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Abstract. The second MFO Oberwolfach Workshop on Mixed-Integer Non-
linear Programming (MINLP) took place between 2nd and 8th June 2019.
MINLP refers to one of the hardest Mathematical Programming (MP) prob-
lem classes, involving both nonlinear functions as well as continuous and
integer decision variables. MP is a formal language for describing optimiza-
tion problems, and is traditionally part of Operations Research (OR), which
is itself at the intersection of mathematics, computer science, engineering and
econometrics. The scientific program has covered the three announced areas
(hierarchies of approximation, mixed-integer nonlinear optimal control, and
dealing with uncertainties) with a variety of tutorials, talks, short research
announcements, and a special “open problems” session.

Mathematics Subject Classification (2010): 9006, 90C11, 90C22, 90C26, 90C30.

Introduction by the Organizers

This report refers to the second workshop on MINLP organized at Oberwolfach.
We refer to the report following the first workshop [4] for a somewhat longer
definition of MINLP. In summary, MINLP is one of the most general classes of MP,
which is itself a formal language used to describe optimization problems in terms
of parameters (the input of the problem), decision variables (which will contain
the output after the solution procedure), an objective function to be optimized,
and some constraints to be satisfied.

The workshop was organized in 5 tutorial talks (one per day, one hour long,
including 15 minutes for questions), 21 “normal” talks (45 minutes long, including
15 minutes for questions), 11 short research announcements (SRA — 15 minutes
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long, including 5 minutes for questions), and one open problems session proposing
9 new open problems in the field of MINLP, and attended by everyone at the
workshop. The discussion after practically all talks was lively and filled with
questions from many attendees. As Oberwolfach tradition warrants, we spent
Wednesday afternoon hiking towards a scrumptious Schwarzwälderkirschtorte in
St. Roman, a little more than 8km away from the Institute.

1. Scientific areas

The scientific organization of this workshop was divided into three main areas.

1.1. Hierarchies of approximation. In general MINLP is undecidable, since
Universal Diophantine Equations can be easily encoded within MINLP; if all de-
cision variables are bounded, however, MINLP becomes decidable [2]. Most of the
well-known decidable restrictions are NP-hard, including cases such as Quadratic
Programming (QP) with all continuous variables, a quadratic form x⊤Qx with a
single negative eigenvalue in the objective function to be minimized, and linear con-
straints to be satisfied [5]. Among the few cases in P we find the (decision version
of) minimization QPs with Q positive semidefinite (psd), and the minimization of
indefinite QPs over the unit ball [8]. As soon as integer variables appear, most of
the instances arising in practice can reasonably be argued to belong to NP-hard
classes. Although the nonlinear functions arising in MINLP may be transcenden-
tal (e.g. log, exp and trigonometric functions), most of the developed theory is
limited to polynomials. This discussion on complexity motivates the choice of the
first research area that our workshop hosted: hierarchies of relaxations. Given a
set S of polynomials with a given number of variables n and a given maximum
degree d, one can represent a sequence of polynomials p1(x), . . . , pm(x) by means
of a matrix-by-vector product Ay, where y is the vector of all of the k possible
monomials on n variables of degree d, and A is m × k matrix. Relaxations can
be obtained over the restricted class of Sum-Of-Squares (SOS) polynomials using
quadratic forms y⊤Qy, and then linearizing all of the monomials of degree 2d by
means of a matrix Y (representing yy⊤) and the corresponding linear form Q • Y .
Such relaxations can be used to solve difficult MINLP instances.

1.2. Mixed-Integer Optimal Control. MINLP applications arise in many real-
life problems. A particularly challenging class is in parameter optimization of
mixed-discrete dynamical systems, also known as Mixed-Integer Nonlinear Optimal
Control (MINOC), the second research area of this workshop. In the smallest cases,
and in absence of integer controls, the polynomial modelling referred to above can
be used to solve MINOC problems in terms of SOS hierarchies. This avoids the
need for discretizing time [3]. Applications of this methodology can be found in
robotics, or control of unmanned aerial or underwater vehicles. In most other cases,
a discretize-then-optimize approach is taken, which unfortunately yields large-scale
instances [6]. It then becomes necessary to exploit problem structure in order to
derive results allowing a simplification: e.g. the construction of relaxations yielding
approximated solutions after rounding [7].
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1.3. Uncertainties. The third research area this workshop focused on was uncer-
tainties. In optimization, dealing with uncertainties in the data is often necessary,
as input data from real problems are often noisy and even downright wrong. Clas-
sical topics in this area include: (a) robust optimization, which entails seeking
for optimal solutions which remain optimal even when the input data differs from
the actual real data up to an uncertainty set (which is often an interval or a
polyhedron), (b) stochastic optimization, where the uncertainties are modelled by
random variables with a given probability distribution. In the latter case, the
distribution is often used in the framework of chance constraints, where, instead
of imposing a constraint such as g(x) ≤ 0, one asks that Prob(g(x) ≤ 0) ≥ 1 − δ
for some given δ. The inverse distribution function is then used to turn the prob-
abilistic constraint into a standard constraint that solution algorithms can deal
with.

1.4. Other areas. Other areas of research on MINLP optimization were present
at the workshop, including development on MINLP solution algorithms and their
implementations, various types of non-hierarchical reformulations and relaxations,
as well as many applications of MINLP to other branches of mathematics (ge-
ometry, statistics), computer science (graph theory, quantum computing, data
science), physics (material science), engineering (logistics, safety), econometrics
(game theory), medicine (automated cardiac arryhtmia classification).

2. Participants

The workshop was attended by 51 participants from 9 countries, distributed as
follows:

DE US AT IT FR NL UK BR CA
22 10 5 5 3 2 2 1 1

Insofar as OR researchers are affiliated to a multitude of different departments,
MINLP also appears to attract a very diverse variety of cultures, and this workshop
was no exception: our participants are affiliated to mathematics departments, but
also to computer science and engineering departments.

2.1. Gender balance. Genderwise, this workshop attracted 16 women (31% of
the total number of participants), 12 of which gave talks (in particular, 2 tutorials
and 6 normal talks were given by women). The organizers were congratulated
on this account by many of the participants, as well as the vice-director of the
Institute.

3. Open problems

The open problems session took place between 17:15 and 18:30 on thursday. Here
follows the list of open problems and an account of the session proceedings.

(1) S. Leyffer, V. Piccialli and L. Palagi discussed the poor abilities of
most local Nonlinear Programming (NLP) solvers with respect to taking
into account convex cones in input formulations. Specifically, without tak-
ing such cones into account, these formulations become problematic, since
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they incur into various forms of degeneracy (e.g. local optima may fail
to satisfy constraint qualification conditions). On the other hand, it is
easy to prove that such conditions are not really problematic if the cone
constraints are taken explicitly into account. The proposers encourage the
community to devise implementable solution algorithms capable of detect-
ing and recognizing cone structures even in the presence of nonconvexity
in the formulation. A discussion ensued:
• Leyffer: in Speakman’s talk about perspective reformulation in NLP,

the reformulated problem violates MFCQ conditions, and is prob-
lematic w.r.t. solvers; the true perspective, albeit nondifferentiable at
zero, should not pose a problem in general; but when solving thou-
sands or millions of time within sBB, then failures count.
• Piccialli: tried those problematic instances using the filter, ipopt,
knitro, snopt solvers; best were ipopt, knitro, which are interior
point methods (IPM); guessing failure reason for filter, snopt, both
sequential quadratic programming (SQP) methods, is that that they
move along the boundary where the MCFQ are not satisfied.
• Leyffer invokes a robust solution for perspective reformulations, and

recalls that IPMs and SQPs converge on Mathematical Programs with
Equilibrium Constraints (MPEC), where MFCQ also fail to be satis-
fied.
• Frangioni and Linderoth: success can be achieved using separation

from cones, thus the need to integrate convex cone management in
local NLP solvers.

(2) Linderoth asked for a method to perform sparse Cholesky factorization.
Given a psd matrix K, find a permutation matrix Π s.t. the Cholesky
factorization of Π⊤KΠ is as sparse as possible. While it would be nice
to find a formulation for obtaining the globally optimal sparsity, Ahmadi
suggests that when using the Cholesky factorization in iterative Diagonally
Dominant Programming (DDP), a fast and sub-optimal method would be
sufficient.

(3) Ahmadi asks for the decidability (in the Turing model) of determining
stability of a dynamical system in a half-space. Given an n × n rational
matrix G, a rational vector a ∈ Qn, a scalar b ∈ Q, and a rational vector
x such that a⊤Gx ≤ b, is there a finite algorithm to test whether

∀k ∈ Z+ a⊤Gkx ≤ b ?

If the spectral radius of G is ρ(G) < 1, then this problem is known to be
NP-hard. Poschka proposes to use the Jordan decomposition of G.

(4) Ahmadi asks for the complexity class (whether in P or NP-hard in the
Turing model) of the Hurwitz matrix completion problem. A real n × n
matrix is Hurwitz (or stable) if all eigenvalues have negative real parts.
Given a partially defined matrix A, is it possible to complete it to a Hurwitz
matrix? The symmetric case is tractable. Another characterization is that
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A is Hurwitz iff

∃ psd n× n matrix P (P − In is psd↔ In −ATP − PA is psd).

The motivating application is that, in the differential equation ẋ = Ax,
the origin is asymptotically stable iff A is Hurwitz. Suggestion for an
algorithm: alternating between P and A to prove local convergence.

(5) Averkov asks for a proof of second-order cone (SOC) or exponential cone
representability for the set C = conv{(x, y) | y = x2 − xp ∧ −ε ≤ x ≤ ε}
with, e.g., p = 6. Taking second derivatives, the form is positive around
zero, so y is convex around zero.

(6) Averkov asks for general SOC or exponential cone representability of
convex sets in R2 or R3: are there any two or three-dimensional convex
semialgebraic sets that are not SOC-representable? A discussion ensued
about possible equivalence of exponential and second-order cones: they
are not equivalent, since the exponential cone is not semi-algebraic.

(7) Averkov asks for the SDP extension complexity of correlation matrices.
Consider the cone CRk = {A ∈ Sℓ

+ | diag(A) = 1}. The SDP extension
complexity sxdeg(C) of a cone C is defined as the minimum n ∈ N such
that C has an extended formulation with finitely many Linear Matrix
Inequalities (LMI) of size n. The problem is to compute sk = sxdeg(CRk).
We only know that s2 = 1 and s3 = 2.

(8) Gleixner discusses the “nasty” QCQP instance presented by Bienstock
during his tutorial talk, based on the feasible set

(x1 − 1)2 + x2
2 ≥ 3 + s2

∀i ai − a2i−1 = 0

a0 = s2,

where the error on s is “amplified” through repeated square roots. Solvers
provide a wrong solution. How do we recognize such problems automat-
ically? Possible answer by Renegar is valid but computationally too ex-
pensive.

(9) Liberti asks for a Mixed-Integer Linear Programming (MILP) formula-
tion of the Maximum Entropy Sampling Problem (MESP) presented by
Anstreicher in his talk.

4. Short research announcements

Two SRA sessions were organized (on Tuesday and Thursday).

• A. Potschka, Penalty alternating direction methods for mixed-integer op-
timal control with combinatorial constraints, with one direction being to-
wards satisfying integrality of binary variables, e.g. by means of a feasibil-
ity pump algorithm.
• S. Zhao, Extension of Alternating Direction Method of Multiplier and
Semidefinite Programming, leading to natively taking into account inequal-
ity constraints, as well as fine-tuning of certain parameters.
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• R. Schulz, Algebraic gas polynomials arising in gas network management.
The flow and pressure equations lead to quadratic polynomial equations.
• N. Gusmeroli, An Exact Penalty Method over Discrete Sets is going to be

implemented to a high-performance solver for binary quadratic problems
called BiqBin (following BiqMac).
• A. Khajavirad, Convexification of block-permutation invariant sets is in-

terrupted for lack of time, leaving half the audience in intolerable suspense
for want of closure (the other half went off to get coffee).
• A. Frangioni, SMS++: a modelling system with focus on “Large-Scale”
structure allows the C++ modelling of nested and permuted block-structure
constraint matrices in such a way as to make it easier to handle reformu-
lations, restrictions, relaxations and parallel computation.
• A. Fügenschuh, Call for papers for a special issue on Optimization and
Engineering on mixed-integer optimization with differential equation con-
straints.
• M. Cerulli, Flying safely on two levels involves the solution of bilevel pro-

gramming problems in order to keep aircraft from bumping into each other
midflight and causing a flaming ball of fire.
• M. Hahn, Binary Optimal Control Using NLP Methods In Measure Spaces

can be achieved in Banach spaces by optimizing over σ-algebras using
sublevel sets of the Radon-Nikodym derivative.
• V. Piccialli, A new branch and bound for finite Nash games with switching
costs based on a standard QP (stQP) formulation.
• S. Sager, MINLP-Enhanced Machine Learning for Cardiac Arrhythmia
Classification presents the research at this workshop most likely to have a
positive societal impact.

5. The future

This is the second edition of MINLP workshops at Oberwolfach. The attendees
were enthusiastic, and many asked about future editions. Although there are a
variety of MINLP workshops organized by different members of our community,
the Oberwolfach ones are those which are more pertinent to mathematics. We
shall accordingly endeavour to continue this trend, as long as the MFO Scientific
Committee agrees with this idea. A special issue of Mathematical Programming
Series B (co-edited by the organizers) is going to be dedicated to the topics of this
workshop.
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Abstracts

Learning dynamical systems with side information

Amir Ali Ahmadi

(joint work with Bachir El Khadir)

We study the problem of learning dynamical systems from very limited data but
in presence of “side information”, such as physical laws or contextual knowledge.
This is motivated by safety-critical applications where an unknown dynamical
system needs to be controlled after a very short learning phase where a few of
its trajectories are observed. (Imagine, e.g., the task of autonomously landing a
passenger airplane that has gone through sudden wing damage.) We show that
sum of squares optimization is particularly suited for exploiting side information
in order to assist the task of learning when data is limited.

Efficient solution of maximum-entropy sampling problems

Kurt Anstreicher

The maximum-entropy sampling problem (MESP) arises in spatial statistics. In
a typical application, C is a sample covariance matrix obtained from time-series
observations of an environmental variable at n locations, and it is desired to choose
s locations from which to collect subsequent data so as to maximize the information
obtained. We assume throughout that C is positive definite. The resulting problem
is then

MESP : z(C, s) := max {ldet C[S, S] : S ⊂ N, |S| = s} ,
where ldet denotes the natural logarithm of the determinant, N = {1, . . . , n}, and
for a subset S ⊂ N , C[S, S] denotes the submatrix of C having rows and columns
indexed by S. The use of entropy as a metric for information, together with the
assumption that values at the n locations are drawn from a multivariate normal
distribution, leads naturally to the problem MESP because ldetC[S, S] is, up to
constants, the entropy of the Gaussian random variables having covariance matrix
C[S, S]. For survey articles describing the MESP see [5, 6].

The study of exact algorithms for MESP was initiated in [4]. Exact algorithms
to compute a maximum-entropy design use the “branch-and-bound” (B&B) frame-
work, for which a key ingredient is the methodology for producing an upper bound
on z(C, s). Subsequent nodes in the B&B tree, corresponding to indices being
fixed into or out of S, result in problems of the same form as MESP but with
modified data (C′, s′). A fast method that can provide a good upper bound on
z(C, s) is critical to the success of this approach. The exact algorithm in [4] used
a bound based on the eigenvalues of C. A variety of different bounding meth-
ods have subsequently been developed and investigated, and several of these have
been incorporated into complete B&B algorithms. Recent results using the op-
timized “masked spectral” [1] and Boolean quadric polytope (BQP) bounds [2]
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are the most promising so far, although both of these bounds involve challenging
computational problems posed over n× n positive semidefinite matrices.

In this paper we consider a new bound for the MESP that is based on max-
imizing a function of the form ldetM(x) subject to the constraints 0 ≤ xi ≤ 1,
i = 1, . . . , n,

∑n
i=1 xi = s, where solutions of MESP correspond to binary x. This

bound has similarities with both the nonlinear programming (NLP) bound of [3]
and the BQP bound [2]. The NLP bound is based on maximizing a function of
the form ldetM(x) over the same constraints, where M(x) is a nonlinear function
of x. For appropriate parameter choices this function ldetM(x) is provably con-
cave, although the form of M(x) is too complex for ldetM(x) to be recognized
as concave by a “disciplined” convex-programming system such as cvx. The BQP
bound is based on maximizing a function of the form ldetM(X), where M(X) is
linear in the n× n semidefinite matrix variable X . We refer to the new bound as
the “linx” bound because M(x) is linear in x. Validity of the linx bound is based
on the following simple but previously unexploited determinant identity.

Lemma 1. For a subset S ⊂ N = {1, . . . , n} let xi = 1, i ∈ S and xi = 0,
i ∈ N \ S. Then ldet(C Diag(x)C + I −Diag(x)) = 2 ldetCSS.

Motivated by Lemma 1, we define the linx bound via the optimization problem

zlinx(C, s) = max
1

2
ldet (C Diag(x)C + I −Diag(x))

s.t. eTx = s(1)

0 ≤ x ≤ e,

where e is a vector of ones. Validity of the bound, zlinx(C, s) ≥ z(C, s) then follows
immediately from Lemma 1, and solving MESP corresponds to finding the optimal
binary solution of (1). The convex optimization problem (1) has a dual which also
corresponds to a determinant maximization problem with linear constraints,

min −1

2
ldetS

s.t. tr(S) + su + eT v = n(2)

diag(CSC) − diag(S) ≤ ue + v

v ≥ 0, S � 0.

The objective gap between primal and dual solutions in (1) and (2), for convenience
ignoring the factor 1/2 in both, is then

− ldetS − ldetM(x) = − ldetS − ldet (C Diag(x)C + I −Diag(x))

= − ldetS1/2(C Diag(x)C + I −Diag(x))S1/2

≥ − diag(CSC)Tx− tr(S) + diag(S)Tx + n

= wTx− ueTx− vTx− tr(S) + n

= u(s− eTx) + vT (e − x) + wTx + n− us− vT e − tr(S)

= vT (e− x) + wTx,(3)
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where the inequality uses the fact that for any X ≻ 0, ldetX ≤ ldet I+tr(X−I) =
tr(X)−n. It is straightforward to prove that strong duality always holds between
problems (1) and (2). The weak duality condition (3) can be used to derive
variable-fixing logic for MESP when the linx bound is applied. Let ẑ be the
objective value for a known solution of MESP. Assume that x̄ solves (1), and
(ū, v̄, w̄, S) solves (2), where w̄ = ū + v̄ + diag(S) − diag(CSC). Let zlinx =
1
2 ldetM(x̄) = − 1

2 ldetS. From (3) we know that for any other x feasible in (1),

ldetM(x) ≤ 2zlinx − v̄T (e− x)− w̄Tx.

It follows that if x∗ is a binary solution in (1) with objective value greater than ẑ,

w̄i ≥ 2(zlinx − ẑ) =⇒ x∗
i = 0, v̄i ≥ 2(zlinx − ẑ) =⇒ x∗

i = 1.

The dual variables (v̄, w̄) can also be used to devise an effective branching strategy
in the context of a B&B algorithm for MESP.

Computation of the linx bound is facilitated by the fact that version 4.0 of the
Matlab-based SDPT3 solver [7] allows for the objective ldetM(x) when M(x) is
linear in x. Comparisons on benchmark instances demonstrate outstanding results
for the linx bound. A complete B&B algorithm using the linx bound obtains the
first solutions of benchmark instances for a matrix C with n = 124, summarized in
Table 1. A notable feature of the B&B algorithm is that the dual-based branching
strategy typically obtains the optimal solution very quickly, as shown in the last
column of the table.

Table 1. B&B statistics for n = 124 instances

Heuristic Optimal Root Number Time Time to
s Value Value Gap Nodes (hours) Opt (sec)

10 43.918 43.918 0.363 207 0.04 155
20 76.999 77.827 2.306 1,239 0.21 181
30 106.674 106.700 2.010 3,413 0.47 147
40 130.162 131.055 3.304 11,202 2.42 167
50 148.661 149.498 4.197 159,302 51.81 1,515
60 163.371 164.012 3.992 171,383 67.01 171
70 172.243 172.528 3.680 140,240 37.93 215
80 174.813 175.091 3.298 42,989 12.71 230
90 171.262 171.262 2.918 21,495 4.82 249

100 162.616 162.865 2.393 5,334 1.15 298
110 147.730 147.933 1.919 1,589 0.40 343
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Semidefinite approaches to polynomial optimization: Power and
limitations of the SOS cones

Gennadiy Averkov

We give an overview on how semidefinite programming is used in polynomial opti-
mization and also discuss the limitations of the current approach based on the SOS
cones. Let’s start by introducing conic and semidefinite programming. General
conic programming with respect to a closed convex cone K is the problem

inf
{
c⊤x : Ax = b, x ∈ K

}

of optimization of a linear objective function subject to a system Ax = b of linear
and inequalities and the condition that the vector x of the optimization variables
is in the cone K. The case Rn

+ gives linear programming, while the case

K = Sk+ := {k × k symmetric psd matrices over R}
gives semidefinite programming (SDP). One can express SDP in terms of the so-
called linear matrix inequalities (LMIs). Consider a k × k symmetric matrix

A(x) :=
(
aij(x)

)
i,j=1,...,k

with entries aij(x) being affine functions in x ∈ Rn. The condition

A(x) ∈ Sk+
is called a linear matrix inequality (LMI) of size k on n real-valued variables
x ∈ Rn, while the respective set

{
x ∈ Rn : A(x) ∈ Sk+

}

is called a spectrahedron. Semidefinite programming is optimization of a linear
function subject to finitely many LMIs [WSV00, AL12]. SDP is efficiently solvable
using interior-point methods under mild assumptions. But if you can avoid LMIs
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of large size, you should really do that because of the running-time and numerical-
stability issues.

A nice thing about SDP is that some very basic classes of algorithmic and op-
timization problems can naturally be phrased as a special case of SDP. Linear
programming is a subset of SDP, since linear constraints are LMIs of size 1. De-
termination of the maximum eigenvalue of a symmetric matrix is a semidefinite
problem with an LMI on one variable:

min
{
λ : λI − A ∈ Sn+

}
.

LMIs frequently allow to convexify non-convex problems of algebraic nature
so that afterwards SDP can be used to solve underlying optimization problems.
Numerous application areas of SDP include problems in probability and statis-
tics, coding theory, systems and control theory and combinatorial optimization
[WSV00].

We say that a set C has an extended formulation with m LMIs of size k if C is
a linear image of a spectrahedron described by m LMIs of size k. A standard way
to reduce optimization of a linear function over a given semi-algebraic convex set
C is by providing a semidefinite extended formulation of C and lifting the under-
lying optimization problem over C to an optimization problem over the respective
spectrahedron.

In what follows, we deal with polynomial with real coefficients. Polynomial
optimization is optimization of a polynomial objective function subject to finitely
many polynomial inequalities. An approach of Lasserre to solving polynomial
optimization problems is based on Positivstellensätze (which describe positivity of
polynomials in terms of sum-of-squares certificates) and semidefinite formulations
of the so-called sum-of-squares cones [Mar08, Lau09, Las15]. A polynomial is
called a sum of squares if it can be represented as a sum of squares of finitely many
polynomials. For given positive integers n and d, we introduce the sum-of-squares
cone Σn,2d to be the cone of n-variate sum-of-squares polynomials of degree at most
2d. The cone Σn,2d is known to have a semidefinite extended formulation with one

LMI of size
(
n+d
n

)
[Las15, §2.1]. To approximate the optimal value of a polynomial

optimization problem following Lasserre’s approach, one establishes a hierarchy of
SDPs which based on the mentioned semidefinite extended formulations of Σn,2d

with growing values of d. The approach allows to obtain strong approximations of
polynomial optimization problems at a very high computational cost due to the
LMIs of a very large size that are used in the hierarchy of the SDPs.

So far, it has not been clear if the known semidefinite formulation of Σn,2d is
optimal in terms of the size of the LMIs. We present a theorem that allows to
confirm that the known semidefinite extended formulation of Σn,2d is best possible.

We consider the semidefinite extension complexity of a set C (denoted as sxc(C)),
which is the smallest k such that C has a semidefinite extended formulation with
one LMI of size k, and introduce the semidefinite extension degree of C (which we
denote as sxdeg(C)) to be the smallest k such that C has a semidefinite extended
formulation with finitely many LMIs of size k.
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Theorem 1 (Main theorem). Let X ⊆ Rn be a set with non-empty interior. Let
C be a closed convex cone in the space of n-variate polynomials of degree at most
2d such that every polynomial in C is non-negative on X and there exist finite
subsets S of X of arbitrarily large cardinality with the following property:

(∗) For every k-element subset T of S, some polynomial f in the cone C is
equal to zero on T and is strictly positive on S \ T .

Then sxdeg(C) > k.

Using Theorem 1, we obtain

Corollary 2. sxdeg(Σn,2d) = sxc(Σn,2d) =
(
n+d
n

)
.

Corollary 2 shows that the known semidefinite formulation of Σn,2d is best
possible in terms of both the size and the number of the LMIs.

The case d = 1 of Corollary 2 yields the semidefinite extension degree of Sk+:

Corollary 3. sxdeg(Sk+) = k.

Corollary 3 implies that the expressive power of the semidefinite optimization
grows strictly with the growth of the size k of the underlying LMIs. In other
words, the family of all convex semialgebraic sets that have a semidefinite extended
formulation (we call such sets semidefinitely representable) can be decomposed into
the hierarchy of the families

SDR(k) := {S ⊆ Rn : n ∈ N, sxdeg(S) ≤ k}
with each level of the hierarchy being strictly larger than the previous one. The
lowest level SDR(1) of the hierarchy is just the family of all polyhedra. The family
SDR(1) corresponds to linear optimization. The next level SDR(2) corresponds to
the second-order cone programming.

Corollary 3 covers the result sxdeg(S3+) = 3 of Fawzi [Faw19] as a special case.
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A survey of QCQP results that I like

Daniel Bienstock

QCQPs, or quadratically constrained quadratic programs, present a number of
complex challenges both theoretical and practical. They are very expressive –
QCQPs can be used to efficiently represent any polynomial optimization problem.
As a result, QCQPs can attain very badly behave feasible sets. For example, al-
ready in low dimension a QCQP can have a unique optimal solution, which is an
isolated point and irrational. Hence any solution obtained via a standard com-
putational algorithm will either be infeasible or strictly suboptimal, and (again)
examples can be constructed where this subobtimality is substantial. Perhaps more
important, one can construct examples of QCQPs that are near badly-behaved ex-
amples, with the result that solutions obtained by floating point procedures can be
substantially super -optimal. From a practical perspective, even simple instances
of the well-known ACOPF problem in electrical power transmission can exhibit
substantial complexity, see [2].

In this talk we surveyed work by Renegar on solutions to polynomially con-
strained problems. One key result is that given a system of polynomial inequal-
ities, and ǫ > 0 there is a finite bit-model procedure that constructs a family F
of points such that each for each connected component of the solution set for the
system, some point in F is within distance ǫ of that component. The particular
result we surveyed is a key result in [3], which provides a finite procedure, again in
the bit-model of computing, for approximating all zeros of a system of polynomial
equations. This procedure is based on a simplification of the well-known concept
of resultant of a system of algebraic equations.

Next we considered the “2-QCQP” problem, which is a QCQP with just two
constraints. This is a special case of QCQP with a fixed number of constraints,
which is known to be polynomially solvable [1]. In the special case of 2-QCQP
where one of the constraints is strictly convex, [4] presents an interesting procedure
that solves the problem (in the real number model of computing) in polynomial
time, relying on a construction that makes use of Bézoutians and Kronecker prod-
uct of matrices.
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An active set algorithm for robust combinatorial optimization

Marianna De Santis

(joint work with Christoph Buchheim)

We address combinatorial optimization problems given in the general form

(CP)
min c⊤x
s.t. x ∈ P ∩ Zn,

where P ⊆ Rn is a compact convex set, say P ⊆ [l, u] with l, u ∈ Rn, and the
objective function vector c ∈ Rn is assumed to be uncertain. This setting appears
in many applications where the feasible set is certain, but the objective function
coefficients may have to be estimated or result from imprecise measurements. As
an example, when searching for a shortest path in a road network, the topology of
the network is usually considered fixed, but the travel times may vary depending on
the traffic conditions. We assume that the uncertain coefficients of the objective
function are varying over ellipsoidal uncertainty sets. The robust counterpart
of such a problem can be rewritten as the following second-order cone program
(SOCP) with integrality constraints

(P)
min f(x) = c⊤x +

√
x⊤Qx

s.t. x ∈ P ∩ Zn,

being Q a positive definite matrix. In order to solve Problem (P), we propose
a branch-and-bound algorithm where dual bounds are computed by means of an
active set algorithm. The latter is applied to the Lagrangian dual of the continuous
relaxation, where the feasible set of the combinatorial problem is supposed to be
given by a separation oracle. The method benefits from the closed form solution
of the active set subproblems and from a smart update of pseudo-inverse matrices.

We tested our approach on randomly generated instances and on instances
from different combinatorial problems, including the shortest path and the trav-
eling salesman problem. Here we report the comparison of our branch-and-bound
method BB-ELLAS with the state-of-the art mixed-integer SOCP solver of Gurobi
on instances from the minimum spanning tree problem. Given an undirected
weighted graph G = (V,E), a minimum spanning tree is a subset of edges that
connects all vertices, without any cycles and with the minimum total edge weight.
Our approach uses the following formulation of the Robust Spanning Tree problem:

min c⊤x +
√
x⊤Qx

s.t.
∑

e∈E xe = |V | − 1
∑

e⊆X xe ≤ |X | − 1 ∀ ∅ 6= X ⊆ V

x ∈ {0, 1}E

In the above model, the number of inequalities, taking into account also the non-
negativity constraints, is m = 2|V | − 2 + |E|. Since this number is exponential
in the input size, we also have to use a separation algorithm for Gurobi. For
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both BB-EllAS and Gurobi, we use a simple implementation based on the Ford-
Fulkerson algorithm. For our experiments, we considered complete graphs with
expected edge weights randomly generated in [0.5, 1.5]. The positive definite ma-
trix Q has been built as follows. We chose n eigenvalues λi uniformly at random
from [0, 1] and orthonormalized n random vectors vi, each entry of which was cho-
sen uniformly at random from [−1, 1]. Setting Q̄ =

∑n
i=1 λiviv

⊤
i , the entries of Q

are given as Qij = cicjQ̄ij , where c is the vector defining the linear term.

BB-EllAS Gurobi
|V | n m #sol time nodes #sol time nodes
12 66 4,160 10 53.51 9.5e+4 10 110.61 1.1e+4
13 78 8,268 10 231.11 1.9e+5 10 546.84 2.9e+4
14 91 16,473 10 312.34 5.9e+5 7 1802.43 7.2e+4
15 105 32,871 5 2388.39 2.8e+6 2 3271.12 1.0e+5
16 120 65,654 1 1490.94 1.4e+6 0 — —

In the above table we show the results obtained on 50 different problem instances:
for each |V | ∈ {12, . . . , 16} we generated 10 different complete instances. For
both algorithms we report the number of instances solved within the time limit
of one hour (# sol), the average running time, and the average number of branch-
and-bound nodes. The branch-and-bound method BB-EllAS clearly outperforms
the MISOCP solver of Gurobi on the instances considered, being able to solve
significantly more instances than Gurobi within the time limit and with faster
running time.

Convexification of the Quadratic Knapsack Problem with Integrated
Cut Strengthening

Marcia Fampa

(joint work with Daniela Lubke, Fei Wang, Henry Wolkowicz)

We study a convex quadratic programming (CQP) relaxation of the quadratic
knapsack problem (QKP),

(QKP )
p∗QKP := max xTQx

s.t. wTx ≤ c
x ∈ {0, 1}n,

where Q ∈ Sn is a symmetric n × n nonnegative integer profit matrix, w ∈ Zn
++

is a vector of positive integer weights for the items, and c ∈ Z++ is the knapsack
capacity with c ≥ wi, for all i ∈ N := {1, . . . , n}. The binary (vector) variable
x indicates which items are chosen for the knapsack, and the inequality in the
model, known as a knapsack inequality, ensures that the selection of items does
not exceed the knapsack capacity.

The QKP was proved to be NP-Hard in the strong sense by reduction from
the clique problem. It is a generalization of the knapsack problem, which has the
same feasible set of the QKP, and a linear objective function in x. Several papers



1592 Oberwolfach Report 26/2019

have proposed branch-and-bound algorithms for the QKP, and the main difference
between them is the method used to obtain upper bounds for the subproblems. The
well known trade-off between the strength of the bounds and the computational
effort required to obtain them is intensively discussed in the literature.

A common approach to construct relaxations to QKP is to lift the problem to
the symmetric matrix space determined by the equation X = xxT , and then
replace the quadratic objective function with a linear function in X , namely,
trace(()QX). As the constraint X = xxT is nonconvex, it is relaxed by con-
vex constraints in the relaxations. The well known McCormick inequalities and
the semidefinite constraint, X − xxT � 0, for example, have been used to relax
the nonconvex constraint X = xxT in relaxations of the QKP.

We investigate the following relaxation CQP (Qp), for QKP, where instead of
linearizing all the objective function, we perturb the objective function Hessian
Q, and maintain the (concave) perturbed version of the quadratic function in the
objective, linearizing only the remaining part derived from the perturbation.

(CQP (Qp))
p∗CQP(Qp) := max xT (Q−Qp)x + trace(()QpX)

s.t. (x,X) ∈ P .
where Q−Qp � 0 and P is a compact convex subset of [0, 1]n × Sn, such that

{(x,X) : wTx ≤ c, X = xxT , x ∈ {0, 1}n} ⊂ P .
The idea behind CQP (Qp) is to keep quadratic information of the original prob-
lem in the relaxation, and has been extensively applied to nonconvex quadratic
problems (see, for example, [1] and references therein).

CQP (Qp) is a parametric convex quadratic problem, defined as a function of a
matrix parameter Qp, such that Q−Qp � 0. Our approach searches for the matrix
parameter that minimizes the upper bound for QKP . For that, we consider the
parametric problem

param∗
QKP := min

Q−Qp�0
p∗CQP(Qp),

and develop a primal-dual Interior Point Method (IPM) to solve it.
During the iterations of the IPM, separation problems are solved to generate

cuts that are added to CQP (Qp), and the search for the best matrix parameter Qp

is adapted accordingly. The cuts added to the relaxation are derived from new valid
inequalities on the lifted matrix variable, which are based on cover inequalities,
and referred to as CILS (Cover Inequalities in the Lifted Space) and SCILS (Set of
Cover Inequalities in the Lifted Space). The idea is also extended to generate valid
inequalities based on knapsack inequalities. Finally, at each iteration of the IPM,
lower bounds for the problem are also generated from feasible solutions constructed
from a rank-one approximation of the solution of CQP (Qp).

We call our algorithm CWICS (Convexification with Integrated Cut Strength-
ening). CWICS alternates between optimizing the matrix parameter Qp with an
IPM, and applying cutting planes generated by valid inequalities, to the convex
quadratic programming relaxation CQP (Qp), of QKP (see [2] for more details).
The main characteristics of CWICS are:
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• Consists of an IPM with a BFGS step to improve the matrix parameter
Qp on the convex quadratic relaxation CQP (Qp), of QKP.
• At every m iterations of the IPM, separation problems are solved to gen-

erate cuts CILS and SCILS that are added to CQP (Qp).
• When cuts are added to the relaxation, the computation of the search

direction of the IPM changes accordingly, as it depends on the optimal
solution of CQP (Qp).
• At every iteration of the IPM, an upper bound is computed by solving
CQP (Qp), for the current matrix Qp and the current set of valid inequal-
ities.
• At every iteration of the IPM, a lower bound is computed by a heuristic

based on a rank-one approximation of the solution of CQP (Qp).
• CWICS stops when the gap between upper and lower bounds is small

enough, or at a maximum number of iterations.
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Perspective Reformulations Beyond the Separable Case

Antonio Frangioni

(joint work with Claudio Gentile, James Hungerford)

Perspective Reformulation techniques have shown to be a useful tool, in no small
part due to their simplicity, to strengthen formulations of Mixed-Integer Nonlinear
problems with disjunctive constraints like semi-continuous variables. One typical
application is to problems with convex-cost semicontinuous (vector) variables, i.e.,





min g(z) +
∑

i∈N fi(xi) + ciyi

Aixi ≤ biyi i ∈ N

y ∈ { 0 , 1 }n , x ∈ ℜm , (x, y, z) ∈ O
where each fi is a closed convex function with (w.l.o.g.) fi(0) = 0, each set
Pi = { xi ∈ ℜmi : Aixi ≤ bi } is a polytope, and the “other” variables / constraints
z /O ⊂ ℜm+n+q (m =

∑
i∈N mi) may in principle have any structure; however, for

simplicity of discussion they are better assumed convex. The constraints impose
the classical logical relationship yi = 0 =⇒ xi = 0, yi = 1 =⇒ xi ∈ Pi, which is
useful to model many real-life situations in applications like energy, transportation,
finance and many others. By restricting to a single block

(P ) min
{
f(x) + cy : Ax ≤ by , y ∈ { 0 , 1 }

}
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we have a structure that can be exploited: in fact, it is well-known [1] that the
Perspective Reformulation of (P )

(PR) min
{
yf(x / y ) + cy : Ax ≤ by , y ∈ { 0 , 1 }

}

corresponds to the convex envelope of the original objective on the non-convex
feasible set, and therefore has a (much) better lower bound. The PR can be
efficiently solved in different ways, comprised outer-approximation [1], reformula-
tion as a conic program [3] or (possibly, approximate) projection [5]. Using this
technique, however, requires separability of the disjunctive constraints/objective
in question. There are some ways to sidestep this issue, namely the extraction
of a separable part of nonseparable (quadratic) functions via either eigenvalue
computation [1] or SemiDefinite Programming (SDP) techniques [2, 4].

We present an improvement to the standard approach doing the latter where,
rather then extracting the diagonal of the Hessian of the function, we (approxi-
mately) decompose it as the sum of 2×2 matrices. This is based on the fact that,
for the variant of (P ) with a nonseparable 2×2 objective

(P2)

{
min q11x

2
1 + 2q12x1x2 + q22x

2
2

liyi ≤ xi ≤ uiyi , yi ∈ { 0 , 1 } i = 1, 2

we can provide the apparently awkward reformulation

min q11(x1
1)2 + q22(x2

2)2 + q11(x12
1 )2 + 2q12x

12
1 x12

2 + q22(x12
2 )2(1)

xi = xi
i + x12

i , yi = yi + y12 i = 1, 2(2)

liy
i ≤ xi

i ≤ uiy
i , liy

12 ≤ x12
i ≤ uiy

12 i = 1, 2(3)

y1 + y2 + y12 ≤ 1 , y1 , y2 , y12 ∈ { 0 , 1 }(4)

which, by standard results, immediately provides a (PR) in a lifted space

(PR2)





min q11(x1
1)2/y1 + q22(x2

2)2/y2+[
q11(x12

1 )2 + 2q12x
12
1 x12

2 + q22(x12
2 )2

]
/y12

(2)–(4)

This can also be reduced by project away more than half of the extra variables via
equalities, although the projection on the original space is known to be difficult
to fully characterize [6]. For a general problem with nonseparable convex f(x) =
xTQx, Q ∈ Sn×n

+ , one can consider an approximate 2×2-Decomposition (2×2D)
of Q as

Q = Φ +
∑

p∈P EpΠp(Ep)T

where P is the set of all O(n2) unordered pairs { i , j }, Ep = [ ei , ej ] ∈ ℜn×2

(with eh as usual the h-th vector of the canonical base of ℜn), Φ ∈ Sn×n
+ and all

Πp ∈ S2×2
+ . This allows to write an (approximate) 2×2 Perspective Reformulation
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(2×2PR)

min g(z) + xT Φx + qTx + cT y+
∑

p∈P

[
Πp

11(xp,i
i )2/yp,i + Πp

22(xp,j
j )2/yp,j + (xp,p)TΠpxp,p/yp,p

]

(x, y, z) ∈ O
xi = xp,i

i + xp,p
i , yi = yp,i + yp,p p ∈ P , i ∈ p

liy
p,i ≤ xp,i

i ≤ uiy
p,i p ∈ P , i ∈ p

liy
p,p ≤ xp,p

i ≤ uiy
p,p p ∈ P , i ∈ p

yp,p + yp,i + yp,j ≤ 1 p ∈ P

yp,i ∈ { 0 , 1 } , yp,p ∈ { 0 , 1 } p ∈ P , i ∈ p

which, with proper choices of Φ and Πp, should have an even improved continu-
ous relaxation abound. We fully characterize the condition under which Φ = 0
is possible, i.e., Q has an exact 2×2D. This turns out to be equivalent to the
fact that Q is Weakly Scaled Diagonally Dominant (WSDD): that is, ∃ d > 0
s.t. M = diag(d)Q diag(d) is Weakly Diagonally Dominant (WDD), that is, |Mii| ≥∑

j 6=i |Mij | for all i. This can be detected by a simple eigenvalue computation, in
that it is also equivalent to

ρ( | I − diag(Q)−
1
2 Q diag(Q)−

1
2 | ) ≤ 1 ;

being λ < 1 the maximum eigenvalue, there exists a corresponding eigenvector
x > 0, and the 2×2D is then provided by the explicit formula

Q
{ i , j }
ii =

λ|Qij |
√
Qii

λ
√
Qjj

x−1
i xj +

Qii(1− λ)

n− 1
.

Actually, the formula can be made parametric, and conditions for the unicity of
the decomposition are also given [7]. We then describe six possible ways in which
we can compute different approximate 2×2D of a given problem, combining the
previous result and SDP computations. Indeed, it is obvious that one can, for
instance, solve SDP problems of the kind

min
{
‖Φ ‖ : Q = Φ +

∑
p∈P EpΠp(Ep)T , Πp � 0 p ∈ P , Φ � 0

}

to minimize some proper norm of the “residual” Φ, but more sophisticated (and
costly) versions are possible where the constraints of the problem are also taken
into account to provide the maximum possible lower bound, extending the results
in [4] for the extraction of the diagonal. We experimentally analyse the impact of
the different choices on the quality of the obtained bounds. The computational
results show promise of the approach, but also highlight a number of hurdles that
need be resolved before it can be widely applied. Also, extensions of the approach
to the case of k × k-Decomposition with k > 2 are discussed, highlighting the
interesting open problem of developing conditions for exact k×k-Decomposability
of a given matrix Q.
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Mixed-Integer Partial Differential Equation Constrained Optimization

Armin Fügenschuh

(joint work with F. Gnegel, M. Hagel, S. Leyffer, M. Stiemer)

An area of research that recently gained momentum is the inclusion of continuous
physical phenomena described by ODEs or PDEs into discrete decision processes
as an additional type of constraints. For instance, Fügenschuh et al. [4, 3] describe
network flow problems in which the transport equations are included, Koch et al.
[7] and Hahn et al. [6] combine gas dynamics with discrete decisions related to the
control of natural gas networks, and Frank et al. [2] consider the shortest path
problem together with the heat equation. We will refer to this class of problems
as Mixed-Integer PDE-Constrained Optimization (MIPDECO) problems, a term
introduce in [8]; this notion includes ODEs as a one-dimensional special case of
PDEs.

Classical mixed-integer linear programs have a finite number of constraints, for
instance, one for each node or each arc of a finite graph structure. In contrast,
differential equations are defined on continuous domains, they have to be valid at
infinitely many points. In the numerical treatment of PDEs as well as in the field of
Optimal Control, it is common practice to find a finite system that approximates
the solution with high accuracy. A possible way for solving MIPDECO problems
is thus to adapt known approximation techniques for PDEs in order to obtain an
approximation with only finitely many constraints and variables. A common ap-
proach is to use finite-difference methods, which replaces the differential operators
with suitable difference equations on a finite and regular grid. The approximated
function values on the grid are then included in the MIPDECO formulation as
additional variables, and the difference equations are additional constraints. The
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downside of this approach is that even moderately fine grids – by PDE-numerics
standards – lead to a huge number of variables and constraints – by mixed-integer
programming standards. Thus the solution of the linear programming relaxation
(the root node of the evolving branch-and-bound-tree) of such an instance can
take multiple hours or may not even finish on a state-of-the-art numerical solver
(such as Cplex). Even in the case of linear systems (for instance, resulting from
approximations of the heat equation, the wave equation, or the transport equa-
tion) numerical issues uncommon for MILPs derived for combinatorial problems
have to be taken into account. For example, the standard bounds strengthening
routines in the presolve phase of the aforementioned solvers may result in a false
certificate of infeasibility [1].

In the case of linear PDEs, it is sometimes possible to transfer the solution of
the PDE into a preprocessing step. That is, it can be efficient to solve the PDE
for a basis of the control space and apply the principle of superposition to obtain
solutions by linear combinations of the basis [2, 5]. In addition to that, splitting
the solution process of the PDE and the MILP has the additional benefit that
other solution methods, such as Galerkin methods (in particular, finite element
methods) can be applied more readily.

We illustrate these ideas for the convection-diffusion equation, where an ad-
ditional vector of variables w = (w1, w2, . . . , wn) ∈ Rn representing a control is
included in the righthand side. In full, we consider the following PDE system:

ut(x, t) − ~c · ∇u(x, t)− d∆u(x, t) = y(x, t, w) ∀ (x, t) ∈ Ω× (0, T ),(1a)

∂

∂~n
u(x, t) = hR(uR − u(x, t)) ∀ (x, t) ∈ ∂Ω× (0, T ),(1b)

u(x, 0) = u0(x) ∀x ∈ Ω.(1c)

Here Ω is a sufficiently regular domain in which the time depending temperature
distribution u is studied. Further given are: a constant outer temperature uR

on the boundary ∂Ω, a coefficient hR for the heat transfer over the boundary, a
temperature distribution u0(x) at time 0, and further constants ~c, d. The function
y on the righthand side expresses the influence of w on the continuous dynamics.
We assume that y depends linearly on w. Then there exist functions yi for all
i ∈ {1, . . . , n}, such that

y(x, t, w) =

n∑

i=1

wiyi(x, t).

By the principle of superposition the solution of the PDE can then be expressed
as

u(x, t) = uinh(x, t) +

n∑

i=1

wiûi(x, t),(2)

where uinh (inh for inhomogeneous) is the solution of (1a) for w = (0, 0, . . . , 0)
(which implies y = 0), and each ûi is the solution of (1a) for y = yi, uR = 0, and
u0(x) = 0.
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Now the approximations of the functions on the righthand side of (2) are calcu-
lated in a preprocessing step. Hereto, a finite element method can be applied, for
instance, which has the additional benefit that the basis functions can be evalu-
ated at arbitrary points in the domain without further approximation techniques
(i.e., not only at grid points), since finite element solutions are discrete functions
that are naturally defined throughout Ω.

We then replace the system (1) by its approximative solution (2), and thus de-
couple the discretization of the PDE from the further solution process. Constraints
defined for the whole domain, such as a state constraint

u(x, t) ≥ 0, ∀(x, t) ∈ Ω× (0, T )(3)

can be evaluated during the branch-and-bound solution process (technically, as
lazy constraints) at a finite number of positions (x, t), and are added on demand
in case one is violated. Since these constraints are dense in wi (i.e., having many
nonzero entries), it is not clear at first if this approach is computationally advan-
tageous, and thus comparative numerical studies were carried out. The numerical
results we obtained for two case studies – a wildfire hazard controlled by firefighters
operating on a road network, and a contaminated subsurface water flow controlled
by filtration stations – show a large reduction in computation time. It turned out
that only very few lazy constraints were in fact generated, so that their density
did no great harm to the solution process.
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[1] A. Dittel, A. Fügenschuh, S. Göttlich, and M. Herty. MIP Presolve Techniques for a PDE-
based Supply Chain Model. Optimization Methods & Software, 24(3):427–445, 2009.
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[5] F. Gnegel, M. Dudzinski, A. Fügenschuh, and M. Stiemer. Mixed Integer PDE Constrained
Optimization for the Control of a Wildfire Hazard. In Operations Research Proceedings 2017,
pages 483–488. Springer Verlag, Heidelberg, 2018.

[6] M. Hahn, S. Leyffer, and V. M. Zavala. Mixed-Integer PDE-Constrained Optimal Control
of Gas Networks. Technical report, Argonne National Laboratory ANL/MCS-P7095-0817,
2017. Available at URL: https://wiki.mcs.anl.gov/leyffer/images/2/27/GasNetMIP.pdf
(visited on 06/25/2018).

[7] T. Koch, B. Hiller, M. E. Pfetsch, and L. Schewe. Evaluating gas network capacities. Society
for Industrial and Applied Mathematics (SIAM), Philadelphia, 2015.

[8] S. Leyffer. Mixed-Integer PDE-Constrained Optimization. In A. Wiegele L. Liberti, S. Sager,
editor, Mixed-integer Nonlinear Optimization: A Hatchery for Modern Mathematics, vol-
ume 46/2015, pages 2738–2740. Mathematisches Forschungsinstitut Oberwolfach, 2015.
DOI: 10.4171/OWR/2015/46.



Mixed-integer Nonlinear Optimization: a hatchery for modern mathematics 1599

Graph Theory + Algebraic Model + SOS-Hierarchy + SDP = Fun

Elisabeth Gaar

(joint work with Daniel Krenn, Susan Margulies, Angelika Wiegele)

In 1968 Vizing conjectured that the product of the domination numbers of two
graphs is always less or equal to the domination number of their Cartesian product
graph. A lot of research has been done on Vizing’s conjecture since then, including
results that confirm the conjecture for some graph classes and results on properties
of possible minimal counterexamples; see for example the survey [2]. Today, we
still don’t know whether Vizing’s conjecture is true or not.

We discuss a completely new approach of tackling Vizing’s conjecture, which
was introduced in [1]. First we fix 4 parameters representing the number of ver-
tices and the domination number of each of the two graphs. Then we define an
ideal depending on these 4 parameters, such that the variety of this ideal repre-
sents dominating sets in the product graphs. Next we translate Vizing’s conjec-
ture for these parameters into the question of whether a specific polynomial f∗

is nonnegative on the variety of this specific ideal. To tackle nonnegativity, we
do another reformulation to the question of whether f∗ is a sum-of-squares (SOS)
polynomial on a certain level of the SOS-hierarchy and discuss how we can use
semidefinite programming (SDP) to answer these kind of questions. If we have
found an SOS-representation of f∗, we refer to it as certificate. Along the way we
have to transform the numeric SDP solution into an exact (potentially irrational)
certificate.

We obtained several sparse, low-degree certificates for different values of the
parameters. So even though we still do not have reached parameter values cover-
ing previously unknown results about Vizing’s conjecture, we provided a proof of
concept of our new method to tackle Vizing’s conjecture.

In [1] the limiting factor is the computation of the Gröbner basis, which is
needed in order to construct the SDP. In the course of the Oberwolfach workshop
Mixed-integer Nonlinear Optimization 2019 the following questions arose. Can
we use symmetries in order to produce certificates easier? How can we omit (or
partially omit) the computation of the Gröbner basis in order to obtain certificates
for larger values of parameters?

Acknowledgment: The authors gratefully acknowledge the support of Fulbright
Austria (via a Visiting Professorship at AAU Klagenfurt). This project has re-
ceived funding from the European Union’s Horizon 2020 research and innovation
programme under the Marie Sk lodowska-Curie grant agreement No 764759 and
the Austrian Science Fund (FWF): I 3199-N31.
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Reformulation Techniques for Mixed Integer Quadratic Programs

Laura Galli

(joint work with Adam N. Letchford)

Consider an arbitrary optimisation problem in which some or all of the variables
are integer-constrained. If those variables are explicitly bounded, then one can
reformulate the problem by replacing each such variable with a collection of binary
variables. For example, if the variable xi is integer-constrained and we know that
0 ≤ xi ≤ ui, where ui is a positive integer, we can replace each occurrence of xi

with
⌊log2 ui⌋∑

s=0

2s x̃is,

where the x̃is are new binary variables [8], although several other ways are also
possible.

It has been shown that bit representation can be useful for deriving strong cut-
ting planes for mixed-integer linear programs. A few people have also applied bit
representation to nonlinear problems. Gupte et al. [5] show that bit representa-
tion can be useful for solving certain mixed-integer bilinear programs. Billionnet
et al. [2] show that, under certain conditions, the bit representation can be used
to convert non-convex mixed-integer quadratic programs (MIQPs) into convex
mixed 0-1 quadratic programs. In this paper, we continue this line of research and
show that, in the context of non-convex MIQPs, bit representation can tighten
linear programming (LP) relaxations of the problem. First, we consider three LP
relaxations of MIQPs, based on reformulations due to McCormick [7] (LPM), Har-
junkoski et al. [6] (LPH) and Glover & Woolsey [4] (LPG). A natural question at
this point is: which of the three strategies is to be preferred? We provide a partial
answer, by analysing the quality of the corresponding LP relaxations in a very
simple “special” case. Let us say that an MIQP is simple if n = |I| = 1 and there
are no linear constraints apart from the trivial bounds 0 ≤ x1 ≤ u1. To compare
the three LP relaxations, we project their feasible regions into the McCormick
(x,X)-space. This allows us to prove that LPM is stronger than LPH, but there
are no other dominance relations. Then, we show ways to strengthen each of the
three relaxations using split inequalities [3], cover inequalities [5] and RLT [1]. We
analyse three strengthened versions of the original LP relaxations (called LPM+,
LPH+ and LPG+, respectively) and again compare them via polyhedral projection.
We can prove that LPH+ dominates LPM+, and conjecture that LPG+ is at least
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as strong as LPH+. This suggests that disaggregating integer variables induces a
“strengthening hierarchy” of the LP relaxations. We also investigate the interplay
between semidefinite programming relaxations (SDP) and bit representation. We
start proving that bit representation can never make the SDP bound worse, in
fact we provide an example where it is strictly better. Next, we explore this phe-
nomenon in more detail by comparing the projections of the feasible regions into
the (x,X)-space. The reason for the improvement in the bound appears to be the
constraint diag(X) = x, which is valid for binary variables, but has no analog in
the general-integer case. In other words, the SDP relaxation of the original MIQP
does not exploit the integrality of x in any way, while bit representation does.
A key outcome of this study is that the best relaxations based on bit represen-
tation are provably stronger than the others. We also present some preliminary
experiments to compare our formulations from a computational point of view.
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A fresh look at surrogate duality for mixed-integer nonlinear
programming

Ambros Gleixner

(joint work with Benjamin Müller, Gonzalo Muñoz, Maxime Gasse, Andrea Lodi)

The concept of surrogate duality dates back to a paper by Glover from 1965 [3], who
described how to form integer programming relaxations by aggregating constraints.
In contrast to Lagrangian duality, the violation of a surrogate constraint is not
penalized as part of the objective function, but controlled directly by enforcing
the surrogate constraint as a hard inequality. As a result, surrogate relaxations
can yield tighter dual bounds if suitable dual multipliers are identified.

While previous works mostly focus on the mixed-integer linear case, our mo-
tivation is the solution or the computation of strong dual bounds for challenging
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nonconvex mixed-integer nonlinear programs. Formally, we consider an MINLP

(1) min
{
ctx : gj(x) ≤ 0 ∀j = 1, . . . ,m, x ∈ X

}

with factorable continuous functions gj : Rn → R and a mixed-integer ground set
X ⊆ Rn defined by linear constraints and integrality restrictions on some of the
variables. The classical surrogate relaxation with multiplier vector λ ∈ Rm, λ ≥ 0,
reads

(2) S(λ) := min
{
ctx :

∑

j

λjgj(x) ≤ 0, x ∈ X
}
.

The task of computing the λ giving the tightest dual bound leads to the surrogate
dual maxλ≥0 S(λ). While our computational results indicate that bounds from
surrogate relaxations can be strong, we also observed that they become weaker
as the number of nonline constraints increase. Hence, we propose to study the
generalization from one to multiple constraint aggregations,

(3) SK(λ) := min
{
ctx :

∑

j

λk
j gj(x) ≤ 0 ∀k = 1, . . . ,K, x ∈ X

}

for K ≥ 2. This yields a natural hierarchy of increasingly difficult and tight
relaxations.

Although the quasi-concavity of S1 fails to hold for larger K, we show that
the classical separation algorithms developed in [1, 2, 4] can be adapted in prac-
tice. Using generalized surrogate relaxations implemented on top of the spatial
branch-and-bound solver SCIP [6], we obtain significantly improved dual bounds
for several hard MINLPs contained in MINLPLib2 [5]. These results, however, re-
quire a variety of sophisticated enhancements to the base algorithm including the
use of refined relaxations, early termination criteria for master and subproblems,
support stabilization, trust region techniques, and symmetry handling in the space
of dual multipliers.
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Improved convergence analysis of Lasserre’s measure–based upper
bounds for polynomial minimization on compact sets

Monique Laurent

(joint work with Etienne de Klerk and Lucas Slot)

We consider the problem of computing the minimum value fmin,K of an n-variate
polynomial f over a compact set K ⊆ Rn. This is a computationally hard problem,
which permits to model a wide range of applications from combinatorial optimiza-
tion, control, global optimization and other areas. This problem can be reformu-
lated as finding a probability measure ν on K minimizing

∫
K fdν. Lasserre [9]

showed that it suffices to consider such measures of the form ν = qµ, where q is
a sum-of-squares polynomial (abbreviated as sos) and µ is a given Borel measure
supported on K. By bounding the degree of q by 2r one gets a converging hierar-
chy of upper bounds f (r) for fmin,K . For any fixed integer r, the parameter f (r)

can be expressed as a semidefinite program of size polynomial in n or, as recalled
below, as an eigenvalue optimization problem. The objective is to analyze the rate
of convergence of the sequence f (r) = f (r) − fmin in terms of the degree bound r.
Depending on the class of compact sets K and the reference measure µ, different
strategies can be employed for the analysis.

The first strategy is based on the fact that we are searching for a sos polynomial
q that approximates well the Dirac measure at a global minimizer of f in K.
Such sos polynomials were constructed using truncations of the Guassian measure
in [7] and of the Boltzman distribution in [3]; they led to a convergence rate
in O(1/

√
r) for general compac sets satisfying a mild geometric condition (see

[7]) and in O(1/r) for general convex bodies (see [3]). Using sos polynomials
constructed from the so-called needle polynomials from approximation theory (see
[8]), improved convergence rates in O(log r/r) and O(log2 r/r2) have been shown
in [11] for these two classes, respectively.

The second strategy is based on an eigenvalue reformulation for the parameter
f (r), which can be verified to be equal to the smallest value of the matrix

Af (r) =
(∫

K

f(x)pα(x)pβ(x)dµ(x)
)
|α|,|β|≤r

.

Here, {pα(x) : α ∈ Nn, |α| ≤ r} is an orthonormal basis of the set of polynomials
with degree at most r, with respect to the scalar product induced by the measure µ
on K. Using this strategy a convergence rate in O(1/r2) can be shown for several
special sets K and measures µ. A basic tool used here for the analysis is that one
may restrict to the case when f is quadratic (or even linear in some cases), since
one may always replace f by a quadratic upper estimator obtained using, e.g.,
Taylor theorem.

Consider first the interval K = [−1, 1] equipped with the Jacobi-type measure
dµ(x) = (1−x2)λ where λ > −1. The Θ(1/r2) convergence rate is shown in [4] for
the case when f is linear and any λ > −1, and for arbitrary f when λ = −1/2 (the
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Chebyshev case). These results extend easily to the hypercube [−1, 1]n equipped
with the corresponding product measures.

In addition, these results can be ‘lifted’ to other sets K, such as the hypercube
with more general measures, the sphere, the ball and the simplex. Another useful
basic tool to do this relies on using the notion of ‘local similarity’ introduced in [11].

Roughly speaking, assume that K ⊆ K̂ are two compact sets that ‘look similar’ in a

neighborhood of a global minimizer x∗ of f in K, and that K (resp., K̂) is equipped
with a measure dµ(x) = w(x)dx (resp., dµ̂(x) = ŵ(x)dx), where the two weight
functions w, ŵ also ‘look similar’ in the neighbourhood of x∗. Then, as shown in

[11], information about the convergence rate for (K̂, ŵ) implies information about
the convergence rate for (K,w).

The above mentioned convergence rates for the interval [−1, 1] can be used to
show the following further results. First, the bounds f (r) also have a convergence
rate in O(1/r2) for the case when K is the unit sphere [6] (where an additional
integration trick is used); this improves an earlier result of [1] who proved a rate
in O(1/r) for homogeneous polynomials. Second, the rate O(1/r2) extends for the
hypercube [−1, 1]n equipped with the measure

∏n
i=1(1−x2

i )λdxi for any λ ≥ −1/2,
and for the unit ball equipped with the measure (1 − ‖x‖2)λdx with λ ≥ 0 (see
[11]). Finally, the convergence rate O(1/r2) also holds for the simplex and for a
large class of convex bodies, equipped with the Lebesgue measure (see [11]). These
convex bodies are those that admit at each boundary point an inner tangent ball
and an outer tangent ball; equivalently, they can be characterized as the smooth
convex bodies which have a C2 boundary and are 2-strictly convex.

By exploiting links to cubature rules as shown in [10] it is shown in [6] that the
convergence rate O(1/r2) is tight for the optimization of linear polynomials over
the unit sphere. Determining what is the exact rate for arbitrary convex bodies
remains open. As shown in [2], the known results about the convergence rate of
the sequences f (r) can be applied to the general problem of moments, however at
the price of ‘loosing a square root’ (see also [5] for details). Minimizing a rational
function can also be cast as an instance of the general problem of moments, but
in this case the same convergence rate as for polynomials is preserved (see [6]).
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Local search for sparse reflexive generalized inverses

Jon Lee

(joint work with Marcia Fampa, Luze Xu)

For a rectangular diagonal matrix Σ, we get the Moore-Penrose pseudoinverse
Σ+ by taking the reciprocal of each non-zero element on the diagonal, leaving
the zeros in place, and then transposing the matrix. For arbitrary A, if A =
UΣV ⊤ is the singular value decomposition of the real matrix A, then the Moore-
Penrose pseudoinverse A+ is defined as A+ := V Σ+U⊤ . There are very efficient
algorithms to calculate the singular value decomposition and hence the Moore-
Penrose pseudoinverse, but unfortunately it can be quite dense, even when A is
sparse.

A classical results is that the Moore-Penrose pseudoinverse is the unique n×m
matrix H satisfying

AHA = A (generalized inverse)(P1)

HAH = H (reflexive)(P2)

(AH)⊤ = AH (“ah-symmetric”)(P3)

(HA)⊤ = HA (“ha-symmetric”)(P4)

With the terminology indicated above, any ah-symmetric generalized inverse H
of A solves the least-squares problem min{‖b − Ax‖2 : x ∈ Rn} via x := Hb.
We are particularly interested in the situation where r := rank(A)≪ n≪ m, A+

is rather dense, and we have many right-hand sides b to process (via x := Hb).
What we seek is a sparse ah-symmetric generalized inverse H of A. In what follows,
we concentrate of seeking to minimize the vector 1-norm of H , rather than the
intractable minimization of the “0-norm” of H .

We are also concerned about the rank of H . Low rank for H can be interpreted
as a kind of linear-algebraic “explainability”. In fact, any generalized inverse H of
A has rank at least r, and the rank of H is equal to r iff H is reflexive. Conveniently,
the quadratic equation P2 becomes linear in the presence of P1 and P3, because
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P1+P3 implies that AH = AA+. So, we could solve min{‖H‖1 : P1 + P2 + P3}
by LP. What is not clear is whether the LP-solution H would actually have any
sparsity and any structure.

Rather than using LP, we employ a natural column block construction for pro-
ducing an ah-symmetric reflexive generalized inverse. Moreover, our construction
has a nice “explainable strucure”. For T , an ordered subset of r elements from
{1, . . . , n}, let Â := A[:, T ] be the m× r submatrix of A formed by columns T . If

rank(Â) = r, let

Ĥ := Â+ = (Â⊤Â)−1Â⊤.

The n×m matrix H with all rows equal to zero, except rows T , which are given
by Ĥ , is an ah-symmetric reflexive generalized inverse of A having at most rm
nonzeros.

In the least-squares setting, we are simply regressing onto the columns indexed
by T . So our column-block solution always has a kind of explainability in the
least-squares setting. Next, we seek to find such a good T for the column block
construction.

Theorem: Let A be an m×n, rank-r matrix, and let S be any ordered subset of r
elements from {1, . . . ,m} indexing linearly-independent rows of A. Choose ǫ > 0,

and let Ã := A[S, T ] be a (1 + ǫ)-local maximizer for the absolute determinant
on the set of r × r nonsingular submatrices of A[S, :], which can be calculated

efficiently. Then the H built via column block construction over Â := A[:, T ], is
an ah-symmetric reflexive generalized inverse (having at most rm nonzeros), sat-
isfying ‖H‖1 ≤ r(1 + ǫ)‖Hah

opt‖1, where Hah
opt is a 1-norm minimizing ah-symmetric

generalized inverse of A.

In fact, we have a family of examples to demonstrate that our local-search
algorithm may in fact terminate with ‖H‖1 approximately r times the 1-norm of
a 1-norm minimizing ah-symmetric reflexive generalized inverse of A.

Because the 1-norm of H is now controlled via our local-search algorithm, we
can say that the entries of H are under control. So we have essentially everything
that we want for a good ah-symmetric generalized inverse: (i) we can hope that
H is sparse in the same way that everyone does who uses 1-norm as a tractable
alternative to “0-norm”, (ii) the entries of H are under control because we approx-
imately minimize an actual norm, (iii) H has some guaranteed sparsity (no more
that rm nonzeros), (iv) H has lowest possible rank = r, (v) H has explainable
structure, having all nonzeros in just r rows — and so leads to a least-squares
solution x := Hb with guaranteed sparsity (no more than r nonzeros).

Finally, we wish to point out that a more-obvious local-search algorithm based
on minimizing ‖Ã−1‖ cannot give any approximation guarantee at all. We are
currently carrying out computational experiments to see how practical our local
search is. Our preliminary findings are that we can essentially even take ǫ = 0
and get very rapid finite convergence to an H with 1-norm much better than the
guarantee.
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Most of the results above and many more are in [2], which builds on [1]. Com-
putational methodology and experiments will appear in [3].
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Mixed-Integer PDE-Constrained Optimization

Sven Leyffer

(joint work with Bart van Bloemen Waanders, Mirko Hahn, Todd Munson, Lars
Ruthotto, Meenarli Sharma, Ryan Vogt)

We consider the solution of mixed-integer partial differential equation (PDE) con-
strained optimization (MIPDECO) problems. This is a difficult class of problems
that combines the combinatorial complexity of integer variables with the compu-
tational challenges of PDE constraints. We introduce a trust-region algorithm for
MIPDECO and show its effectiveness on two classes of problems motivated by
practical applications:

(1) Determination and location of a set of discrete sources from noisy mea-
surements. This model is loosely motivated by applications in groundwater
flow, where we want to find the location of pollutants in the subsurface;
see, for example, [7, 3].

(2) Design of an electromagnetic cloak. This model is a mixed-integer for-
mulation of the topology optimization formulation for an electromagnetic
cloak design; see, for example, [5].

Both models include a PDE that is defined over a two- or three-dimensional domain
and discretized by using quadrilateral finite elements. The source inversion model
involves a linear advection-diffusion PDE, while the cloak-design is modeled by
using a 2D Helmholtz equation. In both cases, the integer variables are binary
indicator variables that model the presence of the source and the presence of
cloaking material. Both models can be expressed abstractly as

(1)





min
u,w

J (u,w)

s.t. C(u,w) = 0
w ∈ {0, 1}p





⇔
{

min
w

J (u(w), w)

s.t. w ∈ {0, 1}p

}
,

where F is the objective function, C represents the PDE and boundary conditions,
u are the state variables, and w are the binary control variables. We assume that
given w, we can uniquely solve the PDE to obtain u(w), resulting in an equivalent
reduced-space formulation on the right. The presence of mesh-dependent integer
variables in these models makes the use of commercial branch-and-cut (see, e.g.,
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[1]) prohibitively expensive (and impractical for 3D extensions of our models).
Consequently, we develop a trust-region heuristic that is described next.

1. Trust-Region Method for MIPDECO

We present a new improvement heuristic for MIPDECO that is motivated by trust-
region methods for nonlinear optimization; see, for example, [2]. Our method is
also related to local-branching heuristics for MINLP [4, 6].

The key idea is to work with the reduced-space formulation in (1) and to define
a trust-region subproblem around a current iterate, w(k), as

(2)

{
min
w

J (k) + g(k)
T

(w − w(k))

s.t. ‖w − w(k)‖1 ≤ ∆k, and w ∈ {0, 1}p
,

where g(k) := ∇wJ (u(w(k)), w(k)) is the reduced gradient, and ∆k ∈ Z+ is the ℓ1
trust-region radius. We note that because w ∈ {0, 1}p, the trust-region constraint
can be written equivalently as a single affine constraint. Given this subproblem,
we define a trust-region algorithm as follows.

Given w(0) ∈ {0, 1}p, gradient, g(0), set ∆0 = ∆̄ and k ← 0;

while ∆k > 0 do
Solve trust-region subproblem (2) for ŵ;

Evaluate J (ŵ, u(ŵ)) (PDE) & ρk = J (w(k))−J (ŵ)

−gkT
(
ŵ−w(k)

) = ActRed
PredRed ;

if ρk > ρ̄ then
accept step: w(k+1) = ŵ, possibly increase ∆k;

else

reject step: w(k+1) = w(k), reduce ∆k+1 =
⌊
∆k

2

⌋
;

Set k ← k + 1;

The algorithm requires two PDE solves (forward and adjoint) per successful
iteration, and we can solve the subproblem (2) efficiently by recasting it as a
simple knapsack problem.

2. Computational Results

The results of the trust-region approach to solving the source inversion problem
are shown in Figure 1, which shows the location of the original sources, the obser-
vations, u, with the measurement locations in red, and the final solution from the
trust-region approach, which has an intersection-over-union (IoU) score of 82.3%.

We have also applied this method to the design of an electromagnetic scatterer.
Figure 2 shows the solution of the continuous relaxation final trust-region problem
and the corresponding wave difference, or objective functional, demonstrating the
effectiveness of our approach.
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Figure 1. Original sources, the observations with measurement
locations in red, and the final trust-region iterate.

Figure 2. Solution of continuous relaxation final trust-region
problem, and the logarithm of the wave difference.

3. Conclusions, Outlook, and Open Problems

We have presented a trust-region heuristic for solving MIPDECOs and have shown
its effectiveness in solving realistic applications. Our approach leaves open a num-
ber of important questions and opportunities for future research.

(1) Currently, the algorithm stops when (2) cannot make any more progress. It
would be interesting to see whether this stopping criterion can be replaced
by a formal criterion based on the convergence of lower and upper bounds.

(2) Multigrid methods may provide an interesting refinement strategy for ob-
taining even better solutions.

(3) A formal convergence analysis of the algorithm based on topology opti-
mization is an open problem, as well as the characterization of solutions
under mesh refinement.

Despite these gaps in its theoretical justification, the proposed trust-region scheme
performs well in practice, and we are working on other applications that could
benefit from this approach.

References

[1] Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J., Mahajan, A.: Mixed-integer
nonlinear optimization. Acta Numerica 22, 1–131 (2013). DOI 10.1017/S0962492913000032.
URL http://journals.cambridge.org/article\_S0962492913000032

[2] Conn, A.R., Gould, N.I., Toint, P.L.: Trust Region Methods. SIAM (2000)
[3] Fipki, S., Celi, A.: The use of multilateral well designs for improved recovery in heavy oil

reservoirs. In: IADV/SPE Conference and Exhibition. SPE, Orlanda, Florida (2008)
[4] Fischetti, M., Lodi, A.: Local branching. Mathematical Programming 98, 23–47 (2002)



1610 Oberwolfach Report 26/2019
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Robust Optimization: (Some) Theory, (Some) Algorithms, and
(Some) Applications

Frauke Liers

In the last two decades, protecting a mathematical optimization problem against
uncertainties using robust optimization techniques has become a powerful tool.
The research area of robust optimization has whitnessed fast algorithmic advances,
novel theoretical insights, and the development of efficient solution approaches.
However, still many challenges and settings exist where not yet efficient solution
approaches are known.

Usually, the uncertainties are given to an optimization model via so-called un-
certainty sets. A solution is robust feasible if it is feasible regardless how the
uncertainty manifests itself within the set. Among the robust feasible solutions, a
robust optimum one needs to be determined that yields the best guaranteed ob-
jective value. Due to the necessity that a robust solution needs to be feasible for
all realizations of the uncertainty, semi-infinite models result for which no general
solution algorithm exists.

In this overview talk, we have reviewed established as well as some recent devel-
opments in the field of (mixed-integer) linear, combinatorial, single and two-stage,
convex, nonlinear, and PDE-constrained robust mathematical optimization. Al-
though these areas are very wide, covering these topics is possible due to the fact
that in particular three main approaches are often used in robust optimization,
namely:

(1) Reformulation of the semi-infinite robust optimization problem so that the
robust counterpart is a finite-dimensional and algorithmically tractable
problem that can be solved to global optimality. Usually, reformulations
use some form of duality theory such as linear, conic, or Fenchel duality.

(2) Decomposition of the robust problem into a master- and subproblem that
are solved iteratively, similar as in an outer approximation or in a Benders
decomposition approach.

(3) If the above is not easily possible, as for example in optimization with par-
tial differential equations, often the robust problems are approximated, for
example using Taylor expansion. Solution algorithms are then developed
for the approximate robust counterparts.

In the talk, we have reviewed where and how these methodologies can be used
successfully. We mentioned pointers to the literature. We closed by mentioning
some theoretical and algorithmical challenges in the field, such as the development
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of efficient global algorithms for multi-stage robust problems, in particular with
non-convex stages that might involve integral decisions. Applications for such
tasks appear in applications such as energy and logistics.

The field of distributional robustness can be understood as a combination of
robust and stochastic optimization, with robust and stochastic optimization as
special cases. This area currently attracts many researchers and has many relevant
applications. The development of efficient solution approaches would be highly
desirable.

An exact algorithm for a class of mixed-integer programs with
equilibrium constraints

Andrea Lodi

(joint work with Teodora Dan and Patrice Marcotte)

In this study [1], we consider a rich class of mathematical programs with equilib-
rium constraints (MPECs) involving both integer and continuous variables. Such a
class, which subsumes mathematical programs with complementarity constraints,
as well as bilevel programs involving lower level convex programs is, in general,
extremely hard to solve due to complementarity constraints and integrality require-
ments. For its solution, we design an (exact) branch-and-bound (B&B) algorithm
that treats each node of the B&B tree as a separate optimization problem and
potentially changes its formulation and solution approach by designing, for exam-
ple, a separate B&B tree. We refer to this algorithm as tree-of-trees B&B. The
algorithm is implemented and computationally evaluated on a specific instance of
MPEC, namely a competitive facility location problem that explicitly takes into
account the queueing process that determines the equilibrium assignment of users
to open facilities, and for which to date, no exact method has been proposed.
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Approximation properties of Sum-Up Rounding and consequences for
Mixed-Integer PDE-Constrained Optimization

Paul Manns

(joint work with F. Bestehorn, C. Hansknecht, C. Kirches, F. Lenders)

For n ∈ N, we abbreviate [n] = {1, . . . , n}. We consider convexified mixed-integer
optimal control problems, see [5], of the form

inf
y,u,ω

J(y, u)

s.t. Ay =
∑M

i=1 ωifi(y, u),
0 ≤ ωi(s)ci(y(s), u(s)) for a.a. s ∈ ΩT and i ∈ [M ],

ω(s) ∈ {0, 1}M and
∑M

i=1 ωi(s) = 1 for a.a. s ∈ ΩT ,

(BC)

in which Ay =
∑M

i=1 ωifi(y, u) is the state equation of the underlying process,
which is defined on a bounded domain or space-time cylinder ΩT , A is a suitable
differential operator and the fi are good-natured non-linearities. The ci are point-
wise a.e. defined constraint functions. The function ω : ΩT → {0, 1}M acts as an
activation of the functions f1, . . . , fM , i.e. ωi(s) = 1 for exactly one i ∈ [M ] and
ωj(s) = 0 for j 6= i for a.a. s ∈ ΩT . The fractional relaxation of (BC) is given by

min
y,u,α

J(y, u)

s.t. Ay =
∑M

i=1 αifi(y, u),
0 ≤ αi(s)ci(y(s), u(s)) for a.a. s ∈ ΩT and i ∈ [M ],

α(s) ∈ [0, 1]M and
∑M

i=1 αi(s) = 1 for a.a. s ∈ ΩT .

(RC)

Approximation arguments

Let (RC) be well-posed with solution y, u, α. Let ωh : ΩT → {0, 1}M be a piecewise

constant function satisfying
∑M

i=1 ωi(s) = 1 for a.a. s ∈ ΩT that is computed from

α. The cell volume of the pieces on which ωh is defined is denoted by h and the
algorithms that produce these ωh are called Sum-Up Rounding (SUR) algorithms.
Let yh solve the state equation for u and ωh. We analyze the chain of arguments

h→ 0 =⇒
(1)

d(ωh, α)→ 0 =⇒
(2)

ωh ⇀∗ α =⇒
(3)

yh → y,(1)

in which d denotes a suitable pseudo-metric and ⇀∗ convergence in the weak-∗

topology of L∞(ΩT ,R
M ). Let the functions J and ci be continuous in the first

argument. Then, the approximation arguments (1) to (3) yield the optimality
principle

min
(RC)

J(y, u) = lim
h→0

J(yh, u).

Furthermore, if ci ≡ 0 holds for all i, we have

min
(RC)

J(y, u) = inf
(BC)

J(y, u).

This gives well-definedness and finite termination for successive refinements of the
grid, on which ωh is computed by means of the SUR algorithm, up to a desired
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tolerance with respect to the objective. We detail the approximation properties
(1), (2), (3) below.

Roundings are of vanishing integrality gap

Let (Tk)k∈{1,...,N} be a finite partition of ΩT . For a given α, which is feasible for
(RC), we define the SUR algorithm in the presence of mixed constraints iteratively
for k = 1, . . . , N by

ω(s) :=

N∑

k=1

χTk
(s)Wk,

Wk(i) :=

{
1 if i = argmax

j∈Fk

∫
⋃k

ℓ=1 Tℓ
αj −

∫
⋃k−1

ℓ=1
Tℓ

ωj

0 else,
for i ∈ [M ],

Fk :=

{
i ∈ [M ] :

∫

Tk

αi > 0

}
.

(SUR-VC)

The resulting binary control function is also called a rounding of α. The set
Fk contains the entries of ω that are admissible to be set to one in grid cell k.
These are exactly the ones with a strictly positive mean of α over grid cell k. This
restriction guarantees 0 ≤ lim inf ωh

i ci(y
h, u) for 0 ≤ αic(y, u). In [4], we have

shown the approximation property below, which implies (1).

Theorem 1. There exists C > 0 such that for all feasible α of (RC) and ωh being
computed with (SUR-VC), the function ωh satisfies the pointwise SOS1 constraint
in (BC) and the estimate

d(ωh, α) := max
k∈[M ]

∥∥∥∥∥

∫
⋃k

k′=1
Tk′

α(s) − ωh(s) d s

∥∥∥∥∥
∞
≤ Ch.

In the literature, the function d is called integrality gap and the convergence
d(ωh, α)→ 0 is known as vanishing integrality gap.

A vanishing integrality gap induces weak-∗ convergence

The following condition from [2] on rounding grid refinements induces (2).

Definition 2. The sequence
({
T n
1 , . . . , T n

N(n)

})
n
⊂ 2B(Ω) is called an admissible

sequence of refined rounding grids of ΩT if

(1)
{
T n
1 , . . . , T n

N(n)

}
is a finite partition of ΩT for all n ∈ N,

(2) maxi∈{1,...,N(n)} λ(T n
i )→ 0,

(3) For all i ∈ {1, . . . , N (n+1)}, there exists j ∈ {1, . . . , N (n)} such that
T n+1
i ⊂ T n

j ,

(4) the cells shrink regularly, i.e. there exists a constant C > 0 such that for
each T n

j there exists a ball Bn
j such that T n

j ⊂ Bn
j and λ(T n

j ) ≥ Cλ(Bn
j ).

Theorem 3. Let α be feasible for (RC) and (ωn)n be computed from α with
(SUR-VC) on an admissible sequence of rounding grids. Then, ωn ⇀∗ α in
L∞(ΩT ,R

M ).



1614 Oberwolfach Report 26/2019

State vector convergence

The property of the solution operator of the state equation to establish (3) is
complete continuity, which is stated below.

Definition 4. Let X, Y be Banach spaces. Then, a mapping T : X → Y is
called completely continuous if, for every weakly convergent sequence xn ⇀ x,
we have Txn → Tx in norm.

We refer to [3] for elliptic equations and to [2] for a class of semilinear evolution
equations constraining (BC) and (RC). We note that other completely continuous
operators exist, which enable us to employ the derived approximation properties
outside the context of differential equations. An example are convolutions with a
fixed kernels that can be used to model filtering in signal processing problems.

Switching-cost aware rounding

(SUR-VC) often produces controls that exhibit high-frequency switching, which
may be undesirable. Thus, one can penalize the number of switches in the ob-
jective and obtain a trade-off between approximation quality and switching costs.
However, these costs cannot be bounded for h → 0 as the weak-∗ approxima-
tion of fractional-valued functions may require arbitrarily high switching in the
binary-valued approximants for h→ 0, see [1].
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Modeling and optimization of traffic at traffic-light controlled
intersections

Maximilian Merkert

(joint work with Gennadiy Averkov, Do Duc Le, Sebastian Sager, Stephan
Sorgatz)

Assisted and autonomous driving is a growing field of interest. The coordination
of vehicular traffic at traffic-light controlled intersections offers great potential
for optimization: Intersections in urban areas represent intrinsic bottlenecks for
the movement of cars, potentially causing long waiting times, traffic jams, air
pollution and increased energy consumption. Imperfect human driving behavior
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and inefficient traffic light switches further amplify congestion. Consequently,
controlling traffic light signals plays a vital role in effective traffic management.

Traffic Model. We use a MINLP model to describe the traffic flow on a simple
urban road network within a fixed time interval at a microscopic level. It is
based on the model presented in [1]. The movement of vehicles is modeled by a
time-discretized ODE system while the states of the traffic lights are represented
via binary variables. Our goal is to find a globally optimal traffic flow, i.e. to
determine controls for the movement of each car as well as for each traffic light that
minimize a global objective—such as the total transit time or energy consumption
of all cars—while avoiding collisions. Collision prevention on lanes is ensured
by constraints that require each car to keep a predefined safety distance to its
predecessor. However, successor-predecessor relations may change after turning,
which necessitates the introduction of further binary indicator variables. Collisions
on the intersection are prevented due to traffic lights. A trigger mechanism models
the logic of traffic lights, which basically prohibits cars to be in the intersection
area at certain time steps.

Traffic light regulations. Traffic light controls have to fulfill certain require-
ments in order to be reasonable or even legal such as minimum and maximum
green and red phases or minimum and maximum cycle times of individual traffic
lights. Other regulations may affect several traffic lights at a given intersection si-
multaneously. Incorporating these rules substantially increases the computational
difficulty of the overall problem formulation. We demonstrate that many nat-
ural requirements can be implemented by finite automata—enabling flow-based
extended formulations of the corresponding 0-1 polytope [2]. As an important
example, the requirement of minimum green and red phases leads to min-up/min-
down polytopes, which have exponentially many facets in the original space [3].
Flow-based extended formulations allow us to recover the turn on/off inequalities
that lead to a complete description of min-up/min-down polytopes in extended
space known from the context of unit commitment problems [4] by projecting out
certain flow variables. However, given the size of the extended formulations for
certain traffic light regulations, it still has to be investigated how to exploit them
most efficiently in practice.

Effects on traffic flow. The resulting models are very challenging to solve to
global optimality, in particular when involving realistic traffic light regulations.
Our approach yields a solution from a global point of view where everything is
coordinated centrally. Though unlikely to become reality in the very near future,
solutions obtained from our model serve as a benchmark and basis for decentral-
ized concepts. Using our model, we computationally investigate different scenarios
with respect to traffic density, traffic light regulations, and equipment rate (per-
centage of coordinated vehicles). We compare the resulting traffic with the aid
of the microscopic traffic simulation tool SUMO (Simulation of Urban MObility)
[5]. Experiments suggest that waiting times can be significantly reduced. More-
over, optimized solutions show interesting driving behavior that might improve
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efficiency of real-world urban traffic already in the case where communication is
just possible from infrastructure to cars. For instance, cars slow down or stop at
some distance from a traffic light (instead of right in front of it) and plan ahead
to be at the maximum allowed speed when reaching a green light. This leads to
cars spending less time in the crossing area.
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Developing spatial branch & bound solvers

Ruth Misener

(joint work with Radu Baltean-Lugojan, Francesco Ceccon, Miten Mistry)

Summary

This survey presentation, which was meant as a broad overview, discussed the
ingredients common to branch and bound solvers. We also presented recent ad-
vances in developing different solver components. Finally, the presentation offered
a to-do list for developing next generation solvers. We specifically focused on the
theoretical and algorithmic contributions needed to effectively solve mixed-integer
nonlinear optimization problems (MINLP).

Because this survey talk was meant for a fairly broad audience, the slides are
available on Twitter1. Twitter interaction with the slides includes a discussion of
whether the convexity structure of a special function in energy efficiency [7] can
be represented using cones2.

Definitions & solvers

The first section of the presentation defined MINLP and the tools for representing
and solving MINLP. An example showcased several challenges arising in modern
MINLP solution methods:

• The difficulty of developing MINLP relaxations, i.e. that most state-of-
the-art relaxations are based on box variable bounds.
• The impact of special structure detection in building a relaxation, i.e. how

succeeding or failing at structure detection influences relaxation strength.

1https://twitter.com/RuthMisener/status/1135421089683836928
2https://twitter.com/JeffLinderoth/status/1135517902688440320
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• The challenges associated with branching, i.e. a branch may not necessarily
reject the current feasible solution.

This discussion motivated some challenges where we returned at the conclusion.

Data structures

This section discussed the data structures that are common to all exact MINLP
solvers. The purpose was to motivate discussion with respect to (i) what data
structures we should be incorporating into modern solvers and (ii) how we can
make modern mathematical advances fit into the constraints of the best-known
data structures.

In particular, the presentation detailed: (i) directed acyclic graphs for repre-
senting optimization model equations, (ii) hard-coded expression types for storing
special structure knowledge related to each type of important expression, and (iii)
undirected [weighted] graphs for specifically addressing quadratic objectives and
constraints. There are two paradigms for managing special structure: automatic
detection and disciplined convex programming [5]. The presentation considered
the trade-offs between these two methods, especially with respect to the extensible
convexity detector SUSPECT [3] and an array of applications common in MINLP.

Branch & bound components

This section presented components common to every branch and bound solver:
(i) relaxations, (ii) branching, (iii) bounds tightening, (iv) primal heuristics, (v)
and cutting planes. We particularly focussed on the challenges and opportunities
associated with relaxations and branching:

• Relaxations for special functions is a long-time research area in MINLP.
Within the bounds of practical development, the best MINLP strategy is
heterogenous, i.e. uses multiple types of relaxations simultaneously [1, 2].
A major challenge for the future is relaxations that are not based on boxes.
There are a few references developing relaxations beyond boxes3, but we
highlighted the need for more development along this line.
• Branching is an especially difficult area in solving MINLP because a

branch may not necessarily eliminate the current feasible point [6]. There
is some interesting new work with respect to branching to get disjunctions
[4], but a lot more to do in this area.

Challenges

We closed the presentation by offering a number of open challenges and invited
the audience to add to the list.

References

[1] K. M. Anstreicher. Semidefinite programming versus the reformulation-linearization tech-
nique for nonconvex quadratically constrained quadratic programming. J Glob Optim, 43
(2):471–484, 2009.

3Slide 34, https://www.doc.ic.ac.uk/~rmisener/MINLPSolver_Tutorial.pdf



1618 Oberwolfach Report 26/2019

[2] A. Bompadre and A. Mitsos. Convergence rate of McCormick relaxations. J Glob Optim, 52
(1):1–28, 2012.

[3] F. Ceccon, J. D. Siirola, and R. Misener. SUSPECT: MINLP special structure detector for
Pyomo. Optim Letters, 2019. DOI 10.1007/s11590-019-01396-y.

[4] S. S. Dey, A. Santana, and Y. Wang. New SOCP relaxation and branching rule for bipartite
bilinear programs. Optim Eng, 20(2):307–336, 2019.

[5] M. Grant and S. Boyd. Graph implementations for nonsmooth convex programs. In V. Blon-
del, S. Boyd, and H. Kimura, editors, Recent Advances in Learning and Control, Lecture
Notes in Control and Information Sciences, pages 95–110. Springer-Verlag Limited, 2008.
http://stanford.edu/~boyd/graph_dcp.html.

[6] S. Lee and I. E. Grossmann. New algorithms for nonlinear generalized disjunctive program-
ming. Comput Chem Eng, 24(9-10):2125–2141, 2000.

[7] M. Mistry and R. Misener. Optimising heat exchanger network synthesis using convexity
properties of the logarithmic mean temperature difference. Comput Chem Eng, 94:1 – 17,
2016.

A snapshot of quantum computing algorithms for optimization

Giacomo Nannicini

A quantum computer (QC) with n qubits is a device that computes a vector
x ∈ C2n , ‖x‖ = 1, x =

∑
z∈{0,1}n αzez. Here and in the following, we use e to

denote standard basis vectors and we index them with binary strings in {0, 1}n,
since there are 2n such vectors. The QC is initialized with the state e~0, and we

obtain the final state x applying a unitary U = C2n×2n . The unitary must be
obtained combining a polynomial number (in n) of basic operations; the basic
operations are certain 2× 2 and 4× 4 matrices, combined via tensor products and
matrix multiplication.

The only operation to extract information out of a QC is a measurement. The
outcome of a measurement on the quantum state x is a sample from a random
variable X , with sample space Ω = {0, 1}n and Pr(X = z) = |αz |2.

Given this paradigm of computation, we are interested in optimization algo-
rithms and their interplay with mixed-integer nonlinear programming techniques.
We will divide our discussion into algorithms for combinatorial optimization, and
for continuous optimization.

1. Combinatorial optimization

In combinatorial optimization we want to solve:

(OPT) min
z∈{0,1}n

f(z) = c⊤z + z⊤Qz.

This can be formulated as an eigenvalue problem. Define H := diag(f(~0), . . . , f(~1)),
where the matrix H is typically called a Hamiltonian and encodes the energy of a
quantum system; in this case, we can simply think of the Hamiltonian as encoding
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the possible objective function values. Then:

min
x:‖x‖=1

x∗Hx = min
x:‖x‖=1

∑

z∈{0,1}n

f(z)|αz|2 = min
x:‖x‖=1

∑

z∈{0,1}n

f(z) Pr(X = z)

= min
x:‖x‖=1

E[f(X)] = (OPT).

Stated in this form, this is equivalent to finding the minimum eigenvalue of H .
However, this problem has dimension 2n, therefore it may be difficult to optimize.

1.1. VQE. To reduce the size of the eigenvalue formulation, [Peruzzo et al., 2014]
have proposed the Variational Quantum Eigensolver (VQE). It works as follows.
Define a parametrized unitary U(θ), where θ is a small vector of parameters and
x = U(θ)e~0. Then solve:

min
θ

e⊤~0 U(θ)∗HU(θ)e~0.

This is now a small-dimensional problem, but it is nonconvex and we do not have
any guarantee on the approximation unless we study U(θ). If we can at least
compute e⊤~0 U(θ)∗HU(θ)e~0, and hopefully its derivatives, then one could apply
a classical optimization algorithm. It is easy to compute this quantity with a
QC. After we have chosen θ, we prepare the state x = U(θ)e~0, then estimate the
expectation E[f(X)]. One can in principle even get partial derivatives of E[f(X)]
with respect to θ, knowing the form of U(θ). In fact, since we know that the
optimum of (OPT) is a basis vector, it is not difficult to construct a simple U(θ)
that is guaranteed to span all basis vectors. However, if we do so we are essentially
solving a discrete problem by parametrizing it as a continuous problem, which is
generally a terrible approach in practice.

1.2. QAOA. The Quantum Approximate Optimization Algorithm (QAOA) is a
form of VQE with much more rigorous theoretical guarantees. QAOA prescribes
the form of U(θ). More specifically, we choose a number of iterations p, and we
use the unitary:

U(β, γ, p) =

p∏

i=1

[UB(βi)UC(γi)]W,

where W is the Walsh-Hadamard transform (an operation that can be implemented
with just n basic quantum gates). Each block UB(βi), UC(γi) is defined as a
matrix exponential, parametrized by a single parameter βi, γi ∈ [0, 2π], and easy
to implement with basic quantum operations.

Theorem 1.1 ([Farhi et al., 2014]). We have limp→∞ minβ,γ e
⊤
~0
WU(β, γ, p)∗H

U(β, γ, p)We~0 = (OPT). Furthermore, for MAXCUT on 3-regular graphs,

max
β,γ

e⊤~0 WU(β, γ, 1)∗HU(β, γ, 1)We~0 ≥ 0.6924(OPT).

The advantages of QAOA over VQE are that here are theoretical guarantees
that with a large enough p, the circuit will span the optimum. However, practical
performance is typically poor in numerical tests.
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Proposition 1.2 (N. et al.). Let x =
∑

z αp,zez be the quantum state constructed
by p iterations of QAOA. Then |αp,z | ≤ (2n+1(2 − ∆p−1 − δ) + 1)p 1√

2n
for all

z ∈ {0, 1}n, where δ is the largest fraction of z ∈ {0, 1}n that have the same
value, and ∆p is a parameter that measures how different the amplitudes are after
iteration p (with ∆0 = 1).

This implies that for certain problems, i.e., feasibility problems with few feasible
solutions, the state vector is “flat” and therefore sampling from it is not much
better than random guessing.

2. Continuous optimization

There has been significant progress in continuous optimization in recent years.
One reason for that is the improved solution of linear systems. This is what we
give an overview of next.

2.1. Solution of linear systems. Suppose we want to solve Ay = b, with A ∈
RN×N and N = 2n. Then there exists a quantum algorithm that solves it in time
poly(n, log 1/ǫ), where ǫ is a precision parameter [Childs et al., 2017]. We give a
description of the first algorithm of this type [Harrow et al., 2009], which is easier
to understand although it achieves worse running time. The description here is
quite inaccurate and just meant to convey intuition.

First, we note that there is an algorithm (Quantum Phase Estimation) that
given unitary U ∈ C2n×2n and an eigenvector v such that Uv = exp(2πiθ)v,
outputs θ in an additional register with precision ǫ, and requires running time
poly(n, log 1/ǫ). This dates back to [Shor, 1997].

Assume A Hermitian and let v1, . . . , vN be an eigenbasis with eigenvectors
2πλ1, . . . , 2πλN . Then b =

∑
j∈[N ]wjvj . Apply the transformation exp(iA) to ob-

tain b =
∑

j∈[N ] wj exp(iA)vj =
∑

j∈[N ] wj exp(2πiλj)vj , and then QPE yielding

all the λj . Notice that we stated QPE as applying to a single vector, but be-
cause all quantum algorithms are linear operations, then they can also be applied
to linear combinations of vectors. Via another quantum operation, we compute∑

j∈[N ]
wj

2πλj
vj = A−1b. This algorithm has a certain (bounded) probability of fail-

ing. It provides an exponential speedup in the size of the linear system, but that
is under the assumption that input and output are available in “quantum form”:
naive input or output would require time proportional to 2n.

2.2. Interior point. [Kerenidis and Prakash, 2018] give an interior point algo-

rithm for SDP and LP with runtime Õ(n
3.5

ξ2 κ2 log 1
ǫ ), where ǫ is the optimality

gap and ξ the constraint satisfaction tolerance. For comparison, the best classical
algorithm is O(n6) in the best case. We remark that this is a polynomial improve-
ment, not exponential, even though it uses an exponentially faster linear systems
algorithm: this is because there are bottlenecks in preparing the data for the linear
systems, and in extracting the solution of the linear system. The algorithm uses
QRAM, a form of storage that is assumed to allow access in superposition. QRAM
has not been realized experimentally and it is unclear if it will ever be.
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We aim to solve a primal/dual pair:

Opt(P ) := min
x∈Rm

{c⊤x|
∑

k∈[m]

xkA
(k) � B}

Opt(D) := max
Y�0
{Tr(BY )|Y � 0,Tr(Y A(j)) = cj}.

Let L = spank∈[m](A
(k)), L⊥ its orthogonal complement, and C an arbitrary dual

feasible solution. Then the primal and problem can be written as:

Opt(P ′) := min
S�0
{Tr(CS) + Tr(BC)|S ∈ (L−B)}

Opt(D) := max
Y�0
{Tr(BY )|Y ∈ (L⊥ + C)}.

The algorithm can be described as follows.

• Input: Matrices A(k), k ∈ [m], B ∈ Rn×n, c ∈ Rm in QRAM, parameters
ǫ, δ > 0.
• Find feasible initial point (S0, Y0, ν0) and store in QRAM. Set S ← S0, Y ←
Y0, ν ← ν0.
• Repeat O(

√
n log(n/ǫ)) times:

(1) Compute matrices Y −1 and νI−SY classically, and store in QRAM.
(2) Solve the Newton linear system:

dS ∈ L, dY ∈ L⊥, SdY + dSY = (1− 1

10
√
n

)νI − SY.

using block encodings to find estimate of the norm of ‖(dS, dY )‖.
(3) Solve the Newton linear system to obtain a quantum state propor-

tional to (dS, dY ) to accuracy δ2/n3. Recover the vector classically
(an operation known as state tomography) and use the norm estimate
to obtain classical estimate of (dS, dY ).

(4) Update S ← S+dS, Y ← Y +dY in QRAM. Update ν ← Tr(SY )/n.
• Output S, Y .

This algorithm has polynomial speedup as compared to classical, and has classical
input and classical output. However, it relies heavily on QRAM to prepare data
structure efficiently (in particular, to update the Newton system).

Another algorithm for SDP is discussed in [Brandao and Svore, 2017] and (in-
depedently) by [Van Apeldoorn et al., 2017]. It is based on the Arora/Kale mul-
tiplicative weights update algorithm. It has bad dependency on some numerical
parameters and is not designed to be a practical algorithm, but it does not require
QRAM.
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Recent developments in the BARON project

Nikolaos V. Sahinidis

The BARON project began in the early 1990s with the aim to develop an efficient
computational tool for the solution of nonconvex mixed-integer nonlinear opti-
mization problems. The BARON code has more than doubled in the past decade
as a result of several developments. The preset talk serves as an overview of some
of these recent developments, including recently published and unpublished work:

• portfolios or linear and nonlinear relaxations that exploit convex nonlinear
relaxations and convexity of intermediates in the functional decomposition
of factorable functions [2]
• MIP relaxations, including the parallel solution of MIPs at every node of

BARON’s branch-and-bound tree [3, 4]
• cutting planes from relaxations of convex-transformable functions [1, 7]
• cutting planes from running intersection inequalities [5]
• bound propagation from optimality conditions [6, 8]
• software engineering for the solution of large-scale problems.

Several examples are used to illustrate the basic principles and extensive com-
putational results are presented on problem collections that include MINLPlib,
GlobalLib, PrincetonLib, and QAPlib.
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[4] K. Zhou, M. Kılınç, X. Chen and N. V. Sahinidis, An efficient strategy for the activation
of MIP relaxations in a multicore global MINLP solver, Journal of Global Optimization 32
(1990), 120–140.

[5] A. Del Pia, A. Khajavirad and N. V. Sahinidis, On the impact of running intersection
inequalities for globally solving polynomial optimization problems, Mathematical Program-
ming Computation (2019), submitted.

[6] Y. Puranik and N. V. Sahinidis, Bounds tightening based on optimality conditions for non-
convex box-constrained optimization, Journal of Global Optimization 67 (2017), 59–77.

[7] C. J. Nohra and N. V. Sahinidis, Global optimization of nonconvex problems with convex-
transformable intermediates, Journal of Global Optimization 72 (2018), 255–276.

[8] Y. Zhang, N. V. Sahinidis, C. J. Nohra and G. Rong, Optimality-based domain reduction for
inequality-constrained NLP and MINLP problems, Journal of Global Optimization (2018),
submitted.

On the exactness of Lasserre relaxations of SPIs and POPs

Markus Schweighofer

(joint work with Tom-Lukas Kriel)

We consider a finite system of non-strict real polynomial inequalities (SPI). Its
Lasserre relaxation of degree d is a certain natural linear matrix inequality (LMI)
in the original variables and one additional variable for each nonlinear monomial
of degree at most d. This LMI defines a spectrahedron that projects down to a
convex semialgebraic set containing the solution set of the SPI. In the best case,
the projection equals the convex hull of the solution set of the SPI. We say that
the Lasserre hierarchy eventually becomes exact if this is the case for all sufficiently
large d.

We suppose that the SPI satisfies the Archimedean condition which is nearly
equivalent to its solution set being compact in the following sense: An Archimedean
SPI has compact solution set. Conversely, an SPI with compact solution set can
be made Archimedean by adding certain appropriate redundant inequalities.

In [1], Kriel and myself showed that if the solution set of the SLI “bulges out-
wards” with positive curvature, then the Lasserre hierarchy very often eventually
becomes exact. The proof combines ingredients from several areas:

• Real closed fields and real quantifier elimination from real algebraic geom-
etry,
• pure states and separation theorems from functional analysis (applied to

vector spaces over real closed fields which are considered as real vector
spaces),
• Lagrange multipliers and the Karush-Kuhn-Tucker theorem from convex-

ity (after being transferred to real closed fields),
• the finiteness theorem from first order logic (which follows for example

from Gödel’s completeness theorem).

The major drawback of this theorem is that it does in general not allow for
linear constraints in the SLI . In the talk, we give an example of an SLI with one
quartic inequality in two variables that defines the disjoint union of two disks in
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the plane of different radii and one linear inequality defining an affine half space
that cuts out part of the bigger disk but precisely preserves the smaller disk. In
this example, the Lasserre hierarchy does not eventually become exact.

With completely different and more traditional techniques, Kriel and myself
showed in [2] a similar second theorem whose advantage is that it allows for linear
constraints and more generally constraints satisfying a certain “relative sums-of-
squares concavity condition”. However, this alternative theorem supposes the
solution set of the SLI to be convex.

Neither of our two theorems on SLIs seems to be accessible to the techniques
we used to prove the respective other theorem.

Now let additionally a polynomial objective function be given, i.e., consider a
polynomial optimization problem (POP). Its Lasserre relaxation of degree d is now
a semidefinite program (SDP). In the best case, the optimal values of the POP
and the SDP agree. In [1], Kriel and myself proved that this often happens if the
relaxation degree exceeds some bound that depends on the constraints of the POP
and certain characteristicae of the objective like the mutual distance of its global
minimizers on the feasible region.
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Gaining or losing perspective

Emily Speakman

(joint work with Jon Lee, Daphne Skipper)

Our interest is in studying “perspective reformulations”. This technique has been
used in the presence of indicator variables: when an indicator is “off”, a vector of
decision variables is forced to a specific point, and when it is “on”, the vector of
decision variables must belong to a specific convex set. [3] studied such a situation
where binary variables manage terms in a separable-quadratic objective function,
with each continuous variable x being either 0 or in a positive interval (also see
[2]). The perspective-reformulation approach (see [3] and the references therein)
leads to very strong conic-programming relaxations, but not all MINLO (mixed-
integer nonlinear optimization) solvers are equipped to handle these. So one of
our interests is in determining when a natural and simpler non conic-programming
relaxation may be adequate.

Generally, our view is that MINLO modelers and algorithm/software develop-
ers can usefully factor in analytic comparisons of relaxations in their work. d-
dimensional volume is a natural analytic measure for comparing the size of a pair
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of convex bodies in Rd and [4] introduced the idea of using volume as a measure
for comparing relaxations in the context of an optimization problem.

Our view of the current relevant convex-MINLO software environment is that
it is very unsettled with a lot to come. One of the best algorithmic options for
convex-MINLO is “outer approximation”, but this is not usually appropriate when
constraint functions are not convex (even when the feasible region of the continuous
relaxation is a convex set). Even “NLP-based B&B” for convex-MINLO may not
be appropriate when the underlying NLP solver is presented with a formulation
where a constraint qualification does not hold at likely optima. In some situations
(like ours), the relevant convex sets can be represented as convex cones, thus
handling the constraint-qualification issue — but introducing non-differentiability
at likely optima. In this way of thinking, conic constraints are not well handled
by general convex-MINLO software (like Knitro, Ipopt, Bonmin, etc.). The only
conic solver that handles integer variables (via B&B) is MOSEK, and then only
quadratic cones, and “as long as they do not contain both quadratic objective or
constraints and conic constraints at the same time”. So not all of our work can
be applied today, within the current convex-MINLO software environment, and so
we see our work as forward looking.

We study MINLO formulations of the disjunction x ∈ {0} ∪ [l, u], where z is a
binary indicator of x ∈ [l, u], and y “captures” xp, for p > 1 (see [1], for example).
We investigate a family of relaxations for this model, employing the inequality
yzq ≥ xp, parameterized by the “lifting exponent” q ∈ [0, p − 1]; we make the
convention that 00 = 1 (relevant when z = 0 and q = 0). These models are higher-
dimensional-power-cone representable, and hence tractable in theory. We bound
our formulations using the linear inequality upz ≥ y which is always satisfied
at optimality (for the typical application where y replaces xp in a minimization
objective).

For q = 0, we have the most most naıve relaxation using y ≥ xp. For q = 1, we
have the naıve perspective relaxation using yz ≥ xp. For q = p− 1, we get the true
perspective relaxation using yzp−1 ≥ xp, which gives the convex hull. Interestingly,
this last fact seems to be only very-well known when p = 2, in which case p−1 = 1
and the naıve perspective relaxation is the true perspective relaxation. So some
might think, even for p > 2, that q = 1 would give the convex hull — but this
naıve perspective relaxation is not the strongest; we need to use q = p− 1 to get
the convex hull.

We present a formula for the volumes of all of these relaxations as a means of
comparing them. In doing so, we quantify, in terms of l, u, p, and q, how much
stronger the convex hull is compared to the weaker relaxations, and when, in terms
of l and u, there is much to be gained at all by considering more than the weakest
relaxation. Using our formula, and thinking of the baseline of q = 1, namely the
naıve perspective relaxation, we quantify the impact of “losing perspective” (e.g.,
going to q = 0, namely the most naıve relaxation) and of “gaining perspective”
(e.g., going to q = p − 1, namely the true perspective relaxation). Depending on
l and u for a particular x (of which there may be a great many in a real model),
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we may adopt different relaxations based on the differences of the volumes of the
various relaxation choices and on the solver environment.

Compared to earlier work on volume formulae and related branching-point se-
lection relevant to comparing convex relaxations, our present results are the first
involving convex sets that are not polytopes. Thus we demonstrate that we can
get meaningful results that do not rely on triangulation of polytopes.

Finally, we present some computational experiments (for p = 2) which bear out
our theory, as we verify that volume can be used to determine which variables are
more important to handle by perspective relaxation.
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Recent developments in mixed-integer PDE- and ODE-constrained
optimal control

Stefan Ulbrich

(joint work with Oliver Habeck, Kristina Janzen, Christian Kirches, Paul Manns,
Marc E. Pfetsch)

In this survey talk we discuss three timely directions of research for mixed-integer
optimal control problems (MIOCP) with ODEs and PDEs. In the first part we
consider MIOCPs with tight continuous relaxations [9, 10, 11, 12]. Here, on the
right hand side of the ODE or the PDE besides a continuous control also an
integer control appears that can attain only finitely many different values. From an
equivalent partially convex reformulation one obtains a partially convex relaxation
that is a standard optimal control problem. From the solution of this problem by
a sum-up rounding rule on a grid of size h an h-optimal solution of the original
MIOCP can be obtained [1, 11, 12]. We state a corresponding relaxation algorithm
[9, 11]. Moreover, we discuss in which cases the results can be extended to PDEs
and multidimensional problems [10].

In the second part we consider MIOCPs for ODE-/PDE-networks which are in-
spired by optimization problems for gas, heat, water, traffic and similar networks
[5, 6, 7, 8, 13]. Here, we require that only evaluations of the solutions of the ODEs
at the node locations enter the problem. We focus on the ODE-constrained case
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motivated by nomination problems for stationary gas networks [7, 13]. Then the
problem can be reduced by using the solution operator of the ODE on each edge
mapping the initial data and controls to the end value of the solution. Assuming
that there are computable and convergent upper and lower bounds for the solution
operator obtained by numerical schemes, a nonconvex relaxation can be obtained
[7, 14]. Convex relaxations of the nonconvex constraints yield a convex relaxation.
They can be used in a spatial Branch-and-Bound method that adaptively refines
the bounding numerical discretizations of the ODE-solution operator while ex-
ploring the Branch-and-Bound tree. For the case of gas networks we show how
appropriate discretization schemes for the isothermal Euler equations can be con-
structed and convex relaxations can be obtained [7]. We present numerical results
for GasLib-40 and GasLib-582 instances by using a SCIP-based implementation
of the adaptive spatial Branch-and-Bound method.

In the third part we discuss recent results showing that MIOCPs for semilinear
elliptic PDEs enjoy under some convexity assumptions on the semilinear terms
pointwise concavity and submodularity properties [2, 4]. Hence, for a variety of
constraints and objective functions outer approximation algorithms can be applied
efficiently [2, 3].

We end the talk by pointing out several challenges and topics for future research.
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New Relaxations for Composite Functions

Mohit Tawarmalani

(joint work with Taotao He)

We introduce a new relaxation framework for MINLPs. These new relaxations,
called composite relaxations, are tighter than the prevalent factorable program-
ming relaxations [6], implemented in many state-of-the-art solvers.

While most relaxation strategies consider only bounds on the inner-functions,
or, consider at most one estimator for each inner function at a time, we develop
ways to exploit multiple estimators for each inner functions while generating valid
inequalities. Our relaxation procedure proceeds in two steps. First, we encode the
inner function structure into a polytope in a generic fashion. Second, the graph of
the outer-function over this polytope is relaxed into a convex set [3].

Although the separation problem for the convex hull of the graph of the outer-
function over the constructed polytope is NP-Hard in general, we show that sepa-
ration is tractable in several cases. In particular, consider an outer-function, which
is supermodular and concave-extendable and let d and n denote respectively the
number of inner functions and the number of estimators for each inner-function.
For this case, we develop an O(dn log d) algorithm [4] for separating the hypo-
graph of the outer-function. We remark that this result generalizes various spe-
cially structured concave envelope results over the hypercube, because our domain
includes the hypercube as a special case. We show that tractable separation is also
possible when the outer-functions are not supermodular, but d is fixed. When the
outer-function is convex in each argument, the limiting relaxation obtained with
infinitely many estimators for each inner-function [4] is shown to be related to the
solution of an optimal transport problem.

We argue that the composite relaxations are particularly well-suited for con-
structing MIP relaxations via discretization strategies and for relaxations of func-
tions with discrete domains [5]. By exploiting our results for discrete domains,
we show that, for certain compositions of univariate functions, we can construct
a sequence of polyhedral relaxations that converge, in the limit, to the concave
envelope. Our proposed discretization is obtained by reinterpreting the incremen-
tal formulation [2] and combining it with the composite relaxation. Moreover,
we show that composite relaxations can also be used to improve most relaxation
hierarchies [1] without introducing additional variables. Our results extend to
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simultaneous convexification of functions. We conclude with preliminary compu-
tational experience with these relaxations that demonstrates that these techniques
help reduce the gap significantly on some specially structured problem instances.
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Sums-of-squares for extremal discrete geometry on the unit sphere

Frank Vallentin

(joint work with D. de Laat, F.C. Machado. F.M. de Oliveira Filho)

The goal of this talk is to present a hierarchy of k-point semidefinite programming
upper bounds for the maximum number of equiangular lines in n-dimensional
Euclidean space. In [4] we apply symmetry reduction techniques for invariant
semidefinite programs to compute the bound for k = 4, 5, and 6, finding many
improved bounds for the maximum number of equiangular lines with fixed common
angle.

A set of equiangular lines is a set of lines having a common intersection point
such that every pair of lines defines the same angle. It is an interesting and in
general open question to determine the maximum size of a set of equiangular lines.
Next to being fundamental objects in discrete geometry, equiangular lines have
applications, for example in the field of signal processing (compressive sensing,
finite Hilbert space frames).

A general framework for hierarchies of semidefinite programming bounds for
geometric packing problems was developed by de Laat and Vallentin [5]. This
framework is an infinite-dimensional generalization of Lasserre’s hierarchy for com-
puting the independence number of a finite graph. Let G = (V,E) be a graph.
A subset of V is independent if it does not contain pairs of adjacent vertices.
The independence number of G, denoted by α(G), is the maximum cardinality
of an independent set. For an integer k ≥ 0, let Ik be the set of independent
sets in G of size at most k and I=k be the set of independent sets in G of size
exactly k. The maximum number of equiangular lines in n dimensions with com-
mon angle arccosa is equal to Ma(n) = α(Gn,a) where the infinite graph Gn,a
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has vertex set V = Sn−1, the unit sphere, and {x, y} forms an edge if and only if
x · y ∈ [−1, 1) \ {±a}.

The aim is to compute k-point SDP bounds for larger values of k, like k = 4, 5, 6.
For achieving this we apply the framework of de Laat and Vallentin and derive
a new block-diagonal hierarchy of semidefinite k-point bounds which is especially
suited for computing bounds for equiangular lines.

Our block-diagonal hierarchy (presented below in its dual form) is similar to
the one of Gvozdenović, Laurent, Vallentin [6] for finite graphs. Define the convex
cone C(V 2 × Ik−2)�0 by T ∈ C(V 2 × Ik−2)�0 if and only if for every Q ∈ Ik−2

the kernel (x, y) 7→ T (x, y,Q) is psd. Define the operator Bk : C(V 2× Ik−2)sym →
C(Ik \ {∅}) by

BkT (S) =
∑

Q⊆S
|Q|≤k−2

∑

x,y∈S
Q∪{x,y}=S

T (x, y,Q).

Our new k-point semidefinite programming bound is defined as

∆k(G)∗ = inf{ 1 + λ : λ ∈ R, T ∈ C(V 2 × Ik−2)�0, BkT ≤ λχI=1 − 2χI=2 },

where χI=1 , χI=2 are characteristic functions. Note that the blocks are indexed by
the set Ik−2.

Theorem. α(G) ≤ ∆k(G)∗ for every compact topological packing graph G.
The poof is easy: Let C ⊆ V be independent, let (λ, T ) be feasible for ∆k(G)∗. On the one hand,

∑

S⊆C
|S|≤k, S 6=∅

BkT (S) ≤

(

|C|

1

)

λ +

(

|C|

2

)

(−2) = |C|(1 + λ − |C|).

On the other hand,

∑

S⊆C
|S|≤k, S 6=∅

BkT (S) =
∑

S⊆C
|S|≤k, S 6=∅

∑

Q⊆S
|Q|≤k−2

∑

x,y∈S
Q∪{x,y}=S

T (x, y,Q)

=
∑

Q⊆C
|Q|≤k−2

∑

x,y∈C

T (x, y,Q) ≥ 0.

Symmetry reduction plays a key role in the computation of ∆k(G)∗ via semidef-
inite programming. In a sense, we block-diagonalize the block-diagonal hierarchy
twice. Let Γ be a subgroup of the automorphism group Aut(G). The group Γ acts
on C(V 2×Ik−2)sym by (γT )(x, y, S) = T (γ−1x, γ−1y, γ−1S). Given feasible (λ, T )

of ∆k(G)∗, the pair (λ, T ) with

T (x, y, S) =

∫

Γ

T (γ−1x, γ−1y, γ−1S) dγ,

is also feasible, with the same objective function. So we can restrict to C(V 2 ×
Ik−2)Γ�0 of Γ-invariant kernels.

To parametrize C(V 2 × Ik−2)Γ�0, we define Rk−2 as the complete set of repre-

sentatives of the orbits of Ik−2/Γ. The stabilizer is defined as StabΓ(R) = { γ ∈
Γ : γR = R } of R ∈ Rk−2.
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Theorem. If Ik−2/Γ is finite, then

C(V 2 × Ik−2)Γ ∼=
⊕

R∈Rk−2

C(V 2)StabΓ(R).

The isomorphism is explicit and preserves positivity.

Thus, to apply it for equiangular lines we need to parametrize C((Sn−1)2)
StabO(n)(R)

�0 .

Here, the following theorem of Musin [8] is useful. Musin’s theorem generalizes
results by Schoenberg [9] (m = 0) and by Bachoc, Vallentin [1] (m = 1).

Theorem. Let R ⊆ Sn−1 with m = dim(span(R)) ≤ n− 2 and let E be an m×n
matrix whose rows form an orthonormal basis for span(R). Fix d ≥ 0 and, for

each 0 ≤ l ≤ d, let Fl be a positive semidefinite matrix of size
(
d−l+m

m

)
×
(
d−l+m

m

)
.

Then K : Sn−1 × Sn−1 → R given by

K(x, y) =
d∑

l=0

〈
Fl, Y

n,m
l (x · y, Ex,Ey)

〉

is a positive, continuous, and StabO(n)(span(R))-invariant kernel. Every such
kernel can be uniformly approximated by this formula.

Here, matrix Y
n,m
l

is matrix of polynomials Y
n,m
l

(t, u, v) = P
n,m
l

(t, u, v)zd−l(u)zd−l(v)
T, where the

multivariate Gegenbauer polynomials are used

P
n,m
l

(t, u, v) =
(

(1 − ‖u‖
2
)(1 − ‖v‖

2
)
)l/2

P
n−m
l

(

t − u · v
√

(1 − ‖u‖2)(1 − ‖v‖2)

)

,

and zl(u) column vector containing basis of polynomials of degree at most l.

Back to the problem of bounding equiangular lines. The literature on this
subject is vast and we point out only some major theorems and conjectures in this
area.
Theorem. (Lemmens, Seidel [7]) If n ≥ 15, then M1/3(n) = 2n− 2.
Theorem. (Balla, Dräxler, Keevash, Sudakov [2]) Ma(n) ≤ 1.93n for a ∈ (0, 1) \
{1/3} for large enough n = n(a).
Conjecture. (Lemmens, Seidel [7]) We have

M1/5(n) =

{
276 for 23 ≤ n ≤ 185;

⌊ 32 (n− 1)⌋ for n ≥ 185.

Conjecture. (Bukh [3] If 1/a ≥ 3 is an odd integer, then Ma(n) = 1+a
1−an + O(1).

These conjectures spur the following question: What is the smallest n such
that Ma(n) = (1/a2 − 2)(1/a2 − 1)/2? To adress it we computed ∆k(G)∗ for
k = 3, 4, 5, 6. Computing and verifying ∆6(G)∗ rigorously takes several days.
We got the following table where the values in the columns ∆∗

k give the largest
dimension for which ∆∗

k is equal to (1/a2 − 2)(1/a2 − 1)/2.

a (1/a2
− 2)(1/a2

− 1)/2 ∆∗
3 ∆∗

4 ∆∗
5 ∆∗

6

1/5 276 60 65 69 70
1/7 1128 131 145 158 169
1/9 3160 227 251 273 300
1/11 7140 347 381 413 448
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On the other hand Bukh’s construction shows that (1/a2 − 2)(1/a2 − 1)/2 is
achieved in the dimensions 185, 847, 2529, 5951 for a = 1/5, 1/7, 1/9, 1/11.

We end with a few open questions:

(1) Why does ∆k(Gn,a)∗ stabilize at (1/a2 − 2)(1/a2 − 1)/2?
(2) Is ∆k(Gn,a)∗ = Θ(n2) for fixed k and a?
(3) Is ∆α(G)(G) = α(G) similarly to the Lasserre hierarchy?
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