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Introduction by the Organizers

The workshop Dynamische Systeme, organised by M.-C. Arnaud (Avignon), H.
Eliasson (Paris), H. Hofer (Princeton) and V. Kaloshin (Maryland) was well at-
tended with over 50 participants with broad geographic representation from 13
countries. The workshop covered a large area of dynamical systems mainly in
a symplectic or Hamiltonian setting with a special focus on rigidity problems:
spectrum theory of dynamical systems (length spectrum, PDE spectrum, spec-
tral invariants of symplectic topology), some aspects of limits theorems in ergodic
theory, horseshoes and chaos, celestial mechanics.

Striking results about spectral rigidity of billiards were presented by M. Leguil
for dispersing billiards, J. de Simoi for axis symmetric domains and A. Sorrentino
for convex billiards. Ergodic results for the billiard flow, a flow that is hard to study
because of its discontinuities, were presented by V. Baladi (existence of a measure
of maximal entropy for a Sinäı billiard) and I. Mebourne (decay of correlations).
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Other results in ergodic theory were presented: the growth of nomalizing sequences
was explained by S. Gouezel and results on infinite Lebesgue spectrum for area
preserving toral flows were explained by G. Forni.

Recent results concerning the spectrum in symplectic toplogy, as action se-
lectors, were presented: D. Cristofaro-Gardiner presented results on the spectral
recognition of rank one contact forms on closed three-manifolds, L. Polterovich
dealt with quantum footprints of symplectic rigidity, S. Seyfaddini presented Floer
homology and Hamiltonian homeomorphisms, F. Schlenk explained a simple con-
struction of an action selector on aspherical symplectic manifolds, C. Viterbo pre-
sented results on barcode and small eigenvalues of the Witten Laplacian

Several results concerning topological entropy were presented: P. Le Calvez
proved that a smooth generic area preserving diffeomorphism of a closed surface
has an horseshoe and then positive topological entropy, Barney Bramham proved
that a Reeb flow has a global section or has a horseshoe, S. Crovisier explained
the structure of the periods of periodic orbits for dissipative diffeomorphisms of
the disc with zero entropy.

Results concerning Arnol’d diffusion were presented: M. Gidea dealt with En-
ergy Drift and Diffusion Process in the Three-Body Problem and T. Seara spoke
about recent results in geometric methods for Arnol’d diffusion,

Several other topics in dynamics where discussed in different talks: P. Berger
presented results on the emergence of wandering Fatou components among polyno-
mial automorphisms of the plane, J. Chaika presented results on horocycle orbits
in strata of translations surfaces, A. Knauf dealt with asymptotic completeness
in celestial mechanics, T. Jäger presented some aspects of topological dynamics
and aperiodic ordert, D. Turaev spoke about stable multiparticle choreographies
in repelling potential, L.S. Young presented results on the dynamics of the brain

The meeting was held in an informal and stimulating atmosphere. The tradi-
tional walk was organized by F. Schlenk on Wednesday afternoon.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Viktor L. Ginzburg in the “Simons Visiting Professors”
program at the MFO.
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Abstracts

Homoclinic orbits for area preserving diffeomorphisms of surfaces

Patrice Le Calvez

(joint work with Mart́ın Sambarino)

Let S be a smooth closed orientable surface of genus g, furnished with a smooth
area form ω. For 1 ≤ r ≤ ∞, denote Diffr

ω(S) the set of Cr diffeomorphisms of S
preserving ω, endowed with the Cr-topology. We have :

Theorem. For 1 ≤ r ≤ ∞, there exists a residual set R ⊂ Diffr
ω(S) such that if

f ∈ R, then

• there exist hyperbolic periodic points,
• every hyperbolic periodic point has a transverse homoclinic intersection.

Using the fact that the existence of a hyperbolic periodic point with a transverse
homoclinic intersection is an open property that implies the positiveness of the
entropy, we immediately deduce:

Corollary. For 1 ≤ r ≤ ∞, there exists a dense open set O ⊂ Diffr
ω(S) such that

the topological entropy of every element of f ∈ O is positive.

Let us precise the theorem. We denote Gr
ω(S) ⊂ Diffr

ω(S) the (residual) set of
diffeomorphisms satisfying the following conditions.

• Every periodic point is either elliptic or hyperbolic. Moreover, if z is an
elliptic periodic point of period q, then the eigenvalues of Df q(z) are not
roots of unity.

• Stable and unstable branches of hyperbolic points that intersect must also
intersect transversally (in particular there is no saddle connection).

• If U is a neighborhood of an elliptic periodic point z, then there is a
topological closed disk D containing z, contained in U , and bordered by
finitely many pieces of stable and unstable manifolds of some hyperbolic
periodic point z′.

Denote Fixh(f) the set of hyperbolic fixed points of f ∈ Diffr
ω(Sg) and Perh(f)

the set of hyperbolic periodic points. Let us recall the following folklore result,
consequence of Lefschetz formula:

Proposition. If f ∈ Gr
ω(S), then #Perh(f) ≥ max(0, 2g − 2).

Our theorem will be divided in two parts.

Theorem A. If f ∈ Gr
ω(S) and #Perh(f) > max(0, 2g− 2), then every hyperbolic

periodic point of f has a transverse homoclinic intersection.

Theorem B. The set of f ∈ Gr
ω(S) such that #Perh(f) > max(0, 2g− 2) is dense

in Gr
ω(S).
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The proof of Theorem A is based on a theorem of Mather. We can prove that the
four branches of z ∈ Perh(f) accumulate on z and have the same closure K(z) in
S. So, we can define an equivalence relation on Perh(f) writing

z ∼ z′ ⇔ K(z) = K(z′).

In that case, z has homoclinic intersection if it is the case of z′ and we say that the
class κ is homoclinic. Using some homological arguments, we begin to prove that if
#Fixh(f) > 2g− 2, there is a point with a homoclinic intersection. Consequently,
if there is a unique class κ, then κ is homoclinic. Using improvements of Mather’s
theory due to Koropecki-Le Calvez-Nassiri, we can prove in the case where there is
at least two classes, that every class κ is contained in a connected open set V 6= S
whose genus g′ satisfies #κ > 2g′ − 2 and use the same argument as before.

To prove Theorem B, we must begin to understand what are the elements
f ∈ Gr

ω(S) such that #Perh(f) = 2g − 2. This is given by the following result:

Theorem C. If f ∈ Gr
ω(S) and #Perh(f) = 2g − 2, then:

• if g = 1, then f is isotopic to the identity or to a power of a Dehn twist;
• if g > 1, ∃q ≥ 1 such that f q is isotopic to the identity. Moreover there is
no non trivial periodic continua and consequently f is transitive and every
stable or unstable branch is dense.

So, to prove Theorem B, it is sufficient to show that one can approximate a map
f ∈ Gr

ω(S), isotopic to the identity, such that #Perh(f) = ♯Fixh(f) = 2g − 2.
with a map having a supplementary periodic point. The rotation vector ρf (µω) ∈
H1(S,R) of the measure induced by ω is not zero, because f is not Hamiltonian.
So, there exists a simple loop λ ⊂ S \ Fixh(f) such that [λ] ∧ ρf (µω) 6= 0. Fix
a small annular neighborhood A of λ and a C∞ divergence free vector field X
supported on A such that ρϕs

X
(µω) = s[λ] if t ∈ R, and set f s = ϕs

X ◦ f . One has

ρfs(µω) ∧ ρf (µω) = s [λ] ∧ ρf (µω) 6= 0 if s 6= 0.

The following proposition easily implies theorem B and can be proven using the
Forcing theory introduced by Le Calvez-Tal.

Proposition. ∀ε > 0, ∃s ∈ (0, ε), f s 6∈ Gr
ω(S) or htop(f

s) > 0.

Note that the the main theorem was proven by Takens in case r = 1 using the
C1-closing Lemma. It was also proved by Robinson and Pixton in the case of the
sphere and by Oliveira in the case of the torus. Moreover it was announced by
Xia in the case of Hamiltonian diffeomorphisms.
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On the Integrability of Birkhoff Billiards

Alfonso Sorrentino

(joint work with Guan Huang, Vadim Kaloshin)

A Birkhoff billiard is a dynamical model describing the motion of a billiard ball
inside a strictly convex domain Ω ⊂ R2 with smooth boundary ∂Ω. The massless
ball moves with unit velocity and without friction following a rectilinear path; when
it hits the boundary it reflects elastically according to the standard reflection law:
the angle of reflection is equal to the angle of incidence.

This conceptually simple model, yet dynamically very rich, has been proposed
by G. D. Birkhoff as a mathematical playground where “[. . .]the formal side, usu-
ally so formidable in dynamics, almost completely disappears, and only interesting
qualitative questions need to be considered” [3, pp. 155-156].

Since then, billiards have captured the attention of many researchers in various
areas of mathematics. Whereas it is clear how the geometry (i.e., the shape)
of the domain determines the billiard dynamics, a more subtle and intriguing
question is to which extent dynamical information can be used to reconstruct the
shape of the billiard domain. This translates into compelling inverse problems and
rigidity questions, that provide the ground for some of the foremost conjectures in
dynamical systems.

In this talk I shall focus on the so-called Birkhoff conjecture, namely the possi-
bility of classifying billiard domains which admit an integrable dynamics.

The easiest example of billiard is given by a billiard in a disc: in this case it
is easy to check that the angle of reflection remains constant at each reflection,
hence it is an integral of motion, which makes the circular billiard an integrable
dynamical system.

Integrability is one of the most important issue in the study of dynamical sys-
tems. In the case of billiards, it translates into a very peculiar geometric property:
the existence of so-called caustics. For circular billiards, for example, the fact that
the angle of reflection remains constant implies that each trajectory is tangent to a
concentric circle, which is an example of a caustic. The family of all these caustics
foliates the whole circular billiard domain.

More precisely, we say that a curve Γ is a caustic for a billiard, if every time a
trajectory is tangent to Γ, then it remains tangent after each reflection.

Whereas the mere existence of caustics does not provide significant information
on the shape of the domain1, the presence of a foliation of the billiard table by
caustics seems to be a more peculiar property.

Billiards in an ellipse have a similar dynamical picture: trajectories not passing
through a focal point are tangent to a confocal conic section, either a confocal
ellipse or the two branches of a confocal hyperbola. Thus confocal ellipses are
convex caustics, and they foliate the whole domain with the exception of the
segment between the foci.

1A striking result by Lazutkin [9] shows that all Birkhoff billiards with sufficiently smooth
boundary admit a positive measure set of caustics, accumulating to the boundary of the billiard.
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Are there other billiards admitting an integrable dynamics? This appearantly näıve
question has given rise to one of the most famous (and impenetrable) problems in
dynamical systems:

Conjecture (Birkhoff2). Integrable Birkhoff billiards correspond to ellipses.

Despite its long history and the amount of attention that it has captured, this
conjecture is still open. Some of the most relevant contributions are:

- Bialy [2] proved that the only Birkhoff billiard fully foliated by caustics
is in the disc. This result was also proved by Wojtkowski [12], by an
integral-geometric approach.

- Innami [7] proved, using Aubry-Mather theory, that the existence of caus-
tics with rotation numbers accumulating to 1/2 implies that the billiard
domain must be an ellipse.

- The analogue of this conjecture under the assumption that there exists an
integral of motion polynomial in the velocity (Algebraic Birkhoff conjec-
ture), has been recently proved by Glutsyuk [5].

Instead of considering all possible Birkhoff billiards, one could restrict the analysis
to domains that are sufficiently close to ellipses and study the same question in
this context (Perturbative Birkhoff Conjecture):

- Levallois & Tabanov [10] proved the non-integrability of algebraic pertur-
bations of ellipses.

- Delshams & Ramı́rez-Ros [4] showed the non-integrability of entire sym-
metric perturbations of ellipses.

In this talk I shall describe a recent development obtained in collaboration with
Vadim Kaloshin, proving that the Perturbartive Birkhoff Conjecture holds true.
For nearly circular domains, this result was firstly proved in [1].

Theorem (Kaloshin, S. [8]). Let E0 be an ellipse of eccentricity 0 ≤ e0 < 1 and
semi-focal distance c; let k ≥ 39. For every K > 0, there exists ε = ε(e0, c,K)
such that if Ω is Ck-smooth domain and

i) the billiard map in Ω admits invariant curves/caustics foliated by periodic
points for all rotation numbers 1

q , q ≥ 3,

ii) ∂Ω is K-close to E0, with respect to the Ck-norm,
iii) ∂Ω is ε-close to E0, with respect to the C1-norm,

then Ω is an ellipse.

Notice that he notion of integrability i) that we require is very weak. A natural
question is what happens if only a small neighbourhood of the boundary is foliated
by caustics, or in another words there are invariant curves/caustics corresponding
to rotation numbers in (0, δ), for some 0 < δ < 1

3 .
A partial answer to this question was recently provided in collaboration with

Guan Huang and Vadim Kaloshin in [6] for domains that are a sufficiently smooth

2Although some vague indications of this question can be found in [3], its first appearance
was in a paper by Poritsky [11], so sometimes it is referred to as Birkhoff-Poritsky conjecture.
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perturbation of ellipses of small eccentricities, under the assumption that for a
given q0 ≥ 3 there exist invariant curves foliated by periodic points, for all rotation
numbers j

q , with q ≥ q0 and j = 1, 2, 3 such that gcd(j, q) = 1. The upper bound on

the eccentricity, the smallness condition on the perturbation and the smoothness
requirements, depend all on the choice of q0.

Acknowledgement. The author acknowledges the support of the project H2020-MSCA-ITN-

ETN “STARDUST-R” and the Italian MIUR Excellence Department Project awarded to

the Department of Mathematics,University of Rome Tor Vergata,CUP E83C18000100006.
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planar maps, Nonlinearity, 9 (1996): 1–26.
[5] Alexey Glutsyuk, On polynomially integrable Birkhoff billiards on surfaces of constant cur-

vature, J. Eur. Math. Soc. (JEMS), to appear.
[6] Guan Huang, Vadim Kaloshin and Alfonso Sorrentino N early circular domains which are

integrable close to the boundary are ellipses, Geom. & Funct. Analysis (GAFA), 28 (2018):

334–392.
[7] Nobohuiro Innami, Geometry of geodesics for convex billiards and circular billiards, Ni-

honkai Math. J., 13 (2002): 73–120.
[8] Vadim Kaloshin and Alfonso Sorrentino, On the local Birkhoff conjecture for convex bil-

liards, Ann. of Math. (2), 188 (2018): 315–380.
[9] Vladimir F. Lazutkin, Existence of caustics for the billiard problem in a convex domain.

(Russian), Izv. Akad. Nauk SSSR Ser. Mat., 37 (1973): 186–216.
[10] Philippe Levallois and Mikhail Tabanov, S éparation des séparatrices du billard elliptique
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On the measure of maximal entropy of Sinai billiards

Viviane Baladi

(joint work with M. Demers)

Sinai billiards maps and flows are uniformly hyperbolic — however grazing orbits
give rise to singularities. Most existing works on the ergodic properties of billiards
are about the SRB measure (i.e. the Liouville measure in the case of flows), for
which exponential mixing is known (both in discrete [6] and continuous time [2]).
Another natural equilibrium state is the measure of maximal entropy. Since the
discrete-time billiard map T is discontinuous, the mere existence of this measure
is not granted a priori. The results of [1] presented in this talk are the following:
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Assuming finite horizon, we propose a definition h∗ for the topological entropy
of T . We prove that h∗ is not smaller than the value given by the variational
principle, and that it is compatible with the definitions of Bowen using spanning
or separating sets. To get more, we need an additional condition. Letting (r, ϕ)
be the billiard coordinates, fix an angle ϕ0 close to π/2 and n0 ∈ N large. Let
s0 ∈ (0, 1) be the smallest number such that any orbit of length n0 has at most
s0n0 collisions with |ϕ| > ϕ0. (Due to the finite horizon condition, we can choose
ϕ0 and n0 such that s0 < 1. If in addition there are no triple tangencies on the
table — a generic condition — then s0 ≤ 2/3.) Assume that h∗ > s0 log 2. Then,
using a transfer operator acting on a space of anisotropic distributions (adapting
the arguments of Demers and Zhang [4] to our setting), we construct an invariant
probability measure µ∗ of maximal entropy for T (i.e., hµ∗

(T ) = h∗), we show
that µ∗ has full support and is Bernoulli, and we prove that µ∗ is different from
the SRB measure except if all non grazing periodic orbits have multiplier equal
to h∗. (A key step to carry out the Hopf argument is to show absolute continuity
of the unstable foliation with respect to µ∗.) Next, h∗ is compatible with the
Bowen–Pesin–Pitskel topological entropy of the restriction of T to a non-compact
domain of continuity. Last, applying results of Lima and Matheus [5], and Buzzi
[3], the map T has at least Cenh∗ periodic points of period n, for all n.
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Asymptotic completeness in celestial mechanics

Andreas Knauf

(joint work with Stefan Fleischer)

The general setting is the one of a smooth (non-compact) manifold P of dimension
d with a volume form Ω and a C1-vector field X so that the Lie derivative LXΩ
vanishes. Then the initial value problem for the differential equation ẋ = X(x)
has a maximal solution of the form

Φ ∈ C1(D,P ) on D =
{
(t, x) ∈ R× P

∣∣ T−(x) < t < T+(x)
}
,

with the escape times T := T+ : P → (0,+∞] and T− : P → [−∞, 0), and Φ
preserves the volume form Ω.
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Definition 1. The wandering set of Φ is given by

Wand :=
{
x ∈ P | for some neighborhood Ux of x and time tx :

Ux ∩ Φ
(
((tx, T (x))× Ux) ∩D

)
= ∅

}
.

The singular set of Φ is given by Sing := {x ∈ P | T (x) < ∞}.
Lemma 2.

(1) Sing is a Borel set
(2) Sing ⊆ Wand.

Let ιm : Hm → P (m ∈ N) be a sequence of codimension one closed ∂-
submanifolds of P , which we call Poincaré surfaces.

Assumptions:

(1) The vector field X is transversal to their relative interior ιm : Hm → P .
Thus (i being the inner product) the (d− 1)-form

V := iX Ω

on P induces volume forms Vm := ι∗mV on Hm.
(2) We assume that limm→∞

∫
Hm

Vm = 0.

Definition 3. The set of transition points is given by

Trans := {x ∈ P | ∃m0 ∈ N ∀m ≥ m0 : O+(x) ∩Hm 6= ∅},
O+ being the forward orbit.

Our main result in [FK19a] is the following.

Theorem 4. From the assumptions it follows that Ω(Trans∩Wand) = 0.

We applied this to scattering by n particles on

(1) joint configuration space M̂ := Rdn \∆, with

∆ := {q ∈ Rdn | there exist 1 ≤ i < j ≤ n : qi = qj}
(2) phase space P̂ := T ∗M̂

(3) Hamiltonian function H ∈ C 2(P̂ ,R), H(q, p) := K(p) + V (q) with

K(p) :=
∑n

k=1
‖pk‖

2

2mk
and V (q) :=

∑
1≤i<j≤n Vi,j(qi − qj).

Definition 5. V is admissible, if lim‖q‖→∞ Vi,j(q) = 0, there exists an α ∈ (0, 2)

such that D2Vi,j(q) = O(‖q‖−α−2) (‖q‖ ≤ 1), and for some CV > 0 either

(1) for suitable Zi,j ∈ R,
∣∣〈 q

‖q‖ ,∇Vi,j(q)
〉
+ α

Zi,j

‖q‖α+1

∣∣ ≤ CV (‖q‖ ≤ 1)

(2) or the Vi,j are bounded above, and, with W−(q) := max(−W (q), 0),

〈q,∇Vi,j(q)〉 ≤ CV + α (Vi,j)−(q) (‖q‖ ≤ 1).

Concerning the set Coll :=
{
x ∈ Sing

∣∣ limtրT+(x) q(t, x) exists
}
, we have
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Theorem 6. [FK19b]
For all n ∈ N, d ≥ 2 and E ∈ R the set Coll∩H−1(E) of phase space points
leading to a collision has Liouville measure zero, provided V is admissible.

Additionally
∫ T (x)

0
K(p(t, x)) dt < ∞ (x ∈ Coll).

Definition 7. We call the potential V

• long-ranged, if for some ǫ > 0, ‖∇Vi,j(q)‖ = O(‖q‖−1−ǫ) (‖q‖ ≥ 1),
• moderated, if for some α ∈ (0, 2), ‖∇Vi,j(q)‖ = O(‖q‖−α−1) (‖q‖ ≤ 1).

Note that α-homogeneous potentials are long-ranged and moderated.

Definition 8. For an initial condition x0 ∈ P \ Sing the asymptotic velocities
are

v±(x0) := lim
t→±∞

q(t, x0)

t
∈ Rdn.

Concerning these Cesàro limits, in [Kn18] we proved

Theorem 9. For n = 4, d ≥ 3 and long-ranged moderated central potentials the
set of x0 for which v±(x0) does not exist, has Liouville measure zero.
The Liouville measure of Sing is zero, too.
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Growth of normalizing sequences in limit theorems

Sébastien Gouëzel

Definition 1. Let (X,P ) be a probability space, T : X → X a measurable map
and f : X → R a measurable function. We say that (X,P, T, f) satisfies a limit
theorem, for the normalizing sequence (Bn) ∈ (0,+∞)N, if there exists a real
random variable Z which is not almost surely 0 such that Snf/Bn converges in

distribution with respect to P towards Z, where Snf =
∑n−1

k=0 f ◦T k is the Birkhoff
sum of f for T .

There are many examples of such limit theorems. Let us give a few classical ones:

(1) If T preserves P and f is integrable, then Birkhoff theorem states that
Snf/n converges to E(f | I) where I is the σ-algebra of invariant subsets.
This is a limit theorem with normalizing sequence Bn = n, when E(f | I)
is not uniformly zero. When P is ergodic, this reduces to the fact that
Snf/n converges to

∫
f .
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(2) If T is an Anosov map and P is a Gibbs measure for a Hölder potential,
one can get a limit theorem even when

∫
f = 0: if f is Hölder continuous,

then the central limit theorem holds. This means that Snf/
√
n converges

to a Gaussian random variable N (0, σ2). This is a limit theorem when
σ2 > 0 or, equivalently, when f can not be written as g − g ◦ T for some
measurable function g. The normalizing sequence is Bn =

√
n.

(3) If T is mixing and f = g − g ◦ T , then Snf converges in distribution to
Z − Z ′, where Z and Z ′ are independent random variables distributed
like g. This is a limit theorem if g is not constant, i.e., if f is not almost
everywhere zero. The normalizing sequence is Bn = 1.

(4) Starting from a sequence of independent identically distributed random
variables whose renormalized partial sums converge to a stable law, one
gets an ergodic probability preserving system (X,T, P ) and a function f
such that Snf/n

1/α satisfies a limit theorem, for any α ∈ (0, 2].

Our goal in [2] is to investigate the possible shape of limit theorems for general
systems. The limit Z can be arbitrary, as was proved by Aaronson and Weiss
in [1]:

Theorem 1.1. For any real random variable Z and any probability preserving
non-atomic system (X,T, P ), there exists a measurable function f and a sequence
Bn → ∞ such that Snf/Bn converges in distribution to Z.

On the other hand, it is easy to show that the sequence Bn can not be arbitrary.
We prove in [2] that it can not grow more than polynomially:

Proposition 1. Let (X,T, P ) be a probability preserving map. Assume that, for
some function f , the sequence Snf/Bn satisfies a limit theorem. Then there exists
C > 0 such that Bn = O(nC).

The argument for this proposition is easy. Our main interest, however, is in systems
which do not preserve P . If one removes all assumptions, then it is easy to create
stupid examples in which Bn can grow arbitrarily fast, by using for instance the
left shift on Z. A form of rigidity comes from assuming conservativity, i.e., that
almost every point of a set A comes back infinitely often to A under the iteration
of the dynamics. This means that the values of f seen through the dynamics will
exhibit some weak kind of recurrence, preventing the Birkhoff sums from growing
too quickly. Our main result in this direction is the following theorem.

Theorem 1.2. Let (X,T,m) be a conservative map, and P a probability measure
which is absolutely continuous with respect to m. Suppose that, for some measur-
able function f , the renormalized Birkhoff sums Snf/Bn satisfy a limit theorem
with respect to P . Then Bn can not grow exponentially: for any δ > 0, one has
Bn = o(eδn).

This is considerably harder than Proposition 1. It turns out that the result in this
theorem is also optimal: in [2], we exhibit for each γ < 1 a conservative map and
a measurable function exhibiting a limit theorem for Bn = en

γ

. This shows that
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the possible behaviors in conservative maps are much wilder than in probability
preserving systems. We also construct examples in which lim supBn+1/Bn = +∞
and lim inf Bn+1/Bn = 0, in striking contrast to probability preserving maps, for
which Bn+1/Bn → 1.

The proofs of Proposition 1 and Theorem 1.2 have been formalized in the proof
assistant Isabelle/HOL, based on the ergodic theory library we had developed for
a previous article [3]. This means that these statements are certified, and can be
trusted with a degree of confidence which is much higher than anything that could
be achieved by the most careful authors and referees.
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Infinite Lebesgue spectrum for conservative flows on the torus

Giovanni Forni

(joint work with B. Fayad, A. Kanigowski)

We prove that a class of smooth (real-analytic) full-measure Diophantine locally
Hamiltonian flows on the 2-dimensional torus with a single, sufficiently degenerate,
rest point have Lebesgue spectrum of infinite (countable) multiplicity.

The proof that the spectrum is absolutely continuous is based on estimate on
decay of correlations for smooth coboundaries, which allow to prove that such
correlations are square-integrable as functions of time.

The proof that the spectrum is Lebesgue with infinite multiplicity is based on
a new criterion, which is well-adapted to smooth dynamical systems with square-
integrable correlations on a set of sufficiently rich (dense) subset of smooth ob-
servables.

As a consequence of our criterion we derive that smooth time-changes of horocy-
cle flows also have Lebesgue spectrum of infinite multiplicity, thereby completing
the proof of a conjecture by A. Katok and J.-P.-Thouvenot [5], Conjecture 6.8.

The speaker had proved that such flows have Lebesgue maximal spectral type
in joint work with C. Ulcigrai [4].

We describe the class of flows for which our result holds. These are flows often
called Kochergin flows, after A. V. Kochergin who proved that they are mixing.
There are very few results on the rate of mixing for flows on surfaces. B. Fayad
[1] proved polynomial decay of correlations for a class of Kochergin flows on the
2-torus. The decay rate in this work is however not sufficient to derive that the
spectrum is absolutely continuous. B. Fayad and A. Kanigowski [3] recently proved

http://devel.isa-afp.org/entries/Ergodic_Theory.html
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that a subset of full Hasudorff dimension of flows in this class have a generalized
Ratner property and are mixing of all orders.

Our class of Kochergin flows consists of flows on the torus with a single rest
point locally modeled on a Hamiltonian flow of Hamiltonian

H(x, y) = y(x2 + y2)l, for (x, y) near (0, 0) ∈ R2 ,

with l a sufficiently large integer, and an orbit foliations which coincides with the
foliation of a non-singular Diophantine flow, with the exception of two singular
orbits ending at the rest point in the future or in the past. It is easy to realize
these flows as infinitely differentiable locally Hamiltonian flows on the torus by a
partition of unity argument. By a more involved approximation argument it is
possible to construct real analytic examples.

Our Kochergin flows have a representation as special flows above an irrational
rotation of rotation number α ∈ R\Q under a roof function ϕ : T → R+ everywhere
of class C2 except for a singularity at the origin. More specifically we assume that
the rotation number α satisfies a full measure Diophantine condition DClog,ξ of
the form: there exist C > 0 such that

|α− p

q
| ≥ C

q2(log q)1+ξ
, for all (p, q) ∈ Z× Z \ {0} .

We also assume that the roof function has a singularity of the following form:
there exist constants M1, N1, R1 > 0 and η ∈ (0, 1) such that

(1) lim
θ→0+

ϕ(θ)

θ−(1−η)
= M1 and lim

θ→0−

ϕ(θ)

θ−(1−η)
= M1

(2) lim
θ→0+

ϕ′(θ)

θ−(2−η)
= −N1 and lim

θ→0−

ϕ′(θ)

θ−(2−η)
= N1

(3) lim
θ→0+

ϕ′′(θ)

θ−(3−η)
= R1 and lim

θ→0−

ϕ′′(θ)

θ−(3−η)
= R1 .

We now recall the definition of a spectral type of a flow and in particular the
definition of Lebesgue spectral type with countable multiplicity. The Koopman
group of a flow φR, preserving a probability measure µ on a spaceX , is the strongly

continuous group Uφ
R
of unitary operators on L2(X, dµ) defined as follows:

Uφ
t (f) = f ◦ φt , for all f ∈ L2(X, dµ) and for all t ∈ R .

By the spectral theorem for strongly continuous unitary groups, there exists a
sequence of probability measures

ν1 ≫ ν2 ≫ · · · ≫ νk ≫
such that Uφ

R
on L2(X, dµ) is unitarily equivalent to the unitary group ÛR defined

as

Ût : f̂(ξ) → eitξ f̂(ξ) , for all f̂ ∈
∞⊕

k=1

L2(R, dνk(ξ)) and for all t ∈ R .
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The measure class of the measure ν1 is called the maximal spectral type of the
unitary group. By the spectral theorem all spectral measures are absolutely con-
tinuous with respect to the maximal spectral type.

The sequence ν1 ≫ ν2 ≫ · · · ≫ νk ≫ is called the spectral type of the unitary
operator. The spectrum is said to be absolutely continuous if all the measures νk
are absolutely continuous with respect to the Lebesgue measure on R, or equiva-
lently, if the maximal spectral type is.

An operator with absolutely continuous spectrum can fail to have Lebesgue
maximal spectral type if there exists a set C ⊂ R of positive Lebesgue measure
such that ν1(C) = 0, hence νk(C) = 0 for all k ∈ N. The multiplicity of the
spectrum is the cardinality of the decomposition in the above definition.

Thus the spectrum is homogeneous Lebesgue if all measures νi are equivalent
to the Lebesgue measure and it is homogeneous Lebesgue of countable multiplicity
if the sequence ν1 ≫ ν2 ≫ · · · ≫ νk ≫ . . . is infinite. In particular, an operator
with absolutely continuous spectral type can fail to have homogeneous Lebesgue
spectrum of multiplicity k ∈ N \ {0} if its spectral type consists of at most k − 1
spectral measures or if there exists a set C ⊂ R such that νk(C) = 0.

We are now ready to state our main theorem on the spectral type of Kochergin
flows.

Theorem 1. The Koopman group of a Kochergin flow described above above has
Lebesgue spectrum of countable multiplicity if its rotation number α ∈ DClog,ξ with
ξ < 1/10 and if the roof function ϕ : T → R+ has a power singularity at the origin
(as in the above formulas) with 0 < η < 1/1000.

A similar result holds for smooht time-changes (reparametrizations) of classical
horocycle flows for compact hyperbolic surfaces. This theorem confirms the Katok–
Thouvenot conjecture ([5], Conjecture 6.8).

Theorem 2. The Koopman group of a smooth time-change of the classical horo-
cycle flow for a compact hyperbolic surface has Lebesgue spectrum of countable
multiplicity.

We conclude by stating our main abstract criterion for countable Lebesgue spec-
trum. Let F : L2(R, dt) → L2(R, dτ) denote the Fourier transform, given by the
formula

F(f)(τ) =

∫

R

f(t)e−2πıtτdt , for all f ∈ L2(R, dt) .

Theorem 3. Let {UR} be a strongly continuous one-parameter unitary group on
a Hilbert space H with absolutely continuous spectrum. For a fixed n ∈ N, let us
assume that for every compact set C ⊂ R \ {0} of positive Lebesgue measure there
exists ǫn,C > 0 such that the following holds. For every ǫ ∈ (0, ǫn,C) there exist
vectors f1, . . . , fn+1 ∈ H such that
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‖〈Ut(fi), fj〉‖L2(R,dt) ≤ δij + ǫ , for all i, j ∈ 1, . . . , n+ 1 ;

‖
n+1∏

i=1

F(〈Ut(fi), fi〉)‖
L

2
n+1 (C)

> (n+ 1)!(1 + ǫ)nǫ .

Then the spectral type of {UR} is Lebesgue with multiplicity at least n+ 1.

The above criterion is applied through the following corollary, which makes clear
that it is enough to realize sufficiently arbitrary correlations. The derivative on the
convolutions appears since we only prove square-integrable decay of correlations
for smooth coboundaries, which are derivattives along the flow direction.

Corollary 4. Let us assume that, for every n ∈ N and any system of even func-
tions ω1, . . . , ωn+1 ∈ S(R) (the Schwartz space), and for any any ǫ > 0, there
exists vectors f1, . . . , fn+1 ∈ H such that, for all i, j ∈ {1, . . . , n+ 1}, we have

‖〈Ut(fi), fj〉 −
d2

dt2
ωi ∗ ωi(t)δij‖L2(R) ≤ ǫ .

Then the spectral type of the strongly continuous one-parameter unitary group UR

is Lebesgue with countable multiplicity.

The construction of the functions f1, . . . , fn+1, for an arbitrary n ∈ N, for the
applications to the Koopman group of a Kochergin flow and to time-changes of
horocycle flows is based on the generalization of a construction found in [4] which
consists in defining functions supported in long and thin flow boxes or “towers”
(of transverse area converging to zero and diverging height). The functions are
in fact supported on a subset of fixed height for a sequence of longer and longer
(thinner and thinner) flow boxes. Their self correlations can be made arbitrary
on an interval of fixed size with a small square integrable error coming from the
correlations for times longer than the height of the flow box, while the mutual
correlations can be made small by taking the functions orthogonal on their common
domain of definition (this orthogonality property is in turn realized by taking the
horizontal factors of the functions to be orthogonal).
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Dynamical spectral rigidity of convex planar domains

Jacopo De Simoi

(joint work with Vadim Kaloshin, Qiaoling Wei)

Let Ω ⊂ R2 be a convex planar domain; is it possible to deform Ω in such a
way that the length of every periodic orbit of the billiard system inside Ω is
preserved? Isometric deformations trivially satisfy this prescription; we say that
Ω is dynamically spectrally rigid if no other deformation satisfies this prescription.
It has been conjectured by Sarnak in the early 1990’s that every (convex) domain
with smooth boundary should be spectrally rigid.

In this talk we will see the proof that any sufficiently (finitely) smooth Z2 sym-
metric strictly convex domain sufficiently close to a circle is dynamically spectrally
rigid (within Z2 symmetric domains).

Our strategy associates to each domain Ω a corresponding Linearized Isospec-
tral Operator. Studying functional properties (injectivity) of this operator gives
information about spectral rigidity of the associated domain. We show that this
property holds for every domain sufficiently close to the circle.

The construction is explicit and generalizations are expected in further work
in progress with other collaborators. Moreover, thanks to the concrete nature
of the functional-analytic problem, numerical explorations and computer-assisted
approaches are feasible; reports in these directions will be available at the end of
the summer.

Renormalization of Hénon maps with zero entropy

Sylvain Crovisier

(joint work with Enrique Pujals, Charles Tresser)

For C2-diffeomorphisms on compact surfaces, a positive topological entropy is
associated [7] with the existence of “horseshoes”: up to taking an iterate, these
are subsets where the dynamics is conjugate to a shift. On the contrary the
dynamics of systems with vanishing entropy seem very constrained and lead to
the following questions: To what extend can one describe the dynamics of surface
diffeomorphisms with zero topological entropy? How do they bifurcate to positive
entropy systems?

In the case of conservative diffeomorphisms of the sphere, Franks and Handel
have answered [5] to the first question, showing that the dynamics resemble the
dynamics of the time-one maps of hamiltonian flows. More generally, Le Calvez
and Tal have proved [8] that, for homeomorphisms, the transitive subsets have
a factor which is a periodic orbit, an irrational rotation or an odometers (Rees’
surgery produces large classes of exotic examples [2] but they are generally not
differentiable). The work we present here deals with C2 diffeomorphisms of the
disc D which contract the area. In particular, we discuss a conjecture made by
one of us in the early 80’s and based on numerical experiments. This conjecture
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appeared and has been discussed in [6, 1]. We say that an integer n ≥ 1 is a period
of f if there exists a point which is fixed by fn and not by a smaller iterate.

Conjecture (Tresser). For any dissipative diffeomorphism of the disc, there exists
n0 such that the set of periods is contained in {n.2k, n ≤ n0, k ∈ N}. When
infinite, it contains a subset of the form {n.2k, k ∈ N}.

This contrasts from diffeomorphisms with positive entropy, whose set of periods
contains a subset of the form n.N. The conjecture partially extends to surfaces
Sharkovsky’s theorem [9]: continuous interval maps have zero topological entropy
exactly when the set of periods is finite or has the form {2k, k ∈ N}.

Two of us have defined [3] the class of mild dissipative diffeomorphisms. These are
the C2-diffeomorphisms which send the closed disc D into its interior, contract the
area and whose ergodic measures µ not supported on a sink satisfy: for µ-almost
every point x, both stable branches of x intersects the boundary of the disc. For
instance any real Hénon map (x, y) 7→ (1− ax2 + y, bx) with jacobian |b| less than
1/4 induces a diffeomorphism in this class. Gambaudo-Tresser’s conjecture holds
for more general mild dissipative diffeomorphisms:

Theorem 1. For any mild dissipative diffeomorphism f of the disc whose topo-
logical entropy vanishes, the set of period is the union of a finite set with finitely
many sets of the form {n.2k, k ∈ N}.

A diffeomorphism f is renormalizable if there exist D ⊂ D homeomorphic to the
disc and k > 1 such that fk(D) ⊂ D and f i(D) ∩D = ∅ for each 1 ≤ i < k.

Theorem 2. For any mild dissipative diffeomorphism of the disc whose topological
entropy vanishes,

– either f is renormalizable,
– or any forward orbit of f converges to a fixed point.

These two statements were already known for Hénon maps which are strongly
dissipative (i.e. whose jacobian is very close to 0): De Carvalho, Lyubich and
Martens have even shown [4] by a perturbative method that the statement of
Sharkovsky’s theorem for interval maps extends then.

In our proof we analyze in details the dynamics of these systems:

Theorem 3. For any mild dissipative diffeomorphism of the disc whose topological
entropy vanishes, any orbit accumulates

– either on a periodic orbit,
– or on an invariant compact set K which is a generalized odometer Λ.

By generalized odometer, we mean that there exists a continuous semi-conjugacy
π : (K, f) → (Λ, h) between K and a dynamics on the Cantor set such that:
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– (Λ, h) is an odometer: for any ε > 0 there exists m ≥ 1 and a partition
K = A1 ∪ A2 ∪ · · · ∪ Am into compact sets with diameter smaller than ε,
satisfying h(Ai) = Ai+1 for 1 ≤ i < m and h(Am) = A1. In particular
(Λ, h) has a unique invariant probability measure ν.

– ν-almost every point in Λ has a unique preimage by p.

In particular (K, f) is uniquely ergodic.
The class of mild dissipative diffeomorphisms of the disc with a finite set of

periods is C1-open and defines a natural generalization of Morse-Smale diffeo-
morphisms ; those with an infinite set of periods exhibit a generalized odometer
and are infinitely renormalizable. In particular the boundary of the set of systems
with zero entropy (in the class of mild dissipative diffeomorphisms of the disc)
is included in the set of infinitely renormalizable systems with zero entropy; we
conjecture that this inclusion is an equality.
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A simple construction of an action selector on aspherical
symplectic manifolds

Felix Schlenk

(joint work with Alberto Abbondandolo and Carsten Haug)

1. Introduction

Hamiltonian systems on symplectic manifolds tend to have many periodic orbits.
The “actions” of these orbits form an invariant for the Hamiltonian system. The
set of actions can be very large, however. To get useful invariants, one selects for
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each Hamiltonian function just one action value by some minimax procedure: A
so-called action selector associates to every time-periodic Hamiltonian function on
a symplectic manifold the action of a periodic orbit of its flow in a continuous way.
For this one needs compactness assumptions on either the symplectic manifold
or the support of the Hamiltonian vector field. The mere existence of an action
selector has many applications to Hamiltonian dynamics and symplectic topology:
It readily yields a symplectic capacity and thus implies Gromov’s non-squeezing
theorem, implies the almost existence of closed characteristics on displaceable
hypersurfaces and in particular the Weinstein conjecture for displaceable energy
surfaces of contact type, often proves the non-degeneracy of Hofer’s metric and its
unboundedness, etc., see for instance [1, 2, 3, 6, 7, 9].

Action selectors were first constructed for the standard symplectic vector space
(R2n, ω0) by Viterbo [9] and Hofer–Zehnder [3]. For more general symplectic
manifolds (M,ω), action selectors were obtained, up until now, only by means of
Floer homology: For symplectically aspherical symplectic manifolds (namely those
for which [ω]|π2(M) = 0), Schwarz [7] constructed the so-called PSS selector when
M is closed, and his construction was adapted to convex symplectic manifolds
in [2]. Examples of convex symplectic manifolds are cotangent bundles and their
fiberwise starshaped subdomains, on which most of classical mechanics takes place.
We refer to Appendix A of [1] for a short description of these selectors. For some
further classes of symplectic manifolds and Hamiltonian functions, the PSS selector
was constructed in [4, 5, 8].

In this work we give a more elementary construction of an action selector for
closed or convex symplectically aspherical manifolds. Our construction uses only
results from Chapter 6.4 of the text book [3] by Hofer and Zehnder, that rely on
Gromov compactness and rudimentary Fredholm theory, but on none of the more
advanced tools in the construction of Floer homology (such as exponential decay,
the spectral flow, unique continuation, gluing, or transversality). In this way, the
three basic properties of an action selector (spectrality, continuity and local non-
triviality) are readily established by rather straightforward proofs, since the only
tool at our hands is the compactness property of certain spaces of holomorphic
cylinders.

2. Idea of the construction

In the rest of this note I outline the construction of our action selector on a
closed symplectically aspherical manifold (M,ω). Denote by T = R/Z the circle of
length 1. Recall that the Hamiltonian action functional on the space of contractible
loops C∞

contr(T,M) associated to a Hamiltonian function H ∈ C∞(T × M,R) =:
H (M) is given by

AH(x) :=

∫

D

x̄∗(ω) +

∫

T

H(t, x(t)) dt,
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where x̄ ∈ C∞(D,M) is such that x̄|∂D = x. The critical points of AH are the
contractible 1-periodic solutions of the Hamiltonian equation

ẋ(t) = XH(t, x(t)),

where the vector field XH is defined by ω(XH , ·) = dH , and the set of critical
values of AH is called the action spectrum of H and denoted by spec (H). An
action selector is a map σ : H (M) → R with the following three basic properties.

A1 (Spectrality) σ(H) ∈ spec (H) for all H ∈ H (M).

A2 (C∞-continuity) σ is continuous with respect to the C∞-topology on H (M).

A3 (Local non-triviality) There exists H ∈ H (M) with H ≤ 0 and support in
a symplectically embedded ball in M such that σ(H) < 0.

A first idea for defining an action selector is to boldly take the smallest action
value of a 1-periodic orbit,

σ(H) := min spec (H).

Since spec (H) is a compact subset of R, this definition makes sense, and yields
an invariant with the spectral property. However, this invariant is not very useful,
since it fails to be continuous and monotone, two crucial properties for applications.
To see why, consider radial functions

Hf (z) := f(π|z|2) on R2n,

where f : R → R is a smooth function with compact support. For an arbitrary
symplectic manifold, such functions can be constructed in a Darboux chart and
then be extended by zero to the whole manifold. The critical points of AH are the
origin and the (Hopf-)circles on those spheres that have radius r with s = πr2 and
f ′(s) ∈ Z; at such a critical point x the value of the action is

(1) AHf
(x) = f(s)− sf ′(s),

see the left drawing in Figure 1. Now take the profile functions f, f+, f− as in the
right drawing: f ′ ∈ [0, 1] and f ′(s) = 1 for a unique s, while f−, f+ are C∞-close
to f and satisfy f− ≤ f ≤ f+ and f ′

−, f
′
+ ∈ [0, 1). Then the formula (1) shows that

σ(Hf ) is much smaller than σ(Hf−) ≈ σ(Hf+), whence σ is neither continuous
nor monotone. Or take g with |g| very small and very steep. Then σ(Hg) is much
smaller than σ(Hf ), whence monotonicity fails drastically.

The above discussion shows that the continuous, or monotone, selection of an
action from spec (H) must be done by some kind of minimax procedure for the
action functional. This was done for the Hofer–Zehnder selector by minimax over
a uniform minimax family, and for the Viterbo selector and the PSS selector by
a homological minimax. Our minimax will be over certain spaces of perturbed
holomorphic cylinders.

To introduce our construction, we first look at a toy model: Consider the qua-
dratic form q(x, y) = x2 − y2 on R2 and its perturbations

qh = q + h
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Figure 1. Radial functions and their minimal spectral values

x

y

qh

Figure 2. A perturbed quadratic form qh

where h is a compactly supported function on R2. Here, the indefinite quadratic
form q models the symplectic action and the compactly supported function h
models the Hamiltonian term in AH , cf. [3, §3.3]. If h = 0, the only critical point
of qh is the origin, with critical value 0. If h consists, for instance, of two little
positive bumps, one centered at (1, 0) and one at (0, 1), then the graph of qh looks
as in Figure 2. A continuous selection of critical values h 7→ σ(h) should, in our
example, choose again 0, by somehow discarding the four new critical values.

In this finite dimensional example, one could define an action selector by the
minimax formula

σ(h) = inf max
Y

qh,

where the infimum is over the space of all images Y of continuous maps R → R2

that are compactly supported perturbations of the embedding y 7→ (0, y). Mono-
tonicity in h is clear from the definition, and spectrality can be proved by standard
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deformation arguments using the negative gradient flow of qh. The definition of
the Hofer–Zehnder action selector (see [3, Section 5.3]) is based on a similar idea
and uses the fact that the Hamiltonian action functional for loops in R2n has a
nice negative gradient flow.

Alternatively, one can fix a very large number c such that the sublevel {qh < −c}
coincides with the sublevel {q < −c} and define the same critical value σ(h) as

inf
{

a ∈ R | the image of ia∗ : H1({qh < a}, {q < −c}) → H1(R
2
, {q < −c}) is non-zero

}

,

where the map ia is the inclusion

ia : ({qh < a}, {q < −c}) →֒
(
R2, {q < −c}

)

and we are using the fact that

H1(R
2, {q < −c}) ∼= Z.

Viterbo’s definition of an action selector for compactly supported Hamiltonians
on R2n uses a similar construction, which is applied to suitable generating func-
tions, see [9]. The Floer homological translation of this second definition is, in
turn, at the basis of Schwarz’s construction of an action selector for symplectically
aspherical manifolds, see [7], and of all its subsequent generalizations.

Here, we would like to define an action selector σ(h) using only spaces of
bounded negative gradient flow lines: In the case of the Hamiltonian action func-
tional AH , these will correspond to finite energy solutions of the Floer equation,
which have good compactness properties. A first observation is that the knowl-
edge of the space of all bounded negative gradient flow lines of qh is not enough
for defining an action selector. Indeed, it is easy to perturb q on a small disc
disjoint from the origin in such a way that the negative gradient flow lines of qh
look like in Figure 3: A new degenerate critical point z is created, and the con-
stant orbits at (0, 0) and at z are the only bounded negative gradient flow lines.
But since qh(z) could be either positive or negative, the set {(0, 0), z} contains too
little information for us to conclude that the value of the action selector should be
qh(0, 0) = 0.

If, however, we are allowed to deform the function qh, we can use bounded gra-
dient flow lines to define an action selector that identifies the lowest critical value
that “cannot be shaken off”. More precisely, take a family {hs}s∈R of compactly
supported functions such that hs = h for s small and hs = 0 for s large, and look
at the space U (hs) of bounded solutions of the non-autonomous gradient equation

u̇(s) = −∇qhs(u(s)), s ∈ R.

The boundedness of u is equivalent to bounded energy

E(u) :=

∫

R

|∇qhs (u(s))|2 ds = lim
s→−∞

qhs (u(s))− lim
s→+∞

qhs (u(s))+

∫

R

∂hs

∂s
(u(s)) ds < ∞,

or, since hs = h in the first limit and hs = 0 in the second limit, to the fact that
u(s) is asymptotic for s → −∞ to the following critical level of qh

q−h (u) := lim
s→−∞

qh(u(s))
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x

y

z

(0, 0)

Figure 3. The only bounded gradient flow lines are the constant
orbits at (0, 0) and z.

and for all s large lies on the x-axis and converges for s → +∞ to the origin (the
only critical point of q). The number

min
u∈U (hs)

q−h (u)

is the lowest critical value of qh from which a bounded hs-negative gradient flow
line starts.

In our example from Figure 2, if we take hs = β(s)h with a cut-off function β,
then U (hs) contains no flow line u emanating from the two low critical points p1
or p2 near (0, 1). On the other hand, it is easy to construct a family hs that has a
negative-gradient line u(s) that converges to p1 for s → −∞ and to the origin for
s → +∞. To be sure that we discard all inessential critical values, we therefore
set

σ(h) := sup
hs

min
u∈U (hs)

q−h (u).

In the example, it is quite clear that for every deformation hs there exists a flow
line in U (hs) emanating from the critical point (0, 0), that is, σ(h) = 0 as it should
be. In general, it is not hard to see that σ(h) is a critical value of qh that depends
continuously and in a monotone way on h.

The number σ(h) is the lowest critical value c of qh such that for every defor-
mation hs of h there exists a bounded flow line u ∈ U (hs) starting at a critical
level not exceeding c. Equivalently, σ(h) is the highest critical value c of qh such
that for every critical level c′ < c there exists a deformation hs of h such that all
flow lines of qhs starting at level c′ are unbounded. That is: the whole critical set
strictly below c can be shaken off.

Imitating the above construction, and inspired by the proof of the degenerate
Arnol’d conjecture in [3, §6.4], we can define an action selector for 1-periodic
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Hamiltonians on a closed symplectically aspherical manifold (M,ω) in the following
way. Given H ∈ C∞(T×M) we consider s-dependent Hamiltonians K in C∞(R×
T×M) such that K(s, ·, ·) = H for s small and K(s, ·, ·) = 0 for s large. Following
Floer’s interpretation of the L2-gradient flow of the action functional, we consider
the space U (K) of solutions u ∈ C∞(R× T,M) of Floer’s equation

(2) ∂su+ J(u)
(
∂tu−XK(s, t, u)

)
= 0

that have finite energy

E(u) =

∫

R×T

|∂su|2J < ∞.

Here, J is a fixed ω-compatible almost complex structure on TM and | · |J is
the induced Riemannian norm. The space U (K) is C∞

loc-compact by Gromov’s
compactness theorem. Now define the function

a−H : U (K) → R, a−H(u) := lim
s→−∞

AH(u(s))

and finally define the action selector of H by

AJ(H) := sup
K

min
u∈U (K)

a−H(u),

where the supremum is taken over all deformations K of H as above. The number
AJ (H) is the smallest essential action of H in the following sense: It is the lowest
critical value c of AH (that is, the lowest action of a contractible 1-periodic orbit
of H) such that for every deformation K of H there exists a finite energy solution
of Floer’s equation for K and J that starts at a critical level ≤ c.

In our finite dimensional model, we could have allowed for a larger class of
deformations of the gradient flow of qh, by looking at families hs that for s large
do not depend on s but are not necessarily zero, and by taking the gradient with
respect to any family gs of Riemannian metrics that depend on s on a compact
interval. In the symplectic setting, the role of Riemannian metrics is played by ω-
compatible almost complex structures. We may thus modify the above definition
by looking at functions K with K(s, ·, ·) = H for s small and K(s, ·, ·) independent
of s for s large, and at families Js of ω-compatible almost complex structures that
depend on s on a compact interval. By using these larger families of deformations
we also obtain an action selector, A(H). This has the advantage that A(H) is
manifestly independent of the choice of J .
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Quantum footprints of symplectic rigidity

Leonid Polterovich

(joint work with Laurent Charles)

According to the quantum-classical correspondence, quantum mechanics contains
classical mechanics as the limiting case when the Planck constant tends to 0. In
the talk, I have discussed quantum footprints of symplectic topology of the phase
space, focusing on rigidity phenomena.

First, I presented a link found in [2] between symplectic displacement energy,
a fundamental notion of symplectic dynamics introduced by Hofer [3], and the
quantum speed limit, a universal constraint on the speed of quantum-mechanical
processes discovered by Margolus and Levitin in [4]. In particular, positivity of
displacement energy of open subsets implies that on scales larger than the quantum
one, i.e., of the order ~ǫ with ǫ < 1/2, the speed limit for semiclassical processes
involving semiclassical states is more restrictive than the universal one.

Second, I explained a connection between the Poisson bracket invariant of a
finite open cover of a closed symplectic manifold and the noise-localization un-
certainty relation [5]. Recall that this invariant measures, roughly speaking, the
minimal possible magnitude of Poisson non-commutativity of a partition of unity
subordinated to the cover. In dimension two, optimal bounds on the Poisson
bracket invariant were recently found by Buhovsky, Logonov and Tanny [1]. In
higher dimensions, they are still out of reach.
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The horocycle flow on the moduli space of translation surfaces

Jon Chaika

(joint work with John Smillie, Barak Weiss)

A translation surface is given by a collection of polygons P1, ..., Pj in the plane
so that the sides can be grouped in pairs that are parallel and of equal length.
Identifying these paired sides by translation we obtain a translation surface, which
is a Riemann surface equipped with a singular flat metric. The singular points
of the metric are cone points whose cone angles are in 2πZ. Two translation
surfaces are equivalent if there is a diffeomorphism between them whose derivative
is identically 1 between them. Such objects can be stratified by the orders of the
cone points of the surface to obtain a strata which we denote as H. (Note we are
suppressing the data that determines the strata in our notation.)

A trend in the study of strata of translation surfaces has been to use tech-
niques inspired by the study of homogeneous spaces. A major collection of results
on homogeneous spaces are rigidity results for the unipotent flows, like Ratner’s
Theorems:

Theorem. (Ratner) Let G be a connected Lie group, Γ a lattice in G, X = G/Γ,
and U = {us : s ∈ R} a one-parameter Ad-unipotent subgroup of G.

(1) For any x ∈ X , Ux = Hx is the orbit of a group H satisfying U ⊂ H ⊂ G,
and Hx is the support of an H-invariant probability measure µx.

(2) For any x ∈ X there exists µx so that supp(µx) = Ux and

∀f ∈ Cc(X), lim
T→∞

1

T

∫ T

0

f(usx)ds =

∫

X

fdµx.

The group SL(2,R) has a unipotent subgroup ht =

(
1 t
0 1

)
and the previous

theorem is false for the action of ht on the strata of translation surfaces that have
two cone points each of cone angle 4π. We denote this stratum H and we have:

Theorem 1. There exists a translation surface x and a measure µ so that x /∈
supp(µ) (and so {htx}t∈R

6= supp(µ)) but for all f ∈ Cc(H) we have

lim
T→∞

1

T

∫ T

0

f(htx)dt =

∫
fdµ.

Theorem 2. There is a dense Gδ subset of H, B, so that for all x ∈ B there
exists f ∈ Cc(H) so that

lim
T→∞

1

T

∫ T

0

f(htx)dt does not exist.

Theorem 3. There is a translation surface x ∈ H so that {htx}t∈R
has non-integer

Hausdorff dimension.

Theorem 4. There is a one parameter family of translation surfaces {xs}s∈R+ so

that whenever α < β we have that {htxα}t∈R
is a proper subset of {htxβ}t∈R

.
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The main object in the proof of these results is the tremor of a translation
surface. Given ν a transverse invariant measure to the horizontal foliation on a
translation surface ∪Pi/ ∼ we want to obtain a new translation surface ∪P ′

i / ∼.
We build each P ′

i by taking each side γ of Pi, which is a vector (h, v) in coordinates
and replacing it with the vector (h + sν(γ), v) in coordinates where s ∈ R. The
resulting translation surface is the time s tremor of ∪Pi/ ∼. Note when our
transverse measure comes from (the disintegration of) Lebesgue this agrees with
the horocycle flow. The surfaces in Theorems 1, 3 and 4 are all tremors of surfaces
that have extra symmetries. A key tool in our study is the fact that tremors
commute with the horocycle flow, and the horocycle flow of these surfaces with
extra symmetries can be understood.

Energy Drift and Diffusion Process in the Three-Body Problem

Marian Gidea

(joint work with Maciej Capiński)

1. Introduction

In the context of perturbed Hamiltonian systems, we develop a general method
to show the existence of orbits that drift in energy, as well as of orbits whose
energy exhibits symbolic dynamics. This method allows one to obtain quantitative
information on such orbits – estimates on the range of the perturbation parameter
for which such orbits exist, on the speed of these orbits, and on the Hausdorff
dimension of their initial conditions –, as well as to obtain a description of the
stochastic process that governs the time-evolution of such orbits.

Our method can be applied to concrete models with realistic parameters, under
explicit conditions on the system. These conditions are of topological nature, and
can be verified either analytically or numerically via computer assisted proofs.

We apply our method to the planar elliptic restricted three-body problem,
viewed as a perturbation of the planar circular restricted three-body problem,
with the perturbation parameter ε being the eccentricity of the orbits of the pri-
maries. We prove that, for all suitably small (non-zero) values of ε, there are orbits
whose energy drifts by O(1), at a rate of O(ǫ). We also show the existence of orbits
whose energy exhibits symbolic dynamics, and we estimate that the Hausdorff di-
mension of such orbits is at least 4 in the 5-dimensional extended phase space. In
addition, we show that for any given diffusion process, there exists a set of initial
condition whose time-evolution in energy approximately follows that process.

Our results address some conjectures by Arnold and Chirikov.

2. Main result

In the planar circular restricted three-body problem (PCR3BP), two primary
masses m1,m2 move on circular orbits about their center of mass, and a third
infinitesimal particle, i.e., m3 = 0, moves under the gravitational fields of m1,m2
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without affecting their orbits. The motion of m3 relative to a co-rotating sys-
tem of coordinates, which places m1 at (µ, 0) and m2 at (−1 + µ, 0), where
µ = m2/(m1 +m2), is given by the autonomous Hamiltonian

H0(z) =
1

2
((p1 + q2)

2 + (p2 − q1)
2)− ω(q1, q2).

Here z = (p1, p2, q1, q2), and ω(q1, q2) = 1
2 (q

2
1 + q22) +

1−µ
r1

+ µ
r2
, where r1 =

d(m3,m1), r2 = d(m3,m2). There are 5 equilibrium points for this problem. We
focus on one of them, referred to as L1, which is of saddle-center type, and is
surrounded by (Lyapunov) periodic orbits.
Since the underlying Hamiltonian system is autonomous, the energy function H0

is preserved along trajectories.
In the planar elliptic restricted three body problem (PER3BP), the masses

m1,m2 move on elliptic orbits of eccentricity ε around the center of mass, while
the infinitesimal mass m3 = 0 still moves under the gravitational fields of m1,m2

without affecting their motion. Relative to a rotating-pulsating coordinate system,
which fixes m1,m2 at (µ, 0) and (−1+µ, 0), respectively, the motion of m3 is given
by the non-autonomous Hamiltonian

Hε(z, θ) =
1

2
((p1 + q2)

2 + (p2 − q1)
2)− 1

1 + ε cos θ
ω(q1, q2).

Here θ is the true anomaly, and is taken as the ‘new time’ parameter.
The Hamiltonian of the PER3BP can be written as a small perturbation of the

one for the PCR3BP, i.e.,

Hε(z, θ) = H0(z) + εH1(z, θ; ε).

The energy function Hε is not preserved along trajectories.
We consider a concrete model for the PER3BP, namely the the Neptune-Triton

system. In this case the normalized mass is µ = 0.0002089, and the eccentricity is
ε1 = 1.6 · 10−5.

Theorem 1. Consider the PER3BP model with the parameters from the Neptune-
Triton system. We have the following results:

(1) (Diffusing orbits) For every ε ∈ (0, ε1], there exists a point z (ε) and t(ε) ∈
(0, T/ǫ), such that

H0

(
Φε

t(ε) (z(ε))
)
−H0 (z(ε)) > C,

where C = 2 · 10−9 and T = 5.7× 10−4.
(2) (Symbolic dynamics) Let ε0 = 10−8 < ε1. For any ε ∈ (0, ε0] and any

sequence {Iσ}σ∈N
, Iσ ∈ [2η, C − 2η] such that

∣∣Iσ+1 − Iσ
∣∣ > 2η there

exists a point z and an increasing sequence of times tσ > 0 such that

|(H0 (Φ
ε
tσ (z))−H0(z))− Iσ| < η for all σ ∈ N,

where η = 10−10.
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(3) (Hausdorff dimension) The Hausdorff dimension of the set of points z
which exhibit symbolic dynamics as in (2) is greater or equal to 4 (in the
5 dimensional extended phase space).

(4) (Stochastic behavior) Let µ, σ ∈ R, Y0 ∈ (0, C), and γ > 3
2 . Denote by fε

the first return time to {q2 = 0}. Consider the stochastic processes

Yt := Y0 + µt+ σWt, for t ∈ [0, 1] ,

where Wt is the standard Browian motion.
Then for each 0 < ε < ε0 there exists a set Ωε ⊆ {q2 = 0}, endowed

with the probability measure Pε equal to the normalized Lebesgue measure
on Ωε, so that the stochastic process Xε

t : Ωε → R defined by

Xε
t (z) := H0

(
(fε)

⌈tε−γ⌉ (z)
)
, for t ∈ [0, 1] ,

satisfies

lim
ε→0

Xε
t∧τ

d
= Yt∧τ .

Above, τX := inf {t : Xε
t ≥ C or Xε

t ≤ 0}, τY := inf {t : Yt ≥ C or Yt ≤ 0}
are stopping times, and the convergence is in distribution.

3. Methodology

The main geometric mechanisms relies on following several homoclinic orbits asso-
ciated to a family of Lyapunov orbits around L1, which exist in the PCRT3BP for
ε = 0. In the PER3BP, for ε > 0 small, as we follow the homoclinics, the return
map to a neighborhood (in the extended phase space) of the family of Lyapunov
orbits is either increasing or decreasing the energy.

To obtain orbits that drift in energy, we identify a ‘strip’ in the Poincaré section
{q2 = 0}, corresponding to some range of θ-values, where the return map yields an
increase in energy by O(ε). By repeatedly returning to this strip for O(1/ε)-times,
one can obtain a growth of energy by O(1).

To obtain symbolic dynamics, we identify two ‘strips’ in the Poincaré section
{q2 = 0}, corresponding to two disjoint ranges of θ-values, such that the return
map to one strip yields an increase in energy by O(ε), and the return map to the
other strip yields a decrease in energy by O(ε).

To show that the set of initial conditions that yield symbolic dynamics has
Hausdorff dimension at least 3 in the 4-dimensional Poincaré section (hence at
least 4 in the 5-dimensional extended phase space), we show that this set of initial
conditions projects, relative to some suitable coordinate system, onto a certain
3-dimensional rectangle.

To prove the statement on stochastic behavior, we first construct a random walk
Y ε
t which approaches the chosen Brownian motion with drift Yt = Y0 + µt+ σWt

as ε → 0, and then use symbolic dynamics to obtain orbits whose energy ‘shadow’
the values of Y ε

t .
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To obtain Theorem 1, we first prove some general results on perturbed Hamil-
tonian systems, which show that, if certain topological conditions are satisfied,
then there exist orbits with the desired properties.

To apply those general results to the PER3BP, we verify that the underlying
system satisfies the appropriate topological conditions. This verification is done
via a computer assisted proof. This amounts to performing all algebraic operations
in interval arithmetic, to integrate the differential equations with interval-based
ODE solvers, and to obtain all numerical solution with rigorous bounds.

See [1] for details.

References

[1] M. J. Capinski and M. Gidea, M, Arnold Diffusion, Quantitative Estimates and Stochastic
Behavior in the Three-Body Problem, arXiv preprint arXiv:1812.03665.

Acknowledgement: The research of M.G. was partially supported by NSF grant DMS-1814543.

Emergence of wandering stable open components

Pierre Berger

(joint work with Sebastien Biebler)

Given a holomorphic endomorphism f of a complex manifoldX , the Fatou set con-
sists of the set of points x ∈ X which have a neighborhood U such that (fn|U)n
is normal. In particular the connected components of the Fatou set, called Fatou
components, are mapped into each other under the dynamics. The understand-
ing of complexity of the dynamics on the Fatou set is a problem of fundamental
interest.

When X = P1(C), a celebrated result of Sullivan [1] shows that any rational
function does not have any wandering Fatou component. In higher dimension, the
problem of the existence of a wandering Fatou component was first studied in 1991
in the work of Bedford and Smillie [2] in the context of polynomial automorphisms
of C2. Our first main result is an answer to this problem:

Theorem. There exists a locally dense set of real polynomial automorphisms f of
C2 which display a wandering Fatou component C satisfying:

(1) the real trace C ∩ R2 of C is non-empty,
(2) for every compact set K0 ⊂ C, the union

⋃
n≥0 f

n(K0) is bounded and the

diameter of fn(K0) converges to 0 as n → ∞.

The proof relies on a robust geometric model on parameter family of dynamics. It
implies the existence of a real wandering open stable components at a dense set of
parameters. By open stable component, we mean a maximal connected, open set
of asymptotic points. We prove that this component has a historical behaviour,
and that this model occurs densely among families inside the dissipative Newhouse
domain N r. This allows us to complement the solution of Kiriki-Soma [3] on the
last Taken’s problem from the finitely regular case to the C∞-case:
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Theorem. For every r ∈ [2,∞], there is a dense subset of N r formed by dynamics
f which display a wandering stable open component C0 satisfying:

(1) for every x ∈ C0, the limit set of the orbit of x intersects a horseshoe Λ,
(2) every x ∈ C0 has its sequence (en(x))n≥0 of empirical measures en(x) :=

1
n

∑n−1
i=0 δfi

p(x)
which diverges.

Moreover, in the two latter results, we show that for every x ∈ C (resp. x ∈ C0),
the set of accumulation points of (en(x))n≥0 has its covering number N satisfying:

lim inf
η→0

log logN (η)

− log η
> 0

for the set of probability measures endowed with the Wasserstein distance.
This indicates that the statistical complexity of the dynamics is high. To quan-

tify the complexity of the statistical behavior of typical orbits for differentiable
dynamical systems, the notion of emergence has been introduced in [4]. The lat-
ter inequality confirms the main conjecture of [4] saying that super polynomial
emergence is typical in many senses and in many categories of dynamical systems.
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The spectral recognition of rank one contact forms on closed
three-manifolds

Daniel Cristofaro-Gardiner

(joint work with Marco Mazzucchelli)

A contact form on a (2n+1)-dimensional manifold is a differential one-form λ such
that λ ∧ (dλ)n is a volume form. A contact form determines a canonical vector
field R, called the Reeb vector field, defined by the equations

dλ(R, ·) = 0, λ(R) = 1.

For example, there is a natural contact form on the unit cotangent bundle of any
Riemannian manifold, such that the integral curves of R project to geodesics.

Closed orbits of the Reeb vector field are called Reeb orbits. The spectrum
A(Y, λ) ⊂ R>0 of the pair (Y, λ) is the set of periods of Reeb orbits; the simple
spectrum Asimp(Y, λ) is the set of periods of simple Reeb orbits, in other words
those orbits that are not multiple covers. It is natural to ask to what degree we can
reconstruct λ from A and Asimp; the analogous question in Riemannian geometry,
called length spectrum rigidity, is much studied, see for example [8].
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Define the rank of A(Y, λ) to be the rank of the Z-submodule of R that it
generates. Our results address spectral recognition in the rank one case, where in
dimension 3 it turns out that much can be said:

Theorem 1. [2, 7] Let (Y, λ) be a closed three-manifold with a contact form. Then
the following are equivalent:

• The action spectrum has rank 1.
• Every orbit of the Reeb flow is closed.
• Every Reeb orbit has a common period. (In other words, there exists a
positive real number T such that for any ℓ ∈ Asimp(Y, λ), ℓ divides T .)

Theorem 2. [2]
Let (Y, λ) be a closed three-manifold with a rank one contact form. Then, λ can
be recovered from Asimp and Y : that is, if λ1 and λ2 are two rank one contact
forms on Y such that Asimp(Y, λ1) = Asimp(Y, λ2), then there is a diffeomorphism
Ψ : Y → Y such that Ψ∗λ2 = λ1.

We remark that the fact that the second bullet point in Theorem 1 implies the
third is classical, due to Wadsley [7].

The proofs of Theorem 1 and Theorem 2 are quite different. Theorem 1 uses
a Floer homology for closed three-manifolds with a contact form, called embed-
ded contact homology (ECH), see [6]. ECH is defined in terms of Reeb orbits
and pseudoholomorphic curves, but is canonically isomorphic to Seiberg-Witten
Floer cohomology, and so connects gauge theory and low-dimensional contact and
symplectic topology. It can be used to define a series of spectral invariants which
recover the volume

∫
Y λ ∧ dλ via a kind of Weyl law, called the “volume prop-

erty”, proved in [5]; this is the key fact that allows us to prove Theorem 1, for
other applications of the volume property see [3, 4, 1].

The proof of Theorem 2 is more elementary, and uses the classification of Seifert
fibrations, as well as a Moser trick for recovering contact forms on closed three-
manifolds from their Reeb vector fields.

It is natural to ask to what degree results like the above might hold in higher
dimensions. At present, this certainly seems out of reach, at least in the level
of generality above. Indeed, in dimensions above three, it is not even currently
known whether or not the Reeb vector field associated with a contact form on
a closed manifold must always have a closed orbit; conjecturally this is true, via
the famous “Weinstein conjecture”, but a proof is generally considered far off. In
dimension 3, however, other questions are perhaps more tractable. Here are two
such questions:

Question. Let (Y, λ) be a closed three-manifold with a contact form. What ranks
are possible? In the rank 2 case, must it be the case that there are exactly two
geometrically distinct Reeb orbits?

Concerning the first question here, M. Hutchings has asked whether or not in
particular the only possible ranks are one, two, or infinity, in analogy with [4].
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Stable multi-particle choreographies in repelling potentials.

Dmitry Turaev

(joint work with Vered Rom-Kedar)

The classical approach to the ergodicity problem has been founded in the works
of Sinai. In modern terms, the idea going back to Boltzmann is that the gas of
hard spheres is a universal model for many-particle systems in the limit of high
temperature, so proving the ergodicity for this particular system will justify the
ergodicity assumption for a large class of physical systems that are modeled by
it. Sinai’s program for proving the ergodicity of the Boltzmann gas is based on
exploring the special hyperbolic structure in the phase space, which stems from
the convex shape of the colliding spheres. However, we show that practically any
smooth approximation to the Boltzmann gas, with any number of particles and
at arbitrarily high energies, can exhibit a positive measure set of stable motions
(analogues of the so-called choreographies from the Celestial Mechanics) for which
no particle ever comes close to a collision with others. Thus, the main argument
(instability due to collisions) behind the possible ergodicity of the Boltzmann gas
becomes invalid once the interaction potential gets smoothed.

Let a single-particle motion be described by a Hamiltonian H0(p, q). One can
consider a system of any number N of identical particles and introduce an interac-
tion potential V , so the multi-particle Hamiltonian will be

∑
j=1,...,,N H0(pj , qj)+

ε
∑

k 6=j V (qk − qj), where ε is small. We require V to be bounded from below
but allow it to be infinite at qk = qj , i.e., the interaction is weak except for the
moments of collision where the repulsion forces become strong. This is a general
model for the motion of particles in a repelling potential when the kinetic energy is
sufficiently high. Let a single particle system have a stable (elliptic) periodic orbit
(q(t), p(t)). We show that for practically every choice of the interaction potential V
the multi-particle system has a positive measure set of quasi-periodic orbits close
to {(qj , pj) = (q(t + θj), p

(t + θj))}, j = 1, . . . , N , where the phases (θ1, . . . , θN)
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minimise a certain averaged potential. We prove a similar result at all sufficiently
high energies for a system of interacting particles confined in a bounded domain
D, provided the billiard in D is integrable or has a KAM-torus. This will show the
non-ergodicity of systems of any number of interacting particles in a rectangular
box at arbitrarily high energies. To establish the same for dispersive domains, we
use our old result that elliptic periodic orbits can be created by smoothing the
billiard potential. The measure of the set of these particular choreographic orbits
goes to zero very fast as N grows, so the idea here is just to show, as a matter of
principle, that multi-particle systems can avoid collisions (hence, avoid the ergodi-
sation) with positive probability at any energy and for any number of particles. On
the other hand, the probability to stay near the choreographic regimes for times
longer than the mean free-flight time does not automatically need to be very small
at large N – this question deserves a further study.

Floer homology and Hamiltonian homeomorphisms

Sobhan Seyfaddini

(joint work with Buhovsky-Humilière and Le Roux-Viterbo)

1. Main Result

Let (M,ω) be a closed and connected symplectic manifold and let Ham(M,ω) be
the group of Hamiltonian diffeomorphisms of (M,ω). We denote by Ham(M,ω)
the C0 closure of Hamiltonian diffeomorphisms of (M,ω); this is often referred to
as the group of Hamiltonian homeomorphisms of (M,ω).

Our goal is to show that using barcodes and persistence homology one can
indirectly define (filtered) Floer homology for Hamiltonian homeomorphisms, in
the case where (M,ω) is symplectically aspherical which means that ω and the
first Chern class c1 vanish on π2(M). Examples of aspherical symplectic manifolds
include tori and surfaces of positive genus.

Barcodes: A barcode B = {Ij}1≤j≤N is a finite collection of intervals (or bars)
Ij = (aj , bj ], aj ∈ R, bj ∈ R∪{+∞}. The space of barcodes can be equipped with
the so-called bottleneck distance which will be denoted by dbottle. These notions,
which first appeared in topological data analysis (see for example [9, 7, 11, 17, 6,
33, 3, 10, 27, 8]), have found many interesting applications in symplectic dynamics,
following their introduction to the field, by Polterovich and Shelukhin [28].

As explained in the articles of Polterovich-Shelukhin [28] and Usher-Zhang [32],
using Hamiltonian Floer homology one can associate a canonical barcode B(H) to
every Hamiltonian H . The barcode B(H) encodes a significant amount of infor-
mation about the Floer homology of H : it completely characterizes the filtered
Floer complex of H up to quasi-isomorphism, and hence it subsumes all of the pre-
viously constructed filtered Floer theoretic invariants. For example, the spectral
invariants of H correspond to the endpoints of the half-infinite bars in B(H).
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Given a barcode B = {Ij}1≤j≤N and c ∈ R define B+c = {Ij+c}1≤j≤N , where
Ij + c is the interval obtained by adding c to the endpoints of Ij . Let ∼ denote
the equivalence relation on the space of barcodes given by B ∼ C if C = B + c for

some c ∈ R; we will denote the quotient space by ̂Barcodes . Now the bottleneck

distance descends to a distance on ̂Barcodes which we will continue to denote by
dbottle. If H,G are two Hamiltonians the time–1 maps of whose flows coincide,

then B(H) = B(G) in ̂Barcodes . Hence, we obtain a map B : (Ham(M,ω), dC0) →
( ̂Barcodes , dbottle). The question of continuity of the mapping B was first addressed
by Le Roux, Viterbo, and the third author in [25] where it is proven that B is
continuous and extends to Ham(M,ω) when M is a surface. Our next result
states that the same is true for any closed and symplectically aspherical manifold.

Theorem 1.1. Let (M,ω) be closed, connected, and symplectically aspherical.
The mapping

B : (Ham(M,ω), dC0) → ( ̂Barcodes , dbottle)

is continuous and extends continuously to Ham(M,ω).

The above result has been extended to certain non-aspherical manifolds such as
CPn, by Shelukhin [31], and negatively monotone manifolds by Kawamoto [22].

2. Dynamical Applications

We will now list some dynamical applications of Theorem 1.1.

2.1. The Arnold conjecture. We will now explain how Theorem 1.1 allows us
to present a generalization of the Arnold conjecture which continues to hold for
Hamiltonian homeomorphisms.

The (homological) Arnold conjecture states that a Hamiltonian diffeomorphism
of a closed and connected symplectic manifold (M,ω) must have at least as many
fixed points as the cup length ofM . Cup length, denoted by cl(M), is a topological
invariant of M which is defined as follows:1

cl(M) := max{k + 1 : ∃ a1, . . . , ak ∈ H∗(M), ∀i, deg(ai) 6= dim(M)

and a1 ∩ · · · ∩ ak 6= 0}.
This version2 of the Arnold conjecture was proven, for Hamiltonian diffeomor-
phisms, on CPn [14, 15], negatively monotone manifolds [23], and symplectically
aspherical manifolds [13, 20, 29].

It was proven by Matsumoto [26] that Hamiltonian homeomorphisms of surfaces
satisfy the Arnold conjecture; see also [16, 24]. However, we showed in [5] that

1Here, ∩ refers to the intersection product in homology. Cup length can be equivalently

defined in terms of the cup product in cohomology.
2The original version of the Arnold conjecture, in which the lower bound for the number of

fixed points is predicted to be the minimal number of critial points of a smooth function on M ,
has also been established on ashperical manifolds; see [29].
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every closed and connected symplectic manifold of dimension at least 4 admits a
Hamiltonian homeomorphism with a single fixed point.

This is where Theorem 1.1 enters the scene: the result allows us to define the
action spectrum of a Hamiltonian homeomorphism (upto a shift). In particular,
we can now make sense of the total number of distinct values in the action spectrum
of a Hamiltonian homeomorphism φ: This is simply the total number of distinct
endpoints in the barcode B(φ). The theorem below tells us that, in spite of the
counter-example from [5], the cup length estimate from the homological Arnold
conjecture survives if we include in the count #Endpoints(B(φ)), which denotes
the total number of (distinct) endpoints of the bars in B(φ).

We need the following notion before stating the result: A subset A ⊂ M is
homologically non-trivial if for every open neighborhood U of A the map i∗ :
Hj(U) → Hj(M), induced by the inclusion i : U →֒ M , is non-trivial for some
j > 0. Clearly, homologically non-trivial sets are infinite.

Theorem 2.1. Let (M,ω) denote a closed, connected and symplectically
aspherical manifold. Let φ ∈ Ham(M,ω) be a Hamiltonian homeomorphism. If
#Endpoints(B(φ)) is smaller than cl(M), then the set of fixed points of φ is ho-
mologically non-trivial, hence is infinite.

In the smooth case, Theorem 2.1 was established by Howard [21], and our proof
is inspired by his. For a smooth Hamiltonian diffeomorphism, endpoints in B(φ)
correspond to actions of certain fixed points. Therefore, Theorem 2.1 is a gener-
alization of the Arnold conjecture in the smooth setting.

A version of the above theorem has been established on more general symplectic
manifolds by Kawamoto [22].

2.2. The displaced disks problem. The displaced disks3 problem, posed by
F. Béguin, S. Crovisier, and F. Le Roux, asks if a C0 small Hamiltonian homeo-
morphism can displace a large symplectic ball. We will show that the answer is
negative on all symplectically aspherical manifolds. The case of closed surfaces
was resolved in [30].

By a symplectic ball we mean the image of a symplectic embedding i : (B,ω0) →
(M,ω), where (B,ω0) denotes a closed Euclidean ball equipped with the standard
symplectic structure. If we know that B has radius r, we then refer to its image
as a symplectic ball of radius r.

Theorem 2.2. Let (M,ω) be closed, connected and symplectically aspherical. For
every r > 0, there exists ǫ > 0 with the following property: if φ ∈ Ham(M,ω)
displaces a symplectically embedded ball of radius r, then dC0(Id, φ) > ǫ.

The above result has been extended to certain non-aspherical manifolds such as
CPn, by Shelukhin [31], and negatively monotone manifolds by Kawamoto [22].

3The original question was posed in the two-dimensional setting, whence the use of the word
“disk”.
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2.3. Rokhlin groups and almost conjugacy. We will be addressing the fol-
lowing question of Béguin, Crovisier, and Le Roux: Does Ham(M,ω) possess a
dense conjugacy class? The fact that the answer to this question is negative is a
consequence of Theorem 2.2. The case of surfaces was resolved in [12, 30]. The
question of existence of topological groups which possess dense conjugacy classes
is of interest in ergodic theory; see [18, 19]. Glasner and Weiss refer to such groups
as Rokhlin groups. An interesting example of a Rokhlin group is the identity com-
ponent of the group of homeomorphisms of any even dimensional sphere equipped
with the topology of uniform convergence. For further examples see [18, 19].

Theorem 2.2 has the following corollary.

Corollary 2.3. Ham(M,ω) is not a Rokhlin group when M is symplectically as-
pherical.

The above result has been extended to certain non-aspherical manifolds such as
CPn, by Shelukhin [31], and negatively monotone manifolds by Kawamoto [22].
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Symbolic dynamics for Reeb flows

Barney Bramham

(joint work with Umberto Hryniewicz, Gerhard Knieper)

Suppose that a 3-dimensional Reeb flow admits the existence of a so called transver-
sal foliation. What can one conclude about the dynamics of the Reeb flow from
this additional structure? This talk reports on work in progress in which we use
this structure to obtain symbolic dynamics. As a consequence we conclude that
when the periodic orbits are non-degenerate then zero topological entropy implies
the existence of a global surface of section, on the complement of a finite collection
of invariant tori, with a well defined smooth return map.
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The definition of a transversal foliation was introduced in [10] by Hofer-Wysocki-
Zehnder as a generalization of a Poincaré surface: LetM be a closed three-manifold
with a non-vanishing vector field X .

Definition 1. A transversal foliation for (M,X) is a pair (F ,P), where P is a
finite collection of periodic orbits of the flow of X, called the spanning orbits, and
F is a smooth foliation of the complement M\P by embedded punctured Riemann
surfaces transverse to X, such that the closure of each leaf in M is embedded and
each boundary circle is in P.

When can we assume existence of a transversal foliation? There is no reason to
expect existence in general, but when X is the Reeb vector field of a contact form
λ on M then Hofer-Wysocki-Zehnder showed that transversal foliations arise as
projections of pseudoholomorphic curves in R × M down to M and they used
this to prove remarkable existence results. For example, any star-shaped energy
surface in R4 for which the periodic orbits are non-degenerate admits a transversal
foliation [10] to which our results apply. In the restricted, circular, planar, three
body problem for energies just above the first Lagrange point (i.e. lowest energies
for which there can exist trajectories between neighborhoods of the two primary
bodies) the regularized energy surfaces are of Reeb type [1] and there is theoretical
evidence [5, 6] and numerical evidence [9] that transversal foliations exist.

In any case, assuming a transversal foliation exists, there is considerable struc-
ture: The foliation of M\P has a skeleton of isolated (so called rigid) leaves in F
that enclose a finite number of three dimensional chambers

Ω1, . . . ,Ωr.

Each chamber Ω = Ωi has two incoming A,B and two outgoing C,D boundary
surfaces. The incoming, respectively outgoing, surfaces meet at a hyperbolic span-
ning orbit hin, respectively hout. The flow through the chamber Ω thus gives one
a map ϕ from the incoming surface A∪B to the outgoing surface C ∪D, which is
defined except at some points which never exit the chamber and are asymptotic to
hout. Thus when the flow exits a chamber it gets split up in two directions; some
portion of the trajectories exit through C and some through D, and then again
through the next chambers, and so on. This can lead to a complicated mixing
process (not necessarily in the technical sense). The basic possibilities can be con-
veniently captured by forming a graph G whose vertices are the rigid leaves and
whose edges correspond to the existence of a single connecting trajectory. There
is an associated shift of finite type corresponding to permissable bi-infinite paths
in G. If one does this correctly then positivity of the entropy of the shift space is
equivalent to some invariant manifolds between some hyperbolic spanning orbits
meeting without coinciding exactly.

All of this has essentially been known for some time. The new insight is the
following. It turns out that one does not need to treat separately the different cases
where invariant manifolds have non-transverse intersections of finite or infinite
order, or one-sided intersections, rather than transverse intersections. Indeed all
cases lead to a continuous surjective map, the ‘coding map’, from a compact
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invariant subset of the Reeb flow to the shift space of finite type associated to G.
This allows to conclude positive entropy of some time-reparameterization of the
Reeb flow whenever there is not a globally defined return map to the leaves, and
also positive entropy for the Reeb flow itself:

Theorem 2. Suppose a Reeb flow on a closed three-manifold M admits a regular
transversal foliation with non-degenerate spanning periodic orbits. Then either:

(i) There is a global return map (on the complement of a finite collection of
invariant tori).

(ii) Or there are trajectories which visit the chambers in all permissable ways
determined by the graph G and the topological entropy of the Reeb flow is
strictly positive.

The first option occurs precisely when the topological entropy of the shift space of
finite type associated to the graph G is vanishing.

Here a periodic orbit is called non-degenerate if 1 is not an eigenvalue for the
linearized first return map. The transversal foliation in Theorem 2 does not have
to arise from pseudo-holomorphic curves.
The mechanism that ensures surjectivity of the coding map is that the map ϕ
from the incoming boundary to the outgoing boundary of a chamber is either very
nicely behaved, corresponding to conclusion (i), or there is an infinite amount of
“stretching” going on, which corresponds to conclusion (ii). This is illustrated in
Figure 1.

flow through 

a moduli space

Figure 1. On the left the two incoming rigid leaves A and B.
On the right the two outgoing leaves, indicating how the points
from A and B get “mixed” up. This phenomenon appears even
if stable and unstable manifolds have only a topological crossing,
and allows us to construct trajectories with arbitrary permissable
prescribed orbit itinaries.

Let us close with some implications for Reeb flows on the tight three-sphere. The
symplectic methods in [10] establish the existence of a regular transversal foliation,
whose leaves have genus zero, for the Reeb flow for a C∞-generic class of tight
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contact forms on S3, namely all those contact forms whose periodic orbits are
non-degenerate. From this one obtains:

Corollary 3. Suppose that λ is a tight contact form on S3 all of whose periodic
orbits are non-degenerate. If the topological entropy of the Reeb flow vanishes then
the Reeb flow admits a global surface of section, with a smooth return map, on the
complement of a finite number of invariant tori.

This points in the direction of a structure theorem for three dimensional Reeb flows
in a similar spirit to the results of Franks-Handel [8] for zero entropy Hamiltonian
surface diffeomorphisms, see also LeCalvez-Tal [13], to conclude finer information.
In some sense a special case is:

Corollary 4. Suppose that λ is a tight contact form on S3 all of whose periodic
orbits are non-degenerate and at least 3 distinct simple periodic orbits. Then a
dense orbit implies positive topological entropy.

Note that the famous Katok examples [11] yield non-degenerate Reeb flows on S3

with zero entropy and dense orbits and exactly two simple periodic orbits. Thus
the assumption of three periodic orbits cannot be reduced to two.

Corollary 5. Suppose that λ is a tight contact form on S3 all of whose periodic
orbits are non-degenerate. Then the Reeb flow has either 2 or infinitely many
simple periodic orbits.

This is not a new statement: When the flow is Morse-Smale this statement was
proven by Hofer-Wysocki-Zehnder in [10], also using finite energy foliations. For
a very large class of contact manifolds, including all contact structures on S3,
Cristofaro-Gardner-Hutchings-Pomerleano [4] recently proved the above “two or
infinite” statement without the Morse-Smale assumption using embedded contact
homology. The degenerate case is still an open question.

The idea of the proof of Corollary 5 using Theorem 2 goes as follows. If there are
finitely many periodic orbits then by classical results of Katok [12] the topological
entropy vanishes, so that by Theorem 2 we obtain a global surface of section S with
genus zero. It turns out that this surface of section either contains a disk, in which
case Franks’ theorem [7] applies, or some component of S is an annulus and the
return map is a twist map, or some component has negative Euler characteristic,
in either case there are infinitely many periodic points.

A difficult question is whether the non-degeneracy assumptions in Corollaries
3, 4 and 5 can be weakened or removed. There is a history of works showing that
flows with certain hyperbolicity assumptions can be related to symbolic dynamics.
For example under global hyperbolicity assumptions [16, 2, 17, 3, 15] a conjugacy
rather than semi-conjugacy to a shift of finite type is established, and in three
dimensions [14] where the hyperbolicity assumption is only positivity of the topo-
logical entropy, see [14] for more references. Our assumption that the spanning
orbits of the transversal foliation are non-degenerate can perhaps be considered as
our “hyperbolicity assumption”. This is comparitively weak, and the conclusions
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are correspondingly weaker, namely that our coding map will in general be very
non-injective.

It remains to see how the resulting algebraic information can be further ex-
ploited. A natural, but presumably very difficult, question is whether it is possible
to encode also the measure of the set of points entering a given chamber which
then exit through a particular part of the boundary and to understand how this
extends to arbitrary finite sequences of chambers. This might be a step towards
saying something about the metric entropy.
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Spectral determination of a class of open dispersing billiards

Martin Leguil

(joint work with Péter Bálint, Jacopo De Simoi, Vadim Kaloshin)

We consider billiard tables D ⊂ R2 given by D = R2 \⋃m
i=1 Oi, for some integer

m ≥ 3, where each Oi is a convex domain with sufficiently smooth boundary ∂Oi

(at least of class C3; in some places, we will actually assume the boundary to
be analytic). We refer to each of the Oi’s as obstacle, and parametrize ∂Oi in
arclength. We assume that the non-eclipse condition holds, i.e., that the convex
hull of any two obstacles is disjoint from the other m− 2 obstacles. The set of all
billiard tables obtained by removing from the plane m strictly convex obstacles
with C3, resp. analytic boundary satisfying the non-eclipse condition will be
denoted by B(m), resp. Bω(m) ⊂ B(m).

Fix D = R2 \⋃m
i=1 Oi ∈ B(m). We denote the collision space by

M = ∪iMi, Mi =
{
(q, v), q ∈ ∂Oi, v ∈ R2, ‖v‖ = 1, 〈v, n〉 ≥ 0

}
,

where n is the unit normal vector to ∂Oi pointing inside D. Each x = (q, v) ∈ M
can be identified with a pair (s, r) ∈ R× [−1, 1], where s is the associated arclength
parameter, ϕ is the oriented angle between n and v, and r := sin(ϕ). Whenever
it is well-defined, the image by the billiard map F of a pair (s, r) of parameters is
the new pair (s′, r′) associated to the next collision of the billiard trajectory with
∂D; the map F is symplectic for the form ds ∧ dr (in fact, exact symplectic).

It is clear that a lot of trajectories will escape to infinity. In fact, due to the
convexity of the obstacles, the set of points x = (s, r) whose iterates Fn(x) under
the billiard map are well-defined for any n ∈ Z is homeomorphic to a Cantor setNE
(see e.g. [4, 7]). The restriction of the dynamics to NE is conjugated to a subshift
of finite type associated to the transition matrix A := (1− δij)1≤i,j≤m ∈ Mm(R).
In other words, any admissible word (ςj)j ∈ {1, · · · ,m}Z – i.e., such that ςj+1 6= ςj
for all j ∈ Z – can be realized by a unique orbit.1 In particular, any periodic orbit
of period p ≥ 2 can be represented by an admissible word σ∞ := . . . σσσ . . . for
some finite admissible word σ = (σ1σ2 . . . σp) ∈ {1, · · · ,m}p. We denote by Adm
the set of finite admissible words σ ∈ ∪p≥2{1, · · · ,m}p.

The Marked Length Spectrum MLS(D) of D is defined as the function

L : Adm → R+, σ 7→ L(σ),
where L(σ) is the length of the closed trajectory labeled by σ. In the following, an
object is said to be a MLS-invariant if it can be obtained by the sole knowledge of
the Marked Length Spectrum. We are interested in the following inverse problem:

MLS(D) ❀ “Geometry” of D?

Note that in finite regularity, the information given by MLS(D) is insufficient
to reconstruct the geometry of the whole table; at best, we can hope to describe the
geometry near points associated to an arclength parameter s such that (s, r) ∈ NE

1Each symbol ςj ∈ {1, · · · ,m} corresponds to the obstacle Oςj where the bounce happens.
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for some r ∈ [−1, 1]. In a first work [1], we show that it is indeed possible to extract
some information from MLS(D) on the local geometry near very specific points.
In [3], we assume that the boundary of the obstacles is analytic, i.e. D ∈ Bω(m),
in such a way that local geometric information may determine the whole table; in
this case, under some symmetry and (mild) non-degeneracy assumptions, we show
that MLS(D) does determine D up to isometries.

1.1. Results in finite regularity. Let us fix m ≥ 3 and D = R2 \ ⋃m
i=1 Oi ∈

B(m). Given a periodic point x = (s, r) ∈ NE , the basic idea is to combine the
information given by a sequence (xn)n≥0 of periodic points xn ∈ NE accumulating
x in order to extract some geometric quantities at the point of arclength parameter
s. Thanks to the symbolic coding recalled above, this amounts to considering
periodic orbits encoded by longer and longer finite admissible words obtained by
truncating the coding of x.

One major issue is that a priori, the information obtained in this way is “av-
eraged” over the different points in the orbit of x; yet, in [1], we found out some
mechanism which allows us to distinguish between the two points in 2-periodic
orbits. More precisely, let us consider a 2-periodic orbit encoded by a word
σ = (σ1σ0) ∈ {1, · · · ,m}2, σ0 6= σ1. Let τ1 ∈ {1, · · · ,m} \ {σ0, σ1}, and set
τ := (τ1σ0). We consider the sequence of periodic orbits encoded by the words
hn := τσn ∈ Adm, n ≥ 0; as n → +∞, their points accumulate the points of some
orbit h∞ that is homoclinic to the orbit encoded by σ.

Theorem 1 (Bálint-De Simoi-Kaloshin-Leguil [1]). We denote by R0, R1 > 0 the
respective radii of curvature at the points with symbols σ0, σ1, and let λ < 1 be the
smallest eigenvalue of DF2 at the points of σ. For n ≫ 1, it holds:

(1) L(τσn)− (n+ 1)L(σ)− L∞ = −C · Q
(

2R0

L(σ) ,
2R1

L(σ)

)
λn +O(λ

3n
2 ), n even,

(2) L(τσn)− (n+ 1)L(σ)− L∞ = −C · Q
(

2R1

L(σ) ,
2R0

L(σ)

)
λn +O(λ

3n
2 ), n odd,

for some real number L∞ = L∞(σ, τ) ∈ R, some constant C = C(σ, τ) > 0, and
some explicit quadratic form Q : R× R → R.

The reason why the parity of n affects the estimates is due to the “palindromic”
symmetry of hn: indeed, each point in ∂D with arclength parameter s such that
(s, r) belongs to the orbit hn for some r ∈ [−1, 1] is seen twice – as (s,−r) also
belongs to hn – except when r = 0; this is the case for exactly two points in the
orbit hn, associated to perpendicular bounces. Among those two points, only one
contributes to the first order term in the above estimates, and it is either on the
boundary of the obstacle Oσ0

or of the obstacle Oσ1
depending on the parity of n.

Theorem 1 has the following geometric consequence:

Corollary 2 (Bálint-De Simoi-Kaloshin-Leguil [1]). The radii of curvature at the
bouncing points of periodic orbits of period two are MLS-invariants.
Moreover, by Theorem 1, the Lyapunov exponent − 1

2 logλ of σ is also a MLS-
invariant. More generally, let us consider a periodic orbit of period p ≥ 2, encoded
by some finite admissible word σ̃ ∈ {1, · · · ,m}p. The Lyapunov exponent LE(σ̃) of
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σ̃ is equal to − 1
p log λ̃, where λ̃ = λ̃(σ̃) < 1 is the smallest eigenvalue of DFp at

the points in the orbit. By adapting the construction explained above, we get:

Theorem 3 (Bálint-De Simoi-Kaloshin-Leguil [1]). The Lyapunov exponent of
each periodic orbit is a MLS-invariant.

1.2. MLS-determination of analytic billiard tables. Let us now consider the
case where the boundary of the table is analytic. Fix m ≥ 3, and let Bω

sym(m) ⊂
Bω(m) be the subset of all billiard tables D ∈ Bω(m) such that:

• the jets of the curvature function K are the same at the endpoints of the
2-periodic orbit (12);

• the jets of K|∂O1
, K|∂O2

are even, assuming that 01 ∈ ∂O1, 02 ∈ ∂O2 are
the arclength parameters of the endpoints of the orbit (12).

In the analytic setting, and modulo the partial Z2 × Z2-symmetry assumption
introduced above, we can show:

Theorem 4 (De Simoi-Kaloshin-Leguil [3]). There exists an open and dense set
of billiard tables B∗

sym(m) ⊂ Bω
sym(m) so that if D ∈ B∗

sym(m), then the geometry
of D is entirely determined (modulo isometries) by MLS(D).

The open and dense condition we require is actually a non-degeneracy condition:
roughly speaking, it means that after a change of coordinates, the first coefficient
in the expansion of the dynamics does not vanish.2

It is a standard fact that any continuous deformation of smooth domains which
preserves the (unmarked) Length Spectrum LS(D) automatically preserves
MLS(D) (see e.g. [8, Proposition 3.2.2]). A family (Dt)t∈(−1,1) is an iso-length-
spectral family of billiards in B∗

sym(m) if each Dt is in B∗
sym(m), the map (−1, 1) ∋

t 7→ Dt is continuous, and LS(Dt) = LS(D0), for all t ∈ (−1, 1). Therefore, we
obtain:

Corollary 5 ([3]). Any iso-length-spectral deformation in B∗
sym(m) is isometric.

Our results are an analog of the result of Colin de Verdière [2] for the class of
chaotic billiards under consideration, or an analog in terms of the Marked Length
Spectrum of the results of Zelditch [9, 10, 11] (see also [5]).

Let us give some ideas of the proof. Fix D ∈ B∗
sym(m). For the 2-periodic

σ = (12), we consider the same sequence (hn)n≥0 of periodic orbits accumulating
some orbit h∞ homoclinic to σ. In a first time, we show that after a canonical3

symplectic change of coordinates, the dynamics of the square F2 of the billiard
map in a neighbourhood of the trajectory h∞ can be replaced with two maps:
the Birkhoff Normal Form N = N(σ) of F2 associated to σ, and some gluing
map G = G(σ, τ). Working with this new system of coordinates, we show that
for each integer n ≥ 0, the Lyapunov exponent of hn can be expanded as a series

2More precisely, we ask that the first coefficient of a certain Birkhoff Normal Form is non-zero.
3i.e., such that the change of coordinates respects the billiard symmetry.
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(reminiscent of the asymptotic expansion of the lengths obtained in [6]):

2λn cosh(2(n+ 1)LE(hn)) =

+∞∑

p=0

p∑

q=0

Lq,pn
qλnp,

for some sequence (Lq,p)p=0,··· ,+∞
q=0,··· ,p

, and where λ = λ(σ) < 1. In particular, each co-

efficient Lq,p is a MLS-invariant. Then, we show that modulo the non-degeneracy
condition mentioned previously, it is possible to extract enough information from
(Lq,p)p,q to recover N and the differential DG at some points in hn. In fact, the
MLS-determination of N does not require any symmetry assumption, and the
same procedure can be carried out for more general palindromic periodic orbits.
Following [2], and thanks to the Z2×Z2-symmetry of {O1,O2}, we then show that
the jet of K can be read off from the coefficients of N , which by analyticity deter-
mines entirely the geometry of O1,O2. Finally, we explain how the information
given by the differential of the gluing map G can be utilized in order to recover
the geometry of the other obstacles (note that no symmetry assumption is needed
for this last step).
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Dazord and N. Desolneux-Moulis (eds.), Géométrie Symplectique et de Contact : Autour du
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Barcodes and small eigenvalues of the Witten Laplacian

Claude Viterbo

(joint work with D. Le Peutrec, F. Nier)

Let f be a smooth function on a closed Riemannian manifold (M, g). On one hand,
we define the Barcode or Barannikov complex of this function. When f is Morse,
the Barannikov complex is chain equivalent to the Morse complex, but has the
property that the boundary operator sends each generator to an other generator or
to 0, and each generator has at most one preimage. Thus the Barannikov complex
yields a matching between pairs of critical values, and connecting a matched pairs
by a bar yields the barcode of f . This can be shown to extend to any continuous
function. On the other hand if ∆f,h is the Witten Laplacian on differential forms,

obtained by setting df,h = e−
f
hhde−

f
h , d∗f,h its adjoint and

∆f,h = (df,h + d∗f,h)
2 = df,hd

∗
f,h + d∗f,hdf,h

As h goes to 0, the small eigenvalues of ∆f,h have been studied by many authors,
starting from Witten (in fact even earlier in the case of functions). We refer to
[1] for a complete bibliography. The asymptotic value of the eignevalues is for a
Morse function, of the type P (h)eC/h where P (h) depends on the Hessian of f . In
[1] we proved that C is the length of the bar corresponding for p-forms, to critical
points of index p. This implies that if λj(h) is asmall eigenvalue, we have

lim
h→0

h logλj(h) = f(y)− f(x)

where f(y), f(x) are critical values. We prove that this last result extends to the
general case, where f does not need to be Morse, but has only finitely many critical
values. In [2] we conjecture that this should still hold in general as follows : a
barcode for a general smooth function will have only finitely many bars of size
greater than ε. As a result, eigenvalues λ(h) of the order O(e−

ε
h ) should satisfy

lim
h→0

h logλ(h) = b

where b is a bar of size larger than ε
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Some aspects of topological dynamics and aperiodic order

Tobias Jäger

(joint work with M. Baake, G. Fuhrmann, F. Garćıa-Ramos, E. Glasner, D. Lenz
and others.)

A topological dynamical system is the continuous action of a topological group G
on a topological space X by homeomorphisms. For simplicity, we restrict here to
the case G = Z, so that the action is given by the iterates of a single homeomor-
phism T . Moreover, we assume throughout thatX is compact metric. Then (X,T )
is called strictly ergodic if it is uniquely ergodic (i.e. admits a unique T -invariant
probability measure on X) and minimal (i.e. every orbit is dense). Strictly ergodic
systems appear naturally in a variety of contexts. For instance, the Jewitt-Krieger-
Theorem asserts that every ergodic measure-preserving dynamical system has a
strictly ergodic model (via isomorphism, that is, a measurable change of coor-
dinates). In the case of discrete spectrum, the Halmos-Von Neumann Theorem
states that this model can be chosen to be a rotation on a compact group.

However, from the topological viewpoint, a strictly ergodic action with discrete
spectrum may be very different from a group rotation (e.g. [1, 2, 3, 4, 5, 6]).
In fact, a natural hierarchy with different levels of complexity for such systems
can be formulated with respect to the maximal equicontinuous factor (MEF) of
the system. The latter is the largest possible topological factor of the system
that is equicontinuous [7, 8]. In the following, we always denote the MEF of
(X,T ) by (Xeq, Teq) and the corresponding factor map by πeq : X → Xeq. If
(X,T ) is either minimal or uniquely ergodic (or both), then (Xeq , Teq) is both
minimal and uniquely ergodic, and we denote its unique invariant measure by
µeq. When (X,T ) is uniquely ergodic with invariant measure µ and (X,T, µ)
and (Xeq, Teq, µeq) are measure-theoretically isomorphic, we say πeq is isomorphic.
Based on the invertibility properties of the map πeq, strictly ergodic systems with
discrete spectrum may be classified as follows.

πeq is a conjugacy (1-1)
⇒ πeq is regular (almost surely 1-1, that is, 1-1 on a set of full measure)
⇒ πeq is isomorphic and almost 1-1 (that is, 1-1 on a residual subset)
⇒ πeq is isomorphic
⇒ (X,µ, T ) has discrete spectrum.

Recent work by various authors has aimed to provide equivalent dynamical
characterisations for the different levels of this hierarchy. Thereby, discrete spec-
trum is known to be equivalent to the existence of a dense set of L2-eigenfunctions
by the classical result von Halmos-Von Neumann. More recently, results of Li, Tu
and Ye [1] and of Downarowicz and Glasner [3] showed that πeq is isomorphic if
and only if the system is mean equicontinuous (as introduced by Fomin in 1951
[9]), that is, for all ǫ > 0 there exists δ > 0 such that d(x, y) < δ implies

dB(x, y) = lim sup
n→∞

n−1∑

i=0

d(T ix, T iy) < ǫ .
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Here, dB is called the Besicovitch pseudometric on X , which is a metric if and only
if (X,T ) is equicontinuous. In similar spirit, Garćıa-Ramos characterized discrete
spectrum by using the related weaker notion of µ-mean equicontinuity [2].

In order to characterise the second and third level of the above hierarchy, we
introduce the following notions. We say (X,T ) is diam mean equicontinuous if for
all ǫ > 0 there exists δ > 0 such that for all x ∈ X

lim sup
n→∞

n−1∑

i=0

diam(T i(Bδ(x))) < ǫ .

Further, we call (X,T ) frequently stable if for every ǫ > 0 and x ∈ X there exists
δ > 0 such that

D
{
i ∈ Z+ : diam(T iBδ(x)) > ǫ

}
< 1 ,

where D(N) = lim supn→∞(♯N ∩ [1, n])/n denotes the upper asymptotic density
of a subset n ⊆ N.

Theorem 1 (Garćıa-Ramos/Ye/J., in preparation). Suppose (X,T ) is a minimal
topological dynamical system. Then the following are true:

(i) (X,T ) is regular if and only if it is diam mean equicontinuous.
(ii) (X,T ) is almost 1-1 and isomorphic if and only it is mean equicontinuous

and frequently stable.

Further dynamical properties can be related to the above hierarchy. Here, we
concentrate on the notion of tameness, as studied for instance by Glasner in [5, 10].
A pair of subsets U0, U1 ⊆ X is called an independence pair (for the system (X,T ))
if d(U0, U1) > 0 and there exists an infinite set S ⊆ Z with the property that for
all a ∈ {0, 1}S there exists xa ∈ X such that

T s(xa) ∈ Uas
for all s ∈ S .

(X,T ) is called tame if no such independence pair exists, and non-tame otherwise
[11]. By the results of Glasner in [5, 10], it was known that any tame minimal
system is almost 1-1. We provide the following improvement.

Theorem 2 (Fuhrmann/Glasner/Oertel/J., [4]). If (X,T ) is minimal and tame,
then it is regular.

Altoghether, we obtain the following dynamical classification of strictly ergodic
systems with discrete spectrum:

Equicontinuity (⇔ topological discrete spectrum)
⇒tame (⇔ no infinite independence)
⇒diam-mean equicontinuous (⇔ πeq regular)
⇒mean equicontinous and frequently stable (⇔ πeq almost 1-1 and isomorphic)
⇒mean equicontinuous (⇔ πeq isomorphic)
⇒ µ−mean equicontinuous. (⇔ discrete spectrum)

We note that there exist counter-examples showing every implication is strict
[12, Section 5], [11, Section 11] or [13], [10, Remark 5.8], [14, Example 5.1], and
[3, Theorem 3.1].
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The above classification finds an application in the context of aperiodic order
and mathematical quasicrystals, where different levels of the hierarchy correspond
to different degrees of complexity of aperiodic structures with long-range order. In
order to make this more precise, we concentrate on so-called model sets, which are
aperiodic structures constructed via the cut and project method (introduced by
Yves Meyer in [15]. A cut and project scheme (CPS) consists of a triple (G,H,L)
of two locally compact abelian groups G (called external group) and H (internal
group) and a co-compact discrete subgroup L ⊆ G × H such that the natural
projections πG : G×H → G and πH : G×H → H satisfy the following:

(i) the restriction πG|L is injective;
(ii) the image πH(L) is dense.

If (i) and (ii) hold, we call L an irrational lattice. Given a subset W ⊆ H (referred
to as window), one defines a point set

Λ(W ) = πG (L ∩ (G×W )) = {l ∈ L | l∗ ∈ W} .

IfW is compact, Λ(W ) is uniformly discrete and ifW has non-empty interior, then

Λ(W ) is relatively dense. Hence, if W is proper (that is, compact and int(W ) =
W ), Λ(W ) is a Delone set. In this case, we call Λ(W ) a model set. It is called
a regular model set if the Haar measure of the boundary of W is zero, and an
irregular model set otherwise. The dynamical hull Ω(Λ(W )) of a model set is
defined as the closure of the translation orbit,

Ω(Λ(W )) = cl({Λ(W )− g | g ∈ G})
where the closure is taken with respect to some suitable topology (e.g. [16, 17]).
Due to results of Schlottmann [18] and Moody [19] (see also [20]), it is known that
the dynamics given by the translation flow on the hull fit into the above framework
(which can be generalised to actions of amenable groups for this purpose).

Theorem 3 (Torus parametrisation, [18, 21]). Let T = G×H/L and

ϕ : G× T , (t, (g, h)) 7→ ϕt(g, h) = (g + t, h) .

Then there exists a continuous onto map β : Ω(Λ(W )) → T such that the following
diagram commutes.

Ω(Λ(W )) Ω(Λ(W ))✲Φ

T T✲
ϕ

❄

β

❄

β

The map β is almost one-to-one. Moreover, β is regular if and only if the Haar
measure of ∂W is zero, and irregular otherwise.

The dynamics of regular models sets are fairly well-understood (e.g. [21, 22]). In
particular, by regularity, these are always uniquely ergodic and their topological
entropy is zero. In contrast to this, the case of irregular models sets still remains
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largely unexplored. Recent results show that these often exhibit positive entropy
and multiple ergodic measures [23], but this is not always the case [4]. However,
as irregular models sets are also not regular in the sense of the above hierarchy,
we obtain the following.

Theorem 4 (Fuhrmann/Glasner/Oertel/J., [4]). The dynamics on the hull of an
irregular model set are always non-tame.

Hence, non-tameness provides a ‘lower bound’ for the complexity of such systems.
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Decay of correlations for the infinite horizon planar periodic
Lorentz gas

Ian Melbourne

(joint work with Péter Bálint, Henk Bruin, Oliver Butterley, Dalia Terhesiu)

In this talk, we describe results on mixing rates for nonuniformly hyperbolic maps
and flows. A key example is the infinite horizon planar periodic Lorentz gas where
the mixing rate is 1/t and we obtain sharp upper bounds [2] and lower bounds [4].

First, we consider an example that is easier to explain, namely a semidispersing
billiard with billiard table Q ⊂ R2 given by Q = R \Ω where R is a rectangle and
Ω ⊂ R is a scatterer (convex with C3 boundary of nonvanishing curvature). The
corresponding Lorentz flow ft : Q × S1 → Q × S1 is defined by particles starting
at p ∈ Q and moving in direction θ ∈ S1 with unit speed until colliding with
∂Q, whereupon θ changes to π − θ (so collisions are specular). The Poincaré map
f : ∂Q× [−π/2, π/2] → ∂Q× [−π/2, π/2] is called the billiard map.

By [6, 7], the semidispersing billiard map has mixing rate 1/n for Hölder ob-
servables. More precisely, let µ denote the Liouville measure dµ = cos θ dr dθ on
∂Q× [−π/2, π/2]. This is the natural invariant measure. Then for all v, w Hölder,
the correlation function

ρv,w(n) =

∫
v w ◦ fn dµ−

∫
v dµ

∫
w dµ

satisfies ρv,w(n) = O(1/n). In [3], we show that this decay rate is sharp. Indeed,
there is a constant c > 0 (explicitly computable) such that

ρv,w(n) ∼ c
1

n

∫
v dµ

∫
w dµ

for all v, w Hölder with nonzero mean and supported on ∂Ω× [−π/2, π/2].
The corresponding result for the Lorentz flow is more challenging; results for

such flows is the main topic of the talk. The natural invariant measure on Q×S1 is
Lebesgue. It is now necessary to consider observables v and w that are “sufficiently
smooth in the flow direction” in addition to being Hölder. Modulo this caveat,
the results are the same as for the billiard map. Define the correlation function

ρv,w(t) =

∫
v w ◦ ft dLeb−

∫
v dLeb

∫
w dLeb.
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Then in [2] we show that ρv,w(t) = O(1/t) while in [4] we show that

ρv,w(t) ∼ c
1

t

∫
v dµ

∫
w dµ

for observables with nonzero mean and supported on Ω× S1.
The assumption that observables are sufficiently smooth in the flow direction is

a significant restriction since the flow itself is not smooth. In particular, physically
relevant observables such as velocity are excluded. As discussed in the talk, we ex-
pect to be able to show that the results go through for all Hölder (and dynamically
Hölder) observables if the scatterer Ω is typical (for a C2 open and C∞ dense set
of C3 boundaries), and also for certain specific choices of Ω. However for a result
that holds for all choices of Ω, the restriction to sufficiently smooth observables
seems hard to remove.

The results mentioned above for semidispersing billiards hold equally for Buni-
movich stadia (where Q is bounded by a rectangle with semicircles adjoined at
each end) and Sinai billiards with cusps (nonvanishing curvature). In addition,
results with different decay rates than 1/n and 1/t are also obtained in [2, 3, 4].
The methods in [2, 3, 4] are not restricted to billiards or to low-dimensional ex-
amples, and essentially optimal upper and lower bounds on decay of correlations
are obtained for multidimensional (not necessarily Markovian) intermittent maps
and the corresponding intermittent solenoidal flows.

Returning to the example mentioned in the title of the talk, recall that the
planar periodic Lorentz gas is the Lorentz flow with Q = T2 − Ω where Ω is a
finite union of scatterers. The billiard map has exponential decay of correlations
by [8] and [5]. In the finite horizon case (bounded collision times), it was recently
shown that the flow also has exponential decay of correlations [1]. In [2], we show
that the decay rate for the flow with infinite horizon is O(1/t). This result is
shown to be sharp in [4].
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Recent results in geometric methods for Arnol’d diffusion

Tere M-Seara

(joint work with Marian Gidea, Rafael de la Llave)

The problem of Arnold diffusion consists in studying in which Hamiltonian systems
the effects of perturbations can accumulate over time to produce effects much larger
than the size of the perturbations. Specially in integrable systems.

We will describe a recent progress in the so-called geometric methods. The
main idea in the geometric program is to find simple geometric structures whose
presence implies a rich orbit structure. The mechanism presented here is based on
the presence of Normally Hyperbolic Invariant Manifolds (NHIM). The mechanism
is rather robust. It does not need that the perturbations are Hamiltonian (applies
to small dissipation problems or for space craft maneuvers that involve burns), can
be applied to to concrete problems and enjoys remarkable genericity properties
since it does not require non-generic assumptions such as convexity.

We first present a general shadowing result. Assume we have a map f : M →
M , Cr-smooth, r ≥ r0, m = dimM , having a Normally Hyperbolic Invariant
Manifold Λ. Assume moreover that Wu(Λ) intersects transversally W s(Λ) along
a homoclinic manifold Γ satisfying certain extra transversality conditions (Γ is
transverse to the foliation). We call Γ an homoclinic channel.

Under these conditions one can define the Scattering map: s : Ω−(Γ) ⊂ Λ → Λ
given by: s(x−) = x+ if there exists x ∈ Γ such that d(f−m(x), f−m(x−)) → 0,
d(fn(x), fn(x+)) → 0, asm,n → ∞. Then we have the general shadowing results:

Theorem 1. Assume that Λ and Γ are compact. Then, for every δ > 0 there
exists n∗ ∈ N depending on δ, and a family of functions m∗

i : N2i+1 → N, i ≥ 0,
depending on δ, such that, for every pseudo-orbit {yi}i≥0 in Λ of the form

(1) yi+1 = fmi ◦ σΓ ◦ fni(yi),

for all i ≥ 0, with ni ≥ n∗ and mi ≥ m∗
i (n0, . . . , ni−1, ni,m0, . . . ,mi−1), there

exists an orbit {zi}i≥0 of f in M such that, for all i ≥ 0,

zi+1 = fmi+ni(zi),

and d(zi, yi) < δ.

The above result can be immediately extended to the case of countably many
scattering maps.

Theorem 2 (Shadowing Lemma for Orbits of the Scattering Map). Assume that
f : M → M is a sufficiently smooth map, Λ ⊆ M is a normally hyperbolic invariant
manifold with stable and unstable manifolds which intersect transversally along an
homoclinic channel Γ ⊆ M , and σ is the scattering map associated to Γ.

Assume that f preserves a measure absolutely continuous with respect to the
Lebesgue measure on Λ, and that σ sends positive measure sets to positive measure
sets.
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Let {xi}i=0,...,n be a finite pseudo-orbit of the scattering map in Λ, i.e., xi+1 =
σ(xi), i = 0, . . . , n − 1, n ≥ 1, which is contained in some open set U ⊆ Λ with
almost every point of U recurrent for f|Λ.

Then, for every δ > 0 there exists an orbit {zi}i=0,...,n of f in M , with zi+1 =
fki(zi) for some ki > 0, such that d(zi, xi) < δ for all i = 0, . . . , n.

This result can also be extended to the case of countably many scattering maps.
This theorem tells us that, if the system has recurrence, we can follow any hetero-
clinic connexion between points in Λ, without knowing the dynamics of the points.
Therefore, we don’t need the classical approaches that use invariant tori, periodic
orbits, Aubry-Mather sets etc, and the result can be applied even if f does not
satisfy a twist condition. The only thing to verify is that the system has a NHIM
with stable and unstable manifolds which intersect transversaly. Now we will give
conditions (easy to verify and generic) to ensure that, in the perturbative setting,
a System satifies the hypotheses required in the previous theorem.

We consider the perturbative setting where fε : M → M is a symplectic map,
Λε ⊆ M is a normally hyperbolic invariant manifold and Γε is a homoclinic channel
for fε, and σε : Ω−(Γε) → Ω+(Γε) is the corresponding scattering map. We

assume that Λε is described via a parametrization kε : Λ0 → Λε, and let (f̃ε)|Λ0
=

k−1
ε ◦ (fε)|Λε

◦ kε, σ̃ε = k−1
ε ◦ σε ◦ kε.

Theorem 3. Assume that for all ε ∈ (−ε0, ε0), there exists a scattering map σε,
defined in a domain U := k−1

ε (Ω−(Γε)) ⊂ Λ0, such that

(2) σ̃ε = Id + εJ∇S +O(ε2),

where S is some real valued Cℓ-function on U ⊂ Λ0.
Suppose that J∇S(x̃0) 6= 0 at some point x̃0 ∈ U ⊂ Λ0.
Let γ̃ : [0, 1] → Λ0 be an integral curve through x̃0 for the vector field J∇S.

Suppose that there exists a neighborhood Uγ̃ ⊂ U of γ̃([0, 1]) in Λ0 such that a.e.

point in Uγ̃ is recurrent for f̃ε|Λ0
. Let γε = kε ◦ γ̃ be the corresponding curve in

Λε.
There exists ε1 > 0 sufficiently small, and a constant K > 0, such that for

every ε ∈ (−ε1, ε1), ε 6= 0, and every δ > 0, there exists an orbit {zi}i=0,...,n of fε
in M , with n = O((ε)−1), such that for all i = 0, . . . , n− 1,

zi+1 = fki
ε (zi), for some ki > 0,

and for all i = 0, . . . , n, we have

d(zi, γε(ti)) < δ +Kε, for ti = i · ε,
In applications, it is often the case that Λ0 = Bd × Td, and we have a system of
action-angle coordinates (I, φ) on Λ0 with I ∈ Bd and φ ∈ Td, where Td = Rd/Zd

and Bd ⊆ Rd is a disk in Rd or Bd = Rd. Since one can typically find a scattering
path for which the action variable changes by some positive distance independent
of ε, implicitly one can find a true orbit for which the action variable changes by
O(1); this is stated precisely in the following corollary.
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There exists a sufficiently small neighborhood VΛε
of Λε in M such that for

every point z ∈ VΛε
there exists a unique point z′ ∈ Λε which is the closest

point to z. The point z′ is the image of some unique point z̃ ∈ Λ0 via kε, i.e.,
z′ = kε(z̃). We denote by I(z) the I-coordinate of the corresponding point z̃ ∈ Λ0,
i.e., I(z) := I(z̃).

Corollary 4. Assume that a scattering map σε as in Theorem 3 is given. If J∇S
is transverse to some level set {I = I∗} in Λ0 at some point (I∗, φ∗) ⊂ U , then
there exist 0 < ε1 < ε0 and ρ > 0, such that for every 0 < ε < ε1 there exists an
orbit {zi}i=0,...,n of fε, such that

‖I(zn)− I(z0)‖ > ρ.

This Corollary gives diffusion but we don’t have control on the “size” (the constant
ρ > 0) of this diffusion. Next proposition (and corollary) give big changes in action
assuming we have more than one sccatering map satisfying generic hypothesis of
transversality.

Proposition 5. Let be U a connected, relatively compact, open subset of Λε with
the property that almost every point x ∈ U is recurrent for the restriction (fε)|Λε

.

Assume that the vector fields X l = XSl := J∇Sl, l = 1, . . . , L, satisfy the Chow-
Hörmander condition ∀x ∈ U , and consider p and q two arbitrary points in U .

Then, for every δ > 0 there exists ε0 > 0 s.t. ∀ 0 < |ε| < ε0, there exists an
orbit zi, i = 0, . . .m with zi+1 = fki

ε (zi) for some ki > 0, i = 0, . . . ,m − 1, s.t.
|z0 − p| ≤ δ, |zm − q| ≤ δ

Moreover, given η : [0, 1] → U a smooth path in U ⊆ Λε such that the δ-
neighborhood of η is contained in U , and choosing 0 = t0 < t1 < . . . < tm = 1
such that d(η(ti), η(ti+1)) < δ, i = 0, . . . ,m − 1, then there exists ε0 > 0 s.t.
∀ 0 < |ε| < ε0, ∃{zi}i=0,...m with zi+1 = fki

ε (zi) for some ki > 0, i = 0, . . . ,m− 1
such that
d(zi, η(ti)) < δ for all i = 0, . . . ,m

Corollary 6. Let η : [0, 1] → Λε be a smooth path in Λε. Then we have the
following dichotomy:
• Either there exists a neighborhood V of η in Λε with the property that the measure
of cl

(⋃
i∈Z

f i
ε(V)

)
is finite, in which case for every δ > 0 sufficiently small there

is an orbit of fε which is δ-shadowing η, for all 0 < |ε| < ε0, for some ε0. — In
this case we have controllability of the dynamics.
• Or, there is no neighborhood V of η as above, in which case there exist orbits
that start arbitrarily close to η and travel under (fε)|Λε

some distance O(1) –
independent of ε – away from η. — In this case we have escape orbits under
(fε)|Λε

.

We end this extended abstract recalling that all the conditions required in the
theorem are satisfied by generic perturbations of a priori-unstable Hamiltonian
systems in any dimension.

Reporter: David Bechara Senior
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Universitätsstrasse 150
44801 Bochum
GERMANY

Prof. Dr. Peter Albers

Mathematisches Institut
Universität Heidelberg
Im Neuenheimer Feld 205
69120 Heidelberg
GERMANY

Prof. Dr. Marie-Claude Arnaud
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Département de Mathématiques
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