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Abstract. The subject of Operator Algebras is a flourishing broad area of
mathematics which has strong ties to many other areas in mathematics in-
cluding Functional/Harmonic Analysis, Topology, (non-commutative) Geom-
etry, Geometric Group Theory, Dynamical Systems, Descriptive Set Theory,
Model Theory, Random Matrices and many more. The goal of the Oberwol-
fach meeting is to give its participants a global view of the subject to maintain
and strengthen contacts between researchers from these different directions,
making it possible for the most important developments and techniques to
be disseminated.
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Introduction by the Organizers

The 2019 C∗-algebras workshop at Oberwolfach showcased some of the most im-
portant breakthroughs in Operator Algebras made in the past years and set the
agenda for numerous potential future developments. A key element in most of
the lectures and discussions was the constant interaction between the two major
research directions within Operator Algebras, namely C∗-algebras and von Neu-
mann algebras, and with other fields of mathematics like quantum information
theory, ergodic theory, geometric group theory, etc.

Since the early days of Operator Algebras in the work of Murray and von
Neumann in the 1940s, the classification of all “sufficiently small” C∗-algebras
and von Neumann algebras has been a constant major research direction. On
the von Neumann algebra side, this culminated in the complete classification of all
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amenable von Neumann algebras in the period 1975-1985 by Connes and Haagerup.
For C∗-algebras, this led to Elliott’s classification program aiming to classify simple
nuclear (i.e. amenable) C∗-algebras by K-theoretic invariants.

During the past decades, an enormous progress has been made in this classifi-
cation program. A necessary condition for classifiability emerged from counterex-
amples of Rørdam-Villadsen and through the Toms-Winter conjecture: one has to
restrict to C∗-algebras with finite nuclear dimension, which is a non-commutative
analogue of having finite covering dimension. We now know that simple nu-
clear separable unital C∗-algebras with finite nuclear dimension and satisfying
the Universal Coefficient Theorem (UCT) are completely classified by K-theory
and traces. This relies on the combination of a huge amount of work approaching
the problem from two sides: the “abstract” side proving that all such nuclear C∗-
algebras can be approximated by simpler building blocks and the “concrete” side
classifying these limits of building blocks by K-theory and traces. The first two
lectures of the workshop by Tikuisis and White highlighted the ongoing work to di-
rectly prove the classification theorem in an “abstract” manner, directly deducing
isomorphism of C∗-algebras from isomorphism of the Elliott invariant.

The only hypothesis in the classification theorem that could still hold automat-
ically is the UCT. Lin’s lecture showed how extension theory of C∗-algebras might
lead to a proof that every nuclear C∗-algebra satisfies the UCT. Also the natural
question which “easy constructions” exhaust all classifiable C∗-algebras was ad-
dressed during the workshop. Strung explained the range of the Elliott invariant
for C∗-algebras given by minimal dynamical systems and Li showed that all clas-
sifiable C∗-algebras may be obtained from twisted étale groupoids. The natural
next step in our understanding of nuclear C∗-algebrasA will be the classification of
actions of amenable groups on A. At this moment, there are not even conjectural
statements of how such a classification may look like, but the first steps of such a
program were presented in Szabó’s lecture.

There is no “disintegration” theory that will allow one to extend the classifi-
cation of simple nuclear C∗-algebras to the non-simple case. Nonetheless there
are plenty, although still sporadic, classification results for non-simple nuclear C∗-
algebras. Elliott’s classification of AF-algebras from the 1970s is one such example.
James Gabe gave a lecture on his new and simplified proof of Kirchberg’s classifica-
tion (from the 1990s) of the non-simple strongly purely infinite nuclear C∗-algebras
in terms of an ideal related KK-theory, which, as a corollary, yields a complete
classification of the O2-stable nuclear C∗-algebras in terms of their primitive ideal
spaces.

A central point in the recent progress on the classification program is the usage
of von Neumann algebraic (i.e. measurable) methods in the study of C∗-algebras,
which are inherently topological objects. Also the converse is of increasing impor-
tance. Topological boundary actions of discrete groups are being used to prove
structural properties of von Neumann algebras and their dynamics. A highlight in
this direction was presented in the lectures by Boutonnet and Houdayer, who ob-
tained a non-commutative version of the Nevo-Zimmer factor theorem, providing
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a striking dichotomy for actions of higher rank lattices as SL(n,Z) on arbitrary
von Neumann algebras equipped with a stationary state.

Driven by the long standing Connes Embedding Problem, asking whether any
finite number of elements in a II1 factor can be approximated in noncommutative
moments by matrices, there is an increasingly intense interaction between Operator
Algebras and Quantum Information Theory. The lectures of Musat and Paulsen
demonstrated how operator algebraic insights lead to new results in quantum
information theory and how, conversely, progress in quantum information theory
might one day lead to solving the Connes embedding problem.

Another major driving force for von Neumann algebra research is the Free
Group Factor Problem: do the group von Neumann algebras of the free groups
Fn depend on n? An important role in unraveling the structure of such non-
amenable II1 factors M is played by the different embeddings of the hyperfinite
II1 factor R into M . Popa’s lecture provided an overview of the usage of these
embeddings and of new results on the existence of coarse embeddings R →֒ M .
Conjecturally, all maximal amenable subfactors R ⊂ L(Fn) are coarse and possibly
even freely complemented, meaning that L(Fn) can be written as the free product
of R and a complement P . In his lecture, Jekel presented new non-commutative
transport of measure techniques, generalizing work of Guionnet-Shlyakhtenko, that
lead in particular to such free complementation results and other isomorphism
results between free group factors and factors generated by specific families of
non-commutative random variables.

One of the main technical tools to understand the structure of a given operator
algebra are central sequences, i.e. bounded sequences of elements that are asymp-
totically central. The concept has been introduced by Murray and von Neumann
and they used it to prove the non-isomorphism of three II1 factors: the hyperfinite
II1 factor R, the free group factor L(F2) and their tensor product R⊗L(F2). Cen-
tral sequences were used by McDuff in her characterization of II1 factors M that
tensorially absorb the hyperfinite II1 factor, which is a key ingredient for Connes’
classification of amenable II1 factors, as well as for the current classification re-
sults for nuclear C∗-algebras. McDuff observed that all known examples of central
sequences in a II1 factor M arise from a so-called residual decreasing sequence
of subalgebras An ⊂ M . Ioana provided in his lecture the first examples of II1
factors without such a residual sequence of subalgebras.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Elizabeth Gillaspy, Matthew Kennedy and Jesse D.
Peterson in the “Simons Visiting Professors” program at the MFO.
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and Christopher Schafhauser)
Classifying ∗-homomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2263

Magdalena Musat (joint with Mikael Rørdam)
Infinite dimensional aspects of the analysis of quantum information
theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2271

Adrian Ioana (joint with Pieter Spaas)
II1 factors with exotic central sequence algebras . . . . . . . . . . . . . . . . . . . . . 2273

Mateusz Wasilewski (joint with Martijn Caspers and Yusuke Isono)
Quantum Markov semigroups on q-Gaussian algebras . . . . . . . . . . . . . . . . 2276

Narutaka Ozawa (joint with Jon Bannon and Amine Marrakchi)
Full factors and co-amenable inclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2278

Dan-Virgil Voiculescu
Commutants mod normed ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2280

Mikael de la Salle (joint with Jean Lécureux, Stefan Witzel)
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Abstracts

Classifying ∗-homomorphisms

Aaron Tikuisis and Stuart White

(joint work with Jorge Castillejos, Samuel Evington, and Wilhelm Winter, and
with José Carrión, James Gabe, and Christopher Schafhauser)

For close to 30 years, the Elliott programme to identify those separable nuclear
C∗-algebras which can be reasonably classified by K-theoretic data has been a
major focus of C∗-algebras research. This major project can be viewed as the C∗-
analogue of the celebrated work of Connes on the structure of injective II1 factors
leading to the complete classification of separably acting amenable von Neumann
algebras.1 Combining the work of large numbers of researchers over decades, we
now have a definitive theorem in the simple case.

Theorem (The classification theorem). Regular, simple, separable, and nuclear
C∗-algebras in the UCT class are classified by K-theory and traces.

Moreover, the range of the invariant is understood. That is all possible K-
groups (including the position of the unit in the unital case), traces and the pairings
between them2 are known, and there is a construction of a classifiable3 C∗-algebra
for each. Thus we have a book of classifiable C∗-algebras which we can read to
uncover structure, even in cases where computation of the invariant might be out
of reach. For but one spectacular example, see Xin Li’s work on Cartan masas in
classifiable C∗-algebras described elsewhere in these proceedings.

Before proceeding further, let us discuss the adjectives in the classification theorem,
and put them into context by considering dynamical examples. Given an action
α : G y X of a countable discrete group on a compact Hausdorff space, when is
the crossed product C∗-algebra C(X) ⋊α G classifiable? For classification to be
generally applicable, we must be able to tackle questions of this nature for various
natural constructions, giving nice sufficient conditions in terms of the underlying
(in this case dynamical) data.

• Separability. This is completely necessary for classification, which relies
on a back-and-forth argument — the Elliott intertwining argument — and
is entirely analogous to the separable predual assumption required in von
Neumann classification results.4 Our assumptions on G and X ensure
C(X) ⋊α G is always separable.

1Using Murray and von Neumann’s uniqueness of the hyperfinite II1 factor, and finished by
Haagerup’s celebrated uniqueness of the hyperfinite III1 factor.

2We do not explicitly need the order structure on K0 in the invariant, only the pairing with
traces. Taking this revisionist view on the Elliott invariant, it follows that A and A⊗ Z always

have the same Elliott invariant for all simple separable nuclear A.
3Henceforth we refer to a C∗-algebra covered by the classification theorem as ‘classifiable’
4Indeed, even Murray and von Neumann’s uniqueness of the hyperfinite II1 factor uses an

intertwining type argument.
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• Simplicity. This corresponds to studying von Neumann algebra factors.
However, every (separably acting) von Neumann algebra is a direct integral
of factors, so from the factor case one obtains complete results for all
separably acting injective von Neumann algebras. This is not the case in
the C∗-setting, so much more work will be required to obtain classification
and structural results without simplicity. In the setting of actions, when α
is free and minimal (i.e. all orbits are dense) the reduced crossed product
will always be simple.5

• Nuclearity. This is the appropriate notion of amenability for C∗-algebras,
corresponding to injectivity of von Neumann algebras and readily testable
in examples. C(X) ⋊α G is nuclear when the action is amenable (as hap-
pens when G is amenable).

• The UCT class. This is the class of C∗-algebras KK-equivalent to an
abelian C∗-algebra. It is a fundamental challenge — arguably the fun-
damental challenge — in the theory of nuclear C∗-algebras to determine
whether all separable nuclear C∗-algebras are in the UCT class. But every
example that has been concretely written down is. In particular, Tu’s work
shows that C(X) ⋊α G is in the UCT class when the action is amenable
([14]).

• Regularity. Examples of Villadsen, Rørdam and Toms in the early 2000s
show that one cannot expect to classify all separable simple nuclear C∗-
algebras by reasonably computable invariants of a K-theoretic nature.6

The obstruction is perforation (in the Cuntz semigroup), and is shown to
occur in certain inductive limits of algebras of the form Mni

(C(Xi)), where
the dimension of the spaces Xi grow much faster than ni. To exclude this
phenomena it became apparent that regularity conditions must be included
in the classification theorem.

The study of these regularity conditions has been driven over the last
decade by the Toms–Winter conjecture, which predicts that three very dif-
ferent looking conditions — finite nuclear dimension (a non-commutative
generalisation of finite covering dimension), Z-stability (tensorial absorp-
tion of the Jiang–Su algebra Z), and strict comparison (unperforation in
the Cuntz semigroup) — should all be equivalent for simple, separable,
non-elementary, nuclear C∗-algebras. By now, most of this conjecture is
a theorem (see [18] for an overview of the state of the art). In particular,
finite nuclear dimension and Z-stability are equivalent for simple, sepa-
rable, non-elementary, nuclear C∗-algebras (the last steps being taken in
[2, 1]); these are the algebras we call regular.

5In fact, one only needs the action to be topologically free, i.e., the action is free on a dense

set of points.
6As George Elliott points out, it is not inconceivable that separable simple nuclear C∗-algebras

can be classified by invariants derived from or in the spirit of Cuntz semigroup; though outside
the regular setting, such invariants will be very difficult to compute precisely in examples.
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While the regularity hypotheses of finite nuclear dimension and Z-
stability are equivalent, establishing them tends not to be equivalently
easy. In relatively straightforward situations it is often easier to prove
finite nuclear dimension than Z-stability. Indeed, for Z itself, establishing
that dimnuc(Z) = 1 is fairly straightforward from the construction, but
proving that Z ∼= Z ⊗ Z is not.7 For our crossed product examples, di-
rect computation of the nuclear dimension is carried out through either
the Rohklin dimension (a coloured extension of the Rohklin theorem of
Ornstein and Weiss), or dynamical asymptotic dimension, and has been
a major area of research [7, 12, 6]. A perhaps-near-optimal result for a
direct computation is that the crossed product C(X)⋊αG will have finite
nuclear dimension when X has finite covering dimension and G is finitely
generated and nilpotent [19]. The estimate on the nuclear dimension will
depend on both the covering dimension of X and on coarse type properties
of G; in particular for G = Zd, the estimates go to infinity with d.

For more complex examples, new techniques make Z-stability obtain-
able when direct nuclear dimension calculations seem out of reach. Indeed,
Kerr’s breakthrough work on almost finiteness [8] (building on Matui’s
earlier concept for groupoids with zero-dimensional unit space) now pro-
vides a general tool for obtaining Z-stability for crossed products, without
having to pass through finite nuclear dimension. Combining this with var-
ious developments in tiling theory of amenable groups one has Z-stability
for crossed products C(X) ⋊ G where X has finite covering dimension,
and all finitely generated subgroups of G have sub-exponential growth [9];
for example Z∞ = limd→∞ Zd is covered by this method (as are finitely
generated groups of intermediate growth), but not by Rohklin dimension
approaches. Moreover, work of Elliott and Niu [4] (and very recent further
work of Niu) shows that even when the space X is not finite dimensional,
one can still hope to obtain Z-stability for the crossed product when the
action has mean dimension zero.

Using works of Kirchberg, Rørdam, Winter, and Zacharias, regularity gives rise
to dichotomy: a simple C∗-algebras which is either of finite nuclear dimension, or
Z-stable, is necessarily either stably finite, or purely infinite. The classification
theorem respects this dichotomy, in that the purely infinite and stably finite cases
are currently handled separately, with the former established by Kirchberg and
by Phillips (using Kirchberg’s absorption theorems) in the ’90s. We have nothing
new to say on that subject, so for the remainder of the report, we focus on the
stably finite case.

7The meta-reason is that Z is naturally one-dimensional, whereas the construction of Z ⊗Z

is naturally two-dimensional. Accordingly Jiang and Su’s proof that Z ∼= Z ⊗ Z is one of the
major highlights of the large body of work classifying inductive limits in the ’90s; an alternative
approach to this is currently being developed by Schemaitat.
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For stably finite C∗-algebras, the unital version of the classification theorem
was obtained in 2015, with the last ingredients being [5, 3, 13]. The key ingre-
dient is Lin’s concept of internal approximations by nice building blocks up to a
small error in trace (inspired by Popa’s proof of injectivity implies hyperfiniteness).
Very roughly speaking, [5] classifies unital, simple separable nuclear C∗-algebras
whose tensor products with UHF-algebras have tracial approximations of a par-
ticular form. Maps between UHF-stable algebras of this class are classified up to
a strong form of asymptotic unitary equivalence, which allows access to Winter’s
localisation technique [16], and gives rise to classification up to Z-stability. The
required tracial approximations are obtained in [3] using Winter’s classification-
by-embeddings [17] in the presence of enough quasidiagonality: quasidiagonality
of all traces. This last condition was shown to be automatic in the presence of the
UCT in [13]. In all but one of these steps, when regularity is used it is through
Z-stability; the exception is the classification-by-embeddings theorem which uses
finite nuclear dimension, and so Winter’s long and difficult proof [15] that finite
nuclear dimension implies Z-stability also forms a component of the classification
theorem as proven in 2015. As it turns out, the methods used to prove Z-stability
imply finite nuclear dimension in [2] also enable one to access classification-by-
embeddings directly from Z-stability, so Z-stability should now be viewed as the
main regularity hypothesis for classification.

In the remainder of the report, we discuss a new abstract approach to the
classification theorem growing out of Schafhauser’s breakthrough work [10, 11],
aiming to compare and contrast it with tracial approximation methods. This
arose through trying to better understand the quasidiagonality ingredient in clas-
sification. Indeed, a certain ‘stable uniqueness’ theorem of Dadarlat–Eilers plays
a major role in the quasidiagonality theorem of [13]; this was inspired by the use
of stable uniqueness theorems in the work of Eilliott, Gong, Lin and Niu. Subse-
quently Schafhauser developed an abstract conceptual approach to the quasidiag-
onality theorem, by rephrasing it as a lifting problem and using KK-theory much
more directly (through a Weyl–von Neumann theorem of Elliott and Kuracovsky).
These new techniques are central in the abstract approach to classification.

Thus we’ve collectively come full circle: starting with a classification argument,
extracting a key ingredient from it to obtain quasidiagonality, simplifying and ab-
stracting the argument there, and then extending the ideas back to give a new
approach classification. Quasidiagonality has twice proven to be exactly the right
level of difficulty to enable the transfer of ideas between researchers to take place.

The route to classifying separable C∗-algebras is through the Elliott intertwining
argument, built from both existence and uniqueness theorems for ∗-homomorph-
isms between them (classification of morphisms). The point is that building a
∗-isomorphism between C∗-algebras A and B directly is nigh on impossible, so
one constructs these by better and better approximations to ∗-isomorphisms. Of
course, directly constructing a ∗-homomorphism A→ B isn’t much easier, so one
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allows for approximate ∗-homomorphisms,8 which are easier to obtain. But by
enlarging the class of morphisms to approximate ∗-homomorphisms, it becomes
harder to establish the uniqueness component of classification — for this we must
enlarge the invariant. Fortunately for us, a detailed analysis of the invariant needed
to classify ∗-homomorphisms was undertaken by Gong, Lin and Niu for maps
between simple nuclear, UHF-stable C∗-algebras with good tracial approximations
in [5]. We use exactly their invariant, but work in a very general setting. Indeed,
in our approach to the classification of maps A → B, we divide the hypotheses
into three groups:

• Domain side. Hypotheses on A,
• Morphism. Hypotheses on the allowed maps, and
• Co-domain side. Hypotheses on B.

Classification of algebras will then be obtained by symmetrising assumptions, i.e.
using the class of algebras satisfying both the domain and co-domain side hypothe-
ses, and for which the identity map satisfies the morphism hypotheses.

Approximately multiplicative maps can be notationally cumbersome, and are
best handled with ultrapowers or sequence algebras. Let ω be either an ultrafilter
or the co-finite filter on N. Given a C∗-algebra B, set

(1) Bω := ℓ∞(B)/{(xn)∞n=1 ∈ ℓ∞(B) : lim
n→ω

‖xn‖ = 0}.

In this way a sequence (φn)∞n=1 of approximate ∗-homomorphisms from A to B cor-
responds to an exact ∗-homomorphism A → Bω. Moreover, when A is separable,
∗-homomorphisms A → Bω will be approximately unitarily equivalent precisely
when they are unitarily equivalent. So we aim to classify, in as much general-
ity as possible, ∗-homomorphisms A → Bω up to unitary equivalence. Whenever
this is done,9 reindexing arguments give classification results for ∗-homomorphisms
A→ B.

The first step in the process uses von Neumann algebraic methods. We now re-
strict to co-domains B such that the collection T (B) of tracial states is non-empty
and compact,10 for example unital stably finite exact C∗-algebras. Each trace
τ ∈ T (B) induces a 2-norm ‖x‖2,τ := τ(x∗x)1/2 on B, and we obtain the uni-
form trace norm as ‖x‖2,u := supτ∈T (B) ‖x‖2,τ . Define the uniform trace sequence
algebra or ultrapower by

(2) Bω := ℓ∞(B)/{(xn)∞n=1 ∈ ℓ∞(B) : lim
n→ω

‖xn‖2,u = 0}.

Notice that Bω naturally quotients onto Bω (as ‖ · ‖2,u ≤ ‖ · ‖). The extensive
use of uniform tracial ultrapowers and their interplay with the norm ultrapower
was initiated in the ground breaking work of Matui and Sato on the Toms–Winter

8∗-linear maps which are approximately multiplicative on specified finite sets.
9By an invariant behaving suitably.
10This will be a standing hypothesis in our classification of ∗-homomorphisms. However,

when we reach the classification of algebras, we can weaken this assumption to stable finiteness
by working with suitable hereditary subalgebras.
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conjecture, and has been crucial to the use of von Neumann technique in C∗-
algebras ever since. A key example arises when B has a unique trace τ ; in this
case (and when ω is an ultrafilter) Bω is naturally identified with the ultrapower
of the II1 factor πτ (B)′′. In general, Bω is not a von Neumann algebra, however
the key new ingredient in passing from Z-stability to finite nuclear dimension in
[2] also gives enough structure for Bω in order to be able to use von Neumann like
methods.

Theorem 1. For B nuclear and Z-stable, Bω ‘behaves like’ an ultrapower of finite
von Neumann algebras.

There is a precise meaning of ‘behaves like’, namely that B has complemented
partitions of unity as set out in [2].

A consequence of Connes’ theorem is that if A is a separable nuclear C∗-algebra,
and M a finite von Neumann algebra, then ∗-homomorphisms A→ Mω are clas-
sified by traces. This follows as such morphisms will factor through the finite
part of the bidual of A, which is hyperfinite by Connes, and so can be approx-
imated by finite dimensional C∗-algebras; then, the classification of maps from
finite dimensional C∗-algebras into finite von Neumann algebras amounts simply
to Murray and von Neumann’s classification of projections by traces. Our first use
of Theorem 1 is that when Bω ‘behaves like’ a finite von Neumann algebra we will
have a similar classification of maps by traces. We now want to work towards a
classification of maps into Bω, by ‘lifting’ the classification of maps back to Bω .
The rest of this report outlines our ongoing joint work with Carrión, Gabe and
Schafhauser which achieves this.

Given separable, unital, nuclear C∗-algebras A and B such that B is Z-stable,
and maps φ, ψ : A→ Bω which agree on traces, what extra information is needed
to deduce that φ and ψ are unitarily equivalent? Writing q : Bω → Bω for the
canonical surjection, which has kernel JB (the trace-kernel ideal) it follows that
qφ and qψ agree on traces, so are unitarily equivalent. But, as Bω behaves like a
von Neumann algebra, the unitary witnessing this equivalence can be written as
an exponential, and hence lifted to Bω. After conjugating one of the maps by this
unitary, we may assume that qφ = qψ. In this way (φ, ψ) defines a Cuntz-pair
and hence an element of KK(A, JB).11 Combining work of Dadarlat–Eilers with
the Elliott–Kucerovsky theorem and using Z-stability crucially to destabilise, we
obtain the following uniqueness result.

Theorem 2. Use notation as above, and assume in addition that φ, ψ are full
(i.e., that φ(a) and ψ(a) each generate Bω as an ideal, for any nonzero a ∈ A).
Then φ and ψ are unitarily equivalent if and only if the class [φ, ψ] in KK(A, JB)
vanishes.

11There is a large detail here — JB is not stable, nor σ-unital, but nevertheless it is ‘stable
enough’ for KK-computations to be performed. The correct notion, identified by Schafhauser in
his pioneering work on these methods [10, 11] is that of separable stability, and we can get this
from enough comparison on B.



C*-Algebras 2269

The next step is to find a way of computing the KK-class in Theorem 2. It
is notable that we do not need to assume that A is in the UCT class in this
theorem; however, the UCT assumption becomes necessary in order to compute
this KK-class in terms of the following functorial, K-theoretic invariant (also
used by Gong–Lin–Niu in their classification of maps between rationally TAF C∗-
algebras.)

Definition 1. Let A be a unital C∗-algebra. Then

inv(A) := (K(A), T (A), K̂alg
1 (A), [1A]0, ρA,ThA, aA)

where:

• K(A) =
⊕

i=0,1

⊕∞
n=0Ki(A;Z/n) is total K-theory, as a graded module

over the ring of Bockstein operators, and [1A]0 ∈ K0(A;Z).
• T (A) is the set of tracial states on A,

• K̂alg
1 (A) =

⋃∞
n=1 U(Mn(A))/CU(Mn(A)), a type of Hausdorffized alge-

braic K1, (where, for a unital C∗-algebra B, CU(B) = 〈uvu∗v∗ : u, v ∈
U(B)〉 is the commutator subgroup of the unitary group U(B) of B).

• The remaining parts are maps as follows:

K0(A)
ρA
−→ Aff(T (A))

ThA−→ Kalg
1 (A)

aA−→ K1(A);

ρA is the pairing map, ThA is the Thomsen map, and aA is the natural
quotient map.

If A,E are unital C∗-algebras, a morphism of invariants Φ : inv(A) → inv(E)
consists of maps

ΦK = (Φi,n)i=0,1;n∈N :K(A) → K(E) a graded Bockstein morphism,

ΦT :T (E) → T (A) a continuous affine function,

Φalg :K̂alg
1 (A) → K̂alg

1 (E) a group morphism

such that Φ0,0([1A]0) = [1E ]0 and

K0(A) Aff T (A) K̂alg
1 (A) K1(A)

K0(E) Aff T (E) K̂alg
1 (E) K1(E)

ρA

Φ0,0

ThA

(ΦT )∗

aA

Φalg Φ1,0

ρE ThE aE

commutes.

For φ, ψ as in Theorem 2, and when A is in the UCT class, the class of [φ, ψ] in
KK(A,B∞) amounts to the difference between K(φ) and K(ψ). The information
contained in the class in KK(A, JB) (and not seen in terms of K) is captured by

the difference between K̂alg
1 (φ) and K̂alg

1 (ψ), essentially using Lin’s rotation map.
In this fashion, Theorem 2 can be turned into a uniqueness theorem using inv

as the invariant. Combining it with the corresponding existence theorem which
we do not discuss here, gives rise to our main classification of ∗-homomorphisms
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result, which we state in fuller generality than we did for Theorem 2. Indeed we
state the result more generally than we defined the invariant above!

Theorem 3. Let A be a separable, exact C∗-algebra in the UCT class. Let B be a
nuclear, Z-stable C∗-algebra, such that T (B) is compact and nonempty, and every
densely defined trace on B is bounded. Then for any faithful amenable12 morphism
Φ : inv(A) → inv(Bω), there exists a full ∗-homomorphism φ : A → Bω such that
inv(φ) = Φ. The map φ is unique up to approximate unitary equivalence.
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[19] G. Szabó, J. Wu, and J.Zacharias. Rokhlin dimension for actions of residually finite groups,

Ergodic Theory Dynam. Systems, 39 (2019), 2248–2304.

12Φ is faithful (respectively amenable) if the image of ΦT is contained in the set of faithful
(respectively amenable) traces on A.



C*-Algebras 2271

Infinite dimensional aspects of the analysis of quantum information
theory

Magdalena Musat

(joint work with Mikael Rørdam)

Factorizable quantum channels, introduced by C. Anantharaman-Delaroche in [1]
within the framework of operator algebras, have recently found important applica-
tions in the analysis of quantum information theory, revealing new infinite dimen-
sional phenomena, and leading also to reformulations of the Connes Embedding
Problem.

A factorizable channel on Mn(C) is a completely positive trace-preserving map
(UCPT, for short) into Mn(C) that factors through a finite tracial von Neu-
mann algebra (M, τM ) via unital ∗-homomorphisms α, β : Mn(C) → M , so that
T = β∗ ◦ α, where β∗ is the adjoint of β. In previous work with U. Haagerup,
[6], these channels were equivalently characterized as arising from an ancillary
tracial von Neumann algebra (N, τN ) and a unitary u in Mn(C) ⊗ N such that
T (x) = (idn ⊗τN )(u(x ⊗ 1N)u∗), for all x ∈ Mn(C). It was shown in [6] that
there are non-factorizable channels in all dimensions n ≥ 3, and that each is a
counterexample to a conjectured restoration in the asymptotic limit of the clas-
sical Birkhoff theorem, the so-called asymptotic quantum Birkhoff conjecture, due
to J. Smolin, F. Verstraete and A. Winter [14]. In the current preprint [8], joint
additionally with M. B. Ruskai, we provide a recipe for constructing large classes
of non-factorizable channels in all dimensions n ≥ 3, and we further analyze the
convex structure of unital quantum channels. In dimension n = 3, we exhibit ex-
amples of (factorizable) extreme points in the UCPT class, which are not extreme
in either the UCP or the CPT class. The study of extreme points of the convex
set of factorizable channels is an interesting problem, currently being investigated.

Given a factorizable channel, the ancilla and its size are not uniquely deter-
mined! For example, if Sn is the completely depolarizing channel in dimension
n ≥ 2, Sn(x) = trn(x)1n, x ∈ Mn(C), where trn is the normalized trace on

Mn(C), and 1n is the identity n × n matrix, then Cn2

, Mn(C), but also (a cor-
ner of) the von Neumann algebra free product (Mn(C), trn) ∗ (Mn(C), trn) are all
possible ancillas. While it was shown in [11] that in dimension n ≥ 3, there are
channels not admitting a full matrix algebra as an ancilla, it was an open question
whether every factorizable channel does admit a finite dimensional ancilla. In the
recent work [12], we show that von Neumann algebras of type II1 are, indeed,
needed to describe such channels (at least) in dimensions n ≥ 11, thus witnessing
infinite dimensional phenomena in the analysis of quantum information theory.

The proof uses analysis of correlation matrices arising from projections, respec-
tively, unitaries, in tracial von Neumann algebras. Namely, we consider the set
D(n) of n × n matrices arising from second-order moments of n-tuples of projec-
tions in finite von Neumann algebras with a (normal, faithful) tracial state, and
its subset Dfin(n) consisting of those matrices that arise similarly from n-tuples
of projections in finite-dimensional von Neumann algebras. Using a theorem of S.
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A. Kruglyak, V. I. Rabanovich and Y. S. Samoilenko, [10], describing which scalar
multiples of the identity operator on a (finite dimensional) Hilbert space arise as
the sum of n projections, we prove that Dfin(n) is not closed, whenever n ≥ 5. As
an application, we give a more direct proof of the main result from [4] that the set
of synchronous quantum correlation matrices Cs

q (n, 2) is non-closed when n ≥ 5.
In his seminal paper [9], E. Kirchberg reformulated the Connes Embedding

Problem (CEP) in terms of the set G(n) of n × n matrices of correlations arising
from unitaries in finite von Neumann algebras with a (normal, faithful) tracial
state. In the further refinement by K. Dykema and K. Juschenko, [3], a positive
answer to CEP is shown to be equivalent to the statement that F(n) = G(n), for
all n ≥ 3, where F(n) is the closure of the set of n × n matrices of correlations
arising from unitaries in full matrix algebras. A trick originating in ideas of O.
Regev, W. Slofstra and T. Vidick, which we carry out in the setting of finite von
Neumann algebras, allows us to conclude that the set Ffin(2n+ 1) of matrices of
correlations arising from unitaries in finite dimensional von Neumann algebras is
non-closed, whenever Dfin(n) is non-closed, i.e., for all n ≥ 5.

Finally, the non-closure of the sets Ffin(2n + 1), for n ≥ 5, together with the
connection between G(n) and the set of factorizable Schur multipliers on Mn(C),
established in [7], yield the existence of factorizable Schur multipliers with no finite
dimensional (or, even stronger, no type I) ancilla, in each dimension ≥ 11. We
provide concrete such examples. A result of N. Ozawa (cf. the Appendix in [12])
shows that the construction in [10] of an n-tuple of projections with sum equal to
a multiple α of the identity can be realized in the hyperfinite II1 factor R, for all
admissible values of α, except, possibly, for two extremal ones. This implies that
the factorizable Schur multipliers with no finite dimensional ancilla found above
admit the hyperfinite II1 factor R as an ancilla (except, possibly, for the cases
corresponding to the above mentioned extremal values of α).

In the very recent paper [13], we recast the description of factorizable maps on
Mn(C) in terms of traces on the unital universal free product Mn(C) ∗C Mn(C).
This new viewpoint leads to central questions in C∗-algebra theory.

More precisely, we use the Choi matrix to relate a factorizable quantum chan-
nel in dimension n ≥ 2 to a certain matrix of correlations, further shown to be
parameterized by a trace on the free unital product M := Mn(C) ∗C Mn(C). We
show that factorizable channels admitting finite dimensional ancilla are parame-
terized by finite dimensional traces on M , and factorizable channels that can be
approximated by ones possessing a finite dimensional ancilla are parameterized by
traces in the closure of the finite dimensional ones.

The C∗-algebra M is known to be residually finite dimensional (RFD), [5], and
semiprojective, [2]. It is not generally the case that the set of finite dimensional
traces on an RFD C∗-algebra A necessarily is weak∗-dense in the whole trace
simplex of A. For the special case of the C∗-algebra M , we prove that the closure
of the finite dimensional traces is equal to the set of hyperlinear traces. This shows
that CEP has an affirmative answer if and only if all traces on M are hyperlinear,
for all n ≥ 3. We finally show that each metrizable Choquet simplex is a face of
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the simplex of tracial states on Mn(C) ∗C Mn(C). We leave open whether this is
the Poulsen simplex.
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II1 factors with exotic central sequence algebras

Adrian Ioana

(joint work with Pieter Spaas)

A uniformly bounded sequence (xk) in a II1 factor M is called central if it sat-
isfies limk‖xky − yxk‖2 = 0, for every y ∈ M . Central sequences have played
a fundamental role in the study of II1 factors since the beginning of the subject
with Murray and von Neumann’s property Gamma [13]. A separable II1 factor
M has property Gamma if it admits a central sequence (xk) which is not trivial,
in the sense that infk‖xk − τ(xk)1‖2 > 0. Murray and von Neumann proved that
the hyperfinite II1 factor has property Gamma, while the free group factor L(F2)
does not, and thus gave the first example of two non-isomorphic separable II1 fac-
tors [13]. In the late 1960s, binary properties of central sequences (e.g., whether
any two central sequences commute) were used to provide additional examples of
non-isomorphic separable II1 factors in [3, 5, 17, 19]. Shortly after, McDuff used
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a refined analysis of central sequences to construct a continuum of such factors
[9, 10]. A key property of these factors is the existence of a residual sequence, in
the following sense introduced in [12, Definition 2]:

Definition 1. A von Neumann subalgebra A of a separable II1 factor M is called
residual if limk ‖xk−EA(xk)‖2 = 0, for any central sequence (xk) in M . A sequence
(An)n∈N of von Neumann subalgebras of M is called a residual sequence if

(1) An+1 ⊂ An, for any n,
(2) An is residual in M , for any n, and
(3) if xk ∈ Ak and ‖xk‖ ≤ 1, for any k, then (xk) ⊂M is a central sequence.

Remark. Let ω be a free ultrafilter on N. A decreasing sequence (An)n∈N of von
Neumann subalgebras of M is residual if and only if the central sequence algebra,
M ′ ∩Mω [11], is equal to the “tail algebra” ∩n∈NA

ω
n .

In [12], McDuff noted that it was unknown whether every II1 factor admits a
residual sequence. The main goal of this work is to provide the first examples of
II1 factors with no residual sequences. Before stating our results, we note that
several large, well-studied classes of II1 factors admit a residual sequence:

• Any II1 factor without property Gamma.
• The hyperfinite II1 factor R.
• Any II1 factor M which is strongly McDuff, i.e., of the form M = N⊗̄R,

where N is a II1 factor without property Gamma. If (Rn)n∈N is any
residual sequence of R, then Connes’ characterization of property Gamma
[4, Theorem 2.1] implies that (1 ⊗Rn)n∈N is a residual sequence of M .

• Any (finite or infinite) tensor product M = ⊗̄K
k=1Mk, where K ∈ N∪{∞},

and for every k, Mk is a II1 factor admitting a residual sequence.

We are now ready to state our main result which gives examples of II1 factors
with no residual sequences, and thereby settles McDuff’s question [12].

Theorem 1. Let Γ be a countable non-amenable group. For every k ∈ N, let
πk : Γ → O(Hk) be an orthogonal representation such that π⊗l

k is weakly contained
in the left regular representation of Γ, for some l = l(k) ∈ N, and there exist unit
vectors ξk ∈ Hk such that ‖πk(g)(ξk) − ξk‖ → 0, as k → ∞, for every g ∈ Γ.

Let Γ y (Bk, τk) be the Gaussian action associated to π⊕∞
k , (B, τ) :=

⊗̄k∈N(Bk, τk) and Γ y (B, τ) be the diagonal product action. Define M = B ⋊ Γ.
Then the II1 factor M does not admit a residual sequence of von Neumann

subalgebras.

The proof of Theorem 1 relies on Popa’s deformation/rigidity theory [16]. A key
ingredient in the proof is Boutonnet’s work [1, 2], which generalizes some of Popa’s
work in the context of Bernoulli actions [14, 15], and provides strong structural
information about subalgebras Q of II1 factors M associated to Gaussian actions
that have a “large” relative commutant, Q′ ∩M .

To provide examples to which Theorem 1 applies, let Γ = F2 be the free group
on two generators. Denote by |g| the word length of an element g ∈ Γ with respect
to a free set of generators. By [6], the function ϕk : Γ → R given by ϕk(g) = e−|g|/k
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is positive definite. Then the GNS orthogonal representations πk associated to ϕk

satisfy the hypothesis of Theorem 1.
In [7, Theorems E and F], the authors settled in the negative a problem of

Jones and Schmidt [8, Problem 4.3] by providing examples of countable ergodic
p.m.p. equivalence relations R on a probability space (X,µ) such that the inclusion
(A ⊂ M) := (L∞(X) ⊂ L(R)) satisfies the following: M ′ ∩ Aω is not equal to
∩nB

ω
n , for any decreasing sequence of von Neumann subalgebras (Bn)n∈N of A with

Bn+1 ⊂ Bn of finite index for every n ∈ N. Theorem 1 allows us to strengthen
the negative solution to [8, Problem 4.3] given in [7] by providing examples of
equivalence relations R for which M ′ ∩ Aω cannot be written as ∩nB

ω
n , for any

decreasing sequence (Bn)n∈N of von Neumann subalgebras of A.
Next, let us consider the following “lifting problem”: if P,Q ⊂Mω are separable

commuting von Neumann subalgebras, do there exist commuting von Neumann
subalgebras Pn, Qn ⊂M , for every n ∈ N, such that P ⊂

∏
ω Pn and Q ⊂

∏
ω Qn?

This problem has a positive answer if P or Q is amenable. The answer is also
positive if P = M and M has a residual sequence, (An)n∈N. Indeed, in this case,
for any separable subalgebra Q ⊂ M ′ ∩Mω, we can find a sequence of integers
nk → ∞ such that Q ⊂

∏
ω Ank

and M ⊂
∏

ω(A′
nk

∩M).
On the other hand, the above lifting problem has a negative answer in general.

Thus, we prove that if Γ is not inner amenable (e.g., Γ = F2), then the conclusion
of Theorem 1 holds when we replace Gaussian actions by free Bogoljubov actions
[18] in its hypothesis. Moreover, there is a separable von Neumann subalgebra Q
of M ′ ∩Mω such that there is no sequence (An)n∈N of von Neumann subalgebras
of M satisfying Q ⊂

∏
ω An ⊂M ′ ∩Mω. Consequently, the lifting problem has a

negative answer for the commuting subalgebras P = M and Q of Mω.
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Quantum Markov semigroups on q-Gaussian algebras

Mateusz Wasilewski

(joint work with Martijn Caspers and Yusuke Isono)

A quantum Markov semigroup on a finite von Neumann algebra (M, τ) is a one-
parameter semigroup (Tt)t>0 of normal, ucp (unital, completely positive), trace-
preserving maps Tt : M →M , which is continuous in the ultrastrong topology. We
moreover assume that the GNS implementations Tt : L2(M) → L2(M), mapping
xΩ to Tt(x)Ω, are self-adjoint. In this case we can write Tt = e−t∆ for a certain
positive operator A : L2(M) → L2(M), usually unbounded, which we call the
generator of the semigroup; most of the information about the semigroup will be
contained in the spectrum of ∆.

Existence of nice quantum Markov semigroups can provide information about
approximation properties of von Neumann algebras. In fact, amenability (see
[CS17]) and Haagerup property (see [JM04]) can always be witnessed by a quan-
tum Markov semigroup, whose generator has discrete spectrum going to infinity
(sufficiently fast in the case of amenability). An appropriate semigroup of Fourier
multipliers was also critical in Haagerup’s proof of the metric approximation prop-
erty of the reduced C∗-algebra of the free group (see [Haa79]).

Strong solidity, introduced by Ozawa and Popa in [OP10], is an important
structural property of nonamenable von Neumann algebras – it implies primeness
(no nontrivial factorisation as a tensor product) and lack of Cartan subalgebras. It
turns out that in a number of cases strong solidity can be approached via quantum
Markov semigroups.

The key to obtaining results in this direction is a construction by Cipriani and
Sauvageot (see [CS03]) of a derivation ∂ into a bimodule (which we call the gradient
bimodule) H over M such that ∆ = ∂∗∂; it should be viewed as an analogue of
the formula △ = div ◦ grad for the Laplacian.
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Of particular importance is whether this bimodule is weakly contained in the so-
called coarse correspondence L2(M) ⊗ L2(M); it means that the homomorphism
from M ⊗ Mop to B(H), describing the left and right actions, extends to the
minimal tensor product. The application to strong solidity can made via the
property AO+ – there exists a locally reflexive, ultraweakly dense C∗-subalgebra
A ⊂M and a ucp map θ : A⊗minA

op → B(L2(M)) such that θ(x⊗ yop)− xyop is
compact for all x ∈ A and yop in Aop. Isono proved in [Iso15] that property AO+,
when combined with the completely bounded approximation property, implies
strong solidity. Weak containment provides a ∗-homomorphism from A⊗min A

op

to B(H) and we need a way to transfer it to B(L2(M)).
This can be done using the derivation ∂, assuming that the generator ∆ satisfies

certain conditions. In this case we can construct an isometry S : L2(M) → H ,

given by ei 7→
∂ei

‖∂ei‖
for a particular choice of an orthonormal basis. Conjugation

by S yields a map from B(H) to B(L2(M)) and additional constraints allow us
to conclude that property AO+ is satisfied – this is the main result of [CIW19].

Theorem 1. Let (M, τ) be a finite von Neumann algebra and let (Tt)t>0 be a
quantum Markov semigroup with generator ∆. If ∆ is filtered and has subexpo-
nential growth, and the gradient bimodule H is weakly contained in the coarse
bimodule, then M satisfies the property AO+ (assuming that we can ensure the
local reflexivity condition).

We need to explain the conditions appearing in the statement of the theorem.
We say that ∆ has subexponential growth if its spectrum is discrete, tends to

infinity and limn→∞
λn+1

λn
= 1, where {λ0 < λ1 < . . . } is the complete set of

eigenvalues of ∆, without multiplicities. It is filtered if

• the resolvent of ∆ is compact;
• for each eigenvalue λ there is a subspace A(λ) ⊂ M such that A(λ)Ω ⊂
L2(M) is the eigenspace corresponding to λ;

• A :=
⊕∞

k=0 A(λn) is ultraweakly dense in M and we have A(λn)A(λm) ⊂⊕n+m
k=|n−m| A(λk).

In order to apply this result, we still need a criterion for weak containment of the
gradient bimodule in the coarse bimodule. It turns out that looking at properties
of the map

L2(M) ∋ xΩ 7→ Tt(∆(axb) − ∆(ax)b − a∆(xb) + a∆(x)b)Ω ∈ L2(M),

where a, b ∈ A, is key. Namely, if this map is Hilbert-Schmidt for all t > 0 (we
say then that the semigroup is immediately gradient Hilbert-Schmidt), then the
gradient bimodule is weakly contained in the coarse bimodule.

The canonical example to which this result applies is the free group factor L(Fn)
with the semigroup given by λg 7→ e−t|g|λg, where |g| denotes the word length of
g; this reproves one of the main results of [OP10].

In the case of q-Gaussian algebras Γq(HR) (where q ∈ (−1, 1)), new results are
obtained. The semigroup in this case is constructed using the so-called second
quantisation procedure and is analogous to the semigroup considered in the case
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of free group factors; it is called the Ornstein-Uhlenbeck semigroup. Checking
that the generator is filtered and has subexponential growth is simple, only the
Hilbert-Schmidt estimates are challenging. The main result is the following.

Theorem 2. The Ornstein-Uhlenbeck semigroup on the q-Gaussian algebra Γq(HR)

is immediately gradient Hilbert-Schmidt for |q| 6 (dimHR)
− 1

2 . Hence Γq(HR) sat-

isfies property AO+ in this case.

For small values of dimHR it is an improvement of a result by Shlyakhtenko from
[Shl04].

References

[CIW19] M. Caspers, Y. Isono, and M. Wasilewski. L2-cohomology, derivations and quantum
Markov semi-groups on q-Gaussian algebras, 2019. arXiv:1905.11619.

[CS03] Fabio Cipriani and Jean-Luc Sauvageot. Derivations as square roots of Dirichlet forms.
J. Funct. Anal., 201(1):78–120, 2003.

[CS17] Fabio Cipriani and Jean-Luc Sauvageot. Amenability and subexponential spectral
growth rate of Dirichlet forms on von Neumann algebras. Adv. Math., 322:308–340,
2017.

[Haa79] Uffe Haagerup. An example of a nonnuclear C∗-algebra, which has the metric approxi-
mation property. Invent. Math., 50(3):279–293, 1978/79.

[Iso15] Yusuke Isono. Examples of factors which have no Cartan subalgebras. Trans. Amer.
Math. Soc., 367(11):7917–7937, 2015.
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Full factors and co-amenable inclusions

Narutaka Ozawa

(joint work with Jon Bannon and Amine Marrakchi)

Property Γ was introduced by Murray and von Neumann for a type II1 factor to
distinguish the hyperfinite factor and the free group factor. Since then, it turns
out that property Γ is intimately connected to various important aspects of the
structure of II1 factors. Recently property Γ has also been introduced for tracial
C∗-algebras and played a significant role in the classification theory of simple
amenable C∗-algebras. By Connes’s characterization [4] (and Marrakchi [5] in the
type III setting), a factor does not have property Γ if and only if it is full in the
sense that M ′ ∩Mω = C1 for any non-principal ultrafilter ω.

In this talk, I give an outline of our solution to Popa’s conjecture from 1986
[8]: Let N ⊂ M be a co-amenable subfactor of type II1. If M is full, so is N .
This conjecture has been solved in the cases where N ⊂M has finite index [6] and
where M = N ⋊Γ with Γ amenable and Γ y N an outer (cocycle) action [7, 2, 3].
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In fact, Pimsner and Popa [6] have obtained a stronger result that N ′ ∩Mω = C1
for any finite-index irreducible subfactor N ⊂ M with M full. This is what we
will generalize.

Theorem 1 ([1]). Let M be a full factor of any type and N ⊂ M be a co-
amenable von Neumann subalgebra with a faithful normal conditional expectation.
Then, there is a non-zero projection p ∈ N ′ ∩M such that p(N ′ ∩Mω)p = Cp. In
particular, N is full if it is a factor.

This has a cute corollary which strengthens a recent result of Tomatsu [9].

Corollary 2. Let G y M be an outer action of a compact group G on a full
factor M . Then, MG ⊂ M is a co-amenable inclusion with (MG)′ ∩Mω = C1.
In particular, GyM is minimal and MG and M ⋊G are full.

We outline here the proof of Theorem 1 for the case M is a factor of type II1.
The first step is the simple observation that if M is full, then every M -M bimodule
H that is weakly equivalent to L2(M) must contain L2(M) (the converse is also
true). Since N ⊂M is co-amenable, one has

(∗) ML
2(M)M � ML

2(M) ⊗
N
L2(M)M

by definition. Suppose that � also holds in (∗). Then ⊆ holds by the above
observation. Thanks to Popa’s intertwining bimodule method, ⊆ is equivalent
to existence of a nonzero p ∈ N ′ ∩ M such that pN ⊂ pMp is an irreducible
subfactor of finite index. Now the above-mentioned Pimsner–Popa theorem yields
that p(N ′ ∩Mω)p = Cp. However, it is not clear when � holds in (∗). We will
see it holds if we replace N with P := (N ′ ∩Mω)′ ∩M . This is enough for the
proof of Theorem 1. Indeed, since N ⊂ P ⊂ M , the inclusion P ⊂ M is again
co-amenable. Also, N ′ ∩Mω = P ′ ∩Mω and P = (P ′ ∩Mω)′ ∩M .

Lemma 1. If P = (P ′ ∩Mω)′ ∩M , then ML
2(M) ⊗

P
L2(M)M � ML

2(M)M .

Sketch of Proof. Let EP denote the trace preserving conditional expectation of M
onto P . It suffices to show: For every finite subset F ⊂ M and ǫ > 0, there are
unitary elements u1, . . . , uk ∈ U(M) such that EP (x) ≈ǫ

1
k

∑
uixu

∗
i for all x ∈ F .

(This amounts to 〈x(1 ⊗P 1)y, 1 ⊗P 1〉 = τ(EP (x)y) ≈ 1
k

∑
i〈xûiy, ûi〉.) In fact,

we prove a stronger assertion: For every x ∈M the unique element

z ∈ Ω := conv‖ · ‖2{uxu∗ : u ∈ U(P ′ ∩Mω)} ⊂Mω

that attains the minimal 2-norm in Ω belongs to M . This will imply that z ∈
(P ′ ∩Mω)′ ∩M = P and z = EP (x). Let’s write z = (z(n))n ∈ Mω. It is left to
show z(n) is ω-convergent w.r.t. the 2-norm. Suppose for a contradiction that z(n)
is non-convergent. Then by a re-indexing trick, one can find (z(nl))l and (z(n′

l))l
in Ω such that ‖z(nl)− z(n′

l)‖2 ≥ ǫ0 > 0. It follows that 1
2 (z(nl) + z(n′

l)) in Ω has
smaller 2-norm than z; A contradiction. �
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19 (1986), 57–106.

[7] S. Popa; Maximal injective subalgebras in factors associated with free groups. Adv. Math.
50 (1983), 27–48.

[8] S. Popa; Correspondences. INCREST preprint (1986).
[9] R. Tomatsu; Centrally free actions of amenable C∗-tensor categories on von Neumann

algebras. Preprint. arXiv:1812.04222

Commutants mod normed ideals

Dan-Virgil Voiculescu

To Alain Connes’ noncommutative geometry, the normed ideals of compact op-
erators are purveyors of infinitesimals. A numerical invariant associated to an
n-tuple of hermitian operators and a normed ideal, the modulus of quasicentral
approximation, plays a key role in the study of perturbations from these ideals.

Recently, the commutant mod the normed ideal of the n-tuple of hermitian
operators has brought new structure to this area. These are Banach algebras of
operators, with respect to a natural norm, and there is a closed ideal of compact
operators and a “Calkin algebra” of the commutant (the quotient by the ideal).
The connection with the modulus of quasicentral approximation appears in that:
the compact ideal has a contractive approximate unit iff the modulus is zero and
the compact ideal has a bounded approximate unit iff the modulus is finite.

For the Calkin algebra of the commutant we get that vanishing of the modulus
implies the Calkin algebra is a C∗-algebra (isometrically) , while if the modulus
is only bounded, then the Calkin algebra is isomorphic to a C∗-algebra (but the
isomorphism may change the norm). In case the normed ideal is the ideal of
compact operators and the C∗-algebra of the n-tuple of operators does not contain
non-zero compact operators, the Calkin algebra of the commutant mod the normed
ideal is the Paschke dual of the C∗-algebra of the n-tuple of operators.

However, the Calkin algebras of commutants are quite far from being smooth
subalgebras of Paschke duals, as has been shown by results on the K-theory of
commutants mod normed ideals. The K-theory results have been obtained using
perturbation theory facts, which have connections with the modulus of quasicentral
approximation, in particular from invariance of absolutely continuous spectra, like
classical consequences of the Kato-Rosenblum theorem and older results of myself
generalizing the Kato-Rosenblum theorem to n-tuples of commuting operators.



C*-Algebras 2281

On the other hand, under suitable assumptions, there are many similarities of the
compact ideal, commutant, and Calkin algebra of the commutant with the usual
compact operators, bounded operators, and usual Calkin algebra (the case of the
“normed ideal zero”). These similarities include Banach space duality properties,
coronas, and more.

Recently, I have found that the perturbation machinery based on the modulus
of quasicentral approximation and commutants mod normed ideals can be gen-
eralized to deal with hybrid normed ideal perturbations, that is, instead of one
normed ideal we have an n-tuple of normed ideals and the perturbation of each of
the components of the n-tuple of operators is from the corresponding ideal in the
n-tuple of ideals. Surprisingly, this continues to produce sharp results for pertur-
bations of n-tuples of commuting hermitian operators, the main part of the proof
being about singular integrals of mixed homogeneity.

References to the original papers can be found in my survey paper: “Commu-
tants mod normed ideals” arXiv:1810.12497.

Strong Property (T) for Ã2-buildings

Mikael de la Salle

(joint work with Jean Lécureux, Stefan Witzel)

Let Γ = 〈S〉 be a finitely generated group, and ℓ : Γ → N the corresponding length
function.

We start by recalling the following characterization of Kazhdan’s property (T):
Γ has property (T) if C∗(Γ), the full C∗-algebra of Γ, carries a Kazhdan projection,
that is an idempotent P which is invariant (γP = P for every γ ∈ Γ) and belongs
to the closure of {f ∈ CΓ |

∑
γ f(γ) = 1}. Such a P is unique, and corresponds

to the orthogonal projection on the space of invariant vectors for the universal
represention of Γ, or alternatively the spectral projection relative to {0} of the
Laplacian ∆ =

∑
s∈S∪S−1(s− 1)∗(s− 1).

Vincent Lafforgue was led to introduce a strengthening, allowing to handle
not only unitary representations, but also representations with small exponential
growth of the norms.

Definition 1. Γ has strong property (T) if there exists ε > 0 such that, for
every C > 0, the Banach algebra Csℓ+C(G) carries a Kazhdan projection, where
Csℓ+C(G) is the completion of CΓ for the norm

sup{‖π(f)‖ | (π,H) Hilbert space representation,‖π(γ)‖ ≤ esℓ(γ)+C ∀γ ∈ Γ}.

Lafforgue’s definition was motivated by his work on the Baum-Connes conjec-
ture, as strong property (T) is a natural obstruction to apply the approach he
developped for the Baum-Connes conjecture (as in [12]), see [11]. But in the same
way as Kazhdan’s property (T) has turned to be central in many different areas
of mathematics because of the ubiquity of unitary representations, there are many
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natural contexts where non unitary representations of group occur. And Laf-
forgue’s strong property (or his variants) have also several consequences, among
other to coarse geometry (obstruction to embedding discrete graphs in Banach
spaces [9, 10, 8]), to operator algebras [13, 4, 6, 5, 8] and very recently to dynam-
ics [1, 2].

Until recently, the only groups known to have strong property (T) where higher
rank semisimple algebraic groups or their close relatives (eg lattices) [9, 14, 7, 18].

The purpose of the talk was to provide examples not coming from algebraic
groups, namely groups acting geometrically on locally finite Ã2-buildings. A pos-
sible definition of a locally finite Ã2-building is a simply connected 2-dimensional
simplicial complex where the link of every vertex is the incidence structure of a
finite projective plane. It is more enlightening to think of it as a collection of tri-
angle tesselations of the plane glued together in a tree-like way. The prototypical
examples are the Bruhat-Tits buildings of PGL3(F) for a non-archimedean locally
compact field F, but there are many other examples [17, 15].

Theorem 1. Let X be a locally finite Ã2-building. Every group admitting an
action by isometries on X with finitely many orbits of vertices and finite stabilizers
has strong property (T).

By the essence of strong property (T), the proof has at the same time to involve
local analysis on the group (as the respresentation is a priori unbounded on the
group), but at the same time at larger and larger scales (as locally, a representation
with small exponential growth rate s but large constant C cannot be distinguished
from a representation with large exponential growth rate). So we try to adapt the
method of [9] to our setting where we do not have an ambient locally compact
group (in the typical case, the automorphism group is discrete [16]). Indeed, the
idea in [9] was to derive strong property (T) from a study of the local behaviour
of K-finite matrix coefficients of representations of G, where K = PGL3(O) is
the maximal compact subgroup of G = PGL3(F), for O the ring of integers of
F. For K-invariant matrix coefficients, there is a rather direct translation in our
setting : we are trying to understand locally but at infinitely many different scales
the harmonic analysis of the Hecke algebra introduced in [3], which plays the rôle
of the algebra of K-biinvariant functions of G. The tools of [3] are of no use in the
setting of non-unitary representations, so we have to developp a more local study
based on the geometry of some structure that we call biaffine Hjelmslev planes,
which encode the geometry of large balls in Ã2-buildings. Non K-invariant matrix
coefficients of G do not make sense in our general setting, so we replace its study by
an analysis of a phenomenon Hecke-harmonic implies constant for representations
of Γ.

We also generalize the results of [13] and prove that groups as in Theorem 1 do
not have the approximation property of Haagerup and Kraus, and more generally
that the non-commutative Lp space of the von Neumann algebra of Γ does not
have the operator space approximation property for p /∈ [ 43 , 4]. What happens for
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p ∈ [ 43 , 4] remains an intriguing open question, in particular in the Bruhat-Tits
case.
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Noncommutative Choquet theory

Matthew Kennedy

(joint work with Kenneth R. Davidson)

We introduce a new and extensive theory of noncommutative convexity along with
a corresponding theory of noncommutative functions. We establish noncommu-
tative analogues of the fundamental results from classical convexity theory, and
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apply these ideas to develop a noncommutative Choquet theory that generalizes
much of classical Choquet theory.

The central objects of interest in noncommutative convexity are noncommuta-
tive convex sets. The category of compact noncommutative sets is dual to the
category of operator systems, and there is a robust notion of extreme point for a
noncommutative convex set that is dual to Arveson’s notion of boundary repre-
sentation for an operator system.

We identify the C∗-algebra of continuous noncommutative functions on a com-
pact noncommutative convex set as the maximal C∗-algebra of the operator system
of continuous noncommutative affine functions on the set. In the noncommuta-
tive setting, unital completely positive maps on this C∗-algebra play the role of
representing measures in the classical setting.

The continuous convex noncommutative functions determine an order on the set
of unital completely positive maps that is analogous to the classical Choquet order
on probability measures. We characterize this order in terms of the extensions and
dilations of the maps, providing a new perspective on the structure of completely
positive maps on operator systems.

We also establish a noncommutative generalization of the Choquet-Bishop-de
Leeuw theorem asserting that every point in a compact noncommutative convex
set has a representing map that is supported on the extreme boundary. In the
separable case, we obtain a corresponding integral representation theorem.
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A non-nuclear C∗-algebra with the Weak Expectation Property and
the Local Lifting Property

Gilles Pisier

In [2] Kirchberg gave the first example of a non-nuclear C∗-algebra A such that

(1) A⊗min A
op = A⊗max A

op.

In other words, there is a unique C∗-norm on the algebraic tensor product A⊗Aop,
(but there is some C∗-algebra B for which the latter uniqueness does not hold for
A ⊗ B. In the first lines of that paper [2], he observed that this could be viewed
as the analogue for C∗-algebras of the author’s construction in [5] of an infinite-
dimensional Banach space X such that the completions of X⊗X for the projective
and injective tensor norms coincide. It was thus tempting for the author to try to
adapt the Banach space approach in [5] to the C∗-algebra setting to produce new
examples satisfying (1). In some sense the present paper is the result of this quest
but it started to be more than wishful thinking only a few years ago.
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Kirchberg ([3] see also [6]) proved that if A has the Weak Expectation Property
(WEP) and B the Local Lifting Property (LLP), then

(2) A⊗min B = A⊗max B.

Thus if a C∗-algebra A has both WEP and LLP, then (2) holds with A = B, and
in fact since both LLP and WEP remain valid for Aop we have (1).

Kirchberg also proved [3] that C∗(F∞) has the LLP. This is in some sense the
prototypical example of LLP, just like B(H) is for the WEP.

The WEP, originally introduced by Lance [4], has drawn more attention recently
because of Kirchberg’s work [2] and in particular his proof that the Connes em-
bedding problem is equivalent to the assertion that A = C∗(F∞) (or A = C∗(F2))
satisfies (1) or equivalently that it has the WEP.

The main result of this paper is the construction of a non-nuclear (and even non
exact) separable C∗-algebra A with both WEP and LLP. This answers a question
that, although it seems to have remained implicit in Kirchberg’s work, was clearly
in the back of his mind when he produced the A satisfying (1). But since at the
time he conjectured the equivalence of WEP and LLP, the question did not seem
so natural until the latter equivalence was disproved in [1].

While we cannot prove (1) for A = C∗(F∞), our algebra A has the same collec-
tion of finite-dimensional operator subspaces as C∗(F∞). Thus our construction
might shed some light, one way or the other, on the Connes (-Kirchberg) em-
bedding problem, which is equivalent to the question whether A = C∗(F2) (or
A = C∗(F∞)), which is known to have the LLP, also has the WEP.
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Isoperimetry, Littlewood functions, and unitarisability of groups

Maria Gerasimova

(joint work with Dominik Gruber, Nicolas Monod, Andreas Thom)

Definition 1. Let us assume that Γ is a discrete group.

• A representation π : Γ → B(H), where H is a Hilbert space, is called
uniformly bounded if sup

g∈Γ
‖π(g)‖ <∞.

• A representation π : Γ → B(H) is called unitarisable if there exists an
operator S : H → H such that S−1π(g)S is a unitary operator for all
g ∈ Γ.

• A group Γ is called unitarisable if every uniformly bounded representation
is unitarisable.

The first question which arises in this context if all groups are unitarisable.
The answer to this is negative and the main non-example is a non-abelian free
group Fn with n generators for n ≥ 2 [4]. The next classical result says that
amenable groups are unitarisable. It has been open ever since whether this is a
characterization of unitarisability (this question is called Dixmier’s problem [2]).
The question remains open only for non-amenable groups without free subgroups.

One of the approaches to study unitarisability and amenability is related to the
space of the Littlewood functions T1(Γ). The latter is the space of all functions
f : Γ → C admitting a decomposition

f(x−1y) = f1(x, y) + f2(x, y) ∀x, y ∈ Γ

with fi : Γ × Γ → C such that

sup
x

∑

y

|f1(x, y)| <∞ and sup
y

∑

x

|f2(x, y)| <∞.

The connection is as follows:

(1) Γ is amenable if and only if T1(Γ) ⊆ ℓ1(Γ) as shown in [5].
(2) If Γ is unitarisable, then T1(Γ) ⊆ ℓ2(Γ) as shown in [1].
(3) If Γ contains a non-abelian free subgroup, then T1(Γ) * ℓp(Γ) for all

p <∞.

It turns out that we can say something more about non-amenable groups.

Theorem 1 (GGMT, [3]). For every non-amenable group Γ there exists p > 1
such that

T1(Γ) * ℓp(Γ).

This result inspired us to define the Littlewood exponent Lit(Γ) ∈ [0,∞] of a
group Γ as follows:

Lit(Γ) := inf
{
p : T1(Γ) ⊆ ℓp(Γ)

}
.

The main results about the Littlewood exponent are listed in the theorem below.
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Theorem 2 (GGMT, [3]).

(1) Lit(Γ) = 0 if and only if Γ is finite.
(2) Lit(Γ) = 1 if and only if Γ is infinite amenable.
(3) Lit(Γ) ≤ 2 if Γ is unitarisable.
(4) Lit(Γ) is outside the interval (1, 2) if Γ has the rapid decay property.
(5) Lit(Γ) = ∞ if Γ contains a non-abelian free subgroup.

Unfortunately, the last statement is not a characterisation of the existence of a
free non-abelian subgroup.

Theorem 3 (GGMT, [3]). There exists a torsion group Λ with Lit(Λ) = ∞.

There is also a connection between Lit(Γ) and the geometry of a group Γ, more
precisely, between Lit(Γ) and the asymptotics of isopermetric quantities attached
to Γ as follows. Given a finite symmetric subset S ⊂ Γ, consider the (possibly
disconnected) Cayley graph Cay(Γ, S). Recall that the Cheeger constant h(Γ, S)
is defined by

h(Γ, S) = inf
F

|∂S(F )|

|F |
,

where the infimum runs over all non-empty finite subsets F ⊂ Γ. Define the
relative maximal average degree e(Γ, S) by

e(Γ, S) = 1 −
h(Γ, S)

|S|
.

Finally, our asymptotic invariant is

η(Γ) = − lim inf
S

ln e(Γ, S)

ln |S|
,

where the limes inferior is taken over all symmetric finite subsets S of Γ.
Then we can prove the following result.

Theorem 4 (GGMT, [3]). For any group Γ, we have η(Γ) = 1 −
1

Lit(Γ)
.

This result allows us to construct a group Γ with a nontrivial Littlewood ex-
ponent 1 < Lit(Γ) < ∞. It also allows us to estimate this invariant for some
complicated groups (e.g. for Burnside groups of large exponent) and find some
geometric applications.
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Abelian sub-C∗-algebras and dynamic dimension

Wilhelm Winter

(joint work with Kang Li, Hung-Chang Liao)

For a given nuclear C∗-algebra all relevant information is encoded in its systems
of completely positive approximations. However, extracting such information in
an efficient manner is often not easy.

For C∗-algebras associated to topological dynamical systems, it is in general not
possible to recover the underlying dynamics without giving additional data, e.g.
specifying a suitable abelian subalgebra (often a Cartan MASA, or even a diago-
nal). In this talk I described ways of keeping track of such subalgebras in systems
of cp approximations in order to extract dynamic dimension type information.

In particular, the diagonal dimension, defined in joint work with Kang Li and
Hung-Chang Liao, is the C∗-algebraic analogue of Kerr’s fine tower dimension
for free actions of amenable groups. For uniform Roe C∗-algebras it recovers
the asymptotic dimension of the underlying coarse metric space, and it is closely
related to the dynamic asymptotic dimension of a principal étale groupoid.

For the canonical diagonals of irrational rotation algebras, the value of the
diagonal dimension is at least two, as opposed to one for the nuclear dimension.

When there is isotropy the situation becomes more subtle, but there is evidence
that the basic idea behind diagonal dimension can be expanded to also cover not
necessarily free actions (or not necessarily principal groupoids). The resulting
notion is related to the colourable amenability condition of Bartels–Lück–Reich.
For the standard MASA in the Toeplitz algebra, this dimension takes the “right”
value, namely 2, whereas the nuclear dimension is 1, and the diagonal dimension
is infinity. There is a number of further examples illustrating the difference of all
these notions, and the need to come up with them in the first place.

C∗-algebras and Games

Vern Paulsen

We are interested in a certain type of memoryless, finite input-output games, where
two cooperating non-communicating players try to maximize their probability of
giving winning responses by using quantum resources. For a certain family of
these games, we prove that for each game there is an affiliated C∗-algebra whose
properties tell us about the existence of certain perfect strategies. This talk is
based on work with several different sets of coauthors [2, 3, 1]

We shall refer to the two players as Alice and Bob. By a two person finite input-
output game we mean a tuple, G = (IA, IB , OA, OB, λ), where IA, IB , OA, OB are
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finite sets and λ : IA × IB × OA × OB → {0, 1} is a function. The sets IA and
IB are finite input sets for Alice and Bob, respectively. Often it is convenient to
think of these as sets of questions. The sets OA and OB represent the sets of
possible replies, or answers that Alice and Bob can return. If they are given the
pair of questions (x, y), respectively, and they return the pair of answers (a, b),
then λ(x, y, a, b) = 0 means that the pair of answers (a, b) is an incorrect, or losing
reply to the pair of questions (x, y) while λ(x, y, a, b) = 1 means that the pair of
answers (a, b) is a correct or winning reply to the pair of questions (x, y).

For each round of the game, a third party, often called the Referee, selects an
input pair (x, y), gives x to Alice and y to Bob and they reply with, respective
answers, (a, b). Their common goal is to try to give a reply such that λ(x, y, a, b) =
1. This is what is meant by saying that they are cooperating players. At the start
of the game, Alice and Bob both know the sets IA, IB , OA, OB and the function λ,
but during the round, Alice and Bob must both give their replies without knowing
what question the other player was asked or what reply the other player gave.
This is what is meant by non-communicating. Often the Referee selects the pair
(x, y) at random according to some density on IA× IB and in this case the players
also know the distribution on questions. These games are memoryless in the sense
that there is no requirement that if they receive the same input pair (x, y) at two
different rounds, that they need to reply with the same output pair.

A random strategy for such a game produces a conditional probability density
p(a, b|x, y) which represents the probability that they produce output (a, b) when
given input (x, y). A random strategy is called perfect if the probability that it
produces a losing output pair is 0, i.e.,

λ(x, y, a, b) = 0 =⇒ p(a, b|x, y) = 0.

There are many ways to produce such probability densities. One can use clas-
sical random variables, and the set of densities that one can obtain this way are
called the local densities. Alternatively, Alice(and similarly Bob) could each have
a quantum measurement system, one for each input, perform the measurement
and report the outcome for her reply. If the quantum states that Alice and Bob
are measuring are not entangled, then the densities that they will obtain are the
same as one can obtain with classical random variables. But when the quantum
states are entangled then they can obtain a larger set of conditional densities than
in the classical setting.

Consequently games exist that have no perfect classical strategies, but have
perfect quantum strategies. However, there are at least three, possibly different,
mathematical models describing these densities. It is known that two of these
models are the same if and only if Connes’ embedding problem has a positive
answer. Thus, it is possible that by finding a game that has a perfect strategy in
one model but not the other, one could disprove this conjecture.

In this talk we introduce synchronous games. For each synchronous game there
is an affiliated *-algebra[2, 3], whose representation theory tells us if the game has
a prefect strategy of each of the four types.
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For each pair of graphs, there is a particular synchronous game, known as the graph
isomorphism game and in this case the affiliated *-algebra is a representation of
the quantum permutation group. Using the theory of quantum groups, we are
able to show that any time this *-algebra is non-zero, then the corresponding
game isomorphism game has a perfect strategy in the largest set of ”quantum
probability densities”.
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Decompositions and K-theory

Rufus Willett

Our broad goal is to get information about K-theory using ‘local’ information
about a C∗-algebra. We were particularly inspired by work of Oyono-Oyono and
Yu as for example in [2] and [3]. The main tools in their context are filtered C∗-
algebras and controlled K-theory. Here, however, we aim to do without filtrations,
and work only with the usual K-theory groups.

Let A be a C∗-algebra, and let C and D be two C∗-subalgebras. Define group
homomorphisms

ι : K∗(C ∩D) → K∗(C) ⊕K∗(D), α 7→ (α,−α)

and

σ : K∗(C) ⊕K∗(D) → K∗(A), (α, β) 7→ α+ β.

These maps sometimes fit into a six-term exact sequence, part of which looks like

K1(C)⊕K1(D) K1(A) K0(C ∩D) K0(C)⊕K0(D)σ ∂ ι

Here the dashed arrow labeled ∂ may or may not exist.
For example, if C and D are ideals in A such that A = C +D, then the dashed

arrow can indeed be filled in, in such a way that the sequence above is always exact.
In order to explain our local methods, let us first recall one way to construct ∂
under these strong assumptions. Assume for simplicity that A is unital, and let
h ∈ C be a positive contraction such that 1 − h is in D. Let u be an invertible
element in Mn(A) for some n, and define

a := h+ (1 − h)u, b := h+ (1 − h)u−1

and (using a variant of the ‘Whitehead trick’)

v :=

(
1 a
0 1

)(
1 0
−b 1

)(
1 a
0 1

)(
0 1
1 0

)
.
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Then, with B̃ denoting the unitisation of B, v has the following properties:

(1) v is in M2n(D̃);

(2) v

(
u 0
0 u−1

)
is in M2n(C̃);

(3) v

(
1 0
0 0

)
v−1 −

(
1 0
0 0

)
is in M2n(C ∩D).

We then define

∂[u] :=
[
v

(
1 0
0 0

)
v−1

]
−

[
1 0
0 0

]
∈ K0(C ∩D);

this defines a map ∂ : K1(A) → K0(C ∩D) that makes the sequence above exact.
Going back to general C∗-subalgebras C and D, given u ∈Mn(A) as above, we

say an invertible v ∈M2n(A) is a lift for v if it satisfies (1), (2), and (3) above; in
this case, we can again define a class (but not a homomorphism!) by

∂v(u) :=
[
v

(
1 0
0 1

)
v−1

]
−

[
1 0
0 0

]
∈ K0(C ∩D).

Lifts can be used to give exactness type results. For example, one always has the
following fact with no further assumptions.

Lemma 1. Say α ∈ K0(C ∩D) is such that ι(α) = 0. Then there is an invertible
u ∈Mn(A) for some n and a lift v for u such that ∂v(u) = α.

To get exactness at other positions, we need to be able to construct lifts. We
use a form of ‘local decomposability’ for a C∗-algebra as defined below.

Definition 1. Let A be a C∗-algebra, and let C be a class of pairs of C∗-subalgebras
of A. We say A decomposes over C if for all finite F ⊆ A and ǫ > 0 there is a
positive contraction h ∈M(A) and a pair (C,D) ∈ C such that:

(i) ‖[h, a]‖ < ǫ for all a ∈ F ;
(ii) hF (respectively, (1− h)F) is contained in C (respectively, D) up to ǫ error.

The C∗-algebra A excisively decomposes over C if it satsifies the property above,
and so that in addition we may guarantee that h and (C,D) satisfy

(iii) h(1 − h)F and h2(1 − h)F are contained in C ∩D up to ǫ-error.

Finally, A strongly excisively decomposes over C if it decomposes over C, and if in
addition for every ǫ > 0 there exists a δ > 0 such that for all (C,D) ∈ C and all
C∗-algebras B, if a ∈ A⊗B is within δ of both C⊗B and D⊗B, then a is within
ǫ of (C ∩D) ⊗B.

This allows one to prove exactness properties at other positions in our ‘σ−∂−ι’
sequence. In particular, one can use this to prove the following two results; see [4]
for details.

Theorem 1. Say A excisively decomposes over a class C such that for all (C,D) ∈
C, C ∩D, C, and D all have trivial K-theory. Then A has trivial K-theory.

This is useful for applications to the Baum-Connes conjecture, in the sprirt of
[1] (but giving more general results, and with simpler proofs).



2292 Oberwolfach Report 37/2019

Theorem 2. Say A strongly excisively decomposes over a class C such that for all
(C,D) ∈ C, C ∩D, C, and D all satisfy the Künneth formula. Then A satisifies
the Künneth formula

This can be used to give new examples of C∗-algebras satisfying the Künneth
formula (a weak form of the UCT).
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(Non)-uniqueness of C*-norms on group rings of amenable groups

Vadim Alekseev

(joint work with David Kyed)

The interplay between group theory and operator algebras dates back to the sem-
inal papers by Murray and von Neumann. By choosing different completions of
a discrete countable group Γ one obtains interesting analytic objects; for instance
the Banach algebra ℓ1(Γ), the full and reduced C∗-algebras C∗(Γ) and C∗

r(Γ), and
the group von Neumann algebra LΓ. In general there are many norms on, say,
ℓ1(Γ) such that the completion with respect to this norm gives a C∗-algebra, and
the question of when the C∗-completion is unique (in which case Γ is said to be
C∗-unique) has been studied by various authors [5, 3, 2]. A C∗-unique discrete
group is evidently amenable and it is, to the best of the authors’ knowledge, an
open question whether the converse is true, although it is known to be false in the
more general context of locally compact groups [5].

More recently, Rostislav Grigorchuk, Magdalena Musat and Mikael Rørdam [4]
put emphasis on the question of when the complex group algebra CΓ has a unique
C*-completion. Of course, this question is interesting only for amenable groups, as
non-amenable groups trivially have different C∗-norms on their group rings. As is
easily seen [4, Proposition 6.7], if Γ is locally finite (i.e. if every finitely generated
subgroup is finite) then CΓ has a unique C∗-completion, and [4, Question 6.8]
asked if the converse is true.

In our work, we were able to prove that the following classes of non-locally finite
groups have several C*-completions.
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Theorem 1. The class of countable groups Γ for which CΓ does not have a unique
C*-norm includes the following:

(i) Infinite groups of polynomial growth.
(ii) Torsion free, elementary amenable groups with a non-trivial, finite conju-

gacy class.
(iii) Groups with a central element of infinite order.

The key to the proof of this result is the tension between the so-called strong
Atiyah conjecture which predicts a concrete restriction on the von Neumann di-
mension of kernels of elements in the complex group algebra under the left regular
representation and the existence of “small” projections in the centre of LΓ.

More precisely, if one introduces the torsion denominator of Γ as

θ(Γ) =
1

lcm{|H | | H 6 Γ finite}
∈ [0, 1],

then the strong Atiyah conjecture predicts that the von Neumann dimension of
kernels of elements in CΓ are multiples of θ(Γ).

On the other hand, one can consider the central mesh of LΓ,

σ(Γ) = inf{τ(p) | p ∈ Proj(Z(LΓ)), p 6= 0} ∈ [0, 1],

where τ denotes the canonical trace on LΓ. The key observation is that the
inequality σ(Γ) < θ(Γ) implies the existence of a non-trivial projection p ∈ Z(LΓ)
with the property that the map a 7→ a(1−p) is injective on CΓ. This gives a proper
quotient of C∗

r(Γ) to which CΓ injects, thus constructing a non-trivial norm on CΓ.
During the meeting in Oberwolfach it was pointed out by Narutaka Ozawa

that the original question of Rostislav Grigorchuk, Magdalena Musat and Mikael
Rørdam [4, Question 6.8] actually has negative answer: the group ring of the
lamplighter group Γ = Z/2 ≀ Z has unique C*-norm. We provide his argument here
for the sake of completeness: setting H =

⊕
Z
Z/2, we see that C∗(Γ) ∼= C∗(H)⋊Z

is a crossed product of the Bernoulli action which is topologically free, so by the
Archbold–Spielberg theorem [1, Theorem 1] every ideal I in C∗(Γ) intersects C∗(H)
nontrivially. But the group H is locally finite, so by C∗-uniqueness I intersects its
group ring nontrivially.

In view of this result, it would be of interest to exactly characterise amenable
groups Γ which have a unique C*-norm on CΓ. In particular, it would be interest-
ing to know whether there is a torsion-free amenable group with a unique C*-norm
on its complex group ring.
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Amalgamated products of RFD C∗-algebras

Kristin Courtney

(joint work with Tatiana Shulman)

A C∗-algebra is called residually finite dimensional or RFD when it has a sepa-
rating family of finite dimensional representations. Taking the direct sum of these
representations yields an embedding of the algebra into a direct sum of matrix
algebras, and hence RFD C∗-algebras can be thought of as block-diagonalizable
C∗-algebras with finite dimensional blocks. This useful finite dimensional approx-
imation property finds itself at the heart of several major open problems in op-
erator algebras. In particular, Kirchberg has famously proved ([8]) that Connes’
Embedding Problem is equivalent to asking whether the full group C∗-algebra
C∗(F2 × F2) is RFD. Residual finite dimensionality is a C∗-algebraic analogue to
maximal almost periodicity for locally compact Hausdorff groups or even residual
finiteness for discrete groups, and these are more than mere analogies. It is not
hard to see that if the full group C∗-algebra of a group is RFD then the group
is maximally almost periodic, and Malcev’s theorem extends this fact to finitely
generated residually finite groups. By work of Bekka and Bekka-Louvet, we know
that the converse holds exactly when the group is amenable.

In the interest of finding more examples (and non-examples) of RFD C∗-alge-
bras, mathematicians have explored when residual finite dimensionality is pre-
served under usual C∗-algebraic constructions, such as full amalgamated products.
In full generality, this question is quite difficult; indeed, C∗(F2×F2) can be written
as an amalgamated product of RFD C∗-algebras. Nonetheless, a complete answer
is known when the amalgam is finite dimensional: Exel and Loring showed in [6]
that the (unital) amalgamated product of any RFD C∗-algebras are RFD. When
the C∗-algebras are finite dimensional, Armstrong, Dykema, Exel, and Li showed
in [1] that the only obstruction is whether or not the two algebras have faithful
traces that agree when restricted to the amalgam. Later Li and Shen extended
these ideas in [10] to characterize when the amalgamated product of any pair of
RFD C∗-algebras over a finite dimensional amalgam is again RFD.

However, surprisingly little is known when the amalgam is infinite dimensional.
For some direction, we turn to the well-traversed analogue of our question in group
theory. In [2], Baumslag proved that any two non-abelian finitely generated nilpo-
tent groups have a non-residually finite amalgamated product over some common
subgroup. Consequently, there are quite tame RFD C∗-algebras whose amalga-
mated product is no longer RFD. However, Baumslag also proved in [2] that the
amalgamated product of any pair of polycyclic groups over a common central
amalgam is residually finite. In the locally compact setting, Khan and Morris
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have shown in [7] that the amalgamated product of any pair of maximally almost
periodic groups over a common open compact central subgroup is again maxi-
mally almost periodic. These results together point to central amalgams as the
next frontier in the C∗-setting, and indeed Korchargin has showed in [9] that any
amalgamated product of commutative C∗-algebras is RFD. Until now, this was
the only result in C∗-algebras for infinite dimensional amalgams.

In [5], we prove that the amalgamated product of two separable RFD C∗-
algebras over a common central subalgebra is again RFD, provided that the two
algebras are strongly RFD (also known as completely RFD), which means that
all of their quotients are RFD. The class of strongly RFD C∗-algebras includes
commutative C∗-algebras as well as just-infinite RFD C∗-algebras and C∗-algebras
whose irreducible representations are all finite dimensional. Using results of Moore
([11]), this latter class allows us to give new examples of maximally almost periodic
groups with maximally almost periodic amalgamated products.

However, it is cumbersome to define a property of a group solely in terms of its
group C∗-algebra. This leads to the following question: can we characterize which
(discrete) groups will have strongly RFD group C∗-algebras?
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Constructions in minimal amenable dynamics and applications to
classification of C∗-algebras

Karen R. Strung

(joint work with Robin J. Deeley and Ian F. Putnam)

The interactions between dynamics and operator algebras go all the way back
to the group measure space construction in the original papers of Murray and
von Neumann. The subsequent classification of von Neumann algebra factors
in the 70’s and 80’s was intimately linked to ergodic theory: the von Neumann
algebra associated to any probability measure preserving ergodic transformation
is the hyperfinite II1 factor R. In fact, one can construct R from any countable
amenable Borel equivalence relation and the celebrated Connes–Feldman–Weiss
theorem says that any such equivalence relation is orbit equivalent to one given by
a single transformation [4]. In the study of C∗-algebras the analogous interplay—
between minimal dynamical systems, minimal amenable equivalence relations, and
Elliott’s classification program—is less well understood.

A minimal dynamical system (X,ϕ) consists of a compact metric space X and a
homeomorphism ϕ : X → X such that, for every nonempty closed subset Y ⊂ X ,
if ϕ(Y ) ⊂ Y , then Y = X . When (X,ϕ) has mean dimension zero in the sense of
Gromov and Lindenstrauss, the associated crossed product C(X)⋊ϕZ is a simple,
separable, unital C∗-algebra with finite nuclear dimension and stable rank one. In
this case, C(X) ⋊ϕ Z is in the class of C∗-algebras classified by Elliott invariants,
that is, K-theory, traces, and a pairing between them [7]. In particular, (X,ϕ)
has mean dimension zero whenever X is finite dimensional.

The principal tool for determining the K-theory of C(X)⋊ϕ Z is the Pimsner–
Voiculescu exact sequence, and from this one can see that the K1-class of the
canonical unitary u ∈ C(X) ⋊ϕ Z which implements the action (in the sense
that ufu∗ = f ◦ ϕ−1 for every f ∈ C(X)), will always be nonzero. This means,
for example, that a crossed product by a minimal homeomorphism will never be
isomorphic to an AF algebra, and can never be isomorphic to the Jiang–Su algebra,
Z—a simple, separable, unital, infinite-dimensional C∗-algebra with K∗(Z) ∼=
K∗(C). In particular, the class of single transformations will not exhaust the class
of C∗-algebras analogous to R, that is, those which are simple, separable, unital,
infinite dimensional with finite nuclear dimension and stable rank one. Thus the
question arises: what is the range of the invariant for these C∗-algebras?

Given a nonempty closed subset Y ⊂ X meeting every ϕ-orbit at most once,
we can define a so-called orbit-breaking equivalence relation, which is a minimal
amenable equivalence relation EY ⊂ X×X obtained by splitting any orbit through
Y into two equivalence classes given by the forward and backward orbit from Y .
Note that in the measure-theoretical setting, breaking an orbit at such a set Y
would have no effect, as it will necessarily be of measure zero on all invariant Borel
probability measures. Unlike in the ergodic setting, minimal amenable equivalence
relations turn out to be much more general than the orbit equivalence relation.
For example, by choosing a suitable Cantor minimal system and breaking the orbit
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at a single point, one can construct the groupoid C∗-algebra to obtain any simple
unital AF algebra. It is not known whether the C∗-algebras of such equivalence
relations can exhaust the Elliott invariant, and answering this question is closely
related to understanding the range of crossed products by minimal homeomor-
phisms: their tracial state spaces will be affinely homeomorphic to the simplex of
ϕ-invariant measures, and their K-theory can be calculated from the K-theory of
the containing crossed product and the space Y at which the orbit is broken using
a six-term exact sequence of Putnam [11].

In both cases, determining the range of the invariant seems to lead us to the
highly nontrivial question of whether or not a given infinite compact metric space
X admits a minimal homeomorphism. A characterization of such spaces remains
a difficult open problem in topological dynamics. In general, it is easier to pro-
duce “no-go” results for certain classes of well-behaved spaces. For example, it
is well known that any homeomorphism of the 2-sphere will either fix or swap
the poles, and hence will have either fixed or periodic points. More generally,
any compact manifold with nonzero Euler characteristic cannot admit a minimal
homeomorphism [8].

From the point of view of C∗-algebras, however, it only matters what the dy-
namical system looks like in K-theory. Thus the question becomes whether or
not, for a given infinite compact metric space X , one can find a second space Y
admitting a minimal homeomorphism and which has the same K-theory as X . In
this case, we can go quite far:

Theorem 1 ([6] Theorem 2.3). Let W be a finite connected CW-complex. Then
there exists a infinite compact metric space X that admits a minimal homeomor-
phism and there are isomorphisms

H∗(X) ∼= H∗(W ), K∗(X) ∼= K∗(W )

of Čech cohomology and K-theory.

The proof relies on the existence of homeomorphisms on point-like spaces con-
structed by the authors in previous work [5], together with existence results for
skew product systems due to Glasner and Weiss [9]. The space X turns out to be
a product of the original CW-complex W , the Hilbert cube Q, and a point-like
space Z. We also show that generically, such systems have mean dimension zero.
The K-theory of the associated crossed product A := C(Z ×W ×Q) ⋊ Z is then
given by

K∗(A) ∼= K0(W ) ⊕K1(W ),

and by breaking the orbit at a set of the form Y := {z} ×W ×Q, the associated
orbit-breaking algebra AY has K-theory given by

K0(AY ) ∼= K0(W ), K1(AY ) ∼= K1(W ).

For the orbit-breaking constructions, as can already be seen above, we have more
control over what K-theory can be realised. In fact, we can do even better and
also avoid any worries about mean dimension by restricting to finite-dimensional
spaces. Again, the key ingredient is the “point-like” spaces originally constructed
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by the authors in [5]. Since the space Z can be constructed to have arbitrary large
but finite dimension, for any finite-dimensional metric space Y we embed Y into
large enough such Z in such a way that each orbit of the corresponding minimal
homeomorphism ζ : Z → Z meets Y at most once. Since any orbit-breaking
subalgebra has tracial state space affinely homeomorphic to the containing crossed
product, we can also use the results of [5] to arrange for the tracial state space to
be any finite Choquet simplex. Using this we show the following:

Theorem 2 ([6] Theorem 6.3). Let G0 and G1 be arbitrary countable abelian
groups. and let ∆ be any finite Choquet simplex. There exists an orbit-breaking
subalgebra C∗-algebra AY satisfying

K0(AY ) ∼= K0(Y ) ∼= Z⊕G0, K1(AY ) ∼= K1(Y ) ∼= G1, T (AY ) ∼= ∆.

Similar work in this direction is done [10] (also see [1, 2, 3]), where the main
result is that every stably finite classifiable C∗-algebra can be realized as the
C∗-algebra of a twisted principal étale groupoid. Rather than focusing on con-
structions coming from dynamics, Li mimics known inductive limit constructions
at the level of the groupoids. The twist on the groupoid is only nontrivial when
the K0-group of the corresponding C∗-algebra is torsion free. Here, although our
constructions do not realize the Elliott invariant of every classifiable C∗-algebra,
we are able to have torsion in K-theory without requiring any twists.
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Ergodic embeddings of R into factors

Sorin Popa

It has been shown in [P81] that the hyperfine II1 factor R can be embedded ergod-
ically into any separable II1 factor. More generally, if M ⊂ M is an irreducible
inclusion of separable II1 factors, then M contains an “R-direction” that’s ergodic
in M. In other words, here exists R →֒ M such that R′ ∩M = C. We will call
R-ergodicity this strengthened form of ergodicity for an inclusion of factors.

Producing “large” ergodic copies of R inside arbitrary factors, and more gener-
ally inside irreducible inclusions of factors M ⊂ M, i.e., establishing R-ergodicity
from mere ergodicity, turns out to be of crucial mportance for a multitude of
problems, notably in proving vanishing cohomology results. This is because once
having R ⊂ M that’s ergodic in some appropriate “augmentation” M of M , the
amenability of R can be used to “push” any x ∈ M into R′ ∩ M = C1, by av-
eraging over unitaries in R, via the Ad-action. When applied to suitable x, this
amounts to “untwisting” a cocycle.

Along these lines, we present in this talk a result showing that any separable II1
factor M contains a coarse hyperfinite II1 subfactor, i.e., a subfactor R ⊂M such
that the Hilbert R-bimodule L2M decomposes as the direct sum of a copy of the
trivial R-bimodule, L2R, and a multiple of the coarse R-bimodule, L2R⊗L2Rop.
Moreover, R can be taken so that to satisfy several other “constraints”, such as
being contained in an irreducible subfactor P ⊂ M and being almost orthogonal
and coarse with respect to a given subalgebra Q ⊂ M satisfying P 6≺M Q (the
pair R,Q is coarse if RL

2MQ is a multiple of L2R⊗L2Qop).
The coarse subfactor R ⊂ M is constructed as an inductive limit of dyadic

matrix algebras, through an iterative technique that we have much used in the
past. But while in all previous work the resulting bimodule structure RL

2MR

remained “blind”, the big novelty of this proof is that we are able to construct
embeddings R →֒M with complete control of the bimodule decomposition at the
end of the iterative process.

Coarseness of a subalgebra is in some sense the “most random” position it may
have in the ambient II1 factor. It automatically entails mixingness, which in turn
implies strong malnormality, a property that’s in dichotomy with the weak quasi
regularity of the subalgebra. Altogether, our main result shows the following [P18]:

Theorem 1. Any separable II1 factor M contains a hyperfinite factor R ⊂ M
that’s coarse inM (and thus also mixing and strongly malnormal inM). Moreover,
given any irreducible subfactor P ⊂ M , any von Neumann subalgebra Q ⊂ M
satisfying P 6≺M Q and any ε > 0, the coarse subfactor R ⊂M can be constructed
so that as to be contained in P , be coarse with respect to Q, and satisfy R ⊥ε Q.

The condition P 6≺M Q for two subalgebras of the II1 factor M is in the sense
of our “intertwining by bimodules” formalism and means that there exists no non-
zero intertwiner from P to Q (i.e., x ∈ M with dim(L2(PxQ)Q) < ∞). This
automatically implies that Q has uniform infinite index in M , i.e., given any non-
zero projection p ∈ Q′∩M , the index of the inclusion Qp ⊂ pMp is infinite. When
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Q is an irreducible subfactor of M , it amounts to Q ⊂ M having infinite Jones
index.

A subalgebra B ⊂M is mixing if the action Ad : U(B) yM is mixing relative
to B, i.e., limu ‖EB(xuy)‖2 = 0, for all x, y ∈ M ⊖ B, where the limit is over
u ∈ U(B) tending weakly to 0. The subalgebraB ⊂M is strongly malnormal if any
x ∈M that’s a weak intertwiner for B, i.e., any x that satisfies dim(L2(A0xB)B) <
∞, for some diffuse A0 ⊂ B, lies in B.

One can show that if R ⊂ M is coarse then R ⊂ M is mixing. In turn, the
mixing property implies very strong absorption properties for R ⊂ M , meaning
that R is strongly malnormal in the above sense. In particular, any maximal
abelian ∗-subalgebra (abbreviated hereafter as MASA) A of R is a MASA in M ,
with all its weak intertwiners contained in R. So the above theorem implies:

Corollary 2. Any separable II1 factor M has a coarse MASA A ⊂ M , which in
addition is strongly malnormal and mixing, with infinite multiplicity. Moreover,
given any irreducible subfactor P ⊂M , any von Neumann subalgebra Q ⊂M such
that P 6≺M Q and any ε > 0, the coarse MASA A ⊂M can be constructed inside
P , coarse to Q, and satisfying A ⊥ε Q.

The problems of whether any separable II1 factor contains malnormal MASAs and
MASAs with infinite multiplicity, both of which are strengthening of singularity,
have been open for some time.

The same type of iterative technique used to prove Theorem 1 is used to prove
the following [P19]:

Theorem 3. Any separable continuous factor M contains an ergodic copy of the
hyperfinite II1 factor, R →֒ M, and can be embedded ergodically into the unique
AFD II∞ factor, M →֒ R∞ = R⊗B(ℓ2N).

This result complements the results along these lines in [P81], which covered the
case M is II1 or IIIλ, 0 < λ < 1, of the above corollary, as well as results we have
obtained in 1984 showing that if M is III0 or III1, then it contains an irreducible
AFD type III factor ([P84]; see also [L84]).
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Ultrapowers vs. asymptotic sequence algebras

Ilijas Farah

Suppose that B is a C∗-algebra and F is a filter on N. Then

cF(B) = {(an) ∈ ℓ∞(B) : lim supn→F ‖an‖ = 0}

is a (norm-closed, two-sided, and therefore self-adjoint) ideal of ℓ∞(B). The quo-
tient algebra ℓ∞(B)/cF(B) is the reduced power. If F contains the Fréchet filter
of all cofinite subsets of N and B is nontrivial, then BF is nonseparable.

The two most important instances of such quotients are the asymptotic sequence
algebra B∞, corresponding to the case when F is the Fréchet filter and ultrapowers,
corresponding to the case when F = U is a nonprincipal ultrafilter, i.e., a filter
which includes the Fréchet filter and is maximal under the inclusion. Although
B∞ and BU are typically quite different—e.g., the center of B∞ includes ℓ∞/c0
while BU is primitive whenever B is primitive—the algebras B∞ and BU often
behave similarly.

The algebra B is routinely identified with its image in BF under the diagonal
embedding ιF that sends a to the constant representing sequence (a, a, . . . ).

Functorial classification results for C∗-algebras have two components, existence
and uniqueness. Given a functor F : C∗-alg → K, the existence asserts that for
separable C∗-algebras A and B every morphism α : F (A) → F (B), is realized by a
∗-homomorphism Φ: A→ B such that F (Φ) = α. An intermediate step in proving
the existence is often to realize α by a ∗-homomorphism from A into BF for some F
(recall that B is identified with its diagonal image inside BF). This is typically
much easier in the case of ultrapowers (essentially, thanks to  Loś’s Theorem, [7,
Theorem 2.3.1]), both in the classification of Kirchberg algebras ([14]) and in the
stably finite case, when one takes direct advantage of the tracial ultrapower of A
whose fibres are ultrapowers of II1 factors (see e.g., [13], [12], [3], [15], and White’s
and Tikuisis’s contributions to the present proceedings).

On the other hand, B∞ is better suited to the next stage of a typical existence
proof. This is because of the “reindexing technique” ([14, Proposition 1.37], [9,
Theorem 4.3]). Every permutation f of N induces an automorphism Φf of B∞

whose restriction to B is equal to the identity. Every ∗-homomorphism Ψ from
a separable C∗-algebra A into B∞ such that Φf ◦ Ψ is unitarily equivalent to Φ
is unitarily equivalent to a ∗-homomorphism of A into B. One does not expect a
reasonable analog of reindexing to work for ultrapowers because if U is an ultrafilter
and f is a permutation of N, then f is either equal to the identity on a set in U
or it sends a set in U into its complement. The following enables easy transfer
between ultrapowers and asymptotic sequence algebras.

Theorem 1. If the Continuum Hypothesis holds, U is a nonprincipal ultrafilter
on N, and B is a separable and unital C∗-algebra, then there are unital ∗-homo-
morphisms Φ and Θ such that the following diagram commutes and Φ ◦Θ = idBU

.
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B∞

B

BU

ι∞

ιU

ΦΘ

Theorem 1 cannot be proved in ZFC (see the upcoming joint paper with S. Shelah).
It is a consequence of a more elaborate ‘ZFC-variant’ stated in terms of a σ-
complete back-and-forth system of separable approximations to the above diagram
(see [5, Theorem 4.2]). It allows for a transfinite intertwining argument, strong
enough to imply the following.

Theorem 2. Suppose F : C∗-alg → K is a functor. For unital and separable C∗-
algebras A and B and a morphism α : F (A) → F (B) the following are equivalent.

(1) The morphism α is realized by a ∗-homomorphism Φ: A → BU for some
(any) nonprincipal ultrafilter U on N.

(2) The morphism α is realized by a ∗-homomorphism Φ: A→ B∞.

Since BU is a quotient of B∞, (2) trivially implies (1). The conclusion of Theo-
rem 2 when F is any of the standard K-theoretic functors follows from Theorem 1
by a standard absoluteness argument (see e.g., [1, Appendix 2]). Theorem 2 an-
swers a question of Chris Schafhauser and Aaron Tikuisus. Its instance when F
consists of total K-theory, algebraic K1, and the tracial simplex was proved by
Schafhauser by a delicate argument.

The following is included for its entertainment value.

Theorem 3. Assume the Continuum Hypothesis, let B be a separable and unital
C∗-algebra, and let U and V be nonprincipal ultrafilters on N.

(1) BU
∼= BV

∼= (BU )V ∼= ((BV )U )V ∼= . . .
(2) B∞

∼= (B∞)∞ ∼= (B∞)∞)∞ ∼= (B∞)U ∼= (BU )∞ ∼= . . .
(3) If the filter generated by F and some X ⊆ N is an ultrafilter, then BF

has BU as a direct summand.
(4) If the assumption of (3) fails then (BF)U ∼= B∞ or even BF

∼= B∞.

All of these isomorphisms are equal to the identity on the diagonal copy of B.

More precisely, (1) and (2) state that any finite iteration of the operations of
taking asymptotic sequence algebra and taking an ultrapower associated to a non-
principal ultrafilter on N results in an algebra isomorphic to B∞ if the asymptotic
sequence algebra was taken at least once and BU otherwise. Item (3) is easy,
and (1) was first proved in [10]. The ZFC variant of the following, stated in terms
of σ-complete back-and-forth systems, is our main result.

Theorem 4. Assume that the Continuum Hypothesis holds and B is a unital and
separable C∗-algebra. Then (K denotes the Cantor space) (B⊗C(K))U ∼= B∞ via
an isomorphism that sends b ⊗ 1C(K) to b for all b ∈ B.

The case when B ∼= C(K) follows from [4, Theorem 5.14 and p. 2659]. The
proofs use logic of metric structures ([2], [7]). The analog of  Loś’s Theorem fails
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for AF in general, and it has to be replaced by Ghasemi’s metric Feferman–Vaught
theorem ([11, Theorem 3.3]). The other component in the proofs is the countable
saturation of asymptotic sequence algebras ([8, Theorem 1.1]) and ultraproducts (a
classical result of Keisler). Simplified proofs of Ghasemi’s theorem and countable
saturation of B∞ can be found in [6, Chapter 16]. Proofs of Theorems 1–4 appear
in [5] and the alternative proofs sketched in my talk will appear elsewhere.
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Matrix product operator algebras, anyons, and subfactors

Yasuyuki Kawahigashi

In a recent work of Bultinck-Mariëna-Williamson-Şahinoğlu-Haegemana-Verstrae-
te [1] in condensed matther physics, they use certain tensor networks and these
tools look similar to combinatorial ones used in subfactor theory. We give precise
mathematical relations between their machinery and Ocneanu’s flat connections
as in [3].
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Let N ⊂M a subfactor of type II1 finite Jones index and finite depth. Let

· · · ⊂M−2 ⊂M−1 ⊂M0 ⊂M1 ⊂M2 ⊂ · · ·

be the Jones tower/tunnel where M−1 = N amd M0 = M . Choose a minimal
projection p in M ′

−1 ∩M2j+1 and consider the sequence of commuting squares

(M ′
−1 ∩M−1)p ⊂ (M ′

−3 ∩M−1)p ⊂ (M ′
−5 ∩M−1)p ⊂ · · ·

∩ ∩ ∩
p(M ′

−1 ∩M2j+1)p ⊂ p(M ′
−3 ∩M2j+1)p ⊂ p(M ′

−5 ∩M2j+1)p ⊂ · · · .

This series of commuting squares is described with Ocneanu’s flat connection [2].
We have a finite family of such flat connections since this flat connection depends
only on the simple summand of M ′

−1 ∩M2j+1 to which p belongs and we have
identification of such summands for different j. In this way, we have a family
of the flat symmetric bi-unitary connections from such a subfactor. We show
that they satisfy all the requirements in Bultinck-Mariëna-Williamson-Şahinoğlu-
Haegemana-Verstraete [1] up to the normalization constants and the resulting
anyon algebra in [1] and Ocneanu’s tube algebra for the subfactor in [2] are iso-
morphic. In particular, the tensor categories arising from these two algebras are
the equivalent, hence both are modular tensor categories and the Verlinde formula
holds for the former.

The matrix product operator algebras arising from tensors corresponding to
possibly non-flat symmetric bi-unitary connections also fall in ths framework. The
tensor category for such tensors is described with the “flat part” of the non-flat
symmetric bi-unitary connection in subfactor theory.
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Dynamical alternating groups, property Gamma, and inner
amenability

David Kerr

(joint work with Robin Tucker-Drob)

The topological full group of a continuous action Γ y X of a countably infinite
group on the Cantor set naturally contains many embedded copies of the ordinary
alternating group A3, and together these copies of A3 generate what is defined by
Nekrashevych in [4] to be the alternating group of the action, denoted by A(Γ, X).
As shown in [4], the group A(Γ, X) is simple when the action is minimal, and
if Γ is finitely generated and the action Γ y X is expansive and has no orbits
of cardinality less than 5 then A(Γ, X) is finitely generated. By a theorem of



C*-Algebras 2305

Juschenko and Monod, the alternating group is amenable in the case that Γ = Z
and the action is free and minimal [3]. On the other hand, for Γ = Z2 Elek and
Monod gave an example of an expansive free minimal action on the Cantor set
for which the alternating group is nonamenable [2], while Szőke showed that such
expansive free minimal examples always exist whenever Γ is amenable and not
virtually cyclic [5].

We prove that when Γ is amenable and the action is topologically free, then
the alternating group has property Gamma, and in particular is inner amenable
(i.e., there exists an atomless finitely additive probability measure on G \ {1G}
which is invariant under the action of G by conjugation). In conjunction with the
work of Elek–Monod and Szőke, this gives a positive answer to the question of
whether there exist simple finitely generated groups which are inner amenable but
not amenable.

We also show that if Γ is either (i) torsion-free, ICC, and residually finite or
(ii) of the form Γ0 × Z where Γ0 is nontrivial and torsion-free then there is an
uncountable family of topologically free expansive minimal actions Γ y X on the
Cantor set such that A(Γ, X) is C∗-simple (and in particular nonamenable) and
such that the groups A(Γ, X) for different α are pairwise nonisomorphic. The
proof uses the topological version of Austin’s result on the invariance of entropy
under bounded orbit equivalence [1].
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[5] N. G. Szőke. A Tits alternative for topological full groups. arXiv:1808.09882.

Classification of O∞-stable C∗-algebras

James Gabe

The Kirchberg–Phillips theorem, proved independently by Kirchberg [Kir95] and
Phillips [Phi00] in the mid 90’s, is one of the early major successes in the Elliott
classification programme giving a complete K-theoretic classification of all sepa-
rable, nuclear, O∞-stable, simple C∗-algebras satisfying the universal coefficient
theorem (UCT). Here O∞-stability means that the C∗-algebra A is isomorphism
to the tensor product A⊗O∞ where O∞ denotes the Cuntz algebra generated by
infinitely many isometries with mutually orthogonal range projections.

In celebrated work of Kirchberg, this classification theorem was generalised
to not necessarily simple C∗-algebras by classifying with the more complicated
invariant known as ideal–related KK-theory. The proof of this result of Kirchberg
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has never been published, but an outline of the proof strategy was published
[Kir00]. Kirchberg is writing a book for which this is the main result.

To describe the theorem, let I(A) denote the lattice of two-sided, closed ideals in
the C∗-algebra A. Given separable C∗-algebras A and B, and an order preserving
map Φ: I(A) → I(B) one constructs the groups KK(Φ;A,B) exactly as classical
KK-theory but by only considering Kasparov modules intertwining Φ in a suitable
sense. Kirchberg’s classification theorem is as follows.

Theorem 1 (Kirchberg). Let A and B be separable, nuclear, unital, O∞-stable

C∗-algebras. Then A ∼= B if and only if there is an order isomorphism Φ: I(A)
∼=
−→

I(B) and an invertible element α ∈ KK(Φ;A,B) with α0([1A]0) = [1B]0 ∈ K0(B).

The classification above is strong in the sense that there is an isomorphism

φ : A
∼=
−→ B such that φ(I) = Φ(I) for all I ∈ I(A), and KK(Φ;φ) = α.

The theorem is usually stated slightly differently (using actions by topological
spaces instead of the order isomorphism Φ) but every competent mathematician
should be able to turn Kirchberg’s original statement into the above theorem.

Recently I have found a new and very different proof of this important theorem
of Kirchberg. The main intermediate theorem (in a special case) is the following.

Theorem 2 ([Gab19]). Let A be a separable, nuclear, unital C∗-algebra, let B be a
unital, O∞-stable C∗-algebra, and let Φ: I(A) → I(B) be map preserving suprema,
compact containment and satisfying Φ(A) = B. Suppose that α ∈ KK(Φ;A,B)
is an element satisfying α0([1A]0) = [1B]0 in K0(B). Then there exists a unital
∗-homomorphism φ : A → B, unique up to asymptotic unitary equivalence, such
that spanBφ(I)B = Φ(I) for all I ∈ I(A), and KK(Φ;φ) = α.

A new proof of a special case of Kirchberg’s classification was already previously
obtained in [Gab18a].

Theorem 3 ([Gab18a, Theorem B]). Let A and B be separable, nuclear, unital
C∗-algebras. Then A⊗O2

∼= B ⊗O2 if and only if I(A) ∼= I(B).

The methods developed in [Gab18a] have already had far reaching application
such as the following which is joint work with Bosa, Sims, and White.

Theorem 4 ([BGSW19, Theorem A]). Separable, nuclear, O∞-stable C∗-algebras
have nuclear dimension one.

Another consequence of [Gab18a], which uses deep results from lattice theory,
is the following projectionless version of Kirchberg’s O2-embedding theorem.

Theorem 5 ([Gab18b, Theorem A]). A separable, exact C∗-algebra A embeds into
a zero-homotopic C∗-algebra (which can be taken to be C0((0, 1],O2) or Rørdam’s
ASH algebra A[0,1]) if and only if the primitive ideal space of A has no (non-empty)
compact, open subsets.

Consequently one obtains applications to AF embeddability and to Connes and
Higson’s picture of KK-theory through asymptotic ∗-homomorphisms. In the
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following, a C∗-algebra is traceless if it has no non-trivial lower semicontinuous,
extended quasitraces. Examples of such are all O∞-stable C∗-algebras.

Theorem 6 ([Gab18b, Corollary C]). Separable, exact, traceless C∗-algebras are
AF embeddable if and only if they are quasidiagonal. This is characterised by their
primitive ideal space having no compact, open subsets.

Finally there is an application to KK-theory. Let [[A,B]] denote the homotopy
classes of asymptotic ∗-homomorphisms in the sense of Connes and Higson. Using
recent results of Dadarlat and Pennig [DP17] one obtains the following.

Theorem 7 ([Gab18b, Corollary E]). Let A be a separable, nuclear C∗-algebra.
Then KK(A,B) ∼= [[A,B ⊗ K]] for all separable C∗-algebras B if and only if the
primitive ideal space of A has no compact, open subsets.
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The stable uniqueness theorem for equivariant Kasparov theory

Gábor Szabó

(joint work with James Gabe)

The overarching goal of the research underpinning this talk is to employ ideas from
the Elliott program in order to classify natural classes of C∗-dynamical systems up
to cocycle conjugacy. A clear starting point for the ordinary classification program
is given by the Elliott intertwining argument, even though it is usually the last
ingredient in the proof of virtually every abstract classification theorem. As was
explained in other talks at the beginning of this workshop, this motivates an in-
depth study of ∗-homomorphisms between C∗-algebras, in particular with regard to
uniqueness and existence theorems relative to a predetermined functorial invariant.
In the usual way of viewing C∗-dynamical systems over a locally compact group G
as a category, however, it is unclear what the correct analog of this phenomenon
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should be. In the first part of my talk, I presented the basic framework of the
so-called cocycle category [5]:

Definition 1. Let α : Gy A and β : Gy B be actions on C∗-algebras. A (non-
degenerate) cocycle representation is a pair (ϕ,u) : (A,α) → (M(B), β), where
ϕ : A→ M(B) is a non-degenerate ∗-homomorphism and u : G→ U(M(B)) is a
strictly continuous β-cocycle satisfying Ad(ug) ◦ βg ◦ ϕ = ϕ ◦ αg for all g ∈ G. If
we furthermore assume ϕ(A) ⊆ B, then we call (ϕ,u) a cocycle morphism.

After coming up with the composition formula given by

(ψ, v) ◦ (ϕ,u) := (ψ ◦ ϕ, ψ(u•)v•),

the above definition introduces the arrows in a suitable category of C∗-dynamical
systems over G. From the definition it is clear that a cocycle conjugacy in the
known sense translates to isomorphism in this category. Indeed, every unitary
v ∈ U(M(B)) gives rise to a special kind of inner cocycle morphism given by
Ad(v) := (Ad(v), vβ•(v)∗), which gives rise to a canonical notion of (approxi-
mate/asymptotic) unitary equivalence. The obvious desirable Elliott intertwining
theorem then holds within this category as follows.

Theorem 1. Let α : Gy A and β : Gy B be actions on separable C∗-algebras.
Suppose that

(φ,u) : (A,α) → (B, β) and (ψ, v) : (B, β) → (A,α)

are two cocycle morphisms such that their mutual compositions

(ψ, v) ◦ (φ,u) and (φ,u) ◦ (ψ, v)

are approximately inner. Then (φ,u) and (ψ, v) are approximately unitarily equiv-
alent to mutually inverse cocycle conjugacies between (A,α) and (B, β).

This simple fact indeed yields the appropriate framework for considering exis-
tence and uniqueness theorems in the aforementioned sense. In the main part of
the talk, I gave a reminder regarding the Cuntz–Thomsen picture of equivariant
KK-theory [3, 6], with the motivation to extract useful information in order to at-
tack the uniqueness problem. In that picture, an element in the group KKG(α, β)
is represented by an equivariant Cuntz pair, which is a pair of cocycle representa-
tions

(ϕ,u), (ψ, v) : (A,α) → (M(B), β)

with the additional requirement that the pointwise differences ψ−ϕ and v−u take
value in B. As the main result in the talk, I presented an equivariant generalization
of the stable uniqueness theorem due to Lin and Dadarlat–Eilers [1, 2], which goes
as follows. Both A and B are assumed to be separable below.

Theorem 2. Assume that

(ϕ,u), (ψ, v) : (A,α) → (M(B), β)
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forms an equivariant Cuntz pair. Then its associated element in KKG(α, β) van-
ishes if and only if there exists a cocycle representation (θ, x) : (A,α) → (M(B), β)
and a norm-continuous map v : [0,∞) → U(1 +B) such that

vt(ϕ⊕ θ)(a)v∗t
t→∞
−→ (ψ ⊕ θ)(a)

for all a ∈ A, and

max
g∈K

‖(vg ⊕ xg) − vt(ug ⊕ xg)βg(vt)
∗‖

t→∞
−→ 0

for all compact sets K ⊆ G.

I proceeded to give a very rough outline of some of the non-trivial ingredients
entering in the proof of this result. Finally, I formulated a conjecture in the cocy-
cle category framework that ought to be the correct statement of an equivariant
Kirchberg–Phillips theorem [4] concerning outer actions of amenable groups on
Kirchberg algebras and their classification via equivariant KK-theory. I specu-
lated that the main result of this talk may be exploited to obtain a solution to
said conjecture.
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Paschke Duality and C∗-algebra Extensions

Huaxin Lin

This informal talk is to discuss the Paschke duality, it relation with C∗-algebra ex-
tension theory and its relation with the Universal Coefficient Theorem for amenable
C∗-algebras.

Proposition 1. Let A be a separable amenable C∗-algebra, let C ⊂ A be an
amenable C∗-subalgebra and let B be a σ-unital stable C∗-algebra.

(1) Suppose that τ : A→M(B)/B is an essential trivial absorbing extension.
Then τ |C is an essential trivial absorbing extension.

If A is unital, τ is a unital trivial absorbing extension, and 1C = 1A,
then τ |C is unital trivial absorbing extension; if τ |C is not unital, then τ |C
is absorbing.
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(2) Suppose that τC : C →M(B)/B is an essential trivial absorbing extension.
Then there is a trivial absorbing extension τ : A → M(B)/B such that
τ |C = τC .

If C is unital, 1C = 1A, and τC is a unital essential trivial absorbing ex-
tension, then there is a unital trivial absorbing extension τ : A→M(B)/B
such that τ |C = τC .

Definition 1. Let A be a separable C∗-algebra, B be a non-unital but σ-unital
C∗-algebra, and let φ : A→M(B)/B be an essential extension. Define

φ(A)′ := {x ∈M(B)/B : xφ(a) = φ(a)x for all a ∈ A},

and define

Iφ := φ(A)⊥ = {x ∈ φ(A)′ : xφ(a) = 0 for all a ∈ A}

= {x ∈M(B)/B : xφ(a) = 0 for all a ∈ A}.

Define φ(A)Iφ = {x ∈M(B)/B : yx, xy ∈ Iφ for all y ∈ Iφ}. Note that φ(A)Iφ is a
C∗-subalgebra of M(B)/B which contains Iφ as a (closed two-sided) ideal. More-
over, both φ(A) and φ(A)′ are in φ(A)Iφ . Denote by πIφ : φ(A)Iφ → φ(A)Iφ/Iφ the

quotient map. Then πIφ◦φ : A→ φ(A)Iφ/Iφ is injective. Define φ(A)c = φ(A)′/Iφ.

The Paschke duality (Proposition 3 of [25], see also Remark 2.8 of [21]) states
that there is an isomorphism from Ki(φ(A)c) ∼= KKi+1(A,B), i = 0, 1. The case
that A is unital was proved by Valette [25] and generalized by Skandalis in [21].
In fact, Valette also discussed the non-unital cases (see Corollary 4 of [25]).

Fix a trivial essential absorbing extension φ : A → M(B)/B. Define D =

φ(A)φ(A)Iφφ(A). Note that D is σ-unital (as A is separable) and D ⊥ Iφ. There
is an injective homomorphism jD : πIφ(D) → D such that πIφ ◦ jD = idπIφ

(D) and

jD ◦ (πIφ)|D = idD.
First assume that A is not unital. Let s ∈ jo(M2(O2)), where jo : O2 →

φ(1A)φ(A)′φ(1A) is such that s∗ diag(1, 1)s = diag(1, 0) and ss∗ = diag(1, 1). Let
e = s∗ diag(0, 1)s ∈ jo(O2).

Let p′ ∈ φ(A)c be a non-zero projection and let x′ ∈ φ(A)′+ be such πIφ(x′) = p′.
Define p0 = πIφ(s∗ diag(x′, 0)s). Since s ∈ jo(O2) ⊂ φ(A)′, p0 ∈ φ(A)c and [p0] =
[p′] in K0(φ(A)c). Let p = p0 + πIφ(e) = πIφ(s∗ diag(x′, 1)s). It is a projection.
Since [diag(0, 1)] = 0, [p0] = [p]. Choose x := s∗ diag(x′, 1)s ∈ φ(A)′+. Then
πIφ(x) = p.

Define φ̄p : A → πIφ(D) by φ̄p(a) = (πIφ ◦ φ(a))p for all a ∈ A. Then define

φp = jD ◦ φ̄p. Note that

φ(a)s∗ diag(0, 1)s = φ(a)e for all a ∈ A

which gives an injective homomorphism. Thus,

φp(a) = φ(a)x = φ(a)(s∗ diag(x′, 0)s) ⊕ φ(a)s∗ diag(0, 1)s for all a ∈ A,

which is an absorbing essential extension.
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For any a, b ∈ A, we have φ(ab)x2 = φ(a)xφ(b)x = φp(ab) = φ(ab)x. It follows
that

φ(a)x = φ(a)x2 for all a ∈ A.

Suppose that q ∈ φ(A)c is another projection such that there is a w ∈ φ(A)c

with w∗w = diag(p, 1) and ww∗ = diag(q, 1). Note that φ1φ(A)c = φ. Since φ
is absorbing, to simplify notation, replacing p by p ⊕ 1 and q by q ⊕ 1, we may
assume without loss of generality that w∗w = p and ww∗ = q. It follows that
there is a continuous path {pt : t ∈ [0, 1]} of projections in M2(φ(A)c) such that
p0 = diag(p, 0) and p1 = diag(q, 0). Define φt : A→M2(M(B)/B) by

φt(a) = (jD ⊗ idM2)(diag(πIφ(φ(a)), πIφ (φ(a)))pt) for all a ∈ A.

Note that φ0 = φp and φ1 = φq. It follows that [φ0] = [φ1] in KK1(A,B).
If A is unital, then φ(A)c = φ(1A)φ(A)′φ(1A). Let us choose x′ = p′. Replacing

1 by φ(1A) above, a simpler argument leads to the same conclusion above.
Define Λ0 : K0(φ(A)c) → KK1(A,B) by Λ0([p]) = [φp]. This defines a ho-

momorphism from K0(φ(A)c) to KK1(A,B). We remind the reader that φp is
assumed to be absorbing.

If C is unital, 1C = 1A, and τC is a unital essential trivial absorbing extension,
then there is a unital trivial absorbing extension τ : A → M(B)/B such that
τ |C = τC

Theorem 2 (Proposition 3 of [25] and see also Remark 2.8 of [21]). Let A be
a separable amenable C∗-algebra and let B be a σ-unital stable C∗-algebra. Fix
a trivial essential absorbing extension φ : A → M(B)/B. Then the map Λ0 :
K0(φ(A)c) → KK1(A,B) is a group isomorphism.

Proof. Similar to before, fix an essential trivial absorbing extension φ : A →
M(B)/B. If A is unital, then φ(1A) 6= 1M(B)/B and [φ(1A)] = 0.

Without loss of generality, by 1, we may assume that there exists a trivial

absorbing extension φ̃O : Ã⊗O2 →M(B)/B (where Ã is the unitization of A, or

Ã = A, if A is unital) such that φ̃O|A⊗1 = φ. We may assume that jo = φ̃O|1Ã⊗O2 .

Write O2 = O2 ⊗ O2. Choose h0 ∈ jo(O2 ⊗ 1O2)+ with (h0) = [0, 1]. Denote by
φ∼ : A⊗ C(T) →M(B)/B such that

(1) φ∼(a⊗ f) = φ̃O(a⊗ f(ei2πh0))

for all a ∈ A and f ∈ C(T). Note that φ∼ is a trivial absorbing extension, and if
A is unital, φ∼ is a unital trivial absorbing extension. Note also that h0 ∈ φ(A)′.

Let u′ ∈ φ(A)c be a unitary and let y′ ∈ φ(A)′ such that πIφ(y′) = u′ and let
ıu′ : C(T) → φ(A)c be the injective homomorphism defined by ıu′(f) = f(u′) for all
f ∈ C(T). Note that, in the case that A is unital, Iφ = (1−φ(1A))(M(B)/B)(1−
φ(1A)). In this case, we choose y′ = u′ ∈ φ(1A)φ(A)′φ(1A).

Let s ∈M2(jo(1⊗O2)) be as in the preceding discussion and let e = s∗ diag(0, 1)s
(if A is unital, let e = s∗ diag(0, φ(1A))s). Choose a unitary z0 ∈ ej0(O2)e with
(z0) = T. Let y0 = s∗ diag(y′, 0)s and y = y0 + z0. Then u := πIφ(y0 + z0) =
πIφ(s∗y′s+ z0) ∈ φ(A)c is a unitary such that [u] = [u′] as z0 ∈ jo(O2).
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Define φ′u : A ⊗ C(T) → D/Iφ by φ′u(a ⊗ f) = πIφ(φ(a))f(u) for all a ∈ A and

f ∈ C(T) (recall D = φ(A)φ(A)Iφφ(A), see the discussion preceding the theorem).
Define φu := jD ◦ φ′u : A⊗C(T) → D ⊂M(B)/B. Recall S = {f ∈ C(T) : f(1) =
0} ∼= C0((0, 1)). Define φu,s := φu|SA : SA→ D ⊂M(B)/B. Note that

φu(a⊗ f)e = eφu(a⊗ f) = φ∼(a⊗ f)e for all a ∈ A and f ∈ C(T)

φu,s(a⊗ f)e = eφu,s(a⊗ f) = φ∼(a⊗ f)e for all a ∈ A and f ∈ S.

It follows from 1 that φ∼(a ⊗ f)e defines a trivial absorbing extension. There-
fore, φu and φu,s are essential absorbing extension of A ⊗ C(T) and of SA by B,
respectively.

Note that yd, dy ∈ D for all d ∈ D. Therefore, there exists y1 ∈ M(D) such
that y1d = yd and dy1 = dy for all d ∈ D. Note that, since y ∈ φ(A)′,

(2) y1φ(a) = yφ(a) = φ(a)y = φ(a)y1 for all a ∈ A.

There exist c1, c2 ∈ Iφ such that y∗y = 1 + c1 and yy∗ = 1 + c2. For any d ∈ D,

y∗1y1d = y∗yd = (1 + c1)d = d,

d(y∗1y1) = d(y∗y) = d(1 + c1) = d,

y1y
∗
1d = yy∗d = (1 + c2)d = d,

dy1y
∗
1 = dyy∗ = d(1 + c2) = d.

It follows that y1 is a unitary in M(D). By (2), for non-commutative polynomial
P of y and y∗,

(3) P (y1, y
∗
1)φ(a) = P (y, y∗)φ(a) = φ(a)P (y, y∗) = φ(a)P (y1, y

∗
1).

This implies that, for any f ∈ S,

(4) f(y1)φ(a) = φ(a)f(y1).

We have

(5) φu,s(a⊗ f) = φ(a)f(y1) for all a ∈ A and f ∈ S.

Now suppose that v ∈ φ(A)c is another unitary such that [u] = [v] in K1(φ(A)c)
and φv,s is an essential absorbing extension. Then there exists a continuous path
{u(t) : t ∈ [0, 1]} ⊂ M2(φ(A)c) such that u(0) = diag(u, 1) and u(1) = diag(v, 1).
Define Ψt : SA→ πIφ(D) by

Ψt(a⊗ f) = diag(πIφ(φ(a)), πIφ (φ(a))) · f(u(t) diag(1, e2πi(πIφ
(h0))))

for all a ∈ A, f ∈ S, and t ∈ [0, 1]. Define Ψt : SA→ D ⊂M(B)/B by

Ψt = (jD ⊗ id)M2 ◦ Ψ̄t.

Then for all a ∈ A and f ∈ S,

Ψ0(a⊗ f) = diag(φ(a), φ(a)) · f(u(0) diag(1, e2πih0))

= diag(φ(a), φ(a)) · f(diag(u, e2πih0))

= diag(φu,s(a⊗ f), φ∼(a⊗ f)).



C*-Algebras 2313

Similarly,
Ψ1 = ψv,s ⊕ φ∼|SA.

Since φ∼ is trivial and φu,s and φv,s are absorbing, in KK1(SA,B),

[φu,s] = [Ψ0] = [Ψ1] = [φv,s].

Thus, one obtains a group homomorphism Λ1 : K1(φ(A)c) to KK1(SA,B). �

Define ψu′ : A⊗C(T) → D/Iφ by ψ′
u′(a⊗f) = πIφ(φ(a))f(u′) for all a ∈ A and

f ∈ C(T), and define ψu′ = jD ◦ ψ̄u′ . Set ψu′,s = ψu′ |SA. Consider the absorbing
extension λu′ = ψu′ ⊕ φ∼ and λu′,s = λu′ |SA. The argument above also shows
that [φu,s] = [λu′,s].

Theorem 3 (Proposition 3 of [25], Remark 2.8 of [21], and Theorem 3.2 of [22]).
Let A be a separable amenable C∗-algebra and let B be a σ-unital stable C∗-algebra.
Then Λ1 : K1(φ(A)c) → KK1(SA,B) is a group isomorphism.

We use the Paschke duality above to study C∗-algebra extension theory. This
informal talk also outlines a strategy to study the UCT.
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Stationary characters on lattices in semi-simple groups

Rémi Boutonnet

(joint work with Cyril Houdayer)

This talk aims to study unitary representations of lattices in higher rank semi-
simple Lie groups and the structure of the C∗-algebras generated by such repre-
sentations. Our main results can be seen as generalizations of Margulis normal
subgroup theorem, (see [8, Theorem IV.4.10]), in the framework of unitary repre-
sentations.

Typically, we will study an irreducible lattice Γ in a connected semi-simple Lie
group G of rank at least 2, having no-compact simple factor. For simplicity we
assume that G has trivial center, and our main results will need to require that
in fact every simple factor of G has rank at least 2. In this context, the Margulis
normal subgroup theorem states that any non-trivial normal subgroup of Γ is of
finite index. Later, Stuck and Zimmer generalized this theorem to a measurable
setting, proving that any ergodic probability measure-preserving action of such a
lattice Γ is either essentially free, or factors through an action of a finite quotient
of Γ, see [11].

More recently, an operator algebraic generalization was proved by Peterson [10],
answering a question of Connes. Inspired by Margulis superrigidity theorem, and
the measure theoretic arguments used in its proof, Connes suggested (see [5]) that
the embedding of the lattice Γ in its von Neumann algebra LΓ should be rigid,
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in the sense that any group homomorphism from Γ into a tracial von Neumann
algebra M should either range into a finite dimensional subalgebra of M , or should
extend to a von Neumann algebraic morphism LΓ →M . Here one needs to make
an ergodicity assumption on the morphism: its range should generate a factor
inside M . Thanks to the GNS construction, such a statement is naturally phrased
in terms of characters on the group, see Theorem 1 below. Recall that a character
on Γ is a positive definite function ϕ : Γ → C which is conjugacy invariant and
such that ϕ(1) = 1. Aternatively, a character can be seen as a tracial state on
the universal C∗-algebra C∗(Γ) of Γ. The set of all characters is then a compact
convex subset of the dual of C∗(Γ). We say that a character is almost periodic if
the corresponding GNS representation is finite dimensional.

Theorem 1 (Peterson, [10]). Any extremal character of Γ as above is either equal
to the Dirac function δe at the rival element e or it is almost periodic.

Given a unitary representation π of Γ, we will denote by C∗
π(Γ) the C∗-algebra

generated by π(Γ). If τ is a trace on C∗
π(Γ), then τ ◦ π is a character on Γ. Thus

the above result can be seen as a classification of all tracial states on such algebras
C∗

π(Γ). But in general, there is a priori no reason for such C∗-algebras to admit a
trace at all. So in order to study general representations of Γ, we will consider a
stationary version of traces. Given a probability measure µ0 on Γ, a µ0-stationary
state on C∗

π(Γ) is a state ϕ such that
∑

g∈Γ

µ0(g)ϕ(π(g)−1xπ(g)) = ϕ(x), for all x ∈ C∗
π(Γ).

The function ϕ ◦ π is then called a µ0-character. This is inspired by the work
of Hartman and Kalantar [6], where some connexions between this notion and
C∗-simplicity are explored.

The strength of stationary states is that they always exist, as can be seen from
an averaging argument. The following theorem then implies that traces on C∗

π(Γ)
always exist, for arbitrary representations π.

Theorem 2. Assume that every simple factor of G has rank at least 2. There ex-
ists a probability measure µ0 on Γ such that every µ0-character on Γ is conjugation
invariant (so it is actually a character).

Combining this fact with Peterson’s result on characters, we derive the following
structural result. This is a far reaching generalization of C∗-simplicity and the
unique trace property for such groups (see [7, 2]).

Corollary 3. Under the assumption of Theorem 2, any weakly mixing represen-
tation π of Γ weakly contains the left regular representation λ. Moreover, if we
denote by Θπ,λ : C∗

π(Γ) → C∗
λ(Γ) : π(γ) 7→ λΓ(γ) the corresponding surjective

unital ∗-homomorphism, then

(1) τΓ ◦ Θπ,λ is the unique tracial state on C∗
π(Γ).

(2) ker(Θπ,λ) is the unique proper maximal ideal of C∗
π(Γ).
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We point out that similar results for some specific quasi-regular representations
have been obtained recently in [1].

Going back to our main result above, Theorem 2, let us point out that we choose
the measure µ0 as constructed by Furstenberg, [4]: we require that the Poisson
boundary of (Γ, µ0) is equal to the Poisson boundary of (G,µ) for some adapted
probability measure µ on G. We will call such a measure µ0 a special measure.

Our proof of Theorem 2 is based on a combination of C∗-algebraic techniques
imported from the recent approach to C∗-simplicity, and the following result, which
is a non-commutative factor theorem in the spirit of a theorem of Nevo and Zimmer
[9].

Theorem 4. Assume that every simple factor of G has rank at least 2. Let µ0 be
a special measure on Γ. Consider an action of Γ on a von Neumann algebra M ,
whose fixed point algebra is trivial: MΓ = C. Assume that φ is a normal state on
M , which is µ0-stationary. Then the following dichotomy holds:

• either φ is Γ-invariant,
• or there exists a proper parabolic subgroup Q ( G and a Γ-equivariant

normal unital ∗-embedding θ : L∞(G/Q) →M .

There are several major differences with the initial result of Nevo and Zimmer
[9], both in the statement and in the techniques of proof, which greatly improve the
range of applications. This will be explained in a separate talk by Cyril Houdayer.

To conclude, let us mention that Theorem 4 also implies Peterson’s result on
character rigidity. At first glance, this may seem surprising since we already know
that a character is conjugacy invariant, so there is no point in applying directly
Theorem 4 to the GNS von Neumann algebra generated by a character. Instead,
we apply it to the so-called non-commutative Poisson boundary considered by
Peterson (see also [3]). The conclusion then follows from C∗-algebraic techniques
in a similar fashion to the proof of Theorem 2.

References

[1] B. Bekka, M. Kalantar, Quasi-regular representations of discrete groups and associated
C∗-algebras. arXiv:1903.00202
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A noncommutative Nevo–Zimmer theorem

Cyril Houdayer

(joint work with Rémi Boutonnet)

In this talk, based on our joint work with Rémi Boutonnet (see [1]), I will explain
the main technical novelty that provides a structure theorem for stationary actions
of lattices on von Neumann algebras. Before doing so, let me first introduce some
notation and terminology.

• Let G be any connected semisimple Lie group with finite center and no
nontrivial compact factor, all of whose simple factors have real rank at
least two. Choose a maximal compact subgroup K < G and a minimal
parabolic subgroup P < G, so that G = KP . For instance, for every
n ≥ 3, let G = SLn(R) and choose K = SOn(R) and P < G the subgroup
of upper triangular matrices.

• We denote by νP ∈ Prob(G/P ) the unique K-invariant Borel probability
measure on the homogeneous space G/P . More generally, if P ⊂ Q ⊂
G is a parabolic subgroup, we denote by νQ ∈ Prob(G/Q) the unique
K-invariant Borel probability measure on the homogeneous space G/Q.
Observe that for every parabolic subgroup P ⊂ Q ⊂ G, the probability
measure νQ ∈ Prob(G/Q) is G-quasi-invariant.

The following concept is central in our talk.

Definition 1. Let G be as above. Let Γ < G be any lattice. We say that a
probability measure µ0 ∈ Prob(Γ) is special if the following three conditions are
satisfied:

(i) The support of µ0 is equal to Γ;
(ii) µ0 ∗ νP = νP , that is, νP is µ0-stationary;
(iii) The space (G/P, νP ) is the Poisson–Furstenberg boundary associated with

the simple random walk on Γ with law µ0 (see [3, 2]).

By a result of Furstenberg [4, Theorem 3] (see also [2, Theorem 2.21]), there always
exists a special probability measure µ0 ∈ Prob(Γ). Moreover, for every parabolic
subgroup P ⊂ Q ⊂ G, νQ is the unique µ0-stationary measure on the homogeneous
space G/Q (see [5, Corollary VI.3.9]).

Let M be any von Neumann algebra, φ ∈M∗ any normal state and σ : Γ yM
any action. We simply write γφ = φ ◦ σ−1

γ ∈M∗ for every γ ∈ Γ. We say that the

action σ : Γ yM is ergodic if the fixed-point subalgebra MΓ = {x ∈M | σγ(x) =
x, ∀γ ∈ Γ} satisfies MΓ = C1. We say that the state φ ∈ M∗ is µ0-stationary if∑

γ∈Γ µ0(γ) γφ = φ. If the action σ : Γ y M is ergodic and the state φ ∈ M∗ is
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µ0-stationary, we say that (M,φ) is an ergodic (Γ, µ0)-von Neumann algebra. Our
main result is the following structure theorem for stationary actions of lattices on
von Neumann algebras.

Theorem 1. Let G be as above. Let Γ < G be any lattice and µ0 ∈ Prob(Γ)
any special probability measure. Let (M,φ) by any ergodic (Γ, µ0)-von Neumann
algebra. Then the following dichotomy holds.

• Either φ is Γ-invariant.
• Or there exists a proper parabolic subgroup P ⊂ Q ( G and a Γ-equivariant

normal unital ∗-embedding θ : L∞(G/Q, νQ) → M such that φ ◦ θ = νQ.

It is worth pointing out that Theorem 1 is new even in the case of stationary
actions of lattices on abelian von Neumann algebras. The proof of Theorem 1
relies on two novel aspects.

Firstly, for any ergodic (Γ, µ0)-von Neumann algebra (M,φ), we construct a

µ-stationary normal state ϕ on the induced von Neumann algebra IndG
Γ (M) =

L∞(G/Γ)⊗M , where µ ∈ Prob(G) is a K-invariant admissible Borel probability
measure. This is where we use that the probability measure µ0 ∈ Prob(Γ) is
special and we exploit the fact that the Γ-space (G/P, νP ) is also a G-space. This
construction is new even in the case of stationary actions of lattices on measure
spaces.

Secondly, we prove the following noncommutative analogue of Nevo–Zimmer
structure theorem for arbitrary ergodic (G,µ)-von Neumann algebras (see [6, The-
orem 1] for the case of ergodic (G,µ)-spaces).

Theorem 2. Let G be as above. Let µ ∈ Prob(G) be any K-invariant admissible
Borel probability measure. Let (M, ϕ) by any ergodic (G,µ)-von Neumann algebra.
Then the following dichotomy holds.

• Either ϕ is G-invariant.
• Or there exists a proper parabolic subgroup P ⊂ Q ( G and a G-equivariant

normal ∗-embedding Θ : L∞(G/Q, νQ) → M such that ϕ ◦ Θ = νQ.

The proof of Theorem 2 constitutes the most technical part of our work. The
generalization of Nevo–Zimmer theorem to the noncommutative setting presents
both technical and conceptual difficulties and is not a mere adaptation of their
original proof. To prove Theorem 1, we then apply our noncommutative Nevo–
Zimmer theorem to the induced (G,µ)-von Neumann algebra (IndG

Γ (M), ϕ). To
descend back to (M,φ), we use a disintegration argument for representations of
C∗-algebras.
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Non-commutative transport of measure and free complementation of
some subalgebras of L(Fd)

David Jekel

Introduction. W∗-algebras are often viewed as non-commutative measure spaces.
Tracial W∗-algebras can be considered as non-commutative probability spaces, and
their self-adjoint elements can be viewed as random variables. A tuple of such ran-
dom variables (X1, . . . , Xd) has a law (or distribution), which is defined to be the
map µ : C〈x1, . . . , xd〉 → C given by p(x) 7→ τ(p(X)). If ‖Xj‖ ≤ R. Moreover, ev-
ery such law can be realized by random variables in a tracial W∗-algebra through
the GNS construction.

In the commutative setting, any two standard Borel probability spaces are iso-
morphic as measure spaces, so for any such probability measure µ and ν, there
is some “transport map” f such that f∗µ = ν. Classical transport theory studies
the “most efficient” choice of f , regularity properties of f , and so forth. But in
the the non-commutative setting, transport might not exist to begin with. Indeed,
McDuff showed that there are uncountably many non-isomorphic II1 factors [8].
We don’t know whether L(Fn) and L(Fm) are isomorphic for distinct n,m > 1.

However, for certain non-commutative laws that arise naturally from random
matrix theory, we can show that the associated non-commutative random vari-
ables X1, . . . , Xd generate a W∗-algebra that is isomorphic to the free group
factor L(Fd). The free group factor is a natural model for non-commuting random
variables since it is the W∗-algebra generated by freely independent semicircular
variables S1, . . . , Sd, which are the analogue of independent Gaussians in free
probability.

Setup and Examples. Consider a d-tuple of N×N self-adjoint random matrices

(X
(N)
1 , . . . , X

(N)
d ) given by the probability density

dµ(N)(x) = (1/Z(N))e−N2V (N)(x) dx,

where V (N) : MN(C)dsa → R is a “potential” function such that V (N)(x) −
(c/2)‖x‖22 is convex and V (N)(x) − (C/2)‖x‖22 is concave. We also assume that
the gradient DV (N) is “asymptotically approximable by trace polynomials,” which
means roughly speaking that DV (N) has a well-defined limit as N → ∞ in a cer-
tain space of “functions in non-commutative real variables.” In this case, there
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exist non-commutative random variables X1, . . . , Xd, such that for every non-
commutative polynomial p,

τN (p(X(N))) → τ(p(X)) in probability,

where τN denotes the normalized trace on MN(C). See [6, Theorem 4.1] as well
as the similar earlier results [2], [3]

The canonical example of such a sequence of potentials is V (N)(x) = (1/2)‖x‖22,
in which the the large N limit is precisely a family of free semicircular variables.
The convex setting also includes the generators of the q-Gaussian algebra when q
is small, as shown by [1] [4]. It also includes the case when X = S + ǫp(S), where
p = (p1, . . . , pd) is a tuple of self-adjoint non-commutative polynomials and ǫ is
sufficiently small (depending on p).

Transport to a Free Semicircular Family. In the setting of convex potentials
described above, we have W∗(X1, . . . , Xd) ∼= W∗(S1, . . . , Sd). One method to
prove this is to study classical transport theory in the large N limit. It is well-
known that solving a certain PDE will produce a function f (N) that pushes forward
µ(N) to the Gaussian measure (see e.g. [9, §4]). We can show (and this is the
technical crux) that f (N) has a well-defined largeN limit f in an appropriate space
of functions, such that f(X) is well-defined in W∗(X1, . . . , Xd). Since f (N)(X(N))
is a Gaussian tuple of matrices, then f(X) is a semicircular family and hence
W∗(X) contains W∗(S) ∼= L(Fd). Since the same analysis holds for the inverse
function for f (N), we get W∗(X) ∼= W∗(S).

The existence of transport for convex potentials under broadly similar hypothe-
ses was known before [4] [5]. But the author’s techniques also yielded the more
general result that the transport could be constructed in a “lower triangular”
manner [7, Theorem 8.11].

Theorem 1. Let (X1, . . . , Xd) be non-commutative random variables given by
uniformly convex, semi-concave sequence of potentials as above. Then there exists
an isomorphism φ : W∗(X1, . . . , Xd) → W∗(S1, . . . , Sd) such that

φ(W∗(X1, . . . , Xk)) = W∗(S1, . . . , Sk) for k = 1, . . . , d.

Sketch of proof. We iteratively transport each generator conditioned on the pre-
vious ones. The first step is to construct f such that

(X1, . . . , Xd−1, f(X)) ∼ (X1, . . . , Xd−1, Sd).

In the N ×N matrix approximation, X
(N)
d has a nice conditional probability den-

sity given (X
(N)
1 , . . . , X

(N)
d−1). For every, (x1, . . . , xd−1), we use classical methods

to construct f (N)(x1, . . . , xd−1,−) that pushes forward the conditional density of

X
(N)
d to the Gaussian. This “fiberwise” transport results in the global behavior

that
(
X

(N)
1 , . . . , X

(N)
d−1, f

(N)(X(N))
)
∼

(
X

(N)
1 , . . . , X

(N)
d−1, S

(N)
d

)
in law,
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where S
(N)
d is an independent Gaussian. By Voiculescu’s asymptotic freeness the-

orem [12, Theorem 2.4], S
(N)
d becomes a freely independent semicircular in the

large N limit. By showing that f (N) has a reasonable large N limit, we obtain

W∗(X1, . . . , Xd) ∼= W∗(X1, . . . , Xd−1, Sd) = W∗(X1, . . . , Xd−1) ∗ W∗(Sd).

Then we apply ths same argument to (X1, . . . , Xd−1) and so forth. �

Applications and Questions. The theorem implies that W∗(X1) is a freely
complemented MASA in W∗(X1, . . . , Xd), and it is even maximal amenable, be-
cause we know that this is true for W∗(S1) thanks to Popa [11]. Thus, our result
re-proves maximal amenability for the generator MASA in the q-Gaussian case for
a certain range of q depending on d (however, this was shown for a d-independent
range of q values in [10]).

Our result also holds for small polynomial perturbations of S. This leads us to
ask, under what conditions on p = (p1, . . . , pd), is it true that p1(S) generates a
freely complemented MASA? Is this true “generically”? Are “most” MASA’s in
L(Fd) maximal amenable? And if a MASA in L(Fd) is maximal amenable, then
is it freely complemented? (Coarseness of such maximable amenable MASA’s was
conjectured by Ben Hayes, and as mentioned by Sorin Popa, this relates to the
Peterson-Thom conjecture.)
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C∗-algebras of stable rank one and their Cuntz semigroups

Hannes Thiel

(joint work with Ramon Antoine, Francesc Perera, Leonel Robert)

Stable rank one. Recall that a unital C∗-algebra is said to have stable rank
one if its invertible elements are norm-dense. This strong finiteness condition was
introduced by Rieffel, [Rie83], to study nonstable K-theory. First examples of
C∗-algebras of stable rank one include II1-factors and commutative C∗-algebras
C(X) with X of covering dimension at most one.

Stable rank one has very nice permanence properties: It passes to ideals, quo-
tients, hereditary sub-C∗-algebras, directs sums, inductive limits, matrix ampli-
fications and stabilizations. Using this, it follows for instance that the class of
stable rank one C∗-algebras includes all AF- and AT-algebras.

In [Put90], Putnam proved that all irrational rotation algebras have stable rank
one. Later, is was shown by Elliott-Evans, [EE93], that these algebras are even
AT-algebras. These results were generalized in two ways: First, it was shown
that large classes of simple C∗-algebras are ASH-algebras; see for example [LP10].
Second, it was studied when simple ASH-algebras have stable rank one; see for
example [DNNP92], [EHT09].

The picture was clarified with the discovery of the Jiang-Su algebra Z, [JS99],
which is a unital, simple, nonelementary C∗-algebra that is KK-equivalent to C.
One says that a C∗-algebra A is Z-stable if A ∼= A⊗Z. This important regularity
property is the C∗-algebraic analog of the McDuff-property for von Neumann al-
gebras. Rørdam, [Rør04], showed that Z-stable, simple, stably finite, C∗-algebras
have stable rank one. In [Tom11], Toms proved that simple ASH-algebras with
slow dimension growth are Z-stable, and thus have stable rank one.

There are also many simple, non-Z-stable C∗-algebras of stable rank one. Amen-
able examples were constructed by Villadsen, [Vil98], and Toms, [Tom08]. Nona-
menable examples are given by Dykema-Haagerup-Rørdam, [DHR97]: the reduced
group C∗-algebra C∗

λ(G1 ∗G2) is simple and has stable rank one whenever G1 and
G2 are nontrivial groups that are not both isomorphic to Z/2Z.

Question 1. Let G be a discrete group such that its reduced group C∗-algebra
C∗

λ(G) is simple. Does C∗
λ(G) have stable rank one?

The Cuntz Semigroup. Let A be a C∗-algebra, and let A⊗K denote its stabi-
lization. Recall that the Murray-von Neumann semigroup V (A) is defined through
equivalence classes of projections in A⊗K. Orthogonal addition turns V (A) into
a commutative monoid, which is naturally isomorphic to the set of isomorphism
classes of finitely generated, projectiveA-modules. If A is unital, then its K0-group
is isomorphic to the Grothendieck completion of V (A).

Given a, b ∈ A+, we write a -Cu b if there is a sequence (cn)n in A with
limn ‖a− cnbc

∗
n‖ = 0. Further, a and b are Cuntz equivalent, denoted a ∼Cu b, if

a -Cu b and b -Cu a. These relations were introduced by Cuntz, [Cun78], in his
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study of dimension functions on C∗-algebras. The Cuntz semigroup of A is

Cu(A) := (A⊗K)+/∼Cu
.

Again, orthogonal addition turns Cu(A) into a commutative monoid, and the
relation -Cu induces an additive order on Cu(A). There is a picture of Cu(A)
using countably generated, Hilbert A-modules, [CEI08]. If A has stable rank one,
then Cu(A) is naturally isomorphic to the isomorphism classes of such modules.

The following table contains some examples of the considered invariants. It
becomes apparent that Cu(A) contains more information than V (A):

A V (A) K0(A) Cu(A)

C or Mn(C) N Z N = N ∪ {∞}
II1-factor [0,∞) R [0,∞) ⊔ (0,∞]

C([0, 1]) N Z Lsc([0, 1],N)
Z or C∗

λ(F∞) N Z N ⊔ (0,∞]

In [CEI08], Coward-Elliott-Ivanescu introduced the category Cu of abstract
Cuntz semigroups, and they showed that the Cuntz semigroup defines a functor
from C∗-algebras to Cu. A systematic study of Cu with applications to the struc-
ture theory of C∗-algebras was conducted in [APT18] and [APT17]. In particular,
it was shown that Cu admits a natural tensor product construction that gives it
the structure of a closed, symmetric, monoidal category.

Theorem 1 ([APT19]). The category Cu is complete and cocomplete, and the
Cuntz semigroup functor preserves inductive limits and direct sums. Further, a
scaled version of the Cuntz semigroup preserves products and ultraproducts.

The Cuntz semigroup is an invariant that contains a lot of information about
the C∗-algebra, including its lattice of ideals and its simplex of (quasi)traces. Thus,
the results in [APT19] allow us to access the ideal lattice and the quasitraces of
products and ultraproducts of C∗-algebras.

The rank problem. Let A be a simple, stably finite, exact C∗-algebra. Then
Cu(A) decomposes as Cu(A) = V (A)× ⊔ Cu(A)soft, where V (A)× contains the
classes of nonzero projections, and where Cu(A)soft consists of classes of elements
with connected spectrum. Every trace τ : A→ C induces a dimension function:

dτ : Cu(A) → [0,∞], dτ ([a]) = lim
n→∞

τ(a1/n).

One calls dτ ([a]) the ‘rank’ of a with respect to τ . The rank map is

α : Cu(A)soft → LAff(T (A))++, α([a])(τ) = dτ (a).

One says that A has strict comparison if α is an order-embedding, and there are
examples when this fails. The rank problem for A is to determine the range of α.
There are no examples known when α is not surjective.

Question 2. Given a separable, unital, simple, exact C∗-algebra, and given f ∈
LAff(T (A))++, is there a ∈ (A⊗K)+ with dτ ([a]) = f(τ) for all τ ∈ T (A)?
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If A is Z-stable, then α is an isomorphism. If A is amenable, then the Toms-
Winter conjecture predicts that A is Z-stable if and only if A has strict comparison.
Thus, α is predicted to be an isomorphism whenever it is an order-embedding.
This establishes a connection between the Toms-Winter conjecture and the rank
problem.

Theorem 2 ([Thi17]). If A has stable rank one, then α is surjective.

Corollary 3. If A has stable rank one and strict comparison, then

Cu(A) ∼= V (A) ⊔ LAff(T (A))++
∼= Cu(A⊗Z).

If, additionally, A has locally finite nuclear dimension (for example A is an ASH-
algebra), then it follows that A is Z-stable.

Riesz interpolation. In [APRT18] we unveil new structure in the Cuntz semi-
group of C∗-algebras of stable rank one. The main result is:

Theorem 4 ([APRT18]). If A has stable rank one, then Cu(A) has Riesz inter-
polation: If xj ≤ zk for j, k = 1, 2, then there is y with x1, x2 ≤ y ≤ z1, z2.

Corollary 5. If A is separable and of stable rank one, then Cu(A) is semilattice.

These results allow us to apply semilattice theory to study C∗-algebras of stable
rank one. Using this method, we confirm a conjecture of Blackadar-Handelman
and we solve the Global Glimm Halving Problem in this context.

Given a unital C∗-algebra, we use DF(A) to denote the compact convex set of
(not necessarily continuous) dimension functions on A. For a compact, Hausdorff
space X , the set DF(C(X)) can be identified with the finitely additive probability
measures on X , which is a Choquet simplex. In [BH82], Blackadar-Handelman
conjectured that DF(A) is always a Choquet simplex. We prove:

Theorem 6. If A has stable rank one, then DF(A) is a Choquet simplex.

The Global Glimm Halving Problem, [KR02], seeks to characterize when a
C∗-algebra A has no finite-dimensional irreducible representations. A sufficient
condition is that A admits a ∗-homomorphism Mk(C0((0, 1])) → A with full image
for each k ∈ N, and the problem is to show that this criterion is also sufficient.
Under the assumption of stable rank one, we show an even stronger result:

Theorem 7. Let A have stable rank one, and let k ∈ N. Then A has no irreducible
representation of dimension < k if and only if there exists a ∗-homomorphism
Mk(C0((0, 1])) → A with full image.
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Constructing Cartan subalgebras in classifiable C∗-algebras

Xin Li

In my talk, I explained how to construct Cartan subalgebras in all classifiable
C∗-algebras. Let us now present the precise statements.

First, let us deal with the unital case, where the statement says:

Theorem 1. Given

• a weakly unperforated, simple scaled ordered countable abelian group
(G0, G

+
0 , u),

• a non-empty metrizable Choquet simplex T ,
• a surjective continuous affine map r : T → S(G0),
• a countable abelian group G1,
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there exists a twisted groupoid (G,Σ) such that

• G is a principal étale second countable locally compact Hausdorff groupoid,
• C∗

r(G,Σ) is a simple unital C∗-algebra which can be described as the induc-
tive limit of subhomogeneous C∗-algebras whose spectra have dimension at
most 3,

• the Elliott invariant of C∗
r(G,Σ) is given by

(

K0
(

C∗

r(G,Σ)
)

,K0
(

C∗

r(G,Σ)
)+

, [1C∗
r(G,Σ)], T

(

C∗

r(G,Σ)
)

, rC∗
r(G,Σ),K1

(

C∗

r(G,Σ)
)

)

∼= (G0, G
+
0 , u, T, r,G1).

In the stably projectionless case, the statement reads as follows:

Theorem 2. Given

• countable abelian groups G0 and G1,
• a non-empty metrizable Choquet simplex T ,
• a homomorphism ρ : G0 → Aff(T ) which is weakly unperforated in the

sense that for all g ∈ G0, there is τ ∈ T with ρ(g)(τ) = 0,

there exists a twisted groupoid (G,Σ) such that

• G is a principal étale second countable locally compact Hausdorff groupoid,
• C∗

r(G,Σ) is a simple stably projectionless C∗-algebra with continuous scale
which can be described as the inductive limit of subhomogeneous C∗-alge-
bras whose spectra have dimension at most 3,

• the Elliott invariant of C∗
r(G,Σ) is given by

(
K0

(
C∗

r(G,Σ)
)
,K0

(
C∗

r(G,Σ)
)+
, T

(
C∗

r(G,Σ)
)
, ρC∗

r(G,Σ),K1

(
C∗

r(G,Σ)
))

∼= (G0, {0}, T, ρ,G1).

For more details, as well as more general results (covering all possible Elliott
invariants for classifiable C∗-algebras), the reader may consult [3]. The connection
between Cartan subalgebras and groupoids is built by work of Kumjian [1] and
Renault [4].

I gave an overview of the idea of the proof of these statements. A key ingredient
is a construction of Cartan subalgebras in inductive limit C∗-algebras. This can
be found in [3] and builds on [2].

Finally, in the last part of the talk I discussed the particular example of the
Jiang-Su algebra in detail, including a description of the spectra of (some of) the
Cartan subalgebras we construct, as well as a result saying that our construction
gives rise to continuum many pairwise non-conjugate Cartan subalgebras (in other
words, the underlying groupoids are pairwise non-isomorphic).
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