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Abstract. Many physical processes in material sciences or geophysics are
characterized by inherently complex interactions across a large range of non-
separable scales in space and time. The resolution of all features on all scales
in a computer simulation easily exceeds today’s computing resources by multi-
ple orders of magnitude. The observation and prediction of physical phenom-
ena from multiscale models, hence, requires insightful numerical multiscale
techniques to adaptively select relevant scales and effectively represent un-
resolved scales. This workshop enhanced the development of such methods
and the mathematics behind them so that the reliable and efficient numer-
ical simulation of some challenging multiscale problems eventually becomes
feasible in high performance computing environments.
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Introduction by the Organizers

This workshop concerned the numerical algorithms that underlie the computer
simulation of complex processes in engineering and the sciences and, more impor-
tantly, the mathematics behind them to foresee and assess their performance in
practice. Among the target applications are the mechanical analysis of composite
and multifunctional materials, porous media flow, wave propagation in heteroge-
neous media or the simulation of condensed matter in the presence of disorder.
The main characteristic of such problems is that the inherently complex interplay
of non-linear effects on various non-separable length and time scales essentially
determines the overall properties and triggers astonishing physical phenomena
as discussed, e.g., in the talks of B. Schweizer, P. Henning, M. Luskin and T.
Pouchon. Although mathematical physics provides models of partial differential
equations that implicitly describe these processes, the problems are intractable for
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an analytical solution such that their understanding and control relies on numeri-
cal simulation. From a computational point of view, however, a direct numerical
treatment of such problems is often not feasible due to the fact that the resolution
of all details on all relevant scales may lead to a number of degrees of freedom and
computational work which exceed today’s computing resources by multiple orders
of magnitude.

The observation and prediction of physical phenomena from multiscale mod-
els, hence, requires insightful algorithms that adaptively select the most relevant
scales based on a priori and a posteriori knowledge of the problem, effectively
represent unresolved scales and quantify errors and uncertainty. We refer to such
algorithms as computational multiscale methods and this Oberwolfach Workshop
Computational Multiscale Methods aimed at the understanding and advancement
of computational techniques for the efficient simulation of multiscale processes
and analytical or numerical techniques that can provide the effective properties
of unresolved scales and utilize such upscaled information to efficiently attain an
approximation of sufficient quality or even similar quality as a non-feasible fully
resolved simulation. Amongst the particular trends have been numerical stochastic
and inverse homogenization, model reduction techniques, the consistent coupling
of mathematical models across scales as well as non-local mesoscopic modeling.

The novel groundbreaking methodologies for numerical homgenization that have
been central to a previous workshop on computational multiscale methods 1 in 2014
can now deal with arbitrarily fast and non-smooth oscillations in representative
linear and non-linear model problems without scale separation. Striking examples
were given in the talks of E. Chung, B. Verfürth and L. Zhang. Numerical homog-
enization schemes have always been believed to be intimately related to domain
decomposition techniques and this connection has now been rigorously clarified
in the talks of H. Yserentant and R. Scheichl. Apart from these robust homog-
enization techniques for worst-case scenarios beyond structural assumptions, the
workshop has also seen progress on highly efficient methods that are able to exploit
structure such as scale separation if present, e.g., in the talks of C. Frederick and D.
Arjmand. Furthermore, combinations of multiscale techniques with, e.g., reduced-
order models or time parallelism, have been presented by M. Lukáčová-Medviďová
and R. Tsai.

Randomness in multiscale problems has played a major role in the workshop.
On the one hand, F. Otto summarized the recent progress in quantitative sto-
chastic homogenization. On the other hand, D. Gallistl presented a corresponding
numerical homogenization. Together, the talks showed a clear perspective toward
quantitative numerical homogenization. In addition, the talk of M. Feischl showed
the potential and importance of the consideration of a hierarchy of discretization
scales to deal with problems beyond stationarity and short correlation in the near
future. The numerical treatment of randomness in multiscale problems has also

1Computational multiscale methods. Abstracts from the workshop held June 22–28, 2014.
Organized by C. Carstensen, B. Engquist and D. Peterseim. Oberwolfach Rep. 11(2):1625–1681,
2014.
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been addressed by A. Målqvist and B. Wohlmuth. More general aspects of ran-
dom computing were discussed by A. Lang. Randomness as computational tool
for efficient model reduction was central to K. Smetana’s talk. Since numerical ho-
mogenization is currently also the source of novel techniques for the compression,
inversion, and approximate principal component analysis of dense kernel matrices,
the workshop has seen promising applications of multiscale computing in machine
learning and statistical inference, e.g., in the talks of H. Owhadi and A. Tecken-
trup.

The importance of mathematical and numerical multicale modeling has been
clearly shown in the talks of T. Lochner and R. Kornhuber. The coupling of
discrete media and continua marks another challenging subject since the relevant
equations and quantities of interest on the different scales are fundamentally dif-
ferent in nature. Numerical approaches, e.g., the quasi-continuum method, aim
to couple the relevant mathematical models at the different scales. Despite recent
progress, the consistent coupling of different models is beyond current mathemat-
ical understanding and remains a key challenge in the context of multiscale prob-
lems and more general multi-physics applications as discussed by C. Makridakis.
Another approach towards bridging various scales, besides the direct coupling of
a micro- and macro-model, is the development of a so-called mesoscopic model.
The theory of generalized continua, for instance, provides such models with an
intrinsic length scale. Here, meshfree methods provide an alternative, as reported
by P. Bochev, and a rather novel but already widely employed concept in the en-
gineering community is the phenomenological peridynamics approach which was
the topic of the talks of M. Gunzburger and M. D’Elia.

It is interesting to mention that non-local integral operators appear as reduced
models also in the aforementioned techniques for numerical homogenization. R.
Maier conjectured the non-locality of effective operators based on the numerical
inversion of the solution operator associated with prototypical homogenization
problems. More general inverse multiscale problems have been discussed by L.
Borcea and Y. Yang. The latter talk was based on optimal transport to define
defect measures. Optimal transport was also the key ingredient in V. Ehrlacher’s
talk in the context of quantum chemistry.

Ultimately, the workshop has discussed crucial algorithmic challenges and fun-
damental mathematical problems at the intersection of the scientific fields of mul-
tiscale modeling and simulation, scientific computing, computational (geo-)physics
and material sciences and, in particular, numerical and mathematical analysis of
partial differential equations. New bridges between these research communities
have been identified that promise future progress on Computational Multiscale
Methods.

There were 53 participants from 10 countries, more specifically, 19 participants
from Germany, 14 from the United States, 4 from Sweden, 3 from Austria, China
and France, respectively, 2 from the Netherlands, Switzerland and the UK, re-
spectively, and one from Greece. Furthermore, there were 16 women among the
participants. On behalf of all participants, the organizers would like to thank the
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institute and in particular its staff for their great hospitality and support before
and during the workshop.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Susanne C. Brenner in the “Simons Visiting Professors”
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Abstracts

Multigrid methods and numerical homogenization

Harry Yserentant

(joint work with Ralf Kornhuber and Daniel Peterseim)

Numerical homogenization tries to approximate solutions of elliptic partial differ-
ential equations with strongly oscillating coefficients by the solution of localized
problems over small subregions. I discussed in this talk two classes of such methods
that can both be analyzed by means of the classical theory of iterative methods
developed in the early nineties of the last century. One is itself a rapidly conver-
gent iterative method and the other one is based on the construction of problem
adapted discrete solution spaces of comparatively small dimension.

References

[1] R. Kornhuber, H. Yserentant: Numerical homogenization of elliptic multiscale problems by
subspace decomposition, Multiscale Model. Simul. 14:1017–1036, 2016

[2] R. Kornhuber, D. Peterseim, H. Yserentant: An analysis of a class of variational multiscale
methods based on subspace decomposition, Math. Comp. 87:2765–2774, 2018

Multiscale methods for perturbed diffusion problems

Axel Målqvist

(joint work with Fredrik Hellman and Tim Keil)

Multiscale methods [5, 4, 6] have been successful in computing coarse-scale repre-
sentations of partial differential operators with rapidly varying diffusion. However,
when the heterogeneous diffusion is perturbed it is not obvious how multiscale
methods can be used in an efficient way. It is important to understand the effect
of perturbations since manufactured materials will not be perfect due to manufac-
turing tolerances and faults.

We study the Poisson equation on a polygonal/polyhedral domain Ω with a
diffusion coefficient A that is a perturbation of a reference diffusion Aref. On weak
form the perturbed problem reads: find u ∈ V := H1

0 (Ω) such that

a(u, v) :=

ˆ
Ω

A∇u · ∇v dx =

ˆ
Ω

fv dx := (f, v).

We assume the right hand side f ∈ L2(Ω) and that the diffusion coefficients
A,Aref ∈ L∞(Ω,Rd×d) are symmetric positive definite and rapidly varying.
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1. The Petrov-Galerkin LOD method

Let VH be a coarse and Vh a fine P1 finite element space fulfilling VH = span({λx})
⊂ Vh ⊂ V . We assume that the full space Vh resolves the variations in the diffusion
and that the coarse space VH is defined on a quasi uniform mesh TH . We also
define an interpolation operator IH : V → VH and use it to introduce the fine
scale space V f = {v ∈ Vh : IHv = 0}.

Given the fine scale space we can define a corresponding fine scale projection
QT v ∈ V f solving

a(QT v, w) =

ˆ
T

A∇v · ∇w dx, ∀v ∈ V f.

It has been proven that QTλx decays exponentially away from T , see [6]. Therefore
it can be approximated by solving on a truncated vertex patch Uk(T ) of k coarse
layers surrounding element T with homogeneous Dirichlet boundary conditions.
We define Qk,T : V → V f(Uk(T )) = {v ∈ V f : supp(v) ⊂ Uk(T )} as solutions to

a(Qk,T v, v
f) =

ˆ
T

A∇v · ∇vf,

for all vf ∈ V f(Uk(T )). We construct a localized multiscale space V ms
k using VH

and the local correctors

V ms
k := VH −QkVH := VH −

∑

T∈TH

Qk,TVH .

We define a Petrov-Galerkin multiscale method as follows, see also [1]: find
ums
k ∈ V ms

k such that for all v ∈ VH ,

a(ums
k , v) = (f, v).(1)

2. Error indicators and numerical method

The main idea of this work is to use the multiscale basis functions computed using
the reference coefficient Aref when possible and only recompute when necessary.
In order to decide where to recompute we introduce error indicators.

Definition 1 (Error indicators). For each T ∈ TH , we define

E2
QVH ,T := max

w|T , w∈VH

‖(A−Aref)A
−1/2(χT∇w −∇Qref

k,Tw)‖2L2(Uk(T ))

‖A1/2∇w‖2L2(T )

,(2)

where χT denotes the indicator function for an element T ∈ TH and Qref
k,T is defined

as Qk,T but with A replaced by Aref.

Using the error indicators we can present a method that decides where to use A
and when to use Aref in the computation of the corrected basis functions.

Definition 2 (PG-LOD with adaptively updated correctors). The proposed
method follows five steps:
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(1) Compute (for all T ∈ TH) reference correctors Qref
k,Tλx (for all basis func-

tions λx) based on the reference coefficient Aref.
(2) Compute (for all T ∈ TH) error indicators EQVH ,T and mark the elements

T for which the following inequality hold true, EQVH ,T ≤ TOL, Denote

the set of marked elements by T ref
H ⊂ TH .

(3) Compute (for all T ∈ TH \ T ref
H ) the mixed correctors Q̃k,Tλx, based on

the following definitions of the mixed right hand side and correctors:

Q̃k,T =

{
Qref

k,T ,

Qk,T .

Further let Q̃k =
∑

T∈TH
Q̃k,T .

(4) Assemble the adaptively updated LOD stiffness matrix

K̃xy = b̃(λy , λx),

using the mixed unsymmetric bilinear form b̃ defined in terms of a element-

wise reference brefT and a perturbed bT :

brefT (v, w) = (Aref(χT∇−∇Qref
k,T )v , ∇w)Uk(T ),

bT (v, w) = (A(χT∇−∇Qk,T )v , ∇w)Uk(T ),

b̃(v, w) =
∑

T∈T ref

H

brefT (v, w) +
∑

T∈TH\T ref

H

bT (v, w).

(5) Solve for ũHk ∈ VH in

b̃(ũHk , v) = (f, v)

for all v ∈ VH , and compute the solution as

ũms
k = ũHk − Q̃kũ

H
k .

3. Error bound and numerical example

Theorem 1 (Error bound for the PG-LOD with adaptively updated correctors,
see [2]). If maxT∈T ref

H

(EQVH ,T ) ≤ TOL there exist k0 > 0 and τ0 > 0 such that for

all k > k0 and τ < τ0, with TOL = τk−d/2, so that the error bound

|||u − ũk||| . (H + kd/2(θk + TOL))‖f‖L2(Ω)

is satisfied. Here 0 < θ < 1 is independent of H, k, τ and TOL.

It means that by guaranteeing that the error indicators are less then TOL we get
an approximate solution which is arbitrary close to the PG-LOD approximation.
If the perturbations are local in space it means that the reference coefficient can
be used in a large part of the computational domain.

We let H = 2−5, h = 2−8, k = 4 and consider perturbation of a periodic
diffusion coefficient, where the value is 1 in the dots and 0.01 in the background.
We compare the PG-LOD solution to the one with adaptively updated correctors
and increase the amount of updates. We see the perturbed diffusion to the left in
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Figure 1 and the error indicators to the right. With the number of updates we
observe rapid convergence of the error as seen in the figure. For further details of
our work, we refer to [2]
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Figure 1. Perturbed diffusion A, the error indicator EQVH ,T ·
‖f‖L2(Ω) and the relative error in energy norm ‖A1/2∇ · ‖L2(Ω).
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[5] T. Hughes, G. Feijóo, L. Mazzei, J. Quincy, The variational multiscale method–a paradigm
for computational mechanics. Computer Methods In Applied Mechanics And Engineering.
166, 3–24 (1998)
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Quantitative inverse scattering using reduced order modelling

Liliana Borcea

(joint work with Alexander Mamonov, Vladimir Druskin, Mikhail Zaslavsky,
Jörn Zimmerling)

Consider the hyperbolic equation

(1)
(
∂2t + LqL

T
q )u

(s)(t,x) = 0, t > 0, x ∈ Ω

for the wave field u(s) in the domain Ω, due to a source excitation modeled by the
initial conditions

(2) u(s)(0,x) = b(s)(x), ∂tu
(s)(0,x) = 0.
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Here Lq is a first order partial differential operator with respect to the space
variable x and LT

q denotes its adjoint. Motivated by applications in underwater
acoustics, we consider the wave in the half space, but since this wave is observed
over a finite time duration, and since the wave propagates at finite speed, we
can replace the half space by a large enough cube Ω, with ”accessible boundary”
∂Ωac that is a subset of the boundary of the half space. We model the accessible
boundary using a homogeneous Neumann condition and the remaining boundary
∂Ω \ ∂Ωac, which does not affect the wave during the finite duration of the obser-
vation, with a homogeneous Dirichlet condition. Other boundary conditions can
be used as well.

We study the following inverse scattering problem: Determine the medium in Ω,
modeled by the unknown coefficient q in (1), using data gathered by a collection of
sensors located near ∂Ωac. These sensors are indexed by s = 1, . . . ,m in equations
(1–2). Each sensor is point like, and emits an initial wave modeled by b(s)(x)
in (2), which is supported at the sensor. The wave propagates in the unknown
medium and is recorded by all the sensors at the discrete time instants tj = jτ ,
for j = 0, . . . , 2n − 1, separated by the interval τ chosen small enough to sample
well the wave. The data are the 2n matrices

(3) D(r,s)
j

=
〈
b(r), u(s)(jτ, ·)

〉
=
〈
b(r), cos

(
jτ
√
LqLT

q

)
b(s)
〉
, r, s = 1, . . . ,m,

for j = 0, . . . , 2n− 1.
In [2] we show how the linear equation for sound waves, as well as Maxwell’s

equations and the equations of linear elastic waves can be put in the form (1-2).
For example, in the case of sound waves, the linear operator Lq and its adjoint are

(4) Lq =
√
c(x)

(
−∇· +1

2
∇q(x)·

)√
c(x) and LT

q =
√
c(x)

(
∇+

1

2
∇q(x)

)√
c(x),

where the non-reflective (smooth) wave speed c(x) is assumed known, and our
objective is to image the acoustic impedance σ(x) = eq(x). We call q the reflectivity
function and note that Lq is affine in q. This is important in our construction.

Let henceforth B(x) =
(
b(1)(x), . . . , b(m)(x)

)
, called the source-receiver func-

tion, and use the linear algebra notation

(BTv)s,r =
〈
b(s), vr

〉
, s, r = 1, . . . ,m,

for a vector valued function v in the appropriate space, with components vs(x),
for s = 1, . . . ,m. Then, we can write the m×m data matrices (3) as

(5) Dj = BT cos
(
jτ
√
LqLT

q

)
B = BTTj(P)B,

for j = 1, . . . ,m, where

(6) P = cos
(
τ
√

LqLT
q

)

is called the wave propagator operator and Tj denote the Chebyshev polynomials
of the first kind.
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From the data (5), and without any knowledge of q, we construct in [1, 2] a
reduced order model (ROM) for the propagator and the source-receiver matrix B.

The ROM is given by a pair of matrices P̃ ∈ Rmn×mn, B̃ ∈ Rmn×m that satisfy
the data interpolation conditions

(7) Dj = B̃TTj
(
P̃
)
B̃, j = 0, 1, . . . , 2n− 1.

Note from (5) that although Lq is affine in the unknown reflectivity q, the
data depend nonlinearly on it. Nevertheless, most of the imaging as is practiced
in applications, assumes that the mapping q 7→ {Dj}0≤j≤2n−1 is linear. This
assumption is known as the single scattering or the Born approximation. We
show that it is possible to use the ROM to transform the data (5) to its single-
scattering (Born) approximation, defined by the Fréchet derivative of the map
q 7→ {Dj}0≤j≤2n−1 at q = 0. Such a transformation can be used as a data pre-
processing step for any linear inversion algorithm.

We now summarize briefly how such a transformation can be achieved. Con-
sider the snapshots of the wave field, which are unknown in the inverse scattering
problem,

(8) uj(x) = u(jτ,x) = Tj
(
P̃
)
B̃(x).

These satisfy exactly a second-order time stepping scheme

(9)
1

τ2

[
uj+1 − 2uj + uj−1

]
= −ξ(P)uj ,

with the positive definite

(10) ξ(P) =
2

τ2
(
I− P

)
= LqLT

q .

Note formally, using Taylor series expansion, that Lq = Lq + O(τ2), i.e. they are

approximately affine with respect to q. But the ROM P̃, which is constructed from
(5) without knowing q or the snapshots, is an approximation of the propagator
P, so the block Cholesky factors of

(11) ξ(P̃) =
2

τ2
(
I− P̃

)
= L̃qL̃

T
q ∈ R

mn×mn,

are also approximately linear in q [1, 2].

Once we obtain the ROM P̃ from the data (5) and thus the block Cholesky

factor L̃q of (11), we can perform the same computation for the reference, non-

reflective medium with q ≡ 0, to obtain L̃0 from the sampled reference data
{D0

j}0≤j ln 2n−1. To compute the Born approximation around the reference impe-
dance we compute the perturbation

(12) L̃ε = L̃0 + ε
(
L̃q − L̃0

)
,

and the correspondingly perturbed propagator ROM

(13) P̃
ε = I− τ2

2
L̃εL̃εT .
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Then the transformed single scattering data Fj is given by

(14) Fj = D0
j + B̃T

[
d

dε
Tj

(
P̃

ε
)∣∣∣∣

ε=0

]
B̃, j = 0, . . . , 2n− 1,

where the derivative can be computed using the three-term recurrence for Cheby-
shev polynomials. We refer to (14) as the Data-to-Born (DtB) transform. This
highly nonlinear procedure transforms the multiple scattering sampled data (5)
to its single scattering approximation Fj . This can then be used to estimate the
unknown reflectivity.
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Multiscale Method, Optimal Transport and Inverse Problems

Yunan Yang

(joint work with Björn Engquist)

At the heart of seismic exploration is the estimation of essential geophysical prop-
erties including wave velocity. The development of man-made seismic sources and
advanced recording devices now facilitates measurements of entire wavefields in
time and space rather than using merely the travel time to estimate the subsur-
face properties. The full-wavefield setup is a more controlled setting and provides a
large amount of data, which is needed for an accurate inverse process of estimating
geophysical properties. The computational technique referred to as full-waveform
inversion (FWI) [5, 13] utilizes information of the entire wavefield and follows
the standard strategy of a partial differential equation (PDE) constrained opti-
mization. Even three-dimensional inversion of subsurface elastic parameters using
FWI is now possible and has become increasingly popular in exploration applica-
tions [15]. Currently, FWI can reconstruct sub-surface parameters with stunning
detail and resolution [14]. Research on FWI in both academia and industry has
been very active over the past decade resulting in many new and innovative algo-
rithms and software implementations.

Phase-based inversion methods such as traveltime tomography [6] estimate the
background velocity, while linear inversion techniques fix the background veloc-
ity model, and update the reflectivity distribution. Unlike these two classes of
methods, FWI aims to recover both the low- and high-wavenumber components
of the model by considering the full wavefield information. In both time [13] and
frequency [9] domains, the least-squares norm (L2) has been the most widely used
misfit function. It is, however now well known that inversion techniques based on
L2 face three critical obstacles.
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First, the accuracy of L2-based FWI is severely hampered by the lack of low-
frequency data and a poor starting model. These limitations are mainly due
to the ill-posedness of the inverse problem. The PDE-constrained optimization
in FWI is typically solved by local optimization methods in which the subsurface
model is described by using a large number of unknowns, and the number of model
parameters is determined a priori [12]. As the name suggests, local methods only
use the local gradient of the L2 objective function, which is usually nonconvex
with respect to the model parameters. As a result, the inversion process is easily
trapped in local minima. Recent developments focus on this multiparameter and
multi-mode modeling, but there is a dilemma. The more realistic the model is,
the more parameters it has, resulting in even worse ill-posedness and even non-
uniqueness.

Second, in addition to the difficulties with local minima, an additional problem
of the L2 norm is exacerbated by the fact that observed signals usually suffer from
noise in the measurements. All seismic data contains either natural or experimental
equipment noise. For example, the ocean waves lead to extremely low-frequency
noise in the marine acquisition. Wind and cable motions also generate random
noise. As a result of the overfitting issue, high-frequency noise in the reconstruction
is boosted during the iterative process. Stronger noise can even lead the inversion
to local minima. Therefore, in selecting a good objective function, its robustness
with respect to noise is essential.

Third, traditional FWI has difficulty in accurately updating deeper features
with reflection-dominated data. Diving waves are wavefronts continuously re-
fracted upwards through the earth due to the presence of a vertical velocity gra-
dient. Due to limitations of the source-receiver distribution, there might be no
diving waves traveling through the depth of interests or being recorded by the re-
ceivers, and reflections are usually the only available information representing the
subsurface models. Conventional FWI using reflection data has been problematic
in the absence of a really good initial model. Conventional L2-based FWI only re-
covers a migration-type structure with severe overshooting. The high-wavenumber
features updated by reflections often slow down the recovery of the missing low-
wavenumber components. Often, the entire optimization scheme stalls.

The current challenges of L2 norm-based FWI motivate us to replace the tradi-
tional L2 norm with a new metric with better convexity and stability for seismic
inverse problems. Engquist and Froese [1] first proposed to use the Wasserstein
distance as an alternative objective function measuring the difference between
synthetic data f and observed data g. In our previous studies of the quadratic
Wasserstein metric (W2) [18, 17, 2, 3, 4], we have addressed the first two chal-
lenges, the nonconvexity of the traditional L2 norm, and its sensitivity to noise.
We mainly focused on FWI that primarily uses diving waves or data from shallow
reflectors to refine the velocity models. Soon after [1], there have been fruitful
activities in the past four years in developing the idea of using optimal trans-
port based objective functions for FWI from both academia [2, 7, 8, 16, 18] and
industry [10, 11] with several field data applications.
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In this talk, we will present results that demonstrate yet another advantage ofW2.
Precisely we will show that W2 is also able to mitigate the third drawback of the
traditional L2 method. The new material is related to the third challenge of the L2

norm-based FWI and is beyond the well-known local minima or, so-called, cycle
skipping issues. We will investigate properties of optimal transport for challenging
inversion tests with reflection-dominated data and demonstrate that partial in-
version for velocity below the deepest reflecting interface is still possible by using
the quadratic Wasserstein distance from optimal transport theory. The observed
multiscale property motivated us to first fully understand and then further de-
velop the potential of Optimal Transport in various applications concerning error
reduction.
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A stable parareal-like algorithm for the second order wave equation

Richard Tsai

(joint work with Hieu Nguyen, Louis Ly)

1. Introduction

The main objective pertinent to this workshop is to enable massive paralleliza-
tion to speed up the simulation wall-clock time for time dependent multiscale
problems, particularly those in which macroscopic models may be non-trivial to
compute or non-existent. Despite rapid advance in parallel computer architecture,
parallelizing the time evolution of the second order wave equation efficiently is still
a challenging problem. The parareal method [5] achieves time parallelization via
introducing additional iterations that couples solutions computed by two different
propagators across sub-time intervals. A computationally cheaper ”coarse” prop-
agator is computed serially to provide initial conditions for the more expensive
”fine” propagators that are computed in parallel. In each iteration, the differ-
ences between the coarse and fine computations are added back to correct the
solution, and propagated further in time by the coarse propagator. However the
parareal method typically suffers slow convergence or instability when applied to
hyperbolic problems. Using an oscillatory dynamical system as an example, it is
pointed out in [1, 2, 4] that certain notions of phase errors between the coarse and
fine propagators is the reason for the slow convergence.

In [2], we derived a convergence theory for the modified parareal schemes ap-
plying to linear systems of ordinary differential equations (ODEs). The theory
resembles the classical linear stability theory for numerical schemes for ODEs,
and can be used in a similar fashion to stabilize the parareal iterations. Addition-
ally, we investigated a few simple phase correction strategies systematically, and
showed that appropriate phase correction can enable the resulting scheme to have
superior performance.

We consider a scheme that takes a general form:

(1) uk+1
n+1 = θkn+1[Cuk+1

n ] + Fukn − θkn+1[Cukn].
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The error convergence ekn = ukn − u(tn) is then

(2) ek+1
n ≤ ‖F − θknC‖∞

∑n−k−1

i=1
‖θknC‖i∞ekn.

where ‖Ak
n‖∞ = supj≤k supi≤n sup‖v‖=1 ‖Aj

kv‖∞.

To reduce the phase error, based on the idea of the θ-parareal method [2], we
propose a new method that uses computed data to enhance the coarse propagator
[6]. In this report, θ is an operator (linear or one parametrized by a neural network)
constructed by minimizing the residual between the fine and coarse solutions in a
discrete semi-norm related to the wave energy. We use the computed data to build
a phase correction operator, formally denoted as θ, that post-processes the coarse
solutions, Cu, while preserving a notion of wave energy for the discretized system,
such that it is closer to the fine solutions, Fu.

2. The Procrustean approach

The construction of suitable θ operators has two main steps: data preparation
and solving the Procrustes problem. We implement both the coarse and the fine
propagators by the standard second order central difference scheme for the spatial
derivatives and velocity Verlet for time marching.

Let un ∈ RNδx denote the solutions on the fine grid at timeslice tn = n∆tcom.
At these timeslices, the fine and coarse propagators are coupled using (1). The
fine propagator will directly operate on the fine grid: δx ·Zd × δt ·Z+, for d = 1 or
2. The coarse propagator will operate on the coarse grid: ∆x · Zd ×∆t · Z+. The
two grids communicate via interpolation I : U 7→ u and restriction R : u 7→ U .

For k-th iterate [ukn−1; u̇
k
n−1] at timeslice tn−1, the fine and coarse propagators

are applied to obtain the solutions

[un, u̇n] := F [ukn−1, u̇
k
n−1], and [Un, U̇n] := C[Rukn−1,Ru̇kn−1].

We form data matrices with vectorized gradients ∇hUn followed by a block of
momentum U̇n of coarse grid solution

(3) F =

[
∇hRu1 ∇hRu2 · · · ∇hRuN
c−1Ru̇1 c−1Ru̇2 · · · c−1Ru̇N

]
,

(4) G =

[ ∇hU1 ∇hU2 · · · ∇hUN

c−1U̇1 c−1U̇2 · · · c−1U̇N

]
.

The θ operator is defined by the solution to the minimization problem known as
Procrustes Problem [3]:

(5) min
Ω∈R(d+1)N∆x×(d+1)N∆x

‖F− ΩG‖2F , s.t. ΩΩ
T = I = Ω

T
Ω,

where || · ||F denotes the Frobenius norm of a matrix. This problem can be solved
efficiently by various standard algorithms. The resulting solution is the phase
corrector, which enhances coarse propagator in energy components

(6) θk[v, v̇] = IΛ†
ΩΛ[v, v̇].
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Figure 1. Left: The wave speed. Right: Comparison of energy
errors in the parareal iterations computed by the neural network
model (denoted NN) and by the Procrustes model (Proc).

Here we denote the mappings between the wave field [v, v̇] and its energy compo-
nents [∇v, c−1v̇] by Λ : [v, v̇] 7→ [∇v, c−1v̇] and Λ† : [∇v, c−1v̇] 7→ [v, v̇].

Finally, our new algorithm can be written compactly in the θ-parareal form

[
uk+1
n+1

u̇k+1
n+1

]
= θkC

[
Ruk+1

n

Ru̇k+1
n

]
+ F

[
ukn
u̇kn

]
− θkC

[
Rukn
Ru̇kn

]
.(7)

One can show that under suitable conditions, the errors computed by the pro-
posed algorithm decreases

(8) max
j≤N

‖Λ
[
ukj − u(tj)
u̇kj − u̇(tj)

]
‖2 ≤ κ

(1 + ǫθ)
N − 1

ǫθ
max
j≤N

‖Λ
[
uk−1
j − u(tj)

u̇k−1
j − u̇(tj)

]
‖2.

Here, the constant ǫθ corresponds to the Lipschitz constant of the mapping ΛθCR,
and κ corresponds to the Lipschitz constant of mapping defined by F − θCR.

3. Enhancement of coarse propagator by deep learning

Finally, we report an experiment that uses a UNet neural network [7] to param-
etrize the phase corrector for a fixed medium with non-constant wave speed con-
taining a ”defect” at (0, 5,−0.5); see Figure 1. The input of the network comprises
of the energy components of an initial wave field, the corresponding coarse solution
after ∆tcom time increment, and the output is energy components of the approxi-
mated fine solution at the same time increment, starting from the same initial wave
field. The training data consist of initial conditions defined by random Gaussian
pulses and the resulting wave fields computed respective by the coarse and the fine
propagators for different number of time steps. Once trained, the neural network
model acts as a θ operator in (1). In Figure 1, we observe experimentally that
such model performs better than the Procrustes model.
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Numerical solution of nonlinear Schrödinger equations with highly
variable potentials

Patrick Henning

(joint work with Robert Altmann, Daniel Peterseim, Johan Wärneg̊ard)

Nonlinear Schrödinger equations can be used to model the formation and the dy-
namics of superfluids. Formation processes are often written as energy minimiza-
tion problems (or equivalent nonlinear eigenvalue problems). In nondimensional
form the problem reads: find u ∈ H1

0 (D) such that

u = arg min
v∈H1

0 (D)´
D

|v|2=1

E(v), with energy E(v) :=

ˆ
D

|∇v|2 + V |v|2 + κ

2
|v|4.(1)

Here, D ⊂ Rd is the spatial domain, u is the (stable and stationary) ground state
of the superfluid, |u|2 is the density, V ∈ L∞(D) is a nonnegative and real-valued
external trapping potential and κ ≥ 0 is a repulsion parameter that accounts for
particle-interactions. The normalization constraint

´
D |u|2 = 1 should be seen as

a constraint for the number of particles constituting to the superfluid.
Popular algorithms for solving problem (1) include Self Consistent Field Iter-

ation (SCF, cf. [5, 8]), discrete normalized gradient flows (DNGF, cf. [3, 4]) or
projected Sobolev gradient flows (cf. [6, 7]). On order to ensure global convergence
to the unique positive ground state u of the energy minimization problem (1), we
propose in [10] a damped nonlinear power method. The method is derived from a
gradient flow z(t) on the constraint manifold (i.e. M = {v ∈ H1

0 (D)|
´
D
|v|2 = 1}).

The gradient flow is given by

z′(t) = −z(t) + γz(t)L−1
z(t)z(t), where γz :=

(z, z)L2(D)

(L−1
z z, z)L2(D)

> 0,(2)
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and where L−1
z is the inverse of the elliptic operator that arises from a linearization

of the Fréchet derivative E′, i.e. for z ∈ H1
0 (D) the image wz := L−1

z z ∈ H1
0 (D) is

given as the solution to the elliptic problemˆ
D

∇wz · ∇v + V wzv + κ|z|2wzv =

ˆ
D

zv for all v ∈ H1
0 (D).

Using a forward Euler discretization of (2), we end up with the following iteration
scheme (damped inverse power method):

ẑn+1 = (1 − τn)z
n + τnγznL−1

zn zn and zn+1 =
ẑn+1

‖ẑn+1‖L2(Ω)
.(3)

Here we can interpret 0 < τn < 2 as a damping parameter that ensures global
convergence by selecting it such that E(zn+1) becomes as small as possible. Fur-
thermore, it was proved in [10] that for all sufficiently small τn and for any starting
value z0 ∈ H1

0 (D) with z0 ≥ 0 and
´
D |z0|2 = 1, the iterations converge strongly in

H1(D) to the unique positive ground state u > 0 given by (1). This very general
result allows the guaranteed approximation of ground states in rapidly varying
potentials. As a numerical example, we consider the energy

E(v) =

ˆ
D

1

2
|∇v|2 +

ˆ
D

V |v|2 + 5

2

ˆ
D

|v|4,

for D = [−6, 6]2 and V is an oscillatory random potential given as in Figure 1. In

Figure 1. Random checkerboard potential on D = [−6, 6]2.

this case, we expect that the ground state is exponentially localized and consists
only of a few peaks. This can be confirmed numerically, where the corresponding
results are depicted in Figure 2. The initial value z0 is a Thomas-Fermi approx-
imation of the ground state. We observe a quick convergence of the iterations
and we can clearly verify the exponentially localized ground state in the random
potential (see z52 in Figure 2 for a picture of the converged state). This phenome-
non is called Anderson localization and can be explained with the fast exponential
decay of the Green’s function associated with the operator L−1

z (for sufficiently
strong potentials V and moderate values of κ) together with gaps in the lower
part of the spectrum of Lz (due to the randomness of V ). A rigorous proof of
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n = 0, E(z0) = 93.3968; n = 1, E(z1) = 14.1766; n = 2, E(z2) = 10.2141

n = 3, E(z3) = 9.85284; n = 4, E(z4) = 9.76128; n = 52, E(z52) = 9.68446

Figure 2. Various iterations computed with the damped power
method given by (3). Upper row: starting value z0, iterations z1

and z2. Lower row: iterations z3, z4 and final iteration z52.

Anderson localization for random checkerboard potentials and κ = 0 was recently
given in [1]. In [2] this fast decay was exploited numerically to construct localized
approximations of such ground states.

To study the dynamics of superfluids, one can solve a time-dependent non-
linear Schrödinger equation with a ground state as initial value. In [11] it was
numerically demonstrated that a numerical conservation of mass and energy is of
great importance when solving the time-dependent problem in complex settings.
A discretization that has both properties is a particular Crank-Nicolson Galerkin
method considered in [9, 12]. Furthermore, in [9] it was proven that the method
converges under low (but physically realistic) regularity assumptions to an exact
solution of the nonlinear Schrödinger equation. In low regularity regimes, a cou-
pling condition between the spatial mesh size and the time step size might be
required. The coupling condition is harmless for the case of oscillatory potentials
V , as it only imposes that the mesh size should be fine enough (e.g. resolving the
oscillations) compared to the time step size (which can be typically chosen coarse).
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Computational multiscale method for nonlinear monotone elliptic
equations

Barbara Verfürth

Many applications such as geophysical flow problems require the combination of
nonlinear material models (resulting in nonlinear PDEs) and multiscale coeffi-
cients. In this contribution, we discuss how to generate a problem-adapted basis
in a linearized and localized fashion, so that the combination of nonlinearities and
multiscale features are successfully tackled in a generalized (Petrov-Galerkin) finite
element method. The presented material is based on the detailed manuscript [3].
As a prototypical model problem we consider the following nonlinear monotone
elliptic equation. Find u ∈ H1

0 (Ω) such that

(1) B(u; v) := (A(x,∇u),∇v) = (f, v) for all v ∈ H1
0 (Ω),

where Ω is a bounded Lipschitz domain, f ∈ L2(Ω) and A satisfies the following
assumptions:

• A(·, ξ) ∈ L∞(Ω;Rd) for all ξ ∈ Rd and A(x, ·) ∈ C1(Rd;Rd) for almost
every x ∈ Ω;

• there is Λ > 0 such that |A(x, ξ1)−A(x, ξ2)| ≤ Λ|ξ1 − ξ2| for almost every
x ∈ Ω and all ξ1, ξ2 ∈ Rd;

• there is λ > 0 such that
(
A(x, ξ1) − A(x, ξ2)

)
· (ξ1 − ξ2) ≥ λ|ξ1 − ξ2|2 for

almost every x ∈ Ω and all ξ1, ξ2 ∈ Rd;
• A(x, 0) = 0 for almost every x ∈ Ω.

The assumptions on A imply that there exists a unique solution to (1). We im-
plicitly assume that A posesses some spatial multiscale features (rapid oscillations
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or even discontinuities) so that a standard finite element discretization requires a
prohibitively fine mesh.

1. Localized and linearized generation of a multiscale basis

We cover Ω with a regular mesh TH consisting of simplices with (maximal) mesh
size H , which is rather coarse. In particular, TH does not resolve the possible
heterogeneities of A. The mesh is assumed to be shape regular in the sense that
the aspect ratio of the elements of TH is bounded uniformly from below. We
discretize the space H1

0 (Ω) with the lowest order Lagrange elements over TH ,
and denote this space by VH . Let IH : H1

0 (Ω) → VH denote a bounded local
linear projection operator, i.e., IH ◦ IH = IH , with the following stability and
approximation properties for all v ∈ H1

0 (Ω)

|IHv|1,T . |v|1,N(T ), ‖v − IHv‖0,T . H |v|1,N(T ),

where the constants are independent of H and N(T ) := {K ∈ TH : K ∩ T 6= ∅}
denotes the neighborhood of an element T . Denote W := ker IH . We define the
linear correction operator Q : VH → W via

(2) A(vH −QvH , w) = 0 for all w ∈ W,

where the bilinear form A is defined as

A(v, ψ) := (A(x)∇v,∇ψ), with A := DξA(·, 0) ∈ L∞(Ω;Rd×d).

Due to the assumptions on A, A is uniformly elliptic and bounded and hence, there
exists a unique solution to (2). Moreover, we can localize these corrector problems
in the well-known way for the linear case, see, e.g., [2]. To this end, we define the
m-layer patches inductively via Nm+1(T ) = N(Nm(T )) with N0(T ) := T . We then
define the truncated correction operator Qm : VH → W as Qm =

∑
T∈TH

QT,m,

where for any vH ∈ VH the truncated element corrector QT,mvH ∈ W (Nm(T )) :=
{w ∈ W : w = 0 in Ω \Nm(T )} solves

(3) ANm(T )(QT,mvH , w) = AT (vH , w) for all w ∈ W (Nm(T )).

Here, AD denotes the restriction of the bilinear form A to the subdomain D ⊂
Ω. With the localized correction operator Qm, we set up the multiscale space
VH,m := (id−Qm)VH . Finally, we introduce the Petrov-Galerkin method to seek
uPG
H,m ∈ VH such that

(4) B(uPG
H,m; vH,m) = (f, vH,m) for all vH,m ∈ VH,m.

The linear correction operator allows to pre-compute a basis for VH,m (where only
the solution of local finescale problems is required), so that only the rather low-
dimensional nonlinear problem (4) has to be solved.
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2. Error analysis and numerical experiment

It is a priori not clear whether a solution to (4) exists. In [1], an abstract theory
concerning Petrov-Galerkin methods for nonlinear problems is presented. The
transfer of this theory to the present setting is considered in [3]. For simplicity,
we assume here that (4) is well-posed.

Theorem 2.1 (see [3]). Let u be the solution to (1) and uPG
H,m the solution to the

well-posed discrete problem (4). Then it holds that

‖u− u
PG
H,m‖L2 . ‖u− IHu‖L2 + (‖A−DξA(x,∇u)‖L∞ + β

m) inf
vH∈VH

‖∇(u− vH)‖L2

+ ‖R(u, uPG
H,m)‖H−1

with 0 < β < 1 and

〈R(u, v), ψ〉 :=
ˆ
Ω

ˆ 1

0

(
DξA(x,∇u+τ∇(v−u))−DξA(x,∇u)

)
∇(v−u)·∇ψ dτ dx.

This theorem implies that, up to linearization errors, the error of the Petrov-
Galerkin method is dominated by the L2-best approximation error in VH if we
choose the so called oversampling parameter as m ≈ | logH |.

10 -1

H

10 -1

10 0

Figure 1. Spatial multiscale coefficient (left) and relative L2 er-
rors for the Petrov-Galerkin multiscale method (right).

To illustrate this, we consider the following numerical example on Ω = [0, 1]2: We
choose

A(x, ξ) = c(x)

(
ξ1 +

1
3 ξ

3
1

ξ2 +
1
3 ξ

3
2

)

with the spatial multiscale coefficient c depicted in Figure 1 (left) and the piece-
wise constant right-hand side f with value 0.1 for x2 ≤ 0.1 and 1 everywhere else.
Since c exhibits a high contrast channel, we cannot expect a high regularity of the
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exact solution. We compute a reference solution uh on a mesh with h = 2−8. The
relative errors

‖uh − uPG
H,m‖L2

‖uh‖L2

are depicted in Figure 1 (right) for a series of (coarse) meshes H = 2−2, . . . , 2−6

and oversampling parameters m = 1, 2, 3. One clearly observes that the errors
closely follow the L2-best approximation error (at least for m = 2, 3) as predicted
by Theorem 2.1. Moreover, the multiscale method outperforms a standard finite
element discretization on the coarse meshes.
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Peridynamics: a multiscale mono-model for mechanics

Max Gunzburger

To be practical, any model must be valid, i.e., provide a faithful description of
what is being modeled, and tractable, i.e., useful information can be extracted at
a manageable cost. Then, a multiscale model is one that is valid and tractable
over a wide range of scales, Common approaches towards developing a multiscale
model couple two or more well-known models, e.g., molecular dynamics and classi-
cal elasticity, each of which is useful at a different scale, thus creating a multiscale
multi-model or composite model. Alternatively, one can look for a single model
that remains valid and tractable over a wide range of scales, thus acting as a
nultiscale mono-model. In the setting of solid mechanics, peridynamics is one
such model. Peridynamics is a nonlocal continuum model that allows for interac-
tions between a point and other points separated from it by a nonzero distance,
in contrast with PDE models for which interactions occur only in infinitesimal
neighborhoods surrounding the point. If the extent of interactions are limited to
be no greater than a finite distance, then a length scale is introduced into the
models that renders them as being multiscale mono-models, bu which we mean
that depending on the size of the viewing window used relative to the extend of
nonlocal interactions, a single model can display very different behaviors. Peridy-
namics does not involve spatial derivatives and allows for discontinuous solutions
which make them well suited for simulations of fracture and other settings. We
discuss and illustrate these features of peridynamics.
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Astonishing wave phenomena in periodic media

Ben Schweizer

(joint work with Agnes Lamacz)

We present three astonishing wave phenomena that occur in the setting of periodic
homogenization. All three examples are related to the wave equation

∂2t u(x, t) = ∇ · (a(x)∇u(x, t))

and its time-harmonic counterpart for u(x, t) = u(x)e−iωt,

−∇ · (a(x)∇u(x, t)) = ω2u(x, t) .

Our interest is in highly periodic coefficients; in two examples, the coefficient
a = a(x) is periodic with period ε in every direction.

We present:

• Wave dispersion in periodic media
• Effective mass models in acoustic systems with small resonators
• Negative refraction at interfaces of photonic crystals and the Helmholtz
equation in unbounded wave-guides

All examples show an interesting behavior because of the presence of a third scale.
The equations involve the scale of order O(1) (size of the domain, order of ω, or
the order of initial data), the scale of order O(ε) (the periodic microstructure),
and a third scale: a time scale of order O(ε−2) in one example, an O(ε2) or O(ε3)
substructure in another.

1. Wave dispersion in periodic media

We study waves of wave lengthO(1) in a medium of periodicity ε and their behavior
at large times O(ε−2). The waves exhibit the phenomenon of dispersion. The
effect can be quantified with a weakly dispersive wave equation. This was first
done formally in [9], later rigorously in [2] and [4]. The case of stochastic media
was treated in [1].

In [11], the effect was also quantified for lattices. In this context, we study a
periodic lattice with periodicity ε > 0, the dimension is d ≥ 1, the lattice points
are γ ∈ εZd. The displacement at time t ∈ [0,∞) is uε(γ, t) and decribed by the
wave equation

∂2t u
ε(γ, t) =

1

ε2

∑

j∈Zd

aju
ε(γ + εj, t)

for certain coefficients aj . A classical result is that uε ≈ u for t ∈ [0, T ], where u
solves the homogenized equation

∂2t u(x, t) = AD2u(x, t) .
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On large time intervals t ∈ [0, T/ε2], one has to use instead the weakly dispersive
wave equation

∂2tw
ε = AD2wε + ε2ED2∂2tw

ε − ε2FD4wε

with appropriate x-independent coefficient tensors A, E, and F .

2. Effective mass models in acoustic systems with small resonators

We study the Helmholtz equation

−∆uε = ω2uε

in a domain Ωε that is constructed as follows: In a bounded Lipschitz domain
Ω ⊂ Rn, a compactly contained Lipschitz subdomain D ⊂ Ω is given. The domain
D contains O(ε−n) small resonators of size ε, each one as indicated in Figure 1
with a resonator volume and a thin connection between inner and outer part.

x

x

Ω

Σε

D

2

1

Y
Q
Y

Σ
ε

Y

ε

RY

YK

Figure 1. Microscopic geometry

Our result in [7] is the derivation of an effective equation. We show that uε ⇀ v
in Ω \D where v solves the effective Helmholtz equation

−∇ · (A∗∇v) = ω2Λ(ω) v in Ω .

Here, the coefficient A∗ is the usual effective permeability matrix in the domain
D, A∗(x) = 1 for x ∈ Ω \ D. The interesting term is a frequency dependent
“artificial mass” coefficient: In D, the coefficient on the right hand side is Λ(ω) =

Q− A
L

(
ω2 − A

LV

)−1
with some volume factor Q > 0. This indicates resonances for

ω2 ≈ A
LV . For frequencies near this geometric number (A stands for the rescaled

neck opening area, L for the rescaled length of the neck, and V for the rescaled
volume of the single inclusion), large and small, negative and positive values of
Λ(ω) can be observed. In particular, the effective medium in D is sound absorbing
for certain frequencies.
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3. The Helmholtz equation in unbounded wave-guides

We are interested in solutions u = u(x) to the Helmholtz equation with coefficient
a and fixed frequency ω. The underlying domain is unbounded such that radiation
conditions must be imposed in the “open ends” of the domain. In the right half
of the domain, we assume that a = a(x) is a periodic function. In the left half of
the domain, we assume a ≡ 1 (or that a is another periodic function), compare
Figure 2.

Figure 2. Transmission into a wave guide

A weak uniqueness result for this problem has been obtained in [8]; the uniqueness
regards the outgoing waves at infinity and their characterization in terms of Bloch
measures. The ideas of [8] have been exploited in [3] to construct a numerical
scheme on a truncated domain.

Existence and uniqueness in the case of periodic a (in the entire domain) was
obtained in [5], for the half-space problem these results were obtained in [6]. While
both papers use analytic families of operators to obtain the results, an existence
result based on energy methods has been derived recently in [10].
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Random fields: How does regularity influence the resulting structures?

Annika Lang

Models in natural science, engineering, and finance include more and more random
components. One way to describe oscillations and fluctuations is in terms of Hölder
regularity. A well studied stochastic process with known order of Hölder continuity
is the fractional Brownian motion. The Hurst parameter H describes the order of
Hölder continuity of sample paths or realizations of the process. We can see in
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Figure 1. Sample paths of a fractional Brownian motion with
different Hurst parameter H .

Figure 1 for a set of sample paths how the Hurst parameter ranging between 0.01
and 0.99 changes the typical behavior of samples on the time interval [0, 1].

There are different possibilities to show the sample regularity of stochastic pro-
cesses and random fields, how we call processes in higher dimensions in what
follows. One possibility is the Kolmogorov–Chentsov theorem, which translates
Hölder regularity properties in spaces of higher moments, i.e., in Lp(Ω) spaces,
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where (Ω,A, P ) denotes the probability space, to P -almost sure sample proper-
ties. As a reference for the theorem for random fields on domains of cone type and
manifolds, we refer the reader to [1]. On Riemannian manifolds, one can char-
acterize the conditions directly via the Riemannian metric instead of by charts,
see [6].

Since Gaussian fields are completely characterized by their mean and covari-
ance, it is possible to deduce the field properties from the covariance kernel. For
an example of isotropic Gaussian random fields on spheres in any dimension, the
reader is referred to [7], which can be generalized to compact two-point homoge-
neous spaces including projective spaces [2].

Besides the regularity, another area of interest for the workshop is the efficient
generation of samples of random fields that can be used for the generation of
scenarios in numerical computations. In what follows we will look at three specific
algorithms which are all based on some kind of harmonic analysis. There are other
possibilities to generate samples, where one should mention the approach with
stochastic partial differential equations which goes back to [10, 11] and became
popular in spatial statistics around half a century later by the publication of [8].

Let us first consider stationary Gaussian random fields ψ on cubes in Rd. Con-
sider a stationary covariance kernel C on Rd. Then it can be represented by the
Fourier transform of a positive symmetric function f . More specifically, C is a
function of the distance of two points x, y ∈ Rd given by

C(x− y) =

ˆ
Rd

exp(−2πip(x− y))f(p) dp

In this way the standard generation of a stationary Gaussian random field by
convolution of the square-root of the covariance kernel with a Gaussian white
noise η simplifies to the product of the white noise with f1/2 in the Fourier domain.
Written as a mathematical expression, the random field ψ is given by

ψ(x) =

ˆ
R2

C1/2(x− y)η(y) dy = F−1(f1/2 · F(η))(x)

and satisfies

E(ψ(x)ψ(y)) = C(x − y).

On cubes one therefore implements with fast Fourier transform

ψ̂(x) = FFT−1(f1/2(x) · FFT(η(x))),

where one has to take care of the correct generation of discrete white noise. The
generated samples have periodic boundary conditions and the correlation length is
an essential parameter for the accuracy of the covariance compared to the original
covariance on all of Rd. For more details, we refer the reader to [5, 4].
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Let us leave Euclidean space for now and continue with the sphere S
d. Any

centered isotropic Gaussian random field T has an eigenbasis expansion in L2(Sd)
often referred to as Karhunen–Loève expansion given by

T =

∞∑

ℓ=0

√
Aℓ

h(ℓ,d)∑

m=1

XℓmSℓm,

where (Aℓ, ℓ ∈ N0) are the eigenvalues of the covariance operator known as angular
power spectrum and (Xℓm, ℓ ∈ N0,m = 1, . . . , h(ℓ, d)) is a sequence of independent
standard normally distributed random variables. A natural approximation of T
is by truncation of the series expansion, i.e., one considers the truncated random
field

T κ :=

κ∑

ℓ=0

√
Aℓ

h(ℓ,d)∑

m=1

XℓmSℓm.

It is shown in [7] that

‖T − T κ‖Lp(Ω;L2(Sd)) ≤ Ĉp · κ−(α−2)/2

if the angular power spectrum decays as Aℓ ≤ C · ℓ−α. Furthermore, samples
satisfy asymptotically for all β < (α− 2)/2

‖T − T κ‖L2(Sd) ≤ κ−β, P -a.s.

A faster and more efficient generation for the specific case of S2 is presented in [3].
In this algorithm it is exploited that the Fourier transform in one of the two dimen-
sions of an isotropic Gaussian random field results in a sequence of independent
one-dimensional Gaussian random fields, which are no longer stationary but sat-
isfy a Markov property [9]. Therefore starting from the equator, one successively
builds up the field in rings to the poles conditioning on the previous ring and using
a fast Fourier transform. One should mention that the algorithm also allows for
the generation of all existing derivatives of the field in parallel.
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Randomized Multiscale Methods

Kathrin Smetana

(joint work with Andreas Buhr, Anthony T. Patera, Olivier Zahm)

Over the last decades (numerical) simulations based on partial differential equa-
tions (PDEs) have gained considerable importance in many applications. However,
the complexity of the considered applications often makes a straightforward ap-
plication of by now standard discretization schemes as the finite element (FE)
method prohibitive. Examples for the latter are tasks where multiple simulation
requests or a real-time simulation response are desired, problems that take place
at multiple scales, high-dimensional problems, or simulations on very large or
geometrically varying domains. Approaches developed to tackle these problems
comprise multiscale methods that pass (local) knowledge on the fine-scale behav-
ior of the solution of the PDE to the macro-scale solver, domain decomposition
methods, which decompose the computational domain in subdomains and perform
computations locally, or model order reduction techniques, in which the problem
is (approximately) solved in a carefully chosen subspace of the high-dimensional
FE space. Combinations of domain decomposition and multiscale methods with
model order reduction techniques are also named localized model order reduction
methods; for a review and references on the latter see [3]. However, especially for
real-world, large-scale applications the cost for constructing local reduced spaces
or the estimation of the approximation error can still be very high. We propose to
develop randomized methods for localized model order reduction and more gener-
ally for PDE-based numerical simulations to reduce the computational burden.

Randomized methods are a by now well-developed approach to speed up com-
putations in numerical linear algebra appearing in large-scale data analytics [7,
9, 5, 13]. They are used to approximate the range of a matrix (cf. [7, 9, 5]), to
create a so-called random sketch by randomly sampling elements or row/columns
of the matrix (cf. [7, 9, 5]), or speeding up the computation of the norm of vec-
tors (cf. [13, 10]). Two of the most important benefits of randomization are that
they can first result in faster algorithms, either in worst-case asymptotic theory
and/or numerical implementation, and that they allow very often for (novel) tight
error bounds [9]. Finally, algorithms in randomized linear algebra can often be
designed to exploit modern computational architectures better than classical nu-
merical methods [9].
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First, we suggest transferring methods developed for the approximation of the
range of a matrix to the task where we try to approximate the range of linear
operators present in PDE simulations and in particular in localized model order
reduction. Moreover, randomization the estimation of the norm of certain vectors
can be used to estimate the approximation error in certain norms or a quantity of
interest.

We exploit that in many localized model order reduction approaches like the
generalized finite element method, static condensation procedures and the mul-
tiscale finite element method local approximation spaces can be constructed by
approximating the range of a suitably defined transfer operator that acts on the
space of local solutions of the PDE. Optimal local approximation spaces in the
sense of Kolmogorov that yield in general an exponentially convergent approxima-
tion are given by the left singular vectors of this transfer operator [1, 11]. However,
the direct calculation of these singular vectors is computationally rather expensive.
We propose an adaptive randomized algorithm based on methods from random-
ized linear algebra [7], which constructs a local reduced space approximating the
range of the transfer operator and thus the optimal local approximation spaces
[2]. The number of local solutions of the PDE with random boundary conditions
required by the algorithm equals approximately the dimension of the desired lo-
cal reduced spaces and the algorithm thus realizes the construction of the local
approximation spaces at nearly optimal computational complexity. Starting from
results in randomized linear algebra [7] one can prove an a priori error bound
showing that the local spaces constructed by the randomized adaptive algorithm
result in an approximation that converges at a nearly optimal rate [2]. Finally,
the adaptive algorithm relies on a probabilistic a posteriori error estimator of the
approximation error in the operator norm, which is provably both efficient and
reliable with high probability.

Secondly, to estimate the approximation error of some reduced approximation
with respect to an underlying high fidelity approximation such as the Finite Ele-
ment approximation in the desired error measure, we consider a Gaussian random
vector whose covariance matrix is chosen depending on respective error measure,
e.g. user-defined norms or quantity of interest [12]. Summing the squares of
the inner products of K independent copies of that random vector with the ap-
proximation error yields an unbiased Monte Carlo estimator. Using concentration
inequalities, we control the effectivity of the resulting random error estimator with
high probability. This type of random subspace embedding is typically encoun-
tered in compressed sensing [6, 13]. The motivation for using these techniques is
to create a high-to-low dimensional map which, in high probability, nearly pre-
serves distances and is thus well-suited for norm estimation. By exploiting the
error-residual relationship we recognize that these inner products equal the inner
products of the residual and the dual solutions of K dual problems with random
right-hand sides. Approximating the dual problems yields an a posteriori error
estimator of low marginal computation cost. To construct the dual reduced space,
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we introduce a greedy algorithm driven by a scalar quantity of interest that as-
sesses how good the fast-to-evaluate a posteriori error estimator approximates the
original Monte Carlo estimator [12]. The presented error estimator is inspired by
[4, 8], where the solution of an adjoint problem with random conditions at the fi-
nal time is employed to estimate the approximation error for ordinary differential
equations.

The error estimator features several desirable properties. First, the estimator is
constant-free and does not require the estimation of stability constants. Moreover,
it is both reliable and efficient at given high probability and often has an effectivity
close to one. Secondly, the effectivity can be bounded from below and above at high
probability with constants selected by the user, balancing computational costs and
desired sharpness of the estimator. Moreover, the presented framework yields error
estimators with respect to user-defined norms, for instance the L2-norm or the H1-
norm; the approach also permits error estimation of linear quantities of interest.
Depending on the desired effectivity the computation of the error estimator is in
general only as costly as the computation of the reduced order approximation or
even less expensive, which makes our error estimator strategy attractive from a
computational viewpoint.

Finally, we extend this framework, discussing an error estimator that estimates
the error between the exact solution of the partial differential equation and the
reduced order approximation in certain error measures. To that end, we exploit
Johnson-Lindenstrauss type results in infinite dimensional Hilbert spaces. The
error estimator does not require to estimate any stability constants and the effec-
tivity is close to unity with prescribed lower and upper bounds at specified high
probability.
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Hybrid multiscale methods for complex polymeric fluids

Mária Lukáčová-Medviďová

We have presented our recent results on mathematical modelling and numerical
approximation of complex polymeric fluids. Firstly, we have reported on a new hy-
brid multiscale model based on the kinetic-macroscopic description. The polymer
molecules are suspended in an incompressible viscous Newtonian fluid confined
to a bounded domain in two or three space dimensions. On the kinetic level the
Fokker-Planck equations for time evolution of the probability density function is
used. On the macroscopic level the unsteady motion of the solvent is described
by the incompressible Navier-Stokes equations with the extra elastic stress tensor
appearing as a forcing term in the momentum equation. The elastic stress tensor
is defined by Kramer’s expression through the probability density function that
satisfies the corresponding Fokker-Planck equation. In this case a coefficient de-
pending on the average length of polymer molecules appears in the latter equation.
Following the recent work of Barret and Süli [1] we have proved in [4] the existence
of global in time weak solutions to the kinetic Peterlin model in two space dimen-
sions. Moreover, we have derived rigorously a macroscopic closure of the kinetic
model yielding to the Navier-Stokes-Peterlin model.

For numerical approximation we have proposed a new hybrid multiscale method
[5]. Our scheme combines the stabilized Lagrange-Galerkin method for the Navier-
Stokes equations with the Hermite spectral method together with a space splitting
approach. We proved that the scheme preserves the discrete mass. On the kinetic
level a challenge is to derive an efficient approximation for a high-dimensional
Fokker-Planck equation that arises in the dynamics of infinitely extensible polymer
molecules. This leads to a challenging problem of unbounded domain. Several
numerical experiments were presented to illustrate the performance of the schemes.

Secondly, we have developed a new reduced-order hybrid multiscale method in order
to simulate complex colloid-polymer mixtures. The method combines the contin-
uum and molecular descriptions [3]. We follow the framework of the heteroge-
neous multiscale method that makes use of the scale separation into macro- and
micro-levels, see E and Enquist [2]. On the macro-level, the governing equations
of the incompressible flow are the continuity and momentum equations that are
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solved numerically using a high-order accurate discontinuous Galerkin finite ele-
ment method. The missing information on the macro-level is represented by the
unknown stress tensor evaluated by means of the molecular dynamics simulations
on the micro-level. We shear the microscopic system by applying Lees-Edwards
boundary conditions and either an isokinetic or Lowe-Andersen thermostat. The
data obtained from the MD simulations underlie large stochastic errors that can
be controlled by means of proper orthogonal decomposition and the least-square
approximation. In order to reduce a large number of computationally expensive
MD runs, we apply the reduced order approach. Numerical experiments confirm
the robustness of our newly developed hybrid MD-dG method [6].

The present research results have been obtained in the collaboration with B.
Dünweg, N. Emamy, P. Gwiazda, H. Mizerová, B. She, S. Stalter, A. Swier-
czewska Gwiazda, P. Virnau and L. Yelash. It has been supported by the German
Science Foundation under the grant TRR 146: Multiscale Simulation Methods for
Soft Matter Systems, Projects C3 and C5.
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Multiscale Computational Methods for Incommensurate 2D Materials

Mitchell Luskin

Stacking a few layers of 2D materials such as graphene or molybdenum disulfide
at controlled twist angle has opened the possibility of tuning the electronic and
optical properties of 2D materials. One of the main issues encountered in the
mathematical and computational modeling of 2Dmaterials is that lattice mismatch
and rotations between the layers destroys the periodic character of the system.

We have formulated and analyzed basic concepts like elastic relaxation [3, 4]
electronic density of states (eigenvalue distribution of the Hamiltonian) [2, 5, 6],
and transport (Green-Kubo formula) [1] in the incommensurate (aperiodic) set-
ting. We have developed a novel variational model for the elastic relaxation and
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new methods to compute electronic density of states and transport for the incom-
mensurate Hamiltonian, and we have studied the validity and efficiency of these
approximations from mathematical and numerical analysis perspectives.

We have derived a multiscale model to obtain the mechanical relaxation pattern
of twisted trilayer van der Waals (vdW) heterostructures with two independent
twist angles, a prototype system of a generally incommensurate system without a
supercell description. We adopted the configuration space as a natural description
of such incommensurate layered materials, which describes the local environment
of each atomic position in a given layer relative to the other two layers.

We used a continuum model in combination with the Generalized Stacking
Fault energy, obtained from first-principles quantum mechanical total-energy cal-
culations based on Density Functional Theory, to describe the interlayer coupling.
To obtain the relaxation pattern, we performed energy minimization of the total
energy with respect to the relaxation displacement vectors. We have obtained the
relaxation patterns of twisted trilayer graphene and WSe2, which form domain-
like features between the two adjacent pairs of bilayer. The trilayer relaxation
pattern is a result of the coupling between two length scales that correspond to
the two twist angles. Such coupling between the two length scales can induce
spatially dependent strain and thus may be used for strain engineering in vdW
heterostructures.
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Exponential decay of the resonance error in numerical homogenization
via parabolic and elliptic cell problems

Doghonay Arjmand

(joint work with Assyr Abdulle, Edoardo Paganoni)

The present work concerns the numerical homogenization of multiscale elliptic
partial differential equations (PDEs) of the form

−∇ · (aε∇uε(x)) = f(x) in Ω ⊂ R
d

uε(x) = 0 on ∂Ω,

where aε is a positive, uniformly bounded matrix function in Rd×d representing
a microscopically nonhomogeneous medium. It is assumed that aε has variations
at a wavelength ε ≪ |Ω|. A direct numerical approximation of such a PDE is
prohibitevely expensive as it requires resolutions down to the finest scales in the
problem. An alternative idea is to look for a homogenized PDE of the form

−∇ ·
(
a0∇u0(x)

)
= f(x), in Ω ⊂ R

d

u0(x) = 0 on ∂Ω,

describing the local average response of the system, where the homogenized co-
efficient a0, as well as the solution u0 have only slow variations. Once a0 is
determined, u0 can be approximated at a cost independent of the small scale
paremeter ε. Explicit formulas for the homogenized coefficient a0 are available
only for limited theoretical settings, such as purely periodic or stationary ergodic
media. For example, when the medium is such that aε(x) = a(x/ε), and a is
K := (−1/2, 1/2)d-periodic, then the homogenized coefficient a0 is given by

a0ij =
1

|K|

ˆ
K

aij(y) + aik∂yk
χj(y) dy.

Here {χj}dj=1 solve the following corrector problems

(1) −∇ · (a(y)∇χj(y)) = ∇ · a(y)ej , in K,

with periodic boundary conditions. When the exact period of the coefficient is
unknown or when the coefficient is quasi-periodic or random stationary ergodic,
the equation (1) has to be posed over the entire Rd. In this case, the homogenized
coefficient is given by

a0 = lim
R→∞

a0,R, a0,Rij =
1

|KR|

ˆ
KR

aij(y) + aik∂yk
ψj(y) dy,

where

(2) −∇ · (a(y)∇ψj(y)) = ∇ · a(y)ej, in R
d,

In computations, a truncation of the infinite domain is inevitable, where (2) is
solved over the bounded domain KR := (−R/2, R/2)d, with periodic or homoge-
neous Dirichlet boundary conditions. Therefore, an error occurs due to a mismatch
on the boundary ∂KR between the infinite domain solution ψ, and the solution to
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the corresponding finite domain problem. This error will then propagate into the
interior of the domain KR, and deteriorate the accuracy of approximations for the
homogenized coefficients. If a is K-periodic, it is known that this error scales as 1

R .
This first order error dominates all other discretization errors in the computation,
and therefore better approximation methods with reduced resonance/boundary
errors are needed.

In order to reduce the resonance error, several strategies have been proposed in
the past; improving the prefactor (but not the convergence rate) [6], or improving
the rate to second order in 1/R [4], or fourth order in the asymptotic regime for
large values of R [5]. Another strategy results in arbitrary order in 1/R, but at
the expense of solving a computationally expensive wave equation [2, 3].

The approach adopted here (and explained in [1]) is based on elliptic corrector
problems with a regularisation term, which lead to an exponential decay of the
boundary error at a cost comparable to solving the classical cell-problem (1). In
this regularised elliptic approach, the cell-problem is given by

−∇ ·
(
a(y)∇χR,T

j (y)
)
= gj − e−AT gj, in KR,

where gj = ∇·a(y)ej, and A := −∇·(a(·)∇), and homogeneous Dirichlet boundary
conditions are imposed on ∂KR. The homogenized coefficient is approximated by

(3) b0,R,L,T
ij =

ˆ
KR

(
aij(y) + aik∂yk

χR,T
j (y)

)
µL(y) dy,

where µL is a suitable averaging function with a compact support in [−L/2, L/2]d.
This strategy results in the following error estimate for the the difference between
a0 and b0,R,L,T when the medium is periodic [1]

‖a0 − b0,R,L,T‖F ≤ C
(
R−q−1/2 + γ(R)e−ζR

)
,

where γ(R) = R2−d/2 + R
d−3
2 + 1, ζ = πko/

√
8β/α, T = O(R), L = koR, for an

oversampling ratio 0 < ko < 1, β/α is the contrast ratio of the coefficient a, and
the parameter q represents the regularity of the averaging function µL, which can
be chosen arbitrarily large without any additional computational cost.
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Generation of surrogate capillary networks using 3D-1D coupled
models for blood flow and oxygen transport

Barbara Wohlmuth

(joint work with T. Köppl, E. Vidotto)

In this talk, we present a numerical model that can be used to emulate capillary
networks between given smaller arterioles and venules such that simulations on
intact geometries for microvascular networks can be performed. Modelling of blood
flow and transport processes within microvascular networks is of high interest in
biomedical engineering. This is due to the fact that an accurate computer model
for such flow and transport processes provides the possibility to obtain better
insights into the oxygen supply of tissue, the waste removal from the intercellular
space and further important physiological processes without the necessity to carry
out expensive and risky experiments [1, 2].

In order to be able to exert numerical simulations with respect to a microvas-
cular network, it is crucial to have precise data on the geometry of the considered
network. Such datasets consist, e.g., of the radii, lengths and connectivity of the
vessels as well as the location of the vessels in a certain volume. These data can be
used to simulate, e.g., the transport of oxygen within the vascular network and the
migration of oxygen into the surrounding tissue [5]. If blood flow in larger parts
of an organ has to be simulated, then such data may serve as a basis for upscaling
methods. Thereby the capillary bed of the microvascular network is considered as
a continuous porous medium [4, 10]. Here, to determine the corresponding porosi-
ties and permeability tensors, the capillary bed is decomposed and its vessels are
assigned to REVs (representative elementary volumes) having the form of cuboids.
Then, for each REV the permeabilities are computed by applying pressure gradi-
ents in each space direction and measuring the fluxes through the corresponding
interfaces. Using Darcy’s law, the different permeability values can be estimated
[3]. As a consequence not every blood vessel has to be resolved, resulting in sav-
ing computational time, in particular, if transient transport processes have to be
simulated.

Despite the fact that imaging techniques and reconstruction algorithms have
improved remarkably over the past decades, it may happen that fine scale com-
ponents of a microvascular network can not be extracted accurately in-vivo, while
the larger vessels can be represented very well. Quite often, the reconstructed
capillaries are degenerated or dead ends can be detected in the capillary bed [11].
Reasons for this problem are, e.g., noise or slight movements of the patient during
the imaging process.
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However, a high quality description of the whole microvascular network may be
required. Therefore, replacing the true capillary network by a surrogate one is
quite attractive. To obtain it, we consider in a first step the larger vessels, which
we assume can be segmented in a satisfactory manner. These are usually vessels
in the size of small arterioles and venules. At the outlets of these vessels, we add
stepwise further vessels such that after each step a larger part of the surrounding
tissue can be perfused, e.g., by oxygen, see Figure 1. To handle bifucations, we
employ Murray’s optimality concept, which states that the required mechanical
work to move a fluid through a network can be minimised, if flow is proportional
to the cube of diameters. As a consequence, the sum of the cubed daughter
vessel diameters equals the cubed mother vessel diameter at each bifurcation [7].
The growth process is stopped, if the average partial pressure of oxygen in the
considered tissue block reaches a certain threshold, which is chosen such that one
can assume that the considered tissue block is sufficiently supplied with oxygen.
According to [6] a threshold of 34 mmHg can be used.

Figure 1. In the upper left picture the used starting network
containing the well reconstructed arterioles and venules is given
(taken from [11]). In the upper right, bottom left and bottom
right picture, the surrogate capillary networks are shown after 1,
8 and 15 growth steps, respectively.
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To determine the distribution of oxygen within the tissue, we use a 3D-1D modeling
approach. In this context, the abbreviation 1D indicates that we consider the
microvascular networks as one-dimensional graph-like structures. This implies
that only 1D PDEs are solved for the simulation of flow and transport of oxygen
in the network. Since at the microvascular level the Reynolds numbers are small
and almost no pulsatile flow exists, we use a Hagen-Poiseuille type equation to
describe the flow in the network, while the oxygen transport is modelled by a
standard convection-diffusion equation. The tissue matrix is considered as a three-
dimensional (3D) porous medium [8]. Standard 3D PDEs for flow and transport
processes in porous media are considered to study the propagation of oxygen in
tissue. The consumption of oxygen by the tissue cells is incorporated into the
model by the Michaelis-Menten law [6]. To model the interactions between the
processes in the 3D tissue and the 1D vascular system, we partially employ the
ideas developed in [9]. Following the concept outlined in this reference, both PDEs
can be coupled by their source terms. Thereby the source terms of the 3D PDEs
contain a Dirac measure concentrated on the vessel walls. The exhange itself is
governed by Starling’s filtration law, where the pressure difference is determined
by the pressure in the vascular system and an averaged 3D tissue pressure with
respect to the vessel walls [3].
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Nonuniform sampling and multiscale computation

Christina Frederick

A major branch of multiscale modeling is the study of differential equations gov-
erning the physics of heterogeneous materials, for example elliptic equations with
oscillatory coefficients:

−∇ · (aǫ(x)∇uǫ(x)) = f(x), 0 < ǫ≪ 1,

in which the multiscale nature of the problem is described by microscopic O(ǫ)
and macroscopic O(1) variations.

In practice, for example, in large-scale imaging, it is often invasive or too costly
to resolve the microscale and materials are often treated as being homogeneous, i.e.,
only containing macroscopic variations. The theory of homogenization gives a way
to mathematically derive macroscopic models, describing the effective equations
as ǫ→ 0:

aǫ∇uǫ → AH∇UH .

Numerical methods for homogenization, e.g., Finite Element Heterogeneous Mul-
tiscale Methods (FE-HMM) [1], employ coupled grids in order to efficiently resolve
large scale features on a macroscale mesh by judiciously probing the microscale on
local subgrids (see Figure 1).

O(ǫ)

O(1)

Figure 1. Coupled macro/micro grids used in FE-HMM

The main results in [2, 3] make a connection between the approximation theory
that justifies the use of these coupled grids and results from information theory on
the sampling of multiband functions. This connection was made by re-casting the
representation of multiscale functions f ǫ in periodic homogenization theory that
obey the scaling law:

f ǫ(x) = f(x, x/ǫ), f(x, y) is y-periodic.

Let Ω ⊂ Rd be a bounded, measurable set. The space of Ω−bandlimited functions

is PWΩ = {f ∈ L2(Rd)|f̂(ξ) =
´
Rd f(x)e

−2πix·ξ dx = 0 for a.e. ξ 6∈ Ω}. Then, the
scaling law translates to the requirement that f is [−1/2, 1/2]d×M−bandlimited
where M ⊂ Zd is a discrete bounded set. The main results of [3, 4] include stable
sampling algorithms and explicit stability estimates for functions bandlimited to
a structured union of cubes.
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Figure 2. Domains Ω and stable sampling sets Λ determined by
the iterative algorithm in [4] ((a) and (b)). The result presented
here extends the result to more general multiple lattice tilings,
e.g., ((c) and (d)). One new forthcoming result extends the ideas
to develop sampling algorithms for more general multi-tilings of
Rd (see Figure 2).

(a) (b) (c) (d)

A new extension of the algorithm to more general domains achieves an explicit
formula for the sampled functions instead of the usual existence theorems. The
algorithm has the following nice properties:

(A1) The algorithm is deterministic;
(A2) only involves taking the inverse of 1D Vandermonde matrices (instead of

multivariate Vandermonde matrices);
(A3) and produces a sampling set Λ that attains the optimal sampling rate in

the sense of Landau [7].

Another new forthcoming result is an explicit construction of dual Riesz bases of
exponentials for L2(Ω) when Ω ⊂ Rd is a bounded set that forms a k−tiling of Rd

with respect to a lattice L =MZd, where M is an invertible matrix. From [5, 6],

it is known that there exists a discrete set of vectors {as}k−1
s=0 ⊂ Zd such that the

exponentials

fλ,s(ξ) = e2πi(as+λ)·ξ, 0 ≤ s ≤ k − 1, λ ∈ L∗,(1)

form a Riesz basis for L2(Ω). Using sampling theory the dual Riesz basis corre-
sponding to (1) is derived:

Theorem 1. The dual Riez basis of exponentials {gλ,s(ξ)}λ∈Λ,0≤s≤k−1 for L2(Ω)
can be computed explicitly as gλ,s(ξ) = fλ,s(ξ)hs(ξ), where hs(ξ) depends on

det(M), points in the dual lattice {λt(ξ)}k−1
t=0 ⊂ L∗, and the Vandermonde ma-

trices V (ξ) given by Vst(ξ) = e2πiλt(ξ)·M
T as , s, t = 0, . . . , k − 1.

To the best knowledge of the author, no explicit formulas for the dual Riesz basis
given in Theorem 1 are available in the literature.
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Homogenization of linear elasticity with slip displacement conditions

Tanja Lochner

(joint work with Malte A. Peter)

We consider the linearized elasticity equation with slip displacement conditions
(for more details see [1]) for a two-scale composite of two solids





−∇ · σε = f ε in Ωε
0 ∪ Ωε

1,

uε = 0 on Γ1,

σε · ν = g on Γ2,

ε [uεn]Σε =
1

KN
σΣε

n , ε [uετ i]Σε =
1

KT
σΣε

τ i , i = 1, 2,

[σε
n]Σε = 0,

[
σε
τi

]
Σε = 0, i = 1, 2,

where Ωε = Ωε
0 ∪ Ωε

1 ∪ Σε ⊂ R
3 is comprised of ε-periodic subdomains and Σε =

Ωε
0 ∩ Ωε

1. The stress tensor σε is related to the the strain tensor e(uε) by a linear
relationship (Hooke’s law) realized by the elasticity tensor Aε satisfying standard
ellipticity conditions. The external boundary of the domain is made up of two
disjoint parts, Γ1 and Γ2, and we write uεi = uε|Ωε

i
.

Such kind of interface jumps in displacement arise e.g. in contact problems with
imperfect bonding. Motivated by applications in carbon-fibre-reinforced concretes,
we investigate the qualitative impact of the length of the carbon fibres on the
effective properties, which is why we assume one of the materials (modelled by
Ωε

1) to be connected, whereas the other one (modelled by Ωε
0) is either connected

or disconnected. The methods of two-scale convergence and periodic unfolding
are applied to determine the macroscopic limit problems rigorously, which show
significant differences for the two cases.
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More specifically, we consider the problem (P)

ˆ
Ωε

0

Aεe(uε0)e(ϕ0) dx+

ˆ
Ωε

1

Aεe(uε1)e(ϕ1) dx

+ ε

ˆ
Σε

(
KN [uεn]Σε n+KT

2∑

i=1

[uετ i]Σε τ
i

)
· (ϕ1 − ϕ0) dS(x)

=

ˆ
Ωε

0

f ε · ϕ0 dx+

ˆ
Ωε

1

f ε · ϕ1 dx+

ˆ
Γ2∩∂Ωε

0

g · ϕ0dS(x) +

ˆ
Γ2∩∂Ωε

1

g · ϕ1dS(x),

where the solution space and the test function space is given by

Wd(Ω
ε) = {u ∈

[
L2(Ωε)

]3
: ui ∈

[
H1(Ωε

i )
]3
, u1 = 0 on Γ1, ∇× u0 = 0 in Ωε

0},

in the disconnected case and

Wc(Ω
ε) = {u ∈

[
L2(Ωε)

]3
: ui ∈

[
H1(Ωε

i )
]3
, ui = 0 on Γ1 ∩ ∂Ωε

i}.

in the connected case, both endowed with the norm

‖u‖2W(Ωε) : = ‖e(u0)‖2[L2(Ωε
0)]

3×3 + ‖e(u1)‖2[L2(Ωε
1)]

3×3 + ε‖[u]Σε‖2[L2(Σε)]3 .

In the context of two-scale convergence and periodic unfolding, we prove the fol-
lowing

Theorem 1. In both the disconnected and the connected case, Problem (P) has a
unique solution uε for given ε > 0 and the solution is bounded, i.e. ‖u‖2W(Ωε) < C

for a constant C independent of ε. In the limit ε→ 0, it converges to the solution
of problem (Pd) and (Pc) defined below, respectively.

The proof of the theorem relies on special extension operators from [2] in the
connected case and specifically derived compactness results for curl-free spaces in
the disconnected case.

The limit problems are given by problem (Pd):

Find u1 ∈
{
v ∈

[
H1(Ω)

]3 | v = 0 on Γ1

}
, u0 ∈

{
v ∈

[
L2(Ω)

]3 | ∇ × v = 0
}

such

thatˆ
Ω

A
hom

1 e(u1)e(v1) dx

+

ˆ
Ω

ˆ
ΣY

(

KN(u1 · n− u0 · n)n+KT

2
∑

i=1

(u1 · τ
i − u0 · τ

i)τ i

)

· (v1 − v0) dS(y)dx

=

ˆ
Ω

ˆ
Y0

f dy · v0 dx+

ˆ
Ω

ˆ
Y1

f dy · v1 dx+

ˆ
Γ2

g · v1 dS(x)

for all test functions from the solution space in the disconnected case and
problem (Pc):
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Find u0, u1 ∈
{
v ∈

[
H1(Ω)

]3 | v = 0 on Γ1

}
such that

ˆ
Ω

A
hom

0 e(u0)e(v0) dx+

ˆ
Ω

A
hom

1 e(u1)e(v1) dx

+

ˆ
Ω

ˆ
ΣY

(

KN(u1 · n− u0 · n)n+KT

2
∑

i=1

(u1 · τ
i − u0 · τ

i)τ i

)

· (v1 − v0) dS(y)dx

=

ˆ
Ω

ˆ
Y0

f dy · v0 dx+

ˆ
Ω

ˆ
Y1

f dy · v1 dx+

ˆ
Γ2

g · h0v0 dS(x) +

ˆ
Γ2

g · h1v1 dS(x)

for all test functions from the solution space in the connected case. The homoge-
nized elasticity tensors Ahom

0 and Ahom
1 are given by standard cell problems.

In the derivation of the associated strong formulations of the limit problems,
it turns out that the curl-free condition in the test-function space of the discon-
nected case can be dropped utilizing the Helmholtz decomposition and the slip
displacement internal boundary conditions.
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Nonlinear nonlocal multi-continua (NLMC) upscaling

Eric Chung

(joint work with Yalchin Efendiev, Wing Tat Leung, Maria Vasilyeva)

We develop a novel nonlinear upscaling framework that can be used for many
challenging porous media applications without scale separation and high contrast.
Our main focus is on nonlinear differential equations with multiscale coefficients.
The framework is built on nonlinear nonlocal multi-continuum (NLMC) upscaling
concept. Our approach starts with a coarse partition and identifies test functions
for each partition, which play a role of multi-continua. The test functions are
defined via optimization and play a crucial role in nonlinear upscaling. In the
second stage, we solve nonlinear local problems in oversampled regions with some
constraints defined via test functions. These local solutions define a nonlinear
map from macroscopic variables determined with the help of test functions to the
fine-grid fields. This map can be thought as a downscaled map from macroscopic
variables to the fine-grid solution. In the final stage, we seek macroscopic variables
in the entire domain such that the downscaled field solves the global problem in a
weak sense defined using the test functions. Next we present some details.
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We consider the following model nonlinear problem

(1) MUt +∇ ·G(x, t, U) = g,

where G is a nonlinear operator that has a multiscale dependence with respect to
space (and time, in general) and M is a linear operator. In the above equation, U
is the solution and g is a given source term. Our method has three key ingredients,
namely, the choice of continua, the construction of local downscaling map and the
construction of the coarse scale model. We will summarize these concepts in the
following.

• The choice of continua
The continua serve as our macroscopic variables in each coarse element.
Our approach uses a set of test functions to define the continua. To be
more specific, we consider a coarse element Ki. We will choose a set of

test functions {ψ(j)
i (x, t)} to define our continua, where j denotes the j-

th continuum. Using these test functions, we can define our macroscopic
variables as

U
(j)
i = 〈〈U,ψ(j)

i 〉〉
where 〈〈·, ·〉〉 is a space-time inner product.

• The construction of local downscaling map
Our upscale model uses a local downscaling map to bring microscopic
information to the coarse grid model. The proposed downscaling map is
a function defined on an oversampling region subject to some constraints
related to the macroscopic variables. More precisely, we consider a coarse
element Ki, and an oversampling region K+

i such that Ki ⊂ K+
i . Then

we find a function φ by solving the following local problem

(2) Mφt +∇ ·G(x, t, φ) = µ, in K+
i .

The above equation (2) is solved subjected to constraints

Iφ(ψ
(j)
i (x, t)).

We remark that the function µ serves as the Lagrange multiplier for the
above constraints. This local solution builds a downscaling map

Fms
i : Iφ(ψ

(j)
i (x, t)) → φ.

• The construction of coarse scale model
We will construct the coarse scale model using the test functions

{ψ(j)
i (x, t)} and the local downscaling map. Our upscaling solution Ums

is defined as a combination of the local downscaling maps. In particular,
we define

(3) Ums =
∑

i

χiFms
i (U

(j)
i ).
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To compute Ums, we use the following variational formulation

(4) 〈〈MUms
t +∇ ·G(x, t, Ums), ψ

(j)
i 〉〉 = 〈〈g, ψ(j)

i 〉〉
The above equation (4) is our coarse scale model.

Our method gives a promising upscaling framework that can be used for challeng-
ing nonlinear multiscale problems.
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Reconstruction of quasi-local numerical effective models from
low-resolution measurements

Roland Maier

(joint work with Alfonso Caiazzo, Daniel Peterseim)

In this work, we consider an inverse problem corresponding to the prototypical
second-order linear elliptic diffusion problem

(1)
− divA∇u = f in Ω,

u = u0 on ∂Ω,

where Ω ⊆ R
d, d ∈ {1, 2, 3} is a bounded, polyhedral domain and the diffusion

coefficient A is an admissible coefficient, i.e., an element of the following set

A :=

{
A ∈ L∞(Ω;Rd×d

sym) : ∃ 0 < α ≤ β <∞ :

∀ξ ∈ R
d, a.a. x ∈ Ω : α|ξ|2 ≤ A(x)ξ · ξ ≤ β|ξ|2

}
,

which only requires minimal assumptions.

The inverse problem. For the inverse problem, let us assume that a right-hand
side f ∈ L2(Ω) is given and that the diffusion coefficient A is to be reconstructed
from given measurements. Further, we suppose that structural assumptions such
as periodicity, quasi-periodicity, or given parameterization by few degrees of free-
dom are not satisfied a priori. In an ideal setting, information about weak solutions
to problem (1) in the form of a solution operator

L̃ : X → V

would be given, where V := H1(Ω), X := H1/2(∂Ω), and f ∈ L2(Ω). The operator

L̃ contains data in the sense that it maps a given boundary condition u0 ∈ X to the
corresponding solution u ∈ V . In practical applications, however, boundary data
and information about the corresponding solutions are generally only available
on some (coarse) scale, possibly much larger than the (micro) scale on which the
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diffusion coefficient and the corresponding solutions vary. In this case, a classical
formulation of the inverse problem consists in recovering A given the mapping

L̃
eff : XH → VH

based on coarse finite element spaces VH ⊆ V and XH ⊆ X corresponding to a
coarse mesh TH . In other words, the operator L̃eff comprises measurements of
weak solutions to (1) on the scale H .

Reconstruction of an effective model. Since the unknown coefficient includes
fine scale features, a direct approach of recovering A by full (fine scale) simulations
is computationally unfeasible. An alternative approach is to recover information
about a (macroscopic) effective model which takes into account the underlying mi-
croscale diffusion coefficient. This idea is inspired by numerical homogenization,
especially by the multiscale technique known as Localized Orthogonal Decompo-
sition (LOD) that was first introduced in [3] and its Petrov-Galerkin formulation
that is used in [2]. Based on the LOD, it can be shown (see [1]) that the solution

operator L̃, restricted to boundary conditions in XH , can be well approximated
(up to order H) by an operator Leff

SH
: XH → VH that is characterized by the LOD

stiffness matrix SH .
Thus, rather than reconstructing the diffusion coefficient itself, we tackle the

reconstruction of an effective stiffness matrix which includes microstructural in-
formation of the medium and that is able to reproduce the given data related to
weak solutions of (1). Therefore, we consider the following alternative formulation
of the inverse problem:

given L̃
eff : XH → VH , find the corresponding stiffness matrix S̃H .

The optimization problem. Based on a distance function dist(·, ·), we formu-
late the inverse problem as a minimization problem for the functional

JH(SH) =
1

2

(
dist(L̃eff ,Leff

SH
)
)2

in the set

M(ℓ, TH) :=
{
SH ∈ R

m×m
sym : ∀ 0 ≤ i ≤ j ≤ m : zi /∈ Nℓ(zj) ⇒ SH [i, j] = 0

}

of matrices that have a non-zero entry at position [i, j] if the corresponding nodes
zi and zj belong to the ℓ-neighborhood of each other. The set M(ℓ, TH) contains
matrices with a quasi-local sparsity pattern that mimics the sparsity of LOD stiff-
ness matrices. However, this setup does not require any knowledge about LOD or
any other numerical homogenization method because the sole criterion for the re-
construction is the sparsity pattern. Further, fine scales do not need to be resolved
at any time.

For details on the iterative optimization procedure, we refer to [1].
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Figure 1. Left: Diffusion coefficient. Right: Values of JH in
the first 20 iterations of the inversion algorithm using different
sparsity patterns: ℓ = 0 ( , dotted), ℓ = 1 ( ), ℓ = 2 ( ), ℓ = 3
( ).

Figure 2. Reconstructed functions with boundary condition
u0(x1, x2) = x1 based on different quasi-local matrices: ℓ = 0
( , dotted), ℓ = 1 ( ), ℓ = 2 ( ), ℓ = 3 ( ). The correspond-
ing fine FE function ( , dashed) is depicted as a reference. Left:
Cross section at x2 = 0.5. Right: Cross section at x1 = 0.5.

Numerical example. In this section, we present an example that is based on
synthetic data, i.e., the coarse measurements used to feed the inversion algorithm
are obtained from finite element functions in Vh, defined on a fine mesh with
h =

√
2 · 2−9, that resolve the fine scale features of the diffusion coefficient. Fur-

thermore, the data are perturbed by random noise with intensity up to 5%.
For this experiment, we suppose to have full information on the operator L̃eff ,

i.e., we assume that measurements in Ω on the coarse scale H =
√
2 · 2−5 for

a complete basis of XH are available. We set f = 1 and take A as depicted in
Figure 1 (left).
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The values of the functional JH in the first 20 iterations of the algorithm are given
in Figure 1 (right). In particular, we compare the inversion procedure based on
matrices in M(ℓ, TH) for different values of ℓ. One clearly sees that increasing ℓ
leads to better results in terms of decrease and value of the error functional JH .
To further investigate the different methods, we solve a diffusion problem using
the stiffness matrices reconstructed for different parameters ℓ and compare the
resulting numerical solutions with a fine finite element solution, see Figure 2.

Note that also incomplete boundary data can be considered and some random-
ness may be included into the iteration process; see [1] for further details.
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Kernel Mode Decomposition and programmable/interpretable
regression networks

Houman Owhadi

(joint work with Clint Scovel, Gene Ryan Yoo)

We introduce programmable and interpretable regression networks for pattern
recognition and address mode decomposition as a prototypical problem. The pro-
gramming of these networks is achieved by assembling elementary modules decom-
posing and recomposing kernels and data. These elementary steps are repeated
across levels of abstraction and interpreted from the equivalent perspectives of
optimal recovery, game theory and Gaussian process regression. The prototypical
mode/kernel decomposition module produces an approximation (w1, w2, · · · , wm)
of an an element (v1, v2, . . . , vm) ∈ V1 × · · · × Vm of a product of Hilbert sub-
spaces (Vi, ‖ · ‖Vi

) of a common Hilbert space from the observation of the sum
v := v1 + · · · + vm ∈ V1 + · · · + Vm. This approximation is minmax optimal
with respect to the relative error in the product norm

∑m
i=1 ‖ · ‖2Vi

and obtained

as wi = Qi(
∑

j Qj)
−1v = E[ξi|

∑
j ξj = v] where Qi and ξi ∼ N (0, Qi) are the

covariance operator and the Gaussian process defined by the norm ‖ · ‖Vi
. The

prototypical mode/kernel recomposition module performs partial sums of the re-
covered modes wi and covariance operators Qi based on the alignment between
each recovered mode wi and the data v with respect to the inner product de-
fined by S−1 with S :=

∑
iQi (which has a natural interpretation as model/data

alignment
〈
wi, v

〉
S−1 = E[

〈
ξi, v

〉2
S−1 ] and variance decomposition in the GP set-

ting). We illustrate the proposed framework by programming regression networks
approximating the modes vi = ai(t)yi

(
θi(t)

)
of a (possibly noisy) signal

∑
i vi
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when the amplitudes ai, instantaneous phases θi and periodic waveforms yi may
all be unknown and show near machine precision recovery under regularity and
separation assumptions on the instantaneous amplitudes ai and frequencies θ̇i.
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A meshfree mimetic divergence operator

Pavel Bochev

(joint work with Nathaniel Trask and Mauro Perego)

Mimetic methods [3] discretize divergence by restricting the Gauss theorem to
mesh cells. Because point clouds lack such geometric entities, construction of a
compatible meshfree divergence is a challenge. In this work, we define an abstract
Meshfree Mimetic Divergence (MMD) operator on point clouds by contraction of
field and virtual face moments. This MMD satisfies a discrete divergence theorem,
provides a discrete local conservation principle, and is first-order accurate.

A mimetic divergence operator on a primal-dual mesh [4] motivates our con-
struction. For homogeneous boundary conditions such an operator is given by

(1) (DIV uh)i :=
1

µi

∑

fij∈∂ωi

uijµij ∀ωi ∈ C.

where ωi is a dual cell corresponding to a primal vertex vi, µi = |ωi|, fij ∈ ∂ωi is
a dual face with oriented measure µij =

´
fij
dS, and uij is a normal component

of the vector field uh.
Let X = {xi}Ni=1 denote a point cloud with a fill distance hX defined on a

domain Ω. We approximate vector fields u by their point samples uh on X . Using
(1) as a template we define the following abstract MMD operator

(2) (DIV uh)i :=
1

µi

∑

fij∈∂̃ωi

tij(u
h) · µij ∀ωi ∈ C̃.

Here C̃ is collection of virtual dual cells such that every ωi ∈ C̃ corresponds to a

point xi ∈ X , ∂̃ is a virtual boundary operator mapping virtual cells to virtual

faces fij ∈ F̃ , and tij is an operator mapping point samples to field moments on
the virtual faces. Finally, µi and µij are metric moments providing information
about the measures of the virtual cells and faces, respectively.

To ensure that (2) has the same mimetic properties as its mesh-based parent
(1) we require that

T.1: The virtual cell volumes satisfy µi > 0, µi = O(hdX), and
∑

i µi = µ(Ω).

T.2: The virtual face moments {µij} are antisymmetric: µij = −µji.

T.3: The operator tij is symmetric: tij(u
h) = tji(u

h).



2154 Oberwolfach Report 35/2019

Assuming thatT.1-T.3 hold one can prove [1] that the abstract MMD operator (2)
is locally conservative with respect to the virtual dual cells. Under some additional
conditions on the metric and the field data it is also possible to show that (2) is
first order accurate [1], i.e.,

(3)
∥∥∇ · u− (DIV uh)

∥∥
ℓ∞,X

≤ Ch‖u‖C2(Ω).

We consider two instantiations of (2). The first one assumes a background primal-
dual mesh complex and uses generalized moving least squares (GMLS) [2] to obtain
the necessary field and face moments. This MMD instance is appropriate for
settings where a mesh is available but its quality is insufficient for a robust and
accurate mesh-based discretization. The MMD with a background mesh is given
by

(4) (
GMLS

DIV uh)i =
1

µi

∑

fij∈∂ωi

cij(u
h) · µij ∀ωi ∈ C.

In this definition µi = |ωi|,

cij(u
h) = argmin

b∈Rn

1

2

∣∣Bb− uh
∣∣2
W (fij)

and µij =

ˆ
fij

p · nfdS ,

where p is basis of the GMLS reproduction space, the matrix B contains samples
of the basis p, and W (fij) is a diagonal weight matrix; see [2]. If uh is a sample
of a vector field u then the product cij(u

h) · µij is the GMLS approximation of
the flux of u across fij , i.e.,ˆ

fij

u · nfdS ≈ cij(u
h) · µij .

The second MMD operator retains the GMLS field moments but defines virtual
face moments using computationally efficient weighted graph-Laplacian equations.
This MMD instance does not require a background grid and is appropriate for
applications where mesh generation creates a computational bottleneck. It allows
one to trade an expensive mesh generation problem for a scalable algebraic one,
without sacrificing compatibility with the divergence operator. We refer to [1] for
further details.

Acknowledgments

Sandia National Laboratories is a multimission laboratory managed and operated by Na-

tional Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary

of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear

Security Administration under contract DE-NA-0003525. This paper describes objective

technical results and analysis. Any subjective views or opinions that might be expressed

in the paper do not necessarily represent the views of the U.S. Department of Energy or

the United States Government. This material is based upon work supported by the U.S.



Computational Multiscale Methods 2155

Department of Energy, Office of Science, Office of Advanced Scientific Computing Re-

search under Award Number DE-SC-0000230927, and the Laboratory Directed Research

and Development program at Sandia National Laboratories.

References

[1] N. Trask and P. Bochev and M. Perego, A conservative, consistent, and scalable meshfree
mimetic method J. Comp. Phys., 2019, Submitted.

[2] H. Wendland, Scattered data approximation, vol. 17, Cambridge university press, 2004.
[3] K. Lipnikov, G. Manzini, M. Shashkov, Mimetic finite difference method, Journal of Com-

putational Physics 257, Part B, 2014) pp.1163 – 1227,
[4] M. Desbrun, A. N. Hirani,M. Leok, J. E. Marsden, Discrete Exterior Calculus, arXiv Math-

ematics e-prints math/0508341

Moment Constrained Optimal Transport Problem for Density
Functional Theory

Virginie Ehrlacher

(joint work with Aurélien Alfonsi, Rafaël Coyaud, Damiano Lombardi)

The motivation for this work stems from electronic structure calculation for mole-
cules. The semi-classical limit of the so-called Lévy-Lieb functional in Density
Functional Theory have drawn much attention from mathematicians. It has been
rigorously proved in [2] that this semi-calssical limit reads as a symmetric multi-
marginal optimal transport (OT) problem with Coulomb cost. For a system of N
electrons, the typical form of this OT problem reads as follows

(1) I = inf
γ ∈ P(R3N )
∀1 ≤ i ≤ N,

dµi
γ(xi) = dν(xi)

ˆ
R3N

c dγ

where

• P(R3N ) denotes the set of probability measures on R3N ;
• the Coulomb cost functional is defined by c(x1, · · · , xN ) =∑

1≤i6=j≤N
1

|xi−xj|
;

• dν(x) is a probability measure on R
3;

• for all 1 ≤ i ≤ N , dµi
γ denotes the ith marginal associated to γ, i.e.

dµi
γ(xi) =

ˆ
(x1,··· ,xi−1,xi+1,··· ,xN )∈R3(N−1)

dγ(x1, · · · , xN ).

The classical approach for computing a numerical approximation of (1) consists in
discretizing the state space, i.e. in choosing M ∈ N∗ points x1, · · · , xM ∈ R3 and
approximating a minimizer γ of (1) as a discrete measure charging the MN points
(xj1 , · · · , xjN ) for 1 ≤ j1, · · · , jN ≤M under the following form

γ ≈
∑

1≤j1,··· ,jN≤M

γj1,··· ,jN δ(xj1 ,··· ,xjN ).
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The determination of theMN scalars γj1,··· ,jN can be done in principle via the res-
olution of linear programming problem, but whose dimension scales exponentially
with respect to the number of electrons N .

As an alternative, we rather consider in this work a discretization of (1) where the
state space is still continuous (the whole space R

3), but where the marginal con-
straints appearing in (1) are relaxed into a finite number of moment constraints.
More precisely, let us introduce a sequence (φj)j∈N∗ of continuous functions de-
fined on R3, and for all M ∈ N∗, let us define the Moment Constrained Optimal
Transport (MCOT) Problem

(2) IM = inf
γ ∈ P(R3N )
∀1 ≤ i ≤ N,
∀1 ≤ j ≤M,´

R3φj(xi) dµ
i
γ(xi) =

´
R3 φj(xi) dν(xi)

ˆ
R3N

c dγ

Under natural density assumptions on the set of functions (φj)j∈N∗ , it can be
shown that

IM −→
M→+∞

I.

Besides, considering the auxiliary MCOT problem

(3) IM = inf
γ ∈ P(R3N )
∀1 ≤ j ≤M,´

R3N 1
N

(∑N
i=1 φj(xi)

)
dγ =

´
R3 φj(x) dν(x)

ˆ
R3N

c dγ

it can be shown that there exists a minimizer of (3) which reads as a discrete
measure charging a number of points lower that M +2. Besides, the symmetrized
measure associated to this minimizer is a minimizer of (2). Thus, to characterize
these minimizers, a low number of scalars have to be identified, which can lead
to interesting new numerical methods to approximate minimizers of the original
problem (1) when N is large. Let us mention that this result is very close in
spirit to the result of [1], where the authors proved a similar sparsity result for an
optimal transport problem defined on a discrete state space.
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Challenges in the numerical solution of nonlocal equations

Marta D’Elia

(joint work with Christian Vollmann, Max Gunzburger)

Nonlocal models provide an improved simulation fidelity in presence of long-range
forces and anomalous behaviors, such as super diffusion. Thanks to their integral
form, they can capture long-range effects and relax regularity requirements of
classical (differential) models. Their applicability ranges from fracture mechanics
[1] to image processing [2]. The main difference between nonlocal models and
partial differential equations (PDEs) is that, in the former, interactions can occur
at distance, whereas, in the latter, they can only happen with contact. As a
consequence, in nonlocal settings, every point in space and time interacts with a
neighborhood of points (far away in space and far back in time).

Nonlocality raises many modeling and computational challenges. The former
include the prescription of nonlocal boundary conditions (or volume constraints),
the choice of kernel functions characterizing the operators, or modeling of nonlocal
interfaces; the latter include the design of efficient quadrature rules for possibly
singular kernel functions and of efficient nonlocal solvers. In fact, the numerical
solution of nonlocal models is intrinsically extremely expensive in terms of both
assembling and solving.

In this work we focus on the latter task. Meshfree, in particular particle-type
methods, provide a popular means for discretizing nonlocal equations. Here, how-
ever, we are interested in variational methods, and in particular finite element
methods (FEM), because of the ease they provide for dealing with complicated
domains, for obtaining approximate solutions that have higher-order convergence
rates, and for defining adaptive meshing methods that can resolve solution mis-
behaviors such as discontinuous solutions and other misbehaviors such as steep
gradients and jump discontinuities that also arise in the PDE setting. In addition,
thanks to the nonlocal vector calculus for nonlocal diffusion equations [3], casting
the nonlocal problem in a variational framework allows for a rigorous mathemati-
cal treatment of operator and solution properties such as convergence and related
stability issues.

We summarize the main contributions of this work.

• Nonlocal finite element formulations and associated implementation tasks
are rigorously addressed and illustrated. We describe the assembly proce-
dure and we give guidance in the choice of quadrature rules for outer and
inner integrals in relation to the accuracy of the overall scheme (which
depends on the degree of the finite element approximation).

• We introduce approximate nonlocal neighborhoods that facilitate the as-
sembly procedure and mitigate the computational effort. For each of them,
we quantify the entity of the approximation and the associated contribu-
tion to the solution discretization error. Again, we provide guidance on
the choice of quadrature rules according to the specific neighborhood ap-
proximation so that the overall accuracy is not compromised.
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Challenges in FEM implementation and numerical solution Due to the
integral nature of nonlocal operators, the weak form of a nonlocal problem is char-
acterized by a double integral where the outer integration is performed over the
whole domain, whereas the inner integration over the nonlocal neighborhood of
interactions. In standard settings the latter consists in a Euclidean ball surround-
ing points in the domain. Thus, in order to perform inner integration, one has to
determine which elements of the FEM mesh are contained in the ball (entirely or
partially) and design effective quadrature rules for triangles or partial triangles.

In Figure 1 we report some examples of how a ball can intersect a triangle. In
Figure 2 we report a neighborhood centered at a point in the outer integration
domain and the triangles belonging to it; the different colors represent different
types of nonlocal interactions between the basis functions associated with the
colored triangles and the one corresponding to the triangle in the outer integration
domain (containing the center of the ball). Determining intersections and different
types of interaction is a non-trivial task and it is a necessary step for an efficient
assembly of the FEM matrix.

Figure 1. Examples of a ball intersecting a triangle.

Figure 2. Interaction neighborhood on a FEM mesh and differ-
ent interactions between triangles.

It is important to note that when a ball intersects a triangle, the resulting domain
is curved and, hence, requires an approximation and appropriate quadrature rules.
We propose four different geometric approximations of the nonlocal neighborhood,
reported in Figure 3. Here, from left to right, we have:

A Inscribed triangle-based polygonal ball: the circular caps generated by re-
triangulation of partial triangles are not considered part of the neighbor-
hood and Gauss rules are used in every triangle;
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B Inscribed cap-based polygonal ball: the circular caps are considered part
of the neighborhood and the integration is performed by using Gauss
points within the triangles and one integration point in the caps;

C Whole-triangle approximation based on barycenter location: every trian-
gle whose barycenter is contained in the ball is considered part of the
neighborhood;

D Whole-triangle approximation based on overalp with the ball: every tri-
angle with nonzero intersection with the ball is considered part of the
neighborhood.

(A) (B) (C) (D)

Figure 3. Four approximations of the nonlocal neighborhood
corresponding to descriptions A–D.

For each case we estimate the geometric approximation error and analyze how it
affects the overall FEM accuracy in case of piecewise linear approximations. We
prove that in cases A and B the overall accuracy is O(h2), hence optimal, whereas
in cases C and D we lose one order of accuracy, i.e. O(h). Here h is the FEM mesh
size. However, numerical tests show that C preserves optimal, quadratic, accuracy.
Thus, this method may be a viable alternative to exact balls in three-dimensional
simulations due to the ease of implementation and to the optimal convergence
rate.

References

[1] S. Silling, Reformulation of elasticity theory for discontinuities and long-range forces, Jour-
nal of the Mechanics and Physics of Solids 48 (2000), 175–209.

[2] G. Gilboa, Nonlocal operators with applications to image processing, Multiscale Model.
Simul. 7 (2008), 1005–1028.

[3] Q. Du, M. Gunzburger, R. Lehoucq, K. Zhou, Analysis and approximation of nonlocal
diffusion problems with volume constraints, SIAM Review 4 (2012), 667–696.



2160 Oberwolfach Report 35/2019

Fast eigenpairs computation with operator adapted wavelets and
hierarchical subspace correction

Lei Zhang

(joint work with Hehu Xie, Houman Owhadi)

We present a method for the fast computation of the eigenpairs of a bijective
positive symmetric linear operator L. The method is based on a combination
of operator adapted wavelets (gamblets) with hierarchical subspace correction.
First, gamblets provide a raw but fast approximation of the eigensubspaces of
L by block-diagonalizing L into sparse and well-conditioned blocks. Next, the
hierarchical subspace correction method, computes the eigenpairs associated with
the Galerkin restriction of L to a coarse (low dimensional) gamblet subspace, and
then, corrects those eigenpairs by solving a hierarchy of linear problems in the finer
gamblet subspaces (from coarse to fine, using multigrid iteration). The proposed
algorithm is robust to the presence of multiple (a continuum of) scales and is shown
to be of near-linear complexity when L is an (arbitrary local, e.g. differential)
operator mapping Hs

0(Ω) to H−s(Ω) (e.g. an elliptic PDE with rough coefficients).
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Quantitative stochastic homogenization

Felix Otto

(joint work with Mitia Duerinckx and Marc Josien)

1. Homogenization in general

Homogenization means assimilating a heterogeneous medium to a homogeneous
one. Here, the term medium refers to a second-order linear elliptic operator −∇ ·
a∇, as described by a tensor field a on Rd satisfying

ξ · a(x)ξ ≥ λ|ξ|2 and ξ · a(x)ξ ≥ |a(x)ξ|2 for some fixed λ > 0.(1)

Thus homogenization means the existence of a constant tensor ā s. t. for the
solution operators one has (−∇ · a∇)−1 ≈ (−∇ · ā∇)−1.

All variants of homogenization are based on the following representation involv-
ing functions φi (scalar potential) and skew-symmetric tensor fields σi (vector
potentials in d = 3) with

(a− ā) ei = −a∇φi +∇ · σi for i ∈ {1, · · · , d},(2)

where {ei}i=1,··· ,d denotes the standard basis in Rd. Since ∇φi is curl-free (in
the language of d = 3) and (∇ · σi)j := ∂kσijk (we use Einstein’s summation
convention) is divergence-free, (2) can be interpreted as a Helmholtz decomposition
of (a− ā)ei w. r. t. the medium a. In particular, (2) implies −∇·a∇(xi +φi) = 0;
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hence φi corrects the standard coordinate xi to become harmonic w. r. t. a –
and thus is called corrector. Replacing xi by a (slowly varying) function ū, this
generalizes to the notion of two-scale expansion (1 + φi∂i)ū, which is expected
to be approximately a-harmonic when ū is ā-harmonic. More precisely, provided
−∇ · a∇u = −∇ · ā∇ū, we have

−∇ · a∇ (u− (1 + φi∂i)ū) = ∇ · ((φia− σi)∇∂iū) .(3)

Hence the merit of the flux correctors σi is to bring the residuum of the homog-
enization error u − (1 + φi∂i)ū into divergence form. We learn from (3) that
homogenization takes place when the gain of the additional derivative ∂i on the
slowly varying ū is not overshadowed by the growth of (φi, σi), i. e. when (φ, σ)
grows strictly less than linearly.

2. Stochastic Homogenization

Limited detailed knowledge of the medium is captured by an underlying ensemble
(that is, probability measure) 〈·〉 of a’s with (1). Stochastic homogenization means
the existence of a deterministic tensor ā such that for 〈·〉-almost every realization
a, we have (−∇ · a∇)−1 ≈ (−∇ · ā∇)−1. The qualitative theory (Kozlov ’79,
Papanicolaou & Varadhan ’79) relies on stationarity (i. e. shifts a(· + x) have
the same distribution) and ergodicity of 〈·〉. For a quantitative theory, ergodicity
needs to be quantified. A simple way is to work with a specific family of ensembles:
a(x) = A(g(x)) with a 1-Lipschitz function A and a stationary, centered Gaussian
field g. As such, g is determined by its covariance function c(x) := 〈g(x)g(0)〉. Er-
godicity is then quantified by requiring that the (non-negative) Fourier transform
of c satisfies

(Fc)(k) ≤ (|k|+ 1)
−d−2α

for some fixed α > 0.(4)

This assumption, which essentially amounts to imposing integrable correlation
tails (small |k|-behavior) and α-Hölder continuous realizations (large |k|-behavior),
allows for the popular Matérn kernels, where the correlation length has been set
to unity. The first version of the following result is due to Gloria & Otto ‘11:

Theorem 1. For all p <∞ we have

〈|φi(x) − φi(0)|p〉
1
p . µd(|x|) :=





(|x|+ 1)
1
2 for d = 1,

ln
1
2 (|x|+ 2) for d = 2,

1 for d ≥ 3.

(5)

Here, the implicit constant only depends on d, λ, α, p. The same holds true for σi
with the choice of gauge −△σijk = (∂jek − ∂kej)a(ei +∇φi). On scales |x| ≫ 1,
µd reflects the behavior of the Gaussian free field. In view of (3), (5) yields an
estimate in Lp

〈·〉(L
2
x) of the homogenization error on the level of gradients:

Corollary 1. Provided −∇ · a∇u = ∇ · f = −∇ · ā∇ū we have

〈( ˆ
Rd

|∇u − ∂iū(ei +∇φi)|2
) p

2
〉 1

p .
( ˆ

Rd

|µd∇f |2
) 1

2 .(6)
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After rescaling y = ǫx, the l. h. s. is of order ǫµd(
1
ǫ ), yielding a linear rate in

d > 2.

Key in the proofs is the following variance estimate for an arbitrary random vari-
able F (that is, a functional F = F (a))

var(F ) := 〈(F − 〈F 〉)2〉
(4)

.d,α

〈 ˆ
Rd

( ˆ
B1(x)

|∂F
∂a

(y)|dy
)2
dx
〉
,(7)

where ∂F
∂a denotes the functional derivative (also called Malliavin or noise deriv-

ative), inspired from Naddaf & Spencer ’98. It amounts to a Poincaré estimate
for ( ∂

∂a , 〈·〉) and is also addressed as a spectral gap estimate for the correspond-

ing Laplacian. Estimating ∂∇φi(x)
∂a(y) means capturing how sensitively a solution

φi of an elliptic PDE at x depends on the tensor a at y, and naturally involves
the “quenched” (i. e. realization-wise) Green’s function G(x, y) = G(a, x, y) for
−∇·a∇. “Annealed” (i. e. probabilistic) estimates of the mixed derivatives∇x∇yG
(Marahrens & Otto ‘15, Delmotte & Deuschel ’05) were thus key in developing a
quantitative theory. Recently, they have been replaced by Calderón-Zygmund es-
timates, i. e. boundedness of the a-Helmholtz projection, of which ∇x∇yG is the
kernel, in Lq

x with 1 < q <∞. These estimates are annealed, i. e. in Lq
x(L

p
〈·〉) with

an unavoidable tiny loss in stochastic integrability exponent p, see [1, 2]:

Theorem 2. Provided −∇ · (a∇v + g) = 0 we have for all p < p′

( ˆ
Rd

〈|∇v|p〉 q
p

) 1
q .

(ˆ
Rd

〈|g|p′〉
q

p′
) 1

q .(8)

This yields the following generalization of Corollary 1 from Lp
〈·〉(L

2
x) to L

p
〈·〉(L

q
x):

Corollary 2.
〈( ´

Rd |∇u − ∂iū(ei +∇φi)|q
) p

q
〉 1

p .
( ´

Rd |µd∇f |q
) 1

q .

The a-Helmholtz projection is unbounded in Lq
x for q 6= 2 for a general a with

(1); the difficulty comes from both small and large scales. Even for our ensemble
(4) with Hölder continuous realizations, it is typically unbounded for almost every
a, due to the large scales. However, there is a quenched regularity theory, first
developed for periodic homogenization (Avellaneda & Lin ’87) and then extended
to the random case (Armstrong & Smart ’16), in which case it starts from on
a random scale r∗ onwards. In [1] this quenched regularity is at the basis of
Theorem 2, whereas in [2], a more functional-analytic approach is taken where the
a-Helmholtz projection is written as a perturbation of the ā-Helmholtz projection.

3. Fluctuations

There are two perspectives on the homogenization error ∇u − ∂iū(ei + ∇φi):
A) “Oscillations”, i. e. estimates on the microscopic level, that is, in a strong

topology like
( ´

|∇u − ∂iū(ei + ∇φi)|q
) 1

q ; cf. Corollary 2. B) “Fluctuations”,
i. e. estimates on the macroscopic level, that is, in a weak topology by monitoring´
h ·(∇u−∂iū(ei+∇φi)) with slowly varying h. Naively, one expects var(

´
h ·∇u)

≈ var(
´
∂iū h · (ei + ∇φi)), but this is wrong, see Gu & Mourrat ’16. However,
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this connection between u and the two-scale expansion is true on the level of the
homogenization commutator a∇u− ā∇u, which (in the parlance of electrostatics)
relates the flux a∇u, the field ∇u, and the effective conductivity ā. Indeed,

var
( ˆ

g · (a− ā)∇u
)
≈ var

( ˆ
∂iū g · (a− ā)(ei +∇φi)

)
.(9)

There is no loss in passing to the homogenization commutator, since
´
h · ∇u can

be retrieved from
´
g · (a− ā)∇u up to a deterministic term, provided g is related

to h via the ā∗-Helmholtz projection (i. e. g = ∇v and −∇ · (ā∗∇v + h) = 0).

In fact, (9) can be optimally quantified; the first version of the following result is
due to Duerinckx & Gloria & Otto ’16:

Theorem 3. With F :=
´
g · (a− ā)

(
∇u− ∂iū(ei +∇φi)

)
we have

〈
|F − 〈F 〉|p

〉 1
p .

( ˆ
|g|4
) 1

4
( ˆ

|µd∇f |4
) 1

4 +
( ˆ

|f |4
) 1

4
( ˆ

|µd∇g|4
) 1

4 .

After the usual rescaling of y = ǫx, the l. h. s. is of order ǫµd(
1
ǫ )ǫ

d
2 , which amounts

to a relative error of a full order (for d > 2) w. r. t. to the central limit theorem

scaling of ǫ
d
2 . The proof of this theorem relies again on (7) and is significantly

simplified by Theorem 2, cf. [1].
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Numerical stochastic homogenization by quasilocal effective diffusion
tensors

Dietmar Gallistl

(joint work with Daniel Peterseim)

The multiscale approach of [6], sometimes referred to as Localized Orthogonal
Decomposition (LOD), uses basis functions which are constructed by local correc-
tions to finite element basis functions. These correctors, generally different from
those of analytical homogenization theory, solve some elliptic fine-scale problem on
localized patch domains. Their supports are determined by oversampling lengths
H |logH |, where H denotes the mesh-size of a finite element triangulation TH on
the observation scale. This choice of oversampling is justified by the exponential
decay of the correctors away from their source [6, 4, 5]. The method leads to
quasi-optimal a priori error estimates and can dispense with any assumptions on
scale separation.
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In its Petrov–Galerkin variant the method can be re-interpreted by means of a
quasilocal discrete integral operator, whose kernel is given by the piecewise (with
respect to a finite element triangulation TH) constant matrix field

(1) (AH |T,K)jk :=
1

|T | |K|

(
δT,K

ˆ
T

Ajk dx − ej ·
ˆ
K

A∇qT,k dx

)

(j, k = 1, . . . , d; T,K ∈ TH). The first part including the Kronecker delta corre-
sponds to an ordinary stiffness matrix in a diffusion problem over some bounded
domain D with a symmetric positive definite diffusion tensor A, while the second
part is related to a fine-scale correction. More precisely, as pointed out in [2], there
holds for all piecewise affine finite element functions vH , zH thatˆ

D

ˆ
D

∇vH(x) · (AH(x, y)∇zH(y)) dy dx =

ˆ
D

∇vH · (A∇(1 − C)zH) dx

Here, the fine-scale correction of a finite element function vH over the mesh TH
belongs to the fine-scale spaceW (the kernel of some quasi-interpolation operator)
and is given by the expansion

CvH =
∑

T∈TH

d∑

j=1

(∂jvH |T )qT,j .

where, for any T ∈ T and j ∈ {1, . . . , d}, the function qT,j solves some localized
corrector problem.

In order to provide a fully local model, a further compression step was intro-
duced by [2]. The nonlocal bilinear form is approximated by a quadrature-like
procedure as follows. Define the piecewise constant coefficient AH by

AH |T :=
∑

K∈TH

|K| AH |T,K .

In the case of a diffusion tensor depending on a stochastic parameter ω ∈ Ω,
the same procedure leads to quantities AH(ω) and AH(ω), which still depend on
x ∈ D and ω ∈ Ω. The averaged quantities ĀH and ĀH are then defined by taking
expected values [3].

It turns out that this viewpoint is useful in the stochastic setting because it al-
lows to average in the stochastic variable over effective coefficients rather than over
multiscale basis functions and to thereby characterize the resulting effective model
in terms of quasi-local coefficients and even deterministic PDEs. The proposed
method covers the case of bounded polytopes, which appears still open in analyt-
ical stochastic homogenization. The method itself can dispense with any a priori
information on the coefficient. The validity of the discrete model is assessed via an
a posteriori model error estimator that enters the error estimate in the L2 norm
[3]. In presence of a spectral gap inequality for the diffusion field with correlation
length ε, this estimator can be controlled by the quantity (ε/H)d/2 expected from
the central limit theorem [1].
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Sparse Compression of Expected Solution Operators

Michael Feischl

(joint work with Daniel Peterseim)

We show that the expected solution operator of prototypical linear elliptic partial
differential equations with random coefficients is well approximated by a com-
putable sparse matrix. This result is based on a random localized orthogonal
multiresolution decomposition of the solution space that allows both the sparse
approximate inversion of the random operator represented in this basis as well as
its stochastic averaging. The approximate expected solution operator can be in-
terpreted in terms of classical Haar wavelets. When combined with a suitable sam-
pling approach for the expectation, this construction leads to an efficient method
for computing a sparse representation of the expected solution operator.

For a random (or parameterized) family of prototypical linear elliptic partial dif-
ferential operators A(ω) = − div(A(ω)∇•) and a given deterministic right-hand
side f , we consider the family of solutions

u(ω) := A(ω)−1f

with events ω ∈ Ω in some probability space Ω. We define the harmonically
averaged operator

A :=
(
E[A(ω)−1]

)−1

.

The idea behind this definition is that E(u) satisfies

E[u] = A−1f.

In this sense, A may be understood as a stochastically homogenized operator and
A−1 is the effective solution operator. Note that this definition does not rely on
probabilistic structures of the random diffusion coefficient A such as stationarity,
ergodicity or any characteristic length of correlation. However, we shall empha-
size that A does not coincide with the partial differential operator that would
result from the standard theory of stochastic homogenization (under stationarity
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and ergodicity). Recent works on discrete random problems on Z
d with iid edge

conductivies indicate that A is rather a non-local integral operator [2]. The goal
of the present work is to show that, even in the more general PDE setup of this
paper without any assumptions on the distribution of the random coefficient, the
expected solution operatorA−1 can be represented accurately by a sparse matrices
Rδ in the sense that

‖A−1 −Rδ‖L2(D)→L2(D) ≤ δ

for any δ > 0 while the number of non-zero entries of Rδ scales like δ−d up to
logarithmic-in-δ terms.

The sparse matrix representation of A−1 is based on multiresolution decomposi-
tions of the energy space in the spirit of numerical homogenization by localized
orthogonal decomposition (LOD) [1] and, in particular, its multi-scale generaliza-
tion that is popularized under the name gamblets [3]. The gamblet decomposition
of [3] is slightly modified by linking it to classical Haar wavelets via L2-orthogonal
projections and conversely by corrections involving the solution operator. The re-
sulting problem-dependent multiresolution decompositions block-diagonalize the
random operator A for any event in the probability space. The block-diagonal
representations (with sparse blocks) are well conditioned and, hence, easily in-
verted to high accuracy using a few steps of standard linear iterative solvers. The
sparsity of the inverted blocks is preserved to the degree that it deteriorates only
logarithmically with higher accuracy.

While the sparsity pattern of the inverted block-diagonal operator is indepen-
dent of the stochastic parameter and, hence, not affected when taking the ex-
pectation (or any sample mean) the resulting object cannot be interpreted in a
known basis. This issue is circumvented by reinterpreting the approximate inverse
stiffness matrices in terms of the deterministic Haar basis before stochastic av-
eraging. This leads to an accurate representation of A−1 in terms of piecewise
constant functions. Sparsity is not directly preserved by this transformation but
can be retained by some appropriate hyperbolic cross truncation which is justified
by scaling properties of the multiresolution decomposition.

Apart from the mathematical question of sparse approximability of the expected
operator, the above construction leads to a computationally efficient method for
approximating A−1 when combined with any sampling approach for the approxi-
mation of the expectation. This new sparse compression algorithm for the direct
discretization of A−1 may be beneficial if we want to compute E[u] for multiple
right-hand sides f . This, for example, is the case if we have an independent prob-
ability space ξ ∈ Ξ influencing f = f(ξ) as well as the corresponding solution
U(ω, ξ) := A(ω)−1f(ξ). Then, we might be interested in the average behavior
EΩ×Ξ[U ] which is the solution of

EΩ×Ξ[U ] = EΞ[A−1f ] = A−1
EΞ[f ].(1)

While this can be computed efficiently with sparse approximations of the random
parameter or multi-level algorithms under regularity assumption on the random
parameter, the present approach does not assume any smoothness apart from
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integrability. As a practical example for the problem might serve the Darcy flow
as a model of ground water flow. Here, A is a random diffusion process modeling
the unknown diffusion coefficient of the ground material. The right-hand side f

would be the random (unknown) injection of pollutants into the ground water.
Ultimately, the user would be interested in the average distribution of pollutants
in the ground. Obviously, computing the right-hand side of (1) requires the user
to sample Ω and Ξ successively, whereas computing the left-hand side of (1) forces
the user to sample the much larger product space Ω× Ξ. Therefore, an accurate
discretization of A can help saving significant computational cost.
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Approximation of high order homogenized wave equations for long
time wave propagation

Timothée Pouchon

(joint work with Assyr Abdulle)

Abstract

While the standard homogenized wave equation describes the effective behavior
of the wave at short times, it fails to capture the macroscopic dispersion that
appears at long times. To describe the dispersion, the effective model must include
additional operators of higher order. In this work, we present a practical way to
construct effective equations of arbitrary order in periodic media, with a focus on
their numerical approximation. In particular, we exhibit an important structure
hidden in the definition of the high order effective tensors which allows a significant
reduction of the computational cost for their approximation.

1. Introduction

Let a(y) be a [0, 1)d-periodic tensor, Ω ⊂ Rd be a hypercube and for ε > 0 let
uε : [0, T ]× Ω → R be the solution of the wave equation

(1) ∂2t u
ε(t, x)−∇x ·

(
a
(
x
ε

)
∇xu

ε(t, x)
)
= f(t, x),

for (t, x) ∈ (0, T ]× Ω, where we impose Ω-periodic boundary conditions, the ini-
tial conditions and the source f are assumed to have O(1) frequencies and O(1)
support. The hypercube Ω can be arbitrarily large but its length in every direc-
tions must be an integer multiple of ε. To accurately approximate uε, standard
numerical methods require a grid resolution of order O(ε) in the whole domain,
which leads to a prohibitive computational cost as ε → 0. In the regime ε ≪ 1,
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homogenization theory provides a way to approximate uε at a cost that is inde-
pendent of ε : the result states that limε→0 u

ε = u0 in L∞(0, T ; L2(Ω)), where u0

solves the homogenized equation

(2) ∂2t u
0(t, x)− a0ij∂

2
iju

0(t, x) = f(t, x),

equipped with the same initial and boundary conditions as (1). The homogenized
tensor a0 is constant and can be computed by means of (first order) correctors,
solutions of (first order) cell problems, i.e., periodic elliptic PDEs in [0, 1)d involv-
ing a(y). In practice, we observe that for long times t = O(ε−α) α ≥ 2, dispersion
effects that appear in the L2 behavior of uε(t, ·) are not captured by u0(t, ·). High
order effective equations are effective models that describe the dispersion (with an
accuracy that should increase with the order). Several definitions of high order
effective equations were recently proposed [5, 4, 3]. Although the form of the equa-
tions are not the same, they all involve the same high order effective quantities.

2. Family of effective equations of arbitrary order

We present the high order models introduced in [3]. For q ∈ Symn(Rd), a sym-
metric tensor of order n, we denote the operator q∇n

x =
∑
qi1··in∂

n
i1··in . For a

timescale O(ε−α), the effective equations have the form

(3) ∂2t ũ− a0∇2
xũ−

⌊α/2⌋∑

r=1

(−1)rε2rL2rũ = Qf,

where the operators L2r and Q are defined as

L2r = a2r∇2r+2
x − b2r∇2r

x ∂
2
t , Q = 1 +

⌊α/2⌋∑

r=1

(−1)rε2rb2r∇2r
x ,

and a2r ∈ Sym2r+2(Rd), b2r ∈ Sym2r(Rd). Note that if a2r, b2r are non-negative,
(3) is well-posed.

The effective tensors a2r, b2r are derived by generalizing the technique intro-
duced in [2, 1] for O(ε−2) timescales. Using asymptotic expansion we construct
an adaptation Bεũ that approximates uε. An energy estimate tells us that for ũ to
be close to uε up to O(ε−α) timescales, Bεũ − uε must satisfy the wave equation
with a right hand side of order O(εα+1) in the L∞(0, ε−αT ; L2(Ω))-norm. We then
combine (i) the ansatz

Bεũ(t, x) = ũ(t, x) +

α+2∑

k=1

χk(t, x, y)∇k
xu(t, x),

where the k-th order corrector χk =
{
χk
i1··ik

}
has value in Symk(Rd), and (ii)

inductive Boussinesq tricks (we use (3) to replace time derivatives with space
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derivatives) and obtain the cell problems, which have the cascade form:

(4)

Aχ1
i1= F1

i1(a),

Aχ2
i1i2= F2

i1(a, χ
1, a0),

Aχ2r+1
i1··i2r+1

=F2r+1
i1··i2r+1

(
a, χ1, . . . , χ2r

)
,

Aχ2r+2
i1··i2r+2

=F2r+2
i1··i2r+2

(
a, χ1, . . . , χ2r+1, a2r−a0⊗b2r

)
,

where A = −∇y ·
(
a∇y ·

)
and Fk

i1··ik
are explicitly defined in [3]. While the odd

order cell problems are well-posed unconditionally, the solvability of the even order
cell problems provides constraints on the tensors a2r, b2r:

(5) a2r − a0 ⊗ b2r =S q̌
r
(
χ1, . . . , χ2r+1

)
,

where q̌r
(
χ1, . . . , χ2r+1

)
is a constant tensor of order 2r + 2 computed by means

of the correctors χ1 to χ2r+1 and =S indicates that the equality is relaxed up to
symmetry.

Under sufficient regularity of the data, we prove that if the tensors {a2r, b2r}⌊α/2⌋r=1

are non-negative and verify (5), then (3) is well-posed and its solution satisfies

‖uε − ũ‖L∞(0,ε−αT ;W ) ≤ Cε,

where the constant C is independent of ε and Ω and the norm ‖ · ‖W is equivalent
to the L2(Ω)-norm up to the Poincaré constant. This result ensures that any set

{a2r, b2r}⌊α/2⌋r=1 satisfying the requirements gives an effective equation. Hence, this
result implicitly defines a family of effective equations over timescales O(ε−α).

3. Cost reduction for the computation of the effective tensors

In [3], we provide an explicit procedure to compute the effective tensors {a2r, b2r}
in practice. As q̌r may happen to be negative, the main challenge is to build non-
negative a2r that satisfy (5). The preeminent computational cost of the procedure
is the calculation of q̌r. The natural—but naive—formula for q̌r requires to solve
the cell problems for all the distinct entries of χ1 to χ2r+1. However, exploiting
a hidden structure of the cell problems, we prove that the tensor q̌r involved
in (5) can in fact be computed from χ1, . . . , χr+1. Thanks to this result, the

computational cost to compute the effective tensors {a2r, b2r}⌊α/2⌋r=1 is significantly
reduced. Specifically, it allows to avoid solving

N(α, d) =

(
2⌊α/2⌋+ 1 + d

d

)
−
(⌊α/2⌋+1+ d

d

)

cell problems (e.g., N(6, 2) = 21, N(6, 3) = 85).
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Figure 1. Comparison of uε and ũ for α=4 (ũ2). See [3] for details.
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Numerical Homogenization of Multiscale Fault Networks

Ralf Kornhuber

(joint work with Martin Heida, Joscha Podlesny, Harry Yserentant)

Viscoelastic contact problems involving rate- and state-dependent (RSD) friction
conditions on multiscale fault networks play a crucial role in understanding the
scaling properties of deformation accumulation.

After a short revision of recent results concerning analysis and numerical anal-
ysis of rigid contact problems with RSD friction [6, 7], we concentrate on a scalar
elliptic model problem with jump conditions on a hierarchy of networks

Γ(K) =

K⋃

k=1

Γk ⊂ Q ⊂ R
d

of interfaces Γk, k = 1, . . . , with fractal limit Γ = Γ(∞). We derive an associated
’fractal’ function spaceH which then is characterized in terms of generalized jumps
and gradients, and we prove continuous embeddings of H into L2(Q) and Hs(Q)
with s < 1/2 [1].
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For a given hierarchy of shape-regular triangulations TK that resolve the interfaces
ΓK and associated finite element spaces SK , we consider numerical homogenization
of elliptic self-adjoint problems on H in terms of subspace correction. To this end,
we provide a stable local projection operator ΠK : H → SK with an approximation
property in the sense that

‖ΠKv‖ . ‖v‖, ‖v − ΠKv‖L2(Q) . (dK + hK)‖v‖, v ∈ H,

holds with meshsize hK of SK and granularity dK of Γ(K). Uniform convergence
rates of a preconditioned cg-iteration together with error bounds for an LOD-type
finite element discretization are then obtained in the usual way [2, 3, 4]. The
underlying subspace decomposition can be directly extended to a truncated non-
smooth multigrid method for visco-elastic fault networks with RSD friction [5],
and first numerical experiments are shown.
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Connecting atomistic-to-continuum and continuum-to-kinetic models

Charalambos Makridakis

We discuss in more detail two problems involving two-scale modeling. The rist
is the construction and analysis of consistent approximate atomistic-continuum
energies to atomistic models arising in crystalline materials. The second is related
to statistical inference of solutions of nonlinear hyperbolic problems. To compute
measure valued solutions to such equations we propose new discrete kinetic models
and we study corresponding formulations of CL.
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Deep Gaussian processes and applications in Bayesian inverse
problems

Aretha Teckentrup

(joint work with Matt Dunlop, Mark Girolami, Andrew Stuart)

Deep Gaussian processes have received a great deal of attention in the last couple
of years, due to their ability to model very complex behaviour. The recent work
[2] provides a general framework for constructing deep Gaussian processes, which
includes the well-known, original construction in [1] as a particular example.

In general, a deep Gaussian process uses a sequence {un}n∈N0 of random pro-
cesses that are conditionally Gaussian:

u0 ∼ GP
(
0, C

)
,

un+1|un ∼ GP
(
0, C(un)

)
.

We refer to un−1 as a deep Gaussian process with n layers, since n processes are
used to construct un−1. The previous layer un is used to define the covariance
operator C(un) of un+1|un, and this can be done in many different ways. A
particular construction is to use un to define the correlation length scale of un+1|un,
e.g. through a non-stationary Matèrn covariance operator [3]:

(1) σ−1F (un)
d
4−

α
2 (−∆+ F (un))

α
2 un+1 = ξ,

where ξ denotes white noise, σ, α > 0 are parameters and d denotes the input di-
mension. Other constructions include the convolution of non-stationary covariance
kernels and convolution with white noise [2].

Numerical examples in [2] show that, in the context of regression, the construc-
tion (1) allows for the efficient reconstruction of functions with many different
length scales. The number of length scales present, as well as their location in the
domain, are automatically learnt, and no prior information on this is needed.

A theoretical analysis in [2] further shows that under very mild assumptions,
the sequence {un}n∈N0 of deep Gaussian processes with n layers, has a limiting
distribution π, in the sense that the distribution of un tends to π in total variation
as n → ∞. An interpretation of this is that deep Gaussian processes only have
finite depth, in the sense that for a large number of layers n, adding an additional
layer to the process will not change its distribution.
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Generalised FEs and Energy Minimisation: Domain Decomposition,
Optimal Local Approximation & Local Model Order Reduction

Robert Scheichl

The solution of elliptic variational problems of the form

(1) a(u, v) = L(v), for all v ∈ V,

to be solved for u ∈ V continues to be a challenging task when the solution has a
strong multiscale behaviour.

Let Ω ⊂ R
d be a bounded domain. Two prominent examples for (1) are those

of stationary subsurface flow where the bilinear form has the form

(2) a(u, v) =

ˆ
Ω

K∇u · ∇v dx, V = H1
0 (Ω)

and K = K(x) is the rock permeability, as well as linear elasticity where

(3) a(u, v) =

ˆ
Ω

Cε(u) : ε(v) dx, V =
(
H1

0 (Ω)
)d
,

ε(u) = 1
2 (∇u + ∇uT ) is the strain tensor, and C = (Cijkl) is the fourth-order

stiffness tensor with Cijkl = Cijkl(x). In typical multiscale applications, the per-
meability tensor in (2) and the stiffness tensor in (3) can vary over many orders of
magnitude and on a variety of length scales in a complicated and often anisotropic
way, e.g. in the context of carbon fibre composites modelling. To simplify the
presentation in this extended abstract, we restrict the general discussion to the
scalar model problem (2) and the case of a scalar permeability K(x) = α(x)I.

Two related research questions arise when attempting to numerically solve (2):
either one may use classical (e.g. piecewise linear, continuous) finite elements on a
sufficiently fine mesh Th that ’resolves’ the coefficient variation and aim to find an
h-optimal and α-robust preconditioner for the resulting, large linear system, or one
may aim to find a more complicated, α-robust approximation space V ms

H associated
with a coarser mesh TH that does not capture the coefficient variation (i.e.H ≫ h).
However, since h-optimal preconditioners for (2) can only be obtained by using
multilevel approaches, the key task in both approaches is the construction of an α-
robust coarse space V ms

H . In this talk, I will highlight the advances that have been
made in various communities in tackling this question and the commonalities.
I will then focus on some theoretical tools from the domain decomposition (or
subspace correction) literature to tackle the high contrast case, i.e. variation of α
over many orders of magnitude and in particular large jumps in α.

The particular focus will be on generalised FE spaces [1, 14, 8]: Given a partition
of unity {χi}Ni=1 associated with Ω (e.g. standard pw. lin. FEs w.r.t. a mesh TH)
and sets of local functions {Ψi,j}mi

j=1 ⊂ Vh associated with each χi, we define

(4) V ms
H := span{Φi,j} with Φi,j := Ih(χiΨi,j),

with Ih denoting the nodal FE interpolation operator onto the fine FE space Vh
with h ≪ H . However, relations to the localisable orthogonal decomposition
(LOD) [12] and gamblets [16, 15] will also be pointed out.
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Classical subspace correction theory relies on the stability of the L2-projection
in the H1-seminorm and on a weak approximation property in the L2-norm [24].
A similar condition lies at the heart of the LOD-analysis [12]. This crucial link
was highlighted in [11] (see also H. Yserentant’s talk). However, the constants in
both theories depend on the contrast, i.e. the ratio of αmax = maxx∈Ω α(x) and
αmin = minx∈Ω α(x). The same is true for gamblets [15], generalised FEs [2] and
local model order reduction methods [3]. For a truly α-robust theory it is necessary
to work instead in energy norm ‖ · ‖a and weighted L2-norm ‖v‖20.α =

´
Ω α|v|2 dx,

and to show the existence of an operator Π : Vh → V ms
H s.t.

(5) ‖Πv‖a . ‖v‖a and ‖v −Πv‖0,α . H‖v‖a .
It is in fact possible to show (5) for standard piecewise linear FEs V ms

H = VH
(where mi = 1, Ψi,1 = χi and χi is the ith hat function on TH), provided a
weighted Poincaré inequality [17] holds locally on some (extended) patches around
each coarse grid element T ∈ TH , independently of α. This relies in turn on (local)
quasi-monotonicity of the coefficient α, which is always achievable with some local
adaptation of the coarse grid TH in ’critical’ areas, cf. [20]. Using the same idea,
the LOD analysis can be made independent of the contrast, cf. [18].

However, for more complicated coefficient variation, especially for channelised
or layered media, it is necessary to choose mi > 1 in certain parts of the do-
main. The key tool to obtain an optimal local set of basis functions {Ψi,j}mi

j=1

is then energy minimisation or – related – the solution of local eigenproblems in
local ’patches’ Ωi ⊃ supp(χi). Various interrelated choices exist in the subspace
correction literature [23, 9, 10, 19, 21, 7, 22] (with precursors in the algebraic
multigrid literature [13, 5]), in the area of generalised FEs [2, 8], as well as in the
context of model order reduction [3]; LOD [12, 18] and gamblets [16, 15] can also
be interpreted in this way.

A unifying view of all those approaches in the context of subspace correction
was given in [19], treating them as local energy minimisation problems in a suit-
able pair of Hilbert spaces subject to an abstract set of functional constraints.
A fresh look at the key tool in this paper, namely a type of abstract Bramble-
Hilbert Lemma, shows that, provided mi and the patch Ωi are chosen sufficiently
large, it should be possible to prove (5) and thus to open the door to a contrast-
independent approximation theory for generalised FEs, LOD and gamblets. In
LOD, for example, increasing the size of the patch Ωi automatically increases also
the number mi of local constraints. The presentation of this unifying theory will
form the heart of the presentation. So far the only contrast-robust theory can be
found in [6] (see also E. Chung’s talk) for a multiscale method with three nested
energy minimisations, the cost of which could potentially be avoided.

In the final part of the talk, I will discuss the influence and importance of the
choice of partition of unity, e.g. using a harmonic (or multiscale FE) to capture
all the small scale variation as in [10, 6], as well as of the choice of functionals. In
particular, I will discuss the advantages of the choice of eigenproblem in [21, 22]
and demonstrate its robustness on a challenging, industrial-scale elasticity problem
in aerospace composites modelling [4].
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