can be shown that the inter-
ventional distribution can be identified from observational data also for survival
outcome and longitudinal mediator. The identifying formula is the familiar medi-
ational g-formula. Hence, a number of methods for estimation of these separated
effects can be applied, such as g-computation and doubly robust estimation for
discrete time points — basically any available method for the g-formula.

While the above methods are well-established for discrete time, the continuous
time case also deserves attention. For this case it was demonstrated that for the
particular choice of combining a linear model for the mediator with an additive
hazard model, the familiar ‘path-tracing’ formula of linear structural equations
can be recovered [3]. For illustration, this method was applied to an example
of mediated effects of a blood-pressure treatment on time to kidney failure [3].
We investigated intensive versus standard blood-pressure treatment and found
that there is little, and not much time-varying, indirect effect via diastolic blood
pressure on kidney failure. Hence, other ways of preventing this side effect of
intensive blood-pressure treatment might be worth investigated.

The proposed new approach solves a crucial conceptual problem of mediation
analysis with a survival outcome and can be extended to yield much needed clar-
ification in competing risks settings [4]. It is founded in decision theory, avoids
genuine counterfactual (cross-world) assumptions and, even in non-survival con-
texts, constitutes an interesting alternative to the prevailing structural equation
modelling.
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The regression discontinuity design in public health: Continuous and
binary outcomes

Sara Geneletti

(joint work with G. Baio, A. O’Keeffe, F.Ricciardi, S. Richardson, L.Sharples)

A Regression Discontinuity (RD) design is a quasi-experimental method for treat-
ment effect estimation, introduced in the 1960’s in [35] and widely used in eco-
nomics and related social sciences [21] and more recently in the medical sciences
[17, 6, 32, 29, 27]. The RD design has become of interest in the context of pub-
lic health as it enables the use of routinely gathered medical data to evaluate the
causal effects of drugs when these are prescribed according to well-defined decision
rules. This can be very useful as government agencies such as the Federal Drug
Administration (FDA) in the US and the National Institute for Health and Care
Excellence (NICE) in the UK are increasingly issuing guidelines for drug prescrip-
tion. Furthermore results can be contrasted to those obtained from randomised
controlled trials (RCTs) and inform prescription policy and guidelines based on a
more realistic and less expensive context.

We apply the method to evaluating the effect of prescribing statins, a class of
cholesterol-lowering drugs on the levels of LDL cholesterol. Further, we evaluate
the effect of statin prescription on a binary variable defined by whether an in-
dividual reaches recommended LDL cholesterol levels within 6 months of statin
prescription.

Guidelines in 2013 in the UK (when and where the data were collected) state
that statins should be prescribed to patients with 10-year cardio-vascular disease
risk scores in excess of 20%. If we consider patients whose risk scores are close to
the 20% risk score threshold, we find that there is an element of random variation
in both the risk score itself and its measurement. We can therefore consider the
threshold as a randomising device that assigns statin prescription to individuals
just above the threshold and withholds it from those just below. Thus, we are
effectively replicating the conditions of an RCT in the area around the threshold,
removing or at least mitigating confounding.

In a realistic context, doctors do not strictly follow the prescription guidelines
and therefore there are patients who are prescribed statins who have a risk score
below 20% and patients who are not prescribed statins despite having a risk score
above 20%. When this is the case, the RD design is termed “fuzzy”, in contrast
to the “sharp” design when doctors adhere to the prescription guidelines.

The RD design threshold is a type of instrumental variable, indeed, causal
effects from fuzzy RD designs are usually estimated using methods from the IV
literature for both continuous and binary outcomes [26, 4, 10]. For a continuous
outcome, the Local average treatment effect is commonly used as an estimator
whilst for a binary outcome, an IV-based Multiplicative Structural Mean Model
(MSMM) is often used. In the binary case the MSMM estimator identifies a risk
ratio for the treated (RRT).
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These estimators are all developed under a frequentist approach to statistical
inference. In our work, we develop a Bayesian approach to the estimation of the
LATE and the RTT, within the context of a fuzzy RD design. The use of a Bayesian
approach has several benefits when compared to frequentist methods. Firstly, we
obtain the variances of our estimates from our posterior samples directly without
having to use bootstrapping or other variance approximation approaches (e.g. the
Delta method). The Bayesian estimators are very flexible as we can estimate their
components within a large number of models. Finally both estimators are ratios
and are prone to instability. By adopting a Bayesian approach we are able to
impose prior constraints on the estimators in order to stabilise them.

We apply our method to real data from routinely gathered data from doctors
in the UK and find that results are broadly in agreement with RCTs. In addition
we run a large number of simulation studies and show that our methods compare
favourably to competing frequentist approaches.
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Identification of Causal Effects in the Presence of Selection Bias

Jin Tian

(joint work with Juan D. Correa, Elias Bareinboim)

Cause-and-effect relations are one of the most valuable types of knowledge sought
after throughout the data-driven sciences since they translate into stable and gen-
eralizable explanations as well as efficient and robust decision-making capabilities.
Inferring these relations from observational data, however, is a challenging task.
Two of the most common barriers to this goal are known as confounding and se-
lection biases. The former stems from the systematic bias introduced during the
treatment assignment, while the latter comes from the systematic bias during the
collection of units into the sample. We consider the problem of identifying causal
effects when both confounding and selection biases are simultaneously present.
Specifically, given qualitative causal assumptions in the form of a causal graph G
and observational distribution P (possible under confounding bias and selection
bias), we study whether a causal effect P (y|do(x)) is computable from P .

Identifying Causal Effects from Selection Biased Data
We first investigate the problem of identifiability when all the available data is
biased. The problem of selection bias can be modeled through the explicit ar-
ticulation of the sampling mechanism, S, a binary indicator variable such that
S = 1 if a unit is included in the sample, and S = 0 otherwise. When samples are
collected preferentially, the causal effects need to be identified from a biased distri-
bution P (v|S = 1), instead of joint distribution P (v) when the sampling process
is entirely random. Given a causal graph G augmented with the selection variable
S, we have developed a complete algorithm to determine the identifiability of the
causal effect P (y|do(x)) from biased distribution P (v|S = 1) in G [1, 2]. The
algorithm either returns an expression for P (y|do(x)) in terms of P (v|S = 1), or,
whenever the algorithm returns a failure condition, no identifiability claim about
P (y|do(x)) can be made by any other method.
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Identifying Causal Effects from a Combination of Selection Biased Data
and unbiased Data
We then generalize the setting to when, in addition to the biased data, another
piece of external data is available, without bias. For example, a subset of the covari-
ates could be measured without bias (e.g., from census). We examine the problem
of identifiability when a combination of biased and unbiased data is available. We
have developed a new algorithm [2] that, given a causal graph G augmented with
the selection variable S, systematically determines the identifiability of the causal
effect P (y|do(x)) from biased distribution P (v|S = 1) and external data P (t) over
a subset of the variables. The algorithm subsumes the current state-of-the-art
methods, while the completeness of the algorithm is still under investigation.

Covariate Adjustment under Confounding and Selection Biases
Adjusting by a set of covariates is arguably the most widely used technique in
practice for causal effects estimation. Although commonly used to control for
confounding bias in observational data, adjustment could be used to control for
when selection bias is present as well. We generalize the notion of adjustment to
account for both confounding and selection biases and leverage external data that
may be available without selection bias (e.g., data from census) as well. Formally
we introduce the notion of adjustment pair as follows [3]:
Given a causal diagram G augmented with selection variable S, disjoint sets of
variables X,Y, Z, and a set ZT ⊆ Z, (Z,ZT ) is said to be an adjustment pair
for recovering the causal effect of X on Y if for every model compatible with G it
holds that:

P (y|do(x)) =
∑

z

P (y|x, z, S=1)P (z\zT |zT , S=1)P (zT ).

The expression above is a natural extension of the standard adjustment formula
P (y|do(x)) =

∑
z P (y|x, z)P (z), and it captures the orthogonal nature of con-

founding and selection biases while allowing for the use of unbiased data over a
subset of the covariates. Furthermore, it incorporates two special cases depending
on the types of data available. When all observational data is biased (ZT = ∅), it
reduces to

P (y|do(x)) =
∑

z

P (y|x, z, S = 1)P (z|S = 1).

When all covariates are measured unbiasedly (ZT = Z), it reduces to

P (y|do(x)) =
∑

z

P (y|x, z, S = 1)P (z).

We have developed a complete graphical criterion for when (Z,ZT ) is an adjust-
ment pair for identifying causal effect P (y|do(x)) [3]. We further design an algo-
rithm for listing all admissible adjustment pairs in polynomial delay time, which is
useful for researchers interested in evaluating certain properties of some admissible
pairs but not all (common properties include cost, variance, and feasibility to mea-
sure). We also describe a statistical estimation procedure that can be performed
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once a set is known to be admissible, which entails different challenges in terms of
finite samples.
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Do ImageNet Classifiers Generalize to ImageNet?

Ludwig Schmidt

(joint work with Benjamin Recht, Rebecca Roelofs, Vaishaal Shankar)

The overarching goal of machine learning is to produce models that generalize.
We usually quantify generalization by measuring the performance of a model on
a held-out test set. What does good performance on the test set then imply? At
the very least, one would hope that the model also performs well on a new test set
assembled from the same data source by following the same data cleaning protocol.

In this paper, we realize this thought experiment by replicating the dataset
creation process for two prominent benchmarks, CIFAR-10 and ImageNet [1, 4].
In contrast to the ideal outcome, we find that a wide range of classification models
fail to reach their original accuracy scores. The accuracy drops range from 3%
to 15% on CIFAR-10 and 11% to 14% on ImageNet. On ImageNet, the accuracy
loss amounts to approximately five years of progress in a highly active period of
machine learning research.

Conventional wisdom suggests that such drops arise because the models have
been adapted to the specific images in the original test sets, e.g., via extensive
hyperparameter tuning. However, our experiments show that the relative order of
models is almost exactly preserved on our new test sets: the models with highest
accuracy on the original test sets are still the models with highest accuracy on
the new test sets. Moreover, there are no diminishing returns in accuracy. In
fact, every percentage point of accuracy improvement on the original test set
translates to a larger improvement on our new test sets. So although later models
could have been adapted more to the test set, they see smaller drops in accuracy.
These results provide evidence that exhaustive test set evaluations are an effective
way to improve image classification models. Adaptivity is therefore an unlikely
explanation for the accuracy drops.

Instead, we propose an alternative explanation based on the relative difficulty
of the original and new test sets. We demonstrate that it is possible to recover the
original ImageNet accuracies almost exactly if we only include the easiest images
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from our candidate pool. This suggests that the accuracy scores of even the best
image classifiers are still highly sensitive to minutiae of the data cleaning process.
This brittleness puts claims about human-level performance into context [2, 3, 5].
It also shows that current classifiers still do not generalize reliably even in the
benign environment of a carefully controlled reproducibility experiment.

Figure 1 shows the main result of our experiment. To enable future research,
we release both our new test sets and the corresponding code.1

Figure 1. Model accuracy on the original test sets vs. our new
test sets. Each data point corresponds to one model in our testbed
(shown with 95% Clopper-Pearson confidence intervals). The
plots reveal two main phenomena: (i) There is a significant drop
in accuracy from the original to the new test sets. (ii) The model
accuracies closely follow a linear function with slope greater than
1 (1.7 for CIFAR-10 and 1.1 for ImageNet). This means that ev-
ery percentage point of progress on the original test set translates
into more than one percentage point on the new test set. The
two plots are drawn so that their aspect ratio is the same, i.e.,
the slopes of the lines are visually comparable. The red shaded
region is a 95% confidence region for the linear fit from 100,000
bootstrap samples.
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Graphical criteria for efficient total effect estimation in causal linear
models

Emilija Perković

(joint work with Leonard Henckel, Marloes H. Maathuis)

Covariate adjustment is a popular method for estimating total causal effects from
observational data. Graphical criteria have been developed to identify covariate
sets that can be used for this purpose. A causal directed acyclic graph (DAG)
can be used to represent the underlying causal system when assuming complete
knowledge of the underlying causal structure. The best-known such criterion is
probably the back-door criterion [6], which is sufficient for adjustment in DAGs.

It is generally not possible to learn the unique causal DAG from observational
data. Under the assumptions of causal sufficiency and faithfulness, one can learn a
Markov equivalence class of DAGs, which is uniquely represented by a completed
partially directed acyclic graph (CPDAG) [3]. Given knowledge of some causal
relationships one can obtain a refinement of this class, uniquely represented by a
maximally oriented partially directed acyclic graph (maximally oriented PDAG)
[3]. In the presence of hidden variables, the counterparts of DAGs and CPDAGs
are maximal ancestral graphs (MAGs) and partial ancestral graphs (PAGs) [10].

We consider the adjustment criterion for DAGs, CPDAGs, maximally oriented
PDAGs, MAGs and PAGs as stated in [8, 9, 7]. This criterion is necessary and
sufficient for adjustment and generalizes the work of [11, 12]. Given the complete
identification of all adjustment sets for these graphs, the following question nat-
urally arises: If more than one adjustment set is available, which one should be
used? While every adjustment set allows for consistent total causal effect esti-
mation, they do so with varying accuracy. We consider graphical criteria for the
identification of efficient adjustment sets in terms of the asymptotic variance of
their respective total causal effect estimates in causal linear models.

To illustrate the problem, consider the total causal effect of X on Y in the
causal DAG G in Figure 1. The adjustment sets (see Definition 4.3 in [8]) are of
the form of the form {B} ∪ S, where S ⊆ {A,C,D}. Hence, the total number of
adjustment sets is 23 = 8. Which of these sets should we use in practice?

A B C

X YD

Figure 1. Causal DAG G
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When the treatment is a single variable X , the parent set of X is often used
as an adjustment set. While this set is easy to compute given a graph, it is also
typically quite inefficient in terms of the asymptotic variance, as the parents of X
are usually strongly correlated with X . Previous results indicate that the following
two notions appear to hold. Adding instrumental variables to a given adjustment
set decreases the efficiency, while adding precision variables increases it.

In [2], we build on results from [4] and [5] which we extend in various directions.
Our first result is a new graphical criterion (Theorem 3.1 in [2]) that can compare
many pairs (but not all) of adjustment sets in terms of the asymptotic variance
of the corresponding total effect estimators. Our result holds for causal linear
models with arbitrary error distributions, as well as for joint interventions, in
DAGs, CPDAGs and maximally oriented PDAGs.

Further, we provide a simple order invariant pruning procedure (Algorithm 1
in [2]) that, given a candidate adjustment set, returns a subset that is also valid
and provides a smaller asymptotic variance. Finally, in Theorem 3.10 in [2], we
define an adjustment set that provides the smallest possible asymptotic variance
among all adjustment sets in the underlying DAG, CPDAG or maximally oriented
PDAG.

Theorem 3.1 and Algorithm extend to settings with latent variables and without
selection bias, by simply changing d-separation to m-separation [10, 13] in the
MAG or PAG and then using Theorem 4.18 from [10] and Lemma 26 from [13].

We consider total effect estimation via covariate adjustment. Other estimators,
such as ensemble estimators or the front-door criterion [1] may be more efficient
and this is of interest for future research.
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[8] E. Perković, M. Kalisch, M. H. Maathuis, Interpreting and using CPDAGs with background

knowledge, Proceedings of UAI 2017.
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Graphical Models for Missing Data

Karthika Mohan

Missing data (also known as incomplete data) are data in which values of one or
more variables in a dataset are observed for some samples and missing for the rest.
Missingness, which is a rather common phenomenon in practice, can occur due to
several reasons such as an ill-designed questionnaire and reluctance of subjects
to answer questions on sensitive topics (e.g. income, religion, sexual orientation
etc.). Table 1 exemplifies a dataset over two variables in the ideal scenario of no
missingness, whereas table 2 exemplifies a dataset with missing values that one
would find in the real world. m in table 2 denotes a missing value.

Table 3. Dataset with
No Missing Values

Work Exp Income
(in years) (in USD)

3 85,000
1 80,000
10 190,000
6 150,000
8 160,000
15 220,000
18 275,000

Table 4. Dataset with
Missing Values

Work Exp Income∗

(in years) (in USD)
3 85,000
1 m
10 190,000
6 150,000
8 160,000
15 m
18 m

The bulk of literature on missing data employs procedures that are data-centric
as opposed to process-centric and relies on a set of strong assumptions that are
primarily untestable (e.g. Missing At Random (MAR) [1]). As a result this area
of research is wanting in tools to encode assumptions about the underlying data
generating process, methods to test these assumptions and procedures to both
decide if quantities of interest are consistently estimable and to compute their
estimands whenever they are.

We address these deficiencies by using a graphical representation called ”Miss-
ingness Graph”[2] (figure 1) which portrays the causal mechanisms responsible for
missingness. Using this representation, we define the notion of recoverability, i.e.,
deciding whether there exists a consistent estimator for a given query. We identify
graphical conditions (necessary and sufficient) for recovering joint and conditional
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Figure 1. W: Work Experience, I: Income, RI : Missingness
Mechanism, I∗: Proxy for Income. Missingness Graphs depicts
(a) Missing Completetly At Random (MCAR) i.e. cause of miss-
ingness is random (no edge into RI) , (b) Missing At Random
(MAR) i.e. cause of missingness is fully observed (edge from W
to RI) and (c) Missing Not At Random (MNAR) i.e. cause of
missingness is not fully observed (edge from I to RI).

distributions [2, 3]. Our results apply to missing data problems in all three cate-
gories: MCAR, MAR and MNAR, the latter is relatively unexplored. We further
address the question of testability i.e. whether an assumed model can be subjected
to statistical tests, considering the missingness in the data [4].

Furthermore viewing the missing data problem from a causal perspective has
ushered in several surprises. These include recoverability when variables are causes
of their own missingness [5], testability of the MAR assumption [4], alternatives
to iterative procedures such as Expectation Maximization algorithm [6] and the
indispensability of causal assumptions for handling missing data problems [7].
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Semi-Supervised Learning, Causality and the Conditional Cluster
Assumption

Julius von Kügelgen

(joint work with Alexander Mey, Marco Loog, Bernhard Schölkopf)

For the task of predicting a target variable Y from features X , large amounts of
unlabelled data (i.e., where only X is observed) are often available at no additional
cost. While it is intuitive that this additional information may help, using it often
leads to deteriorated performance in practice. When and how such semi-supervised
learning (SSL) is possible is thus still not fully understood [1, 2].

In previous work, Schölkopf et al. [3] have established a link between the possi-
bility of SSL and the principle of independent causal mechanisms [4], which states
that the conditional distributions of variables given their causal parents are al-
gorithmically independent and thus do not share any information [5]. Since SSL
relies on linking P (X) and P (Y |X) via additional assumptions [2], they conclude
that SSL should be impossible when predicting a target variable Y from its causes
XC (referred to as causal learning, see Figure 1a), but possible when predicting it
from its effects XE (referred to as anticausal learning, see Figure 1b) [3].

Since both these cases are somewhat restrictive, we extend their work by con-
sidering classification using cause and effect features at the same time, see Figure
1c. This setting arises, for example, when predicting disease from both risk fac-
tors (e.g., age, sex, diet, smoking, etc.) and clinical symptoms shown by a patient.
Formally, we consider data generated from the structural causal model (SCM) [6]

XC := NC(1)

Y := fY (XC , NY )(2)

XE := fE(XC , Y,NE).(3)

Analogously to causal learning, we argue that also in our setting P (XC) does
not contain information about the object of interest, P (Y |XC , XE), which is purely
determined by Eqs. (2) and (3) above and does not depend on Eq. (1).

XC Y

fY

NC NY

(a) Causal

Y XE

fE

NY NE

(b) Anticausal

XC Y XE

NC NY NE

fY fE

(c) With causes and effects

Figure 1. Causal (A) and anticausal (B) learning settings pre-
viously considered for SSL in [3] and our generalisation (C).
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On the other hand, considering the causal (4) and non-causal (5) factorisations

P (Y,XE |XC) = P (Y |XC)P (XE |XC , Y )(4)

P (Y,XE |XC) = P (XE |XC)P (Y |XC , XE).(5)

and arguing with the principle of independent mechanisms, we find that P (XE |XC),
a quantity of which we can obtain a better estimate from unlabelled data, may
share information with P (Y |XC , XE). This leads us to our main insight: the
revelant information that additional unlabelled data may provide for prediction is
contained in the conditional distribution of effect features given causal features.

Based on this, we propose to refine the standard cluster assumption for SSL
[1, 2] as: points in the same cluster of P (XE |XC) share the same label Y . We
refer to this as the conditional cluster assumption. Here, one can think of clusters
of P (XE |XC) as clusters in the space of functions computing effects from causes,
where different functions arise from different choices of Y and NE in Eq. (3). This
idea is illustrated for the case of a binary label Y and additive noise in Figure 2.

Finally, we propose two algorithms for SSL with cause and effect features: a
semi-generative model P (Y,XE |XC , θ) and a conditional self-learning approach.
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Figure 2. Dataset illustrating the conditional cluster assumption.
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Causal Consistency of SEMs & Causal Models as Posets of
Distributions

Sebastian Weichwald

(joint work with Paul Rubenstein, Stephan Bongers, Joris M. Mooij, Dominik
Janzing, Moritz Grosse-Wentrup, Bernhard Schölkopf)

We can often describe the same system with reference to different terminology,
levels of detail, and concepts. We can, for example, reason about individual neu-
rons’ firing rates, about average blood oxygen levels in different brain regions, or
about electromagnetic activity of so-called cortical dipoles and about how any of
those maintain faster reaction times or certain movements. We discuss the fol-
lowing conceptual challenge that is fundamental to causal modelling of real-world
systems such as, for example, the brain: How can we formally characterise the re-
lata, aggregate features, and representations that are suitable for a pragmatically
useful causal model and how do different description levels relate to one another?
The variables we can and do measure do not necessarily lend themselves as is for
a causal description.

In [1] we develop a general framework to characterise when two causal models
of the same system are causally consistent with one another and agree in their
predictions of the effects of interventions. The link between two models is es-
tablished by the variable transformation that maps the relata of one model onto
the relata of the other. We define exact transformations that characterise the re-
quired properties in order to preserve causal reasoning. Transformations here may
correspond to some chosen preprocessing and feature extraction steps or reflect
our limited ability to measure the underlying system. Instead of reasoning about
how individual pixel colours in an image affect brain activity we may first seg-
ment it and identify the objects therein and then model the relationship between
neuronal activity and the presence and position of objects in a visual scene. An
example of an inevitable measurement transformation is electroencephalography
(EEG) where we cannot measure the underlying cortical signals directly but only
electrode signals that are a linear superposition thereof.

This framework provides a formal account of how transformations of variables
either break or preserve causal reasoning and how transformations may be even
necessary to enable causal modelling of the underlying system in the first place.
Importantly, this provides theoretical justification for the applicability of causal
modelling tools in real-world situations where (a) we only measure and model
a sub-system of the world, i .e. where variables ‘irrelevant’ to or outside of this
sub-system are implicitly being marginalised out, (b) we seek a description based
on macro-level features that are aggregates of underlying micro-level variables, or
(c) we have only access to observations at particular points in time of an underlying
time-evolving dynamical system.

This take on the interplay between causal reasoning and variable transforma-
tions enables one to in principle consider and identify transformations that exhibit
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desired properties, e. g. that allow for ‘simpler’ (in terms of complexity), more ‘in-
terpretable’ (in terms one would need to define precisely), or more ‘robust’ (against
interventional regime changes) causal models as compared to using the plain ob-
served variables. For example, [2] considers the consistent abstraction of causal
models via appropriate variable transformations. Robustness to domain shifts re-
sulting from interventions is considered in [3]: The authors argue in favour of a
representation that is consistent with the underlying causal structure in order for
a learner to adapt faster to new environments and to thus obtain good trans-
fer. Future research may discuss how to soften the restrictive requirements for a
transformation to be exact and how to sensibly arrive at a notion of approximate
transformations and a meaningful causal interpretation thereof.

References

[1] P. K. Rubenstein∗, S. Weichwald∗, S. Bongers, J. M. Mooij, D. Janzing, M. Grosse-Wentrup,
B. Schölkopf, Causal Consistency of Structural Equation Models, Proceedings of the Thirty-
Third Conference on Uncertainty in Artificial Intelligence (UAI) (2017).

[2] S. Beckers, J. Y. Halpern, Abstracting Causal Models, Proceedings of the Thirty-Third
AAAI Conference on Artificial Intelligence (2019). Forthcoming.

[3] Y. Bengio, T. Deleu, N. Rahaman, R. Ke, S. Lachapelle, O. Bilaniuk, A. Goyal, C. Pal, A
Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms, arXiv preprint
arXiv:1901.10912v2 (2019).

Max-linear Bayesian networks

Steffen Lauritzen

(joint work with C. Amendola, N. Gissibl, C. Klüppelberg, N. Tran)

Consider a directed acyclic graph (DAG) D = (V,E). A (recursive) linear struc-
tural equation system associated with such a DAG has the form

(1) Xv =
∑

u∈pa(v)

cvuXu + cvvZv, v ∈ V,

where Zv, v ∈ V are independent noise variables and cvu, u ∈ pa(v), cvv are struc-
tural coefficients.

For studying dependence among extreme events in a network, it could make
sense to consider recursive max-linear structural equation systems :

(2) Xv =
∨

u∈pa(v)

cvuXu ∨ cvvZv, v ∈ V,

where now Zv, v ∈ V are independent innovations with atom free distributions
having support R+ and cvu, u ∈ pa(v), cvv are positive structural coefficients. For
simplicity we assume cvv = 1 for all v ∈ V .

Such max-linear Bayesian networks generate distributions which do not admit
densities with respect to product measures since, for example, if V = {1, 2} and
X2 = max(cX1, Z2), the distribution will have positive mass on the line x2 =
cx1. Further details concerning the basic properties of these models and issues
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of estimating the associated DAGs and structural coefficients are described in
[2, 3, 4, 5].

It follows directly from the construction that max-linear systems as above satisfy
basic Markov properties of Bayesian networks as discussed in [6] as these are not
associated with the existence of densities. However, special issues associated with
properties of the algebraic max-times semiring (R+ ∪ {0},∨, ·) imply that, in
general, additional conditional independence properties hold.

The key to revealing these additional independences is associated with exploit-
ing an algebraic representation of these systems using tropical algebraic geometry,
see e.g. [1]. This is work in progress.
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Regularization with invariance for adversarial robustness

Fanny Yang

(joint work with Zuowen Wang, Christina Heinze-Deml, Aditi Ragunathan, Sang
Michael Xie, John Duchi, Percy Liang)

As deployment of machine learning (ML) systems in the real world has steadily
increased over recent years, more and more emphasis is placed on the reliability
of the algorithms. It is for example important to understand certain properties of
commonly used neural networks, such as invariances to different types of pertur-
bations, from both a security and interpretability point of view. Neural networks
trained using standard training have reportedly very low accuracies on perturbed
inputs commonly referred to as adversarial examples.

This talk presents recent work on using invariance-inducing regularization to
improve robustness of against spatial transformations for image classification [7]
and how robust training ℓ∞ perturbations [6] influences generalization performance
on standard test accuracy. In both cases, we evaluate the robust loss, that is
average prediction performance on worst-case transformations (attacks) of a test
image.

As the expressivity of neural networks has been shown to be high both the-
oretically and empirically, in our work we compare the effectiveness of different
ways to incorporate the inductive bias of invariance against small rotations and
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translations. There are two main approaches to achieve invariance and robustness:
one is augmentation-based and relies on adding artificially modified training data,
as in adversarial training or plain data augmentation. A more transformation spe-
cific approach is to carefully design specialized architectures to incorporate spatial
equivariance based on ideas in [2, 1].

As a theoretical justification for regularized methods, we prove that when the
perturbations are from transformation groups, predictors that optimize the ro-
bust loss are in fact invariant. Although recent works suggest that there can be a
trade-off between robust and standard accuracy in artificially constructed ℓ∞ per-
turbation settings [5, 3], we prove that this is fundamentally different for spatial
transformations due to their group structure.

Empirically, we find that regularized augmentation-based methods can achieve
∼ 20% relative adversarial error reduction compared to their unregularized coun-
terparts (including adversarial training) without requiring additional computa-
tional resources. They empirically even outperform a few traditional spatial-
equivariant networks on Cifar-10 and Svhn . Finally, we observe that on Svhn ,
not only does the robust test accuracy increase with invariance-promoting regu-
larization but it helps to boost standard accuracy as well.

In the second part of the talk we present our paper [6] in which we aim to un-
derstand the reasons behind the following phenomenon: Even though adversarial
training [4] can be effective at improving the accuracy on such examples (robust
accuracy), these modified training methods decrease accuracy on natural unper-
turbed inputs (standard accuracy) [4, 3]. This can be observed in the following
table for test accuracies on Cifar-10 .

Standard
training

Adversarial
training

Robust test 3.5% 45.8%
Robust train - 100%
Standard test 95.2% 87.3%
Standard train 100% 100%

Compared to constructed examples in previous works (e.g. [5, 3]) that exhibit a
tradeoff even in the infinite data limit or because of lack of function space capacity,
we consider the “best” scenario for adversarial training: the population minimizer
of the robust loss also minimizes standard population loss. This mimics practical
scenarios where we typically consider perturbations (such as imperceptible ℓ∞
perturbations) which do not change the output of the Bayes estimator, so that a
predictor with both optimal standard and high robust accuracy exists.

In order to disentangle optimization and statistics, we ask does the tradeoff
indeed disappear if we rule out optimization issues? We answer the above question
negatively by constructing a learning problem with a convex loss where adversarial
training hurts generalization in the finite sample setting even when the optimal
population predictor is robust. In particular, adversarial training requires more
samples to obtain high standard accuracy. Since convexity rules out optimization
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issues, our example reveals the possibility of a fundamental statistical explanation
for the observe trade-off in practice.

In an attempt to understand how predictive this example is of practice, we
subsample Cifar-10 and visualize trends in the performance of standard and
adversarially trained models with varying training sample sizes. We observe that
the gap between the accuracies of standard and adversarial training decreases with
larger sample size, mirroring the trends observed in our constructed problem.
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Robust causal structure learning with some hidden variables

Marloes H. Maathuis

(joint work with Benjamin Frot and Preetam Nandy)

The task of learning causal directed acyclic graphs (causal DAGs) arises in many
areas of science and engineering. In such graphs, nodes represent random vari-
ables and edges encode direct causal effects. The problem of recovering their
structure from observational data is challenging and cannot be tackled without
making untestable assumptions [1]. Among other assumptions, causal sufficiency
is particularly constraining. Briefly, causal sufficiency requires that there be no
hidden (or latent) variables that are common causes of two or more observed
variables (hidden confounders).

Existing causal structure learning algorithms typically either assume causal
sufficiency (no hidden confounders), or allow arbitrarily many confounders. In
this work, we take a middle-ground stance on causal sufficiency by allowing hidden
variables while imposing some restrictions on their number and behavior. More
precisely, we consider settings where the underlying DAG among the observed
variables is sparse, and there are a few hidden variables that have a direct effect
on many of the observed ones [2]. This assumptions cover important real-world
applications. For example, one can think of batch effects in gene expression data.
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We suggest a two stage approach which first removes the effect of the hidden
variables and then estimates the Markov equivalence class of the underlying DAG
under the assumption that there are no remaining hidden variables. We show
that this approach is consistent in certain high dimensional regimes and performs
favorably when compared with the state of the art, both in terms of graphical
structure recovery and total causal effect estimation.

This talk is based on the paper by [3].
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A unifying approach for doubly-robust ℓ1 regularized estimation of
causal contrasts

Ezequiel Smucler

(joint work with Andrea Rotnitzky, James M. Robins)

We consider inference about a scalar parameter under a non-parametric model
based on a one-step estimator computed as a plug in estimator plus the empirical
mean of an estimator of the parameter’s influence function. We focus on the class
of parameters that have the mixed bias propery, namely, parameters such that the
bias of the one-step estimator is equal to the mean of the product of the estimation
errors of two nuisance functions.

We show that this class includes many important treatment effect contrasts of
interest in causal inference and econometrics, such as ATE, ATT, an integrated
causal contrast with a continuous treatment, and the mean of an outcome missing
not at random. Moreover the class of parameters with the mixed bias property
strictly includes two recently studied classes of parameters ([2], [1]). We charac-
terize the form of parameters with the mixed bias property and of their influence
functions. Furthermore, we derive two functional moment equations, each being
solved at one of the two nuisance functions, as well as, two functional loss functions,
each being minimized at one of the two nuisance functions. These loss functions
can be used to derive loss based penalized estimators of the nuisance functions.

We propose estimators of the target parameter that entertain approximately
sparse regression models for the nuisance functions allowing for the number of
potential confounders to be even larger than the sample size. By employing sam-
ple splitting, cross-fitting and ℓ1-regularized regression estimators of the nuisance
functions based on objective functions whose directional derivatives agree with
those of the parameter’s influence function, we obtain estimators of the target pa-
rameter with two desirable robustness properties: (1) they are rate doubly-robust
in that they are root-n consistent and asymptotically normal when both nuisance
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functions follow approximately sparse models, even if one function has a very non-
sparse regression coefficient, so long as the other has a sufficiently sparse regression
coefficient, and (2) they are model doubly-robust in that they are root-n consistent
and asymptotically normal even if one of the nuisance functions does not follow
an approximately sparse model so long as the other nuisance function follows an
approximately sparse model with a sufficiently sparse regression coefficient.
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Structural agnostic modeling: An information theoretic approach to
causal learning

Michele Sebag

(joint work with D. Kalainathan, O. Goudet, D. Lopez-Paz, I. Guyon)

The talk addresses the problem of uncovering causal structure from multivariate
observational data, referred to as observational causal discovery [7, 8, 10]. The
considered framework is that of Functional Causal Models [9], defined as a pair
(G, f), with G a directed acyclic graph (DAG) upon random variables X1, . . .Xd,
and f = (f1, . . . , fd) a set of d causal mechanisms, such that the distribution of
variable Xj is defined as:

(1) Xj ∼ fj(XPa(j;G), Ej), with Ej ∼ N (0, 1) for j = 1, . . . , d.

with Pa(j;G) the set of parents of Xj, fj a function from R|Pa(j;G)|+1 → R and Ej

a unit centered Gaussian noise, accounting for all unobserved causes of Xj . Obser-
vational causal discovery aims to learn both the causal graph and the associated
causal mechanisms from samples of the joint probability distribution of observa-
tional data, noted x(ℓ), ℓ = 1 . . . n. The talk has presented two causal discovery
approaches handling non-linear causal mechanisms and dealing with non-Gaussian
variable and noise distributions.

Causal Generative Neural Network: CGNN starts from the Markov equiva-
lence class of the sought DAG G and aims to find a generative model of the data

[2]. For each candidate DAG Ĝ in the Markov equivalence class of G, CGNN

learns causal mechanisms f̂ = (f̂1, . . . , f̂d), implemented as neural nets, to mini-
mize the Maximum Mean Discrepancy [3] between the original data sample and

a sample generated from (Ĝ, f̂). Though sound and experimentally accurate, the
approach suffers from two limitations: i) it assumes that the Markov equivalence
class of the sought DAG is known; ii) it does not scale up w.r.t. the number of
variables.
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Structural Agnostic Modelling: SAM1, addressing CGNN limitations, lever-
ages the power of generative adversarial learning to optimize both the structure
of the graph, and the causal mechanisms at once [6]. For each variable Xi, SAM

learns a specific generative network f̂i and defines a new variable X̂i from its
conditional distribution w.r.t. all initial variables but Xi, and noise Ei:

X̂i ∼ f̂i(X1, . . . , Xi−1, Xi+1, . . . Xd, Ei)

All f̂i are simultaneously learned using stochastic gradient descent, using an ad-
versarial mechanism [1], where the discriminator aims to distinguish the original
data samples from the fake samples obtained by replacing for each x(ℓ), its i-th

coordinate with f̂i(x
(ℓ)
1 , . . . ,x

(ℓ)
i−1,x

(ℓ)
i+1,x

(ℓ)
d , εi), with εi ∼ N(0, 1).

Regularization terms are used to enforce the sparsity and the frugality of the
causal mechanisms, in a Lasso-like manner. Lastly, the learning criterion is aug-
mented with a term meant to enforce the DAGness of the causal graph associated
with all causal mechanisms.

The fact that SAM uncovers the true DAG in the large sample limit is shown
under mild assumptions on the underlying distribution, noting that the set of
parents associated to each variable Xi is at most its Markov blanket.

The extensive experimental validation of SAM on artificial, realistic and real-
world data shows its robustness compared to the state of the art, with respect to
diverse underlying joint distributions (Gaussian and non-Gaussian distributions
for the variables and the noise, linear and non-linear causal mechanisms).

Perspectives. An on-going extension regards the case of categorical and mixed
variables, taking inspiration from discrete GANs [4]. Another perspective is to
relax the causal sufficiency assumption and handle hidden confounders, e.g. by in-
troducing statistical dependencies between the noise variables attached to different
variables [11, 5], or via dimensionality reduction [12].
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ETH Zürich
Rämistrasse 101
8092 Zürich
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Université Paris Sud
91190 Gif-sur-Yvette
FRANCE

Dr. Rajen Dinesh Shah

Department of Pure Mathematics and
Mathematical Statistics
University of Cambridge
Wilberforce Road
Cambridge CB3 0WB
UNITED KINGDOM

Prof. Dr. Ilya Shpitser

Department of Mechanical Engineering
Whiting School of Engineering
Johns Hopkins University
Latrobe Hall 223
3400 North Charles Street
Baltimore MD 21218-2682
UNITED STATES

Dr. Ezequiel Smucler

Departmento de Matemática y
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