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Abstract. The workshop focuses on the statistical analysis of complex data
which cannot be represented as realizations of finite-dimensional random vec-
tors. An example of such data are functional data. They arise in a variety
of climate, biological, medical, physical and engineering problems, where the
observations can be represented by curves and surfaces. Fast advances in tech-
nology continuously produce a deluge of bigger data with even more complex
structures such as arteries in the brain, bones of a human body or social
networks. This has sparked enormous interest in more general statistical
problems where the random observations are elements of abstract topological
spaces.

The workshop will stimulate development of new statistical methods for
these types of data and will be an ideal platform for discussing their theoreti-
cal properties (e.g. asymptotic optimality), computational performance, and

new exciting applications in areas such as machine learning, image analysis,
biometrics and econometrics.
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Introduction by the Organizers

The (half-size) Oberwolfach Workshop Statistical Methodology and Theory for
Functional and Topological Data (1925b), which was organized by Aurore Delaigle
(Melbourne, Australia), Alexander Meister (Rostock, Germany), Victor Panaretos
(Lausanne, Switzerland) and Larry Wasserman (Pittsburgh, USA), was attended
by about 25 participants from Australia, France, Germany, Hungary, Singapore,
Spain, Switzerland, the UK and the USA. The main concept of the conference was
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to advance and promote the research for the analysis of complex data, which can-
not be described as realizations of random vectors in a finite-dimensional Euclidean
space. In particular the focus was on two settings: the analysis of observed (or par-
tially observed) random functions and the analysis of observations in quite general
topological spaces. There is also overlap between these branches of statistics with
respect to both the scientific topics and the researchers who are involved. On the
other hand the workshop contributed to the interaction between both areas. There
were talks with emphasis on diverse types of application e.g. to word data from
documents, recorded curves indicating emotions, flight curves of airplanes etc..
Other talks focused on theoretical/mathematical issues such as topological invari-
ants of random objects, asymptotic theory for principal components, functional
data on manifolds, probabilistic analysis of empirical Fréchet means etc.. We think
that all talks brought very interesting and fruitful insights to the audience. They
showed a lot of academic progress in the understanding of the statistical analysis
for non-standard types of data in recent years; but also that a lot of work remains
to be done in order to attain a solid and complete statistical framework for the
analysis of new types of data, whose complexity is supposed to increase further in
future by computational progress in the process of recording data. The organizers
would like to thank all participants and the MFO administration for all effort and,
also, for the support of a participant by the SVP program.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Katharine Turner in the “Simons Visiting Professors”
program at the MFO.
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Abstracts

Total Variation Regularized Fréchet Regression for Metric-Space
Valued Data

Hans-Georg Müller

(joint work with Zhenhua Lin)

Non-Euclidean data that are indexed with a scalar predictor such as time are
increasingly encountered in data applications, while statistical methodology and
theory for such random objects are not well developed yet. Random objects ([9])
have also been referred to as Object-Oriented Data ([18, 8]). Since basic notions
introduced by Fréchet [3] typically play a major role, the statistical analysis of
samples of random objects could be characterized as Fréchet analysis.

A specific challenge when dealing with random objects is the absence of lin-
ear operations. Typical examples where random objects are encountered include
random samples of densities or more generally, probability measures; random co-
variance matrices and surfaces; samples of networks and trees. An important
component of statistical analysis for random objects is the choice of the metric
that defines the metric space, where the random objects are situated.

An important example is provided by random densities, for which the Wasser-
stein metric has been shown to work well in applications for one-dimensional den-
sities. From a more theoretical perspective, this metric has become popular due
to its connections with optimal transport ([11]). As a consequence, population
and sample Fréchet-Wasserstein means, also known as barycenters, have emerged
as useful statistical summaries of densities. For special subclasses of random ob-
jects, local linearization is a convenient tool that is commonly employed when the
random objects are located on smooth manifolds ([1, 19, 10]). In other cases one
may employ transformations to a linear space ([13]).

The inclusion of covariate information, a central tenet of statistics, provides
motivation to go beyond Fréchet means. The concept of Fréchet regression ([14]),
which is a general approach to regression when responses are complex random
objects in a metric space and predictors are in Rp, is based on the idea of ex-
tending the classical concept of a Fréchet mean to the notion of a conditional
Fréchet mean. Generalized versions of both global least squares regression and lo-
cal weighted least squares smoothing have been developed in terms of both theory
and applications ([12]), extending previous approaches ([16, 2]). The target quan-
tities are appropriately defined population versions of global and local regression
for random object responses. Asymptotic rates of convergence for the correspond-
ing fitted regressions using observed data to the population can be derived by
applying empirical process methods for M estimators.

A promising regularization approach for nonparametric Fréchet regression with
metric-space valued response variables and a one-dimensional scalar predictor vari-
able aims at minimizing the sum of squared distances between targets and fitted
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values under a total variation based penalty of the fitted function, by employ-
ing an appropriate modification of the definition of total variation that covers
metric-space valued functions ([6]). This approach builds on the rich literature for
penalized least squares with total variation penalty, which is a popular method in
signal processing ([15, 7, 4, 5, 17]). We show that the total variation regularized
Fréchet estimator leads to a metric-space valued step function. The class of step
functions is not only sufficiently powerful to approximate any function of finite to-
tal variation, but also advantageous in modeling functions that are discontinuous,
since it automatically incorporates jumps.

For the case of random objects in Hadamard spaces we provide a detailed as-
ymptotic analysis for the proposed regularized Fréchet regression. To obtain these
results, we first establish some properties of pseudo-inner products in such spaces.
This geometric analysis then leads to results on asymptotic minimax rates of con-
vergence for the function estimates. When the target function is a step function
in Hadamard space, these results can be applied to obtain convergence results for
the estimates of location and size of the jump points.

Research supported by NSF and NIH grants.
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Mean and Covariance Estimation for Functional Snippets

Jane-Ling Wang

(joint work with Zhenhua Lin)

Functional data are random functions on a common domain, e.g., an interval
T ⊂ R. In reality they can only be observed on a discrete schedule, possibly
intermittently, which leads to an incomplete data problem. Luckily, by now this
problem has largely been resolved ([11, 7, 13]) and there is a large literature on
the analysis of functional data. In this paper, we consider estimation of the mean
and the covariance functions of functional snippets, which are short segments of
functions possibly observed irregularly on an individual specific subinterval that
is much shorter than the entire study interval. Such data occur frequently in
longitudinal studies when subjects enter the study at random time and are followed
for a short period within the domain T ⊂ R. For illustration purpose, we assume
that T is the unit interval [0, 1] and each subject is followed for a period of length
δ that is much smaller than 1. As a result, the design of support points where
one has information about the covariance function C(s, t) is incomplete in the
sense that there are no design points in the off-diagonal region, {(s, t) : |s − t| >
δ, 0 ≤ s, t ≤ 1}. One therefore does not have information to locally estimate the
covariance in such a region.

Functional snippets have come under different names as censored functional
data ([2]), fragmented functional data ([3]), functional fragments ([4]), or partially
observed functional data ([5]). These terminologies are used interchangeably with
another type of partially observed data ([6, 9, 10, 8]), for which the span of a single
individual curve can be as large as the span of the study. However, estimation
of the covariance function for functional snippets is more challenging since infor-
mation for the far off-diagonal regions of the covariance structure is completely
missing. To avoid confusion and borrowing from the term longitudinal snippets in
[1], we adopt the term “functional snippet”, which distinguishes functional snip-
pets from other partially observed functional data.

Previous works on functional snippets include [2, 3, 1, 4, 12, 5]. We took a
different approach by addressing the difficulty of covariance estimation through
decomposing the covariance function into a variance function component and a
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correlation function component. The variance function can be effectively esti-
mated nonparametrically using data within the diagonal band {(s, t) : |s − t| ≤
δ, 0 ≤ s, t ≤ 1}, while the correlation part is modeled parametrically so missing
information in the far off-diagonal regions can be extrapolated from data within
the diagonal band. Both theoretical analysis and numerical simulations suggest
that this hybrid strategy is effective and efficient. Our theory also allows increas-
ing number of parameters, thus extending the semi-parametric hybrid approach
to a nearly nonparametric paradigm. In addition, we propose a new estimator
for the variance of measurement errors and analyze its asymptotic properties.
This estimator is required for the estimation of the variance function from noisy
measurements and it works for sparse functional data ([11]) as well. Numerical
performance reveals that the new estimator outperforms the benchmark method
in [11].
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Relative perturbation bounds with applications to empirical
covariance operators

Moritz Jirak

(joint work with Martin Wahl)

The empirical covariance operator is a central object in high-dimensional proba-
bility. An important question studied in this context is the behaviour of empirical
eigenvalues and eigenvectors. Knowing that the empirical covariance operator Σ̂
is close to the population one Σ, one wants to infer that the empirical eigenval-
ues and eigenvectors do not deviate too much from their population counterparts.
There is, by now, quite an extensive literature in this area regarding stochastic
perturbation bounds. Roughly speaking, the assumptions of most results can be
classified into a stochastic and an algebraic part.

• Stochastic: Given a sample X1, . . . , Xn, it is usually assumed that the
sequence is i.i.d. Moreover, expressing Xi =

∑
j≥1

√
λjujηij by its Kar-

hunen-Loève expansion with eigenvalues (λj)j≥1 and eigenvectors (uj)j≥1,
an often made key assumption is that the coefficients (ηij)j≥1 are inde-
pendent and sub-Gaussian.

• Algebraic: The relation between the eigenvalues and their size is a key
feature and immanent to the problem. It is typically expressed in terms
of spectral gaps, growth or decay rates of the eigenvalues and sometimes
linked to the dimension d = dimH of the underlying Hilbert space H (or
to some other notion of dimension of the underlying distribution) and the
sample size n.

Our main objective is to circumvent most of these kind of conditions and develop
relative perturbation results subject only to very little assumptions. As applica-
tions, we obtain concentration inequalities and central and non-central limit the-
orems. Our results apply to stationary sequences that may be weakly dependent
or even exhibit long-memory, given very mild moment assumptions. Moreover,
we allow for any kind of dependence relation between the coefficients (ηij)j≥1,
in particular, no independence is required. Regarding the underlying algebraic
structure, we show that a basic quantity is given by the function

j 7→ rj
(
Σ) =

∑

k 6=j

λk

|λj − λk|
+

λj

gj
,(1)

which we refer to as the relative rank of Σ (we actually consider a generalisation
with multiplicities). In (1), gj denotes the j-th spectral gap defined by gj =
min(λj−1 − λj , λj − λj+1) for j ≥ 2 and g1 = λ1 − λ2. It turns out that this
function gives rise to necessary and sufficient conditions for some of our results.

The study of general perturbation bounds has a long tradition in matrix anal-
ysis, functional analysis, and operator theory. Classical perturbation bounds for
eigenvalues and eigenspaces include the Weyl inequality and the Davis-Kahan sinΘ
theorem, see e.g. [2]. These bounds have been extended in many directions. A
basic tool in perturbation theory for linear operators is the holomorphic functional
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calculus [6]. Key ingredients such as Cauchy’s integral formula and the resolvent
equations have been successfully applied to various stochastic perturbation prob-
lems, see e.g. [7, 3, 9] to mention a few. Typical (absolute) stochastic perturbation

results for Σ̂ state that empirical and population eigenvalues or eigenvectors are

close to each other if some norm (usually the operator norm) of Σ̂− Σ is small.
Regarding random matrices, a fundamental question is to find precise estimates

of corresponding norms. A number of more recent results established tight bounds
for the operator norm of (possibly structured) random matrices, see for instance
[1, 10]. However, all those and related results do not apply to empirical covariance
operators, which, due to their quadratic structure, are fundamentally different
objects. Using the method of generic chaining (cf. [11]), it has been recently

shown in [8] that for sub-Gaussian i.i.d. observations the size of ‖Σ̂ − Σ‖∞ is
characterised by ‖Σ‖∞ and the effective rank r(Σ) = tr(Σ)/‖Σ‖∞. Moving to a
more special setup, a precise characterisation of the operator norm is possible in
terms of the Tracy-Widom law, see for instance [4, 5].

The goal here is to develop tight relative perturbation bounds, by going signif-
icantly beyond the operator norm ‖ · ‖∞. This is achieved by exploiting a new
contraction property for empirical spectral projectors. We require two ingredients.
For the probabilistic part, we demand that certain relative coefficients of Σ̂ − Σ
are small. This allows us to avoid restrictive probabilistic assumptions like sub-
Gaussianity and independence of the coefficients (ηij)j≥1 in our applications. For
the algebraic structure, we formulate conditions in terms of the relative rank. This
allows us to circumvent absolute quantities related to the size of ‖Σ̂−Σ‖∞ like the
effective rank. Although our approach is motivated from stochastic fluctuations
and their properties, the results are equally valid for deterministic perturbations
and are by no means restricted to empirical covariance operators.
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[7] V. Koltchinskii and E. Giné. Random matrix approximation of spectra of integral operators.
Bernoulli, 6:113–167, 2000.

[8] V. Koltchinskii and K. Lounici. Asymptotics and concentration bounds for bilinear forms of
spectral projectors of sample covariance. Ann. Inst. Henri Poincaré, 52:1976–2013, 2016.
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High-Dimensional Functional Factor Models

Shahin Tavakoli

(joint work with Marc Hallin, Gilles Nisol)

In this paper, we set up theoretical foundations for high-dimensional functional
factor models for the analysis of large panels of functional time series (FTS). We
first establish a representation result stating that if the first r eigenvalues of the co-
variance operator of the cross-section of N FTS are unbounded as N diverges and
if the (r+1)-th eigenvalue is bounded, then we can represent each FTS as a sum of
a common component driven by r factors, common to all the series, and a weakly
cross-correlated idiosyncratic component (all the eigenvalues of the corresponding
covariance operator bounded as N → ∞). Our model and theory are developed
in a general Hilbert space setting that allows panels mixing functional and scalar
time series. We then turn to the estimation of the factors, their loadings, and
the common components. We derive consistency results in the asymptotic regime
where the number N of series and the number T of time observations diverge, thus
exemplifying the “blessing of dimensionality” that explains the success of factor
models in the context of high-dimensional (scalar) time series. Our results encom-
pass the scalar factor models, for which they reproduce and extend, under weaker
conditions, well-established results ([2, 3, 1, 5, 6]). We provide numerical illustra-
tions that corroborate the convergence rates predicted by the theory, and provide
finer understanding of the interplay between N and T for estimation purposes.
We conclude with an empirical illustration on a dataset of intraday S&P100 and
Eurostoxx 50 stock returns, along with their scalar overnight returns. A preprint
of the paper is available on Arxiv ([4]).
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Testing relevant hypotheses in functional data via self normalization

Holger Dette

(joint work with Kevin Kokot, Stanislav Volgushev)

Most of the available statistical methodology on testing statistical hypotheses in
functional data considers hypotheses of the form

(1) H0 : d = 0 versus H1 : d 6= 0

where d is a real valued parameter such as the norm of the mean function in
one sample or the norm of the difference of two mean functions or two covariance
operators from two samples. For independent data the quantiles for corresponding
tests can be easily obtained by asymptotic theory as the unknown quantities in
the limit distribution of the test statistics can be reliably estimated. However, for
functional samples exhibiting temporal dependence, the asymptotic distribution of
many commonly used tests statistics involves the long-run variance, which makes
the statistical inference substantially more difficult as good estimates of the long-
run variance are required. As alternative (asymptotically) pivotal test statistics
based on the concept of self-normalization can be obtained and these methods
have recently been developed for the specific needs of functional data by [3] and
[4] [see also [2] for a recent review].

A common feature of of most of the literature is that they usually address
hypotheses of the form (1). However, in many applications one might not be
interested in detecting very small deviations of the parameter d from 0 (often the
researcher even knows that d is not exactly equal to 0, before any experiments
have been carried out). Therefore we argue that one should carefully think about
the size of the difference in which one is interested. In particular we propose to
replace the hypotheses (1) by the hypotheses of a relevant difference, that is

(2) H0 : d ≤ ∆ versus H1 : d > ∆ ,

where ∆ is a pre-specified constant representing the “maximal” value for the pa-
rameter d, which can be accepted as not scientifically significant.

In this paper we discuss the problem of testing relevant hypotheses in the con-
text of functional dependent data. We are particularly interested in methods
based on self-normalization in order to avoid estimation of the long-run variance
or resampling methods. For this purpose we modify the classical approaches to
self-normalization based testing. This modification is of independent interest be-
sides the field of functional data analysis and applicable in many other problems.

To be more precise let L2([0, 1]) denote the Hilbert space of square integrable
functions on the set [0, 1] with the usual inner product 〈·, ·〉 and corresponding
norm ‖ · ‖. Let {Xn}n∈Z denote a strictly stationary functional time series where
the random variables Xn are elements in L2([0, 1]) with expectation µ := E[X1] ∈
L2([0, 1]. Based on a sample X1, ..., Xn we are interested in relevant hypotheses
regarding the parameter d = ‖µ‖2 =

∫
[0,1]

µ2(t)dt, that is

(3) H0 : ‖µ‖2 ≤ ∆ versus H1 : ‖µ‖2 > ∆ .
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Define the partial sums

Sn(t, λ) :=
1

n

⌊nλ⌋∑

j=1

Xj(t) , λ ∈ [0, 1] ,

then, under suitable assumptions, the statistic ‖Sn(·, 1)‖2 is a consistent estimator
of ‖µ‖2. Consequently a test for the hypotheses (3) is obtained by rejecting the
null hypothesis for large values of

T̂n = ‖Sn(·, 1)‖2 =
∫

[0,1]

S2
n(t, 1)dt .(4)

Let ν denote a measure on the interval [0, 1] and define

(5) V̂n :=
(∫ 1

0

[ ∫

[0,1]

S2
n(t, λ)dt − λ2

∫

[0,1]

S2
n(t, 1)dt

]2
ν(dλ)

)1/2
.

We prove that under suitable assumptions

(6)
(√

n(T̂n − d),
√
n V̂n

)
D→
(
τB(1), τ

( ∫ 1

0

λ2(B(λ) − λB(1))2ν(dλ)
)1/2)

,

where B denotes a standard Brownian motion on the interval [0, 1] and τ is a
non-negative constant. If q1−α(W) denotes the 1 − α quantile of the distribution
of the pivotal random variable

(7) W :=
B(1)

( ∫ 1

0 λ2(B(λ) − λB(1))2ν(dλ)
)1/2

then we prove that the test which rejects the null hypothesis in (3), whenever

T̂n > ∆+ q1−α(W)V̂n ,(8)

is a consistent and asymptotic level α test. Details and proofs of these results can
be found in [1].
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Object oriented data analysis of samples of networks

Ian Dryden

(joint work with Simon P. Preston, Katie E. Severn)

The topic of Object Oriented Data Analysis (OODA) began with [9], and a broad
overview of the field with many examples has been given by [6]. Important aspects
of OODA include the need to make choices about i) what the data objects are, ii)
the conceptual space in which the data objects lie, and iii) the feature space that
is used for practical data analysis.

Covariance functions and networks are types of object data that are used in
many applications including in the analysis of spoken and written language. It
is of interest to develop statistical techniques to compare samples of such data
objects. In both cases one can choose the features for statistical analysis to be
high-dimensional symmetric positive semi-definite matrices, where networks are
represented by graph Laplacians, which is a subspace of the space of covariance
matrices.

For the comparison of certain types of object data [1] and [7] considered the
family of power Euclidean distances between pairs of covariance matrices and
infinite dimensional covariance operators, respectively. In particular the power
Euclidean metric between covariance matrices A and B is

(1) dα(A,B) = ‖Aα −Bα‖ ,
where ‖A‖ is the Frobenius norm of A, and Aα = UΛαUT is the symmetric matrix
power where A = UΛUT is the usual spectral decomposition. A common choice
is α = 1

2 , which gives the symmetric matrix square root.
In text-based corpus analysis, word collocations are widely studied ([3]), i.e.,

words that have a tendency to co-occur; and text documents represented as word-
pair co-occurrence counts can be identified as networks ([8]). Analysis of net-
works is a type of OODA analysis, with wide applications in neuroscience and
genetics, besides text analysis. Let Gm = (V,E), comprise a set of nodes, V =
{v1, v2, . . . , vm}, and a set of edge weights, E = {wij : wij ≥ 0, 1 ≤ i, j ≤ m},
indicating nodes vi and vj are either connected by an edge of weight wij > 0,
or else unconnected if wij = 0, and suppose wij = wji and wii = 0 (network is
undirected and without loops). Any such network can be identified with its m×m
graph Laplacian matrix L = (lij), defined as

lij =

{
−wij , if i 6= j∑

k 6=i wik, if i = j

for 1 ≤ i, j ≤ m. The space of graph Laplacians is a subset of the cone of symmetric
positive semi-definite matrices ([4]).

[8] described a framework for manifold value data analysis of networks that uses
the Euclidean power distance (1) and introduce a unique projection from the space
of covariance matrices to the subspace of graph Laplacians. The projection can be
computed efficiently using quadratic programming. [8] define embeddings, tangent
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spaces and use the metrics and projection to perform extrinsic statistical analysis,
such as calculating a mean of a sample of networks. The framework has similarities
to the use of extrinsic methods in statistical shape analysis ([2]). Further statistical
analysis such as regression and principal components analysis has been developed,
and a hypothesis test has been described for testing the equality of means between
two samples of networks.

In this presentation the methodology is described and applied to the set of
novels by Jane Austen and Charles Dickens from the University of Birmingham
CLiC project ([5]), illuminating striking differences in the way the novelists used
words, and how their word usage changed over time.
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The Procrustes metric on covariance operators is optimal transport:
Statistical implications

Yoav Zemel

(joint work with Valentina Masarotto, Victor M. Panaretos)

Covariance operators are fundamental in functional data analysis, providing the
canonical means to analyse functional variation via the celebrated Karhunen–Loève
expansion. These operators may themselves be subject to variation, for instance
in contexts where multiple functional populations are to be compared. Statisti-
cal techniques to analyse such variation are intimately linked with the choice of
metric on covariance operators, and the intrinsic infinite-dimensionality of these
operators.

Early attempts to tackle this problems utilise the fact that any covariance op-
erator S : H to H (defined on a separable Hilbert space H) is Hilbert–Schmidt,
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allowing to embed the space of covariance operators in the Hilbert space of Hilbert–
Schmidt operators (see e.g., [6, 1]). This choice of distance, however, is effectively
an extrinsic distance that does not take into account the nonnegative nature of
covariance operators.

[9] were the first to consider alternative distances that are adapted to the geom-
etry of the space of covariance operators. They consider the so-called Procrustes
distance

Π(S1, S2) = inf
U∗U=I

∣∣∣
∣∣∣
∣∣∣S1/2

1 − S
1/2
2 U

∣∣∣
∣∣∣
∣∣∣
2
,

where I is the identity operator, ∗ is the adjoint, and |||·|||2 is the Hilbert–Schmidt
norm, generalising the matrix case considered in [3]. For brevity we refer to the
resulting metric space as the Procrustes space.

In our work [4, 5] we identify the Procrustes metric Π with the 2-Wasserstein
metric (see [7, 8] for a recent review and a book, aimed at a statistical audience)
between the centred Gaussian measures with covariances S1 and S2 and exploit this
in order to construct a powerful test of homogeneity and for analysing variation
using principal component analysis in the Procrustes space. A key component is
the linear operator, transport map,

tS2

S1
:= S

−1/2
1 [S

1/2
1 S2S

1/2
1 ]1/2S

−1/2
1 .

It exists when ker(S1) ⊆ ker(S2), in which case it is self-adjoint, nonnegative
and possibly unbounded. This map can be thought of as “deforming” a template
process X1 ∼ N(0, S1) to a “warped” process X2 ∼ N(0, S2) because tS2

S1
X1 has

the same law as X2. The relation to the Procrustes distance is

E

∥∥∥tS2

S1
X1 −X1

∥∥∥
2

= Π2(S1, S2).

The warping nature of the transport maps is associated with a data-generating
mechanism in Procrustes space via phase variation. Let S be a template covariance
and t : H → H a random self-adjoint nonnegative operator with mean identity.
Then under suitable conditions, S is a Fréchet mean of its perturbed version tSt
with respect to Procrustes distance: it minimises the Fréchet functional

(1) R 7→ F (R) = E[Π2(R, tSt)].

Note that if X ∼ N(0, S), then tX ∼ N(0, tSt), so the random tSt expresses that
t acts on the underlying Hilbert space H.

Topology. Convergence of Sn to S with respect to the Procrustes distance is
equivalent to

• Convergence in distribution of the Gaussian measuresN(0, Sn) to N(0, S);
• Convergence with respect to trace norm;

• Convergence of S
1/2
n to S1/2 in Hilbert–Schmidt norm.

When Sn are finite-dimensional projections of S with respect to a given basis,
the rate of convergence can be quantified, and it is uniform when S ranges over
suitable classes of covariance operators.
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Geometry. The tangent space at S is the Hilbert space

TanS = {A : A = A∗,
∣∣∣∣∣∣S1/2A

∣∣∣∣∣∣
2
< ∞},

where the closure is with respect to the associated inner product

〈A,B〉S = tr[ASB] = E 〈AX,BX〉 , X ∼ N(0, S).

In view of the compactness of S1/2, this space includes all bounded self-adjoint
operators A, but also certain unbounded ones. For example, if S1/2 is trace-class,
then S1/4 is Hilbert–Schmidt and the unbounded operator A = S−1/4 is also in
the tangent space.

The exponential map at S (from TanS to the Procrustes space) is

expS [A] = (A+ I)S(A + I).
When tS1

S0
exists, its difference from the identity is the log map

logS0
(S1) = tS1

S0
− I,

and there is a unique minimal constant speed geodesic given by

Ss = s2S1 + (1− s)2S0 + s(1− s)[t10S0 + S0t
1
0], s ∈ [0, 1].

Fréchet means. Fréchet means of a collection of covariances S1, . . . , Sn are de-
fined in analogy with (1). One can show that a Fréchet mean S always exists,
and uniquely so if at least one covariance Si is injective. The mean is also stable,
in the sense that if Π(Sk

i , Si) → 0 for all i as k → ∞, then Fréchet means of
(Sk

1 , . . . , S
k
n) converges to S. This covers, in particular, the most important case

where Sk
i are projections of Si to k-dimensional subspaces that approximate H.

Although it has no closed-form formula in general, S can be computed efficiently
using a Procrustes-type steepest descent algorithm [4, Section 8].

Test of homogeneity. We propose a new test statistic for the null hypothesis

H0 : S1 = · · · = Sn

on the basis of samples of curves Xi,1, . . . , Xi,ni
from processes with covariance

operators Si. The key step is to recast the H0 as

H0 : tS1

S
= · · · = tSn

S
= I,

where S is a Fréchet mean of S1, . . . , Sn. One then estimates each Si by the empir-

ical covariances Si from which Ŝ and the transport maps t̂i = tŜi

̂S
are constructed.

We show that these transport maps are not only well-defined, but also exist as
bounded linear operators. The test statistic is (weighted versions can readily be
considered)

T =

n∑

i=1

∣∣∣
∣∣∣
∣∣∣t̂i − I

∣∣∣
∣∣∣
∣∣∣,

where the norm could be e.g., the operator norm, Hilbert–Schmidt norm or trace
norm. The null is rejected for large values of T , calibrated by permutations. We



1714 Oberwolfach Report 28/2019

observe in a myriad of different scenarios that the test based on T overpowers the
state of the art procedure of [2], which uses directly the distance Π.

Functional covariance analysis of variance. IfH0 is rejected, one could aim to
describe and interpret the main modes of variation in the collection of covariances
S1, . . . , Sn. This can be achieved by carrying out the principal component analysis
at the level of the tangent space. One considers the collection tSi

S
, i = 1, . . . , n

as elements in the Hilbert space of operators with the inner product 〈·, ·〉S . Some
care needs to be taken in the computations, since this norm is not the standard
Hilbert–Schmidt norm.
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Data Integration Via Analysis of Subspaces (DIVAS)

J.S. Marron

A major challenge in the age of Big Data is the integration of disparate data
types into a data analysis. That is tackled here in the context of data blocks
measured on a common set of experimental cases. This data structure motivates
the simultaneous exploration of the joint and individual variation within each data
block. DIVAS improves earlier methods using a novel random direction approach
to statistical inference, and by treating partially shared blocks. Usefulness is
illustrated using mortality, cancer and neuroimaging data sets. This improves
upon the earlier JIVE methodology of Lock et al. [2] and the AJIVE proposed
by Feng et al. [1]. It lies in the general area of Object Oriented Data Analysis
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as defined by Wang and Marron [4], and more recently overviewed in Marron and
Alonso [3].
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Simplicial feature maps and Random Euler measures

Katharine Turner

(joint work with Kathryn Hess, Victor Panaretos, Gard Spreemann)

One of the great challenges with statistically analysing complex data (such as
simplicial complexes) is the need to first map them to a common space. Often this
is done via computing various summary statistics and then statistically analysing
these summary statistics instead of the raw complex object.

The Euler characteristic is a classical topological invariant that bridges many
different areas of topology and geometry. The Euler characteristic, denoted χ, is a
topological invariant that appears in many different areas of mathematics. It was
originally defined for polyhedra according to the formula χ = V −E+F where V is
the number of vertices (0-cells), E the number of edges (1-cells) and F the number
of faces (2-cells). There are now many equivalent ways of computing the Euler
characteristic in different setting. This formula extends easily to all simplicial
complexes as the alternative sum of the number of cells in each dimension;

χ(K) =

dimK∑

k=0

(−1)k( number of k - cells.)

A key property is that the Euler characteristic is independent of triangulations;
that is if we consider the same subset of space as two different geometric simplicial
complexes then their Euler characteristics will agree.

The main disadvantage of the Euler characteristic for data analysis is that,
for a given simplical complex, the Euler characteristic is only a single number
and we would like to compute more information. To this end, we will define a
generalisation of the Euler characteristic which will also use location information.
For a region we can consider the restriction of the simplical complex to that region
and compute the Euler characteristic of this restriction. Appropriately defined,
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this process will determine a finitely additive signed measure. A finitely additive
signed measure over an algebra Σ is analogously a function

µ : Σ → R ∪ {∞,−∞}

such that µ(∅) = 0 and µ is finitely additive, that is, it satisfies the equality

µ

(
k⋃

n=1

An

)
=

k∑

n=1

µ(Ak)

for any finite sequence A1, A2, . . . , Ak of disjoint sets in Σ. If Σ is a finite σ-algebra
then finite additivity implies countable additivity and thus any finitely-additive
measure µ over Σ is also a measure.

Given a simplicial complex and a feature map given over its vertex set into an
affine feature space, we can construct a map over the entire simplicial complex
using linear interpolation. We call this a simplicial feature map. We can then
construct a finitely additive signed measure over the feature space by considering
Euler characteristics (with compact supports) of the preimage of the simplicial
feature map.

We define a topological summaries in the form of an Euler measure over a
common relevant algebra of subsets of the feature space. This space of additive
measures over this algebra is a vector space. One basis is the measures over the
minimal sets of the algebra. We can consider each topological summary statistics
as a vector. Given multiple instances we can perform statistical and machine
learning procedures to analyse the sets of vectors. Examples include regression
and covariance analysis.

The motivation is to develop methods for understanding simplical complexes
where the vertices have location or other relavent information. In particular we
want to analyse the Blue Brain microcircuit. From this microcircuit we can build
a simplicial complex where each vertex represents an individual neuron, the edges
are synaptic connections, and higher dimensional simplices correspond to cliques of
information flow. There are two different types of spacial information that we will
study. The first is where the physical location of the neuron, and the second is the
location of the neuron in a feature space of firing patterns when the microcircuit
in simulations.

In an example application we perform a preliminary analysis of data from the
Blue Brain Project. We investigate the relationship between the Euler measures
of different regions, giving insight into the structure of the brain. We also can
compare the Euler measures of the different microcircuits for different groups of
input and for different stimuli of the microcircuit.
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On central limit theorems on manifolds and stratified spaces

Stephan Huckemann

(joint work with Benjamin Eltzner)

1. From the BP-CLT to the EH-CLT

1.1. General Setup. Consider random elements X1, . . . , Xn
i.i.d.∼ X on a topolog-

ical space Q called the data space that is linked to a topological space P called
the descriptor space via a continuous map ρ : Q × P → [0,∞) . This gives rise to
the empirical and population Fréchet function

Fn(p) =
1

n

n∑

j=1

ρ(Xj , p) , F (p) = E [ρ(X, p)] ,

respectively. The set of their minimizers

En = argmin
p∈P

Fn(p) , E = argmin
p∈P

F (p) ,

are called sample and population Fréchet means, respectively.
Together with a loss function d : P × P → [0,∞), i.e. d is continuous and

d(p, p′) = 0 if and only if p = p′, consider the condition

(A1)
there is a constant C > 0 such that |ρ(q, p)− ρ(q, p′)| ≤ C d(p, p′)
for all q ∈ Q, p, p′ ∈ P .

Note that in case of d =
√
ρ being a distance on Q = P , due to the triangle

inequality, (A1) is valid with C = 1.

Theorem 1 ([7]). With the above setup, if P is separable, F (p) < ∞ for all p ∈ P

and if (A1) holds, then
⋂∞

n=1

⋃∞
k=n Ek ⊆ E a.s. .

Remark 2. For a quasi-metric d =
√
ρ on Q = P , this has been proven by [15].

If E 6= ∅, if ⋃∞
k=n Ek is d-Heine-Borel (i.e. every closed and d-bounded subset is

compact) and if (ρ, d) is coercive (as detailed in [7]) then for every ǫ > 0 there is
a random N(ǫ) ∈ N such that En ⊆ {p ∈ P : d(p,E) ≤ ǫ} almost surely for all
n ≥ N(ǫ), cf. [2, 7].

1.2. Manifold Interlude.

Theorem 3 ([3, 1]). If P = Q is a manifold with geodesic distance d =
√
ρ,

{µ} = E, µn ∈ En a measurable selection with µn
a.s.→ µ and if φ : U → V is

a local chart near µ ∈ U ⊂ P , V ∈ Rm for some m ∈ N with φ(µ) = 0 and
φ(µn) = xn, then, with the assumptions below,

√
n φ−1(µn)

D→ N (0, H−1ΣH−1) ,

(A2): x 7→ ρ
(
X,φ−1(x)

)
∈ C2(V ) a.s.,

(A3): ∃ cov
[
grad |x=0ρ

(
X,φ−1(x)

)]
= Σ,
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(A4): ∃ Hess |x=0F
(
φ−1(x)

)
= H and H > 0,

(A5): E

[
sup‖x‖≤ǫ

∣∣Hess |xρ
(
φ−1(x)

)
−Hess |x=0ρ

(
φ−1(x)

)∣∣
]
→ 0 (ǫ → 0).

Proof. By definition with some random x̃n between xn and 0, a.s.,

0 =
√
n grad |x=xn

Fn

(
φ−1(x)

)

=
√
n grad |x=0Fn

(
φ−1(x)

)
︸ ︷︷ ︸

D
→N (0,Σ)

+Hess |x=x̃n
Fn

(
φ−1(x)

)
︸ ︷︷ ︸

P
→H

√
nxn

where the convergence of the first term is due to the classical central limit theorem,
the convergence of the second term follows from the following argument. For every
δ > 0, by Chebyshev’s inequality,

P
{∣∣Hess |x=x̃n

Fn

(
φ−1(x)

)
−Hess |x=0Fn

(
φ−1(x)

)∣∣ > δ
}

≤ 1

δ
E
[∣∣Hess |x=x̃n

Fn

(
φ−1(x)

)
−Hess |x=0Fn

(
φ−1(x)

)∣∣]

≤ 1

δ
E
[∣∣Hess |x=x̃n

ρ
(
φ−1(x)

)
−Hess |x=0ρ

(
φ−1(x)

)∣∣]

≤ 1

δ
E

[
sup

‖x‖≤‖xn‖

∣∣Hess |xρ
(
φ−1(x)

)
−Hess |x=0ρ

(
φ−1(x)

)∣∣
]

→ 0

due to (A5) because ‖xn‖ a.s.→ 0 by hypothesis. Now application of the clas-

sical strong law Hess |x=0Fn

(
φ−1(x)

) a.s.→ Hess |x=0F
(
φ−1(x)

)
yields the asser-

tion. �

Example 4 ([6]). Consider X1, . . . , Xn
i.i.d.∼ X on Q = S1 = [−π, π) where π is

identified with −π with unique mean µ = 0 and sample mean µn = xn. Then, for
x > 0 we have

nFn(x) =
∑

x−π≤Xj

(Xj − x)2 +
∑

x−π>Xj

(Xj + 2π − x)2

=

n∑

j=1

(Xj − x)2 + 4π
∑

x−π>Xj

(Xj − x+ π)2 .

If X features a density f near ±π with respect to the uniform measure, then (A2)
is valid and Hess |xFn(x) = 2 a.s. for x sufficiently small, but we have for n
sufficiently large

0 = 2
√
n(xn − X̄)−√

n
4π

n

∑

xn−π>Xj

1

︸ ︷︷ ︸
≈f(−π)xn

,

hence,
√
nxn 2

(
1− 2πf(−π)

)
︸ ︷︷ ︸

6=2

= 2
√
nȲ

D→N (0, cov[2Ȳ ])
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for f(−π) > 0, which is possible. So (A5) is not valid. It is even possible that
f(−π) = 1

2π , so that H = 0 and (A4) is no longer valid.

1.3. Empirical Process Theory for the General Setup. We assumeE = {µ},
En ∋ µn measurable

a.s.→ µ, P has a local manifold structure near µ with local
chart φ, φ(µ) = 0, 2 ≤ r ∈ N and that

(A1′)
∣∣ρ(X, p− ρ(X, p′)

∣∣ ≤ ρ̇(X) d(p, p′), ∀p, p′ ∈ P near µ,
with E

[
ρ̇2(X)

]
< ∞ ,

(A2′) ∃ grad |x=0ρ
(
X,φ−1(x)

)
=: ρ̇0(X) a.s. with existing cov[ρ̇0(X)] ,

(A4′) F
(
φ−1(x)

)
= F (µ) +

∑m
k=1 Tk︸︷︷︸

>0

(
(Rx)k

)r
+ o
(
‖x‖r

)
.

Here R is a rotational matrix and (Rx)k denotes the k-th component. As in [14],
one can show that there is a constant C > 0 such that

sup
‖x‖<δ

∣∣F
(
φ−1(x)

)
− F (µ)

∣∣ ≤ Cδα (α = r) ,

E

[
√
n sup

‖x‖<δ

∣∣Fn

(
φ−1(x)

)
− F

(
φ−1(x)

)
− (Fn(µ)− F (µ))

∣∣
]

≤ Cδβ (β = 1) ,

and that n
1

2(α−β) xn = n
1

2(r−1) xn = Op(1) . In consequence, one can show the
following.

Theorem 5 ([5]). Under the above assumptions with T = diag(T1, . . . , Tm),
√
n sign(Rxn)|Rxn|r−1

︸ ︷︷ ︸
componentwise

D→ N
(
0, T−1cov[ρ̇0(X)]T−1

)
.

Definition 6. We say that the mean µ of a random variable as in Theorem 5 is
r − 2 smeary.

For manifolds Q = P and d =
√
ρ the intrinsic geodesic distance, it was shown

in [6, 5] that

a) ∃ arbitrary smeariness on S1 and products thereof;
b) ∃ r − 2 = 2 smeariness on Sm for all m ∈ N;
c) smeariness, although only present for a null set of the parameter space of

distributions, influences finite sample rates nearby. This phenomenon is
called finite sample smeariness.

2. Applications

Typical applications that have been developed to date (cf. [8, 7]) are intrinsic
MANOVA and one- or two-sample tests for

(1) first geodesic principal component on manifolds and shape spaces,
(2) great/small subspheres in Sm−1,
(3) and classical PCA.
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Example 7. We illustrate (3) by considering a random variable X on Q = Rm

with E[X ] = 0 and existing cov[X ] that allows the spectral decomposition cov[X ] =
V ΛV T , V ∈ O(m), Λ = diag(λ1, . . . , λm) with λ1 = . . . = λk > λk+1 ≥ . . . ≥
λm > 0. As an example, we treat here the asymptotics of the first k-dimensional
eigenspace from classical PCA. Then the descriptor space is the Grassmannian
P = G(m, k) ∋ p = span(vk+1, . . . , vm︸ ︷︷ ︸

=:W

)⊥.

With the analog spectral decomposition of the sample covariance cov[X1, . . . , Xn] =

V̂ Λ̂V̂ T , λ̂1 ≥ . . . ≥ λ̂k ≥ λ̂k+1 ≥ . . . λ̂m ≥ 0, the distance d(p, p′) = minR∈O(m−k)

‖W−RW ′‖ and link function ρ(X, p) = 1−‖∑m
j=k+1 vkv

T
k X‖2 = 1−‖WWTX‖2 =

1− tr(WTXXTW ), we have

ρ(X, p′)− ρ(X, p) = tr(WTXXTW )− tr(W ′TXXTW ′)

In consequence, we have (A1) and hence the strong law from Theorem 1. Further,
we have (A4’) with r = 2. In case of E[‖X‖4] < ∞ we have also (A1’) and (A2’),
so that Theorem 5 yields a

√
n-Gaussian CLT.

Notably, there exists a version of a nested CLT by [10] for entire flags (pm, . . . , p0)
of nested subspaces Q ⊇ pm ⊇ . . . ⊇ p0 = {µ} which can be applied

(4) to principal nested spheres (PNS) by [11]
(5) and to the intrinsic mean on the first geodesic principal component by [9].

Currently we evaluate whether it can also be applied

(6) to the barycentric subspaces by [13] and
(7) to the principal nested shape spaces by [4].

3. Open Challenges

d) ∃ arbitrary smeariness on compact spaces?
e) Find conditions, when is F ∈ Cr?
f) ∃ antismeariness nγxn = Op(1) with γ > 1/2?
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Super-Consistent Estimation of Points of Impact in Nonparametric
Regression with Functional Predictors

Alois Kneip

(joint work with Dominik Poß, Dominik Liebl, Hedwig Eisenbarth, Tor
D. Wager, Lisa Feldman Barrett)

Our methodology is motivated by data from a psychological experiment in which n
participants were asked to continuously rate their emotional state while watching
an affective video eliciting varying intensity of emotional reactions. This results
in n random functions Xi(t) ∈ R, with t ∈ [a, b], where a denotes the start of
the video and b the end. Psychologists are interested in understanding how a real
response variable Yi (overall ratings) relates to the fluctuations of the emotional
states while watching the video, as this has implications for the way emotional
states are assessed in research using such material. The problem is therefore to
identify influential time points τ ∈ [a, b] with Xi(τ) possessing some significant
impact on the response Yi.

The general approach assumes an i.i.d. sample of data (Xi, Yi), i = 1, . . . , n,

where Xi = {Xi(t), t ∈ [a, b]} is a stochastic process with E(
∫ b

a
Xi(t)

2 dt) < ∞,
[a, b] is a compact subset of R and Yi is a real valued random variable. It is
assumed that the relationship between Yi and the functional predictor Xi can be
modeled as

Yi = g
(
Xi(τ1), . . . , Xi(τS)

)
+ εi,

where εi denotes the statistical error term with E(εi|Xi(t)) = 0 for all t ∈ [a, b].
The number 0 ≤ S < ∞ and the points of impact τ1, . . . , τS are unknown and have
to be estimated from the data – without knowing the true model function g. The
points of impact τ1, . . . , τS indicate the locations at which the functional values
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Xi(τ1), . . . , Xi(τS) have a specific influence on Yi. Without loss of generality, we
consider centered random functions Xi with E(Xi(t)) = 0 for all t ∈ [a, b].

We require that g(x1, . . . , xS) is twice continuously differentiable, and that for
all r = 1, . . . , S the partial derivatives ∂g(x1, . . . , xs)/∂xr are continuous almost
everywhere as well as 0 < ϑr := |E( ∂

∂xr
g(Xi(τ1), . . . , Xi(τS)))| < ∞.

Surprisingly, the unknown function g does not have to be estimated in order to
estimate the points of impact τ1, . . . , τS . Estimating points of impact, however,
necessarily depends on the structure of Xi. Motivated by our application we con-
sider Gaussian processes with rough sample paths such as (fractional) Brownian
motion, Ornstein-Uhlenbeck processes, etc. The following assumption on the co-
variance function of Xi describes a very large class of such stochastic processes
and allows us to derive precise theoretical results:

Assumption. For some open subset Ω ⊂ R3 with [a, b]2 × [0, b − a] ⊂ Ω, there
exists a twice continuously differentiable function ω : Ω → R as well as some
0 < κ < 2 such that for all s, t ∈ [a, b]

σ(s, t) = ω(s, t, |s− t|κ).

Moreover, 0 < inft∈[a,b] c(t), where c(t) := − ∂
∂zω(t, t, z)|z=0.

Under these conditions a generalization of Stein’s lemma leads to

fXY (s) := E
(
Xi(s)Yi

)
=

S∑

r=1

ϑrσ(s, τr) for all s ∈ [a, b].

Since σ(s, t) is not two times differentiable at s = t, the cross-covariance fXY (s)
will not be two times differentiable at s = τr, for all r = 1, . . . , S, resulting in kink-
like features at τr. A natural strategy to estimate τr is to detect these kinks by
considering the following modified central difference approximation of the second
derivative of f at a point s ∈ [a− δ, b− δ] for some δ > 0. Defining the auxiliary
process Zδ,i(s) := Xi(s)− 1

2 (Xi(s− δ) +Xi(s+ δ)), we obtain

E(Zδ,i(s)Yi) = fXY (s)−
1

2
(fXY (s+ δ) + fXY (s− δ)).

Of course, E(Zδ,i(s)Yi) is not known and we have to rely on n−1
∑n

i=1 Zδ,i(s)Yi as
its estimate. Under our setting we will have V(Zδ,i(s)Yi) = O(δκ), implying

1

n

n∑

i=1

Zδ,i(s)Yi − E(Zδ,i(s)Yi) = OP

(√
δκ/n

)
.

Estimates τ̂1, . . . , τ̂Ŝ are then obtained by identifying the local maxima of
1
n

∑n
i=1 Zδ,i(s) which exceed a prespecified threshold λ > 0, i.e. 1

n

∑n
i=1 Zδ,i(τ̂j) >

λ for all j = 1, . . . , Ŝ.
A practical and asymptotically valid threshold specification which performed

well in our simulation studies is given by λ = A((E(Y 4
i ))

1/2 log
(
(b− a)/δ

)
/n)1/2,

where E(Y 4
i ) is estimated by Ê(Y 4

i ) = n−1
∑n

i=1 Y
4
i and A =

√
2
√
3. At the same
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time one may choose δ = 1/
√
n. Under some additional moment conditions on Yi

it can then be shown that

max
r=1,...,Ŝ

min
s=1,...,S

|τ̂r − τs| = OP (n
−1/κ).

as well as

P (Ŝ = S) → 1 as n → ∞.

Given estimates τ̂1, . . . , τ̂Ŝ , the function g may then be estimated by applying
nonparametric regression methods, e.g. the Nadaraya-Watson kernel estimator.

A detailed description of the conceptual approach and asymptotic theory can
be found in [1]. The paper also provides a detailed empirical study of data from a
psychological experiment.
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Nonparametric Tolerance Tubes for Tracking Functional Data

Regina Liu

(joint work with Yi Fan)

Tolerance intervals and tolerance regions are important tools for process monitor-
ing or statistical quality control of univariate and multivariate data, respectively.
We discuss their generalization to tolerance tubes in the infinite dimensional set-
ting for functional data. In addition to the generalizations of the commonly ac-
cepted definitions of the tolerance level of beta-content or beta-expectation, we in-
troduce the new definition of alpha-exempt beta-expectation tolerance tube. The
latter loosens the definition of beta-expectation tolerance tube by allowing alpha
(pre-set using domain knowledge) portion of each functional be exempt from the
requirement.

Those proposed tolerance tubes are completely nonparametric and broadly ap-
plicable. We discuss their general properties, and show that the alpha exempt
beta-expectation tolerance tube is particularly useful in the setting where occa-
sional short term aberrations of the functional data are deemed acceptable (or
unpreventable) and they do not cause substantive deviation of the norm. This
desirable property is elaborated further and illustrated with both simulations and
real applications in continuous monitoring of blood glucose level in diabetes pa-
tients as well as of aviation risk patterns of aircraft landings.
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A novel framework for the statistical analysis of Functions on Surfaces

Eardi Lila

(joint work with John Aston)

We establish a statistical framework for the analysis of Functions on Surfaces
(FoSs) [1]. FoSs are geometric objects coupled with functional information, dis-
playing both geometric and functional variations. In Figure 1, we show an exam-
ple of FoSs representing brain geometries and associated cortical thickness maps.
Such data are becoming increasingly common, in particular in the medical imag-
ing community. Nonetheless, we are still lacking statistical approaches that can
parsimoniously model geometric and functional aspects of these complex objects.

Figure 1. Surfaces representing the geometry of the brain’s left
hemispheres of three different subjects, with an associated scalar
map representing the cerebral cortex thickness of the subjects.

We propose a general model for FoSs, where geometric variations are modeled
as random diffeomorphic deformations of a template, while functional variations
are modeled as random functions supported on the template. Diffeomorphic defor-
mations are smooth functions that are invertible and have a smooth inverse. They
have the desirable property of preserving the topology of the deformed objects and
avoiding the formation of singularities. However, diffeomorphic functions belong
to a non-Euclidean space, invalidating classical linear statistical approaches. We
construct diffeomorphisms as flows of ordinary differential equations governed by
time-varying smooth vector fields ([2]) and use the smooth vector fields to linearly
represent the associated diffeomorphic functions. In order to quantify geomet-
ric and functional variations, we introduce estimators of the underlying unknown
quantities within the proposed statistical model.

We apply the proposed model to the FoSs in Figure 1 to quantify the inherent
variabilities of cortical thickness maps and brain geometries across subjects. We
finally study the associations between variations in the brain shape and variations
in the cortical thickness of the brain.
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Estimating functionals

László Györfi

In this talk I considered estimating three functionals: differential entropy, residual
variance and Bayes error probability.

1. Differential entropy

Let X be a random vector taking values in Rd with probability density function
f(x), then its differential entropy is defined by

(1) H(f) = −
∫

f(x) ln f(x)dx.

Kozachenko and Leonenko [3] introduced the nearest neighbor entropy estimate
as follows. Put ρn,i = minj 6=i,j≤n ‖Xi −Xj‖. Then the nearest neighbor entropy
estimate is

(2) Hn =
1

n

n∑

i=1

ln((n− 1)ρdn,ivd) + CE ,

where CE is the Euler-Mascheroni constant: CE = −
∫∞

0 e−t ln tdt = 0.5772... and

vd denotes the volume of the unit sphere in Rd.
If f has bounded support and

∫
f(x) ln2(f(x) + 1)dx < ∞, then

Var(Hn) = O(1/n).(3)

Furthermore, if f is Lipschitz continuous and it has a bounded support, then

E{Hn} −H(f) = O(n−1/d).(4)

These results can be applied for testing independence. Consider a sample of
Rd×Rd′

-valued random vectors (X1, Y1), . . . , (Xn, Yn) with independent and iden-
tically distributed (i.i.d.) pairs. Assume that the distribution of (X,Y ) has a den-
sity, which is denoted by f , while p and q stand for the densities of X and Y ,
respectively. We are interested in testing the null hypothesis that X and Y are
independent, i.e.,

H0 : f = p× q,(5)

while making minimal assumptions regarding the densities.
If H(f), H(p) and H(q) exist and are finite, then the null hypothesis (5) is

equivalent to

KL(f, p× q) = 0,
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where KL denotes the Kullback-Leibler divergence. Because of

KL(f, p× q) = H(p) +H(q)−H(f),(6)

Berrett and Samworth [1] considered the test statistic

Tn = Hn,p +Hn,q −Hn,f ,(7)

where Hn,p, Hn,q and Hn,f are the Kozachenko-Leonenko entropy estimates of
H(p), H(q) and H(f), respectively.

Similarly to (3) and (4) we get that

Var(Tn) = O(1/n).(8)

and

E{Tn} −KL(f, p× q) = O(n−1/d).(9)

Introduce the critical value Cn = ωn(n
−1/2 + n−1/d) with ωn → ∞ such that

Cn → 0. Accept the null hypothesis of independence if

Tn ≤ Cn,

and reject otherwise. Then, (8) and (9) imply that the error of the first and of the
second kind tend to zero.

2. Residual variance

The residual variance is the smallest achievable mean-squared error in regression
function estimation. For the d dimensional feature vector X and response variable
Y , Devroye, Györfi, Lugosi and Walk [2] studied the problem of estimating the
residual variance. The problem is equivalent to estimating the second moment
of the regression function of Y on X . They introduced a nearest-neighbor-based
estimate and obtained a normal limit law for the estimate when X has a density.
Computed the asymptotic variance explicitly and derived a non-asymptotic bound
on the variance that does not depend on the dimension d. The asymptotic variance
does not depend on the smoothness of the density of X or on the regression func-
tion. Illustrated the use of the new estimate through testing whether a component
of the vector X carries information for predicting Y .

3. Bayes error probability

For the d dimensional feature vector X and binary label Y , the Bayes error prob-
ability is the smallest achievable error probability in binary classification. The
obvious way for estimating the Bayes error probability is the plug-in estimate,
where from a training sample one creates a classification rule, and the estimate of
the Bayes error probability is simply the empirical error of this classification rule
calculated from a testing sample. The problem is

• either to show an estimate of the Bayes error probability with the rate of
convergence better than that of the plug-in estimate,

• or to prove that it is impossible to construct an estimate with such fast
rate of convergence.
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On the choice of suitable distances in Functional Data Analysis

Antonio Cuevas

(joint work with José R. Berrendero, Beatriz Bueno-Larraz,
Alejandro Cholaquidis)

This talk is concerned with Functional Data Analysis (FDA), i.e. with statisti-
cal problems (mostly related to classification or regression) in which the available
data are functions or, to be more precise, the data are trajectories drawn from a
stochastic process {X(t),∈ [0, 1]}. Unlike ordinary multivariate analysis (where
the data live in Rd), in FDA there is a strong case to consider the use of differ-
ent distances between the sample (functional) data, according to the statistical
methodology we are interested in. Of course, the basic point here is the obvious
fact that there is no unique “natural” way of measuring the distance between two
functions.

Whereas the standard L2 distance (for square integrable functions) and the
supremum distance (for continuous functions) are the most popular choices, there
are some specific situations where the use of some other metrics makes sense. In
this talk we will consider, from both a theoretical and a practical point of view, a
few instances of these situations.

A) A functional Mahalanobis distance
In classical multivariate analysis, the Mahalanobis distance between two points x, y
in the Euclidean space (with respect to a distribution with non-singular covariance
matrix Σ) is defined by M(x, y) = [(x − y)′Σ−1(x − y)]1/2. Such distance is ex-
tremely useful in a number of applications, including classification an exploratory
data analysis. Clearly, M(x, y) is nothing but a “statistically meaningful” version
of the Euclidean metric, aimed at taking into account the covariance structure of
the data. A major hurdle for the definition of a functional version of M(x, y) is the
fact that a (functional) covariance operator is typically compact and, therefore,
not invertible. A proposal aimed at overcoming such a problem (and still keep-
ing the essential ideas and properties behind Mahalanobis metric) is given in [2].
The proposed definition relies on the use of a Tikhonov regularization method,
combined with the natural distance in H(K), the Reproducing Kernel Hilbert
Space (RKHS) associated with the covariance function K = K(s, t) of the process
generating the data.
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B) An RKHS-based metric in functional regression
The RKHS metric is useful as well in order to define functional regression models
with a scalar response. In particular, [3, 5] analyse the definition of the following
functional regression model in RKHS-terms,

(1) Yi = α0 + 〈Xi, β〉K + εi, i = 1, . . . , n,

where β is the slope function β ∈ H(K) and 〈·, ·〉K denotes here a suitable exten-
sion of the inner product in the RKHS H(K), defined in terms of the so-called
Loève’s isometry. Such an extension is needed since, typically, the trajectories of
the process X = X(t) do not belong (with probability one) to the corresponding
RKHS, H(K).

A model of type (1) turns out to be particularly useful in order to define, and
theoretically motivate, variable selection methods. The basic reason for this is the
fact that all finite-dimensional models of type

(2) Yi = α0 +

p∑

i=1

βiX(ti), i = 1, . . . , n,

(with t1, . . . , tp ∈ [0, 1], β1, . . . , βp ∈ R) appear just as particular cases of (1) for
suitable choices of β.

Likewise, in the framework of logistic-functional regression, an RKHS-based
model of type

P(Y = 1 |X = x) =
1

1 + exp {−β0 − 〈x, β〉K} ,

presents a number of theoretical and practical advantages (when compared with
its L2-based counterpart) which are discussed in [2].

See also [4] for related ideas in the setting of functional classification.

C) A “visual” distance for functional data
Finally, a “visual” distance for functional data, essentially based on the Hausdorff
metric between the corresponding hypographs, is explored in [6] in the framework
of supervised classification with functional data. As discussed in that paper, the
use of a Hausdorff-based distance is particularly appropriate in those situations
(involving, e.g., mass spectra data) where one is concerned with the shape of the
curves and one must take into-account their visual proximity, including possible
small lateral shifts. The theoretical and practical aspects of this idea will be briefly
summarized in the talk.

The mentioned Hausdorff-based metric (as well as other closely related ideas)
has been also considered, from different points of view, in [7], [8] and [9].
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Scalar-on-function local linear regression and beyond

Frédéric Ferraty

(joint work with Stanislav Nagy)

When regressing nonparametrically a scalar response Y on any explanatory ran-
dom function X , the common terminology refers to scalar-on-function nonpara-
metric regression (see [6] for an overview on functional local constant regression).
A natural development of functional local constant regression is the functional
local linear regression (i.e local linear regression when the predictor is a random
function). Actually, one can find in the literature only two papers dealing with
functional local linear regression. The first published paper [3] proposes a projec-
tion approach but the asymptotics suffers from a lack of rigorousness and the sec-
ond [4] is a pure theoretical work providing an alternative estimating procedure by
regularizing a non bounded linear operator. Nevertheless, the scalar-on-function
local linear regression is far to be popular as it is the case in the multivariate (i.e.
non functional) case.

An exciting by-product of the functional local linear regression is its ability of
providing an easy and fast way for estimating the functional derivative m′

x of the
regression operator m at any function x which represents the local linear approxi-
mation of the regression operator m around x: for any v in a neighbourhood of x,
it exists ζ = x+ tv with t ∈ (0, 1) so that m(x+ v) = m(x)+ 〈m′

x, v〉+ 1
2 〈m′′

ζ v, v〉,
where m′′

ζ is a Hilbert-Schmidt linear operator. But why estimating the functional
derivative of the regression operator? A first motivation is given in the pioneer-
ing works [7, 10] where estimating procedures are developed without considering
the local linear regression setting. The authors demonstrated the usefulness of
the concept of functional derivative for commenting results. As a continuation
of these works and to understand how one can use the functional derivative in a
simple way, let us go back to the functional Taylor expansion of the regression
operator. For any positive real η small enough and any direction u (i.e. ‖u‖ = 1),
one has m(x + ηu) − m(x) = η〈m′

x, u〉 + O(η2). Then, the first order approxi-
mation for the range of the difference m(x + ηu) − m(x) belongs to the interval
[−η‖m′

x‖, η‖m′
x‖]: smaller is ‖m′

x‖ and less sensitive to small perturbations on
x is m(x). In some sense, ‖m′

x‖ can be seen as a measure of reliability for the
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prediction of m at x. But the functional derivative may appear as a success-
ful tool in very interesting statistical problems. For instance, consider the single
functional index model m(x) = µ + g (〈β, x〉) (see [2, 1, 5, 9]) where the scalar
response interacts with the functional covariate only through a functional direc-
tion β combined with a real-valued link function g. Extending the ADE method
introduced in [8] to the functional setting, it is easy to show that E (m′

X) is pro-
portional to the functional direction β where ‖β‖ = 1 for identifiability purpose.
Then, given a sample (X1, Y1), . . . , (Xn, Yn), as soon as one is able to get the

estimations m̂′
X1

, . . . , m̂′
Xn

of the functional derivatives m′
X1

, . . . ,m′
Xn

, one can

compute Ê (m′
X) := n−1

∑
i m̂

′
Xi

so that Ê (m′
X)/‖Ê (m′

X)‖ is an estimator of the
functional index β.

These different examples emphasize the major role that can play the functional
derivative of the regression operator in important aspects of statistics: methodol-
ogy, reliability and interpretation. This is why we provide a thorough and compre-
hensive study of the functional local linear regression to make it the benchmark
method in the setting of scalar-on-function nonparametric regression. For both
local linear estimators (regression operator and its functional derivative), original
technical tools are developed for deriving their asymptotic behaviour. Easiness
of implementation as well as nice finite sample properties of our local linear esti-
mators are emphasized on simulated datasets and a benchmark growth dataset is
used to demonstrate the important role that can play the functional derivatives.
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Bootstrapping linear spectral statistics of high-dimensional sample
covariance matrices

Angelika Rohde

(joint work with Holger Dette)

Let Y1, . . . , Yn be independent, identically distributed p-dimensional centered ran-
dom vectors with covariance matrix Σn and corresponding sample covariance ma-
trix

Σ̂n =
1

n

n∑

i=1

YiY
′
i .

With λ̂1,n, . . . , λ̂p,n denoting its eigenvalues, many important statistics of Σ̂n can
be written as linear spectral statistics

T̂n(f) =

p∑

j=1

f
(
λ̂j,n

)

for suitably regular real-valued functions f . For instance, the trace tr(Σ̂n) is

the linear spectral statistics T̂n(f) with f equals the identity map and the log-

determinant log det Σ̂n equals T̂n(log). In the high-dimensional scenario p/n →
c > 0, the centered version T̂n(f)−ET̂n(f) has a non-degenerate distribution which
depends in an intricate way on the distribution L(Y1) of Y1. Results on the natural
question of a nonparametric bootstrap approximation are negative, however ([2]).
While the classical sampling with replacement bootstrap already fails for f(x) =
x2, the traditionally more robust ’m out of n’ procedure does not even preserve the
limiting ratio c of dimension and sample size if m ≪ n. The latter ratio c, however,
appears already explicitly in the existing limiting distribution in the simplest case
where f is the identity and Y1, . . . , Yn are standard normally distributed, see e.g.
[1]. Here, we provide a powerful and fully nonparametric bootstrap approximation
of linear spectral statistics in this high-dimensional context. The idea is to rely
on an ’m out of n’ procedure (m = o(n)) while suitably subsampling ’q out of p’
dimensions in order to keep the ratio

p

n
=

q

m

the same. Our new approach is based on the crucial observation that in most
situations of interest, a subvector Y1,sub of Y1, selected according to an appropriate
random sampling mechanism, provides a covariance matrix with similar spectral
distribution as the full vector Y1 (see assumption (A4) below).

The new bootstrap algorithm

(i) For m = o(
√
n), draw an iid sample Y ∗

1 , . . . , Y
∗
m from the empirical distri-

bution

P̂n =
1

n

n∑

k=1

δYk
.
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(ii) Define the bootstrap sample

Z∗
i = (Y ∗

ij1 , . . . , Y
∗
ijq )

′, i = 1, . . . ,m,

using the coordinates j1, . . . , jq selected ’appropriately’.

For any Hermitian matrix A ∈ Rp×p, λ1(A), . . . , λp(A) denote its (possibly multi-
ple) eigenvalues and

µA =
1

p

p∑

k=1

δλk(A)

its spectral measure. Corresponding to the bootstrap sample covariance matrix

Σ̂∗
n =

1

m

m∑

i=1

Z∗
i Z

∗′

i ,

µΣ̂∗

n denotes its spectral measure and

T̂ ∗
n(f) = q

∫
fdµΣ̂∗

n

the bootstrapped linear spectral statistics.

Assumptions.

(A1) p/n → c > 0 (High-dimensionality)
(A2) The sequence

(
µΣn

)
n∈N

of spectral distributions is tight.

(A3) The p-dimensional random vector Y
(n)
1 is assumed to be of the form

(1) Y
(n)
1 = AnX1,

where X1 = (X11, X12, . . .)
′ is an infinite-dimensional random vector with

iid entries, satisfying
– EX11 = 0
– EX2

11 = 1
– EX4

11 = 3,
and the (p×∞)-matrix An has rows in ℓ2 such that AnA

′
n = Σn ∈ Rp×p .

(A4) (Representative subpopulation condition)
The sequence of pn-dimensional vectors (Yn)n∈N is assumed to possess the
following properties.
(i) There exists a possibly random strategy of selecting a sequence of qn-

dimensional subvectors Yi,sub with corresponding covariance matrices

Σ̃qn such that

µΣ̃qn − µΣn ⇒ 0 as q, n → ∞ in probability.

(ii) If Πpnqn denotes the projection corresponding to the possibly random
selection strategy, that is Yn,sub = ΠpnqnYn, then there exists for
almost all realizations a decomposition of the form

ΠpnqnAn = Ln +Rn
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where the matrix Ln has at most O(qn) non-zero columns and
||Rn||2S2

= o(1).

Assumption (A1) and (A2) are classical assumptions for the CLT of linear spectral
statistics. There, instead of (A3), the more restrictive representation

Y1 = Σ1/2
n Xn

is required, where Xn is p-dimensional with iid coordinates and the same moment
conditions as in (A3) (the assumption on the fourth moment can be relaxed – in
the classical context as well as in our bootstrap context). Our crucial requirement
and innovation is condition (A4). It is satisfied in particular if the entries of Y1 are
p consecutive elements of a stationary process under mild regularity assumptions.

Our main result is as follows. Here, ⇒ stands for weak convergence, dBL denotes
the dual bounded Lipschitz metric and as usual, →P refers to convergence in
probability.

Theorem 1 (Bootstrap consistency). Grant assumptions (A1) – (A4). Then

µΣ̂n − µΣ̂∗

n =⇒ 0

in probability and

dBL

[
L
(
T̂ ∗
n(f)− E∗T̂ ∗

n(f)
Y1, . . . , Yn

)
,L
(
T̂n(f)− ET̂n(f)

)]
−→P 0.
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