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Abstract. Isogeometric analysis is a recent technology for numerical simu-
lation, unifying computer aided design and finite element analysis. It offers a
true design-through-analysis pipeline by employing the same representation
models for both creating geometries and approximating the solution of par-
tial differential equations defined on those geometries. This combined concept
leads to improved convergence and smoothness properties of the solutions and
dramatically faster overall simulations.

Even though substantial progress has been made in the isogeometric con-
text over the last few years, there are several profound theoretical issues that
are not yet well understood and that are currently investigated by researchers
in numerical analysis, approximation theory, and applied geometry.

The workshop reported the substantial progress, both from the theoreti-
cal and applicative point of view, which has been made in the isogeometric
context over the last three years. It offered a meeting point for leading scien-
tists from isogeometric analysis and the mentioned mathematically relevant
fields, and provided a rich and open ground of discussion within a diversified
audience, profiting of different backgrounds and various perspectives.

Mathematics Subject Classification (2010): 65xx, 41xx, 51xx.

Introduction by the Organizers

Isogeometric analysis (IgA) is a recent paradigm for numerical simulation governed
by partial differential equations (PDEs). Traditional approaches are based on
modeling complex geometries by computer aided design (CAD) tools which are
then converted into a computational mesh needed for the numerical solution of
the corresponding PDEs by classical finite element methods (FEM). For decades,
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this process has presented a severe bottleneck in performing efficient numerical
simulations.

IgA, initiated by the pioneering 2005 paper by one of the organizers (Hughes),
bridges the gap between FEM and CAD concepts. The main idea of IgA is to
exploit simulation methods that employ the same basis functions both for the
representation of the underlying geometric computational domains and for the
numerical simulations, allowing from the beginning the elimination of geometry
errors. This is accomplished by abandoning traditional finite element approaches
and by employing instead more general basis functions such as B-Splines and Non-
Uniform Rational B-Splines (NURBS) for the PDE simulations. The combined
concept of IgA leads to improved convergence and smoothness properties of the
PDE solutions and dramatically faster overall simulations.

Traditionally, the employment of B-splines and NURBS in CAD allows to rep-
resent geometrical objects smoother than just piecewise linear objects. Conse-
quently, the IgA paradigm has, most importantly, rejuvenated the study of higher
order approximation methods for the solution of PDEs. By now, it is fair to
say that this paradigm revolutionized the engineering communities as it triggered
a vast number of new simulations and publications. In addition to the success-
ful application in various areas, IgA is rapidly becoming a mainstream analysis
methodology and also a new paradigm for geometric design due to the variety of
open problems provided in the field of geometric modeling.

However, even though substantial progress has been made in the isogeometric
context over the last few years, there are several profound theoretical issues that
are not yet well understood and that are currently investigated by researchers in
numerical analysis, approximation theory, and applied geometry. The workshop
offered a unique opportunity of vivid discussion and presentation of new results
for the following forefront issues.

• Efficiency in IgA computations. This requires optimized quadrature rules
tailored for B-splines and NURBS, ad hoc assembly strategies (sum factor-
ization and row-by-row assembly), and suitable solvers and preconditioners
for the resulting linear systems, fully exploiting the characteristics of the
discretization spaces.

• Transition from the surface representation of the boundary geometry to
the volumetric representation for three dimensional problems, proper han-
dling of trimmed and complex multivariate geometries and relation with
immersed methods.

• Refinement (and coarsening) strategies: development of adaptive methods
with respect to both the mesh and the spline degree/smoothness (h-p-
k refinement), related a-posteriori error estimates, and superconvergence
behavior of smooth spline spaces on local tensor-product structures.

• Modeling of complex geometries of arbitrary topologies by smooth spline
representations on unstructured meshes consisting of quadrilaterals/hex-
ahedrals. In order to profit as much as possible of the tensor-product
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spline setting, the considered meshes maintain large structured regions. It
is important that these spline spaces have full approximation power.

• Smooth spline spaces on triangulations: they offer an appealing alter-
native to (local) tensor-product structures for the modeling of complex
geometries and for performing efficient refinements. The full theoretical
understanding of these spaces is one of the most prominent open problems
in approximation theory of the last half century.

• Kolmogorov n-widths, explicit Sobolev approximation inequalities for
spline spaces, and their use for a theoretical comparison between IgA and
FEM on a degree-of-freedom basis.

• Error analysis by spectral analysis: the mathematical foundation and the-
oretical explanations of advantages of IgA in spectral analysis w.r.t. high
order FEMs.

• Isogeometric discretization for shape and topological optimization, space-
time problems, boundary element methods, and variational inequalities.

• Physical, medical and financial applications. Isogeometric discretizations
and results in several challenging contexts, including: turbines, shells and
laminates, boiling, patient-specific and bioprosthetic heart valves, prostate
cancer, pricing, and self-supporting structures.

The Workshop was the follow-up of the MFO Mini-Workshop with the same
title “Mathematical Foundations of Isogeometric Analysis” (ID 1606c) which was
held on February 7-13, 2016 (see Report No. 8/2016).

The Workshop was attended by 27 participants with broad geographic repre-
sentation who were a nice blend of researchers with various backgrounds. The
experienced participants were experts who are strong in spline theory (Lyche,
Manni, Speleers), numerical analysis and multiscale methods (Buffa, Harbrecht,
Kunoth, Langer, Sangalli), applied geometry and geometric design (Elber, Gi-
annelli, Jüttler, Mantzaflaris, Mourrain, Peters), numerical linear algebra (Serra-
Capizzano), together with researchers in the engineering sciences with a strong
mathematical background in modeling and numerics (Evans, Hughes, Kvamsdal,
Reali, Zhang). The experienced researchers were complemented by a congruous
group of younger participants with already a solid reputation in approximation
(Bressan, Sande), unstructured spline structures (Takacs, Toshniwal) and engi-
neering sciences (Puppi, Wei). In addition, a PhD student (Boschert) presented
promising first results for approximations of variational inequalities with applica-
tion in finance.

The Workshop clearly reported the substantial progress, both from the theo-
retical and applicative point of view, which has been made in the isogeometric
context over the last three years. In particular, from the theoretical side we would
like to mention the estimates in Sobolev approximation inequalities with explicit
“constants”, providing the mathematical explanation of the numerically observed
superior performance of IgA over FEM on a degree-of-freedom basis. From a more
practical point of view, maximally-smooth, k-refinement IgA solver strategies were
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presented showing the conjectured high accuracy versus computational cost gains
over classical FEM approaches.

The Workshop also pointed out several profound theoretical issues in numerical
analysis, approximation theory, and applied geometry that need a deeper under-
standing and deserve future investigations. Among the others, we mention:

• Shape and topological optimization with trimming;
• Isogeometric discretizations for space-time problems, optimal control, vari-
ational inequalities and free boundary problems;

• Unstructured spline techniques and structure-preserving discretizations;
• Mathematical foundations of (multivariate isogeometric) collocation meth-
ods;

• Influence of parameterizations and physics-aware parameterizations;
• Fully robust and scalable solvers.

They will be the focus of several research activities in the next years and are
candidate topics for a future Workshop.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting John Evans and Yongjie Jessica Zhang in the “Simons
Visiting Professors” program at the MFO.
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Abstracts

B-spline based methods for variational inequalities and a special HJB
equation with non-smooth initial data

Sandra Boschert

(joint work with Angela Kunoth)

For the numerical computation of solutions of elliptic variational inequalities on
closed convex sets, error estimates, monotone multigrid solvers and adaptive meth-
ods employing linear basis functions have been investigated over the past decades.
However, there are a number of problems which profit from higher order approxi-
mations. Among these are problems of pricing American put options, formulated
as a parabolic variational inequality. Recall that, in finance, to determine opti-
mal risk strategies, one is not only interested in the solution of the variational
inequality, i.e., the option price, but also in its partial derivatives up to order
two, the so-called Greeks. A special feature for these option prize problems is
that initial conditions are typically given as piecewise linear continuous functions.
Consequently, we have derived a spatial discretization based on cubic B-splines
with coinciding knots at the points where the initial condition is not differen-
tiable. Together with an implicit time stepping scheme, this enables us to achieve
an accurate pointwise approximation of the partial derivatives up to order two.

The first problem we consider is the Black-Scholes model for an American put
option. The option price V := V (S, t) is assumed to depend on an underlying
asset S ∈ R+, time t, constant volatility σ and is subject to a strike price K and
payoff H(S) := max{0,K−S}. Although the model is very simple, a fundamental
numerical difficulty arises from the fact that American options can be exercised
at any time; thus, leading to a free boundary value problem. One can formulate
this problem as the following parabolic variational inequality: Find y(S, t)−H :=
V (τ − T, S)−H ∈ K with convex set K := {ϕ ∈ L2(Ω) : ϕ ≥ 0} ∩ V and Sobolev
space V for a.e. τ ∈ (0, T ] such that

(1)
〈

∂y
∂τ

, ϕ− y
〉

+ aB(y, ϕ− y) ≥ 0 for all ϕ−H ∈ K,

with initial condition y(0, S) = H(S) and bilinear form aB(·, ·) : V × V → R as

aB(y, ϕ) :=

∫

Ω

(

1
2σ

2 ∂y
∂S

(

S2 ∂ϕ
∂S

+ 2Sϕ
)

− rS ∂y
∂S

ϕ+ ryϕ
)

dS.

Next we consider Heston’s model which includes a stochastic volatility υ ∈ R+

to better represent real market situations. Now the value of the American option
V := V (t, S, υ) is supposed to satisfy the following parabolic variational inequality:
Find y(τ, x, υ)− g(x) := V (τ − T, log(S/K), υ)−H(log(S/K)) such that

(2) 〈 ∂y
∂τ

, ϕ− y〉+ aH(y, ϕ− y) ≥ 0 for all ϕ− g ∈ K,
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with initial condition y(0, x, υ) = H(x) := H(log(S/K)) and bilinear form

aH(y, ϕ− y) :=

∫

Ω

(

Ã∇y · ∇(ϕ− y) + (b̃ · ∇y + ry)(ϕ − y)
)

dΩ,

where Ã := 1
2υ

(

1 2ρξ
0 ξ2

)

and b̃ :=

(

1
2υ − r

κ(υ − γ) + 1
2ξ

2

)

.

Recall that in order to obtain optimal convergence for higher order B-splines of
order k in the spatial domain Ω, the solution must lie in Hk(Ω). For variational
inequalities such smoothness of the solution on the whole domain Ω is not given:
the solution for parabolic variational inequalities in Black-Scholes’ and Heston’s
model are in the Bochner space L2(0, T ;H

2(Ω)). However, numerical results show
that the solution is smooth in space except at the free boundary. Recently, it was
shown in [2] that for variational inequalities the error estimate in the energy space
E is restricted by an additional term in comparison to the estimate for variational
equations: the semidiscrete solution yh := yh(t) in the discrete B-spline space Vk

h

satisfies the error estimate

(3) ‖y − yh‖
2
E

<
∼ ‖y − ϕh‖L2(0,T ;L2(Ω)) + ‖y − ϕh‖

2
L2(0,T ;V),

where ϕh ∈ Vk
h is some test function. Therefore, it is reasonable to locally refine

the grid near the free boundary.
The following elliptic test problem where the exact solution is known shows the

expected convergence behaviour: Find w(x) := w ∈ K such that

b(w,ϕ− w) ≥ 〈f, ϕ− w〉 for all ϕ ∈ K with b(w,ϕ) :=

∫

Ω

∂w
∂x

∂y
∂x

dx,

f := (1.2− g′(x)), g(x) := max{0, 10− 10 exp(x)} and exact free boundary xf .

locally refined grid at xf uniform grid size
N error in H1(Ω) Rate |xf − xh

f
| N error in H1(Ω) Rate |xf − xh

f
|

96 6.20e–5 – 1.41e–3 129 2.07e–3 – 1.51e–2
192 7.28e–6 3.09 4.35e–4 257 1.22e–3 0.76 1.51e–2
384 1.04e–6 2.81 6.86e–5 513 4.34e–4 1.50 7.27e–3
768 1.21e–7 3.10 7.61e–6 1025 1.49e–4 1.55 3.36e–3

1536 1.49e–8 3.02 7.61e–6 2049 3.98e–5 1.91 1.41e–3

Since in Black-Scholes’ or Heston’s model the volatility is often under- or overes-
timated, in practice the so-called Black-Scholes-Barenblatt (BSB) equation, which
is of Hamilton-Jacobi-Bellman (HJB) type, is of particular importance to price Eu-
ropean options exercised only at a fixed predetermined time T . Here the volatility
is to lie in a set Σ := [σmin, σmax]. For a butterfly spread, this leads to a nonlinear
parabolic problem which is in the worst case szenario of the form: Find V (S, t)
such that

(4) Vt + inf
σ∈Σ

(LV ) := Vt + inf
σ∈Σ

(

1
2S

2σ2VSS

)

+ rSVS − rV = 0 in Ω× [0, T ),
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with zero boundary and end condition V (0, S) =

{

max(0, S −K1) if S < K,

max(0,K2 − S) if S ≥ K

for some parameters K1 < K2. One difficulty is that no weak H1-formulation in
the continuous setting is known. By normalizing the B-splines in the L1-norm, one
can find a weak formulation in the discrete setting. For linear finite elements this
idea stems from [3]. Since the BSB equation is a nonlinear problem with jumping
diffusion coefficients, one has to find an analogue of the Jacobian. The princi-
pal requirement for the operator to fit in this framework is slant differentiability.
Since the initial condition and the solution is only continuous where the volatlity
jumps, we reduce the smoothness of the approximation by repeating knots at those
points. Corresponding numerical results show that the convergence for cubic B-
splines is optimal in the L2-norm, when the placement where the volatility changes
(therefore, internal free boundaries) is approximated with desired accuracy.

Figure 1. Numerical approximation of today’s put option price

(left) and its second derivative Gamma Γh(S) :=
∂2Vh(S)

∂S2 (right) in
Black-Scholes’ model with r = 0.04, σ = 0.2 on [0, T ) × Ω =
[0, 5)× (0, 40).

Figure 2. Numerical approximation of today’s put option price
and its second derivative in Heston’s model with K = 10, ̺ = 0.1,
ξ = 0.9, κ = 5, λ = 0, r = 0.1, γ = 0.16 on [0, T ) × Ω =
[0, 0.25)× [−2, 2]× [0.01, 1].
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Figure 3. Numerical approximation of today’s butterfly spread
option price in the BSB model (left) and its second derivative
(right) with K1 = 9,K = 10,K2 = 11 and Σ = [0.15, 0.25],
r = 0.1, [0, T )× Ω = [0, 0.25)× (4, 20).
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TBA: T-mesh B-spline Approximation

Andrea Bressan

(joint work with Tom Lyche)

The approximation properties of a space of piecewise polynomials S of degree
d := (d1, . . . , dn) on the union of axis aligned boxes in Rn can be written using
weighted Sobolev-like seminorms. Local approximation operators ℵ : Lp(Ω) → S

are defined in terms of coefficient functionals and a basis Φ:

(1) ℵf :=
∑

φ∈Φ

λφ(f)φ.

Using them we obtain a priori approximation estimates of the form

(2) ‖∂σ(f − ℵf)‖p ≤ Cµ(Ω)ν−
∑

k∈K

‖ρk∂
kf‖q,

where ν = 1/p− 1/q, K ⊂ Nn is an index set of integers and the weights ρk are
powers of the local resolution of S. The precise form of the ρk depends on K, k,
p, q, d and σ. In some cases, e.g., K = {k ∈ Nn : |k| = d+ 1}, p ≤ q and σ = 0,
the weight ρk can be anisotropic, i.e. it takes into account the space resolution
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in the each coordinate direction. Otherwise the estimates are isotropic and ρk is
at each point a power of the maximum of the diameters of the supports of the
active functions. Common choices for K corresponds to Sobolev seminorms and
reduced seminorms that involve a smaller set of partial derivatives. Estimate (2)
can be achieved under different set of assumptions. Common assumptions in the
univariate case are:

H1
P

ℵ reproduces polynomials of degree d,
H2

λ the local operator are continuous,
H3

φ the basis functions are regular,

H4
s

the difference between suppλφ and suppφ is controlled,
H5

Π there are polynomial approximation estimates,
H6

E
the overlap of the support of the λφ is bounded,

H7 the numbers of elements in the supports of the generators is bounded.

These require additional technicalities in the multivariate case. In particular the
dependence of polynomial approximation estimates on the shape of the domain
varies depending on p, q and the set of partial derivatives in K. In the multivariate
case this dependence is controlled by the additional assumptions

H8
ω

the aspect ratio of the elements is bounded,

H9
s

the aspect ratio of the basis functions’ supports is bounded,

H10 the supports of the basis functions are star shaped.

The dependence of C in (2) on the parameters of H1
P
,. . . ,H10 is explicit.

The abstract framework applies to many constructions of locally tensor product
splines, e.g. to TPS, Analysis Suitable T splines (AST) [2, 1], truncated hierar-
chical splines (THB) [9] and Locally Refined splines (LR) [6].
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Volumetric representations (V-reps): design toward
(isogeometric) analysis

Gershon Elber

The need for a tight coupling between design and analysis has been recognized as
crucial almost since geometric modeling (GM) has been conceived, Unfortunately,
even today, contemporary GM systems only offer a loose link between the two, if
at all.

For about half a century, (trimmed) Non Uniform Rational B-spline (NURBs)
surfaces has been the B-rep of choice for virtually all the GM industry. Funda-
mentally, B-rep GM has evolved little during this period. In this talk, we seek
to examine an extended (trimmed) NURBs volumetric representation (V-rep) [4]
that successfully confronts the existing and anticipated design, analysis, and man-
ufacturing foreseen challenges. We extend all fundamental B-rep GM operations,
such as primitive and surface constructors, and Boolean operations, to trimmed
trivariate V-reps. This enables the much-needed tight link to (Isogeometric) anal-
ysis on one hand and the full support of (heterogeneous and anisotropic) additive
manufacturing on the other.

Specific capabilities toward the support of Isogeometric analysis are also pre-
sented, that enable robust queries over the V-reps, including precise contact analy-
sis, maximal penetration depth, and accurate integration over trimmed domains [3].
Examples and other applications of V-rep GM, including AM and lattice- and
micro- structure synthesis (with heterogeneous materials) are also demonstrated [1,
2, 5].

In collaboration with many others, including Ben Ezair, Fady Massarwi, Boris
van Sosin, Jinesh Machchhar, Annalisa Buffa, Giancarlo Sangalli, Pablo Antolin,
and Massimiliano Martinelli.
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Adaptive topology optimization with hierarchical B-splines

John Evans

(joint work with Kurt Maute, Christian Messe, Lise Noel, and Frits de Prenter)

Topology optimization has become immensely popular in recent years, largely
driven by advances in rapid prototyping and additive manufacturing [1]. Topology
optimization allows one to optimize material layout within a given design space
given a set of loading criteria, boundary conditions, and constraints with the
goal of maximizing performance. As opposed to shape optimization, topology
optimization allows for topological changes in addition to shape changes.

In this talk, I discuss our recent work on developing an adaptive topology op-
timization framework based on three component technologies: (i) the level set
method [2], (ii) the extended finite element method [3], and (iii) hierarchical B-
splines [4, 5]. In our framework, the material layout of the domain is defined by one
or more level set fields, each of which are defined using hierarchical B-splines. The
response of the system is also described by a hierarchical B-spline discretization in
conjunction with a generalized version of the extended finite element method. Our
framework is general in that one may employ different hierarchical B-spline spaces
to describe the level set fields and the system response. Our framework is adaptive
in two ways. First, our framework allows for adaptivity of the hierarchical B-spline
space describing the system response to better capture local solution features for
a given design. Second, our framework allows for adaptivity of the hierarchical
B-spline space describing the level set fields to adapt to emerging topological and
geometric features as the topology optimization process continues. It should also
be noted that since we use hierarchical B-splines to describe the level set fields as
opposed to standard finite elements, our framework yields optimal designs which
are smooth. An example design generated by our adaptive topology optimization
framework is displayed in Figure 1. I conclude by discussing a geometric multigrid
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Figure 1. An example design generated by our adaptive topol-
ogy optimization framework. The level set field is discretized with
quadratic hierarchical B-splines and the state variable field is dis-
cretized with linear hierarchical B-splines on the same mesh. Top
Left: The loading configuration and initial design. Top Right:
The hierarchical mesh associated with the optimal design. Bot-
tom Left: Top-down view of the optimal design. Bottom right:
Bottom-up view of the optimal design.

methodology we have developed to solve the forward and adjoint problems arising
in our adaptive topology optimization framework [6].

Numerical studies with our adaptive topology optimization framework have
yielded several important observations:

(1) Topology optimization problems are typically nonconvex. As such, the
optimal designs obtained from our topology optimization framework are
highly dependent on the choice of initial design.

(2) In the two-dimensional setting, the optimal designs obtained from our
topology optimization framework are highly dependent not only on the
choice of initial design but on the resolution of the initial mesh and also
the adaptive mesh refinement strategy.

(3) In the three-dimensional setting, the optimal designs obtained from our
topology optimization framework are much less dependent on the resolu-
tion of the initial mesh. In fact, small features are able to emerge and
evolve with adaptivity in the three-dimensional setting.

(4) Efficiency improvements are possible with our adaptive topology optimiza-
tion framework, but said efficiency improvements are highly dependent on
the volume fraction of the obtained optimal design. For three-dimensional
structural topology optimization problems, efficiency improvements greater
than 95% are observed when the volume fraction is less than 10%.
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Our studies have also generated several important research questions that need to
be addressed from a mathematical perspective:

(1) How often and in what manner should one refine and coarsen the level set
field discretization in our adaptive topology optimization framework?

(2) How often and in what manner should one refine and coarsen the state
variable field discretization in our adaptive topology optimization frame-
work?

(3) Is it possible to construct a robust and efficient optimization routine for
finding a global minimum rather than a local minimum?

(4) Can gradient-based optimization routines be accelerated using the multi-
level structure of hierarchical B-splines?

(5) Is it possible to further improve performance in an efficient manner by fus-
ing adaptive topology optimization with isogeometric shape optimization?

(6) What is the best way to extract a surface/volumetric parameterization
from a level set field?
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Adaptive refinement and coarsening with (T)HB-splines and
extensions on two-patch geometries

Carlotta Giannelli

Isogeometric analysis is a recent paradigm for the numerical solution of partial
differential equation which considers (smooth) spline functions both for the rep-
resentation of the computational domain and for the description of the approxi-
mation space. Unluckily, the tensor-product structure of standard spline models,
commonly used in computer aided design, prevents not only the possibility of
representing flexible shapes, but also to perform local mesh refinement.

The hierarchical spline model is an adaptive spline technology that enables
the possibility to properly deal with local problems. Based on the multi-level
concept of hierarchical splines, truncated hierarchical B-splines (THB-splines) were
introduced as an effective tool to perform hierarchical refinement while reducing
the interactions between different refinement levels [4]. Adaptive schemes based



1996 Oberwolfach Report 33/2019

on (truncated) hierarchical B-splines have been successfully applied in different
problems related to computer aided design and isogeometric analysis.

Thanks to the possibility of easily handling local mesh refinements, hierarchical
spline structures provide an effective tool to design and analyze adaptive isogeo-
metric methods. The requirements of applications additionally demand automatic
refinement and coarsening algorithms which suitably provide effective discretiza-
tions and improve computational efficiency. While several papers investigated
refinement schemes for hierarchical isogeometric methods in the last years, see
e.g., [1] for a recent overview on adaptive methods with THB-splines, only very
recently, few authors also focused on the study of coarsening algorithms [7, 8].

A complete set of algorithms to perform adaptive refinement and coarsening
with THB-splines defined on certain suitably graded hierarchical meshes, indicated
as admissible meshes, was recently presented in [3]. The proposed algorithms are
applied to linear heat transfer problems with localized moving heat source, as
simplified models for additive manufacturing applications. The numerical exam-
ples show that THB-spline admissible solutions deliver effective discretizations. In
addition, they also confirm that our algorithms strongly improve computational
efficiency.

Adaptive techniques should be combined with multi-patch constructions to de-
sign efficient computational schemes that enable to perform isogeometric simu-
lations on complex geometries. Due to the benefits of higher continuity in iso-
geometric methods, the construction of C1 isogeometric spline spaces defined on
two or more patches was recently addressed in the tensor-product setting, see
e.g., [5, 6]. A first step to combine adaptive hierarchical spline construction with
smooth spline spaces on general multi-patch configurations is to address the two-
patch case. Obviously, the possibility of defining smooth hierarchical splines on
more than one patch enlarge the capabilities of the considered adaptive scheme by
removing the restriction to rectangular topologies. The construction of C1 contin-
uous hierarchical splines on two-patch domains was recently presented in [2]. The
generated hierarchical spaces were there used to numerically solve the laplacian
and bilaplacian equations on two-patch geometries, demonstrating the potential
of C1 hierarchical constructions for applications in isogeometric analysis.
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About a fast isogeometric boundary element method

Helmut Harbrecht

(joint work with Jürgen Dölz, Michael Multerer, Stefan Kurz, Sebastian Schöps,
and Felix Wolf)

1. Introduction

In the search of a method incorporating simulation techniques into the design
workflow of industrial development, [8] proposed the concept of Isogeometric Anal-
ysis (IGA) to unite Computer Aided Design (CAD) and Finite Element Analysis
(FEA). It enables to perform simulations directly on geometries described by volu-
metric NURBS parametrizations. Nonetheless, many CAD systems use boundary
representations only. Thus, volumetric parametrizations often have to be con-
structed solely for the purpose of simulation. The boundary parametrization,
however, can be easily exported from CAD. Therefore, an approach via isogeo-
metric boundary element methods seems to be natural.

2. Isogeometric boundary element methods

The utilization of parametric mappings in numerical implementations of the bound-
ary element method is not new, going back further than the introduction of the
isogeometric concept, see [6] for example. Parametric mappings avoid the problem
of a slow convergence of the geometry due to the limited polynomial approximation
of the geometry. Thus, they encourage the application of higher order Galerkin
schemes. Through the parametric mappings, a tensor product structure on the ge-
ometries is induced, making it possible to define patchwise tensor product B-spline
bases of high order and regularity.

One of the major downsides of the application of boundary element methods
is that the integral operators involved yield dense discrete systems. To counter-
act the dense matrices, so-called fast methods must be employed for compression
and efficiency. As shown in [3, 7], the tensor product structure induced by the
mappings can be exploited to achieve an efficient implementation of compression
techniques such as H-matrices or the fast multipole method [5]. An isogeomet-
ric boundary element method promises hence runtimes which can compete with
classical discretization methods.
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Therefore, we developed the software library Bembel, Boundary Element Me-
thod Based Engineering Library, which is written in C and C++ [1]. It solves
boundary value problems governed by the Laplace, Helmholtz or electric wave
equation within the isogeometric framework. The development of the software
started in the context of wavelet Galerkin methods on parametric surfaces, see
[6], where the integration routines for the Green’s function of the Laplacian have
been developed and implemented. It was then extended to hierarchical matrices
(H-matrices) in [7] and to H2-matrices and higher order B-splines in [3]. With
support of B-splines and NURBS for the geometry mappings, the Laplace and
Helmholtz code became isogeometric in [2]. Finally, in [4], it has been extended
to the electric field integral equation.

3. Numerical example

We shall present numerical results for the Laplace equation ∆U = 0 inside the
gear worm geometry Ω found in the left plot of Figure 1, whose surface Γ = ∂Ω
is represented by 290 patches. The harmonic polynomial U(x) = 4x2

1 − 3x2
2 − x2

3

is used to prescribe either Dirichlet boundary conditions f = U |Γ or Neumann
boundary conditions g = 〈∇U,n〉 on Γ.

Making the single layer potential ansatz

(1) U(x) =

∫

Γ

u(y)

4π‖x− y‖2
dσy, x ∈ Ω,

leads to a Fredholm integral equation of the first kind

(2) Su(x) =

∫

Γ

u(y)

4π‖x− y‖2
dσy = f(x), x ∈ Γ,

for the unknown density u in case of the Dirichlet problem. Whereas, making a
double layer potential ansatz

(3) U(x) =

∫

Γ

〈x− y,ny〉u(y)

4π‖x− y‖32
dσy, x ∈ Ω,

amounts to a Fredholm integral equation of the first kind

Wu(x) =
∂

∂nx

∫

Γ

〈x − y,ny〉u(y)

4π‖x− y‖32
dσy = g(x), x ∈ Γ,(4)

for the unknown density u in case of the Neumann problem.
Since the density u is unknown, the error of the potential U is measured on the

115’241 vertices of a grid of 83’437 cubes fitted inside the domain. A visualization
of these cubes together with the computed potential for the single layer ansatz can
be found in the right plot of Figure 1. In view of having only a Lipschitz continuous
boundary, the theoretical convergence rates are limited to at most h3 for the single
layer ansatz and to h1 for the hypersingular ansatz. Figure 2 illustrates that these
convergence rates are achieved for all polynomial degrees under consideration. In
fact, the higher order ansatz functions even seem to produce a convergence rate
of up to h5 for both, the single layer ansatz and the hypersingular ansatz. Note
that the dashed lines correspond to the convergence rates h3 and h5 while the
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Figure 1. The gear worm geometry and the approximate po-
tential in case of the Dirichlet problem for the Laplacian vs. level
of uniform refinement.

accompanying numbers are the polynomial degrees of the interpolation in the fast
multipole method.
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Figure 2. Relative errors of the potentials in case of the single
layer ansatz (left) and the hypersingular ansatz (right).
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Mathematics of isogeometric analysis and applications: a status report

Thomas J.R. Hughes

I presented a sampling of the state-of-the-art in Isogeometric Analysis (IGA) with
emphasis on mathematical developments. The field has become so enormous and
broad based that it is impossible to even briefly mention all areas of activity. This
is our second Oberwolfach workshop on IGA. The first was held in February of 2016
and was smaller than the present one. In my talk I tried to identify progress that
has been made in the almost 3 1⁄2 years since the first workshop. During that time,
according to Web of Science, there have been approximately 1300 papers published
on IGA in archival research journals. I began my talk with a comparison of the
publication history of the first 30 years of the Finite Element Method (FEM) with
that of IGA, which began in 2005. It is striking how quickly publications and
citations in IGA have grown. In the first 10 years of IGA the numbers are much
larger than in the first 30 years of FEM.

I presented a few applications with the FEM, specifically, automobile crash
dynamics, full-body patient-specific, fluid-structure analysis of the cardiovascular
system, and a HeartFlow, Inc., analsysi of blood flow in human coronary arter-
ies. These illustrate the breadth and success of the FEM. I know a lot about all
the applications because I developed many of the technologies employed. I ob-
served that in each case the lowest order finite elements were utilized. Why not
higher-order finite elements? From the academic research literature one would
think the higher-order elements exhibit superior accuracy and efficiency. An aca-
demic answer might be that complex practical problems do not enjoy the solution
regularity necessary to obtain higher-order convergence rates, but that is only a
small part of the reason. The sad truth is that higher-order C0-continuous finite
elements are not robust and fail in many practical applications. Later in my talk,
I used spectral analysis to reveal why this is the case and at the same time why
spline-based approaches, such as IGA, do not suffer the same deficiencies. Indeed,
one can show that maximally smooth Cp−1-continuous smooth splines exhibit a
unique combination of accuracy and robustness. In fact, the higher the p, the
more robust, the exact opposite of C0-continuous finite elements.

Here are the main topics I covered in the rest of my talk: Basics technologies,
such as B-splines and NURBS; approximation estimates in Sobolev norms; error
analysis by spectral analysis techniques; Kolmogorov n-widths; efficient formation
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and assembly based on weighted quadrature, sum factorization and row-by-row
assembly; collocation; thin shells; trim and immersion; and physical applications to
wind turbines, boiling, patient-specific and bioprosthetic heart valves, and prostate
cancer.

It was very exciting to discover later on in the workshop that our 2009 Kolmo-
gorov n-width study comparing IGA and FEM (Evans-Bazilevs-Babuška-Hughes,
2009) prompted Espen Sande and Andrea Bresson to pursue the subject, which led
to their beautiful analytical estimates of the “constants” in Sobolev approximation
inequalities, explicitly establishing the superiority of IGA over FEM on a degree-
of-freedom basis. This is what many of us have repeatedly experienced in solving
practical problems. In my talk I concluded my brief description of n-widths with
the statement that “smooth splines are always good.” Sande and Bresson have
certainly made that mathematically precise.

It was also gratifying to see that the IGAmaximally-smooth, k-refinement solver
strategy presented in the talk of Giancarlo Sangalli showed enormous accuracy
versus computational cost gains over C0-continuous finite element approaches,
confirming another conjecture made in the early days of IGA.

Some remarks on integration by interpolation and look-up

Bert Jüttler

(joint work with Alessandro Giust and Maodong Pan)

Methods for the efficient generation of system matrices in isogeometric analysis
have been investigated in a substantial number of publications during the last
years. Mass and stiffness matrices possess O(Npd) non-zero elements, where N is
the dimension of the space of test functions. Their assembly via Gauss quadra-
ture requires O(Np3d) floating point operations (flops), thus requiring substantial
computation time, especially for larger values of the polynomial degree p. Several
techniques have been developed in order to reduce the computational costs asso-
ciated with matrix generation. We summarize some of the existing results in the
following table:

reference # flops method and remarks

[1] (2015) O(Np2d+1) sum factorization (SF)
[2] (2015) O(Np2d) integration by interpolation and look-up (IIL)
[3] (2017) O(RNpd) tensor decomposition (TD); truncated tensor rank R
[4] (2017) O(Npd+1) weighted quadrature; not symmetry-preserving
[5] (2018) O(rNpd) partial TD; uses SVD; truncated matrix rank r (< R)
[6] (2019) O(Npd+2) improved SF
this paper O(Npd+1) combines IIL and SF; symmetry preserving

It has been observed that GQ requires (p + 1)d Gauss nodes per element to
preserve the overall accuracy of the numerical simulation. This implies that the
individual matrix elements are evaluated with accuracy of order h2p+3.
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We use the lemma of Strang to analyze the effect of the quadrature error for
the isogeometric discretization of the weak form of the Poisson problem on an
interval [α, β], which is (artificially) represented by a spline parameterization over
the unit interval. More precisely, we consider the pull-back of this problem to the
unit interval, where we perform a discretization based on spline functions. The
consistency error caused by using the approximation ã (generated by GQ) of the
exact bilinear form a takes the form

(1) sup
vh∈Vh

|a(u∗
h, vh)− ã(u∗

h, vh)|

‖v′h‖2,[0,1]
,

where u∗
h is the best approximation of the solution in the discretization space. The

quadrature error can be estimated as

|a(u∗
h, vh)− ã(u∗

h, vh)| ≤ Chq+2
n
∑

i=1

‖(u∗
h
′Av′h)

[q+1]‖∞,[ i−1

n
, i

n
] ,

where we assume that the unit interval is subdivided uniformly into n elements of
size h = 1/n and q is the degree of exactness provided by GQ. The weight function
A is determined by the domain parameterization.

The individual terms in the sum on the right-hand sided can be bounded by

‖(u∗
h
′Av′h)

[q+1]‖∞,[ i−1

n
, i

n
] ≤

p−1
∑

j=0

(

q+1
i

)

‖(u∗
h
′A)[q+1−j]‖∞,[ i−1

n
, i

n
]‖v

[j+1]‖∞,[ i−1

n
, i

n
] .

Note that we do not need to consider derivatives v[j+1] for j ≥ p, since vh is a
polynomial of degree p on each element. Markov- and Bernstein-type inequalities
confirm that

‖v[j+1]‖∞,[ i−1

n
, i

n
] ≤ C′h− 1

2 ‖v[j+1]‖2,[ i−1

n
, i

n
] ≤ C′′h−p+ 1

2 ‖v′‖2,[ i−1

n
, i

n
] ,

since the index j does not exceed p − 1. Finally we use the Cauchy-Schwarz
inequality in order to combine the individual H1 semi-norms on the elements to
the corresponding norm ‖v′‖2,[0,1] on the unit interval.

In view of (1) we conclude that the consistency error possesses order hq−p+ 5

2 ,
meaning that at least p Gauss nodes (where q = 2p − 1) are needed to achieve
the optimal rate p of convergence with respect to the H1 semi-norm. This is in
perfect agreement with the experimental results reported in [2, Example 3].

The method of integration by interpolation and look-up (IIL) relies on spline
approximations of degree q of the weighting functions in the integrals and uses look-
up tables of B-spline tri-product integrals to integrate the resulting approximate
integrands. It was shown that degree q = p suffices to preserve the overall accuracy
of the numerical simulation [2], even though the individual matrix elements are
evaluated only with accuracy of order hp+2, which is much lower than for GQ. This
leads us to conclude that IIL is better suited to obtain a low-order consistency error
than GQ.

The remainder of this talk describes our recent work on the combination of IIL
with the technique of sum factorization (SF). The resulting method is based on



Mathematical Foundations of Isogeometric Analysis 2003

the observation that the B-spline tri-product integrals can be factorized into d uni-
variate integrals. We obtain a matrix assembly algorithm that requires O(Npd+1)
flops for the matrix assembly. Thus, it achieves the same performance as weighted
quadrature [4], while preserving the symmetry of the matrices. The direct evalua-
tion of matrix-vector products (needed for matrix-free methods) requires O(Npd)
flops.

We also present a detailed analysis in the low degree cases (p ≤ 3), which shows
that the new method compares favorably with the existing techniques. Finally
we note that the idea of combining IIL with SF admits a generalization to the
assembly of isogeometric discretizations that are based on hierarchical B-splines.
This leads to a similar results about the computational costs, provided that the
meshes satisfy certain admissibility assumptions.
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Recovery based error estimates for isogeometric analysis

Trond Kvamsdal

(joint work with Mukesh Kumar and Kjetil A. Johannessen)

In this talk, we explore that Isogeometric analysis (IGA) based on B-splines
or Non-uniform rational B-splines (NURBS) produces structured tensor product
meshes within each patch [3] and facilitates superconvergence behavior in the
Galerkin discretization [6]. Adaptively refined LR B-splines [2] based on struc-
tured adaptive mesh refinement [4] facilitates superconvergence behavior on adap-
tive meshes as they produce local tensor product meshes. The aim of the present
talk is to present the underlying idea and the efficiency of using superconvergent
patch recovery and a posteriori error estimation technique in adaptive isogeometric
analysis. The details of the presented methodology are given in [5].
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We start out by addressing the existence of derivative superconvergence points
in the computed finite element solution based on B-splines and LR B-splines for our
elliptic model problem (1D and 2D Poisson). Inspired by earlier theoretical work
presented in Wahlbin [6] and computer based proof of Babuska [1], we demonstrate
that we are able to compute true derivative superconvergence points by means
of local Neumann projection of a set of proper monomials for both uniform B-
splines as well as for general (non-uniform) adapted LR B-splines. For uniform B-
splines the true derivative superconvergent points are located at different location
than the case of classical C0 Lagrange elements. Thus, the continuity of the
underlying finite element basis plays an important role for the location of true
derivative superconvergent points. For the case of quadratic C1 B-splines, on
uniform mesh partition, they share the same location given by the (2 × 2)-Gauss
Legendre points (or Barlow points) for classical quadratic C0 Lagrange elements.
While in case of cubic C2 and C1 B-spline spaces, on uniform mesh partition, the
derivative superconvergence points will be at (3× 3)-Gauss Lobatto points within
each elements in contrary to the (3× 3)-Gauss Legendre points (or Barlow points)
for classical cubic C0 Lagrange elements.

In [5] a study of three different gradient recovery techniques were performed
for the purpose of enabling effective adaptive refinement in isogeometric analy-
sis: Continuous L2-projection (CL2P), Discrete least square fitting (DLSF), and
Superconvergent Patch Recovery (SPR).

The main findings were:

• The difference between using true superconvergent derivative points and
(2×2)-Gauss Legendre points for p=2 is noticeable but not pronounced for
the accuracy of the recovered gradient field and the corresponding global
effectivity indices.

• Adaptive refinement using all the three recovery based a posteriori error
estimates provides optimal convergence rate

• The obtained global effectivity indices are for all the three recovery tech-
niques remarkable close to one - This is in contrast with the basic explicit
residual based error estimates.

• The local elementwise effectivity indices for all the three recovery tech-
niques are close to one after some initial refinement steps to take care of
any possible pollution effect.

• The main difference between the three recovery methods is that for both
CL2P and DLSF one have to solve a global (mass matrix) problem, whereas
SPR only involve solution of a local problem.

Another interesting use of the superconvergence property is to do collocation by
using the superconvergent points as the collocation points. Recent studies shows
that one may for certain problems achieve optimum convergence rates. How-
ever, here it is important to compute true superconvergent points for non-uniform
meshes.
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Adaptive space-time isogeometric analysis of parabolic equations

Ulrich Langer

(joint work with Svetlana Kyas and Sergey Repin)

We introduce and investigate new locally stabilized space-time Isogeometric Anal-
ysis (IgA) approximations to initial-boundary value parabolic problems of the form

(1) ∂tu− divx(ν∇xu) = f in Q, u = 0 on Σ, u = 0 on Σ0,

where Q := Ω × (0, T ), Σ := ∂Ω × (0, T ), and Σ0 := Ω × {0}. We assume that
f ∈ L2(Q) and that ν = ν(x, t) (non-autonomous case) is uniformly positive and
bounded almost everywhere in Q. Under weak additional conditions imposed on
ν, one can show maximal parabolic regularity (MPR) [1], i.e., ∂tu ∈ L2(Q) and
Lu := −divx(ν∇xu) ∈ L2(Q). Therefore, the parabolic PDE (1) makes sense in
L2(Q). Previously, similar schemes (but weighted with a global mesh parameter
h) were presented and studied in [5]. The current work devises a locally stabilized
version of this scheme, which is suited for adaptive mesh refinement based on
a posteriori error estimators. Such locally stabilized versions are obtained by
multiplying the PDE (1) in K ∈ Kh = Φ(K̂h) with a locally scaled time-upwind

test function vh + θKhK∂tvh, where Φ maps the parameter domain Q̂ = (0, 1)d+1

to the physical space-time cylinder Q = ΦQ̂, and the mesh K̂h of Q̂ to the mesh
Kh of Q. After integration over K, summation over all K ∈ Kh, and integration
by parts, we obtain the locally stabilized space-time IgA scheme: find uh from the
finite-dimensional IgA space V0h such that

(2) ah(uh, vh) = ℓh(vh) ∀vh ∈ V0h,

where the bilinear form is given by ah(uh, vh) :=
∑

K∈Kh

∫

K
(∂tuhvh + ν∇xuh ·

∇xvh)d(x, t)+
∑

K∈Kh
θKhK

∫

K
(∂tuh−divx(ν∇xuh))∂tvhd(x, t), whereas the lin-

ear form is defined by lh(vh) :=
∑

K∈Kh

∫

K
f(vh + θKhK∂tvh)d(x, t). The IgA



2006 Oberwolfach Report 33/2019

scheme (2) is obviously consistent, i.e., ah(u, vh) = ℓh(vh) for all vh ∈ V0h at the so-
lution u of (1). Consistency yields Galerkin orthogonality ah(u−uh, vh) = ℓh(vh).
Galerkin orthogonality easily implies the best-approximation estimate

(3) ‖u− uh‖h ≤
(

1 +
µb

µc

)

inf
vh∈V0h

‖u− vh‖h,∗.

provided that ah(vh, vh) ≥ µc‖vh‖h (V0h-coercivity) and ah(v, vh) ≤ µb‖v‖h,∗‖vh‖h
(Vh,∗ × V0h-boundedness) for all vh ∈ V0h and v ∈ Vh,∗ := V0h +HL,1

0,0 (Q), where

HL,1
0,0 (Q) is the Sobolev space to which the solution u belongs in the MPR set-

ting. V0h-coercivity and Vh,∗ × V0h-boundedness of the bilinear form ah(·, ·) of
the IgA scheme (2) can be shown for θK = O(hK). We refer to [4] for the pre-
cise definition of θK and the norms. From (3), one can easily derive optimal
convergence rate estimates for solutions u from H1+s(Q) for some s > 0. The
best-approximation estimate (3) can be generalized to distributional right-hand
sides of the form f + divx(f), where the vector-function f belongs to H(divx, Qi)
for some non-overlapping decomposition of Q into subdomains Qi. This setting is
typical for 2d eddy-current problems such as electrical machines, where f models
permanent magnets, f describes the current impression, and ν is the reluctivity.

The local error indicators used for mesh refinement in our adaptive space-time
IgA scheme are based on Repin’s functional a posteriori error estimates (2002),
see also monograph [6]. The simplest one has the form

(4) ‖e‖2 ≤ (1 + β)‖y+ f − ν∇xuh‖
2
L2(Q) + (1 +

1

β
)C2‖f +divx(y)− ∂tuh‖

2
L2(Q),

where ‖e‖2 := ‖∇xe‖
2
L2(Q) + ‖e‖2L2(ΣT ), e = u − uh denotes the discretization

error, ΣT := Ω× {T }, β is a positive scaling parameter, C denotes the Friedrichs
constant of Ω, and y is the reconstructed flux. In the single-patch case, one can
use ∇xuh as y provided that uh is C1 smooth. In order to obtain good efficiency
indices close to 1, we minimize the quadratic functional on the right-hand side
of (4) on a coarser spline space with a higher polynomial degree and the highest
smoothness exploiting the superior approximation properties of these splines. The
numerical results presented in [4] confirm the efficiency of this approach for several
benchmark examples with different features in terms of the efficiency index and
the computational overhead for the flux reconstruction.

Time-parallel and space-time methods, in particular, space-time finite element
methods have a long history. In particular, we mention [3] where a Galerkin/Least-
Squares stabilized time-slice finite element method was proposed and analyzed for
parabolic and other problems. The revival of space-time methods is certainly
connected with the availability of massively parallel computers with thousands
or even millions of cores. We refer the interested reader to the survey articles
[2] and [7] for a comprehensive review of time-parallel and space-time methods,
respectively.
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Interesting splits

Tom Lyche

(joint work with Carla Manni and Hendrik Speleers)

Splines on triangulations have widespread applications in many areas ranging from
finite element analysis and physics/engineering applications to computer graphics
and entertainment industry.

For many of these applications, C0 piecewise linear surfaces do not offer suf-
ficient smoothness. However, obtaining spline surfaces of higher smoothness on
arbitrary triangulations may require assumptions on the polynomial degree. Low
degrees, which are appealing from a practical point of view, are very problematic
in this context. For example, it is known that the space of C1 quadratic splines
has no stable dimension, meaning that the dimension can depend on the exact
geometry of the triangulation and not only on combinatoric and topological quan-
tities as number of vertices, edges, etc. The dimension of C1 cubic splines is still
an open problem for general triangulations [5].

To obtain a local and stable construction of the elements of a spline space
with global C1, C2 or C3 smoothness over an arbitrary triangulation, one must
use polynomials of degree 5, 9, 13 respectively on each triangle. An alternative
is to use lower-degree macro-elements, that is, by subdividing each triangle into
a number of subtriangles. Popular splits are the Powell-Sabin 6 (or 12) split
that subdivides each triangle in 6 (or 12) subtriangles, and the Clough-Tocher
split where each triangle is subdivided in 3 subtriangles. The minimum degree
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to get C2 smoothness is 5 on the Powell-Sabin splits, while piecewise polynomials
of degree 6 are needed to achieve C2 smoothness on the Clough-Tocher split. Of
course, C2 cubic splines are very appealing because they couple the lowest possible
degree with a smoothness that is sufficient to efficiently address many problems in
practice. However, to obtain such a low degree, one must rely on more complicated
macro-structures [3, 7].

Locally supported basis functions are necessary both for efficient computation
and for optimal approximation power of the space. Simplex splines are one of
the most elegant generalizations of univariate B-splines to the multivariate set-
ting. They can be interpreted as the density function of a simplex shadow. For
the univariate setting this nice interpretation dates back to Schoenberg in the
middle sixties and has been later used by several authors to define multivariate
B-splines and investigate their properties. In particular, the beautiful geometric
construction of simplex splines allows to immediately see or to derive in a straight-
forward manner, properties such as smoothness and recursion, the knot insertion
and degree elevation formulas [1, 2, 4].

Figure 1. C2 cubic split.

In this talk we present the construction of a simplex-spline basis for a C2 cubic
spline space that can be defined on any given triangulation suitably refined [6]; see
Figure 1. This space ensures full approximation power and any element of the space
admits a local construction. The provided simplex-spline basis possesses many
important properties we wish for when dealing with both geometric modelling and
approximation. More precisely, our basis enjoys the following properties:

• nonnegative partition of unity and minimal support,
• computational efficiency via stable recurrence relation and differentiation
formula,

• representation in terms of a geometrically meaningful control polygon,
• meaningful geometric interpretation of smoothness conditions between ad-
jacent triangles,
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• explicit dual functionals giving representation of polynomials via a Mars-
den like identity,

• well-conditioned collocation matrices for Lagrange and Hermite interpola-
tion using certain sites.

The constructed simplex basis allows us to globally represent in each subpatch
the elements of the considered C2 cubic spline space without taking care of the
complicate geometry of the refinement illustrated in Figure 1.
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Isogeometric design-through-analysis of self-supporting structures

Angelos Mantzaflaris

(joint work with Ping Hu, Bert Jüttler, Hao Pan, Wenping Wang, and Yang Xia)

The design and computation of self-supporting structures is a challenging problem
in contemporary architecture. In this work we propose a spline-based approach
for the construction of smooth self-supporting surfaces. The equilibrium state of
the surface is expressed in terms of control variables, using membrane shell theory.
Airy stresses within the surface are used as tunable variables in the design pipeline.
The self-supporting shapes corresponding to the stress states are calculated by
a nonlinear isogeometric analysis (IGA) method. Self-supporting surfaces have
been treated previously by means of thurst network analysis, which discretizes the
surface into a network and assigns forces on the nodes [3, 5]. Recently in [2] a
NURBS representation of masonry structures was introduced.

Three-dimensional shell structures are generally represented by their middle
surfaces [6]. Based on Monge’s description (Figure 1), a surface

(1) S = {(x, y, h(x, y) : (x, y) ∈ U)},

without overhangs can be represented as a height function h(x, y) over U ⊂ R.
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Figure 1. Monge’s description of a masonry shell surface.

With IGA both U and h are described using NURBS basis functions:

(2) (x, y) = G(ξ, η) =

n
∑

i=1

m
∑

j=1

(xi,j , yi,j)Ri,j(ξ, η) , G([0, 1]2) = U,

(3) h =

n
∑

i=1

m
∑

j=1

hi,jRi,j(ξ, η) =

n
∑

i=1

m
∑

j=1

hi,j (Ri,j ◦G
−1)(x, y),

where (ξ, η) ∈ [0, 1]2, Ri,j are bivariate NURBS basis functions of certain polyno-
mial degree and (xi,j , yi,j , hi,j) denote the control points. The mapping (2) defines
a parameterization of U over the parameter domain [0, 1]2.

Membrane theory is used to describe the balance conditions relating the surface
geometry and the stress field on the surface which resists external loads [4, 7].
The stress per surface point, projected onto the horizontal plane, is encoded by a
symmetric 2× 2 stress matrix

(4) σ =

[

σ11 σ12

σ12 σ22

]

,

and equilibrium can be expressed by the second-order differential equations [8]

(5) div(σ) = 0,

(6) −div(σ∇h) = f(h),

where f(h) is the gravitational load on the surface, f(z) = ρgt
√

1 + ‖∇z‖2 . Here
ρgt yields the unit area load, where ρ is the density of the material, g is the
gravitational acceleration, and t is the thickness of the surface.

For a simply connected domain, there exists a global function φ : U → R s.t.

(7) σ =

[

∂2
yφ −∂x∂yφ

−∂x∂yφ ∂2
xφ

]

.

Note that the divergence free property of σ (Eq. 5) is automatically satisfied. The
function φ(x, y) is called the Airy stress function [9].

We assume that the material of masonry reacts elastically to arbitrary com-
pression but cannot bear the slightest traction. Therefore, the elasticity properties
of the masonry can be characterized by the requirement that, in addition to the
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above equilibrium equations, the resultant stress tensor σ be negative semi-definite.
Equivalently, we require that φ is convave [4], namely:

(8) detHφ ≥ 0 and tr Hφ ≥ 0 , where Hφ is the Hessian matrix of φ.

The problem to be solved is formulated as follows: given the planar boundary
curves of a shape, find a smooth surface with a specific inner stress state, such that
the self-supporting equilibrium under the given loads and boundary conditions is
fulfilled. We discretize (6) using IGA and obtain the weak form

(9)

∫

Ω

∇hσ∇v dx =

∫

Ω

f(h)v dx , ∀v ∈ V ,

where V is the usual isogeometric spline space spanned by Rij ◦G
−1, see also (3).

An Airy stress function is prescribed with uniform stresses, so that all points in
the structure are equally strong [8]:

(10) φ =
1

2
σ22x

2 +
1

2
σ11y

2 − σ12xy , σ11, σ22, σ12 ∈ R.

Linear terms do not affect the stress, and are therefore omitted. The concave
condition of the Airy stress reads σ11 + σ12 ≤ 0 and σ11σ12 − σ22

2 ≥ 0, cf. (8).
A self-supporting surface generally has fixed or free boundary conditions, which
are implemented in IGA by enforcing Dirichlet or Neumman boundary conditions.
We solve the boundary value problem for the unknown height function using a
Newton iterative method.

Figure 2. The feasible design domain of Airy stresses.

We explore the effect of uniform Airy stress functions which have zero shear
stress (σ12 = σ21 = 0). We set σ11 > σ22, since models with σ11 < σ22 can be
obtained by rotation. Our results show that the feasible design domain of Airy
stresses is located within a triangle, see Figure 2. When both stresses are tiny,
which means the structure is in a loose state and there is not enough compression
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force to hold the pieces together, Newton’s iteration will not converge. When
stress increases, the height of the obtained shape generally decreases. This is
due to the fact that equilibrium with smaller plane stresses can be obtained with
steeper shapes, until reaching the extreme case when walls are built straight up
with blocks. In the opposite direction, when inner stress increases, the height
of the obtained shape decreases, until it eventually becomes planar. For further
experiments and details, the interested reader is kindly referred to [1].
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Geometrically smooth splines, dimensions, bases, projections

Bernard Mourrain

(joint work with Ahmed Blidia, Nelly Villamizar, and Gang Xu)

We analyse the space of geometrically continuous piecewise polynomial functions,
or G1 splines, on general topological surfaces. Our construction is based on tran-
sition maps or gluing data attached to the edges shared by faces. We present
compatibility conditions on the transition maps which yield interesting G1 spline
spaces. We provide dimension formula for the space of G1 spline functions on
topological surfaces with quadrangular pieces and polynomial or b-spline patches,
under a separability condition. We show that the separability condition allows to
deduce bases from the analysis of the G1 conditions along an edge. An explicit and
efficient algorithm to construct such bases is presented, in which basis functions
attached to vertices, edges and faces are defined.

We illustrate the basis construction in different projection problems. The first
illustration is a new and explicit scheme for the construction of geometrically
smooth spline surfaces from a coarse quadrangular mesh. The resulting surface
is G1 everywhere and C2 except around extraordinary vertices. Each face of the
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quadrangular mesh is associated to a bi-quintic spline patch. An approximate
Catmull-Clark subdivision scheme is used to compute the control points of b-
spline patches associated to the faces of the quadrangular mesh, which are then
projected on the space of G1 splines.

The second illustration is a fitting problem for the reconstruction of smooth
surfaces of arbitrary topology from a point cloud. A basis of a G1 spline space is
used in the construction of the G1 parametric surface, which is the closest to a set
of points.

The third illustration is an application to Isogeometric Analysis. The G1 spline
basis functions are used to approximate the solution of an elliptic equation with
boundary conditions. We present numerical results for different levels of refinement
of an initial mesh, using Catmull-Clark subdivision and the G1 basis construction.
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Refinable tri-variate C
1 splines for box-complexes including irregular

points and irregular edges

Jörg Peters

The grid points of a regular partition of 3-space into boxes can be interpreted
as the control points of a tri-variate tensor-product spline with one polynomial
piece per cube. The theory of such splines is well-understood [3, 4]. By contrast,
for box-complexes where the tensor-grid gives way to an irregular arrangement
of boxes including irregular points and irregular edges, there is to date no sim-
ple prescription to join the corresponding polynomial pieces with more than C0

continuity. Efficiently modeling C1 fields over general box-complexes is of interest
in areas ranging from scientific data visualization to solving higher-order differen-
tial equations. For example, to visualize a flow computed by the Discontinuous
Galerkin approach currently requires substantial post-processing to extract stream
lines that the theory predicts to be smooth [17].

Already in two variables – where the box-complex is a quad mesh and the
only irregularities are points where more or fewer than four quadrilaterals meet
– associating one or more bi-cubic polynomial pieces with each quad and joining
them to form a C1 space is far from trivial. The main options developed over
the past 30 years are: geometric continuity (change of variables between pieces)
[7, 13, 9, 8], generalized subdivision [6, 15] or introducing removable singulari-
ties into the parameterization [14, 11, 16, 12]. Each option encounters challenges.
Geometric continuity requires increased polynomial degree near irregularities and
careful book-keeping to adjust reparameterizations under refinement. Subdivision
creates an infinite sequence of nested piecewise polynomial rings that complicate
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engineering analysis, e.g. integration, near irregularities. Singular corner parame-
terizations are often shape deficient and must ensure that the singularity is locally
removable so the resulting space can be certified C1 despite the vanishing of partial
derivatives at irregularities.

In three variables, there are few C1 constructions for box-complexes with irreg-
ularities. The impressive work of the meshing community to generate unstructured
hex-meshes and the improved understanding of fields and their singularity graph
is not met with corresponding progress in more flexible spline representations.
Trivariate subdivision rules analogous to Catmull-Clark subdivision [6] have been
proposed in [10] and used in engineering applications in [5] but come without
guarantee of smoothness and approximation order. Geometric continuity in three
variables, although well-understood in principle, is in practice barely explored: [1]
analyze one pair of face-adjacent boxes.

(a) box-complex with irregular point
(n = 4) and irregular edges (ne = 3)

(b) solution of ∆(u ◦ x) = 1

Figure 1. Modeling and computing with refinable tri-variate C1

splines for box-complexes including (a) four irregular edges of va-
lence 3 and one irregular vertex of valence 4. (b) The four domains
map to curved boxes partitioning an octant of a ball and Poisson’s
equation is solved on the octant, by collocation.

This paper introduces a trivariate C1 space with singular parameterization, the
third option. Wherever possible, the vertices of the box-complex are interpreted
as B-spline coefficients [3, 4]. Then, at each irregularity, a well-behaved linear
function is determined and composed with a local singular expansion x̆ that is
specially crafted to be consistent with the local layout of the box-complex and
based on the intersection of edge-dual planes within each box. All first derivatives
of the expansion x̆ are continuous, albeit zero across irregularities. Apart from
the irregularities, its Jacobian is positive definite. This is the key ingredient to
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show that the inverse x̆−1 is well defined and the local expansion of the linear
function composed with x̆ can be evaluated at x̆−1, removing the singularity. The
polynomial pieces of the spline space therefore join not just nominally C1, but
smoothly over the whole box-complex. The spline space has a basis of 2 × 2 × 2
independent functions per hexahedral input box (one per sub-box after a dyadic
split in each dimension), can reproduce linear functions and is nestedly refinable.

Figure 1a shows a box complex with irregular point (n = 4) and four irregular
edges (ne = 3). The corresponding piecewise tri-cubic map is smooth across the
irregularities and parameterizes an octant of a ball. To test the construction as
physical domain, the Poisson equation is solved on the octant, with zero boundary
conditions. Figure 1b shows slices colored by the resulting scalar field satisfying
the Poisson equation in the sense of collocation.
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Multi-mesh isogeometric analysis with minimal stabilization

Riccardo Puppi and Xiaodong Wei

Boolean operations represent one of the most fundamental tool in CAD environ-
ments, where complex geometries are built using boolean operations. At the same
time this construction constitutes a source of difficulty in the interplay between
the geometry and the numerical analysis of PDEs. When parts of the physical
object are cut away or being overlapped, its visualization changes, while its math-
ematical description does not. It turns out that we have to deal with elements
unfitted with the boundary which cause instability of the discrete problem.

We present a novel method for isogeometric analysis (IGA) to directly work
on geometries constructed by Boolean operations. Particularly, this work focuses
on the union and intersection (or trimming) operations, which involve multiple
independent, generally non-conforming and trimmed spline patches.

A minimal stabilization technique based on a modification of the variational
formulation is presented in the context of the Poisson problem in order to recover
the well-posedness of the discrete formulation of the problem. A simple precondi-
tioning coupled with our stabilization technique is proposed to solve the issue of
the ill-conditioning of the stiffness matrix.

Moreover, we show in theory that our proposed method recovers optimal error
estimates. In the end, we numerically verify the theory by solving the Poisson
problem in various geometries that are obtained by union and trimming operations.
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Advanced isogeometric modeling and applications with a focus on
shells and laminates

Alessandro Reali

(joint work with Alessia Patton, John-Eric Dufour, Pablo Antoĺın, Josef Kiendl,
Giancarlo Sangalli, and Ferdinando Auricchio)

Isogeometric Analysis (IGA) is a recent simulation framework originally proposed
by T.J.R. Hughes and coworkers [1] with the aim of bridging the gap between Com-
putational Mechanics and Computer Aided Design (CAD) towards a cost-saving
simplification of the typically expensive mesh generation and refinement processes
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required by standard finite element analysis. Thanks to the high-regularity proper-
ties of its basis functions, IGA has shown a better accuracy per-degree-of-freedom
and an enhanced robustness with respect to standard finite elements in a number
of applications ranging from solids and structures to fluids and fluid-structure in-
teraction, opening also the door to geometrically flexible discretizations of higher-
order partial differential equations in primal form, as well as to highly efficient
(strong-form) collocation methods [2]. In particular, this higher regularity gave
“new life” to shell modeling and applications, making it possible to easily and
efficiently implement (rotation-free) Kirchhoff-Love shells (see, e.g., [3] and refer-
ences therein). Within this context, this lecture mainly focuses on some recent
advances on modeling and applications of shell structures allowed by the unique
IGA features (see, e.g., [4]), with special attention to the accurate and inexpensive
simulation technique for laminates proposed in [5]. In particular, this approach
takes advantage of the favorable properties of IGA discretizations to efficiently
simulate the behavior of laminated structures comprising a large number of layers
using only a single element through the thickness and a post-processing technique
able to recover an accurate out-of-plane stress state by direct integration of the
equilibrium equations in strong form (cf., e.g., Figure 1). The results of the recent
and successful extension of this approach to IGA collocation [6] are also shown, as
well as convincing preliminary results for the case of Kirchhoff plates and curved
structures.
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Figure 1. Recovered (red solid line) σ13 stress component com-
pared to the analytical one (blue crosses) for the famous Pagano
example, at several in-plane positions. L is the total length of the
plate, that in this case is L = 110 mm (being L = S t with t =
11 mm and S = 10), while the number of layers is 11.

n-Widths and error estimates for k-refinement

Espen Sande

(joint work with Andrea Bressan, Michael Floater, Carla Manni, and
Hendrik Speleers)

Splines are piecewise polynomial functions that are glued together in a certain
smooth way. When using them in an approximation method, the availability of
sharp error estimates is of utmost importance. Classical error estimates in Sobolev
(semi-)norms for spline approximation are expressed in terms of
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(a) a certain power of the maximal grid spacing (this is the approximation
power),

(b) an appropriate derivative of the function to be approximated, and
(c) a “constant” which is independent of the previous quantities but usually

depends on the spline degree.

An explicit expression of the constant in (c) is not always available in the literature,
because it is a minor issue in the most standard approximation analysis. They are
mainly interested in the approximation power of spline spaces of a given degree.

These estimates are perfectly suited to study approximation under h-refinement,
i.e., refining the mesh by the insertion of new knots. On the other hand, one of the
most interesting features in Isogeometric Analysis (IGA) is k-refinement, which
denotes degree elevation with increasing interelement smoothness (and requires
the use of splines of high degree and maximal smoothness). The above mentioned
error estimates are not sufficient to explain the benefits of approximation under k-
refinement as long as it is not well understood how the degree of the spline affects
the whole estimate, including the “constant” in (c).

In this talk we provide a priori error estimates for k-refinement on arbitrary
grids with an explicit constant that is, in many cases, sharp [2]. These a pri-
ori estimates are actually good enough to cover convergence to eigenfunctions of
classical differential operators. This forms a theoretical foundation for the out-
performance of smooth spline discretizations of eigenvalue problems that has been
numerically observed in the literature, and for optimality of geometric multigrid
solvers in the isogeometric analysis context.

Moreover, we discuss how these a priori error estimates can be used to mathe-
matically justify the benefits of spline approximation under k-refinement by isoge-
ometric discretization methods. Specifically, by comparing the constant for spline
approximation of maximal smoothness with a lower bound on the constant for
continuous and discontinuous spline approximation, we show that k-refinement
provides better approximation in degrees of freedom in almost all cases of practi-
cal interest [1].

The key tools to get these results are the theory of Kolmogorov L2 n-widths and
the representation of the considered Sobolev spaces in terms of integral operators.
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A solver for the isogeometric k-method

Giancarlo Sangalli

(joint work with Mattia Tani, Francesco Calabrò, René R. Hiemstra,
Thomas J.R. Hughes, Gabriele Loli, Monica Montardini)

The concept of k-refinement, or k-method, was proposed as one of the key features
of isogeometric analysis, “a new, more efficient, higher-order concept”, in the sem-
inal work [1]. The idea of using high-degree and continuity splines (or NURBS,
etc.) as a basis for a new high-order method appeared very promising from the be-
ginning, and received confirmations from the next developments. The k-refinement
leads to several advantages: higher accuracy per degree-of-freedom, improved spec-
tral accuracy, the possibility of structure-preserving smooth discretizations are the
most interesting features that have been studied actively in the community. At
the same time, the k-refinement brings significant challenges at the computational
level: using standard finite element routines, its computational cost grows with
respect to the degree, making degree raising computationally expensive. However,
recent ideas allow a computationally efficient k-refinement: I present in this talk
the results of [2] and more recent ones in [4]. We propose a matrix-free strat-
egy combined with weighted quadrature, which is an ad-hoc strategy to compute
the integrals of the Galerkin system. Matrix-free weighted quadrature (MF-WQ)
speeds up matrix operations, and, perhaps even more important, greatly reduces
memory consumption. Our strategy also requires an efficient preconditioner for
the linear system iterative solver: we deal with an elliptic model problem, and
adopt a preconditioner based on the Fast Diagonalization method, an old idea to
solve Sylvester-like equations. an old idea to solve Sylvester-like equations. Our
numerical tests show that the isogeometric solver based on MF-WQ is faster than
standard approaches (where the main cost is the matrix formation by standard
Gaussian quadrature) even for low degree. But the main achievement is that, with
MF-WQ, the k-method gets orders of magnitude faster by increasing the degree,
given a target accuracy. Therefore, we are able to show the superiority, in terms of
computational efficiency, of the high-degree k-method with respect to low-degree
isogeometric discretizations. What we present here is applicable to more complex
and realistic differential problems, but its effectiveness will depend on the precon-
ditioner stage, which is as always problem-dependent. This situation is typical
of modern high-order methods: the overall performance is mainly related to the
quality of the preconditioner.
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Approximated infinite dimensional operators and their spectral
analysis: what the GLT analysis can say

Stefano Serra-Capizzano

(joint work with Carlo Garoni, Marco Donatelli, Sven-Erik Ekström, Carla
Manni, and Hendrik Speleers)

In the last fifteen years, the class of Generalized Locally Toeplitz (GLT) sequences
[13, 14] has been introduced [17, 18] as a generalization both of classical Toeplitz
sequences and of variable coefficient differential operators and, for every sequence
of the class, it has been demonstrated that it is possible to give a rigorous descrip-
tion of the asymptotic spectrum [2, 20] in terms of a function (the symbol) that
can be easily identified; see also [19].

This generalizes the notion of a symbol for differential operators (discrete and
continuous) or for Toeplitz sequences for which it is identified through the Fourier
coefficients and is related to the classical Fourier Analysis.

The GLT class has nice algebraic properties and indeed it has been proven that
it is stable under linear combinations, products, and inversion when the sequence
which is inverted shows a sparsely vanishing symbol (sparsely vanishing symbol
= a symbol which vanishes at most in a set of zero Lebesgue measure). Further-
more, the GLT class virtually includes any approximation of partial differential
equations (PDEs) and fractional differential equations (FDEs) by local methods
(Finite Difference, Finite Element, Isogeometric Analysis, etc.) and, based on this,
we demonstrate that our results on GLT sequences can be used in a PDE/FDE
setting in various directions, including preconditioning, multigrid, spectral detec-
tion of branches, fast ’matrix-less’ computation of eigenvalues, stability issues (see
the list of references for few representative contributions). We discuss specifically
the impact and the further potential of the theory with special attention to the
IgA setting.
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Smooth B-spline representations on Powell-Sabin triangulations

Hendrik Speleers

Isogeometric analysis (IgA) is a simulation paradigm aiming to reduce the gap
between the worlds of finite element analysis (FEA) and computer-aided design
(CAD). The main idea is to use the CAD representations not only to model phys-
ical domains but also to approximate the solution of differential problems [1].
Tensor-product B-splines and non-uniform rational B-splines (NURBS) are com-
mon tools in CAD, and so they are in IgA.

Adaptive local mesh refinement is an important ingredient for obtaining effi-
ciently an accurate solution of differential problems. In the context of classical
FEA, local mesh refinement strategies are a well established procedure. Unfortu-
nately, the tensor-product structure of NURBS spaces precludes strictly localized
refinements. This motivates the interest in alternative structures for IgA that
permit local refinements.

In this talk we discuss the construction of a suitable B-spline representation
for smooth splines on general triangulations [3, 5]. The considered splines have
smoothness r and degree d ≥ 3r − 1, and are defined over a special refinement
of the given triangulations, called Powell-Sabin refinement. In such a refinement
every triangle of the triangulation is split into six subtriangles. The C1 quadratic
Powell-Sabin B-splines are the most known member in this family [2]. The B-spline
construction can be geometrically interpreted as determining a set of triangles
that must contain a specific set of points. The B-spline functions possess several
interesting properties:

• local support,
• linear independence,
• nonnegative partition of unity.

This B-spline representation exhibits a natural definition of control points and
an intuitive control structure in terms of local triangular nets. These triangular
nets locally mimic the shape of the spline surface, and hence they can be used in
the geometric design of smooth surfaces. On the other hand, such representation
also presents interesting properties for engineering analysis. In particular, the
representation allows for:

• stable evaluation and differentiation,
• efficient triangular Bézier extraction,
• optimal approximation and convergence,
• adaptive local mesh refinement.

Furthermore, we describe a general construction of quasi-interpolants based on
this B-spline representation [6]. Such a quasi-interpolation operator can be defined
by providing a collection of polynomials (one for each degree of freedom), which
can be constructed based on local data sites through any standard polynomial
approximation method. The full spline scheme inherits the same approximation
order of the local approximation schemes (up to d + 1). Next, we discuss some
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strategies to reduce further the degrees of freedom while keeping optimal approx-
imation power [4, 6]. The availability of the quasi-interpolation framework can be
of help here by carefully selecting the local polynomials.

Finally, we demonstrate the applicability of Powell-Sabin B-splines, and their ra-
tional version (so-called NURPS splines), for solving differential problems. Thanks
to their structure based on triangulations and their B-spline properties, they con-
stitute a natural bridge between classical FEA and NURBS-based IgA. We il-
lustrate the use of PS/NURPS splines in IgA with several numerical examples
[7, 8, 9].
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C
1 smooth multi-patch isogeometric spaces

Thomas Takacs

(joint work with Annabelle Collin, Mario Kapl, Giancarlo Sangalli, and
Pascal Weinmüller)

In isogeometric analysis globally C1-smooth isogeometric spaces over unstructured
quadrilateral meshes allow the direct solution of fourth order partial differential
equations on complex geometries via their Galerkin discretization. While the
design of smooth spaces is trivial for single patch geometries, it is a challenging
task in the case of multi-patch or manifold geometries. In this talk we focus on
multi-patch domains, which give sufficient flexibility for geometric design without
exhibiting the difficulties of fully unstructured quad meshes. We mostly discuss
the results developed in [6, 10, 11, 12, 13].

We consider multi-patch parametrizations that are regular everywhere, para-
metrically (at least) C1 within every patch, and meet C0 at the patch interfaces.
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On such a parametrization, the C1 condition across the patch interfaces has to be
enforced separately. It is mainly based on the observation that an isogeometric
function is C1 if and only if the associated graph surface is G1 (that is, geometri-
cally continuous of order 1), cf. [7].

As a possible alternative, one may also consider constructions that are paramet-
rically C1 (almost) everywhere. In those cases the patches either become singular
at extraordinary vertices or remain C0 in small regions around extraordinary ver-
tices. In both cases, additional geometric continuity conditions have to be satisfied
(close to the EVs) in order to obtain C1 isogeometric spaces, see [15, 18, 19, 20].

In [6] we study the reproduction properties of the C1-smooth subspaces along
an interface for arbitrary B-spline patches. From the presented results, bounds for
the dimension of the C1-smooth subspaces of arbitrary geometries can be derived.
These dimension bounds are consistent with the theory developed in [4, 14, 17].
Moreover, we identify the class of analysis-suitable G1 parametrizations. The un-
derlying condition states that the gluing data (determining the C1 constraints) has
to be linear and the regularity r within the patches has to satisfy r ≤ p− 2, where
p is the spline degree. AS-G1 parametrizations cover exactly those geometries
which allow the design of C1 isogeometric spline spaces with optimal approxi-
mation properties. This class includes but is not limited to (mapped) bilinear
multi-patch parametrizations, see [3, 9, 14, 16].

In [13] we propose to define a suitable subspace of the full AS-G1 multi-patch
isogeometric space by enforcing C2 at all vertices. It turns out that one can then
describe the resulting subspace in terms of Argyris-like degrees of freedom: By C2

data at the vertices, point and normal derivative data at the interfaces as well as
point data inside every patch. This facilitates the definition of a basis.

If the geometry parametrization does not satisfy the AS-G1 conditions, the de-
veloped basis construction cannot be applied. The full C1 space yields suboptimal
convergence behavior or, in the worst case, full locking of the solution. There are
several possibilities to handle this issue.

In [11] we propose a reparametrization strategy. This reparametrization keeps
the boundary of a given planar multi-patch domain fixed and interpolates its
vertices C1. Using this information, one can construct analysis-suitable gluing
data, which can then be used to fit an AS-G1 parametrization onto the initial
non-AS-G1 domain.

Alternatively, one may construct a C1 smooth space using higher degree basis
function locally near the interface to circumvent the suboptimal behavior. This
was tested numerically in [5] and discussed in more detail in [12].

Instead of enforcing the C1-continuity across the patch interfaces in a strong
sense, the C1-smoothness could also be achieved by coupling the neighboring
patches in a weak sense. This can be done using a Nitsche-like approach, pe-
nalizing the jump of the normal derivative, or using Lagrange multipliers, see
e.g. [1, 2, 8]. Alternatively, we present a new approach that is based on approx-
imating the underlying gluing data and using that approximate gluing data to
construct a set of basis functions for each interface. These basis functions are by
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definition C0, but not C1 across the interfaces. One can however ensure that the
jump of the normal derivative goes to zero when refining. First numerical tests
suggest that this can be done efficiently and optimal orders of convergence are
observed for certain configurations.
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cally continuous functions on planar multi-patch geometries, Computer Methods in Applied
Mechanics and Engineering 316, 209–234 (2017).

[10] M. Kapl, G. Sangalli, and T. Takacs, Dimension and basis construction for analysis-suitable
G1 two-patch parameterizations, Computer Aided Geometric Design 52-53, 75–89 (2017).

[11] M. Kapl, G. Sangalli, and T. Takacs, Construction of analysis-suitable G1 planar multi-
patch parameterizations, Computer-Aided Design 97, 41–55 (2018).

[12] M. Kapl, G. Sangalli, and T. Takacs, Isogeometric analysis with C1 functions on unstruc-
tured quadrilateral meshes, arXiv preprint arXiv:1812.09088 (2018).

[13] M. Kapl, G. Sangalli, and T. Takacs, An isogeometric C1 subspace on unstructured multi-
patch planar domains, Computer Aided Geometric Design 69, 55–75 (2019).
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Dimension of bi-degree splines on T-meshes

Deepesh Toshniwal

(joint work with Thomas J.R. Hughes, Bernard Mourrain, and Nelly Villamizar)

Polynomial splines on triangulations and quadrangulations have myriad applica-
tions and are ubiquitous, especially, in the fields of computer aided geometric
design and computational mechanics. Meaningful use of splines for these pur-
poses requires the construction and analysis of a suitable set of basis functions
for the spline spaces. The dimension of these spaces can depend on an interplay
between geometry, topology and combinatorics, and a theoretical understanding
of its computation (or estimation) can be a useful tool when assessing constructive
approaches. This talk discusses this problem on T-meshes.

In 1D, the problem of dimension computation is tractable and dimension for-
mulas follow from classical arguments. The study of multivariate splines, and
bivariate splines on T-meshes in particular, poses an interesting challenge as the
spline space dimension can depend on the geometric embedding of the mesh, e.g.,
see [1]. In practice, identifying meshes where the dimension is stable – i.e., free
from this geometric dependence – is useful for avoiding cases where spline spaces
on combinatorially and topologically equivalent meshes can have different dimen-
sions. Several techniques have been used for studying this problem. We proceed
using the homology-based approach first introduced for multivariate splines by
Louis Billera [2], and in the process generalize the results presented by Bernard
Mourrain [3] in two directions.

The first part of this talk focuses on splines that have mixed smoothness, i.e.,
splines that are allowed to have different orders of smoothness across different mesh
edges [4]. Usually, it is customary to work with splines that are Cr smooth across
all mesh edges for a fixed r ∈ Z≥−1; the choice of this r depends on the intended
application. However, several applications also require working with splines for
which smoothness can be reduced across an arbitrary subset of the mesh edges;
e.g., to model non-smooth or even discontinuous geometric features. Given a spline
space with stable dimension, we specify sufficient conditions that guarantee that
the smoothness across a subset of the edges can be reduced without introducing
any geometric dependence into the dimension formula.

In the second part of this talk, we consider splines of mixed bi-degree, i.e.,
bi-degree splines that incorporate the idea of local polynomial degree adaptivity
[5, 6]. The notion of mixed bi-degree splines can be very powerful in the contexts
of both geometric modeling and isogeometric analysis. In particular, the resulting
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flexibility would allow design of complex shapes with fewer control points, i.e.,
cleaner and simpler designs, while for isogeometric analysis the same would lead
to more efficient analysis. We derive combinatorial lower and upper bounds on
the dimension of mixed bi-degree splines and specify sufficient conditions for the
bounds to coincide.
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Convergence rate study using hybrid non-uniform subdivision
basis functions

Yongjie Jessica Zhang

(joint work with Xin Li and Xiaodong Wei)

We present a new hybrid non-uniform subdivision surface (HNUSS) representation
[1], and study its convergence rate in isogeometric analysis applications [3, 4]. We
focus on defining a non-uniform subdivision scheme such that it can be used for
both design (shape quality around extraordinary nodes) and analysis (with optimal
convergence rate). The HNUSS is constructed through two steps. We first insert
a set of edges around the parametric lines connecting to extraordinary nodes to
create a dual mesh. In this way, we introduce a band of elements for each of such
parametric lines and convert a valence-n extraordinary point into a valence-n face
with zero knot interval assigned to all its edges. Then, we define a new subdivision
scheme which combines the primal and dual subdivision rules in the subsequent
levels. The main features of this new subdivision scheme include:

(1) The HNUSS generalizes bi-cubic NURBS to arbitrary topology, supporting
valence-n extraordinary points;

(2) The HNUSS limit surface is proved to be G1-continuous for any valence
extraordinary points and any non-negative knot intervals. It has satis-
factory geometric quality for non-uniform parameterization. The HNUSS
limit surface has comparable shape quality as non-uniform subdivision via
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eigen-polyhedron [2] and has better shape quality than all the other sub-
division schemes. To the authors’ best knowledge, this is the first paper
which can prove G1 continuity for non-uniform extraordinary points; and

(3) Numerical experiments show that HNUSS based isogeometric analysis
yields improved convergence rates compared to any existing non-uniform
subdivision schemes. By introducing a single parameter to control the
changing rate for irregular regions, HNUSS can be analysis-suitable with
optimal convergence rates achieved.
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