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Introduction by the Organizers

The workshop Differentialgeometrie im Großen was held June 30 - July 5, 2019.
The participants were specialists in differential geometry and its neighboring fields,
covering a broad spectrum of subareas which are in the focus of current develop-
ments.

The lectures during the five days of the meeting were roughly organized accord-
ing to different themes.

The first day of the meeting began with talks on Einstein metrics and metrics
with conical singularities. On the second day, the theme of the morning was
complex geometry while in the afternoon we saw talks on Higgs bundles and curves
on hyperbolic surfaces.

Wednesday morning’s talks included topics on geodesic metric spaces with
bounded curvature and the actions of isometry groups. In the afternoon we had
the traditional hike.

The theme of Thursday was geometric flows, and in particular we heard about
some of the latest advances in Ricci flow. We ended the workshop on Friday
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morning with three talks, whose topics included homogeneous Einstein metrics
and metrics of nonnegative sectional curvature.

The meeting gave a good overview of the current developments in differential
geometry, and highlighted some of the important developments in the field. The
workshop was attended by researchers from around the world, ranging from grad-
uate students to scientific leaders in their areas.

The atmosphere during the meeting was lively and open, and greatly benefited
from the ideal environment at Oberwolfach.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
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Abstracts

On groups of isometries preserving multiple horospheres

Grigori Avramidi

(joint work with Tâm Nguy˜̂en-Phan)

Let X be an n-dimensional Hadamard manifold and let Γ be a group acting on X
by covering space transformations. Suppose that Γ preserves some horospheres.
To keep track of these, denote by Fix0(Γ) the set of points at infinity whose horo-
spheres are preserved by Γ. This talk explained a relation between the dimension
of Γ and Fix0(Γ) in the case when Γ = Zr is a free abelian group of rank r. To
formulate this relation, we introduced certain simplices in the ideal boundary of
X , called Busemann simplices, which are constructed using convex combinations
of Busemann functions. Here is the main result discussed in the talk.

Theorem. If Fix0(Zr) contains a non-degenerate Busemann k-simplex, then

dimX ≥ k + 1 + r.

The same result holds for general groups Γ if the rank r is replaced by the homo-
logical dimension of Γ. (Theorem 8 of [1]).

References

[1] G. Avramidi, T. Nguy˜̂en-Phan Half dimensional collapse of ends of manifolds of nonpositive
curvature, arXiv 1608.02185.

Marked length spectrum rigidity for actions on CAT(0) cube
complexes

Jonas Beyrer

(joint work with Elia Fioravanti)

Given an action Gy X of a finitely generated group G on a metric space (X, d),
the marked length spectrum ℓGyX or sometimes just ℓX is the function from the
group to R≥0 that assigns each element its translation length, i.e. ℓX : G →
R≥0, ℓX(g) 7→ infx∈X d(x, g · x).

If restricting to particular spaces and actions the marked length spectrum is a
natural candidate to tell when spaces are equivariantly isometric and when not,
which is captured in the following question.

Question. Given two actions G y X,G y Y such that both actions and both
spaces belong to a certain class. Are then X and Y equivariantly isometric?
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If the answer to this question is yes, we speak of marked length spectrum rigidity.
Let us explain two specific cases of this: First, assume that G is torsion free, the

action on X,Y is proper and cocompact and X,Y are negatively curved manifolds.
In this case the quotients G\X and G\Y are compact negatively curved manifolds.
Then the question is actually a notoriously hard conjecture from the 1980s - see
[3]. For long time only the case when X,Y are surfaces was known to be true [6].
However, very recently big progress has been made in the general case [5].

Second, assume that G y T1, T2, where Ti are R-trees (sometimes also called
metric trees) and the action is non-elementary which means that the induced
action on the tree union the space of ends Gy Ti ∪Ends(Ti) has no finite orbits.
Then a classical result of Culler and Morgan says that in this case we have marked
length spectrum rigidity [4].

For us, the goal is to consider this question for actions on CAT(0) cube complexes.
In recent years cube complexes have become somewhat ubiquitous within geomet-
ric group theory, as there are many groups acting nicely on them and such an
action allows to derive strong algebraic properties of the group. Probably most
prominently has been their use for the proofs of the virtual Haken and virtual
fibering conjectures for 3-manifolds.

Note that CAT(0) cube complexes have two natural metrics. We will consider
the length functions with respect to the ℓ1 metric (which is not CAT(0)). Then
combining the results from [1, 2] we have the following marked length spectrum
rigidity result for actions on CAT(0) cube complexes with repsect to the ℓ1 metric.

Theorem. (B. - Fioravanti) Let X,Y be irreducible CAT(0) cube complexes and
Gy X,Y such that ℓX = ℓY . Then X and Y are equivariantly isomorphic if one
of the following holds

(1) G is hyperbolic, the actions are proper and cocompact and X,Y are essen-
tial and hyperplane essential,

(2) the actions are non-elementary and essential, X,Y have no free faces and
Aut(X),Aut(Y ) contain uniform lattices.

Irreducible means that the cube complexes do not split as a non-trivial product
and non-elementary means that the action on the visual compactificationX∪∂∞X
has no finite orbits. For essential, hyperplane-essential and no free faces see [2].

We want to remark that irreducible, essential and hyperplane-essential are nec-
essary conditions for length spectrum rigidity to hold. In particular in point (1)
of the theorem we have optimal assumptions on the cube complex; though the
assumption on the group and the group action are a bit restrictive. In point (2)
however, the assumption on the group and the action are very little (probably
optimal), at the cost of stronger assumptions on the cube complex.

An application of the theorem is to generalize the compactification of the Culler-
Vogtmann outer space associated to free groups, to the ‘untwisted’ outer space
associated to an irreducible right angled Artin group. For more details see [2].
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Homogeneous Einstein metrics on Euclidean spaces are Einstein
solvmanifolds

Christoph Böhm

(joint work with Ramiro Lafuente)

A Riemannian manifold (Mn, g) is called homogeneous, if its isometry group
Isom(Mn, g) acts transitively on Mn, and it is called Einstein, if its Ricci ten-
sor satisfies Ricg = λ · g, for some Einstein constant λ ∈ R.

Theorem 1. Homogeneous Einstein metrics on Euclidean spaces are isometric to
Einstein solvmanifolds.

A simply-connected Riemannian solvmanifold is a simply-connected solvable
Lie group endowed with a left-invariant metric. Theorem 1 was known for Ricci-
flat homogeneous spaces, for homogeneous R-bundles over irreducible Hermitian
symmetric spaces and in dimensions n ≤ 5 and n = 7 [1].

Recall now one of the main results [2] in the field due to Lauret, who proved
that Einstein solvmanifolds are standard. The standard condition is an algebro-
geometric condition introduced and studied in [3] by Heber. For standard Einstein
solvmanifolds of fixed dimension, Heber showed for instance finiteness of the eigen-
value type of the modified Ricci curvature, see below, a result intimately related to
the finiteness of critical values of a (real) moment map. Even though a classifica-
tion of standard Einstein solvmanifolds seems difficult, Theorem 1 together with
the work of Lauret and Heber would yield a very precise understanding of all non-
compact homogeneous Einstein manifolds, provided the Alexseevskii conjecture
holds true.

Turning to the proof of Theorem 1, we would like to mention that a purely alge-
braic proof is elusive at the moment. To overcome this, we prove that homogeneous
Euclidean Einstein spaces admit cohomogeneity-one actions by non-unimodular
subgroups with orbit space R. We then show periodicity of the corresponding fo-
liation by orbits, meaning that after passing to a homogeneous quotient the orbit
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space becomes S1, and that the integral of the mean curvature of the orbits over
the orbit space vanishes, a condition we call integral minimality. This then reduces
the proof of Theorem 1 essentially to the following

Theorem 2. Suppose that (Mn, g) admits an effective, cohomogeneity-one action
of a Lie group Ḡ with closed, integrally minimal orbits and Mn/Ḡ = S1. If in
addition (Mn, g) is orbit-Einstein with negative Einstein constant, then all orbits
are standard homogeneous spaces.

A cohomogeneity-one manifold (Mn, g) is called orbit-Einstein with negative
Einstein constant, if for λ < 0 we have Ricg(X,X) = λ · g(X,X) for all vectors X
tangent to orbits. Generalizing [3], we say that a homogeneous space (Ḡ/H̄, ḡ)
is standard, if the Riemannian submersion induced by the free isometric action of
the maximal connected normal nilpotent subgroup N̄ ≤ Ḡ on Ḡ/H̄ has integrable
horizontal distribution.

We turn now to the proof of Theorem 2. Since the Ḡ-orbits form a family of
equidistant hypersurfaces in Mn, we write g = dt2 + ḡt, t ∈ R, for a smooth curve
of homogeneous metrics ḡt on M̄ = Ḡ/H̄ . By the Gauß and the Riccati equation
the orbit-Einstein equation on (Mn, g) with Einstein constant −1 is equivalent
to the ”Einstein flow” L̄′

t + (TrLt) · L̄t = Ricḡt + ḡt. Here L̄t denotes the shape
operator of an orbit and Ricḡt the Ricci-endomorphism of (M̄, ḡt).

We decompose the Ricci tensor ricḡ of a homogeneous space (M̄ = Ḡ/H̄, ḡ) as
a sum of two tensors, one tangent to the DiffḠ(M̄)-orbit through ḡ, and another
one, the modified Ricci curvature ric∗ḡ, orthogonal to it. Here, DiffḠ(M̄) denotes

the set of automorphisms of Ḡ preserving H̄ . We set h(ḡ) := 1
2 ·(scal

∗
ḡ−scalḡ) ≥ 0.

Using the orbit-Einstein equation for (Mn, g) and the compactness of the orbit
space we establish a maximum principle for the real-valued function h(t) := h(ḡt),
which yields an upper bound for 2h given by trβ+ = n− 1− 1/‖β‖2 ≥ 0. Here β
is the stratum label of the homogeneous space Ḡ/H̄, a self-adjoint endomorphism,
coming from the Morse-type, Kirwan-Ness stratification of the space of Lie brack-
ets on TeḠ introduced by Lauret [2]. From this a priori estimate for h we establish
the existence of a Lyapunov function for the orbit-Einstein equation. Using that
the orbits are integrally minimal it follows that this Lyapunov function is peri-
odic, hence constant. As a consequence, several inequalities become equalities and
Theorem 2 follows.

Finally, we indicate how Theorem 2 implies Theorem 1. Using the standard
condition for the given homogeneous Einstein space (Rn = G/H, g) and all the
codimension-one orbits, one shows that the simple factors of a Levi factor L ≤ G
are pairwise orthogonal. Together with the condition G/H ≃ Rn, this implies that
the induced metric on L/H is awesome, that is, it admits an orthogonal Cartan
decomposition. This leads to a contradiction by [4], unless the Levi factor is trivial,
in which case G is solvable.
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Magical nilpotents, higher Teichmüller spaces and Higgs bundles

Brian Collier

(joint work with Steve Bradlow, Oscar Garcia-Prada, Peter Gothen,
André Oliveira)

Let S be a closed, connected and orientable surface of genus g ≥ 2 and let G be
a real or complex simple, connected Lie group. Associated to this fixed data is
a moduli space X (S,G) called the G character variety of S. This moduli space
parameterizes conjugacy classes of reductive representations ρ : π1S → G of the
fundamental group of S into G. Namely,

X (S,G) = Hom+(π1S,G)/G,

where Hom+(π1S,G) is the set of group homomorphisms which are completely
reducible after post composition with the adjoint representation.

When G is compact or complex, the set of connected components of X (S,G)
is in bijection with the cohomology group H2(S, π1G). This was proven in [19]
for G = SU(n), in [20] for all compact groups, and in [18] for complex groups.
Since a simple Lie group G is homotopy equivalent to a compact subgroupK < G,
for G complex, every representation ρ : π1S → G can be deformed to a compact
representation, i.e., one of the form ρ̃ : π1S → K → G. For real Lie groups, the
component count of X (S,G) is more subtle.

One motivation for studying character varieties comes from hyperbolic geome-
try. Given a representation ρ : π1S → PSL2R which is injective and has discrete
image (discrete-faithful), the quotient H2/ρ(π1S) of the hyperbolic planeH

2 by ρ is
homeomorphic to S. Moreover, identifying PSL2R with the orientation preserving
isometries of H2, the surface S inherits a hyperbolic metric. In this way, the Te-
ichmüller space T (S) of isotopy classes of hyperbolic metrics on S is identified with
the set of conjugacy classes of discrete-faithful representations ρ : π1S → PSL2R.
In fact, under this identification, T (S) ⊂ X (S, PSL2R) is an open and closed set
consisting entirely of discrete-faithful representations. In particular, T (S) does
not contain compact representations.

For higher rank Lie groups, there is a class of representations called Anosov
representations which generalize many features of discrete-faithful representations
into PSL2R. In particular, Anosov representations define open subsets of the
character variety consisting entirely of discrete-faithful representations with many
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nice geometric and dynamical properties, see [17, 11, 15, 9]. A notable difference
with T (S) is that these open sets are not necessarily closed. One way to construct
Anosov representations is to deform T (S) into character varieties of higher rank
Lie groups. Such deformations arise from nilpotent elements of Lie algebras.

Let G be a complex simple Lie group with Lie algebra g. An element e ∈ g is
nilpotent if ade : g → g is a nilpotent endomorphism. The Lie group G acts on
the set of nilpotents with finitely many orbits. Moreover, there is a unique open
and dense orbit; such nilpotent elements are called principal. When G = SLnC,
this is a consequence of the Jordan decomposition theorem.

The Jacobson-Morozov theorem defines a bijection between conjugacy classes
of nonzero nilpotents and conjugacy classes of sl2C subalgebras of g. Namely, a
nonzero nilpotent e ∈ g can be completed to a triple {f, h, e} satisfying

[e, f ] = h , [h, e] = 2e and [h, f ] = −2f .

Thus, associated to e are embeddings

ιe : sl2C → g and ιe : sl2R → gR,

for some (not necessarily unique) real form gR ⊂ g. On the Lie group level there
are maps ιe : SL2C → G and ιe : SL2R → GR. Finally, post composing represen-
tations in T (S) with ιe defines a map

ιe : T (S) → X (S,GR),

where we lift representations in T (S) to SL2R if ιe(SL2R) ∼= SL2R.
For all nonzero nilpotents, the representations in ιe(T (S)) are Anosov. Thus, by

deforming, there is an open neighborhood of ιe(T (S)) in X (S,GR) (and in X (S,G))
of Anosov representations. However, for most nilpotents e, the representations in
ιe(T (S)) can be deformed in X (S,GR) to compact representations. In particular,
this open set of Anosov representations is not closed. However, this is not always
the case. When e ∈ g is a principal nilpotent, the real form gR is the split real
form [16], for example the split real form of slnC is slnR. For a principal nilpotent
e and GR < G the split real form, Hitchin showed that the representations in the
connected components Hit(GR) ⊂ X (S,GR) containing ιe(T (S)) have many nice
properties [14]. In particular, Hit(GR) does not contain compact representations.

The representations in Hit(GR) are now called Hitchin representations. To
prove his results, Hitchin exploited the the nonabelian Hodge correspondence
which defines a homeomorphism between the character variety X (S,GR) and a
moduli space of holomorphic objects on a Riemann surface called Higgs bundles.
This correspondence is combination of works of Hitchin [13], Simpson [21], Don-
aldson [8] and Corlette [7]. The moduli space of Higgs bundles has more structure
than the character variety, and this structure provides powerful tools to study the
topology of the moduli space. Two important tools in Hitchin’s work [14] are the
Hitchin fibration and the properness of a certain Morse function.

Unfortunately, it is very difficult to translate most geometric properties of rep-
resentations into a language adapted to Higgs bundles. As a result, the use of
Higgs bundles in [14] provided little information about the geometry of Hitchin
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representations. In fact, Labourie developed the notion of Anosov representations
in [17] exactly to understand the geometry of Hitchin representations. In par-
ticular, he proved that every Hitchin representation is Anosov. Thus, like T (S),
Hit(GR) ⊂ X (S,GR) is an open and closed set consisting entirely of discrete-
faithful representations. As a result, Hit(GR) is now called a higher Teichmüller
space. Other known examples of higher Teichmüller spaces arise from so called
maximal representations into Hermitian Lie groups of tube type [4].

Recently, Guichard-Labourie-Wienhard [10] have developed a refinement of
the Anosov condition which aims to characterize all higher Teichmüller spaces.
Roughly, a parabolic subgroup PΘ < GR of a real Lie group GR has a Θ-positive
structure if triples of pairwise disjoint transverse points in GR/PΘ admit a cyclic
order. For such pairs (GR, PΘ), one defines a set of Θ-positive Anosov representa-
tions. This set is open and conjectured to also be closed (see [12]).

The theorems below prove the analogue of Hitchin’s results about Hit(GR) for
what should be all higher Teichmüller spaces. They will appear in [3]. The proofs
of these results also use Higgs bundles, and the main new idea is the notion of
magical nilpotents. This is a Lie theoretic mechanism which is adapted to the
language of Higgs bundles. Using the properties of magical nilpotents we are
able to prove properties about the resulting Higgs bundles, then translate these
properties into statements about the character variety. Finally, we establish a
bijection between magical nilpotents and Θ-positive structures.

We briefly recall Hitchin’s method for finding components of the moduli space
M(GR) of Higgs bundle. There is a function f : M(GR) → R≥0 which is proper
[13]. Thus, f attains a local minimum on every connected component. Further-
more, the global minima of f have f = 0 and, via the nonabelian Hodge correspon-
dence, are in bijection with compact representations. Thus, if there are connected
components of the character variety X (S,GR) with no compact representations, f
must have additional local minima which are nonzero.

Magical nilpotents are a special class of nilpotents in a complex simple Lie group
g. We will not give the technical definition here, but a magical nilpotent defines
a canonical real form gR and various decompositions of the complex Lie algebra.
Using this decomposition data, we construct nonzero local minimum of the above
function f and build connected components of the moduli space of Higgs bundles.

Theorem 1. Let G be a complex simple Lie group with Lie algebra g and e ∈ g be
a magical nilpotent with canonical real form GR < G. Let S be a closed orientable
surface of genus g ≥ 2 and X (S,GR) be the GR character variety. Then, there
exists a nonempty open and closed subset He(S,G

R) ⊂ X (S,GR) which contains
ιe(T (S)) ⊂ He(X,G

R) and does not contain compact representations. Moreover,
the centralizer of a representation ρ ∈ He(S,G

R) is compact thus, there is no
proper parabolic subgroup P < GR such that ρ : π1S → P → GR.

Magical nilpotents can be equivalently defined for real Lie algebras. The fol-
lowing theorem relates the magical nilpotents and Θ-positivity. Recall that there
is a parabolic subgroup Pe associated to a nilpotent e.
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Theorem 2. Let GR be a real simple Lie group, e ∈ gR be a nilpotent and Pe < GR

the associated parabolic subgroup. Then e is a magical nilpotent if and only if
(GR, Pe) has a Θ-positive structure. In particular, GR must be split, hermitian of
tube type, locally isomorphic to SO(p, q) with 1 < p ≤ q, or a real form of F4, E6,
E7, E8 with reduced root system F4. Moreover, the sets He(S,G

R) each contain an
open set of positive Anosov representations.

Theorem 1 recovers Hitchin representations for split groups [14], maximal rep-
resentations for Hermitian Lie groups of tube type (see for example [2, 5]), and
the components described in [1] and [6] for SO(p, q).
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Log-concavity of volume

Eleonora Di Nezza

(joint work with Tamás Darvas, Chinh H. Lu. )

1. Introduction

Let (X,ω) be a compact Kähler manifold of complex dimension n and fix θ a
smooth closed (1, 1)-form which represents a big cohomology class. By definition
a function u : X → R∪{−∞} is called quasi-psh if it is locally written as u = ϕ+g,
where g is a smooth function and ϕ is a psh function. A function u is called θ-psh
on X if it is quasi-psh and θ+ddcu ≥ 0 in the sense of currents. We let PSH(X, θ)
denote the set of all integrable θ-psh functions on X . The bigness of θ then means
that there exists ψ ∈ PSH(X, θ − εω) for some ε > 0 small enough.

Given u, v ∈ PSH(X, θ) we say that u is more singular than v (and write u � v)
if there exists a constant C > 0 such that u ≤ v+C on X . We say that u has the
same singularities as v if u � v and v � u. And in this case we wirte [u] = [v],
where [u] denotes the singularity class of u.
A function u ∈ PSH(X, θ) has minimal singularities if it is less singular than any
other θ-psh functions. One can construct such potentials by taking the envelope:

Vθ(x) := sup{u(x) : u ∈ PSH(X, θ), u ≤ 0}.
It then follows that the upper smi-continuous regularization V ∗

θ is a θ-psh function
which is ≤ 0, hence contributes to its definition. Therefore V ∗

θ = Vθ.
Given θ1, ..., θp big forms and uj ∈ PSH(X, θj), the non-pluripolar product

(θ1 + ddcu1) ∧ ... ∧ (θp + ddcup) is defined in [BEGZ10], and the resulting (p, p)-
current is closed and positive. In particular, when p = n, we obtain the mixed
Monge-Ampère measure of u1, ..., un (with respect to θ1, ..., θn). When u1 = ... =
un = u and θ1 = ... = θn = θ this process gives the non-pluripolar Monge-
Ampère measure of u which will be denoted by θnu . By construction one always
has

∫

X θnu ≤
∫

X θnVθ
and the last term is called the volume Vol(θ) of θ (when θ

is the curvature of a big holomorphic line bundle, this volume is the same as the
volume defined by Boucksom [Bo02]).
For details about quasi-psh fucntion (and much more) we refer to [GZ17].

The main result we present is the following which confirms a conjecture by
[BEGZ10]:

Theorem 1. Log-concavity of volume is true. More precisely, given θ1, · · · , θn big
forms and u1, · · · , un quasi-psh functions such that uj is θj-psh j ≥ 1 we have
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∫

X

θ1u1
∧ . . . ∧ θnun

≥
(
∫

X

(θ1u1
)n
)1/n

· · ·
(
∫

X

(θnun
)n
)1/n

where θjuj
:= θj + ddcuj. In particular the map θu → log

∫

X θnu is concave.

As we will show in the following the proof of the above theorem deeply relies
on the resolution of Monge-Ampère equations with prescribed singularity:

Theorem 2. The Monge-Ampère equation in a given singularity class is uniquely
solvable.

2. Preliminaries

Through all the Section(s), θj, j ∈ {1, . . . , n} are smooth closed and real (1, 1)-
forms on X whose cohomology classes are big.

2.1. Relative finite energy class. We start with two results about the monon-
icity of the volume of (mixed) non-pluripolar Monge-Ampère measures:

Proposition 1. Let uj , vj ∈ PSH(X, θj) such that [uj ] = [vj ], j ∈ {1, . . . , n}.
Then

∫

X

θ1u1
∧ . . . ∧ θnun

=

∫

X

θ1v1 ∧ . . . ∧ θnvn .

The proof of the above result is basically due to [WN17].

Theorem 3. Let uj , vj ∈ PSH(X, θj) such that uj is less singular than vj for all
j ∈ {1, . . . , n}. Then

∫

X

θ1u1
∧ . . . ∧ θnun

≥
∫

X

θ1v1 ∧ . . . ∧ θnvn .

Now, fixing φ ∈ PSH(X, θ) one can consider only θ-psh functions that are more
singular than φ. Such potentials form the set PSH(X, θ, φ). Thanks to Theorem
3, the map [u] →

∫

X θnu is monotone increasing (but not strictly increasing!). It is
then natural to consider the set of φ-relative full mass potentials :

E(X, θ, φ) :=
{

u ∈ PSH(X, θ, φ) such that

∫

X

θnu =

∫

X

θnφ

}

.

2.2. Envelopes. Naturally, when v ∈ PSH(X, θ, φ) we only have
∫

X
θnv ≤

∫

X
θnφ .

As pointed out in [DDL2], when studying the potential theory of the above space,
the following well known envelope constructions will be of great help:

PSH(X, θ) ∋ ψ → Pθ(ψ, χ), Pθ[ψ](χ), Pθ[ψ] ∈ PSH(X, θ).

These were introduced by Ross and Witt Nyström [RWN14] in their construction
of geodesic rays, using slightly different notation. Given ψ, χ ∈ PSH(X, θ), the
starting point is the “rooftop envelope” Pθ(ψ, χ) := (sup{v ∈ PSH(X, θ), v ≤
min(ψ, χ)})∗. This allows to introduce

Pθ[ψ](χ) :=
(

lim
C→+∞

Pθ(ψ + C, χ)
)∗
.
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It is easy to see that Pθ[ψ](χ) only depends on the singularity type of ψ. When
χ = Vθ, we will simply write Pθ[ψ] := Pθ[ψ](Vθ) and refer to this potential as the
envelope of the singularity type [ψ]. Such envelopes, even if they are a priori less
singular than the function we start with, preserve the mass:

Proposition 2. If u ∈ PSH(X, θ) then
∫

X θnu =
∫

X θnPθ [u]
. More generally, given

uj ∈ PSH(X, θj) we have
∫

X

θ1u1
∧ . . . ∧ θnun

=

∫

X

θPθ1 [u1] ∧ · · · θPθn [un].

2.3. Model potentials. Potentials φ that satisfy φ = P [φ] are calledmodel poten-
tials, and play and important role in finite energy pluripotential theory. The con-
nection with a model type singularity [u] (defined in the introduction) is as follows.
In case

∫

X
θnu > 0, it was proved in [DDL2, Theorem 3.12] that Pθ[Pθ[u]] = Pθ[u].

Informally, this means that every model type singularity with non-vanishing mass
admits a model potential representative.

3. Monge-Ampère equations in a given singularity class

We focus our attention on the existence and uniqueness of solutions of the Monge-
Ampère equation

(1) θnu = µ, u ∈ E(X, θ, φ),
where µ is a given non-pluripolar Borel measure on X and φ is a θ-psh function
on X such that

P [φ] = φ and

∫

X

θnφ = µ(X) > 0.

The result we were able to prove states as follows:

Theorem 4. Let µ and φ as above. Then there exists a unique solution u ∈
E(X, θ, φ) of (1). Moreover, in the particular case when µ = fωn for some f ∈
Lp(X,ω), p > 1, u additionally satisfies [u] = [φ].

4. Proof of the Log-concavity of volume

In this Section, we give the proof of Theorem 1 as a direct consequence of solvability
of complex Monge-Ampère equations with prescribed singularity type.

Proof. We can assume that all the masses are non-zero, otherwise the right-hand
side of the inequality to be proved is zero.
After rescaling, we can assume that

∫

X
ωn =

∫

X
(θjuj

)n = 1, j ∈ {1, . . . , n}. Set

φj := Pθj [uj ] and observe that it is a model potential (see Section 2.3).
For each j = 1, ..., n Theorem 2 ensures existence of ϕj ∈ E(X, θj , φj) such that

(

θjϕj

)n
= ωn and [ϕj ] = [φj ]. A combination of Propositions 1 and 2 then gives
∫

X

θ1ϕ1
∧ ... ∧ θnϕn

=

∫

X

θ1Pθ1
[u1]

∧ ... ∧ θnPθn [un]
=

∫

X

θ1u1
∧ ... ∧ θnun

.

Finally, an application of [BEGZ10, Proposition 1.11] gives that θ1ϕ1
∧ . . .∧ θnϕn

≥
ωn. The conclusion follows after we integrate this last estimate. �
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Mirzakhani’s Curve Counting

Viveka Erlandsson

(joint work with Juan Souto)

Let S be a closed, orientable surface of genus g ≥ 2 and Map(S) its mapping
class group. By a curve γ on S we mean a free homotopy class of an immersed,
essential, closed curve and by a multi-curve a formal finite sum

∑n
i=1 aiγi where

ai ∈ Z≥0 and γi a curve. We say two multi-curves are of the same type if they
lie in the same mapping class group orbit. Putting a hyperbolic structure on S,
Mirzakhani [5, 6] studied the growth of the number of curves of a given type of
length bounded by L. She showed that this number is asymptotic to a constant
times L6g−6. More precisely:

Theorem 1 (Mirzakhani [5, 6]). Let X be a hyperbolic structure on S and γ0 a
multi-curve on S. Then

lim
L→∞

#{γ of type γ0 | ℓX(γ) ≤ L}
L6g−6

=
cγ0

mg
B(X)

where B(X) = mTh({λ ∈ ML(S) | ℓX(λ) ≤ 1}) is the Thurston measure of the
set of measured laminations of X-length at most 1, mg =

∫

B(X) is the Weil-
Petersson integral of B(X) over the moduli space, and cγ0

is a positive rational
number depending only on γ0.

Mirzakhani proved the above theorem first in the case when γ0 is simple in [5]
and later, using different methods, for a general curve in [6]. Here we give a new,
unified proof of the theorem in both cases using a very different approach from
that of Mirzakhani.

The main tool for the new proof is the space of geodesic currents C(S) intro-
duced by Bonahon [1, 2], consisting of π1(S)-invariant Radon measure on the space
of geodesics in the universal cover of S and equipped with the weak∗-topology. The
set of all curves on S can be naturally identified with a subset of C(S) and, by
allowing for positive weights, is in fact dense in this space. Moreover, Bonahon
proved that the geometric intersection pairing of curves extends to a continuous,
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bi-linear, Map(S)-invariant form ι : C(S) × C(S) → R≥0. The space of measured
laminations ML(S) can be identified with the subset {λ | ι(λ, λ) = 0} ⊂ C(S). Fi-
nally, given a hyperbolic structure X on S there is a unique current, the Liouville
current, associated to X such that ι(X, γ) = ℓX(γ) for every curve γ on S. Hence
we can also identify the Teichmüller space of S with a subset of C(S).

Now, fix a multi-curve γ0 and for each L > 0 consider the following measure on
C(S)

(1) mL
γ0

=
1

L6g−6

∑

γ

δ 1

L
γ

where the sum is taken over all γ of type γ0 and δx denotes the Dirac measure
centered at x. Let σ be any filling current (one which intersects every other current
positively) and consider b(σ) = {λ ∈ C(S) | ι(σ, γ) ≤ 1}, i.e. the unit ball in C(S)
with respect to “σ-length”. Then

mL
γ0
(b(σ)) =

#{γ of type γ0 | ι(γ, σ) ≤ L}
L6g−6

.

Hence, finding the asymptotic growth of the number of curves of type γ0 boils
down to studying the asymptotics of the family of measures (mL

γ0
)L. We prove

that these measures converge as L→ ∞:

Theorem 2. Let γ0 be a multi-curve on S. Then

lim
L→∞

mL
γ0

=
cγ0

κ
mTh.

Here cγ0
is the same constant as in Theorem 1 and

κ =
∑

α∈MLZ(S)/Map(S)

mTh({λ | ι(α, λ) ≤ 1}/ Stab(α))

where MLZ(S) stands for the set of all simple multicurves.
As a consequence it follows that, for any filling multi-curve σ (in particular for

a hyperbolic structure X) we have

(2) lim
L→∞

#{γ of type γ0 | ι(σ, γ) ≤ L}
L6g−6

=
cγ0

κ
B(σ)

where B(σ) = mTh({λ ∈ ML(S) | ι(λ, σ) ≤ 1}). Note that when σ = X this gives
Theorem 1. In fact, ι(σ, ·) in (2) can be replaced with any notion of length on
curves which extends to a continuous and homogeneous function on C(S).
There are two main ingredients in the proof of Theorem 2:

(I) A previous result by the authors showing that the family of measures (1)
is precompact and any accumulation point is a positive multiple of the
Thurston measure (see [3, Proposition 4.1]).

(II) A new result giving an effective way to estimate the Thurston measure
using a finite number of types of simple multi-curves (see [4, Proposition
3.2]).
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Combining these results one can compute the multiple of the Thurston measure
for each accumulation point. As it turns out, this constant is the same for every
accumulation point, and hence there is only one and the measures converge.
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Rigidity of certain Einstein 4-manifolds

Joel Fine

(joint work with Kirill Krasnov, Michael Singer)

My talk describes joint work with Kirill Krasnov (University of Nottingham) and
Michael Singer (University College London). We are interested in the Einstein
equation for a Riemannian manifold (M, g):

Ric(g) = Λg, Λ ∈ R

When considered modulo diffeomorphisms, this is a non-linear elliptic PDE for g.
The linearisation (again modulo diffeomorphisms) is a Laplace-type operator. In
particular it has index zero. This means naively that one might expect the moduli
space of Einstein metrics on M with Einstein constant Λ to be zero dimensional.
Our work gives a curvature condition on an Einstein 4-manifold which ensures
that this actually happens.

It is perhaps worth noting that this naive expectation is often false! The moduli
space of Einstein metrics on a surface of genus g > 1 has dimension 6g − 6.
More generally Kähler–Einstein metrics typically have moduli, corresponding to
the complex moduli of the underlying manifold. There is, however, a theorem due
to Koiso which guarantees that for negatively curved manifolds of dimension n ≥ 3
the moduli space is zero dimensional:

Theorem 1 (Koiso’s Local Rigidity Theorem (1978)). Let (Mn, g) be a compact
orientable Einstein metric with negative curvature (i.e. all sectional curvatures are
negative), where n ≥ 3. Then g is an isolated point in the moduli space of Einstein
metrics. In other words, if gt is a path of Einstein metrics on M with g0 = g then
there exists a path ft of diffeomorphisms of M with ft = Id and f∗

t gt = g.
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Our main result is a 4-dimensional “chiral” generalisation of Koiso’s Theorem.
To explain it, first recall the additional decomposition of the curvature tensor
in 4-dimensions. On an oriented Riemannian 4-manifold (M4, g) the Hodge star
decomposes the 2-forms Λ2 = Λ+ ⊕Λ− into ±1 eigenspaces. This means that the
curvature splits as a 2-by-2 block:

Rm =

(

R++ R−+

R+− R−−

)

Here R++ : Λ+ → Λ+ is self-adjoint and similarly for R−− whilst R−+ : Λ− → Λ+

and R+− = R∗
−+. One can identify R−+ with the trace free Ricci curvature and

so for an Einstein metric the curvature is “diagonal”: Rm = R++ ⊕R−−.
An alternative way to think of this decomposition is to consider the Levi-Civita

connection on Λ+. The curvature is a 2-form with values in so(Λ+) which is
isomorphic to Λ+ itself (via the cross product). One can check that the curvature
of Λ+ is R++⊕R−− ∈ (Λ+⊕Λ−)⊗Λ+. In particular, g is Einstein precisely when
the Levi-Civita connection on Λ+ is a self-dual instanton.

We can now formulate negative curvature in this notation. Write λ+ for the
maximal eigenvalue of R++ and λ− for the maximal eigenvalue of R−−. (These
are continuous functions on M .) One can check that asking for an Einstein metric
to have negative sectional curvatures is equivalent to λ+ + λ− < 0. In particular
at least one of R++ or R−− is negative definite.

Theorem 2 (F.–Krasnov–Singer). Let (M4, g) be a compact oriented Einstein 4-
manifold and suppose that either R++ or R−− is negative definite. Then g is an
isolated point in the moduli space of Einstein metrics.

It suffices to prove the result for R++ since switching orientation exchanges R++

and R−−. It is important to note that the inequality R++ < 0 is very different
from negative curvature. For example there are complete Einstein 4-manifolds
with R++ < 0 and π2 6= 0 (D. Calderbank and M. Singer, Einstein metrics and
complex singularities, Invent. math. 156:2 405–433 (2004)).

The proof of Koiso’s Local Rigidity Theorem uses a clever Weitzenböck argu-
ment to show that the gauge-fixed linearised Einstein equations are actually a
positive operator. The Weitzenböck remainder is positive because the sectional
curvatures are all negative. Our proof is very different. It relies on an alternative
formulation of Einstein’s equations, which works only in 4D, due to Plebanski in
1977. Even if you’re not so interested in our Theorem, which is a small improve-
ment on a result which is over 40 years old, then you should still have time for
Plebanski’s work, which despite being even older than Koiso’s Theorem is seem-
ingly little known or exploited in mathematics.

Plebanski gave a variational formulation of Einstein 4-manifolds, as critical
points of a functional now called the Plebanski action. What’s truly ingenious
about the action is that it is not at first sight an action on the space of metrics.
Under certain conditions, it becomes an action on the space of connections on an
auxilliary SO(3)-bundle E which makes it look a little like gauge theory.
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One of the consequences of this is that it avoids one of the pitfalls of the
Einstein–Hilbert action. The Einstein–Hilbert action has Einstein metrics as crit-
ical points but they are saddles at which the Hessian has infinitely many positive
and negative eigenvalues. The Plebanski action (when converted to its “pure con-
nection” form) has elliptic Hessian (modulo gauge), with only a finite dimensional
space of negative eigenvalues. The key to proving our rigidity result is to show
that when R++ the Hessian is actually positive definite modulo gauge.

The Plebanski action is defined as follows. Let E → M be an SO(3) bundle
over a compact oriented 4-manifold. Let A be an SO(3)-connection in E, Σ a
section of Λ2 ⊗ so(E) and Ψ a section of S2

0E, the bundle of trace-free symmetric
endomorphisms of E. Set

S(A,Σ,Ψ) =

∫
[

Tr(FA ∧ Σ)− 1

2
Tr

((

Ψ+
Λ

3

)

Σ ∧ Σ

)]

Varying with respect to Ψ, one sees that at a critical point of S, the symmetric
matrix of 4-forms Σ ∧ Σ is a multiple of the identity. This implies that there is
a unique metric on M for which Σ self-dual with Σ: so(3)∗ → Λ+ an isometry.
Varying with respect to Σ one sees that FA = (Ψ+ Λ/3)Σ and so A is a self-dual
instanton. Finally varying with respect to A one sees that dAΣ = 0. This means
that if we use Σ: so(E)∗ → Λ+ to push A forward from a connection on so(E)∗ to
a metric connection on Λ+ it agrees with the Levi-Civita connection. As we said
above, asking that the Levi-Civita connection on Λ+ be a self-dual instanton is
equivalent to the metric being Einstein. Notice that Ψ + Λ/3 becomes identified
with R++. In particular, Tr(R++) = Λ and this means Λ is the Einstein constant.

We now come to an important observation due to Krasnov (K. Krasnov. Pure
Connection Action Principle for General Relativity. Phys. Rev. Lett. 106:25, p.
251103 (2011)). When Ψ + Λ/3 is invertible, we can recover Σ from A via Σ =
(Ψ + Λ/3)−1FA. This means that we can eliminate Σ from the story. Similarly,
Ψ is determined by the requirement that Σ ∧ Σ ∼ Id. This leaves A as the only
variable. This “pure connection” formalism captures all Einstein metrics for which
R++ is definite.

It is in this setting that the Hessian of S(A) becomes elliptic modulo gauge.
Moreover a careful computation combined with a judicious choice of gauge fixing
shows that when R++ is negative definite the Hessian is strictly positive modulo
gauge. From here the local rigidity theorem follows from a slice theorem for the
gauge action.

Mass, Kähler Manifolds, and Symplectic Geometry

Claude LeBrun

Let (M, g) be a complete, non-compact, connected Riemannian n-manifold, where
n ≥ 3. We say that (M, g) is asymptotically Euclidean (or AE ) if there is a
compact subset K ⊂ M such that M − K consists of finitely many components,
each of which is diffeomorphic to the complement of a closed ball Dn ⊂ Rn in such
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a manner that g becomes the standard Euclidean metric plus terms that fall off
“sufficiently quickly” at infinity. More generally, (M, g) is said to be asymptotically
locally Euclidean (or ALE ) if the complement of some compact set K consists of
finitely many components, each of which is diffeomorphic to (Rn−Dn)/Γj for some
finite subgroup Γj ⊂ O(n), in such a way that the metric g again differs from the
background Euclidean metric by terms that fall off “sufficiently quickly” at infinity.
The components ofM−K are called the ends ofM , and, because we have assumed
that n ≥ 3, the Γj are just the fundamental groups of the corresponding ends.

However, to turn this rough idea into a genuine mathematical definition, we
still need to precisely explain what we mean by saying that g falls off “sufficiently
quickly” to the Euclidean metric in the given asymptotic coordinates. Here, the
literature offers only tenuous guidance as to how to proceed, because too many
authors have tweaked the definition in order to accommodate the use of their
specific techniques. However, the weakest standard fall-off hypotheses that suffice
to prove compelling results are the ones introduced by Chruściel [3], who just
assumed that

(i) the metric g is of class C2, with scalar curvature s in L1; and
(ii) in some asymptotic chart at each end of Mn, and for some ε > 0, the

components of the metric and their first partial derivatives satisfy

gjk = δjk +O(|x|1− n
2
−ε), gjk,ℓ = O(|x|− n

2
−ε).

With these very weak hypotheses, Chruściel proved that the mass

m(M, g) := lim
̺→∞

Γ(n2 )

4(n− 1)πn/2

∫

S̺/Γi

[gkℓ,k − gkk,ℓ]n
ℓdaE

of an ALE manifold (M, g) at a given end is both well-defined and invariant under
a large class of changes of asymptotic coordinate system. Here, commas indicate
partial derivatives in the given asymptotic coordinates, summation over repeated
indices is understood, S̺ is the Euclidean coordinate sphere of radius ̺, Γi is the
fundamental group of the relevant end, Γ is the Euler Gamma function, daE is the
(n− 1)-dimensional volume form induced on this sphere by the Euclidean metric,
and ~n is the outward-pointing Euclidean unit normal vector.

The above notion of mass originated in gravitational physics, not in geometry,
and its geometrical meaning unfortunately remains rather enigmatic. However, in
the special case where (M, g) is a Kähler manifold of real dimension n = 2m, my
earlier work with Hajo Hein [5] deciphered the meaning of the mass m(M, g) by
showing that, up to a constant depending only on the dimension, it actually equals
an explicit topological term plus the integral of the scalar curvature. However,
while our proofs only required Chruściel fall-off in complex dimension ≥ 3, to
make our proofs work in complex dimension 2 we unfortunately needed to either
assume that ε > 1

2 in (ii), or else to replace (ii) with a stronger, Bartnik-type [1]
fall-off hypothesis like

gjk − δjk ∈ C2,α
−1−ε, ε > 0,
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in order to obtain our results in the special case of complex dimension m = 2.
Fortunately, however, I have more recently shown [8] that, in fact,

Chruściel fall-off suffices to imply all the
main results of [5], even in real dimension four.

This was accomplished by providing new proofs in real dimension four that, in
contrast to our previous approach, primarily depend on results in symplectic ge-
ometry. In particular, Chruściel fall-off (i)–(ii) suffices to imply all the following
key results from [5], even in complex dimension m = 2:

Lemma. Any ALE Kähler manifold has only one end.

This seemingly innocuous assertion is a corner-stone of what follows, because it
gives the mass of an ALE Kähler manifold an unambiguous meaning — no choice
of an end is involved. This paves the way for the key mass formula, in conjunction
with another topological fact that we will discuss next.

If M is a smooth manifold, recall that one defines the compactly-supported
deRham cohomology Hk

c (M) as the compactly-supported closed k-forms modulo
exterior derivatives of compactly-supported (k− 1)-forms. There is thus a natural
map H2

c (M) → H2(M) induced by the inclusion of compactly-supported forms
into all differential forms; and for any ALE manifold of real dimension n ≥ 4, this
map can be shown to actually be an isomorphism. This entitles us to define

♣ : H2(M) → H2
c (M)

to be the inverse of this natural isomorphism.

Theorem C. Let (M, g, J) be an ALE Kähler manifold of complex dimension
m, where the metric is merely assumed to have Chruściel fall-off (i)–(ii) in some
real asymptotic coordinate system. Then the mass of (M, g, J) is given by

m(M, g) = −〈♣(c1), [ω]
m−1〉

(2m− 1)πm−1
+

(m− 1)!

4(2m− 1)πm

∫

M

sgdµg

where sg and dµg are respectively the scalar curvature and volume form of g, c1
is the first Chern class of (M,J), [ω] is the Kähler class, and 〈 , 〉 is the duality
pairing between H2

c (M) and H2m−2(M).

While the above mass formula first appears in my paper with Hein [5], the
new result is that this assertion holds even if one only assumes Chruściel metric
fall-off, no matter what the dimension. Theorems A and B of [5] are immediate
corollaries of Theorem C concerning the scalar-flat case; however, the ellipticity
of the equation s = 0 for a Kähler metric actually implies that an ALE scalar-
flat Kähler metric have much faster fall-off than Chruściel, so the methods under
discussion do not lead to meaningful improvements of either Theorem A or B.

On the other hand, these new methods [8] do lead to a genuine improvement of
another key result from [5]:
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Theorem E (Penrose Inequality for Kähler Manifolds). Let (M2m, g, J) be an AE
Kähler manifold with scalar curvature s ≥ 0, where g is merely assumed to satisfy
the Chruściel fall-off conditions. Then (M,J) carries a numerically canonical
divisor K =

∑

njDj, where the Dj are compact complex hypersurfaces, the nj

are positive integers, and where
⋃

j Dj 6= ∅ unless M is diffeomorphic to R2m.
Consequently,

m(M, g) ≥ (m− 1)!

(2m− 1)πm−1

∑

j

njVol (Dj)

with equality iff the Kähler manifold (M, g, J) is scalar-flat.

Thus, in the Kähler context, volumes of certain real-codimension-two minimal
submanifolds provide a lower bound for the mass, in a manner analogous to the
usual Penrose inequality [2, 6, 13], involving areas of minimal real hypersurfaces.
Here it must be emphasized that this result only concerns AE manifolds, and not
to the more general ALE spaces. This is perhaps best clarified by pointing out a
direct consequence of Theorem E:

Theorem D (Positive Mass Theorem for Kähler Manifolds). Any AE Kähler
manifold with s ≥ 0 has m(M, g) ≥ 0, with equality iff (M, g) is Euclidean space.

Without the Kähler condition, the positive mass theorem for AE Riemannian
manifolds is actually well-established in the low-dimensional [14] and spin [9, 17]
settings, and a proof in full generality has been announced in a recent preprint
[15]. However, despite conjectures [4] to the contrary, the corresponding assertion
fails for general ALE manifolds. Indeed, the mass is negative [7] for many ALE
Kähler manifolds with s ≡ 0, a fact that is now best understood as a systematic
consequence [5, Corollary 5.8] of the mass formula of Theorem C.

Many of the analytic subtleties encountered in the 4-dimensional case are subtly
intertwined with the fact that the complex structure of an ALE Kähler surface
need not be standard at infinity. However, the symplectic structure at infinity of
such a manifold is always standard, even when one merely assumes Chruściel met-
ric fall-off. This allows one to construct a compact symplectic 4-manifold M̂ from
(M,ω) by truncating each end at some large radius, and then gluing in standard
plugs. However, this construction introduces an immersed symplectic 2-sphere
with positive normal bundle into each capped-off asymptotic region, and so allows
one to show that M can only have one end. Indeed, general results of McDuff
[11, 12] regarding compact symplectic 4-manifolds show that the existence a sym-

plectic 2-sphere with positive normal bundle implies that b+(M̂) = 1, whereas
the existence of a surface of positive self-intersection in each capped-off end forces
b+(M̂) to be at least as large as the number of ends of M . Theorem C is then
deduced by combining this observation with arguments previously developed in
[5]. The 4-dimensional case of Theorem E is then proved by using ideas of Taubes
[10, 16] to first construct the divisor K as a pseudo-holomorphic curve relative to

any compatible almost-complex structure on M̂ , but then applying this more gen-
eral fact to an almost-complex structure carefully chosen so that the corresponding
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almost-Kähler metric on the truncated version of the M admits a distance-non-
increasing retraction map onto an “interior” region where the almost-complex
structure coincides with the original integrable complex structure J . A calibrated
geometry argument then shows that the constructed pseudo-holomorphic cycle K
must actually be contained within the interior region, and so is actually a union
of genuine holomorphic curves in the ALE Kähler manifold (M, g, J).
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Ancient solutions in Lagrangian mean curvature flow

Jason D. Lotay

(joint work with Ben Lambert and Felix Schulze)

Mean curvature flow is the negative gradient flow of the volume functional on
submanifolds, and its critical points are minimal submanifolds. An important
well-known fact is that if one works in a Kähler–Einstein manifold M , then mean
curvature flow preserves the class of Lagrangian submanifolds; i.e. (real) subman-
ifolds L of half the dimension of M on which the Kähler form vanishes.

In the particular case of Calabi–Yau manifolds, which are Ricci-flat Kähler
manifolds, (connected) minimal Lagrangians are called special Lagrangian and
have the property of being volume-minimizing, since they are characterised as
the Lagrangians whose Lagrangian angle is constant. Hence, Lagrangian mean
curvature flow in Calabi–Yau manifolds has the attractive feature of only having
absolute minima as its critical points. Moreover, if one starts with a zero Maslov
Lagrangian (one for which the Lagrangian angle is single-valued), then Lagrangian
mean curvature flow is a Hamiltonian isotopy, and so potentially gives a tool for
understanding the following challenging problem.

Question. In a Calabi–Yau manifold, which Hamiltonian isotopy classes of com-
pact zero Maslov Lagrangians admit a special Lagrangian representative?

A key point when studying any geometric flow is the possibility of singularities.
Singularities of (Lagrangian) mean curvature flow are modelled on ancient solu-
tions to the flow in Euclidean space: i.e. solutions to the flow which are defined for
all negative times. It is therefore important to understand which ancient solutions
can arise in order to understand singularity formation, possible conditions under
which certain singularities can be ruled out, and potential surgeries to overcome
singularities.

Understanding singularities in Lagrangian mean curvature flow is particularly
important since pioneering work of Neves [4] shows that singularities of the flow
are, in a sense, unavoidable. Specifically, for any compact Lagrangian L of dimen-
sion at least 2 in a Calabi–Yau manifold M , there is another compact Lagrangian
L′ in M , which is Hamiltonian isotopic and C0-close to L, such that Lagrangian
mean curvature flow starting at L′ develops a finite time singularity. However, it
is important to notice that the L′ constructed is never almost calibrated; that is,
the Lagrangian angle θ of L′ cannot satisfy cos θ ≥ ǫ for some ǫ > 0.

The almost calibrated condition is natural since it implies the zero Maslov con-
dition, it is preserved by Lagrangian mean curvature flow, and one can always
assume one is trying to flow to a special Lagrangian with zero Lagrangian angle.
Moreover, it arises in the well-known Thomas–Yau Conjecture [6], which asserts
that long-time existence and convergence of almost calibrated Lagrangian mean
curvature flow is equivalent to a “stability” condition on the initial Lagrangian
L, defined in terms of the Lagrangian angle and possible ways of decomposing
L as a connect sum of almost calibrated Lagrangians. This stability condition
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is motivated by Mirror Symmetry for Calabi–Yau manifolds, which should re-
late special Lagrangians to Hermitian–Yang–Mills connections. In this way, the
Thomas–Yau Conjecture can be interpreted as an analogue of the well-known
relationship between stable bundles and long-time existence and convergence of
Hermitian–Yang–Mills flow.

On the back of these considerations, we were motivated to classify ancient
solutions for almost calibrated Lagrangian mean curvature flow in Cn. The most
obvious ancient solutions are self-shrinkers (solutions which simply shrink under
dilations along the flow), but smooth zero Maslov self-shrinkers which could arise as
singularity models do not exist. As a consequence, there are no Type I singularities
for zero Maslov Lagrangian mean curvature flow, so one must look at Type II
blow-ups at a singularity: these are smooth ancient (in fact, eternal) solutions
to Lagrangian mean curvature flow in Cn which give a finer description of the
structure of the singularity.

The Type II blow-up a priori has no particular structure, other than solving the
flow, and there are many possible examples, the simplest other than self-shrinkers
being special Lagrangians and translators: solutions which are either stationary
or just translate under the flow, respectively. However, we showed in [2], following
work in [5], that any blow-down of a zero Maslov ancient solution to Lagrangian
mean curvature flow is a finite union of special Lagrangian cones: informally,
a blow-down of an ancient solution describes the ancient solution’s asymptotic
behaviour at spatial infinity as time goes to negative infinity. This is analogous to
the structure theory of Neves [3], who showed that any tangent flow at a finite-
time singularity of zero Maslov Lagrangian mean curvature flow is a finite union of
special Lagrangian cones. Of course, one has the following natural, and potentially
related, open questions.

Question. When can one relate tangent flows to blow-downs of Type II blow-ups
in zero Maslov Lagrangian mean curvature flow?

Question. When are tangent flows or blow-downs of Type II blow-ups in zero
Maslov Lagrangian mean curvature flow unique?

The situation in C2 is particularly amenable to study since special Lagrangian
cones are necessarily planes. Therefore the simplest examples where one can have
a non-trivial Type II blow-up are when one of its blow-downs is a pair of special
Lagrangian planes, possibly with multiplicity. For our main classification result,
we observe (by work in [2]) that any Type II blow-up for zero Maslov Lagrangian
mean curvature flow is necessarily exact in Cn: that is, any primitive for the
standard Kähler form on Cn must be exact when restricted to the blow-up. This is
useful because it is known [1] that there is a unique (up to scale) exact, embedded,
special Lagrangian asymptotic to a pair of transverse special Lagrangian planes
with the same Lagrangian angle, known as a Lawlor neck. Another useful fact in
C2 is that one can perform a hyperkähler rotation to identify special Lagrangians
with a given Lagrangian angle with complex curves.
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In our classification result, we will implicitly assume certain natural, mild prop-
erties for ancient solutions which must be satisfied by Type II blow-ups. In all
cases, we show that the ancient solutions are in fact stationary.

Theorem. Let Lt be an exact, almost calibrated, ancient solution to Lagrangian
mean curvature flow in C2 with a blow-down given by a pair of special Lagrangian
planes P+, P−.

(a) If P+ ∩ P− = {0} and P± have different Lagrangian angles, then Lt =
P+ ∪ P− for all t.

(b) If P+ ∩ P− = {0} and P± have the same Lagrangian angle, then either
Lt = P+ ∪ P− or Lt is a Lawlor neck for all t.

(c) If P+ = P− = P , so the blow-down is a plane P with multiplicity two,
then, for all t, either Lt = P or Lt is, after hyperkähler rotation, the graph
of z 7→ cz2 for z ∈ C, for some c ∈ C \ {0}.

Parts (a) and (b) extend to Cn for all n ≥ 2. However, part (c) is special to n = 2.
As a follow-up to this theorem, Wood [7] has given explicit examples where an
exact, almost calibrated, Lagrangian mean curvature flow in C2 develops a finite-
time singularity at the origin, the tangent flow at 0 is a pair of transverse special
Lagrangian planes with the same Lagrangian angle, and the Type II blow-up is a
Lawlor neck whose blow-down is the same pair of special Lagrangian planes.

There is clearly a missing case in the theorem, which is when the planes P+ and
P− intersect in a line. In that case, the planes cannot have the same Lagrangian
angle and so one does not expect the ancient solution to necessarily be stationary.
We therefore have a final open question.

Question. Can we classify the exact, almost calibrated, ancient solutions to La-
grangian mean curvature flow in C2 which have a blow-down given by a pair of
planes intersecting in a line?
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Construction of negatively curved complex submanifolds

Jean-Paul Mohsen

The Donaldson-Auroux asymptotic technics are a theory which has been used in
symplectic geometry. They use an analogy between symplectic geometry and com-
plex geometry. Donaldson noticed that they also provide new results in complex
projective geometry. In this talk, I give new examples of such complex results.

On moduli spaces of spherical surfaces with conical points

Gabriele Mondello

(joint work with Dmitri Panov)

Metrics of positive curvature (with conical singularities of prescribed angles 2πϑ1,
2πϑ2, . . . , 2πϑn) on a surface S behave quite differently than flat or hyperbolic
ones. In general, even if the obvious Gauss-Bonnet constraint

χ(S) +
∑

i(ϑi − 1) > 0

is satisfied, existence and uniqueness of spherical (i.e. K = 1) metrics with pre-
scribed angles at the conical singularities in a given conformal class is not granted.
More precisely, existence is known in the subcritical case (Troyanov 1991) and in
many supercritical cases (Bartolucci-De Marchis-Malchiodi 2011). On the other
hand, uniqueness is known for angles smaller than 2π (Luo-Tian 1992), which can
only occur in genus 0.

In this talk I report about my joint work [1]-[2] with Dmitri Panov (King’s
College of London) on a number of features of the moduli spaces MSphg,n(ϑ) of

spherical metrics on compact oriented surfaces of genus g with n conical singu-
larities x1, . . . , xn of prescribed angles 2π · (ϑ1, . . . , ϑn) and of the map Fg,n,ϑ :
MSphg,n(ϑ) → Mg,n that sends a spherical surface with conical points to the un-

derlying Riemann surface with marked points.
We assume χ(S)−n < 0 and the Gauss-Bonnet condition χ(S)+

∑

i(ϑi−1) > 0
in what follows. Here are some of the results I reported about.

Theorem A. If g > 0, then MSphg,n(ϑ) 6= ∅.
If g = 0, then

d1(ϑ− 1,Zn
o ) > 1 =⇒ MSph0,n(ϑ) 6= ∅

d1(ϑ− 1,Zn
o ) < 1 =⇒ MSph

0,n
(ϑ) = ∅

where 1 = (1, 1, . . . , 1), Zn
o = {η ∈ Zn | η1 + · · · + ηn odd} and d1(α,β) =

∑n
i=1 |αi − βi|.

Theorem B. Fix a positive integer m and take m1,m2,m3 ≥ m integers. For
ε1, . . . , εm > 0 small enough, and for ϑ = (m1 +

1
2 ,m2 +

1
2 ,m3 +

1
2 , ε1, . . . , εm),

the moduli space MSph
0,3+m

(ϑ) has at least 3m connected components. The same

holds for the image inside M0,3+m of the forgetful map F0,3+m,ϑ.
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Theorem H. Take ϑ =
(

1
2 ,

1
2 ,

3
2 , η

)

with η ∈
(

0, 1
2

)

. Then MSph0,4(ϑ)
∼= (0, π)c×

S1
φ and F0,4,ϑ is not holomorphic.

Let
NBϑ(g, n) := min

{∣

∣‖ϑI‖1 − ‖ϑIc‖1 + 2b− χ(S) + n | I ⊆ {1, 2, . . . , n} and b ∈ Z≥0

}

.

Theorem E. If NBϑ(g, n) > 0, then the forgetful map Fg,n,ϑ is proper.

Theorem E was also proven by Bartolucci-Tarantello (2002). The following result is
a quantitative version of it.

Theorem C. Assume that Ṡ = S \{x1, . . . , xn} is not a 3-punctured sphere and suppose
that NBϑ(g, n) ≥ ε ∈

(

0, 1
2

)

. Then

Extsys(Ṡ) ≥
2π‖ϑ‖1
log(1/ε)

=⇒ sys(S,x) ≥

(

ε

4π‖ϑ‖1

)−3χ(S)+2n

where sys(S,x) is 1
2
times the length of a shortest geodesic arc on S with ends in x =

{x1, . . . , xn} and Extsys(Ṡ) is the minimum of the extremal lengths of loops on Ṡ for the
underlying conformal structure.

Among the global properties, we discuss non-emptiness and we show that such moduli
spaces can have an arbitrarily large number of connected components. Furthermore,
we show that no spherical metric in a given conformal class exists if one angle is too
small. Such result relies on an explicit systole inequality which relates metric invariants
(systole) and conformal invariants (extremal systole) of spherical surfaces, and that can
be of independent interest.
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Ricci flow and diffeomorphism groups

Bruce Kleiner

(joint work with Richard Bamler)

The lecture discussed recent joint work with Richard Bamler, in which Ricci flow
through singularities was use to prove some conjectures about diffeomorphism
groups and moduli spaces of metrics. The main results are:

• (Generalized Smale Conjecture) If g0 is a metric of constant sectional
curvature ±1 on a compact connected 3-manifold M , then the isometry
group Isom(M, g0) is a deformation retract of the diffeomorphism group
Diff(M). This includes new proofs of the original Smale Conjecture (when
M = S3) and the GSC for hyperbolic manifolds.

• If M is a non-Haken 3-manifold with a Nil metric gM , then the Weak
Smale Conjecture holds for M : the identity component Isom0(M, gM ) of

Isom(M, g0) is a deformation retract of the identity component Diff0(M).
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Together with the GSC, this completes the structure theory of diffeomor-
phism groups of prime 3-manifolds, after earlier work of Hatcher, Ivanov,
Gabai, Hong-Kalliongis-McCullough-Rubinstein, McCullough-Soma.

• If M is a spherical space form, then the space MetPSC(M) of metrics
of positive scalar curvature on M is contractible. This extends Marques
theorem that MetPSC(M) is connected.

On the regularity of Ricci flows coming out of metric spaces

Felix Schulze

(joint work with Alix Deruelle, Miles Simon)

In Ricci flow, the long-standing desire to be able to start the flow with an initial
manifold without any bounded curvature assumption is starting to be fulfilled,
thanks to recent advances by Hochard [3], Simon-Topping [4, 5], and Bamler-
Cabezas-Rivas-Wilking [1], amongst others. The work of Simon-Topping has led
to the resolution of the Anderson-Colding-Cheeger-Tian conjecture concerning the
topological structure of non-collapsed Ricci limit spaces in dimension 3.

Consider a sequence of pointed Riemannian manifolds (M3
i , gi, xi) with Ricci cur-

vature bounded from below by minus one and Vol(Bgi (xi, 1)) ≥ v0 > 0 such
that (M3

i , dgi , xi) → (X, d0, x0) in the Gromov-Hausdorff sense. In the proof of
[5], Simon-Topping consider a family of Ricci flows (M3

i , (gi(t))0≤t<Ti
starting at

gi(0) = gi and show that the flows satisfy the following uniform estimates

(1) Ti ≥ T (v0) > 0 ,

(2) |Rm(gi(t))| ≤ C(v0)
t for 0 < t < T (v0),

(3) Ric(gi(t)) ≥ −k(v0) for 0 < t < T (v0),

for some T (v0) > 0 and k(v0) ≥ 0. These estimates imply that the manifolds Mi

are locally diffeomorphic and that the distances behave well under Ricci flow, i.e.
locally

et−sds(x, y) ≥ dt(x, y) ≥ ds(x, y)− C(v0)
√
t− s

for all x, y ∈Mi =M and 0 < s < t < T (v0). Simon-Topping use these estimates
to show that there exists a Ricci flow (M, (g(t))0<t<T , starting form (X, d0) as
t ց 0 in the sense above, satisfying the estimates (1), (2) and (3). It also follows
that X is locally homeomorphic to M . But it is known that the distance d0 on
the limit space (X, d0) is not necessarily everywhere locally induced by a smooth
metric g0 on M . This suggest the following natural initial regularity question for
a Ricci flow (M, (g(t))0<t<T as above:

Question. Assume (X, d0) is smooth locally around a point p0 ∈ X , i.e. the
distance d0 is locally around p0 induced by a smooth metric g0 on a neighbourhood
U0 of p0. Does (U0, (g(t)) converge locally smoothly to (U, g0)?

We show that this is true under the above assumptions, see [2].
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Theorem (Deruelle-Schulze-Simon 2019). Let (M, (g(t))0<t<T be a Ricci flow,
such that

Ric(g(t)) ≥ −1 and |Rm(g(t))| ≤ c

t
for all t ∈ (0, 1), and let

(Bd0
(p0, R), d0) = lim

tց0
(Bg(t)(p0, R), dt) .

Assume (Bd0
(p0, R), d0) is smooth (in the above sense) around p0. Then there

exists a neighbourhood U0 of p0 such that gt → g0 as tց 0, where g0 is a smooth
Riemannian metric on U0 which locally induces d0 around p0.
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Constant mean curvature hypersurfaces in Minkowski space

Peter Smillie

(joint work with Francesco Bonsante, Andrea Seppi)

The first part of this talk is on a general existence and uniqueness result for entire
spacelike hypersurfaces with constant mean curvature (CMC) in n+1 dimensional
Minkowski space Rn,1. In the 1980s, Treibergs and Choi-Treibergs proposed to
study these surfaces in terms of their blowdowns, and proved existence results
for a large class of blowdown data [Tre82, CT90]. Other authors [Li95, GJS06]
studying constant negative Gaussian curvature hypersurfaces in Minkowski space
proved analogous existence results, but replaced the notion of blowdown with
something we call the null support function. Briefly, an entire spacelike surface
in Rn,1 is the graph of an entire 1-Lipschitz function on Rn, and the null support
function is the restriction of the Legendre transform of this function to the unit
sphere. It is a lower semicontinuous function on the sphere, valued in R ∪ {∞},
which describes the collection of null (i.e. coisotropic) affine planes in Rn+1 that
are asymptotic to the surfaces.

Our first result is a complete classification of entire CMC spacelike hypersurfaces
in terms of their null support function:
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Theorem 1. The null support function of an entire CMC spacelike hypersurface
is finite at at least two points. Conversely, every lower semicontinuous function
on the n − 1 sphere valued in R ∪ {∞} that is finite on at least two points is the
null support function of a unique entire spacelike hypersurface in Rn,1 with mean
curvature 1.

An exmple of Bonsante and Fillastre [BF17] shows that we can’t hope for such
a clean result for the classification of constant Gaussian curvature hypersurfaces
in dimension at least 3+1. This remains an interesting question! However, there
is a lot more you can say about this problem in R2,1, and this is the focus of the
second part of the talk.

In 2+1 dimensions, the classification of constant Gaussian curvature surfaces is
equally clean:

Theorem 2 ([BSS19]). The null support function of an entire spacelike hypersur-
face with constant negative Gaussian curvature in R2,1 is finite at at least three
points. Conversely, every lower semicontinuous function on the circle valued in
R ∪ {∞} that is finite on at least three points is the null support function of a
unique entire spacelike surface in R2,1 with Gaussian curvature equal to -1.

If we normalize the curvature to be equal to −1, then such surfaces are locally
isometric to the hyperbolic plane. Since they are graphs over R2, they are also sim-
ply connected. However, even though they are properly embedded, they need not
be complete (in particular, they need not be globally isometric to the hyperbolic
plane). Indeed, there are many functions on the circle for which the corresponding
surface is incomplete. For instance, we have

Theorem 3. Suppose s : S1 → R∪{∞} is the null support function of a constant
Gaussian curvature surface Σ. If there exists a direction θ ∈ S1 such that

lim inf
θ′→θ

s(θ′) > s(θ)

then Σ is incomplete.

Due to the presence of examples like this, we are not yet able to describe all
isometric embeddings of the hyperbolic plane into R2,1. However, we have the
following result in the other direction:

Theorem 4. Suppose s : S1 → R∪{∞} is the null support function of a constant
Gaussian curvature surface Σ. If for all θ ∈ S1, there exists a sequence θi → θ
and a large enough constant M such that for all i,

s(θi)− s(θ) < M |θi − θ|
then Σ is complete.

For instance, this theorem applies to a null support function which is finite on
a Cantor set, and Lipschitz on that set. At the moment we know of no complete
surface that does not satisfy this condition. Finally, I’ll describe a nice consequence
of the proof of this last theorem:
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Theorem 5. Every entire spacelike surface with constant Gaussian curvature in
R2,1 is intrinsically isometric to the interior of a simply connected surface with
geodesic boundary.
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On geometric properties of log Kähler-Einstein metrics.

Cristiano Spotti

(joint work with Martin de Borbon, Patricio Gallardo, Jesus Martinez Garcia)

We are interested in studying geometric properties of log Kähler-Einstein (KE)
metrics with conical singularities on pairs (X,D =

∑

(1−βi)Di) given by a smooth
complex manifold X and a mildly singular (klt) divisorD. Roughly speaking, such
metrics are smooth KE metrics on X \D, which are modeled on cones with angles
2πβi in the normal direction to smooth points of D. What should happen near
Sing(D) is more subtle (see later). Such metrics provide a way to interpolate be-
tween different complete geometries, and they are deeply related to moduli spaces
of algebraic varieties.

By pluripotential theory, it is known that weak KE metrics exist on any such
pairs provided that the natural topological constrain on the log first Chern class
are satisfied and K-stability holds in the log Fano case (even if this case has not
been proved in full generality yet.) However, these results do not give information
on the geometric behavior near the divisor D, and only for D smooth or normal
crossing the asymptotic of the metric to the models is known thanks to work of
Jeffres-Mazzeo-Rubinstein and Guenancia-Paun.

In [1], together with M. de Borbon, we showed:

Theorem 1. [1]. Weak Ricci flat metrics on log Calabi-Yau surfaces have con-
ical behavior near smooth points of D and they are polynomially asymptotic to
polyhedral Kähler cones near Sing(D), provided the singularities of the pair are
stable.
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For example, D can have a singularities modeled on the cusp x2 = y3 with cone
angle in the stable range β ∈ (16 ,

5
6 ). For bigger values of β we expect jumping

of tangent cone, as the theory developed in the non-conical setting by Donaldson-
Sun, and algebraically by Chi Li and others, suggests. These asymptotic results
suggest an optimal Miyaoka-Yau inequality in this setting. The proof of the the-
orem is based on the Yau’s original continuity path (in certain weighted spaces)
after having constructed a good background metric with control on the bisectional
curvature.

In [2] we have constructed, in particular, analogous of Kronheimer’s ALE spaces
with singularities along the exceptional sets.

Theorem 2. [2]. Let π : X → C2/Γ be the minimal resolution of any isolated
two dimensional quotient singularity. Then in every Kähler class there is a unique
ALE Ricci flat Kähler metric with cone singularities (with cone angles fixed by the
resolution) along the normal crossing exceptional set.

Finally in [3], together with P. Gallardo and J. Martinez Garcia, we have inves-
tigated the first examples of (compact) moduli spaces of log KE pairs in the Fano
situation. These results generalize previous ones in the absolute case by Odaka-
Spotti-Sun, and their proofs are based on a continuity method strategy combined
with the control of the normalized volume of singularities.

Theorem 3. [3]. For β >
√
3
2 the Gromov-Hausdorff compactification Mβ of the

moduli of log KE pairs (X, (1 − β)H) given by a cubic surface X and a smooth
hyperplane section H is identified with a natural explicit GIT quotient.

Similarly, for n = 2, 3 and β > β0 explicit, the existence of log KE metric on
singular pairs (Pn, (1−β)Hd), with Hd degree d > n+1 hypersurface is equivalent
to GIT stability for the standard action of SL(n+ 1) on Symd(Cn+1).

These last results rise the following question:

Question 1. Is it true that, for any K-polystable (KE Fano) variety X and for β
big enough, log K-polystability (existence of log KE metrics) for (X, (1−β)D) with
D corresponding to a plurianticanonical section is equivalent to the GIT stability
for the natural action of the reductive automorphism group Aut(X) on the space

of sections H0(K−l
X )?

For small β it is clear that the above is not true, as the case of quartic curves
in the projective plane with cone β = 1

2 shows.
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Conformal deformations of metric spaces

Stephan Stadler

(joint work with Alexander Lythchak)

Conformal changes are a basic tool in Riemannian geometry which allow to deform
a given metric in a controlled way. Geometric quantities of the resulting metric are
in principle computable in terms of a single function, the conformal factor. The
definition makes sense in a metric setting. We have two results in this direction.

(1) In spaces of curvature at most Λ (in the sense of Alexandrov), small open
balls carry complete metrics of curvature at most −Λ.

(2) If a metric space has dimension at most two and Ricci curvature bounded
below (in a syntactic sense), then it is an Alexandrov space.

This joint work with Alexander Lytchak.

Calabi-Yau metrics on Cn

Gábor Székelyhidi

Suppose that u : Rn → R is convex, and satisfies det(ujk) = 1, where ujk are
the components of the Hessian of u. The well known Jörgens-Calabi-Pogorelov
theorem then implies that the Hessian ujk is constant. A basic question going
back to Calabi is to study the complex analog of this problem, namely to classify
plurisubharmonic functions φ : Cn → R which satisfy the equation

(1) det(φjk̄) = 1.

Here φjk̄ = ∂zj ∂̄zkφ is the complex Hessian of φ. It is not difficult to find solutions
of this equation for which φjk̄ is not constant, and it is more natural to ask
for a geometric classification of the induced Kähler metrics with Kähler form
ω =

√
−1∂∂̄φ. The equation (1) then says that the volume form of ω equals

the Euclidean volume form. Since such an ω is a Calabi-Yau metric, i.e. a Ricci
flat Kähler metric, one could also more generally ask to classify Calabi-Yau metrics
on Cn. Some prior results are as follows.

• The Taub-NUT metric on C2 is non-flat, and has the same volume form
as the Euclidean metric (see LeBrun [6]).

• If ω on C2 is a complete Calabi-Yau metric with maximal volume growth,
i.e. volBω(0, r) > cr4 for all r and a fixed c > 0, then ω is flat (see
Tian [10]).

• If n > 2, then Cn admits complete Calabi-Yau metrics with maximal
volume growth that are not flat (see Li [7], Conlon-Rochon [3] and [8]).
These metrics have the same volume form as the Euclidean metric.

A specific example of the third type is a Calabi-Yau metric ω0 on Cn with
tangent cone C×A1 at infinity. Here

A1 = {x1 + . . .+ xn = 0} ⊂ Cn−1
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is the (n − 1)-dimensional A1-singularity, equipped with the Stenzel cone metric√
−1∂∂̄|x|2n−2

n−1 . Recall that the tangent cone at infinity is obtained as a pointed
Gromov-Hausdorff limit of the sequence (Cn, k−1ω0, 0) as k → ∞.

The main result of [9] is the following.

Theorem. If ω is a Calabi-Yau metric on Cn with tangent cone C×A1 at infinity,
then ω = aF ∗ω0, where a > 0 and F : Cn → Cn is a biholomorphism.

Let us remark that Conlon-Hein [2] classified all Calabi-Yau manifolds with certain
tangent cones at infinity, such as A1. In addition there are many related classifica-
tion results of geometric objects with prescribed asymptotics, for example minimal
hypersurfaces. Compared to these, the main new difficulty in our result is that
the tangent cone C × A1 has singular rays, and near these rays we have limited
control of the convergence of the metric ω to the tangent cone.

We now describe the main ingredients in the proof. The first goal is to show
that for large R > 0 there are biholomorphisms FR : Cn → Cn, numbers aR > 0,
and uR : Bω0

(0, R) → R such that

• aRF
∗
Rω = ω0 +

√
−1∂∂̄uR,

• supBω0
(0,R) |uR| ≤ ǫRR

2, with ǫR → 0 as R → ∞,

• the uR satisfy the Monge-Ampère equation

(2) (ω0 +
√
−1∂∂̄uR)

n = ωn
0 .

The construction of such biholomorphism relies on Donaldson-Sun’s theory [4] of
polynomial growth holomorphic functions on Calabi-Yau manifolds with maximal
volume growth. In our setting we can use their results to show that for large R,
Cn has an embedding Cn → Cn+1 as the hypersurface az + x21 + . . . + x2n = 0
for some a > 0, such that in addition on Bω(0, R) we have a Kähler potential φ

satisfying ω =
√
−1∂∂̄φ and φ ∼ |z|2 + |x|2n−2

n−1 . Applying the same results also to
ω0 we can find the required biholomorphisms.

Given this result, we need to study solutions of the Monge-Ampère equation (2).
Scaling down by a factor of R, this amounts to studying solutions u of the Monge-
Ampère equation on a unit ball that is close in the Gromov-Hausdorff sense to the
unit ball in the tangent cone C × A1, such that |u|L∞ is very small. The main
result is the following.

Proposition. There exist ǫ, λ > 0 with the following property. Suppose that
η = cω0 for c < ǫ, and u : Bη(0, 1) → R satisfies

• (η +
√
−1∂∂̄u)n = ηn,

• supBη(0,1) |u| < ǫ.

Then there exists β > 0, an automorphism g ∈ Aut(Cn) such that g(0) = g, and
u′ : Bη(0, 1) → R such that

• βg∗(η +
√
−1∂∂̄u) = η +

√
−1∂∂̄u′,

• supBη(0,λ) |u′| ≤ λ2 supBη(0,1) |u|,
• (η +

√
−1∂∂̄u′)n = ηn.
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The proof of this result relies on a dichotomy:

(i) Suppose that u concentrates near the singular set C× {0} in the tangent
cone, in the L∞ sense. In this case, we can use the maximum principle
with suitable sub- and supersolutions of the Monge-Ampère equation to
show that

sup
Bη(0,1/2)

|u| ≪ sup
Bη(0,1)

|u|.

A key point here is that while the geometry of η degenerates as ǫ → 0,
we can still find good Kähler potentials for η, which can be used to build
sub- and supersolutions.

(ii) If u does not concentrate near the singular set, then we can show that u is
close, in an L2-sense, to a harmonic function on the unit ball of the tangent
cone C×A1. Results of Conlon-Hein [1] and Hein-Sun [5] show that any
harmonic function on C×A1 of degree at most 2 is either pluriharmonic,
or corresponds to an automorphism of C×A1. Using this we can replace u
with an “equivalent” potential u′ which has faster than quadratic growth,
and this leads to the result. Note that not all automorphisms of the tangent
cone give rise to automorphisms of the hypersurface az+x21+ . . .+x

2
n = 0.

This is the source of the additional scaling factor β above.

The proof of the Theorem is obtained by letting R → ∞, and iterating the
decay property given by the Proposition. Note that the method of proof can likely
be used more generally to classify ∂∂̄-exact Calabi-Yau manifolds with prescribed
tangent cones.
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Asymptotically Locally Euclidean Kähler Manifolds

Ioana Suvaina

(joint work with Hans-Joachim Hein, Rares Rasdeaconu)

An asymptotically locally Euclidean (ALE) Kähler manifolds (M,J, g) is a com-
plete Kähler manifold with ends modeled by quotients of the Euclidean spaces.
In particular, each connected component of the complement of a compact set can
be identified via a diffeomorphism, f , with (Cn \ BR(0), gEuc)/Γ, with Γ a finite
subgroup of U(n) acting freely. For each multi-index I of order |I|

∂I (f∗(g)− gEuc) = O(R−τ−|I|),

as R → ∞, where gEuc denotes the Euclidean metric, and τ > 0 is a real number
called the order of g. In general, the diffeomorphism f does not have to be com-
patible with complex structure, but it will have a similar asymptotic decay to the
standard complex structure as the metric g. Depending on the situation that one
wants to study, there are different orders of decay that one can consider [5, 6, 4].

Simply connected ALE Ricci-flat Kähler surfaces (hyperkähler 4-manifolds)
were constructed by Eguchi-Hanson, Gibbons-Hawking, Hitchin [7], and Kron-
heimer [10], and were classified by Kronheimer [11]. The non-simply connected
surfaces, which are free quotients of some of Hitchin’s examples [7], were classified
by Şuvaina [17] and Wright [19]. We have the following unified classification the-
orem, which rephrases Kronheimer’s results and draws an analogy with a special
class of quotient singularities:

Theorem 1 (Kronheimer, 1989; Suvaina, 2011). Let (M,J, g, ωg) be a smooth
ALE Ricci-flat Kähler surface, asymptotic to C2/Γ, where Γ is a finite subgroup of
U(2) acting freely on C2 \ {0}. Then the complex manifold (M,J) can be obtained
as the minimal resolution of a fiber of a one-parameter Q-Gorenstein deformation
of the quotient singularity C2/Γ. Given the Kähler class Ω = [ωg] ∈ H2(M,R)
then g is the unique ALE Ricci-flat Kähler metric in this class.

Conversely, any complex surface (M,J) obtained by the above construction ad-
mits a unique ALE Ricci-flat Kähler metric in any Kähler class Ω.

In particular, the manifoldM is either a A∗, D∗, E6,7,8-type surface or a quotient
of an Adn-surface by a finite cyclic group Zn, with asymptotics either C2/Γ with
Γ ⊂ SU(2) or C2/ 1

dn2 (1, dnm− 1), (n,m) = 1, respectively.
In higher dimensions, ALE Ricci-flat Kähler metrics were constructed by Calabi

[1], Joyce [9] and Tian-Yau [18].
There are currently many known non-Ricci-flat ALE Kähler manifolds which

admit a preferred metric, of zero scalar curvature. In complex dimension two,
such metrics were constructed by LeBrun [12, 13], Joyce [8], Calderbank-Singer
[2], Lock-Viaclovsky [15] and Han-Viaclovsky [3, 4]. Non-Ricci-flat ALE scalar flat
Kähler metrics in higher dimensions were found by Simanca [16].

While the geometry of a Ricci-flat Kähler manifold is quite restrictive, the
canonical line bundle or one of its powers has to be trivial, a generic ALE Kähler
manifold is believed to admit scalar flat Kähler metrics. The first step towards
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the classification of ALE (scalar flat) Kähler manifolds is to understand the un-
derlaying complex structure. A common feature of all the known examples is that
the underlying complex structure is a resolution of a deformation of a quotient
singularity. In joint work with Hein and Rasdeaconu [6] we are able to prove this:

Theorem 2. Any ALE Kähler manifold asymptotic to Cn/Γ is isomorphic to a
resolution of a deformation of the isolated quotient singularity (Cn/Γ, 0).

The proof of Theorem 2 is based on the construction of a suitable analytic
divisorial compactification of ALE Kähler manifolds due to Hein and LeBrun [5]

and Li [14]. The divisor at infinity is isomorphic to CP
n−1/Γ and the ring of

sections of its normal bundle is isomorphic to the ring of invariants of the isolated
quotient singularity Cn/Γ. This suffices to show that the starting ALE Kähler
manifold is in fact a resolution of an affine algebraic variety. To identify this
affine algebraic variety we appeal to the “sweeping out the cone with hyperplane
sections” technique of Pinkham.

The deformation theory of isolated quotient singularities in complex dimension
two is well-understood and it allows us to prove the following result:

Theorem 3. For every finite subgroup Γ ⊂ U(2) containing no reflections, there
exist only finitely many diffeomorphism types underlying minimal ALE Kähler
surfaces which are asymptotic to C2/Γ.

In dimension at least three, by Schlessinger’s theorem, isolated quotient singu-
larities are rigid under deformation. Hence, Theorem 2 immediately implies:

Corollary 1. If n ≥ 3, every ALE Kähler manifold asymptotic to Cn/Γ is biholo-
morphic to a resolution of the isolated singularity Cn/Γ.

This recovers and refines the rigidity results of Hein-LeBrun in [5, Section 2]
via a different method. In contrast to dimension two, in higher dimensions it is a
difficult task to impose a minimality condition on a resolution. For this reason we
do not attempt here to explore a generalization of Theorem 3 in higher dimensions.

The next step towards a complete classification is to prove existence of ALE
scalar flat Kähler metrics, with significant work done recently by Han-Viaclovsky
[4]. The most challenging part of such a program would be to prove uniqueness
of the scalar flat Kähler metric in a given Kähler class. This is a completely open
problem.
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Ricci flow from open manifolds with lower curvature bounds

Peter M. Topping

(joint work with Miles Simon, Andrew McLeod)

In this talk we took a look at research from the past few years, and ongoing
research, into the problem of starting the Ricci flow with initial data that is some-
thing more general than a closed Riemannian manifold (Hamilton [Ham82]) and
more general than an open manifold that has been constrained to be regular at
infinity by having bounded curvature (Shi [Shi89]).

The first case we are interested in is starting the flow with an open (i.e. com-
plete, noncompact) Riemannian manifold with an appropriate notion of positive
curvature, but no overall curvature bound, and no constraint on the collapsing
behaviour of the manifold at infinity. In the situations in which we are interested,
it is highly unlikely that one can start the flow in general if we weaken the positive
curvature hypothesis to almost-positive curvature.

The second case we are interested in is starting the flow with a space that is
rougher than a Riemannian manifold. It should be a metric space with some sort
of extra geometric structure, and we consider Ricci limit spaces in 3D, and variants
of these in higher dimensions. One has to pose carefully what we mean by a Ricci
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flow having such initial data because one is not given an underlying manifold on
which to work, and the Ricci flow should create this.

It turns out that these two topics are highly interlinked, since in both cases
we need similar results about existence of Ricci flows starting with smooth initial
data, that satisfy optimal estimates.

There is then the question of which type of positive curvature to consider, and
which sort of limit spaces to take. In the talk we made the case for the curvature
condition arising from the so-called PIC1 condition introduced in 1988 by Micallef
and Moore [MM88]. PIC1 coincides with positive Ricci curvature in 3D, and
implies positive Ricci curvature in higher dimensions, but is much more general
than, for example, positive complex sectional curvature. This condition interacts
extremely nicely with Ricci flow.

An interesting open question, that has been previously considered in 3D is the
following, where the noncompact case is the issue:

Conjecture 1. If (M, g0) is a smooth, complete, n-dimensional Riemannian man-
ifold, n ≥ 3, satisfying the PIC1 condition, then there exists a smooth PIC1 Ricci
flow g(t) on M for t ∈ [0, T ), some T > 0, such that g(0) = g0.

Although this conjecture does not allow the positive curvature to be weakened
in general, in the talk we considered what happens if we weaken to curvature
bounded below but look for a different type of solution, namely so-called Pyramid
Ricci flows [MT18], which are inspired by Hochard’s notion of partial Ricci flows
[Hoc16]. They are Ricci flows defined on a subset of space-time that includes the
initial time slice.

Combining work and ideas from Hochard [Hoc16], M.Simon and the author
[ST17], McLeod and the author [MT18], Hochard’s thesis [Hoc19], the author
[T10], Y.Lai [Lai18] and Bamler–Cabezas-Rivas–Wilking [BCRW19], in [MT19],
with McLeod, we proved:

Theorem 1 (Global pyramid Ricci flows). Let α0, v0 > 0, n ∈ N with n ≥
3. Suppose that (M, g0) is an n-dimensional complete Riemannian manifold with
KIC1

[g0] ≥ −α0 throughout, and VolBg0(x0, 1) ≥ v0 for some x0 ∈M . Then there
exist increasing sequences Cj ≥ 1 and αj > 0 and a decreasing sequence Tj > 0,
all defined for j ∈ N, and depending only on n, α0 and v0, for which the following
is true.

There exists a smooth Ricci flow g(t), defined on a subset of spacetime that
contains, for each j ∈ N, the cylinder Bg0(x0, j)× [0, Tj] , satisfying that g(0) = g0
throughout M , and further that, again for each j ∈ N,

(1)







KIC1
[g(t)] ≥ −αj Bg0(x0, j)× [0, Tj]

|Rm|g(t) ≤
Cj

t
Bg0(x0, j)× (0, Tj] .

Here, KIC1
≥ −α0 refers to a lower curvature bound, where KIC1

> 0 would
correspond to PIC1. See [MT19] for further details.
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The theorem can equally well be stated with initial data that is an IC1-limit
space, i.e. a pointed Gromov-Hausdorff limit of a sequence of manifolds as in
the theorem, all using the same constants n, α0 and v0. It turns out that an
application is that an IC1-limit space is homeomorphic to a smooth manifold via a
homeomorphism that is locally bi-Hölder. A slightly weaker version of this in 3D
was proved by M. Simon and the author [ST17] in order to prove the Anderson-
Cheeger-Colding-Tian conjecture in 3D.

A key ingredient in the proof is the so-called pyramid extension lemma, and we
gave an exposition of this, as proved in [MT19], extending ideas from [MT18].

One possible application of Conjecture 1 in the future could be the following:

Conjecture 2. An open n-dimensional PIC1 Riemannian manifold (n ≥ 3) is
diffeomorphic to Rn.

The 3D case of this conjecture is a result of Schoen-Yau [SY82] proved using
minimal surface techniques. Current technology can only address restricted cases;
in particular He and Lee [HL18] handle the case of maximal volume growth.
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Constant curvature conical metrics

Xuwen Zhu

(joint work with Rafe Mazzeo, Bin Xu)

We are interested in the following “singular uniformization” problem: given a
compact Riemann surface M , a collection of distinct points p = {p1, . . . , pk} ⊂M
and a collection of positive real numbers β1, . . . , βk, is it possible to find a metric
g on M with constant curvature and with conic singularities with prescribed cone
angles 2πβj at the points pj? If there is a solution, the sign of its curvature is the
same as that of the conic Euler characteristic

(1) χ(M, ~β) = χ(M) +

k
∑

j=1

(βj − 1).

This problem has a long history bringing together several different areas of

mathematics. When χ(M, ~β) ≤ 0, existence and uniqueness of solutions for any
~β ∈ Rk

+ is easy to prove using barrier arguments [8]. In the spherical case, for
all cone angles lying in (0, 2π), Troyanov [11] discovered an auxiliary set of linear
inequalities on the βj which are necessary and sufficient for existence; later, Luo
and Tian [5] proved uniqueness of the solution in this angle regime. The spherical
case when some of the cone angles are bigger than 2π has proved more challenging,
and a lot of new phenomena emerge: uniqueness fails [1, 3, 4] and existence is not
guaranteed [9, 2]; smooth deformation is not always possible [13] and the moduli
space is expected to have singular strata [10].

In [6], we constructed the extended configuration spaces EK , as well as the
associated extended configuration families CK . Each EK is a manifold with corners
which is a compactification of the open set inMK consisting of all distinct ordered
K-tuples {p1, . . . , pK}. CK is a universal curve over this configuration space in the
sense that it too is a manifold with corners equipped with a singular fibration over
EK . Each singular fiber in CK is given by a tower of hemispheres attached to the
surface M . We obtained a new regularity result on the degenerating family of
metrics with merging cone points.

Theorem 1 ([6]). When χ(M, ~β) ≤ 0, or χ(M, ~β) ≤ 0 with all cone angles less
than 2π, hence solutions exist for all choices of data sets, then the solution families
are polyhomogeneous, i.e., maximally smooth, as a family of fiber metrics on Ck.

We then apply this machinery to study the existence and deformation theory
for spherical conic metrics with some or all of the cone angles greater than 2π.
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Deformations are obstructed precisely when the number 2 lies in the spectrum of
the Friedrichs extension of the Laplacian. There are many spherical cone metrics
for which 2 does lie in the spectrum [12].

Our main result is that, even if 2 does lie in the spectrum, there is an unob-
structed deformation space if we allow for more drastic deformations which permit
the individual points pj to ‘splinter’ into a collection of conic points with smaller
cone angles. More precisely, we have the following trichotomy theorem:

Theorem 2 ([7]). Let (M, g0) be a spherical conic metric. Denote

K =

k
∑

j=1

max{[βj], 1}.

Let ℓ be the multiplicity of the eigenspace of ∆g0 with eigenvalue 2. There are three
cases:

(1) (Local freeness) If 2 /∈ spec(∆g0), then g0 has a smooth neighborhood
parametrized by conformal structure, cone positions and angles.

(2) (Partial rigidity) If 1 ≤ ℓ < 2K, then for any nearby admissible angles
and conformal structures, there exists a 2K− ℓ dimensional p-submanifold
X that parametrizes nearby cone metrics.

(3) (Complete rigidity) If ℓ = 2K, then there is no nearby spherical cone
metric obtained by moving or splitting the conic points of g0.
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Torus action over rationally elliptic manifolds of positive curvature

Burkhard Wilking

We study positively curved manifolds which admit an isometric effective action by
a torus Td of dimension d = 5, 6, 7, 8. We show that if the underlying manifold
is closed even dimensional and rational elliptic, then its rational homotopy type
corresponds to a rational homotopy type of connected rank one symmetric space.

Reporter: Jian Wang
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Institut de Mathématiques de Toulouse
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Weyertal 86 - 90
50931 Köln
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Université de Grenoble I
Institut Fourier
B.P. 74
38402 Saint-Martin-d’Hères Cedex
FRANCE

Prof. Dr. Ben Weinkove

Department of Mathematics
Northwestern University
Lunt Hall
2033 Sheridan Road
Evanston, IL 60208-2730
UNITED STATES

Prof. Dr. Burkhard Wilking

Mathematisches Institut
Universität Münster
Einsteinstrasse 62
48149 Münster
GERMANY

Dr. Kai Zheng

School of Mathematical Sciences
Tongji University
1239 Siping Road
Shanghai Shi 200 092
CHINA

Prof. Dr. Xuwen Zhu

Department of Mathematics
University of California, Berkeley
970 Evans Hall
Berkeley CA 94720-3840
UNITED STATES




