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Introduction by the Organizers

The workshop Partial differential equations, organized by Guido De Philippis
(SISSA) Rick Schoen (Irvine) and Peter Topping (Warwick) was held July 22–
July 27, 2019. The meeting was attended by 54 participants with broad geo-
graphic representation. The program consisted of 21 talks and left sufficient time
for discussions.

As in the tradition of the workshop, several results concerning applications of
nonlinear PDE to geometric problems have been presented. Geometric flows have
been the topic of several presentations. The study and the classification of ancient
solutions was discussed in one talk for Ricci flow and in another for mean curvature
flow. A talk was dedicated to the study of translating solution of mean curvature
flow and another one dealt with the regularity of Ricci flows that attain their
initial data weakly. A study of Yamabe flow on non compact manifolds has also
been presented.

The interaction between PDEs and geometric problems has also been discussed
in the “stationary” case. In particular there has been a talk about the equation of
prescribed scalar curvature. A “local” version of the positive mass theorem and its
relation to a “weak” definition of positive scalar curvature has been the subject of
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another talk, where a partial answer to the dihedral rigidity conjecture of Gromov
has been presented.

Minimal surfaces have been the the topic of various presentation. In particular a
complete proof of the “multiplicity one conjecture” for min-max minimal surfaces
has been presented. Another talk dealt with the relation between the index and
the topology of minimal surfaces.

The relation between classical minimal surfaces and several “weak” notions has
been considered in various talk, also thanks to the presence of several experts in
geometric measure theory. A new existence theorem for co-dimension one Brakke
flow was presented. The physical validation of the use of minimal surfaces in
surface tension driven model has been discussed via a capillarity approximation
of the classical Plateau problem. Eventually a new approach to the construction
of co-dimension two stationary varifolds via phase-field approximation has been
shown.

The link between minimal surfaces and semi-linear PDE both of local and non-
local type has been the subject of another talk, where a proof of De Giorgi con-
jecture for the half-laplacian in dimension 4 has been shown.

The solution of Brezis conjecture concerning boundedness of stable solution of
quasi linear equation up to dimension 9 has been presented.

Glueing techniques for construction of special solutions of non-linear PDEs have
been the topics of two talks, one concerning the Keller-Segel equation and one
concerning the Euler equation.

Links between PDEs and the Calculus of Variations have been the subject of
various talks, in particular concerning regularity and/or singularity of solutions
of variational problems with convex but not strictly convex Lagrangians and the
study of Cheeger constants of planar domains. A new variational technique to
establish regularity of solution of the obstacle problem based on the logarithmic
epiperimetric inequality has been presented.

Eventually preliminary results on a “compensated integrability” approach to
the study of solutions of the (non-elliptic) equation divµ = σ have been discussed.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
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Abstracts

Translating Solutions of Mean Curvature Flow

Brian White

(joint work with David Hoffman, Tom Ilmanen, Francisco Mart́ın)

A translator with velocity v is a hypersurface M in Rn+1 such that

t 7→ M + tv

is a mean curvature flow, i.e., such that normal component of the velocity at each
point is equal to the mean curvature vector at that point:

−→
H = v⊥.

By rotating and scaling, we can make the velocity equal to −en+1. Unless oth-
erwise specified, I will assume that the velocity has been so normalized.

If a translator M (with velocity −en+1) is the graph of function u : Ω ⊂ Rn →
R, we will say that M is a translating graph; in that case, we also refer to the
function u as a translator, and we say that u is complete if its graph is a complete
submanifold of Rn+1. Thus u : Ω ⊂ Rn → R is a translator if and only if it solves

the translator equation (the nonparametric form of
−→
H = −e⊥n+1):

Di

(

Diu
√

1 + |Du|2

)

= − 1
√

1 + |Du|2
.

An example is the grim reaper curve:

{(x, y) : y = log(cosx)), x ∈ (−π/2, π/2)}.
Translators are interesting for a number of reasons:

(1) They provide simple examples of mean curvature flows.
(2) They provide possible models for singularity formation in mean curvature

flow. For example, consider a figure 8 curve M(t) in the plane moving by
(mean) curvature flow. It will develop a singularity at some finite time T .
Let p(t) be the point of maximum curvature κ(t). Then κ(t)(M(t)− p(t))
converges smoothly as t → T to the grim reaper curve (modulo a rotation
of R2).

(3) They are interesting as examples in minimal surface theory. Ilmanen ob-
served that M is a translator with velocity v if and only if M is a minimal
surface (i.e., critical point of the area functional) with respect to the Rie-
mannian metric

gij(x) = (ex·v)2/nδij .

(4) Ilmanen’s elliptic regularization [7] scheme lets one get general mean cur-
vature flows as limits of translators (as the speed of translation tends to
infinity).
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Figure 1. Complete graphical translators: grim reaper surface
and tilted grim reaper surface (left), bowl soliton (center), and
∆-wing (right). Pictures by F. Mart́ın.

In this talk, I described recent joint work with David Hoffman, Tom Ilmanen,
and Francisco Mart́ın: (1) a classification of all the complete translating graphs in
R3, and (2) new families of examples of non-graphical translators in R3. (These
and other results are discussed in the survey [5].)

Before stating the classification theorem, I recall the known examples of trans-
lating graphs in R3. First, the Cartesian product of the grim reaper curve with
R is a translator:

(x, y) ∈ R× (−π/2, π/2) 7→ log(cos y).

It is called the grim reaper surface.
Second, if we rotate the grim reaper surface by an angle θ ∈ (0, π/2) about the

y-axis and dilate by 1/ cos θ, the resulting surface is again a translator, given by

(x, y) ∈ R× (−b, b) 7→ log(cos(y cos θ))

cos2 θ
+ x tan θ,

where b = π/(2 cos θ). Note that as θ goes from 0 to π/2, the width 2b of the strip
goes from π to ∞. These examples are called tilted grim reaper surfaces.

Every translator in R3 with zero Gauss curvature is (up to translations and
up to rotations about a vertical axis) a grim reaper surface, a tilted grim reaper
surface, or a vertical plane.

In [3], J. Clutterbuck, O. Schnürer and F. Schulze (see also [1]) proved for
each n ≥ 2 that there is a unique (up to vertical translation) entire, rotationally
invariant function u : Rn → R whose graph is a translator. It is called the bowl
soliton.

The following theorem provides a full classification of all complete translating
graphs:

Theorem 1. [4] For every b > π/2, there is (up to translation) a unique complete,
strictly convex translator ub : R × (−b, b) → R. Up to isometries of R2, the only
other complete translating graphs in R3 are the grim reaper surface, the tilted grim
reaper surfaces, and the bowl soliton.

The strictly convex examples over strips are called “∆-wings”. See Figure 1.
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I remark that Bourni, Langford, and Tinaglia [2] gave a different proof of part
of this theorem: they proved existence (but not uniqueness) of strictly convex
translating graphs defined over strips.

In the lecture, I also described new families of examples of complete, non-
graphical translators. I began by posing the following problem:

Consider the parallelogram P (α,w, L) in R2 whose lower left cor-
ner is at the origin, whose base is the segment 0 ≤ x ≤ L in the
x-axis, whose interior angle at the origin is α, and whose width
(in the y-direction) is w. Is there a solution of the minimal surface
equation or of the translator equation on the domain P (α,w, L)
that has boundary values −∞ on the horizontal edges and +∞ on
the non-horizontal edges?

For the minimal surface equation, a classical theorem of Jenkins and Serrins
asserts that there is a solution if and only if the parallelogram is a rhombus. Note
that when there is a solution, its graph is a minimal surface bounded by the four
vertical lines corresponding to the vertices of the rhombus. Repeated Schwarz
reflection produces a complete, embedded, doubly periodic minimal surface (with-
out boundary). In fact, the resulting surfaces are precisely the doubly periodic
minimal surfaces discoved by Scherk in the 1800s.

In the case of the translator equation, we have the following analog of the
Jenkins-Serrin Theorem:

Theorem 2. [6] For each α ∈ (0, π) and w ∈ (0,∞), there is a unique L = L(α,w)
in (0,∞] for which the boundary value problem above has a solution.

(1) The length L(α,w) is finite if and only if w < π.
(2) The solution is unique up to an additive constant. There is a unique

solution uα,w satisfying the additional condition: (cos(α/2), sin(α/2), 0) is
tangent to the graph of u at the origin.

(3) The graph extends by repeated Schwarz reflection to a periodic surface
Sα,w.

• If w < π, then Sα,w is doubly periodic and we call it a Scherk
translator.

• If w ≥ π, then Sα,w is singly periodic and we call it a Scherkenoid.

See Figure 2.
We also describe the limits of these examples as α → 0 or α→ π:
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Figure 2. Scherk Translator (left) and Scherkenoid (right). Pic-
tures by F. Mart́ın.

Figure 3. Helicoidal-like translator (left) and pitchfork (right).
Pictures by F. Mart́ın.

Theorem 3. [6] As α → 0, the surface Sα,w converges smoothly to the parallel
vertical planes y = nw, n ∈ Z. As α → π, the surface Sα,w converges smoothly,
perhaps after passing to a subsequence, to a limit surface M . (We do not know
whether the limit depends on the choice of subsequence.) Furthermore,

• If w < π, then M is helicoid-like. (See Figure 3.)
• If w > π, then M is a complete, simply connected translator such that M
contains Z and such that M \ Z projects diffeomorphically onto {−w <
y < 0} ∪ {0 < y < w}. We call such a translator a pitchfork of width w.

Do these translators arise as blowups of mean curvature flows? Any such blowup
must have finite entropy (according to Huisken’s monotonicity formula). For that
reason, the Scherk-like translators, Scherkenoids, and helicoid-like translators can-
not arise as blowups. However, the ∆-wings and pitchforks have finite entropy.
Whether they occur as blowups is a fascinating open problem. (The other surfaces
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mentioned in this article – the grim reaper surface and the bowl solition – do occur
as blowups.)

References

[1] Steven J. Altschuler and Lang F. Wu, Translating surfaces of the non-parametric mean
curvature flow with prescribed contact angle, Calc. Var. Partial Differential Equations 2

(1994), no. 1, 101–111.
[2] T. Bourni, M. Langford, and G. Tinaglia, On the existence of translating solutions of mean

curvature flow in slab regions, arXiv:1805.05173 (2018).
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Complexities of bounded area minimal hypersurfaces

Antoine Song

Let (Mn+1, g) be a closed Riemannian manifold. We study the geometry of closed
minimal hypersurfaces smoothly embedded inside M outside a subset of Hausdorff
dimension at most n − 7. The singularity set is in general not avoidable as the
case of area minimizing minimal hypersurfaces already suggests. Apart from the
area (i.e. n-dimensional volume), there are several natural measures of complexity
associated to a minimal hypersurface: the total Betti number, the size of the
singular set and the Morse index. The main question is the following: how do
these quantities relate to each other?

Before stating the results, let us give some motivations. Firstly families of
bounded area minimal hypersurfaces with an a priori index bound are well un-
derstood and enjoy various compactness and diffeomorphism finiteness theorems
[11, 3, 2]. It is then natural to wonder what happens when the index bound as-
sumption is dropped. A second motivation comes from the general existence theory
for minimal surfaces. Works by F. C. Marques, A. Neves and others in min-max
theory revealed recently that minimal hypersurfaces are plentiful in closed Rie-
mannian manifolds. For instance, building on works of Marques-Neves, we showed
that any closed manifold of dimension between 3 and 7 has infinitely many closed
smooth embedded minimal hypersurfaces [12] and that concluded the solution to a
conjecture of S.-T. Yau from the 80’s [14]. The result is expected to hold in higher
dimensions if one allows the minimal hypersurfaces to have a codimension 7 sin-
gular set. Since these minimal hypersurfaces come from variational arguments,
they have natural Morse index bounds and one would like to bound the geometry
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of these hypersurfaces from above by their index. We achieve one step in that
direction by studying bounded area minimal hypersurfaces of high Morse index.

Let (Mn+1, g) be a Riemannian manifold. Our first result is about ambient
dimensions n+ 1 between 3 and 7.

Theorem 1. For any A > 0, there exists a constant C0 depending on A and the
ambient metric g so that for any closed embedded minimal hypersurface Σ ⊂ M
with area at most A:

n
∑

i=0

bi(Σ) ≤ C0(index(Σ) + 1),

where bi(Σ) denotes the i-th Betti number of Σ. Moreover when n + 1 = 3, the
constant C0 can be chosen to depend linearly on the area bound A.

In higher dimensions, we cannot bound the topology in terms of the index (we
actually conjecture that there are counterexamples). However, since we consider
integral stationary varifolds with support smooth outside a codimension 7 subset,
we give a bound on the size of the singular set, which in general is not empty.

Theorem 2. For any A > 0, there exists a constant C1 depending on A and the
ambient metric g so that for any closed embedded minimal hypersurface Σ ⊂ M
smooth outside a codimension 7 subset and with area at most A:

Hn−7(Sing(Σ)) ≤ C1(index(Σ) + 1)7/n,

where Sing(Σ) denotes the singular set of Σ.

In both theorems, we expect the inequalities to be optimal up to the non-explicit
constants C0, C1. These results are lower bounds for the index. Previously N. Ejiri-
M. Micallef [5] proved a general upper bound for the index of minimal 2-surfaces in
terms of the area and genus. Such a bound is false for higher dimensional minimal
hypersurfaces. As for lower bounds, there have been many works for symmetric
ambient metrics, for instance [7, 8, 13, 1, 4]. These bounds are independent of
the area but only treat the first Betti number and require the metric to be very
symmetric. They are proved using variations on an argument of A. Ros, who
understood that harmonic 1-forms can help constructing area-decreasing second
variations and hence he could relate the first Betti number to the Morse index of
a minimal hypersurface.

We use instead a new quantified covering argument: we find a family of extrinsic
geodesic balls {bi}Li=0 such that the balls 2bi are disjoint and for any s < 2, Σ∩sbi
is stable but for any s > 2, Σ∩ sbi is unstable. It is simple to check that the index
is bounded below by L. In dimensions 3 to 7 the curvature bounds of R. Schoen-L.
Simon [10] (or of R. Schoen in dimension 3 [9]) show that each region Σ ∩ bi is
geometrically controlled. The crux of the proof is to argue that the number of balls
L can be chosen to be at least comparable to

∑n
i=0 b

i(Σ). In higher dimensions, A.
Naber-D. Valtorta [6] show that each Sing(Σ)∩bi has controlled size and similarly
we have to find “enough” of these balls bi to prove the second theorem.
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Positive scalar curvature and the dihedral rigidity conjecture

Chao Li

A fundamental question in differential geometry is to understand metric/measure
properties of Riemannian manifolds under global curvature conditions, and study
notions of curvature lower bounds in spaces with low regularity. Such goals are usu-
ally achieved via geometric comparison theorems. The quest started with Alexan-
drov [1], who introduced the notion of sectional curvature lower bounds for metric
spaces via geometric comparison theorems for geodesic triangles. Similar ques-
tions for Ricci curvature have also attracted a wide wealth of research recently
(Cheeger-Colding-Naber theory; see, e.g., [2, 3, 4, 5, 6]; for an optimal transport
approach, see, e.g., [7] [8, 9, 10]).

The case of scalar curvature lower bounds, however, is not as well established,
possibly due to a lack of satisfactory geometric comparison theory. In a paper [11]
from 2014, Gromov proposed the first steps towards understanding Riemannian
manifolds with scalar curvature bounded below. He suggested that a polyhedron
comparison theorem should play a role analogous to that of the Alexandrov’s
triangle comparisons for spaces with sectional curvature lower bounds. Precisely,
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let Mn be a convex polyhedron in Euclidean space, and g a metric on M . Denote
the Euclidean metric by g0. Gromov made the following conjecture (see section
2.2 of [11], and section 7, Question F1 of [12]):

Conjecture (The dihedral rigidity conjecture). Suppose (M, g) has nonnegative
scalar curvature and weakly mean convex faces, and along the intersection of any
two adjacent faces, the dihedral angle of (M, g) is not larger than the (constant)
dihedral angle of (M, g0). Then (M, g) is isometric to a flat Euclidean polyhedron.

When n = 2, the conjecture is a straightforward consequence of the Gauss-
Bonnet formula. In fact, given a Riemann surface (M2, g), the Gauss curvature
Kg > 0 everywhere if and only if there exists no geodesic triangle with total inner
angle smaller than π.

In [13] and [14], the author verified the dihedral rigidity conjecture for some
polytopes:

Theorem 1. The dihedral rigidity conjecture holds for all 3-dimensional simplices
and n-dimensional cubes, 3 ≤ n ≤ 7.

The proof of Theorem 1 is based on considering a related geometric variational
problem. Suppose (M3, g) is a 3-dimensional simplex. Let p be a vertex of M ,
and Fj , j = 1, 2, 3, be the faces of M contains p, and F4 be the unique face that is
disjoint from p. Let P be a flat simplex in R3, denote its corresponding vertex and
faces by p′ and F ′

j . Suppose that R(g) ≥ 0, each face of M is weakly mean convex,
and ∡(Fi, Fj) ≤ ∡(F ′

i , F
′
j). Denote γj , j = 1, 2, 3, be the inner angle between F ′

j

and F4. We consider the energy functional

F(E) = |∂E ∩ M̊ | −
3
∑

j=1

cos γj |∂E ∩ Fj |.

Here E is a subset of M with finite perimeter, p ∈ E, and F4 ∩E = ∅. We further
consider the variational problem

I = inf{F(E) : E ⊂M is a set of finite perimeter, p ∈ E,F4 ∩ E = ∅}.
In the case for cubes, we simply consider

F(E) = |∂E ∩ M̊ |
for E a subset of M of finite perimeter, and the corresponding variational problem.

A first observation is that the variational problem for E satisfies a strong max-
imum principle in the interior (see [15]). We then establish a maximum principle
on the boundary and corners, which was based on earlier work of Li-Zhou [16]. As
a conclusion, the minimizer E does not touch the barrier face F4, unless E = M .

Thus, any critical point for the functional F satisfies that Σ = ∂E ∩ M̊ is a
minimal surface that meets the face Fj at constant angle γj . In the case where
M is a cube, Σ is simply a free boundary minimal surface. We then establish the
regularity of Σ at the corners. In a joint work with N. Edelen [17], we establish
the conclusion in the case where M is a cube:
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Theorem 2. Let Σn−1 be an area minimizing hypersurface in a cube M , such
that the dihedral angles of M is everywhere not larger than π/2. Then Σn−1 is a
C2,α graph over its tangent plane everywhere.

This regularity result enables us to apply the Schoen-Yau minimal slicing tech-
inque [18]. Precisely, using the first eigenfunction of the Jacobi operator as a
conformal factor, the surface Σn−1 becomes an overcubic manifold of dimension
(n − 1) that satisfies all the assumptions of Conjecture. Inductively, we obtain a
slicing

Σ2 ⊂ · · · ⊂ Σn−1 ⊂M

of M . By the Gauss-Bonnet formula, Σ2 is isometric to a flat square. We therefore
conclude that Σn−1 is isometric to an Euclidean rectangular solid.

To conclude that M is isometric to an Euclidean rectangular solid, we extend
an idea by Carlotto-Chodosh-Eichmair [19]. Precisely, we can prove that there
exists a collection {Σρ}ρ∈A, such that {Σρ} is dense in M , and {∂Σρ} is dense on
∂M . This concludes that M is isometric to an Euclidean rectangular solid.
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Chararcterizing minimizers of a constrained planar isoperimetric
problem

Robin Neumayer

(joint work with G. P. Leonardi and G. Saracco)

Given n ≥ 2 and an open bounded domain Ω ⊂ Rn, consider the minimization
problem

(1) h(Ω) = inf

{

P (E)

|E| : E ⊂ Ω, |E| > 0

}

,

where P (E) and |E| denote the perimeter and volume of E respectively. This
constrained isoperimetric problem is known as the Cheeger problem, so named
for an analogous problem on compact Riemannian manifolds considered by Jeff
Cheeger in [2] to establish a lower bound on the first nontrivial eigenvalue of the
Laplacian. In the Euclidean setting, this classical isoperimetric problem has roots
in the work of Steiner in 1841 in [7].

The infimum value h(Ω) is known as the Cheeger constant, and a set achieving
the infimum is called a Cheeger set. A Cheeger set E exists, and ∂E ∩ Ω has
constant mean curvature equal to h(Ω) and is smooth outside a set of codimension
8. In particular, if n = 2, then ∂E ∩ Ω is the countable union of circular arcs of
radius r = 1/h(Ω). While uniqueness fails in general, the union of all Cheeger
sets, called the maximal Cheeger set, is itself a minimizer of (1).

The Cheeger problem has generated interest in recent years, in part stemming
from its connections to numerous other fields including capillarity theory, image
processing, and landslide modeling. In each of these settings, it is useful to obtain
explicit information about either the Cheeger sets or the value of the Cheeger
constant. With this in mind, we are interested in the following general questions:

Given a domain Ω, can one obtain an explicit description of Cheeger sets E in
terms of Ω? Can one compute the value of the Cheeger constant?

Some numerical methods based on duality theory have been employed to address
these questions, but until recently, Cheeger sets had been precisely characterized
for only two classes of domains: convex planar sets [1, 6, 3] and planar strips [5].
In both settings, the Cheeger set E is unique and given by

(2) E = Ωr ⊕B(0, r).
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Here, Ωr = {x ∈ Ω : dist(x, ∂E) ≥ r} is the inner parallel set of radius r, and
A ⊕ B = {x + y : x ∈ A, y ∈ B} is the Minkowski sum. The value r is given by
the unique solution to the equation

(3) |Ωr| = πr2.

As noted above, h(Ω) = 1/r, and thus (3) provides the precise value of the Cheeger
constant as well.

The characterization of Cheeger sets given by (2) and (3) cannot be expected to
hold for all planar domains. It is not hard to construct counterexamples that fail
to be simply connected (for instance, a ball of radius one with a small ball near
the boundary removed). Among simply connected domains, one can still construct
counterexamples that contain thin necks (for instance, a ball of radius 1 and a ball
of radius 2/3 joined by a thin tube). It turns out that, as we show in Theorem 1
below, the presence of necks is essentially the only thing that can go wrong for a
simply connected planar domain.

To state this property more precisely, we say that a domain Ω has no necks of
radius r if, given any points x1, x2 ∈ Ω such that B(xi, r) ⊂ Ω for i = 1, 2, there
is a continuous path γ : [0, 1] → Ω with endpoints γ(0) = x1 and γ(1) = x2 such
that B(γ(t), r) ⊂ Ω for all t ∈ (0, 1). The main result of [4] is the following:

Theorem 1 (Leonardi, Neumayer, Saracco). Let Ω ⊂ R2 be a Jordan domain with
|∂Ω| = 0, and suppose that Ω has no necks of radius 1/h(Ω). Then the maximal
Cheeger set is given by (2) and (3).

It is somewhat unfavorable to have a hypothesis in Theorem 1 that involves
h(Ω), as this may not be a priori checkable. What is more useful in practice is
the following alternative version of the theorem, with slightly stronger but more
easily checkable hypotheses.

Theorem 2 (Leonardi, Neumayer, Saracco). Let Ω ⊂ R2 be a Jordan domain
with |∂Ω| = 0, and suppose that Ω has no necks of radius r for

(4)
inr(Ω)

2
≤ r ≤ (|Ω|/π)1/2

2
.

Then the maximal Cheeger set is given by (2) and (3).

Here inr(Ω) denotes the inradius of Ω, or the radius of the largest ball contained
in Ω.

As an application of the theorem, we compute the Cheeger constant of the Koch
snowflake K. This fractal is constructed, starting from an equilateral triangle (of
side length 3 in our normalization), by iteratively replacing the middle third of
each edge by an equilateral triangle. Its boundary is a Jordan curve with infinite
length, but with zero Lebesgue measure. It has no necks of any radius. Therefore,
Theorem 1 applies to K. By computing the Cheeger constant for the polygons
in the iterative construction of K and proving error estimates, we establish the
following.
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Theorem 3 (Leonardi, Neumayer, Saracco). The Cheeger constant of the Koch
snowflake is given by h(K) = 1.89124548...
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Stable phase transitions: from nonlocal to local

Joaquim Serra

(joint work with X. Cabré, E. Cinti, S. Dipierro, A. Figalli)

The Peierls-Nabarro model [11, 10] was introduced in the early 1940’s in the con-
text of crystal dislocations and also arises in the study of phase transitions with
line-tension effects and boundary vortices in thin magnetic films. This model
considers the energy functional

Iε(u) :=
ε

4
[u]2H1/2(Rn) +

∫

Rn

W (u), [u]2H1/2(Rn) :=

∫∫

Rn×Rn

∣

∣u(x) − u(x̄)
∣

∣

2

|x− x̄|n+1
dxdy,

where u : Rn → (−1, 1) and W (u) := 1 + cos(πu).
The very related Allen-Cahn functional, introduced in the late 1950’s in the

context of the Van Der Walls-Cahn-Hilliard theory for phase transitions in fluids,
is also very connected to the Ginzburg-Landau theory of superconductivity. It is
defined as

Jε(u) :=
ε2

2
[u]2H1(Rn) +

∫

Rn

W (u), [u]2H1(Rn) :=

∫

Rn

|∇u|2,

where u : Rn → (−1, 1) and W (u) := 1
4 (1 − u2)2.

In both models ε > 0 is a parameter and W (u) is a so-called double well po-
tential, namely, a function with two minima (or wells) at the values u = −1 and
u = +1 which correspond to two “stable phases”.

Critical points u ∈ C2(Rn) of Iε and Jε solve, respectively the Peierls-Nabarro
and Allen-Cahn equations:

ε(−∆)1/2u+W ′(u) = 0 and ε2(−∆)u +W ′(u) = 0.
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A deep link between the previous models and minimal surfaces is found when
investigating the asymptotic behaviour of a suitable renormalized version of Jε
and Iε as ε ↓ 0. Indeed, as a consequence of Γ-convergence results of Modica and
Mortola [9] and Alberti, Bouchitté and Seppecher [1] the following holds:

If uεk : Rn → R is a sequence of minimizers (in every bounded set) of either
Jεk or Iεk and εk ↓ 0, then (up to a subsequence)

(1) uεk
L1

loc−→ χE − χRn\E , where E ⊂ Rn is a minimizer of the perimeter.

In other words, for every λ ∈ (−1, 1) the level sets {uε = λ} converge to an area
minimizing (in particular minimal) hypersurfaces as ε ↓ 0.

For each of the three functionals, (Jε, Iε, and Perimeter) we are interested in
studying stable solutions, defined as the critical points with nonnegative second
variation. More informaly, one can as well say that stable solutions are “minimizers
of the energies with respect to tiny perturbations”. Heuristically, they stable
solutions are “the ones observable in nature”, since noise would make unstable
critical points immediately decay towards stable ones.

The so-called “stability conjectures” (for the three models above) state that in
dimensions 3 ≤ n ≤ 7 the only “entire” stable solutions, i.e. stable objects in the
whole Rn, must be flat (for minimal surfaces “entire” is here interpreted as imbed-
ded, connected, complete hypersurface). These are very challenging questions and
a positive answer was only known in the case of minimal surfaces in R3 ([6, 8]).

In a joint work with A. Figalli [7] we prove that every stable solution of

(−∆)1/2u+ f(u) = 0 in R
3

is a 1D profile, i.e., u(x) = φ(e · x) for some e ∈ S2, where φ : R → R is a
nondecreasing bounded stable solution in dimension one.

This gives in particular a positive answer of the stability conjecture for Peierls-
Nabarro for n = 3 (the case of Allen-Cahn remains open for n = 3). This result can
be regarded as a PDE version of the fact that stable embedded minimal surfaces
in R

3 are planes.
Our strategy of proof has is roots in the study of stable critical points for the

so-called “nonlocal phase transition models”. Such nonlocal models arise as an
extrapolation to s ∈ (0, 1/2) of the 1-parameter family of functionals

Jε(u) :=
ε2s

2
[u]2Hs(Rn) +

∫

Rn

W (u)dx, s ∈ [1/2, 1],

which arises as a natural interpolation between Jε and Iε. For s ∈ (0, 12 ) the
new nonlocal models are no longer asymptotic to the classical perimeter as ε ↓ 0
but are instead asymptotic to the so-called nonlocal perimeters [3]. For such
nonlocal functionals stability gives stronger consequences [4, 5, 2] than for the
classical models and, interestingly, some of the new informations obtained from
the analysis of nonlocal models lead to interesting conclusions even in the limiting
(asymptotically local) case s = 1

2 .
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On the regularity of stable solutions to semilinear elliptic PDEs

Alessio Figalli

(joint work with Xavier Cabré, Xavier Ros-Oton, Joaquim Serra)

Given Ω ⊂ Rn a bounded domain and f : R → R, we consider u : Ω → R a
solution to the semilinear equation

(1) −∆u = f(u) in Ω ⊂ R
n.

If we define F (t) :=
∫ t

0
f(s) ds, then (1) corresponds to the Euler-Lagrange equa-

tion for the energy functional

E [u] :=

∫

Ω

( |∇u|2
2

− F (u)
)

dx.

In other words, u is a critical point of E , namely

d

dǫ

∣

∣

∣

ǫ=0
E [u+ ǫξ] = 0 for all ξ ∈ C∞

c (Ω).

Consider the second variation of E , that is,

d2

dǫ2

∣

∣

∣

ǫ=0
E [u + ǫξ] =

∫

Ω

(

|∇ξ|2 − f ′(u)ξ2
)

dx.

Then, one says that u is a stable solution of equation (1) in Ω if the second variation
among compactly supported variations is nonnegative, namely

∫

Ω

f ′(u)ξ2 dx ≤
∫

Ω

|∇ξ|2 dx for all ξ ∈ C∞
c (Ω).



Partial Differential Equations 2051

Our interest is in nonnegative nonlinearities f that grow at +∞ faster than lin-
early. In this case it is well-known that, independently of the Dirichlet boundary
conditions that one imposes on (1), the energy E admits no absolute minimizer.

However, in many instances there exist nonconstant stable solutions, such as
local minimizers. The regularity of stable solutions to semilinear elliptic equations
is a very classical topic in elliptic equations, initiated in the seminal paper of
Crandall and Rabinowitz, which has given rise to a huge literature on the topic.

Note that the dimension plays a key role in this problem. Indeed, when

n ≥ 10, u = log
1

|x|2 , and f(u) = 2(n− 2)eu,

using Hardy’s inequality one can show that u is a singular W 1,2
0 (B1) stable solution

of (1) in Ω = B1.
On the other hand, if f(t) = et or f(t) = (1 + t)p with p > 1, then it is

well-known since the 1970’s (thanks to Crandall and Rabinowitz) that W 1,2
0 (Ω)

stable solutions are bounded (and therefore smooth, by classical elliptic regularity
theory) when n ≤ 9.

All these results motivated the following long-standing:

Conjecture. Let u ∈ W 1,2
0 (Ω) be a stable solution to (1). Assume that f is

positive, nondecreasing, convex, and superlinear at +∞, and let n ≤ 9. Then u is
bounded.

In the last 25 years, several attempts have been made in order to prove this
result. In particular, partial positive answers to the conjecture above have been
given (chronologically):

• by Nedev when n ≤ 3 (2001);
• by Cabré and Capella when Ω = B1 and n ≤ 9 (2006);
• by Cabré when n = 4 and Ω is convex (2010);
• by Villegas when n = 4 (2013);
• by Cabré and Ros-Oton when n ≤ 7 and Ω is a convex domain “of double

revolution” (2013);

• by Cabré, Sanchón, and Spruck when n = 5 and lim supt→+∞
f ′(t)

f(t)1+ǫ <

+∞ for every ǫ > 0 (2016).

In the recent paper [1] we give a full proof of the conjecture stated above.
Actually, as we shall see below, the interior boundedness of solutions requires no
convexity or monotonicity of f . This fact was only known in dimension n ≤ 4,
by a result of Cabré. In addition, even more surprisingly, both in the interior
and in the global settings we can prove that W 1,2 stable solutions are universally
bounded for n ≤ 9, namely they are bounded in terms only of their L1 norm, with
a constant that is independent of the nonlinearity f .

Our first main result deals with the interior problem. It suffices to prove an a
priori estimate for classical solutions.
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Theorem 1. Let B1 denote the unit ball of Rn. Assume that u ∈ C2(B1) is a
stable solution of

−∆u = f(u) in B1,

with f : R → R locally Lipschitz and nonnegative. Then

‖∇u‖L2+γ(B1/2) ≤ C‖u‖L1(B1),

where γ > 0 and C are dimensional constants. In addition, if n ≤ 9 then

‖u‖Cα(B1/2)
≤ C‖u‖L1(B1),

where α > 0 and C are dimensional constants.

Combining the previous interior bound with the moving planes method, one
obtains a universal bound on u when Ω is convex.

Corollary 1. Let n ≤ 9 and let Ω ⊂ Rn be any bounded convex C1 domain.
Assume that f : R → R is locally Lipschitz and nonnegative. Let u ∈ C0(Ω)∩C2(Ω)
be a stable solution of

{

−∆u = f(u) in Ω

u = 0 on ∂Ω.

Then there exists a constant C, depending only on Ω, such that

‖u‖L∞(Ω) ≤ C‖u‖L1(Ω).

We now state our second main result, which concerns the global regularity
of stable solutions in general C3 domains when the nonlinearity is convex and
nondecreasing. This result completely solves two open problems posed by Brezis
and Brezis-Vázquez concerning the so-called Gelfand problem.

Again, we work with classical solutions and prove an a priori estimate. In this
case it is crucial for us to assume f to be convex and nondecreasing. Indeed, the
proof of regularity up to the boundary relies on a new and very general closedness
result for stable solutions with convex nondecreasing nonlinearities.

Theorem 2. Let Ω ⊂ Rn be a bounded domain of class C3. Assume that f : R →
R is nonnegative, nondecreasing, and convex. Let u ∈ C0(Ω) ∩ C2(Ω) be a stable
solution of

{

−∆u = f(u) in Ω

u = 0 on ∂Ω.

Then
‖∇u‖L2+γ(Ω) ≤ C‖u‖L1(Ω),

where γ > 0 is a dimensional constant and C depends only on Ω. In addition, if
n ≤ 9 then

‖u‖Cα(Ω) ≤ C‖u‖L1(Ω),

where α > 0 is a dimensional constant and C depends only on Ω.

As an immediate consequence of such a priori estimates, we deduce the validity
of the long-standing conjecture stated above.
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Corollary 2. Let Ω ⊂ R
n be any bounded domain of class C3. Assume that

f : R → R is nonnegative, nondecreasing, convex, and satisfies

f(t)

t
≥ σ(t) −→ +∞ as t→ +∞

for some function σ : R → R. Let u ∈W 1,2
0 (Ω) be any stable weak solution of (1)

and assume that n ≤ 9. Then

‖u‖L∞(Ω) ≤ C,

where C is a constant depending only on σ and Ω.
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Singularities for the Keller-Segel system in R
2

Manuel del Pino

(joint work with J. Dávila, J. Dolbeault, M. Musso and J. Wei)

We consider the Keller-Segel system [7] in R2:

(1)



















ut =∆u−∇ · (u∇v) in R
2 × (0, T ),

v =(−∆)−1u :=
1

2π

∫

R2

log
1

|x− z|u(z, t) dz

u(·, 0) = u0 ≥ 0 in R
2.

is a classical diffusion model for chemotaxis, the motion of a population of bac-
teria driven by standard diffusion and a nonlocal drift given by the gradient of a
chemoatractant, a chemical produced by the bacteria. Population density is repre-
sented by u(x, t) and the chemoattractant concentration at each point is computed
as a weighted average for the population density.

It is well known that mass M =
∫

R2 u(x, t) dx is constant along this flow and
that solutions blows-up in finite time or approach zero as t → +∞ according to
M > 8π or M < 8π [6, 1]. The following second moment identity holds:

d

dt

∫

R2

|x|2u(x, t) dx = 4M
(

1 − M

8π

)

.

The most interesting regime is the threshold M = 8π in which second moment is
preserved (if finite). It is worth noticing that steady states with finite mass for (1)
are given by the family of functions (u, v) with

−∆v = ev = u in R
2,



2054 Oberwolfach Report 34/2019

the Liouville equation. All solutions with finite mass
∫

R2 u < +∞ are well-known
to have mass 8π and are given by

Uλ,ξ(x) = λ−2U0

(

x− ξ

λ

)

, U0(x) =
8

(1 + |x|2)2
.

These functions have infinite second moment. They are stable for the flow (1),
see [4]. It is known that if the second moment is finite then the solution of (1) is
defined at all times (T = +∞) and it blows-up in infinite time as an asymptotically
singular time-dependent scaling of a steady state [2]. We establish the following
results.

Theorem 1. There exists a function u∗0(x) with
∫

R2

u∗0(x) dx = 8π,

∫

R2

|x|2u∗0(x) dx < +∞

such that for any initial condition in (1) that is a small perturbation of u∗0 and has
mass 8π, the solution has the form

u(x, t) =
1

λ(t)2
U0

(

x− q

λ(t)

)

+ o(1)

λ(t) =
1√
log t

(1 + o(1)) as t→ +∞.

This result has been established in the radial class by Ghoul and Masmoudi
[5] with an entirely different approach, and answers the open question of stability
of the phenomenon. The method applies to construct solutions that blow up in
finite time simultaneously at several given points in the plane. The following result
holds.

Theorem 2. Given points q1, . . . , qk ∈ R2, there exists an initial condition u0(x)
with

∫

R2

u0(x)dx > 8kπ,

such that the solution of (1) satisfies for some T > 0

u(x, t) =

k
∑

j=1

1

λj(t)2
U0

(

x− qj
λj(t)

)

+O(1)

λj(t) = βj(T − t)
1
2 e−

1
2

√
| log(T−t)| (1 + o(1)).

as t→ T .

The radial case was treated in [8]. A geometric flow with closely connected
phenomena is the harmonic map flow from R

2 into S2,

ut = ∆u+ |∇u|2u in R
2 × (0, T )

where u : R2 × (0, T ) → S2, see [3].
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Ancient gradient flows of elliptic functionals and Morse index

Christos Mantoulidis

(joint work with Kyeongsu Choi)

The mean curvature flow is a one-parameter family of submanifolds Σt of a Rie-
mannian manifold (M, g) satisfying the evolution equation

∂
∂tx = H(x, t), x ∈ Σt,

where H(x, t) denotes the mean curvature vector of the Σt at x, and which is
the negative gradient of the area element of Σt. As a gradient flow of the area
functional, the mean curvature flow describes a natural area minimizing process.
In our work [10], we studied closed ancient solutions of the mean curvature flow in
Riemannian manifolds; that is, flows of closed submanifolds Σt that exist for all
t ∈ (−∞, T ). (We also treated the general case of ancient gradient flows of elliptic
functionals, but our strongest and most interesting geometric conclusions were for
mean curvature flow.)

Ancient solutions of a gradient flow with uniformly bounded energy are quite
rare, and their classification is generally studied as a type of parabolic Liouville the-
ory. There have been a number of important classification results for ancient mean
curvature flows inside Euclidean space under assumptions on the convexity or the
entropy of the flow. See: X.-J. Wang [16], Huisken–Sinestrari [12], Daskalopoulos–
Hamilton–Sesum [11], Angenent–Daskalopoulos–Sesum [2, 3], Brendle–Choi [5, 6],
Choi–Haslhofer–Hershkovits [9]. Much less is known in the Riemannian setting.
See: Bryan–Louie [8], Bryan–Ivaki–Scheuer [7], Huisken–Sinestrari [12].

In [10] we set up a framework for the characterization of certain types of an-
cient mean curvature flows in Riemannian manifolds as arising from the “unstable
manifold” (i.e., the space of unstable directions for the area functional) of a given



2056 Oberwolfach Report 34/2019

closed minimal submanifold. While the framework alone is of independent inter-
est, we also applied it to classify ancient solutions in Sn under certain natural area
assumptions:

Theorem 1. There exists a δ = δ(n) > 0 such that if (Σt)t≤0 is an ancient mean
curvature flow of closed m-dimensional surfaces in a round n-sphere Sn, with

lim
t→−∞

Area(Σt) < (1 + δ) Area(Sm),

then (Σt)t≤0 is a steady or a canonically shrinking equatorial Sm along one of
n−m directions parallel to the equator.

We emphasize that our result holds true in arbitrary codimension, while the
previously mentioned results were for codimension-1.

As a corollary to this theorem, we obtained a full classification of ancient em-
bedded flows of curves with uniformly bounded length in S2 (and, similarly, that
there are no nonsteady ancient embedded curve shortening flows with bounded
length in flat tori or closed hyperbolic surfaces):

Corollary 1. Let (Γt)t≤0 be an ancient curve shortening flow of embedded closed
curves with uniformly bounded length inside a round S2. Then (Γt)t≤0 is a steady
or a shrinking equator along circles of latitude.

We also obtained a stronger classification in the 3-sphere, for which we need to
recall the Clifford torus

{(x, y, z, w) ∈ R2 ×R2 : x2 + y2 = z2 + w2 = 1
2} ⊂ S3.

This is a smoothly embedded minimal submanifold of S3 with area 2π2. By the
resolution of the Willmore conjecture by Marques–Neves [13], this is the second
smallest area among smooth minimal surfaces, following equatorial S2 that have
area 4π. We showed:

Corollary 2. Let (Σt)t≤0 be an ancient mean curvature flow of closed surfaces in
a round 3-sphere, with

A−∞ := lim
t→−∞

Area(Σt) < (1 + δ)2π2.

If δ > 0 is sufficiently small, then either A−∞ = 4π and (Σt)t≤0 is a steady or
shrinking equator along spheres of latitude, or A−∞ = 2π2 and (Σt)t≤0 is a steady
or shrinking Clifford torus along a canonical 5-parameter family of ancient flows.

Our classification made use of the following new “canonical family existence”
and “strong uniqueness” theorems, which we proved for general ancient gradient
flows of elliptic functionals on closed Riemannian manifolds. (We recall that the
Morse index of a minimal submanifold is the number of negative eigenvalues of its
second variation operator. The Morse index of an equatorial Sm in Sn is n −m
and of a Clifford torus in S3 is 5.)

Theorem 2 (Canonical family existence). Let S be a closed, smoothly embedded
minimal submanifold in a Riemannian manifold (M, g). Let I ∈ N denote its
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Morse index. Then there exists an I-parameter family of ancient mean curvature
flows on (−∞, 0] that converge exponentially to S as t→ −∞, and are determined
uniquely by their trace at time t = 0.

By a delicate analysis of the dynamics of an ancient flow using an ODE lemma
of Merle–Zaag [14], we were able to obtain a strong characterization for ancient
mean curvature flows:

Theorem 3 (Strong uniqueness). Let S be a closed, smoothly embedded minimal
submanifold of a Riemannian manifold (M, g). There exists an ε > 0 such that if
(Σt)t≤0 is an ancient mean curvature flow which stays uniformly ε-close to S in
the sense of measures, and

∫ 0

−∞

distg(Σt, S) dt <∞,

then there exists τ ≥ 0 so that (Σt−τ )t≤0 is one of the flows in the I-parameter
canonical family.

We briefly remark that this canonical family existence theorem and strong
uniqueness theorem do readily give the aforementioned classification results for
area pinched ancient mean curvature flows in round n-spheres. Indeed, the com-
pactness theorem of weak mean curvature flows of K. Brakke [4], a modification
of the  Lojasiewicz–Simon inequality (pioneered by L. Simon in [15]), and the “in-
tegrability” of equators and Clifford tori (a concept pioneered by Allard–Almgren
[1]), put together guarantee that the decay rate assumption of the strong unique-
ness theorem is satisfied, thus giving the necessary canonical classification.
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Classification of 3d κ-solutions

Natasa Sesum

(joint work with Sigurd Angenent, Simon Brendle, Panagiota Daskalopoulos)

Consider an ancient compact 3-dimensional solution to the Ricci flow

(1)
∂

∂
gij = −2Rij

existing for t ∈ (−∞, 0) so that it shrinks to a round point at T . The goal is to
provide the classification of such solutions under natural geometric assumptions.

In [3], G. Perelman established the existence of a rotationally symmetric ancient
κ-noncollapsed solution on S3 which is not a soliton. This is a type II ancient solu-
tion backward in time, namely its scalar curvature satisfies supM×(−∞,0) |t||R(x, t)|
= ∞ and forms a type I singularity forward in time, since it shrinks to a round
point. Perelman’s ancient solution has backward in time limits which are the
Bryant soliton and the round cylinder S2 × R, depending on how the sequence of
points and times about which one rescales are chosen. These are the only backward
in time limits of the Perelman ancient solution. Let us remark that the Perelman
ancient solution is noncollapsed.

The well known Hamilton-Ivey pinching estimate tells us that any two or three
dimensional Ricci flow ancient solution, with bounded curvature at each time
slice, has nonnegative sectional curvature. Since our solution (S3, g(t)) is closed,
the strong maximum principle implies that the sectional curvatures, and hence the
entire curvature operator, are strictly positive. It follows by Hamilton’s Harnack
estimate that Rt ≥ 0, yielding the existence of a uniform constant C > 0 so that
‖Rm‖g(t) ≤ C, for all t ∈ (−∞, t0). The above discussion yields that any closed
3-dimensional κ-noncollapsed ancient solution is actually a κ-solution, in the sense
that was defined by Perelman in [3].

In a joint work with Brendle and Daskalopoulos we show the following result
that was conjectured by Perelman in [3].

Theorem 1 (Brendle, Daskalopoulos, Sesum). Let (S3, g(t)) be a compact, ancient
κ-noncollapsed solution to the Ricci flow (1) on S3. Then g(t) is either a family
of contracting spheres or Perelman’s solution.
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In a recent important paper by S. Brendle ([2]), the author proved that a
3-dimensional non-compact ancient κ-solution is isometric to either a family of
shrinking cylinders or their quotients, or to the Bryant soliton. The author first
shows that all 3-dimensional ancient κ-solutions which are non-compact have to
be rotationally symmetric. After that he shows that such a rotationally symmetric
solution, if not a cylinder or its quotient, must be a steady Ricci soliton and hence
the Bryant soliton by one of his earlier works about classification of steady Ricci
solitons.

The techniques of Brendle in [2] can be also applied to show rotation sym-
metry of ancient compact and κ-noncollapsed solution to the Ricci flow (1) on
S3. However, since the rotationally symmetric solutions discovered by Perelman
are not solitons, the classification of rotationally symmetric ancient compact and
κ-noncollapsed solutions is a difficult problem.

We may assume that our 3d κ solution is rotationally symmetric. By the work
of Perelman we know that the asymptotic soliton of (S3, g(t)) is either a round
cylinder or a sphere. We can understand this that every κ-solution has a gradient
shrinking soliton buried inside of it, in an asymptotic sense as time approaches
−∞ (for more details on asymptotic solitons see [3]). In our recent work [1] we
show that if the asymptotic soliton is the sphere, then the solution (S3, g(t)) must
be the round sphere itself. Hence, from now on we may assume that the asymptotic
soliton of our closed κ-noncollapsed solution is the round cylinder S2 × R.

Since at each time slice, the metric is SO(3)-invariant, it can can be written as

g = φ2 dx2 + ψ2 gcan, on (−1, 1) × S2

where (−1, 1) × S2 may be naturally identified with the sphere S3 with its north
and south poles removed. The function ψ(x, t) > 0 may be regarded as the radius
of the hypersurface {x} × S2 at time t. The distance function from the equator is
given by

s(x, t) =

∫ x

0

φ(x′, t) dx′.

and abbreviating ds = φ(x, t) dx, we write our metric as g = ds2 + ψ2 gcan.
Under the Ricci flow, the profile function ψ : (s−(t), s+(t)) × (−∞, 0) → R

evolves by

(2) ψt = ψss −
1 − ψ2

s

ψ
.

Consider next a type I scaling of our metric, which leads to the rescaled profile
u(σ, τ) defined by

(3) u(σ, τ) :=
ψ(s, t)√−t , with σ :=

s√−t , τ = − log(−t).

A direct calculation shows that u : (σ−(τ), σ+(τ)) × (−∞, 0) → R satisfies the
equation

(4) uτ = uσσ +
u2σ
u

− 1

u
+
u

2

with boundary conditions at the tips uσ(σ−(τ), τ) = 1, uσ(σ+(τ), τ) = −1.
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A crucial first step in showing Theorem 1, in the case of rotational symmetry
is to establish the (unique up to scaling) asymptotic behavior of any compact
rotationally symmetric κ-noncollased ancient solution to the Ricci flow on S3 which
is not isometric to a sphere. This was recently established by the authors in [1]
and is summarized in the next theorem.

Theorem 2 (Angenent, Daskalopoulos, Sesum in [1]). Let (S3, g(t)) be any re-
flection and rotationally symmetric compact κ-noncollapsed ancient solution to the
Ricci flow on S3 which is not isometric to a round sphere. Then the rescaled profile
u(σ, τ) solution to (4) has the following asymptotic expansions:

(i) For every L > 0,

u(σ, τ) =
√

2
(

1 − σ2 − 2

8|τ |
)

+ o(|τ |−1), on |σ| ≤ L

as τ → −∞.
(ii) Define z := σ/

√

|τ | and ū(σ, τ) := u(z
√

|τ |, τ). Then,

lim
τ→−∞

ū(z, τ) =

√

2 − z2

2

uniformly on compact subsets of |z| < 2.
(iii) Let k(t) := R(pt, t) be the maximal scalar curvature which is attained at

each one of the two tips pt, for t ≪ −1. Then the rescaled Ricci flow
solutions (S3, ḡt(s), pt), with ḡt(·, s) = k(t) g(·, t+ k(t)−1 s), converge to
the unique Bryant translating soliton with maximal scalar curvature one.
Furthermore, k(t) and the diameter d(t) satisfy the asymptotics

k(t) =
log |t|
|t| (1 + o(1)) and d(t) = 4

√

|t| log |t| (1 + o(1))

as t→ −∞.

In the previous theorem, the authors jointly with Brendle removed the assump-
tion on reflection symmetry and this is in process of writing.

In the proof of Theorem 1, in showing that every 3d κ-solution has to be ro-
tationally symmetric, some of the crucial ingredients were: Perelman’s Canonical
Neighborhood Theorem for ancient κ-solutions, classification of κ-noncollapsed
steady gradient Ricci solitons and the Neck Improvement Theorem which assers
that a neck becomes more and more rotationally symmetric under evolution. Start-
ing point in the proof of rotational symmetry is showing that any 3d κ-solution
roughly looks like a neck, which is on both sides capped off with a Bryant soliton.
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Minimizers of strictly convex functionals

Connor Mooney

A central problem in the calculus of variations is to determine the regularity of
Lipschitz minimizers of

∫

B1
F (∇u) dx, where F : Rn → R is convex. Such integrals

arise in many applications, e.g. in models of crystal surfaces and traffic congestion.
Minimizers solve the Euler-Lagrange equation div(∇F (∇u)) = 0 in the distribu-
tion sense. In non-divergence form we have Fij(∇u)uij = 0. The equation is
quasilinear, elliptic, and degenerate elliptic if the eigenvalues of D2F tend to zero
or infinity in the image of ∇u. Furthermore, if ∇u is continuous, then the equation
has nearly constant coefficients on small scales. Thus, proving C1 regularity for
solutions is a key step towards understanding their higher regularity properties.
Let F ∗ denote the Legendre transform of F . The relation div(∇F (∇F ∗)) = n
suggests that minimizers have the same regularity as F ∗. Important examples
support a positive answer, including F = |x|2 (Laplace equation), F = |x|p (p-
Laplace equation, for which the positive answer is known when p > 2 and n = 2),
and the case that F is linear on a line segment (the gradient of a minimizer can
oscillate in the segment). Since F ∗ is C1 when F is strictly convex, we ask:

If F is strictly convex, are Lipschitz minimizers C1?

Assume now that F ∈ C2(Rn\DF ), where DF is compact and D2F > 0 away
from DF . When DF = ∅, Lipschitz minimizers are C1 by a fundamental theorem
of De Giorgi and Nash ([3], [7]). When DF consists of a single point, minimizers are
C1 by the techniques developed for the p-Laplace equation, which was studied by
Uraltseva, Uhlenbeck, Evans, Lewis, Tolksdorf, and many others. Finally, when
n = 2 and DF is finite, minimizers are C1 by work of De Silva-Savin [4]. We
investigated the problem in higher dimensions. Our main results are [6]:

Theorem 1. The function u(z1, z2) = (|z1|2−|z2|2)/(|z1|2 + |z2|2)1/2 on C2 ∼= R4

is a Lipschitz singular minimizer of a functional of the type
∫

B1
F (∇u) dx, where

F is uniformly convex, DF is the Clifford torus S3 ∩ {|z1| = |z2|}, and exactly one
eigenvalue of D2F tends to infinity on DF .

Theorem 2. Assume that n ≥ 2 and that DF is finite and contained in some
2-plane (e.g. three points). Then Lipschitz minimizers are C1.

Theorem 1 gives a negative answer to the question above, at least in dimension
n ≥ 4. It also shows that that high codimension of the set DF does not pre-
vent singularities. The example exploits the connection between the differential
geometry of hypersurfaces in Rn with injective Gauss map, and the Hessians of
their (one-homogeneous) support functions. Theorem 2 can be viewed as a gen-
eralization of the result of De Silva-Savin to higher dimensions. The first step
in the proof is to show that ∇u localizes to the convex hull of DF , using the
well-known fact that convex functions of ∇u are sub-solutions to the linearized
Euler-Lagrange equation. Colombo-Figalli used this observation to study mini-
mizers when F vanishes on a convex set [2]. When DF lies in a two-plane, we can
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then use a higher-dimensional version of the key observation by De Silva-Savin that
slightly non-convex functions of ∇u are sub-solutions to the linearized equation.

Theorems 1 and 2 leave several interesting questions open. We list two:

Problem 1. Prove or disprove that Lipschitz minimizers are C1 in dimension
n ≥ 3 when DF consists of finitely many points.

Problem 2. Prove or disprove that Lipschitz minimizers are C1 in dimension
n = 2 when F is strictly convex.

Natural candidates for singular minimizers are support functions of hypersurfaces
with injective Gauss map that are saddle-shaped away from their singularities.
Alexandrov proved that the only such functions on R3 that are analytic outside
the origin are linear [1]. Thus, this approach cannot produce singular examples in
R3 that are analytic outside the origin (unlike in R4, see Theorem 1). Alexandrov
also conjectured that his result should hold in the C2 setting. However, in 2001,
Martinez-Maure constructed a striking counterexample [5]. The example consists
of four “cross-caps” with figure-eight cross sections that shrink to cusps, glued
together so that the cusps form four non-coplanar points. We conjecture:

Conjecture 1. The support function of the example in [5] is a Lipschitz singular
minimizer to a functional of the type

∫

B1
F (∇u) dx, where DF consists exactly of

the four non-coplanar cusps in the example.

Confirming Conjecture 1 would give a negative answer to Problem 1, and show
that Theorem 2 is optimal. Apart from the result of De Silva-Savin, the case n = 2
(Problem 2) remains mysterious.
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Prescribing scalar curvature in high dimensions

Andrea Malchiodi

(joint work with Martin Mayer)

We deal with the classical problem of prescribing the scalar curvature of closed
manifolds, whose study initiated systematically in papers by Kazdan and Warner
from the 70’s: we will consider in particular conformal changes of the metric.
On (Mn, g0), with n ≥ 3, using the following convenient notation for a metric g

conformal to g0, g = gu = u
4

n−2 g0 (with u positive smooth function on M), the
scalar curvature transforms according to the formula

(1) Rguu
n+2

n−2 = Lg0u := −cn∆g0u+Rg0u; cn =
4(n− 1)

(n− 2)
,

where ∆g0 is the Laplace-Beltrami operator of g0. The elliptic operator Lg0 is
known as the conformal Laplacian. If one wishes to prescribe the scalar curvature
of M as a given function K : M → R, by (1) one would then need to find positive
solutions of the nonlinear elliptic problem

(2) Lg0u = Ku
n+2

n−2 on (M, g0).

When K is zero or negative (in which case (M, g0) has to be of zero or negative
Yamabe class, respectively) the nonlinear term in the equation makes the Euler-
Lagrange energy for (2) more coercive and solutions always exist, as proved by
Kazdan-Warner via the method of sub- and super-solutions. They also showed
that for K positive there are obstructions to existence: indeed, if f : Sn → R is
the restriction to the sphere of a coordinate function in Rn+1, then one has

(3)

∫

Sn

〈∇K,∇f〉gSnu
2n

n−2 dµgSn = 0,

for all solutions u to (2). This forbids e.g. the prescription of affine functions, or
in general of functions K on Sn that are monotone in one Euclidean direction.

A general existence result was proved in [1] for the case of S3, assuming that
K : S3 → R+ is a Morse function satisfying the generic condition

(4) {∇K = 0} ∩ {∆K = 0} = ∅,
together with the index formula

(5)
∑

{x∈M : ∇K(x)=0,∆K(x)<0}

(−1)m(K,x) 6= (−1)n,

where m(K,x) stands for the Morse index of K at x (see also [3], [4] for the
two-dimensional case).

Theorem 1 ([7]). Suppose (Mn, g0) is an Einstein manifold of positive Yamabe
class with n ≥ 5, and that K is a positive Morse function on M satisfying (4).
Assume we are in one of the following two situations:

i): K satisfies Kmax

Kmin
≤ 2

1
n−2 and (5);
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ii): K satisfies Kmax

Kmin
≤
(

3
2

)
1

n−2 and has at least two critical points with negative
Laplacian.

Then (2) has a positive solution.

The restriction on the dimension in the above theorem is optimal: building on
some non-existence result in [8] for the Nirenberg’s problem on S2, it is possible
to manufacture curvature functions on S3 and on S4 such that, under condition
ii) (and arbitrarily pinched, indeed), problem (2) has no solution.

The proof of Theorem 1 uses a subcritical approximation of (2). In [5] it was
proven that solutions of such approximation with uniformly bounded energy and
zero weak limit develop only isolated simple blow-ups at critical points of K with
negative Laplacian. For n = 3, this holds true without assuming any energy
bound. In [6] blowing-up solutions of this type were constructed, and their Morse
index was determined. Such results, together with the pinching condition and a
rigidity result from [2] allowed to prove the theorem by an index-counting formula.

One may wonder whether stronger pinching assumptions might induce existence
under weaker conditions than the second one in ii). In view of the Kazdan-Warner
obstruction it is tempting to think that when n ≥ 5 and when K : Sn → R+ has
more than just one local maximum and minimum, solutions may always exist. We
show that in fact this is not the case, and that critical points of K with positive
Laplacian are less relevant. For K Morse on Sn we define

(6) Mj(K) = ♯ {x : ∇K(x) = 0,m(K,x) = j} :

we have then the following result.

Theorem 2 ([7]). For any Morse function K̃ : Sn → R+ (n ≥ 3) with only
one local maximum point, there exists a Morse function K : Sn → R such that
Mj(K̃) = Mj(K) for all j, with positive Laplacian at all critical points of K with
the exception of its local maximum, and such that there is no conformal metric
on Sn with scalar curvature K. The function K can be chosen so that Kmax

Kmin
is

arbitrarily close to 1.
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[2] M. F. Bidaut-Véron, L. Véron, Nonlinear elliptic equations on compact Riemannian mani-
folds and asymptotics of Emden equations. Invent. Math. 106 (1991), no. 3, 489–539.

[3] S. A. Chang, P. Yang, Prescribing Gaussian curvature on S2, Acta Math. 159 (1987),
215–259.

[4] S. A. Chang, P. Yang, Conformal deformation of metrics on S2, J. Diff. Geom. 27 (1988),

256–296.
[5] A. Malchiodi, M. Mayer, Prescribing Morse scalar curvature: blow-up analysis,

arxiv:1812.09457.
[6] A. Malchiodi, M. Mayer, Prescribing Morse scalar curvatures: subcritical blowing-up solu-

tions, arXiv:1812.09461.
[7] A. Malchiodi, M. Mayer, Prescribing Morse scalar curvature: pinching and Morse theory,

to appear.
[8] M. Struwe, A flow approach to Nirenberg’s problem. Duke Math. J. 128 (2005), no. 1, 19–64.



Partial Differential Equations 2065

On the logarithmic epiperimetric inequality

Bozhidar Velichkov

(joint work with Luca Spolaor and Maria Colombo)

This talk is focused on the so-called logarithmic epiperimetric inequality, which is a
new variational technique for the study of the singular part of the free boundary. It
was first introduced in [3] in the context of the classical obstacle problem, but the
approach was then refined and applied to several different free boundary problems:
the thin-obstacle problem [4, 5], the Bernoulli (Alt-Caffarelli) one-phase problem
[6], (almost-)area-minimizing surfaces [7], and parabolic obstacle problems [12]).
The aim of this talk is to give a brief overview of this new tool and to give a new
proof of the log-epiperimetric inequality for the obstacle problem, which is based
on ideas from [13], [6] and [5].

1. The obstacle problem

Given a domain D ⊂ Rd, an obstacle ϕ : D → R, and a boundary datum g : ∂D →
R (g ≥ ϕ on ∂D), the classical obstacle problem is the following:

min
{

∫

D

|∇w|2 dx : w = g on ∂D and w ≥ ϕ in D
}

.

Setting u := w − ϕ and f := 2∆ϕ, we can rewrite the above problem as

min
{

∫

D

(

|∇u|2 + fu
)

dx : u = g − ϕ on ∂D and u ≥ 0 in D
}

.

For the sake of simplicity we take D = B1 and f ≡ 1, and we set Ωu := {u > 0}.

1.1. Blow-up limits. If rn → 0 and x0 ∈ ∂Ωu∩B1, then the sequence of functions
urn,x0

(x) := r−2
n u(x0 + rnx) is called a blow-up sequence. It is well-known that,

up to a subsequence, every blow-up sequence urn,x0
converges (in C1,α(BR), for

every R > 0) to a blow-up limit u0 : Rd → R. In [2] Caffarelli showed that the
free boundary ∂Ωu ∩ B1 can be decomposed into a regular and a singular part
according to the type of blow-up limits at each point. Precisely, we have that
∂Ωu ∩B1 = Reg(∂Ωu) ∪ Sing(∂Ωu), where:

• x0 ∈ Reg(∂Ωu) if every blow-up limit of u at x0 is of the form

hν(x) = 1
4

(

sup{0, x · ν}
)2

, for some unit vector ν ∈ Rd.
• x0 ∈ Sing(∂Ωu) if every blow-up limit of u at x0 is of the form
QA(x) = x · Ax, for a symmetric positive matrix A with trace(A) = 1

4 .

1.2. Structure of Reg(∂Ωu) and Sing(∂Ωu). It is well-known that Reg(∂Ωu)
is an analytic manifold (see [1, 2]) The singular set, on the other hand, is well
understood only in dimension two; in dimension d ≥ 3, the following does hold:

• At every x0 ∈ Sing the blow-up is unique (Caffarelli, [2]): ux0
= QAx0

.

• Every x0 ∈ Sing has a rank: Rank (x0) = dim KerAx0
.

• The m-th stratum Σm of Sing is defined as: x0 ∈ Σm ⇔ Rank (x0) = m.
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Caffarelli proved in [2] that Σm is locally contained in an m-dimensional C1-
regular manifold. In [3] we proved that the regularity of Σm can be improved to
C1,log. Recently, in [8], Figalli and Serra showed that the logarithmic modulus of
continuity is, in general, optimal, but can be (significantly) improved outside a set
of zero m-Hausdorff measure. In all these result, the regularity of Σm is inherited
from the rate of convergence of the sequence urn,x0

to the blow-up limit ux0
. The

aim of this talk is to prove the C1,log regularity of Σm.

2. (Log-)epiperimetric inequality

In [11], Reifenberg introduced a new epiperimetric inequality approach to the reg-
ularity of the area-minimizing surfaces, which found several applications in geo-
metric analysis (see for instance [17] and [15]). Weiss was the first to apply this
technique to a free boundary problem in [16], precisely for the obstacle problem.
The Weiss’ approach was then used by Focardi and Spadaro [9] and Garofalo-
Petrosyan-Vega-Garcia [10] in the context of the thin-obstacle problem. In [13],
together with Luca Spolaor, we proved for the first time an epiperimetric inequality
for the one-phase Bernoulli (Alt-Caffarelli) problem. Later on, we used the tech-
nique from [13] in the context of the obstacle problem, which led to the logarithmic
epiperimetric inequality (see [3]), which is also the topic of this talk.

We briefly describe the Reifenberg epiperimetric inequality approach in the
context of the obstacle problem. For any function u : B1 → R, we set

W (u) =

∫

B1

|∇u|2 dx− 2

∫

∂B1

u2 dHd−1 +

∫

B1

u dx,

and E(u) := W (u) − W (QA), where QA is any singular blow-up limit. Weiss
showed in [16] that, if u solves the obstacle problem and x0 ∈ Sing(∂Ωu), then
E(ur,x0

) is non-negative and monotone in r, and limr→0 E(ur,x0
) = 0. The key

observation of Reifenberg is the following.

Lemma 1 (Reifenberg). If there is ε > 0 such that the following epiperimetric
inequality holds, for every r > 0:

(1) E(ux0,r) − E(zx0,r) ≤ −ε E(zx0,r),

where zx0,r : B1 → R is the two-homogeneous extension of ux0,r : ∂B1 → R in B1,
then both the energy E(ux0,r) and the convergence rate ‖ux0,r − ux0

‖L2(∂B1) are
controlled (from above) by rα, where α ≃ ε.

In the last part of the talk we try to prove an epiperimetric inequality for the
energy E . Precisely, starting from a two-homogeneous function z : B1 → R, we
construct a competitor h : B1 → R, which is non-negative, has the same trace (on
∂B1) as z and satisfies the epiperimetric inequality

(2) E(h) − E(z) ≤ −ε E(z),

which trivially implies (1). Notice that, as a consequence of the recent result [9]
and the Reifenberg Lemma, this cannot be true for any z, otherwise the logarithmic
modulus of continuity for the singular set wouldn’t be optimal. In fact, we try
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to find at once a good competitor h for z and an estimate for E(h) − E(z). Our
starting point is the solution of ∆h = 1

2 in B1 with h = z on ∂B1, which is the
best competitor for the energy E . Since this competitor might not satisfy the
non-negativity constraint, we suitably modify it and we construct another (non-
negative) competitor h, which turns out to satisfy the estimate

(3) E(h) − E(z) ≤ −E(z)1+γ for some γ ∈ (0, 1).

Finally, we notice that a suitable adaptation of the Reifenberg lemma implies that,
if there is γ > 0 such that the following log-epiperimetric inequality holds

(4) E(ux0,r) − E(zx0,r) ≤ −E(zx0,r)
1+γ for every r > 0,

then both the energy E(ux0,r) and the convergence rate ‖ux0,r − ux0
‖L2(∂B1) are

controlled (from above) by | log r|−α, where α ≃ γ−1. In particular, this proves
that each stratum Σm of the singular part of the free boundary is contained in a
C1,log-regular manifold.
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Gluig methods for vortices in Euler equations

Monica Musso

(joint work with Juan Dávila, Manuel del Pino, Juncheng Wei)

A fascinating field within the theory of nonlinear PDEs is the analysis of the
motion of fluids. The Euler equations (1755) define a system of non-linear PDEs
that models the dynamics of an inviscid, incompressible fluid confined to a region
Ω in Rd, d ≥ 2,

∂u

∂t
+ (u · ∇)u = −∇p, ∇ · u = 0 (E)

where u(x, t) and p(x, t) represent the vector-valued velocity field and pressure.
For a solution u(x, t) its vorticity is defined as ω = ∇× u.

If d = 2, a classical problem is the desingularized N -vortex problem, namely
the existence of true smooth solutions of Euler equations with highly concen-
trated vorticities around N points. Let W (y) = 8

(1+|y|2)2 be the standard Li-

ouville bubble which has mass 8π and, up to translations and scalings, is the
only finite-mass solution to equation −∆ logW = W . We show [1] that, for any
sufficiently small ε > 0 there exists a solution uε to (E) with vorticity of the

form ωε(x, t) ≈ ∑N
j=1

κj

ε2W (
x−ξj(t)

ε ) where κj ∈ R and the centers ξj(t) solve the
Kirchoff-Routh law of motion. This result is obtained by using the inner-outer
gluing scheme, which provides explicit and precise information also on the veloc-

ity fields, 1
|log ε| |uε(·, t)|2 ⇀

∑N
j=1 8πκ2jδξj(t), as ε → 0. This refines a previous

construction by Marchioro and Pulvirenti [4].
If d = 3 and the initial vorticity is concentrated along a smooth curve in space,

a long standing question is whether the associated solution exhibits a vorticity still
very concentrated around a curve on finite times. It is convenient to scale time in
the 3d Euler equations in vorticity form

|log ε|∂ω
∂t

+ (u · ∇)ω = (ω · ∇)u, u = ∇× ψ, ψ = (−∆)−1ω.

The formal derivation of the motion of the curve was first computed by Da Rios
in 1903, and it approximately evolves by the bi-normal flow of curves described by

the equation ∂γ
∂t = ∂γ

∂s ×
∂2γ
∂s2 , where s 7→ γ(s, t) is a parametrisation by arclength of

the curve at time t ∈ [0, T ), called the filament. Jerrard and Seis [3] used refined
energy estimates to prove the validity of the asymptotic law under the assumption
that vorticity is indeed concentrated at all time. The big open problem is whether
one can find solutions of the Euler equations for which the vorticity remains close
for a significant period of time to a filament evolving by binormal flow.

In [2], we prove that this is the case when the curve is an helix evolving by
bi-normal flow. Using helical symmetries and looking for rotating solutions, this
problem can be reduced to finding a concentrating solution for a 2d elliptic problem
in divergence form.

In [2], we also show that, given a curve γ = γ(s, t) evolving by bi-normal flow,
for any k there exist an approximate solution for which the largest term in the
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error is of size O( ε
|log ε|k ). In a tiny tubular neighborhood of the curve γ consider

an ansatz of the form ω(x, t) ≈ 1
ε2W (x−p

ε ) t̂p, where p is the closest point on the

curve Γ(t) to x and t̂p a corresponding unit tangent vector to Γ(t). On each plane
orthogonal to the curve, the approximation is a two-dimensional vortex. The
largest term in the error, of ε|log ε| size, gets automatically improved to order ε
thanks to the bi-normal flow for the curve. Through a combination of elliptic and
transport equations we get successive improvements in power of |log ε|−1 of the
approximation.
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Theme & variations on divµ = σ

Filip Rindler

(joint work with Adolfo Arroyo-Rabasa, Guido De Philippis, Jonas Hirsch,
Anna Skorobogatova)

The following result was proved in [7]:

Theorem 1 ([7, Corollary 1.13]). Let Ω ⊂ Rd be open and let µ ∈ M(Ω;Rd×d)
be a matrix-valued measure such that

div µ = σ ∈ M(Ω;Rd) in the sense of distributions.

Then,

rank

(

dµ

d|µ| (x)

)

≤ d− 1 for |µ|s-a.e. x ∈ Ω.

In fact, this result is an (easy) corollary to the main result of loc. cit.: Let
A be a kth-order linear constant-coefficient PDE operator acting on Rm-valued
functions on Rd via

Aϕ :=
∑

|α|≤k

Aα∂
αφ for all ϕ ∈ C∞(Rd;Rm),

where Aα ∈ Rn×m are (constant) matrices, α = (α1, . . . , αd) ∈ (N ∪ {0})d is a
multi-index, and ∂α := ∂α1

1 . . . ∂αd

d . We also assume that at least one Aα with
|α| = k is non-zero.

The prototypical situations are A = div, curl, curl curl and the boundary oper-
ator ∂ for normal currents.
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In [7] it was shown that for any measure satisfying a linear PDE in the sense of
distributions, there is a strong constraint on the directions of the polar at singular
points:

Theorem 2 ([7, Theorem 1.1 and Remark 1.3]). Let Ω ⊂ Rd be open and let
µ ∈ M(Ω;Rm) be an R

m-valued Radon measure on Ω satisfying

Aµ = σ ∈ M(Ω;Rn) in the sense of distributions.

Then,
dµ

d|µ| (x) ∈ ΛA for |µ|s-a.e. x ∈ Ω,

where ΛA is the wave cone associated to A, namely

ΛA :=
⋃

ξ∈Rd\{0}

kerAk(ξ), A
k(ξ) :=

∑

|α|=k

Aαξ
α.

In [5] this result was extended to yield dimensional information as well:

Definition. Let Gr(ℓ, d) be the Grassmannian of ℓ-planes in Rd. For ℓ = 1, . . . , d
we define the ℓ-dimensional wave cone as

Λℓ
A :=

⋂

π∈Gr(ℓ,d)

⋃

ξ∈π\{0}

kerAk(ξ).

Equivalently, Λℓ
A can be defined by the following analytical property:

λ /∈ Λℓ
A ⇐⇒ (A π)λ is elliptic for some π ∈ Gr(ℓ, d),

where (A π) is the partial differential operator φ 7→ (A π)(φ) := A(φ◦Pπ) with
Pπ the orthogonal projection onto π.

The main result of [5] establishes that on Iℓ-null sets the polar of an A-free
measure is constrained to lie in Λℓ

A. Here, Iℓ denotes the ℓ-dimensional integral-
geometric measure (recall in particular that Iℓ ≪ Hℓ, so in the following one can
use the ℓ-dimensional Hausdorff measure instead).

Theorem 3 ([5, Theorem 1.3]). Let Ω ⊂ Rd be open and let µ ∈ M(Ω;Rm)
be an A-free measure on Ω. If E ⊂ Ω is a Borel set with Iℓ(E) = 0 for some
ℓ ∈ {0, . . . , d}, then

dµ

d|µ| (x) ∈ Λℓ
A for |µ|-a.e. x ∈ E.

Corollary 1. Let A and µ be as in Theorem 3 and assume that Λℓ
A = {0} for

some ℓ ∈ {0, . . . , d}. Then,

E ⊂ Ω Borel with Iℓ(E) = 0 =⇒ |µ|(E) = 0.

In particular,

µ≪ Iℓ ≪ Hℓ

and thus

dimH µ := sup
{

ℓ : µ≪ Hℓ
}

≥ ℓA,
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where

ℓA := max
{

ℓ : Λℓ
A = {0}

}

.

Combining Theorem 3 with the Besicovitch–Federer rectifiability theorem (see,
e.g., [10, Chapter 18]) one obtains the following rectifiability result. Recall that
for a positive measure σ ∈ M(Ω) the upper ℓ-dimensional density is defined as

θ∗ℓ (σ)(x) := lim sup
r→0

σ(Br(x))

(2r)ℓ
= lim sup

r→0

σ(Br(x))

Hℓ(Bℓ
r)

, x ∈ Ω.

Theorem 4 ([5, Theorem 1.5]). Let A and µ be as in Theorem 3, and assume that
Λℓ
A = {0} for some ℓ ∈ {0, . . . , d}. Then, the set {θ∗ℓ (|µ|) = +∞} is |µ|-negligible.

Moreover, µ {θ∗ℓ (|µ|) > 0} is concentrated on an ℓ-rectifiable set R and

µ R = θ∗ℓ (|µ|)λHℓ R,

where λ : R → Sm−1 is Hℓ-measurable; for Hℓ-almost every x0 ∈ R (or, equiva-
lently, for |µ|-almost every x0 ∈ R),

(2r)−ℓ(T x0,r)#µ
∗
⇀ θ∗ℓ (|µ|)(x0)λ(x0)Hℓ (Tx0

R) as r ↓ 0;

and

λ(x0) ∈
⋂

ξ∈(Tx0
R)⊥

kerAk(ξ).

Here, T x0,r(x) := (x− x0)/r and Tx0
R is the the approximate tangent plane to R

at x0.

We remark that Corollary 1 in conjunction with Theorem 4 imply the well-
known rectifiability results for functions of bounded variation (see [3]) and func-
tions of bounded deformation [8, 2] (see in particular [2, Proposition 3.5]).

More generally, it can be seen that the above results give optimal dimension-
ality and rectifiability results for first-order operators and for second-order scalar
operators (n = 1), which contains most of the interesting examples (in particu-
lar, it applies to A = div, curl, curl curl, ∂). On the other hand, for higher-order
operators the optimality is not clear. Even the following seems to be open:

Conjecture. For the 3rd-order scalar operator defined on C∞(R3) by

A := ∂3x1
+ ∂3x2

+ ∂3x3

we have ℓA = 1 since its characteristic set { ξ ∈ R3 : ξ31 + ξ32 + ξ33 = 0 } is a
ruled surface (and hence it contains lines) but since the characteristic set does not
contain planes, it is conjectured that every measure µ ∈ M(R3;R) with Aµ = 0
satisfies µ≪ H2. See [5] for a more general version of this conjecture.

Finally, we can strengthen Theorem 1 as follows:

Theorem 5 ([5, Proposition 3.1]). Let Ω ⊂ Rd be open and let µ ∈ M(Ω;Rd×d)
be a matrix-valued measure such that

div µ = σ ∈ M(Ω;Rd) in the sense of distributions.
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Assume that for |µ|-almost every x ∈ Ω,

rank

(

dµ

d|µ| (x)

)

≥ ℓ.

Then, |µ| ≪ Iℓ ≪ Hℓ and there exists an ℓ-rectifiable set R and a Hℓ-measurable
map λ : R → Rd×d satisfying

µ {θ∗ℓ (|µ|) > 0} = λ(x)Hℓ
x R, rankλ(x) = ℓ Hℓ-a.e.

The above proposition allows, for instance, to reprove (and in some cases to
slightly improve) the results of [1, 6, 4, 9, 11].
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Ancient mean curvature flow of low entropy

Kyeongsu Choi

(joint work with Robert Haslhofer, Or Hershkovits)

A family of surfaces Mt ⊂ R3 moves by mean curvature flow if the normal velocity
at each point is given by the mean curvature vector,

(1) (∂tx)⊥ = H(x) (x ∈Mt).

Given any closed, embedded, and smooth initial surface M ⊂ R3, there exists a
unique smooth solution M = {Mt}t∈[0,T ) with initial condition M defined on a
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maximal time interval [0, T ). The first singular time T < ∞ is characterized by
the fact that the curvature blows up, i.e.

(2) lim
tրT

max
x∈Mt

|A|(x, t) = ∞,

where |A| denotes the norm of the second fundamental form.
In the mean convex case, there is a highly developed theory. On the one

hand, the flow can be continued smoothly as a surgical solution as constructed by
Brendle-Huisken [BH16] and Haslhofer-Kleiner [HK17b]. This in turn facilitates
topological and geometric applications, see e. g. [BHH16, HK18]. On the other
hand, the flow can also be continued uniquely as a weak (generalized) solution.
Weak solutions can be described either as level set solutions as in Evans-Spruck
[ES91] and Chen-Giga-Goto [CGG91], or in the framework of geometric measure
theory using Brakke solutions [Bra78]. By the deep structure theory of White
[Whi00, Whi03] (see also [HK17a]) the space-time dimension of the singular set
is at most one, and all blowup limits are smooth and convex. In fact, by a result
of Colding-Minicozzi [CM16] the space-time singular set is contained in finitely
many compact embedded Lipschitz curves together with a countable set of point
singularities. Moreover, the recent work of Brendle-Choi [BC17] and Angenent-
Daskalopoulos-Sesum [ADS18] provides a short list of all potential blowup limits
(singularity models) in the flow of mean convex surfaces: the round shrinking
sphere, the round shrinking cylinder, the translating bowl soliton [AW94], and the
ancient ovals [Whi00, HH16].

In stark contrast to the above, when the initial surface is not mean convex,
the theory is much more rudimentary. This is, to some extent, an unavoidable
feature of the equation. In particular, as already pointed out in the pioneering
work of Brakke [Bra78] and Evans-Spruck [ES91] there is the phenomenon of non-
uniqueness or fattening. Angenent-Ilmanen-Chopp [AIC95] and Ilmanen-White
[Whi02] gave examples of smooth embedded surfaces M ⊂ R3 whose level set flow
Ft(M) develops a non-empty interior at some positive time. In particular, Ft(M)
does not look at all like a two-dimensional evolving surface. These examples also
illustrate, in a striking way, the non-uniqueness of (enhanced) Brakke flows.

We prove the mean convex neighborhood conjecture, in order to decrease the
gap between the theory in the mean convex case and the theory in the general
case without curvature assumptions.

Theorem 1 (mean convex neighborhoods at the first singular time). Let M =
{Mt}t∈[0,T ) be a mean curvature flow of closed embedded surfaces in R3, where T is
the first singular time. If some tangent flow at X = (x, T ) is a sphere or cylinder
with multilicity one, then there exists an ε = ε(X) > 0 such that, possibly after
flipping the orientation, the flow M is mean convex in the parabolic ball P (X, ε).
Moreover, any limit flow at X is either a round shrinking sphere, a round shrinking
cylinder, or a translating bowl soliton.1

1It is easy to see that ancient ovals cannot arise as limit flows at the first singular time. It is
unknown, whether or not ancient ovals can arise as limit flows at subsequent singularities. This
is related to potential accumulations of neckpinches, see e.g. [CM17].
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For the mean convex neighborhood theorem at the all singular time, see [CHH].
In order to prove the theorem, we recall the entropy introduced by Colding-
Minicozzi [CM12];

(3) Ent[M ] = sup
y∈R3,λ>0

∫

M

1

4πλ
e−

|x−y|2

4λ dA(x).

The entropy measures, in a certain sense, the complexity of the surface. For
example, the values for a plane, sphere and cylinder are

(4) Ent[R2] = 1, Ent[S2] =
4

e
∼ 1.47, Ent[S1 × R] =

√

2π

e
∼ 1.52.

If M = {Mt}t∈I evolves by mean curvature flow, then t 7→ Ent[Mt] is nonincreas-
ing by Husiken’s monotonicity formula [Hui90], hence

(5) Ent[M] := sup
t∈I

Ent[Mt] = lim
t→inf(I)

Ent[Mt].

For example, the entropy of a flat plane P , a round shrinking sphere S, a round
shrinking cylinder Z, a translating bowl soliton B, and an ancient oval O, are
given by

Ent[P ] = 1, Ent[S] =
4

e
∼ 1.47

Ent[Z] = Ent[B] = Ent[O] =

√

2π

e
∼ 1.52.(6)

We consider the following class of Brakke flows:

Definition (ancient low entropy flows). The class of ancient low entropy flows
consists of all ancient, unit-regular, cyclic, integral Brakke flows M =
{µt}t∈(−∞,TE(M)] in R3 with

(7) Ent[M] ≤
√

2π

e
,

where TE(M) ≤ ∞ denotes the extinction time.

Then, we can classify the low entropy flow as follows.

Theorem 2 (classification of ancient low entropy flows). Any ancient low entropy
flow in R3 is either

• a flat plane, or
• a round shrinking sphere, or
• a round shrinking cylinder, or
• a translating bowl soliton, or
• an ancient oval.

Namely, any ancient low entropy flow in R3 is convex, and this leads to prove
Theorem 1.
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Yamabe flow on noncompact manifolds

Mario B. Schulz

Let (M, g0) be any smooth, possibly noncompact and geodesically incomplete Rie-
mannian manifold. A Yamabe flow on (M, g0) is a family (g(t))t∈[0,T [ of Riemann-
ian metrics on M satisfying

{

∂
∂tg(t) = −Rg(t) g(t) in M × [0, T [ ,

g(0) = g0 on M,
(1)

where Rg denotes the scalar curvature of (M, g). The Yamabe flow was introduced
by Richard Hamilton [4] in 1989 who proved that if M is closed (i. e. compact
without boundary), then problem (1) has a unique solution for some T > 0. The
original motivation was that the Yamabe flow on a closed manifold converges after
a rescaling of space and time for t → ∞ to a conformal metric of constant scalar
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curvature and thereby provides an alternative approach to the Yamabe Theorem,
which was proven in 1984 by Richard Schoen [10] after work of Yamabe, Trudinger
and Aubin.

Here, we focus on the well-posedness of problem (1) in the noncompact set-
ting. In dimension dim(M) = 2, where the Yamabe flow coincides with the Ricci
flow, Gregor Giesen and Peter Topping [15, 2, 3, 16] showed that on any smooth,
connected surface (M, g0) there exists a unique instantaneously complete solution
(g(t))t∈[0,T [ to problem (1). Instantaneous completeness means that the Riemann-
ian manifold (M, g(t)) is geodesically complete for all 0 < t < T even if the initial
manifold is incomplete. For example, let g0 be the restriction of the Euclidean
metric to

(a) the flat unit disc M = B1 ⊂ R2, or
(b) the punctured plane M = R2 \ {0}.

In both cases, the constant flow g(t) = g0 for all t ≥ 0 is a geodesically incomplete
solution to problem (1), but there also exists an instantaneously complete Yamabe
flow with the same initial data which is unique in this class of solutions.

Most remarkably the results of Giesen and Topping allow the initial surface to be
incomplete with unbounded curvature. Does their theory generalise to the Yamabe
flow on noncompact manifolds of higher dimension? Inspired by example (a), we
prove the following existence result [13].

Theorem 1. Let g0 be any conformal metric on hyperbolic space (H, gH) of di-
mension m ≥ 3. Then, there exists a Yamabe flow (g(t))t∈[0,∞[ on H satisfying

(i) g(0) = g0,
(ii) g(t) ≥ m(m− 1)t gH for all t > 0.

As in the work of Giesen and Topping, the initial manifold (H, g0) is allowed to
be incomplete with unbounded curvature. Previous results about the existence of
Yamabe flows on general noncompact manifolds of arbitrary dimension typically
required initial completeness and curvature bounds [6, 7].

If g0 is bounded by a multiple of the (conformally equivalent) Euclidean metric
on H, then we can prove that the solution constructed in Theorem 1 is unique in
the class of Yamabe flows satisfying (i) and (ii) (see [12]). Property (ii) implies
instantaneous completeness of the Yamabe flow. Whether (ii) is in fact equivalent
to instantaneous completeness of conformally hyperbolic Yamabe flows is an open
question which we are able to confirm in the rotationally symmetric case [12].

In view of example (b) it is surprising that punctured manifolds of higher di-
mension do not allow instantaneously complete solutions to the Yamabe flow. We
obtain the following result [14].

Theorem 2. Let (M, g0) be a closed Riemannian manifold of dimension m ≥ 3
and let ∅ 6= N ⊂M be a closed submanifold of dimension n ≥ 0.

(i) If n > m−2
2 then an instantaneously complete Yamabe flow (g(t))t∈[0,∞[

on M \N with g(0) = g0 exists.
(ii) If n < m−2

2 then any Yamabe flow on (M \ N, g0) is incomplete and
uniquely given by the restriction of the Yamabe flow on (M, g0).
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To prove that Theorem 2 (ii) extends to the borderline case n = m−2
2 for even

m ≥ 4 is work in progress. Theorem 2 can be interpreted as parabolic analogue of
several known result about elliptic (Yamabe-type) equations in which the threshold
m−2
2 plays a similar role [5, 11, 9, 8]. Most relevant for the proof of Theorem 2 (i)

is a result by Aviles and McOwen [1] which states, that if (M, g) is a compact
Riemannian manifold of dimension m ≥ 3 and N ⊂ M a closed submanifold of
dimension n, then there exists a complete, conformal metric ĝ on M \ N with
constant negative scalar curvature if and only if n > m−2

2 . In fact, we may replace
(H, gH) by (M \ N, ĝ) in the proof of Theorem 1 and follow the same approach
to construct an instantaneously complete Yamabe flow on M \ N provided that
n > m−2

2 . The proof of Theorem 2 (ii) on the other hand, is based on the following
observations:

There exists a conformal metric g on M conformal and comparable to g0 such
that Rg ≡ 0 in some neighbourhood Ω of N . Let r(x) = distg(x,N) and g̃ = r−2g
on Ω \N . Then, as r → 0,

Rg̃ = 4m−1
m−2r

2−m
2 ∆g̃r

m−2

2 = (m− 1)(m− 2 − 2n) + o(1) > 0 in Ω.(2)

Any Yamabe flow (g(t))t∈[0,T ] on Ω \N is of the form g(t) = U(·, t) 4
m−2 g̃ with

1

m− 1

∂U

∂t
=
(

− 1
cm

Rg̃U + ∆g̃U
)

U− 4
m−2

=
(

−
(

r−
m−2

2 ∆g̃r
m−2

2

)(

U − cr
m−2

2

)

+ ∆g̃

(

U − cr
m−2

2

)

)

U− 4
m−2(3)

in (Ω \N)× [0, T ] for any c ∈ R. By (2) the first factor in (3) has the right sign to
apply a version of the maximum principle for noncompact manifolds which yields

U(·, t) ≤ cra for all t ∈ [0, T ] and some c > 0. Hence, g(t) ≤ c
2
a r2g̃ = c

2
a g ≤ Cg0,

which already implies that the Yamabe flow must be geodesically incomplete.
The uniqueness in Theorem 2 (ii) is proven based on this upper bound by means

of an energy approach similar to the one Topping [16] used on surfaces.
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On the regularity of Ricci flows coming out of metric spaces

Miles Simon

(joint work with A. Deruelle, F. Schulze)

We consider solutions to Ricci flow defined on manifolds M for a time interval
(0, T ] satisfying the following:

Ricci(g(t)) ≥ −c20(at)

|Riem|(g(t)) ≤ c20
t
.(bt)

for all t ∈ (0, T ]. From previous works, [1, 5, 4] it is known that if such a solution
is complete for all times t > 0 (in [4] the local situation was considered for balls
compactly contained in M), then there is a (local in the setting of [4]) limit metric
space (M,d0), as time t approaches zero. In this setting, the metrics dt := d(g(t))
induced by the Riemannian metric at time t, satisfy ([7, 4])

ec
2
0tdt(·, ·) ≥ d0(·, ·) ≥ d0(·, ·) − γ(n)c0

√
t.(ct)

Such solutions occur naturally as pointed limits in i of smooth solutions, starting
at smooth initial data (Mi, gi(0), pi), i ∈ N which satisfy

C(gi(0)) ≥ −K0 > −∞(i)

vol(Bgi(0)(·, 1)) ≥ v0 > 0(ii)

where C is an appropriate curvature condition: See [1, 5, 2, 4]. For example, in
dimension three, C = Rc is sufficient, as shown in [1, 4]. The initial value of a flow
satisfying (at), (bt) is achieved in the Gromov-Hausdorff metric space sense, and
(M,d0) may be non-smooth, as is for example the case for an expanding soliton
coming out of a euclidean non-trivial cone of non-negative curvature which is non-
smooth at the tip. In the case that a neighbourhood V satisfies (V, d0) is regular, in
the sense that d0 is smooth in a neighbourhood of x for all x ∈ V , then we show that
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the solution (V, g(t))t∈(0,T ) can be extended smoothly to (V, g(t))t∈[0,T ) for some
smooth Riemannian metric g(0) on V . Here we use a natural definition of local
smoothness of a metric space. We say d0 is smooth in a neighbourhood of x ∈M ,
if there exist r ≥ r̃ > 0 such that Bd0

(x, r) ⊂⊂ M , and a metric space isometry

ϕ : (Bd0
(x, r), d) → (X, d̃0), and a smooth Riemannian metric g̃0 defined on X

such that Bd̃0
(x, r̃) ⊂⊂ X and (Bd̃0

(x, r̃), d̃0) = (Bd(g̃0)(x, r̃), d(g̃0)) where d(g̃0) is
the distance induced by the Riemannian metric g̃0 on X , X is a smooth connected
manifold. Notice that we have no guarantee that the isometry ϕ is smooth w.r.t
to the structures of M and X . However, by introducing distance coordinates
ψ : Bd̃0

(x, r̃) → Rn, ψ(·) = (d̃0(·, ã1), . . . , d̃0(·, ãn)), we obtain a smooth (1+ε) Bi-

Lipschitz map from Bg̃0(x, r̂) to R
n, for small enough r̂ and appropriately chosen

points ã1, . . . , ãn. We may pull these points ã1, . . . , ãn, back to a1, . . . , an in M
using the isometry ϕ. The map, F0 we obtain, by pulling ψ back to M using ϕ,

F0(·) := (d0(·, a1), . . . , d0(·, an)),

is a distance coordinate map on M. Although we now have no guarantee that F0 is
smooth, we do know that F0 is (1+ε) Bi-Lipschitz, since this property is preserved
under isometries. That is

|F0(x) − F0(y)| ∈ ((1 − ε)d0(x, y), (1 + ε)d0(x, y))

In the setting being considered, we can show that in fact we must have

|Riem|(g(t)) ≤ ε0(ε)

t

on V , if we restrict the time interval to [0, T (ε)] which is to be expected in view
of the Pseudolocality Theorem of G. Perelman [8]. After scaling once, we may
also assume that the bound from below on the Ricci curvature is ε0(ε), where
ε0(ε) → 0 as ε → 0. That is, we can replace the c0 appearing in the estimates of
(c)t by ε0. Considering the distance coordinates

Ft(·) := (dt(·, a1), . . . , dt(·, an)),

for t > 0, for the same a1, . . . , an from above, we see, using (ct) that Ft satisfies

|Ft(x) − Ft(y)| ∈ ((1 − ε0)d0(x, y) − ε0
√
t, (1 + ε)d0(x, y) + ε0

√
t).

We call such a map an ε0 almost isometry. We use initial and boundary data
given by Ft(·) for any fixed small t > 0 and solve the Ricci-Harmonic map heat
flow ∂

∂sZs(·) = ∆g(s)Zs(·) for s ∈ [t, T ]. The regularising properties of the flow
guarantee that, after flowing for a time t, that is at time s = 2t, the resulting
map Z(·) := Zt(·, 2t) is a 1 + α Bi-Lipschitz map where α → 0 as ε0 to 0. The
proof of this (and other estimates) can be found in Theorem 3.7 in [3]. By taking
a limit t → 0 we obtain a smooth solution Z(·, s) to the Ricci-Harmonic map
heat flow with Dirichlet boundary conditions. This solution is smooth for all time
s > 0 and 1 +α Bi-Lipschitz for all s ∈ (0, S(ε0)). In the setting of bounded Ricci
curvature and almost isometrically split almost euclidean regions, R. Hochard
also considered the Ricci harmonic map heat flow of distance coordinates (on the
almost euclidean region), cf. Lemma II.3.10 of [6]. We push the Ricci flow forward
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using Z. It is well known, see Section 6 of [7], that the resulting family of metrics
g̃(·, s) := Z(·, s)∗(g(s)) solves the δ- Ricci DeTurck flow (that is the Ricci DeTurck
flow with background metric δ, where δ is the standard metric on Rn), which is a
parabolic PDE. In the setting we are considering, the 1 + α Bi-Lipschitz estimate
on Zt guarantees that the solution g̃(s) is, without loss of generality bounded above
by (1 + ε0)δ respectively below by (1 − ε0)δ for all s. Furthermore, applications
of Theorem 3.7 in [3] at different scales show that g̃(s) → g̃0 in the C0 sense as
sց 0, as is shown in Theorem 4.3 of [3]. We construct a comparison solution ĝ to
the δ- Ricci DeTurck flow with initial values on Bv(0) given by g̃0 and boundary
values on ∂Bv(0) at time s given by g̃(·, s): without loss of generality F0(x) = 0.

ĝ is smooth on Bv(0)× [0, T ]∪Bv(0)× (0, T ] and continuous on Bv(0)× [0, T ] and
also bounded above by (1 + ε0)δ respectively below by (1 − ε0)δ by construction :
See Section 5 of [3] for details.

Using the L2 Lemma, Lemma 6.1 of [3], we show that in fact ĝ = g̃. This means
that g̃(s) must have (locally in space) bounded curvature, and that all covariant
derivatives thereof are bounded, independent of s ∈ (0, T ]. Pulling back with Z(s),
we see that the same must be true for the original solution g(s) for s ∈ (0, T ]. Using
the evolution equation ∂

∂sg(s) = −2Rc(g(s)), one can show, Section 8 of [7], that
the solution g(s)s∈(0,T ] can also be smoothly extended back to time zero.

The L2 Lemma is formulated in the setting of the Ricci DeTurck flow, and
does not necessarily assume that the solutions being considered come from the
setting above. The content of the L2 Lemma, Lemma 6.1 of [3], is as follows:
given any two solutions g̃ and ĝ to the δ - Ricci DeTurck flow which are smooth on
Bv(0) × (0, T ], bounded above by (1 + ε0)δ respectively below by (1 − ε0)δ, then

∂

∂s

∫

Bv(0)

ϕ(x, s)|g̃(x, s) − ĝ(x, s)|2dx ≤ 0(1)

for all s > 0 where ϕ(·, s) := (1 + λ|g̃(s) − δ|2 + λ|ĝ(s) − δ|2) is bounded between
1/2 and 2 and ε0 is sufficiently small and λ sufficiently large, depending on n. In

the case that solutions are continuous on Bv(0) × [0, T ] and equal at time zero,
then the lemma implies that they are equal for all time.
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Codimension two min-max minimal submanifolds from PDEs

Alessandro Pigati

(joint work with Daniel Stern)

The variational construction of minimal submanifolds has received great attention
in the last decades—with recent spectacular developments, especially in codimen-
sion one.

In order to find min-max minimal hypersurfaces, a (rather involved) discretized
method was developed by Almgren and Pitts, in the setting of geometric measure
theory. On the other hand, starting from the work of De Giorgi, Modica–Mortola
and Sternberg for minimizers, a “level set” approach was proposed, based on
(rescalings of) the Allen–Cahn functional

Fǫ(v) :=

∫

M

(

ǫ|dv|2 +
1

4ǫ
(1 − v2)2

)

,

whose minimizers model a phase transition concentrating on a minimal codimen-
sion one interface as ǫ→ 0.

In their pioneering work, Hutchinson–Tonegawa [3] studied families of critical
points vǫ of Fǫ with bounded energy and showed, in particular, that their energy
measures concentrate along a stationary, integral (n − 1)-varifold, given by the
limit of the level sets v−1

ǫ (0).
These developments, together with the deep regularity work by Tonegawa–

Wickramasekera on stable solutions and subsequent work by Guaraco and Gaspar–
Guaraco, provided a PDE alternative to the Almgren–Pitts method, used suc-
cessfully to attack some profound questions concerning the structure of min-max
minimal hypersurfaces.

In this talk, following [4], we explore a natural way to construct minimal va-
rieties of codimension two through PDE methods. Recently, attempts in this
direction have been made by Cheng [1] and Stern [5], based on the study of the
Ginzburg–Landau functionals

Fǫ(v) :=
1

|log ǫ|

∫

M

(

|dv|2 +
1

4ǫ2
(1 − |v|2)2

)

on complex-valued maps v : M → C. While the Ginzburg–Landau approach can be
employed successfully to produce nontrivial stationary rectifiable (n−2)-varifolds—
based also on works by Lin–Rivière and Bethuel–Brezis–Orlandi, it is not yet
known whether the varifolds produced in this way are integral, nor is it known
whether the full energies Fǫ(vǫ) of the min-max critical points converge to the
mass of the limiting minimal variety in the case b1(M) 6= 0.
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These difficulties point to the deeper fact that the Ginzburg–Landau function-
als, though related to the (n−2)-area, do not provide a straightforward regulariza-
tion of the codimension-two area functional. Indeed, they should be understood
first and foremost as a relaxation of the Dirichlet energy for singular maps to
S1, and while the limiting singularities of critical points may coincide with min-
imal varieties, the associated variational problems exhibit substantial qualitative
differences at both large and small scales.

In [4] we consider instead the self-dual Yang–Mills–Higgs energy

(1) E(u,∇) :=

∫

M

(

|∇u|2 + |F∇|2 +W (u)
)

and its rescalings

(2) Eǫ(u,∇) :=

∫

M

(

|∇u|2 + ǫ2|F∇|2 + ǫ−2W (u)
)

,

for couples (u,∇) consisting of a section u of a given Hermitian line bundle L→M ,
and a metric connection ∇ on L. Here, the potential W : L→ R is given by

(3) W (u) :=
1

4
(1 − |u|2)2,

while F∇ ∈ Ω2(End(L)) denotes the curvature of ∇. These functionals have a
natural U(1)-gauge invariance.

Taubes [6, 7] studied critical points of (1) for the trivial bundle L = C × R2

on the plane: he gave a complete classification, showing in particular that all
finite-energy critical points (u,∇) solve the first order system

(4) ∇∂1
u± i∇∂2

u = 0; ∗F∇ = ±1

2
(1 − |u|2)

known as the vortex equations. Such solutions minimize energy among pairs
(u,∇) with fixed vortex number N := 1

2π

∫

R2 ∗F∇ ∈ Z, and carry energy exactly
E(u,∇) = 2π|N |.

Hong–Jost–Struwe [2] initiated the asymptotic study of (2) for line bundles
L → Σ over a closed Riemann surface Σ, showing that the curvature ∗ 1

2πF∇ǫ

converges as ǫ → 0 to a finite sum of Dirac masses of total mass | deg(L)|, away
from which ∇ǫ converges to a flat connection ∇0, and uǫ to a unit section u0 with
∇0u0 = 0, up to change of gauge.

In [4] we develop the asymptotic analysis as ǫ → 0 for critical points of Eǫ

associated to line bundles L → M over Riemannian manifolds Mn of arbitrary
dimension n ≥ 2. The main result is the following, which describes the limiting
behavior as ǫ → 0 of the energy measures and curvatures F∇ǫ for critical points
(uǫ,∇ǫ) satisfying a uniform energy bound.

Theorem. Let L → M be a Hermitian line bundle over a closed, oriented Rie-
mannian manifold Mn of dimension n ≥ 2, and let (uǫ,∇ǫ) be a family of critical
points for Eǫ satisfying a uniform energy bound

Eǫ(uǫ,∇ǫ) ≤ Λ <∞.



2084 Oberwolfach Report 34/2019

Then, as ǫ→ 0, the energy measures

µǫ :=
1

2π
eǫ(uǫ,∇ǫ) volg

converge subsequentially, in duality with C0(M), to the weight measure µ of a
stationary, integral (n− 2)-varifold V . Also, for all 0 ≤ δ < 1,

spt(V ) = lim
ǫ→0

{|uǫ| ≤ δ}

in the Hausdorff topology. The (n−2)-currents dual to the curvature forms 1
2πF∇ǫ

converge subsequentially to an integral (n− 2)-cycle Γ, with |Γ| ≤ µ.

Roughly speaking, this result says that the energy of the critical points con-
centrates near the zero sets u−1

ǫ (0) of uǫ as ǫ → 0, which converge to a (possibly
rather singular) minimal submanifold of codimension two.

Note that unit sections of a Hermitian line bundle are indistinguishable up to
change of gauge: for a given unit section u of L, one can always choose locally
a connection with respect to which u appears constant. Thus, while most of the
energy of solutions vǫ to the complex Ginzburg–Landau equations falls on annular
regions—relatively far from the zero set—where vǫ resembles a harmonic S1-valued
map, the energy eǫ(uǫ,∇ǫ) of a critical pair (uǫ,∇ǫ) for (2) instead concentrates
near the zero set u−1

ǫ (0), with |∇ǫuǫ| vanishing rapidly outside this region, allowing
for an easier and more effective blow-up analysis.

The obvious advantages of this theorem over analogous results for the com-
plex Ginzburg–Landau equations are the integrality of the limit varifold V—
due ultimately to the aforementioned quantization of the energy of entire planar
solutions—and the concentration of the full energy measure to V , independent of
the topology of M . Also, the analysis of (2) aligns much more closely with the
work of Hutchinson–Tonegawa on the Allen–Cahn equations.

However, while the analysis of the Allen–Cahn functionals does not depend
on the precise choice of the double-well potential W , the analysis of the abelian
Yang–Mills–Higgs functionals (1)–(2) seems to depend quite strongly on the choice
W (u) = 1

4 (1−|u|2)2. Indeed, already in two dimensions, replacingW with a poten-

tial Wλ(u) := λ
4 (1−|u|2)2 for some λ 6= 1 yields a dramatically different qualitative

behavior, breaking the symmetry which leads to the first-order equations (4), and
introducing interactions between disjoint components of the zero set.

We also have the following general existence result, showing that nontrivial
families satisfying the hypotheses of our main theorem arise naturally on any line
bundle (including, importantly, the trivial bundle) over any Riemannian manifold
Mn, from variational constructions.

Theorem. For any Hermitian line bundle L → M over an arbitrary closed base
manifold Mn, there exists a family of critical points (uǫ,∇ǫ) with bounded energies
Eǫ(uǫ,∇ǫ) and nonempty zero sets u−1

ǫ (0) 6= ∅. In particular, the energy µǫ of
these families concentrates (subsequentially) on a nontrivial stationary integral
(n− 2)-varifold V as ǫ→ 0.
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For nontrivial bundles L → M , this is obtained by looking at minimizers
(uǫ,∇ǫ) of Eǫ. In this case, we expect moreover that the limiting minimal va-
riety, together with its multiplicity, coincides with the weight measure |Γ| of the
limiting (n − 2)-cycle Γ = limǫ→0 ∗ 1

2πF∇ǫ , and that Γ minimizes (n − 2)-area in
its homology class, which is Poincaré dual to the first Chern class c1(L).

For the trivial bundle L ∼= C×M , we use instead min-max methods. While in
[4] we consider only one min-max construction, we mention that many more may
be carried out in principle, due to the rich topology of the space

M := {(u,∇) : 0 6≡ u ∈ Γ(C×M), ∇ a Hermitian connection}/G,
where G := Maps(M,S1) is the gauge group. It may be of interest to note that
the homotopy groups πi(M) are isomorphic to those of the space Zn−2(M ;Z) of
integral (n− 2)-cycles considered by Almgren.

As an application of our results, we obtain a new proof of the existence of
stationary integral (n−2)-varifolds in an arbitrary Riemannian manifold—a result
first proved by Almgren using his geometric measure theory framework.
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Multiplicity One Conjecture in Min-max theory

Xin Zhou

The min-max theory is a powerful tool to find minimal surfaces, which are the
mathematical models for soap films. Motivated by Yau’s conjecture on minimal
surfaces [15], Marques and Neves proposed a program to establish the Morse the-
ory for the Area functional [6, 7, 8], in which they explored the notion of “volume
spectrum” introduced by Gromov in 1980s [4]. One of their goals is to under-
stand the key feature of the min-max theory, that is, the Morse index. The long-
standing challenge of min-max theory, especially for Marques-Neves’s program,
was the “Multiplicity One Conjecture” [8, 1.2]. The conjecture said that minimal
hypersurfaces produced by the min-max theory are always two-sided and have
multiplicity one a generic scenario. This conjecture is a natural nonlinear analog
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of a famous result by Uhlenbeck [12] for the linear “Laplacian spectrum” in 1960s.
This conjecture was proved by the author in [16].

Now we start to state the precise result. Let (Mn+1, g) be a closed orientable
Riemannian manifold of dimension 3 ≤ (n + 1) ≤ 7. In [1], Almgren proved
that the space of mod-2 cycles Zn(M,Z2) is weakly homotopic the Eilenberg-
MacLane space K(Z2, 1) = RP∞; (see also [8] for a simpler proof). Later, Gromov
[4], Guth [5], Marque-Neves [7] introduced the notion of volume spectrum as a
nonlinear version of spectrum for the area functional in Zn(M,Z2). In particular,
the volume spectrum is a non-decreasing sequence of positive numbers

0 < ω1(M, g) ≤ · · · ≤ ωk(M, g) ≤ · · · → +∞,

which is uniquely determined by the metric g in a given closed manifold M .
By adapting the celebrated min-max theory developed by Almgren [2], Pitts

[9] (for 3 ≤ (n + 1) ≤ 6), and Schoen-Simon [11] (for n + 1 = 7), Marques-Neves
[7, 6] proved that each ωk(M, g) is associated with an integral varifold Vk whose
support is a disjoint collection of smooth, connected, closed, embedded, minimal
hypersurfaces {Σk

1 , · · · ,Σk
lk
}, such that

(1) ωk(M, g) =

lk
∑

i=1

mk
i · Area(Σk

i ),

where {mk
1 , · · · ,mk

lk
} ⊂ N is a set of positive integers, usually called multiplicities.

Our main theorem states that if a component Σk
i is not weakly stable, then Σk

i

has to be two-sided and the associated integer multiplicity is identically equal to
one, i.e. mk

i = 1. Note that a closed minimal hypersurface Σ is said to be weakly
stable if it has a 0 as the lowest eigenvalue for the second variation of area; (when
Σ is one-sided, one has to pass to its two-sided double cover).

Theorem 1. Given a closed manifold (Mn+1, g) of dimension 3 ≤ (n + 1) ≤
7, denote {Σk

i : k ∈ N, i = 1, · · · , lk} as the min-max minimal hypersurfaces
associated with volume spectrum. Then every connected component of {Σk

i : k ∈
N, i = 1, · · · , lk} which is not weakly stable is two-sided and has multiplicity one.
That is, if Σk

i is not weakly stable, k ∈ N, 1 ≤ i ≤ lk, then Σk
i is two-sided and

mk
i = 1, and

lk
∑

i=1

index(Σk
i ) ≤ k.

Remark 2. Theorem 1 is an equivalent formulation of the Multiplicity One Con-
jecture of Marques-Neves [8, 1.2] proved by the author in [16, Theorem A]. Indeed,
[16, Theorem A] asserts that for a bumpy metric g, all connected components of
{Σk

i : k ∈ N, i = 1, · · · , lk} are two-sided and have multiplicity one. Theorem 1
directly implies [16, Theorem A], as weakly stable minimal hypersurfaces are de-
generate and hence do not exist in a bumpy metric. Now we argue that that
[16, Theorem A] implies Theorem 1. A metric g is called bumpy if every closed
immersed minimal hypersurface is non-degenerate. White proved that the set of
bumpy metrics is generic in Baire sense [13, 14]. For an arbitrary metric g, we can
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take a sequence of bumpy metrics {gj}j∈N such that gj → g smoothly. We also
know that the k-widths {ωk(M, gj)}j∈N converges to ωk(M, g) as j → ∞ for each
k ∈ N. Now fix k ∈ N; for each gj, the associated min-max minimal hypersur-
faces Vk,j are all two-sided and have multiplicity one by [16, Theorem A]. By the
compactness theorem [10, Theorem A.6], Vk converges up to a subsequence to a
limit integral varifold V , such that the support spt(V ) of V is smooth embedded
minimal hypersurfaces. Now using [10, Theorem A.6] again, if a connected com-
ponent of spt(V ) either has multiplicity greater than one or is one-sided, it (or its
two-sided double cover when one-sided) has to carry a positive Jacobi field for the
second variation of area, and hence it is weakly stable.

Remark 3. Recently, Chodosh-Mantoulidis [3] proved this conjecture in dimension
three (n+ 1) = 3 for the Allen-Cahn setting; they also proved that the total index
is exactly k for their k-min-max solutions when (n+1) = 3. After our results were
posted, Marques-Neves finished their program and also proved the same optimal
index estimates for 3 ≤ (n+ 1) ≤ 7 [8, Addendum].
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An existence theorem for Brakke flow with fixed boundary condition

Yoshihiro Tonegawa

(joint work with Salvatore Stuvard, University of Texas at Austin)

A family of hypersurfaces {Γt}t≥0 in Rn+1 is called a mean curvature flow (MCF)
if the mean curvature vector of Γt is equal to the normal velocity at each point and
time. One can formulate a generalized notion of MCF in the setting of varifold
called the Brakke flow. The main new result reported in this talk is the global-in-
time existence of Brakke flow in a strictly convex domain, starting from given set
and fixing the boundary condition. We work under the following assumptions.

Assumption 1. Let Ω0 ⊂ Rn+1 be a strictly convex domain with C2 boundary
∂Ω0. Assume that

(a) Γ0 ⊂ Ω0 is a relatively closed countably n-rectifiable set with Hn(Γ0) <∞,
where Hn is the n-dimensional Hausdorff measure.

(b) E1,0, . . . , EN,0 are mutually disjoint non-empty open sets in Ω0 such that

N
⋃

i=1

Ei,0 = Ω0 \ Γ0,

where N ≥ 2.
(c) Define

∂Γ0 := clos Γ0 \ Ω0

where clos Γ0 is the closure of Γ0 in Rn+1. Then, for each x ∈ ∂Γ0,
there exist i, i′ ∈ {1, . . . , N} with i 6= i′, sequences xj , x

′
j ∈ ∂Ω0 with

limj→∞ xj = limj→∞ x′j = x, open balls Brj (xj), Br′j
(x′j) ⊂ Rn+1 with

Brj (xj) ∩ Ω0 = Brj (xj) ∩ Ei,0 and Br′j
(x′j) ∩ Ω0 = Br′j

(x′j) ∩ Ei′,0.

The set Γ0 is the initial data. Non-empty open sets E1,0 . . . , EN,0 make up the
complement of Γ0 and we may think them to be a “labeling of domains”. Since
N ≥ 2, we are implicitly assuming that Ω0 \ Γ0 is not connected. The different
components need not have different label and the assignment is arbitrary, even
though it is most “canonical” if we assume that there are only a finite number of
connected components and we assign different labels to each of them. If there are
infinitely many components, we may just fix some large N and group them into
N open sets suitably. Different labeling typically results in different MCF. The
condition (c) asks that each boundary point of ∂Γ0 is a genuine boundary point of
some closEi ∩ ∂Ω0. The set ∂Γ0 can be rather irregular and may be a fractal-like
set with Hn−1(∂Γ0) = ∞. The main result is that there exists a Brakke flow
{µt}t≥0 starting from Γ0 having the fixed boundary ∂Γ0. More precisely,

Theorem 1. Under the Assumption 1, there exists a family of Radon measures
{µt}t≥0 defined on Ω0 with the following properties:

(1) µ0 = Hn⌊Γ0
.
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(2) For almost all t ∈ [0,∞), there exist an Hn-measurable countably n-
rectifiable set Γt ⊂ Ω0 and an Hn-measurable function θt : Γt → N such
that µt = θt Hn⌊Γt .

(3) For almost all t ∈ [0,∞), there exists a generalized mean curvature vector
h(µt, x) of µt such that, for all T > 0, we have

µT (Ω0) +

∫ T

0

dt

∫

Ω0

|h(µt, x)|2 dµt(x) ≤ Hn(Γ0).

(4) For all 0 ≤ t1 < t2 <∞ and for all φ ∈ C1
c (Ω0 × [0,∞);R+), we have

∫

Ω0

φ(x, t) dµt(x)
∣

∣

∣

t2

t=t1

≤
∫ t2

t1

dt

∫

Ω0

(∇φ(x, t) − φ(x, t)h(µt, x)) · h(µt, x) +
∂φ

∂t
dµt(x).

(5) For all t ≥ 0, ∂Ω0 ∩ clos sptµt = ∂Γ0.

The property (2) says that µt is an integral varifold for almost all t and θt is the
multiplicity function of µt. The generalized mean curvature vector h(µt, x) in (3)
is defined in the usual sense of varifold, and the implicit claim here is that the first
variation of µt is bounded and absolutely continuous with respect to µt for almost
all t. Note that we are not particularly assuming that Hn⌊Γ0

has a bounded first
variation and one can see that an instantaneous regularization is taking place under
the MCF. The inequality in (4) is a weak formulation of “normal velocity = mean
curvature vector”. If given a smoothly moving family of surfaces {Γt}t≥0, and if
µt := Hn⌊Γt satisfies the inequality in (4) for all non-negative test function φ, then
it must be a MCF and vice versa. The claim (5) says in a rigorous term that the
boundary of µt is fixed and equal to ∂Γ0 for all time. We also have accompanying
existence of “partitions” which make up the complement of the support of dµtdt
in the space-time Ω0× [0,∞) which are continuous in time in a suitable sense. For
the proof, we modify the time-discrete construction of [1] so that we may fix the
boundary data. To do so, in each discrete time step, smoothed mean curvature
vector is truncated by a cut-off function which is exponentially small near ∂Γ0.
To make sure that the surfaces stay inside Ω0 throughout the construction, we
need to insert an extra retraction step in addition to the Lipschitz deformation
and motion by the smoothed (and truncated) mean curvature vector.
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Plateau’s problem as a singular limit of capillarity problems

Francesco Maggi

(joint work with Darren King, Antonello Scardicchio, Salvatore Stuvard)

Minimal surfaces with prescribed boundary provide the basic model for soap films
hanging from a wire frame: given a boundaryless (n − 1)-dimensional surface
Γ ⊂ Rn+1, one looks for n-dimensional surfaces M with ∂M = Γ and with zero
mean curvature HM = 0; here n ≥ 1, with n = 2 in the physical case. A limitation
in the descriptive power of this model is that it has no length scale (e.g., tM is a
minimal surface with boundary tΓ, no matter how large t > 0 is). Since the most
basic length scale involved in this problem is the volume ε of the soap film, we
are led to the question of framing Plateau’s problem in the context of capillarity
theory (area minimization at fixed volume).

As a reference formulation of Plateau’s problem we adopt the one introduced
by Harrison and Pugh in [1], in its slight generalization considered in [2],

(1) ℓ = inf
{

Hn(S) : S relatively closed in Ω, S is C-spanning W
}

.

Here W is the region occupied by the wire (think of a δ-neighborhood of Γ for a
small δ > 0), Ω = Rn+1 \W is the region accessible to the candidate surfaces, C is
a homotopically non-trivial and homotopically closed class of smooth embeddings
of S1 into Ω, and S is said to be C-spanning W iff S ∩ γ 6= ∅ for every γ ∈ C. By
the results in [1, 2], minimizers of (1) exist as soon as ℓ < ∞. Moreover, they
satisfy Plateau’s laws in the physical case n = 2 by [5].

The capillarity problem we want to consider is thus

(2) ψ(ε) = inf
{

Hn(Ω ∩ ∂E) : |E| = ε, E ⊂ Ω, Ω ∩ ∂E is C-spanning W
}

,

where the sets E are assumed to be open and such that ∂E is Hn-rectifiable. We
notice that the spanning condition on Ω ∩ ∂E is imposed to exclude that global
minimizers look like round droplets sitting a points of high curvature of ∂W , and
to force them to actually resemble soap films. Given a minimizing sequence {Ej}j
converging to a limit set E, an obvious difficulty is that Ω ∩ ∂Ej may converge
with multiplicity larger than 1 towards a surface K which strictly contains ∂E.
Denoting by ∂∗E the reduced boundary of a set of finite perimeter, we first prove
the following existence result:

Theorem 1. Assume that ℓ < ∞, that ∂W is smooth, that there exists τ0 > 0
such that Rn+1 \ Iτ (W ) is connected for every τ < τ0, and that there exists a
minimizer S of ℓ and η0 > 0 such that Iη0

(S) ∩ γ 6= ∅ for every γ ∈ C.
If {Ej}j is minimizing sequence for ψ(ε), then, up to possibly extracting a

subsequence and up to possibly modify each Ej outside of a large ball containing
W (where both operations are still defining a minimizing sequence, which, for
simplicity, is still denoted by {Ej}j), we have

Ej → E in L1(Rn+1) ,(3)

Hn
x(Ω ∩ ∂Ej)

∗
⇀ 2Hn

x(K \ ∂∗E) + Hn
x∂∗E , as Radon measures ,(4)



Partial Differential Equations 2091

as j → ∞, where E ⊂ Ω is an open set with Ω ∩ ∂E = Ω∩ closure(∂∗E), |E| = ε,
Ω ∩ ∂E ⊂ K, and K is an Hn-rectifiable and relatively compact subset of Ω such
that K is C-spanning W . Moreover, F(K,E) = ψ(ε), where

F(K,E) = 2Hn(K \ ∂∗E) + Hn(∂∗E) ,

is the relaxed surface tension energy of (K,E).

Because of the identity F(K,E) = ψ(ε), a pair (K,E) as in Theorem 1 is called
a generalized minimizer of ψ(ε). When K = Ω ∩ ∂E, then E is a minimizer of
ψ(ε), but in general K could be strictly larger than Ω ∩ ∂E, and in the latter
situation we say that collapsing occurs.

When W consists of two small disjoint disks in the plane, then K = Ω ∩ ∂E
consists of two very flat circular arcs touching W orthogonally. In this case the
region E has indeed a small thickness, proportional to ε. At fixed ε, by moving the
two disks far away we see that this thickness becomes increasingly smaller. Below
a certain thickness threshold, punctured configurations becomes energetically very
close to the minimizer, and the probability transition towards such unstable states
becomes increasingly consistent. This is an example of a physical feature of actual
soap films which is unaccessible to a formulation via minimal surfaces.

When W is obtained by taking a δ-neighborhood of the three vertexes of an
equilateral triangle, then the unique minimizer in ℓ consists of a triple junction
at the center of the triangle. For small ε, collapsing occurs in ψ(ε), and the
generalized minimizer (K,E) consists of a central circular curvilinear triangle of
area ε, joined to the boundary W by three segments of multiplicity 2. This result
indicates that, in the presence of singularities, the volume and the thickness of an
actual soap film are independent physical parameters. This is another physical
feature of soap films which cannot be described relying just on minimal surfaces.

Theorem 2. Under the assumptions of Theorem 1, if (K,E) is a generalized
minimizer of ψ(ε) and f is a diffeomorphism of Ω into Ω such that |f(E)| = ε,
then F(K,E) ≤ F(f(K), f(E)). In particular there exists λ ∈ R such that

λ

∫

∂∗E

X · νE dHn =

∫

∂∗E

divTX dHn + 2

∫

K\∂∗E

divTX dHn

whenever X ∈ C∞
c (Rn+1;Rn+1) with X ·νΩ = 0 along ∂Ω, and where divT denotes

the tangential divergence operator.

Thanks to Theorem 2 and to Allard’s regularity theorem for integer rectifiable
varifolds, we find the existence of a closed set Σ ⊂ K, relatively meager in K, such
that K \ Σ is a smooth hypersurface. In fact, K \ (Σ ∪ ∂E) is a smooth minimal
surface, ∂∗E is a smooth hypersurface with constant mean curvature equal to λ,
Hn(Σ \ ∂E) = 0 and ∂E \ ∂∗E is meager in K and contained in Σ. We thus have
two interesting free boundary problems: (i) on the transition region ∂E \∂∗E; (ii)
on the wetted region of the wire ∂W ∩ closure(K ∪ E).

Finally, we discuss the convergence towards Plateau’s problem.
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Theorem 3. Under the assumptions of Theorem 1, ψ(ε) → 2 ℓ as ε→ 0+. More
precisely, if (Kj, Ej) is a sequence of generalized minimizers of ψ(εj) for some
εj → 0+ as j → ∞, then, up to possibly extracting a subsequence, there exists a
minimizer S of ℓ such that, as j → ∞,

2Hn
x(Kj \ ∂∗Ej) + Hn

x∂∗Ej
∗
⇀ 2Hn

xS, as Radon measures.(5)

Thus Plateau’s problem ℓ is the singular limit as ε → 0+ of the capillarity
problems ψ(ε), and this limit provides a selection principle for minimizers in ℓ
based on the size of their singular sets. For example, in the planar case, simple
examples show that generalized minimizers of ψ(ε) will necessarily converge to
those minimizers of ℓ with the largest number of singular points.

For a more complete discussion on the physical and mathematical meaning
of this singular limit we refer to the two papers [4, 3]. In particular, the three
theorems above are proved in [3].
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Institut de Mathématiques de Jussieu
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SWITZERLAND

Dr. Felix Schulze

Department of Mathematics
University College London
Gower Street
London WC1E 6BT
UNITED KINGDOM

Dr. Joaquim Serra

Departement Mathematik
ETH-Zentrum
Rämistrasse 101
8092 Zürich
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Universitätsplatz 2
39106 Magdeburg
GERMANY

Antoine Y. Song

Department of Mathematics
Princeton University
Fine Hall
Washington Road
Princeton, NJ 08544-1000
UNITED STATES

Dr. Luca Spolaor

Department of Mathematics
Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge, MA 02139-4307
UNITED STATES

Prof. Dr. Michael Struwe

Departement Mathematik
ETH-Zentrum
Rämistrasse 101
8092 Zürich
SWITZERLAND

Prof. Dr. Karl-Theodor Sturm

Institut für Angewandte Mathematik
Universität Bonn
Endenicher Allee 60
53115 Bonn
GERMANY

Prof. Dr. Susanna Terracini

Dipartimento di Matematica
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