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Introduction by the Organizers

The workshop Mathematical Aspects of Hydrodynamics, organised by Peter Con-
stantin (Princeton) Anna Mazzucato (University Park), Gregory Seregin (Oxford),
Edriss S. Titi (Rehovot/College Station) featured 47 participants with broad ge-
ographic representation. The primary aim of the workshop was to bring together
leading experts working on the mathematical theory of hydrodynamics models,
and to have extensive discussions of recent developments and possible future di-
rections of research in this area. The study of hydrodynamics leads to a variety
of challenging mathematical issues, which touch different areas of mathematics,
partial differential equations, harmonic analysis, and dynamical systems, among
others.

The program of the workshop consisted in 24 talks, presented by international
specialists in fluid dynamics and partial differential equations coming from Canada,
Czech Republic, Brazil, England, France, Germany, Italy, Poland, South Korea,
Spain, U.S.A.. Moreover, several doctoral and post-doctoral fellows participated
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in the workshop and benefited from the unique academic atmosphere at the Ober-
wolfach Institute.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

Onsager Conjecture, and the Kolmogorov 1/3 law

Claude Bardos

(joint work with Edriss Titi, Agneska A. Swierczewska-Gwiazda, Piotr Gwiadzka,
and Emil Weidemann)

1. Introduction

Motivations for issues considered in the present talk go back to the Kolmogorov
1/3 law: In some averaged sense the absence of anomalous energy dissipation in
the zero viscosity limit for solutions of Navier−Stokes equations is equivalent to
the existence of some averaged α ≥ 1

3 Hölder regularity. Reduced to solutions of
the incompressible Euler equations this turns out to be the Onsager conjecture:
Weak solutions of the incompressible Euler equations conserve the energy as long
as they belong to the Hölder space C0,α with α > 1

3 .
Complete mathematical proofs of this conjecture were given (after first partial

results Eyink [7]Â (1994)) by Constantin, E and Titi [5] and followed by several
extensions.

Recently Buckmaster, Isett, De Lellis, Székelyhidi and Vlad Vicol (cf. for in-
stance [4] ) have shown, for any α < 1

3 , the existence of some “admissible wild

solutions” Hence the α > 1
3 regularity is a necessary and sufficient condition for

all solutions to conserve energy.
On the other hand it is easy to construct cf. [3] Â some other solutions of

the incompressible Euler equations with almost no regularity hypothesis that do
conserve the energy and that are, with no anomalous energy dissipation , the limit
of solutions of the Navier−Stokes equations.

However in the presence of a smooth solution of the Euler equations in a domain
with boundary a basic theorem of Kato [8] shows that the absence of anomalous
energy dissipation is equivalent to the convergence to the smooth solution of the
Euler equations.

2. Two Theorems

To underline the role of the boundary condition, first a local, in space time, version
of the Onsager has been proposed not only for the Euler equation but also for any
system of conservation laws with an extra entropy. Observing that this may not
imply global in time conservation of entropy cf. [1] an extra condition is required.
For instance for the 0 viscosity limit of solutions of Naviers-Stokes equations this
leads to the following.

Theorem 1. Let uν be in (0, T )×Ω a family of solutions of Leray-Hopf Navier-
Stokes equations with the no slip boundary condition: uν = 0 on ∂Ω: And assume
the following hypothesis:
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There exists an open subset Vη0 = {x ∈ Ω , d(x) < η0}, and β < ∞ (both being
independent of ν):

(2.1) No Hölder hypothesis on p but sup
ν

‖pν‖L3/2((0,T );H−β(Vη0 ))
<∞; .

For any Ω̃ ⊂⊂ Ω there exists α = α(Ω̃) > 1
3 and a constant M(Ω̃) such that for

any ν > 0 one has:

(2.2) ‖uν‖L3((0,T );C0,α(Ω̃))
≤M(Ω̃) .

(2.3) lim
η→0

lim
ν→0

∫ T

0

1

η

∫

{x∈Ω: η
4<d(x)<η

2 <
η0
2 }

(
|uν |2
2

+ pν)uν(t, x) · ~n(σ(x)) dt ≤ 0 .

Then modulo subsequences uν converges weak−∗ in L∞((0, T );L2(Ω)) to a weak
solution of the Euler equations uν ∈ Cweak([0, T );L

2(Ω)) with the same initial
data u0(·). Moreover, uν belongs to C([0, T );L2(Ω)) and conserves the energy.
Eventually, there is no anomalous energy dissipation in the vanishing viscosity
limit, i.e., for every T ∗ ∈ (0, T ) one has:

(2.4) lim
ν→0

ν

∫ T∗

0

∫

Ω

|∇xuν(t, x)|2dxdt = 0.

Replacing the above hypothesis by the existence of smooth solution of the Euler
equations one extends the Kato theorem as follows.

Theorem 2. Let u(x, t) ∈ C1((0, T ) × Ω) be a “smooth” solution of the in-
compressible Euler equations, then for vanishing viscosity limit of solutions of the
Navier−Stokes equations with the same initial data uν(x, 0) = u(x, 0) and denot-
ing by (x, t) 7→ w(x, t) ∈ C1((0, T ); ∂Ω) any tangent vector vector field on the
boundary , the following facts are equivalents:

∀w(x, t) ,with , w · ~n = 0 , limν→0 ν
∫ T

0

∫

∂Ω
(∂uν

∂~n (σ, t))τw(σ, t)dσdt = 0(2.5)

limν→0 ν
∫ T

0

∫

∂Ω
((∂uν

∂~n (σ, t))τuτ (σ, t))−dσdt = 0(2.6)

uν(t) → u(t) in L2(Ω) uniformly in t ∈ [0, T ] ,(2.7)

uν(t) → u(t) weakly in L2(Ω) for each t ∈ [0, T ] ,(2.8)

limν→0 ν
∫ T

0

∫

Ω |∇uν(x, t)|2dxdt = 0 ,(2.9)

limν→0 ν
∫ T

0

∫

Ω∩{0<d(x,∂Ω)< ν
2 }

|∇uν(x, t)|2dxdt = 0 .(2.10)

limν→0
1
ν

∫ T

0

∫

Ω∩{ ν
4<d(x,∂Ω)< ν

2 }
|uν(x, t)|2dxdt = 0 .(2.11)
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3. Remaks and Conclusion

About the theorem 1. The hypothesis (2.2) is genuinely local. A similar hypothesis
may be done concerning the pressure. However in the absence of boundary no
such hypothesis is needed . Here something very weak (cf (2.1)) seems to be
compulsory. Then the convergence to a solution which when restricted to any
subdomain Ω̃ ⊂⊂ Ω is C0,α follows. Next with the construction given in [1] the
condition (2.3) seems compulsory. Observe such condition involves the Bernouilli
pressure in any small neighborhood of the boundary, hence it is automatically
satisfied if the sequence uν is uniformly (with respect to ν) continuous near the
boundary. Extension to such observation to general conservation laws with an
entropy leads to some conditions which in general (cf [2]) correspond to hypothesis
making the system well posed for short time with smooth initial data.

About the theorem 2. The point (2.6) is direct consequence of (2.5) . From
(2.6) one deduces by a Gronwall estimate (2.7) from which (2.8) , (2.9) and (2.10)
follow while (2.11) is deduced from (2.10) by the Poincaré inequality. Eventually
(2.5) is deduced from (2.11) with the scalar product of the Navier-Stokes equations
by an extension of ŵ of w inspired by [8] .

When valid these criteria concern situations where the vanishing viscosity limit
solution is smooth and where no turbulent wake should escape from the boundary
into the bulk of the fluid. They are obviously valid if the Prandlt boundary layer
would have up to the time T a smooth solution describing the behavior of these
vanishing viscosity solution. In particular the criteria (2.6) says that this is the
case when the recirculation of the fluid (due to the no slip boundary condition is
not too big with respect to the Reynolds number. In the same way the criteria
(2.11) says that the issue of the convergence to a smooth limit and in the same way
the absence of anomalous energy dissipation is governed by the amount of energy
produced in a sublayer of size of the order of ν detached from the boundary . This
is in full agreement with consideration proposed in [6], with numerical simulations
in [10] and of course with the theory of the Von Karman Prandlt boundary layer
cf. [9] sections : 42-44.
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On the Linear Stability of Vortex Columns

Thierry Gallay

(joint work with Didier Smets)

We investigate the linear stability of columnar vortices, which are axisymmetric
stationary solutions of the three-dimensional Euler equations

(1.1) ∂tu+ (u · ∇)u = −∇p , div u = 0 , x ∈ R3 , t ∈ R ,

where u = u(x, t) ∈ R3 is the velocity of the fluid and p = p(x, t) ∈ R the associated
pressure. Introducing cylindrical coordinates (r, θ, z), we decompose the velocity
field as u = urer + uθeθ + uzez, where er, eθ, ez are unit vectors in the radial,
azimuthal, and vertical directions, respectively. Columnar vortices are stationary
solutions of (1.1) of the form

(1.2) u = V (r) eθ , p = P (r) , r > 0 ,

where V : R+ → R is the velocity profile, and P : R+ → R is the associated
pressure determined by the centrifugal balance rP ′(r) = V (r)2. Other physically
relevant quantities are the angular velocity Ω and the vorticity W :

(1.3) Ω(r) =
V (r)

r
, W (r) =

1

r

d

dr

(

rV (r)
)

= rΩ′(r) + 2Ω(r) .

We always assume that W is a smooth function satisfying W (0) > 0, W ′(0) = 0,
and W (r) → 0 (sufficiently fast) as r → ∞.

Stability of columnar vortices was first investigated by Lord Kelvin in 1880 [6].
In this pioneering work, Kelvin reduces the analysis to a family of one-dimensional
problems by considering perturbations of the form

(1.4) u = V (r)eθ + um,k(r, t) e
imθ eikz , p = P (r) + pm,k(r, t) e

imθ eikz ,

where m ∈ Z is the angular Fourier mode and k ∈ R is the vertical wave number.
In [6], the stability analysis is only performed in the particular case of Rankine’s
vortex, where W is piecewise constant. A very important contribution was made
in 1917 by Lord Rayleigh [5], who established a sufficient condition for spectral
stability with respect to axisymmetric perturbations (m = 0):

(1.5) Φ(r) ≥ 0 for all r > 0 , where Φ(r) = 2Ω(r)W (r) .

That condition is also necessary, as was proved by J. L. Synge in 1933. In a
different direction, if we restrict our attention to two-dimensional perturbations
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(k = 0), the techniques introduced by Rayleigh for the study of shear flows [4]
allow us to prove spectral stability provided the vorticity profile is monotone :

(1.6) W ′(r) ≤ 0 , for all r > 0 .

This criterion, however, is not known to be sharp.
It is widely believed, and sometimes rashly stated in the physical literature,

that (1.5), (1.6) provide sufficient conditions for spectral stability with respect
to arbitrary perturbations, with no particular symmetry. This conjecture is in
agreement with experiments and numerical simulations, but we did not find it
supported by any serious argument. The most sophisticated result in the aftermath
of Rayleigh’s work is due to Howard and Gupta [3], who proved in 1962 that a
columnar vortex is spectrally stable with respect to perturbations of the form (1.4)
provided

(1.7) k2
Φ(r)

Ω′(r)2
≥ m2

4
, for all r > 0 .

Unfortunately, it is clear that no vortex profile satisfies condition (1.7) for all
values of m and k, so that Howard and Gupta’s approach does not provide any
unconditional stability result.

In a joint work with D. Smets [1,2], we consider a columnar vortex of the form
(1.2) where the velocity profile V satisfies the following assumptions :

Assumption H1: The vorticity profile W : [0,∞) → (0,∞) associated to V is
a C2 function satisfying W ′(0) = 0, W ′(r) < 0 for all r > 0, r3W ′(r) → 0 as
r → ∞, and

∫∞

0
W (r)r dr <∞.

Assumption H2: The C1 function J : (0,∞) → (0,∞) defined by

(1.8) J(r) =
Φ(r)

Ω′(r)2
, r > 0 ,

satisfies J ′(r) < 0 for all r > 0 and rJ ′(r) → 0 as r → ∞.

Roughly speaking, assumption H1 means that we consider a localized vortex
satisfying both the monotonicity condition (1.6) and Rayleigh’s criterion (1.5).
The more technical assumption H2 appears to be satisfied in all classical examples,
including the Lamb-Oseen vortex, but we do not know if it is essential.

The linearized equations at the columnar vortex (1.2) take the following form :

∂tur +Ω∂θur − 2Ωuθ = −∂rp ,
∂tuθ +Ω∂θuθ +Wur = − 1

r∂θp ,

∂tuz +Ω∂θuz = −∂zp ,
(1.9)

where the pressure p = P [u] is determined (up to a constant) by the elliptic
equation

(1.10) − 1

r
∂r
(

r∂rp
)

− 1

r2
∂2θp− ∂2zp =

2

r
∂r
(

rΩ
)

∂θur −
2

r
∂r
(

rΩuθ
)

.
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We want to solve the evolution equation (1.9) in the Hilbert space

(1.11) X =
{

u = (ur, uθ, uz) ∈ L2(R3)3
∣

∣

∣

1

r
∂r(rur) +

1

r
∂θuθ + ∂zuz = 0

}

,

which incorporates the incompressibility condition. We rewrite (1.9) as ∂tu = Lu,
where L is the integro-differential operator in X defined by

(1.12) Lu =







−Ω∂θur + 2Ωuθ − ∂rP [u]

−Ω∂θuθ −Wur − 1
r∂θP [u]

−Ω∂θuz − ∂zP [u]






.

Our main result can be stated as follows :

Theorem. Assume that the vorticity profile W satisfies assumptions H1, H2
above. Then the linear operator L defined in (1.12) is the generator of a strongly
continuous group (etL)t∈R of bounded linear operators in X. Moreover, for any
ǫ > 0, there exists a constant Cǫ ≥ 1 such that

(1.13) ‖etL‖X→X ≤ Cǫ e
ǫ|t| , for all t ∈ R .

In technical terms, estimate (1.13) means that growth bound of the group etL is
equal to zero. Equivalently, the spectrum of etL is contained in the unit circle of
the complex plane for any t ∈ R. In view of the Hille-Yosida theorem, this implies
that the spectrum of the generator L is entirely contained in the imaginary axis,
and that the following resolvent bound holds for any a > 0 :

(1.14) sup
{

‖(z − L)−1‖X→X

∣

∣

∣ z ∈ C , |ℜ(z)| ≥ a
}

< ∞ .

In fact, since X is a Hilbert space, the celebrated Gearhart-Prüss theorem asserts
that the resolvent bound (1.14) is equivalent to the group estimate (1.13). From
this point of view, the theorem above can be seen as a (strong) spectral stability
result for columnar vortices under assumptions H1, H2.

There are reasons to believe that the group norm ‖etL‖X→X grows at least
linearly as |t| → ∞, which would mean that columnar vortices are not linearly
stable solutions of the Euler equations. Improving the subexponential estimate
(1.13) into a polynomial bound would already be a substantial progress. Of course,
the most important question is nonlinear stability, but in the absence of useful
variational characterizations of columnar vortices this is a widely open problem.

As for the above theorem, the most difficult part of the proof consists in ruling
out the existence of unstable eigenvalues of the linear operator L in the subspace
defined by the Fourier parameters m ∈ Z and k ∈ R. This can be done by a
homotopy argument, namely a continuous deformation of the vortex profile to a
reference vortex satisfying Howard and Gupta’s criterion (1.7). In this way, it is
sufficient to perform a spectral analysis in a small neighborhood of the imaginary
axis, where critical layers occur; see [1] for details.
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Recent progress on nonlinear inviscid damping for two dimensional
Euler equation

Hao Jia

Two dimensional Euler equation is globally well-posed for smooth initial data, by
the classical results in [28]. The long time behavior is however not well understood.
Statistical theories were developed by Onsager [22] and Kraichnan [21] to explain
the emergence of large scale structures and inverse energy cascade observed in
numerical simulations and physical experiments [3,23]. However, rigorously justi-
fying these theories from the two dimensional Euler equation seems to be out of
reach of current PDE techniques, similar to the situation in statistical mechanics.
Mathematically, it is more promising to firstly study dynamics near physically
relevant steady state solutions, such as vortices and shear flows.

Stability analysis is a classical problem in hydrodynamics. Early pioneers in-
clude Kelvin [10], Orr [13], Rayleigh [14], Taylor [24], among many others. Re-
cently, there has been significant development in the analysis of linearized flow
near shear flows and vortices, see [2,7,16,17,19,20]. In particular, the works [2,16]
proved optimal decay rate of the stream function in Sobolev spaces, from which
linear stability follows.

Nonlinear asymptotic stability is on the other hand much harder. Bedrossian
and Masmoudi [1] made a breakthrough and proved the first nonlinear asymptotic
stability result for the Couette flow which is the linear shear flow in T × R. The
result was subsequently extended by Ionescu and the speaker [8] to the domain
T× [0, 1]. The main motivation was to consider finite energy solutions and study
the possible boundary effects. Asymptotic stability near general shear flows is still
open.

In [9] Ionescu and the speaker initiated the nonlinear asymptotic analysis of
vortices, in the case of point vortices. Point vortices are physically relevant as
approximation to the common circumstances where vorticity concentrates sharply
in small regions. The case of general vortices remains open.
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There are several major difficulties in passing from the nonlinear analysis of Cou-
ette flow to general monotone shear flows. The first key difficulty is that the main
equations are no longer constant coefficient equations. This causes serious issues
since the norms we use to control the nonlinearity are defined using Fourier trans-
forms in a rather delicate way and have no known physical space characterization.
The second key difficulty is to understand the linear inviscid damping in Gevrey
spaces. For some time only Sobolev spaces results were known and the methods
could not be used in nonlinear problem.

The first difficulty has recently been resolved by Ionescu and the speaker in
the analysis of point vortices [9]. The main idea is to establish finer smoothness
properties of the weights and use commutator type argument. Although using
commutator argument in proving bounds in variable coefficient setting is not new,
the implementation in our case is quite subtle and it turns out that the weight has
just enough regularity for such an argument to work.

The second difficulty was recently resolved by the speaker in [19], which proved
linear inviscid damping in Gevrey spaces. A crucial point is that the argument in
[19] is based on commutator type estimates which can be adapted to the nonlinear
problem.

Based on these progresses, the main remaining difficulty in proving asymp-
totic stability and nonlinear inviscid damping near general shear flows is to find
methods that effectively combine the tools developed in the linear and nonlinear
analysis. It is still a nontrivial task, since the nonlinear analysis is based on con-
trolling a time dependent energy functional, while the analysis of the linearized
equation depends heavily on spectral analysis and precise regularity analysis of
generalized eigenfunctions associated with continuous spectrum.

Another goal is to prove nonlinear inviscid damping and axi-symmetrization
near general vortices. There are many similarities in axi-symmetrization near
vortices and inviscid damping near general shear flows. The techniques developed
in the context of general shear flows and point vortices [8, 9, 19] will be useful in
the general vortices problem as well. However, we expect that the problem of axi-
symmtrization on the nonlinear level includes at least two additional important
difficulties.

The first key difficulty is the degeneracy of rate of mixing at r = 0. The second
key difficulty has to do with r = 0 acting somewhat like a boundary and could
have a nontrivial boundary effect.

We note that there is another mechanism on the linearized level for the vortices,
called “vortex depletion”, first oberved in [4] and then rigorously proved in [2,17],
which might help with the above mentioned difficulties. The extension of the
mechanism to nonlinear level is however not straightforward.

In the talk, we will discuss these progresses and the difficulties moving to non-
linear inviscid damping near general coherent structures in details.
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Dissipation Enhancement, Mixing and Blowup Suppression

Gautam Iyer

(joint work with Yuanyuan Feng, Xiaoqian Xu, Andrej Zlatoš)

Consider a passive scalar advected by an incompressible, time dependent, velocity
field governed by the evolution equation

(1.1) ∂tθ + u · ∇θ − κ∆θ = 0 .

For simplicity, we consider equation (1.1) with periodic boundary conditions and
mean zero initial data. Our interest is in studying the time decay of ‖θt‖L2 as
t → ∞. An old result of Poon [11] (see also [9]) shows the double exponential
lower bound

‖θt‖2L2 > ‖θ0‖2L2 exp
(−2κ‖∇θ0‖2L2

‖θ0‖2L2

(e2dUt − 1

2dU

))

, where U = sup
t>0

‖∇ut‖L∞ .

To the best of our knowledge, we do not know if this is sharp on the torus. In
discrete time, however, we show in [4] that the above bound is sharp on the torus.

To explain further, let ϕ : Td → Td be a volume preserving diffeomorphism, and
consider the pulsed diffusion

(1.2) θn+1 = eκ∆(θn ◦ ϕ) .
If ϕ is the flow map of u after time 1, then (1.2) is equivalent to solving (1.1) for
unit time without the diffusion term, and then solving (1.1) for unit time without
the convection term. Our result on the L2 decay can now be stated as follows.

Theorem 1. For the pulsed diffusion (1.2) we have the double exponential lower
bound

‖θn‖L2 > ‖θ0‖L2 exp
(

−κ‖θ0‖
2
H1

‖θ0‖2L2

(‖∇ϕ‖2(n+1)
L∞ − ‖∇ϕ‖2L∞

‖∇ϕ‖2L∞ − 1

))

,

where ‖∇ϕ‖L∞ is the supremum of the matrix norm of ∇ϕ. Moreover, there
exists a smooth, volume preserving diffeomorphism on the torus for which the
above bound is achieved. Explicitly, if ϕ is any toral automorphism which has no
proper invariant rational subspaces, and has no eigenvalues that are roots of unity,
then there exists finite constants C, γ > 0 such that

(1.3) ‖θn‖2L2 6 ‖θ0‖2L2 exp
(

−κ(1 + γ)n

C

)

,

for all θ0 ∈ L̇2.
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We now turn to studying upper bounds for solutions to (1.1). Note first that the
incompressibility of u and the Poincaré inequality immediately imply that ‖θt‖L2

is decreasing as a function of t, and

‖θs+t‖L2 6 e−4π2κt‖θs‖L2 .

Thus, we are guaranteed

(1.4) ‖θs+t‖L2 6
1

e
‖θs‖L2 , for every t ≥ 1

4π2κ
,

and every s > 0. However, u generates gradients through filamentation, which
causes solutions to dissipate energy faster. This may result in the lower bound
in (1.4) being attained at much smaller times, and the smallest time t at which
this happens is known as the dissipation time.

Definition 1.1 (Dissipation time). Let Su
s,t be the solution operator to (1.1) on

Td × (0,∞). That is, for any f ∈ L2(Td), the function θt = Su
s,tf solves (1.1) with

initial data θs = f , and periodic boundary conditions. Define the dissipation time
of u by

(1.5) τ∗(u, κ)
def
= inf

{

t ≥ 0
∣

∣

∣ ‖Ss,s+t‖L̇2→L̇2 6
1

e
for all s > 0

}

.

Here L̇2 is the space of all mean zero, square integrable functions on the torus Td.

Note that (1.4) implies τ∗(u, κ) 6 O(1/κ) as κ → 0. If, however, u is mixing,
then this can be dramatically improved (see for instance [1–4, 12]). Recall, u is
(strongly 1, 1) mixing with rate function h if all H1 solutions to the transport
equation

∂tφ+ u · ∇φ = 0

satisfy the bound

‖φs+t‖H−1 6 h(t)‖φs‖H1 , for all s, t > 0 .

Theorem 2. If u is strongly mixing with rate function h, then

τ∗(u, κ) 6
1

κH(κ)
, where H(κ)

def
= sup

{

λ
∣

∣

∣ h
( 1

2
√
λκ

)

6
1

2λ

}

.

If, for instance, u is exponentially mixing (i.e. h(t) 6 c1e
−c2t), then the above

shows
τ∗(u, κ) 6 C|lnκ|2 ,

for some constant C, which is much better than the elementary bound obtained
from (1.4).

Finally, we study how the above ideas can be used in the study of nonlinear PDEs.
The first model problem we consider is the Keller-Segel equation, a simplified
model of chemotaxis [7, 10]:

(1.6) ∂tρ = ∆ρ+ χ∇ · (ρ∇−1(ρ− ρ̄)) .

Here ρ represents the population density of the bacteria, and the equation (1.6)
models the evolution of ρ by diffusion, with a bias directed by the concentration
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gradient of a chemoattractant emitted by the bacteria. The quantity χ > 0 is a
sensitivity parameter, ρ̄ =

∫

Td ρ0, and ∇−1 = ∇∆−1. It is well known that if ρ0
is small solutions to equation (1.6) remain smooth for all time, where as if ρ0 is
large solutions to (1.6) blow up in finite time (see for instance [6]).

We study equation (1.6) with an additional convection term and show in [5]
that the blow up can always be avoided if the dissipation time of the imposed drift
is small enough. This is motivated by a similar result in [8].

Theorem 3. Consider the advective Keller-Segel system

(1.7) ∂tρ+ u · ∇ρ = ∆ρ+ χ∇ · (ρ∇−1(ρ− ρ̄)) .

with smooth nonnegative initial data ρ0. There exists τ0 = τ0(‖ρ0‖L2, χ) such that
if τ∗(u, 1) 6 τ0, then the solution to (1.7) remains globally smooth.

In order to apply this theorem, we need to construct velocity fields with arbitrar-
ily small dissipation time. If u generates a mixing flow (or even a weakly mixing
flow), then Theorem 2 (or the results in [1–4]) show that if uA(x, t) = Au(x,At),
then τ∗(uA, κ) → 0 as A → ∞. However, examples of such flows are not easy to
construct. We remedy this by showing that one can always find a cellular flow
with an arbitrarily small dissipation time.

Theorem 4. In two or three dimensions, given any κ, τ0 > 0 there exists a smooth
cellular flow v such that τ∗(v, 1) < τ0.

We prove this by using a result in [13] to bound the dissipation time by the
inverse of the effective diffusivity of the rescaled flow.
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of Math. (2), 168(2):643–674, 2008. doi:10.4007/annals.2008.168.643.

[2] M. Coti Zelati, M. G. Delgadino, and T. M. Elgindi. On the relation between enhanced
dissipation time-scales and mixing rates. ArXiv e-prints, June 2018, 1806.03258.

[3] Y. Feng. Dissipation enhancement by mixing. Carnegie Mellon University, 2019. Ph.D. The-
sis.

[4] Y. Feng and G. Iyer. Dissipation enhancement by mixing. Nonlinearity, 32(5):1810–1851,
2019. doi:10.1088/1361-6544/ab0e56.
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Separation of time-scales in fluid mechanics

Michele Coti Zelati

(joint work with Jacob Bedrossian and Theodore D. Drivas)

Consider a two-dimensional periodic domain T2 and a passive scalar f : [0,∞)×
T2 → R that is advected by a smooth divergence-free (i.e. incompressible) velocity
field u : T2 → R2, and therefore satisfies the initial-value problem

{

∂tf + u · ∇f = ν∆f,

f(0) = f in,
(1.1)

for a mean-free initial datum f in ∈ L2. A simple L2 estimate that uses the
incompressibility of u and the Poincaré inequality reads

‖f(t)‖L2 6 ‖f in‖L2e−νt.(1.2)

In fact, not much information is used about the flow u other than incompressibility,
and the decay rate is that of the heat equation, from which the natural diffusive
time-scale O(ν−1) appears. However, for small ν, we expect the inviscid mixing to
be the leading order dynamics (at least for some time) and hence we can predict
a faster decay rate than the one prescribed by the heat equation. The important
behavior to detect consists of a cascading mechanism due to the inviscid mixing,
and its interaction with a small diffusion of order ν.

A rigorous mathematical framework for so-called relaxation enhancing flows
u has been developed in [1]. Roughly speaking, a velocity field u is relaxation
enhancing if by the diffusive time-scale O(ν−1), arbitrarily much energy is already
dissipated. The main result of [1] characterizes relaxation enhancing flows in
terms of the spectral properties of the operator u · ∇. Precisely, u is relaxation
enhancing if and only if the operator u ·∇ has no nontrivial eigenfunctions in Ḣ1.
In particular, weakly mixing flows (i.e., those with only continuous spectrum) fall
in this class.

A sufficient condition for u to be relaxation enhancing is that the corresponding
passive scalar fν obeys an estimate of the type

‖f(t)‖L2 6 C0e
−ε0ν

qt‖f in‖L2 , ∀t > 0,(1.3)

for some q ∈ (0, 1) depending on u and some positive constants C0, ε0 independent
on ν. In this case, it is apparent the u induces a faster time-scale O(ν−q). In
general, the dependence of q on u is very hard to detect. The case of general
shear u = (u(y), 0) with a finite number of critical points was treated in [2]: the

enhanced dissipation time-scale was proved to be O(ν−
n

n+2 ), where n ∈ N denotes
the maximal order of vanishing of u′ at the critical points.

http://arxiv.org/abs/1811.11904
https://doi.org/10.1016/j.anihpc.2011.05.004
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The presentation proposed a stochastic interpretation of the enhanced dissipa-
tion time-scales appearing for shear flows, in order to prove that the time-scales
of [2] are sharp. Consider the following approximate version of (1.1)

{

∂tf + yn∂xf = ν∂yyf,

f(0) = f in.
(1.4)

The corresponding characteristics are given by The characteristics are given by

dXx = Y n
y dt,

dYy =
√
2νdW,

where W is standard one-dimensional Brownian motion and (x, y) ∈ T2 are the
initial conditions. Assuming x = y = 0, it is not hard to see that

E|Xx(t)|2 = cnν
ntn+2, E|Yy(t)|2 = 2νt,(1.5)

for some cn > 0. Now using the fluctuation dissipation relation

2ν

∫ t

0

‖∇f(s)‖2L2ds =

∫

T2

Var
[

f in(Xx(t), Yy(t))
]

dxdy,

for a well-designed (Lipschitz, localized) datum, one can show that
∫

T2

Var
[

f in(Xx(t), Yy(t))
]

dxdy 6 C‖f in‖2L2νntn+2.

This provides an upper bound on the energy dissipation, and therefore a lower
bound on the mixing rates, which correspond to time-scales O(ν−

n
n+2 ). This work

is contained in [3].
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Instabilities and non-uniqueness in ideal fluids

László Székelyhidi Jr.

We discuss some examples of ‘wild’ weak solutions, and their significance, in var-
ious models, in particular with respect to the existence and multiplicity of weak
solutions arising in classical fluid interface problems related to instabilities. We
address two models: the unstable Muskat problem and the vortex sheet problem.
These are related to the classical Rayleigh-Taylor and Kelvin-Helmholtz instabili-
ties respectively. The sharp interface problem in both models is strongly ill-posed.
We show that with a suitable ‘mixing’ ansatz weak solutions can be constructed
via a relaxation technique and convex integration. These are not solutions of the
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sharp interface problem, but rather are weak solutions of the underlying ‘Eulerian’
model: the incompressible porous medium equation, and the 2D incompressible
Euler equations, respectively. The emphasis here is on the connection between
the presence of instabilities on the one hand and the loss of compactness in the
solution spaces and existence of multiple weak solutions on the other hand. This is
based on joint work with C. Förster (Leipzig), F. Noisette (Paris) and F. Mengual
(Madrid).

Wall Bounded Turbulence and Polymer Drag Reduction

Theodore D. Drivas

(joint work with Huy Q. Nguyen and Joonhyun La)

In this talk, we discuss two aspects of wall-bounded turbulence: anomalous dissipa-
tion/wall-friction drag due to bulk turbulence and shedding of thin viscous bound-
ary layers, as well as how these effects can be mitigated by the addition of polymer
on the boundary.

Regarding anomalous dissipation, we present an extension of Onsager’s theory
of ideal turbulence to accommodate the presence of solid boundaries. Specifically,
I will state two sets of sufficient conditions for energy dissipation to vanish in the
infinite Reynolds number limit along sequences of Leray–Hopf weak solutions of
the Navier-Stokes equations. Both sets of conditions require that the third-order
velocity structure function have inertial-range scaling exponent satisfying ζ3 > 1 in
the bulk (i.e. that the family {uν}ν>0 is uniformly bounded in L3(0, T ;Bσ

3,∞(Ω))
for some σ > 1/3 away from solid walls). One set of conditions requires further-
more that, in a ν–dependent thin boundary layer, the velocity remains continuous
and the pressure bounded. This shows that discontinuities must emerge at the
wall in order for shedding boundary layers to be a viable source of anomalous
dissipation (as suggested by numerical study of [R. Nguyen van yen, M. Farge,
and K. Schneider. Phys. Rev. Letts. 106.18 (2011)]). The other set of conditions
requires instead

lim
ν→0

ν

∫ T

0

∫

{x:dist(x,Ω)6νβ}

|∇uν(x, t)|2dxdt = o(ν1−β), β = min{1, 1

2(1− σ)
}.

Note that if σ = 1/3 (the K41 value) in the bulk, then β = 3/4 and 1 − β =
1/4. Thus the boundary layer in the above condition becomes of width ν3/4

(Kolmogorov–length), and the assumption is that must decay no faster than the
Blasius prediction ν1/4. Interesting the French-washing machine experiments of
[Cadot, O., Couder, Y., Daerr, A., Douady, S., and Tsinober, A. Phys. Rev.
E, 56(1), 427, (1997)] indicates that there is anomalous dissipation in the bulk
(thereby requiring at least one of our conditions to be violated) but the near-wall
dissipation in the boundary layer decays with a rate of nearly ν1/4. This suggests
that turbulence is as rough/singular as needed to support anomalous dissipation
but not (much) rougher. The work presented is joint with Huy Q. Nguyen and
can be found in [1, 2].
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The next part of the talk concerns polymer drag reduction. The problem of
minimizing energy dissipation and wall drag in turbulent pipe and channel flows is
a classical one which is of great importance in practical engineering applications.
Remarkably, the addition of trace amounts of polymer into a turbulent flow has
a pronounced effect on reducing friction drag. To study this mathematically, we
introduce a new boundary condition for Navier-Stokes equations which models
the situation where polymers are grafted to the wall. Our boundary condition -
derived from a fluid-polymer stress balance - becomes an evolution equation for the
stresses along the solid walls. In the simplest setting, the polymers are described
by a bead-spring model with a Hookean dumbell spring potential and our system
closes in the macroscopic fluid variables. It reads

∂tu
ν + u

ν · ∇u
ν = −∇p

ν +
1

Re
∆u

ν + f in Ω× (0, T )

u
ν |t=0 = u0 on Ω× {t = 0}

∇ · uν = 0 in Ω× [0, T )

u
ν · n̂ = 0 on ∂Ω× [0, T )

(

∂t +
1

Wi

)

(

2(D(uν)n̂) · τ̂i +
α

2
u
ν · τ̂i

)

= −
αRe

St
u
ν · τ̂i on ∂Ω× (0, T ).

where D(v) = 1/2(∇v+ (∇v)t), and the Reynolds number Re, Weissenberg num-
ber Wi, the relative stress strength St and the ratio of polymer to domain size
α are appropriately defined non-dimensional numbers. In two spatial dimensions,
we show that the above system admits a global classical solutions. Furthermore,
we show that the energy dissipation (and wall-friction momentum drag) vanishes
inversely proportional to the Reynolds number, in qualitative agreement with ob-
servations of drag in laminar flow. The work presented is joint with Joonhyun La
and can be found in [3].

References

[1] Drivas, Theodore D., and Nguyen, Huy Q.: Remarks on the emergence of weak Euler
solutions in the vanishing viscosity limit. Journal of Nonlinear Science 29.2 (2019): 709-721.

[2] Drivas, Theodore D., and Nguyen, Huy Q.: Onsager’s conjecture and anomalous dissipation
on domains with boundary. SIAM Journal on Mathematical Analysis 50.5 (2018): 4785-4811.

[3] Drivas, Theodore D., and La, Joonhyun: The Navier-Stokes-End-Functionalized Polymer
System: Global Regularity and Polymer Drag Reduction. arXiv preprint arXiv:1904.08481
(2019).



Mathematical Aspects of Hydrodynamics 2353

On the vanishing viscosity problem and the limit α→ 0 of the Euler-α
equations with Dirichlet boundary conditions

Helena J. Nussenzveig Lopes

(joint work with A. V. Busuioc, D. Iftimie, M. C. Lopes Filho)

The following system of equations are a model for incompressible fluid flow:

(1.1)

{

∂tu+ u · ∇u = −∇p+ ν∆u,
div u = 0,

ν > 0. If ν = 0 then this system comprises the Euler equations while if ν > 0 then
these are the Navier-Stokes equations; the parameter ν is the viscosity of the flow.

If the fluid domain has boundaries then we need to supplement these equations
with boundary conditions. The natural boundary conditions are u · n = 0 for
the Euler system, called non-penetration boundary conditions, and u = 0 for the
Navier-Stokes system, called no-slip or Dirichlet boundary conditions.

The vanishing viscosity problem consists in studying the limit, or limits, of
solutions of the Navier-Stokes equations with ν → 0. Formally setting ν = 0 re-
duces the Navier-Stokes system to the Euler equations, however, in the presence of
boundaries, boundary layers arise in the small viscosity regime due to the discrep-
ancy in boundary conditions. The vanishing viscosity problem is yet to be fully
understood and it is recognized as a classical open problem in fluid dynamics.

Consider a smooth fluid domain Ω ⊂ R3, with boundary, and smooth initial
data u0. Denote the Euler solution by uE and the Navier-Stokes solution, with
the same initial data, by uν ; assume that (0, T ) is a common interval of existence.
Using energy methods it is easy to show that, if uE(t, ·) ≡ 0 at the boundary, for
all 0 < t < T , and if uE is Lipschitz continuous, then the vanishing viscosity limit
holds, i.e.

uν → uE in L∞(0, T ;L2(Ω)).

The Euler evolution does not, in general, preserve the no-slip boundary con-
dition. Examples of Euler flows for which no-slip is preserved include all circu-
larly symmetric planar flows with compactly supported vorticty with integral zero,
see [2].

The Kato criterion, see [11], provides a condition for a Lipschitz Euler solution
to be a vanishing viscosity limit; its proof also uses the energy method. More
precisely, if uE is a Lipschitz solution of the Euler equations with initial data u0
then uE is the limit, as ν → 0, in L∞(0, T ;L2(Ω)), of solutions of Navier-Stokes
with initial data u0, if and only if

ν

∫ T

0

∫

Γν

|∇uν |2 dxds −−−→
ν→0

= 0,

where Γν ⊂ Ω is a region near ∂Ω with thickness proportional to ν. The term on
the left-hand-side is the dissipation of the (Navier-Stokes) flow near the boundary.

Results of experiments suggest it may be unreasonable to expect vanishing
viscosity limits to be Lipschitz solutions of the Euler equations. In fact we expect
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large gradients to form near the boundary, detach and affect the bulk of the fluid
flow, giving rise to possibly non-smooth vanishing viscosity limits.

Let us consider vanishing viscosity limits which are merely weak solutions of
the Euler equations. The vanishing viscosity problem is well understood if we
impose additional symmetry. This is the case for circularly symmetric flows in 2D,
see [1,2,12,13,15], for parallel-plane and parallel-pipe flows in 3D, see [8,10,16,17],
and also for the Oseen problem, see [9]. For all these problems it is shown that
the vanishing viscosity limit holds in the strong topology of L∞(0, T ;L2) and the
limit is a weak solution of Euler. The proofs are obtained by semigroup methods.

The following result is a criterion for the vanishing viscosity weak limit to be a
weak solution of the 2D Euler equations. We note that conditions are placed only
in the interior of the fluid domain.

Let Ω ⊂ R2 bounded, smooth, simply connected. Let uν ∈ L∞(0, T ;L2(Ω)) ∩
L2(0, T ;H1

0(Ω)) be Leray-Hopf solutions of the Navier-Stokes equations, with vis-
cosity ν, such that uν ⇀ U weak-∗-L∞(0, T ;L2(Ω)). Let ων = curluν denote
vorticity.

Theorem 1 (see [4]). Suppose:

(1) {ων} ⊂ L∞((0, T );L1
loc(Ω)) and, for each K ⊂⊂ Ω, there exists CK > 0

such that

sup
ν

sup
t∈(0,T )

‖ων(t, ·)‖L1(K) 6 CK <∞;

(2) For any K ⊂⊂ Ω we have

sup
ν

∫ T

0

(

sup
x∈K

∫

{|x−y|<r}∩Ω

|ων(t, y)| dy
)

dt −−−→
r→0

0.

Then U is a weak solution of Euler.

In other words, if there is a uniform L1
loc-estimate on vorticity, and if vorticity

does not concentrate in the interior of the fluid domain, then any weak limit is
a weak Euler solution. In particular this criterion allows weak solutions of Euler
with no point vortices to be vanishing viscosity limits. The proof was inspired by
Delort/Schochet proof of existence of weak Euler vortex sheet solutions.

Theorem 1 follows-up on prior work of Constantin and Vicol, see [5], who placed
assumptions on the local enstrophy instead. In the same paper they have results
in 3D as well, under a local structure function assumption. See also [7] for related
work.

The vanishing viscosity problem is a difficult, open problem in fluid dynamics.
We propose to investigate a similar problem, for which solutions also develop
boundary layers, namely the limit α → 0 of the Euler-α equations.
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The Euler-α equations on a domain Ω are given by







∂tv + (u · ∇)v +
∑

j vj∇uj = −∇p,
div u = 0,
v = u− α∆u.

Above, p is the (scalar) pressure and v is the (unfiltered) velocity (and u =
(I −α∆)−1v is the filtered velocity). The constant α > 0 has units of length2 and
represents the truncation scale of oscillations in the flow.

We note that formally setting α = 0 reduces to the incompressible Euler equa-
tions, as then the term

∑

vj∇uj becomes a gradient.
If we impose Dirichlet boundary conditions, u = 0 on ∂Ω, then, as in the

vanishing viscosity problem, boundary layers form as α → 0.
The vanishing α limit, under Dirichlet boundary conditions, has been studied for

planar flows, assuming various degrees of regularity of initial data. More precisely,
it has been established that,

(1) if u(t = 0) = uα0 ∈ H3 and α1/2‖∇uα0 ‖L2 → 0, α3/2‖uα0 ‖H3 uniformly
bounded for small α, and uα0 → ū0 ∈ H3, s-L2, then the vanishing α limit
is a solution of the Euler equations, see [14]. Note that the initial data of
the Euler equations is u0 ∈ H3. The proof is by energy estimates, inspired
on the proof of the Kato criterion.

(2) if u(t = 0) = uα0 ∈ W 3,p, 1 < p < ∞ and α1/2‖∇uα0 ‖L2 , ‖ curl(uα0 −
α∆uα0 )‖Lp are bounded for small α, and uα0 → ū0 ∈ W 1,p, strongly L2,
then again the limit as α → 0 is a solution of the Euler equations, see [3].
The proof is based on compactness in L2 of uα, which comes from estimates
for uα and qα ≡ curl(uα−α∆uα). In fact, one gets uα bounded in L∞(Hs),
s = s(p), from the analyticity of the Stokes semigroup.

Neither of these results contains a description of the boundary layer, or of the
flow near the boundary. There is no clear understanding of the role of the boundary
in the vanishing α limit with Dirichlet conditions.

We propose to study, instead, the case of the half-plane, Ω = H and we discuss
initial data for which q0 = qα0 ≡ curl(uα0 − α∆uα0 ) ∈ BM+(H) ∩H−1(H), i.e. the
potential vorticity is initially independent of α and it is a nonnegative bounded
Radon measure in the Sobolev space H−1, called vortex sheet initial data. What
follows is joint work with A.V. Busuioc, D. Iftimie and M.C. Lopes Filho. Our
main result is:

Theorem 2. Let q0 be vortex sheet initial data in H. Then

(1) there exists a global solution uα, qα of the α-Euler equations, uα = 0 on
∂H.

(2) If the singular part of q0 has distinguished sign (q0 ∈ (BM++L1)∩H−1)
and if

uα ⇀ u, as α → 0, weak- ∗ L∞
loc(R+;L

2(H))
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and
qα ⇀ ω, as α→ 0, weak- ∗ L∞

loc(R+;BM(H)),

then (u, ω) is a weak (vortex sheet) solution of the incompressible 2D Euler
equations.

To prove this result we begin with the vorticity formulation of the α-Euler equa-
tions on H, which is



























∂tq
α + uα · ∇qα = 0,

div uα = 0,
curl vα = qα

vα = uα − α∆uα ≡ (I − α∆)uα

uα∣
∣

∂H

= 0

A crucial step is to invert the elliptic system for uα, given qα. This is done in
two different ways. First, we recall the Biot-Savart kernel KH. Next we note that,
since curlKH[q

α] = qα we get that (I − α∆)uα and KH[q
α] differ by a gradient

field. Therefore, if P is the Leray projection, onto div-free vector fields tangent to
∂H, and A = −P∆ is the Stokes operator, then, because PKH[q

α] = KH[q
α] and

Puα = uα, we find
uα = (I + αA)−1KHq

α,

where the inverse has zero boundary conditions. But this is not useful enough.
Let Gα = Gα(x, y) denote the Green’s function for I − α∆ in all of R2.
The method of images for −∆ gives

KH[q] = (K ∗ qodd)∣
∣

H

,

where qodd is the odd extension of q to the full plane.
Denote

uαint ≡ (Gα ∗K ∗ qαodd)∣∣
H

Then curl(I − α∆)uαint = qα in H, but uαint does not vanish on ∂H, it is only
tangent.

Let uαbdry = uα − uαint. Of course curl(I − α∆)uαbdry = 0, and hence w ≡ uαbdry
satisfies the following Stokes problem:



















divw = 0,
w − α∆w +∇p = 0
(w1)∣

∣

∂H

= −[(uαint)1]
∣

∣

∂H

≡ g

(w2)∣
∣

∂H

= 0.

Using a technique due to Solonnikov based on Fourier methods we find:

w1 = −2αg ∗1 ∂2Gα +
2α

π
g ∗1 ∂2Gα ∗H

x22 − x21
|x|4

w2 = −4α

π
g ∗1 ∂2Gα ∗H

x1x2
|x|4 ,
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where ∗1 is convolution in the first variable and ∗H is an adapted convolution on
H. We still need to identify g. We obtain:

g(x1) = −2

∫

H

Gα(x1 − y1, y2)[K ∗ qαodd]1(y1, y2) dy1dy2.

The key estimate we show is:

Lemma 1.1.
‖g‖L1(R) 6 ‖qα‖BM(H).

This Lemma together with easy estimates for ∂2Gα and the fact that
x22 − x21
|x|4

and
x1x2
|x|4 are homogeneous of degree −2 give:

Proposition 1.1. For all x ∈ H

|uαbdry(x)| 6 C‖qα‖BM(H)

(

α1/4

x
3/2
2

+
exp(−x2/2

√
α)

x2

)

.

It follows from the Proposition 1.1 that the boundary correction is vanishingly
small, uniformly, as long as x2 > ε > 0.

The remainder of the proof of Theorem 2 is an adaptation of the Delort/Schochet
proof, see [6,18], using the explicit expression for uαint. More precisely, we find eas-
ily that

‖qα‖BM 6 C and ‖uα‖L2 6 C,

so, passing to subsequences as needed,

qα ⇀ ω weak ∗ L∞BM and uα ⇀ u weak ∗ L∞L2.

We then write a weak formulation for the transport equation satisfied by qα and
we proceed to pass to the limit in each term. The linear terms are easy to handle
by weak convergence. The nonlinear term is handled in much the same way as in
the Delort/Schochet proof. There is one significant difference, namely the proof
that weak limits of qα do not contain Diracs. Instead of the usual bound in H−1,
which is not valid for qα, we use instead that qα ⇀ ω, and we prove that ω ∈ H−1.
This in turn implies that ω does not contain Diracs, which is enough to pass to
the limit in the nonlinear term.
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PoincarÃ© C, Analyse non linÃ©aire 36 (2019), 1237–1280.

[9] Gung-Min Gie, J. Kelliher and A.L. Mazzucato, Boundary Layers for the Navier-Stokes
Equations Linearized Around a Stationary Euler Flow, Journal of Mathematical Fluid Me-
chanics 20 (2018), 1405–1426.

[10] Daozhi Han, A.L. Mazzucato, Dongjuan Niu and Xiaoming Wang, Boundary layer for a
class of nonlinear pipe flow., J. Differential Equations 252 (2012), 6387–6413.

[11] T. Kato, Remarks on Zero Viscosity Limit for Nonstationary Navier-Stokes Flows with
Boundary, In: Chern S.S. (eds) Seminar on Nonlinear Partial Differential Equations. Math-
ematical Sciences Research Institute Publications, vol 2. Springer, New York, NY, 1984,
85–98.

[12] J. Kelliher, On the vanishing viscosity limit in a disk, Mathematische Annalen 343 (2009),
701–726.

[13] M.C. Lopes Filho, A.L. Mazzucato, H.J. Nussenzveig Lopes and M. Taylor, Vanishing
viscosity limits and boundary layers for circularly symmetric 2D flows., Bull. Braz. Math.
Soc. (N.S.) 39 (2008),471–513.

[14] M.C. Lopes Filho, H.J. Nussenzveig Lopes, E.S. Titi and Aibin Zang, Convergence of the 2D
Euler-α to Euler equations in the Dirichlet case: Indifference to boundary layers Physica
D 292-293 (2015), 51–61.

[15] Shin’ya Matsui, Example of zero viscosity limit for two-dimensional nonstationary Navier-
Stokes flows with boundary., Japan J. Indust. Appl. Math. 11 (1994), 155–170.

[16] A.L. Mazzucato and M. Taylor, Vanishing viscosity plane parallel channel flow and related
singular perturbation problems, Anal. PDE 1 (2008), 35–93.

[17] A.L. Mazzucato and M. Taylor, Vanishing viscosity limits for a class of circular pipe flows.,
Comm. Partial Differential Equations 36 (2011), 328–361.

[18] S. Schochet, The weak vorticity formulation of the 2-D Euler equations and concentration-
cancellation. Comm. Partial Differential Equations 20 (1995), 1077–1104.

Isentropic Euler system: Some good and bad news

Eduard Feireisl

(joint work with A. Abbatiello, E. Chiodaroli, F. Flandoli, M. Hofmanová)

We consider the Euler system describing the evolution of the mass density ̺ =
̺(t, x) and the momentum m = m(t, x) of a gas in the isentropic regime occupying
a bounded domain Ω ⊂ Rd, d = 2, 3:

∂t̺+ divxm = 0

∂tm+ divx

(

m⊗m

̺

)

+∇xp(̺) = 0, p(̺) = a̺γ , a > 0, γ > 1

with the impermeability condition

m · n|∂Ω = 0

or, alternatively, the space periodic boundary conditions

Ω = Td.
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The initial conditions are

̺(0, ·) = ̺0, m(0, ·) = m0.

We consider the weak (distributional) solutions that are admissible, meaning
they satisfy the energy inequality:

∂tE 6 0, where E =

∫

Ω

Edx

with

E =
1

2

|m|2
̺

+ P (̺), P ′(̺)̺− P (̺) = p(̺), P (̺) =
a

γ − 1
̺γ

The first result concerns ill posedness for Riemann integrable initial data:

Theorem 1 (A.Abbatiello, EF 2019, [1]). Let R be the set of bounded, Riemann
integrable functions in Ω ⊂ Rd, d = 2, 3. Let ̺0, m0 be given such that

̺0 ∈ R, 0 6 ̺ 6 ̺0 6 ̺,

m0 ∈ R, divxm0 ∈ R, m0 · n|∂Ω = 0.

Let {τi}∞i=1 ⊂ (0, T ) be an arbitrary (countable dense) set of times.
Then the Euler problem admits infinitely many weak solutions ̺, m with a

strictly decreasing total energy profile such that

̺ ∈ Cweak([0, T ];L
γ(Ω)), m ∈ Cweak([0, T ];L

2γ
γ+1 (Ω;Rd))

but

t 7→ [̺(t, ·),m(t, ·)] is not strongly continuous at any τi, i = 1, 2, . . . .

The next result shows that adding a random perturbation does not save well
posedness for the Euler system. We consider the complete Euler system with the
energy as a new variable driven by a random force:

d̺+ divxm dt = 0

dm+ divx

(

m⊗m

̺

)

dt+∇xp dt = −1

2
m ◦ dW

dE + divx

(

(E + p)
m

̺

)

dt = −E ◦ dW,

supplemented with the entropy inequality

d(̺s) + divx(sm)dt > −cv̺ ◦ dW,
and the impermeability boundary conditions. HereW denotes the standardWiener
process and ◦ stands for the Stratonowich stochastic integral.

Theorem 2 (E.Chiodaroli, EF, F. Flandoli [2]). There is a set of initial data
{̺0, ϑ0} ∈ Y dense in [L1(Ω)]2 such that for any [̺0, ϑ0] ∈ Y there exists m0 ∈
L∞(Ω;Rd) such that the stochastically driven Euler system admits infinitely many
global in time admissible weak solutions. The solutions are strong in the stochastic
sense and weak in the PDE sense.
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Finally, we present a result concerning strong convergence of a sequence of consis-
tent approximate solutions. These are quantities [̺n,mn] satisfying

∫ T

0

∫

Rd

[̺n∂tϕ+mn · ∇xϕ] dx dt = e1,n[ϕ]

∫ T

0

∫

Rd

[

mn · ∂tϕ+ 1̺n>0
mn ⊗mn

̺n
: ∇xϕ+ p(̺n)divxϕ

]

dx dt = e2,n[ϕ]

for any smooth test function ϕ,

E(̺n,mn) ≡
∫

Rd

1

2

|mn − ̺nu∞|2
̺n

+ P (̺n)− P ′(̺∞)(̺n − ̺∞)− P (̺∞) 6 c.

[̺n,mn] represent a sequence of approximate solutions to the isentropic Euler
system on the whole space Rd with the far field conditions

̺→ ̺∞, u ≡ m

̺
→ u∞ as |x| → ∞.

We say that the approximation is consistent, if

e1,n[ϕ] → 0, e2,n[ϕ] → 0 as n→ ∞ for any fixed test function.

Theorem 3 (EF, M.Hofmanová [3]). Let [̺n,mn] be a consistent approximation
of the isentropic Euler system such that

̺n → ̺, mn → m

in the sense of distributions (weakly). Suppose that [̺,m] is a weak solution to the
Euler system.

Then the convergence is strong (a.a. pointwise).
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Formation of shocks for 2d Euler

Steve Shkoller

(joint work with Tristan Buckmaster, Vlad Vicol)

We consider the Cauchy problem for the two-dimensional isentropic compressible
Euler equations

∂t(ρu) + div(ρ u⊗ u) +∇p(ρ) = 0 ,(1.1)

∂tρ+ div(ρu) = 0 ,(1.2)

where u : R2 ×R → R2 denotes the velocity vector field, ρ : R2 ×R → R+ denotes
the strictly positive density, and the pressure p : R2 × R → R+ is defined by the
ideal gas law

p(ρ) = 1
γ ρ

γ , γ > 1 .

The sound speed c(ρ) =
√

∂p
∂ρ is then given by c = ρα where α = γ−1

2 . The Euler

equations (1.1)–(1.2) are a system of conservation laws: (1.1) is the conservation
of momentum, which can be equivalently written as ∂tu + u · ∇u + ργ−2∇ρ = 0,
and (1.2) is the conservation of mass.

This paper is devoted to the construction of solutions to (1.1)–(1.2) which form
a shock in finite time: specifically, starting from smooth initial data with O(1) am-
plitude and a minimum slope of −1/ε with ε > 0 sufficiently small, we construct
solutions to the 2D Euler equations (1.1)–(1.2) on a time interval t0 ≤ t ≤ T∗,
t0 = −ε and T∗ = O(ε5/4), for which ρ(·, t) and u(·, t) remain bounded, while
|∇ρ(·, t)| → ∞ and |∇u(·, t)| → ∞ as t→ T∗; moreover, no other type of singular-
ity can form prior to t = T∗, and detailed information on the singularity formation
at t = T∗ is provided, including blowup time, location, and profile regularity.

We are particularly interested in devising solutions to (1.1)–(1.2) which have
vorticity at the shock, by which we mean solutions which are not small pertur-
bations of irrotational flows. As such, our strategy will be to construct solutions
that are perturbations of purely azimuthal wave motion whose simplest (constant)
profiles are of the x⊥-type with O(1) vorticity at this most basic level. As we shall
describe in great detail below, this is in contrast to those solutions which are small
perturbations of irrotational simple plane waves.

We are thus motivated to develop a framework of analysis for solutions which are
perturbations of purely azimuthal waves. Obviously, polar coordinates provide a
natural setting for describing such perturbative solutions, but more fundamentally,
we have discovered that the use of homogeneous solutions to (1.1)–(1.2) leads to
a remarkable reduction of the Euler dynamics precisely to this nearly-azimuthal
wave regime, in which bounded azimuthal waves steepen and then shock, while
radial waves (and their slopes) remain bounded. Owing to the inherent vorticity
in the most basic wave motion, the solutions are fundamentally two-dimensional
in their evolution. We provide a precise description of the shock formation for
such Euler solutions, including the blowup time and location, by a transformation
to self-similar variables that contain dynamically evolving modulation functions



2362 Oberwolfach Report 38/2019

that keep track of the location, time, and amplitude of the blowup. At the blowup
time t = T∗, the wave profile is of Hölder-class C1/3. In the special case that the
adiabatic exponent γ is equal to 3 and for purely azimuthal initial velocity fields, a
series of surprising cancellations reduces the 2D Euler dynamics to an elementary
study of the Burgers equation. The solution for the special case that γ = 3 can be
viewed as the purely azimuthal wave motion, and its shock formation is completely
characterized for all time.

Main Theorem. For an open set of smooth initial data with O(1) amplitude and
with minimum initial slope given at initial time t0 to equal −1/ε, for ε > 0 taken
sufficiently small, there exist smooth solutions of the Euler equations with O(1)
vorticity, which form an asymptotically self-similar shock in finite time T∗, such
that T∗− t0 = O(ε). The solutions have O(1) vorticity at the shock, are dominated
by azimuthal wave motion, and the location and time of the first singularity can
be explicitly computed. The blowup profile at the first singularity is shown to be a
cusp with C1/3 regularity.
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On the vanishing viscosity limit of the Navier-Stokes equations and
the Triple Deck

Vlad Vicol

(joint work with I. Kukavica & F. Wang (first half) and S. Iyer (second half))

In this talk we discuss two recent results: [2] and [3], concerning the vanishing
viscosity limit of the Navier-Stokes equations on the half space, with Dirichlet
boundary conditions.

The first half of the talk discusses the joint work with Kukavica and Wang [3].
We consider initial datum which is real-analytic analytic (with respect to ∂x and
y∂y) in anO(1) strip in the vicinity of the domain, and has finite Sobolev regularity
on the complement this strip. We prove that for such data the solution of the
Navier-Stokes equations converges in the vanishing viscosity limit to the solution
of the Euler equation, on a constant time interval. In particular, our main result
implies both the result of Sammartino-Caflisch [5] (which assumes analyticity on
the entire half-plane), and also the more recent result of Maekawa [4] (which
assumes that the initial vorticity vanishes identically in an O(1) strip next to the
boundary).

The second half of the talk discusses the joint work with Iyer [2]. In the imme-
diate vicinity of a separation point, the breakdown of the assumptions on which
Prandtl equations are derived signals the limitations of the classical Prandtl bound-
ary layer theory, and in practice one appeals to higher order boundary layer the-
ories. The work [1] shows that the well-known higher order models: Prescribed
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Displacement Thickness and Interactive Boundary Layer; are linearly ill-posed,
even for real-analytic initial datum. In the work [2] we consider another classical
higher order boundary layer model, Stewardson’s Triple Deck. We first present the
derivation of the model, which appears to lose two derivatives through the pressure-
displacement relation which links pressure to the tangential slip. By splitting the
Triple Deck system into two coupled equations: a Prandtl type system on in the
lower deck and a Benjamin-Ono type equation at the top of the lower deck, we
extract a crucial leading order cancellation, which enables us to prove the local
well-posedness of the model in tangentially real analytic spaces.
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On boundary value problem for steady Navier–Stokes system in 2D
exterior domains

Mikhail Korobkov

(joint work with K. Pileckas, R. Russo)

We study solutions to stationary Navier–Stokes system in two dimensional exterior
domains, namely, existence of these solutions and their asymptotical behaviour.
The talk is based on the recent joint papers with K.Pileckas and R.Russo where
the uniform boundedness and uniform convergence at infinity for arbitrary solution
with finite Dirichlet integral were established. Here no restrictions on smallness of
fluxes are assumed, etc. In the proofs we develop the ideas of the classical paper
of Amick (Acta Math. 1988).
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Why it is so hard to get numerical evidences of possible finite time
blow-ups for Euler

Alexis F. Vasseur

(joint work with Misha Vishik)

Consider the incompressible Euler equation in a domain Ω ⊂ R3:

(1.1)
dtu+ (u · ∇)u+∇P = 0, x ∈ Ω, t ∈ (0, T ∗),

div u = 0, x ∈ Ω, t ∈ (0, T ∗),

endowed with a smooth initial value u0 ∈ Hs(Ω), for a s > 9/2. The domain Ω
can be R3, T3 or any smooth bounded domain Ω where we add the impermeability
condition:

(1.2) u · n = 0, on ∂Ω,

where n is the normal of ∂Ω. It is well known that there exists a solution of
this equation on (at least) a small timespan (0, T ∗) such that for every T < T ∗,
u ∈ C0(0, T ;Hs(Ω)) ∩ C1(0, T ;Hs−1(Ω)). From the assumption s > 9/2, this
implies that on this lifespan u, ∇u and ∇∇u are C1([0, T ]×Ω) for all T < T ∗. In
two dimensions of space, due to the absence of vorticity stretching, the solution can
always be extended as a global smooth solution for all time. Whether it is still the
case in dimension 3, for all smooth initial values, remains one of the fundamental
questions both for the Euler equation, and its viscous counterpart the Navier-
Stokes equation. This talk is dedicated to the study of the link between the linear
stability of the solutions, and the propagation of their regularity. Let T ∗ > 0
be the biggest time (possibly infinite) such that for every T < T ∗ the solution
of the Euler equation u exists and lies in C0(0, T ;Hs(Ω)) ∩ C1(0, T ;Hs−1(Ω)).
Let 1 < p < ∞. For any T < T ∗, we consider the semigroup generated by the
linearization of the Euler equation about the solution u:

(1.3)

dtv + (u · ∇)v + (v · ∇)u +∇P ′ = 0, x ∈ Ω, t ∈ (0, T ),

div v = 0, x ∈ Ω, t ∈ (0, T ),

v · n = 0, on ∂Ω.

The solution v is uniquely defined for any initial value in H1(Ω). We denote γp(T )
the growth in Lp(Ω) norm of the semi-group:

γp(T ) = sup
v0∈H1(Ω),‖v0‖Lp(Ω)61

‖v(T )‖Lp(Ω).

It is easy to show that the regularity on [0, T ] of the solution u implies the bound-
edness of γp(t) on [0, T ]. Indeed, there exists a constant depending only on Ω and
p such that

γp(T ) 6 eCp

∫ T
0

‖∇u‖L∞(Ω) dt.
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Therefore regularity controls linear stability. This paper is dedicated to the proof
of the other causality. We denote the vorticity ω = curl u. Our main theorem is
the following:

Theorem 1. Let Ω ⊂ R3 be either R3, T3, or a bounded smooth domain. Consider
a smooth initial value u0 ∈ Hs(Ω), s > 9/2, with ω0 = curl u0, and denote T ∗

the biggest time (possibly infinite) such that the solution u of the Euler equation
(1.1) (1.2) exists and lies in C0(0, T ;Hs(Ω)) ∩C1(0, T ;Hs−1(Ω)) for all T < T ∗.
Then, for every 1 < p <∞,and every T < T ∗,

γ2p(T ) >
‖ω(T )‖L∞(Ω)

‖ω0‖L∞(Ω)
.

Beale Kato and Majda showed that the supremum norm of the vorticity controls
the regularity of the Euler solution. More precisely, they showed that, as long as

∫ T

0

‖ω(t)‖L∞(Ω) dt

is bounded, there exists ε > 0 such that u can be extended to a solution to the
Euler equation (1.1) (1.2) on [0, T + ε] with u ∈ C0(0, T + ε;Hs(Ω)) ∩ C1(0, T +
ε;Hs−1(Ω)). Therefore, Theorem 1 implies the following result.

Corollary 1. Let Ω ⊂ R3 be either R3, T3, or a bounded smooth domain. Con-
sider a smooth initial value u0 ∈ Hs(Ω) for s > 9/2 with ω0 = curl u0, and
assume that the corresponding solution u to the Euler equation (1.1) (1.2) lies in
C0(0, T ;Hs(Ω)) ∩C1(0, T ;Hs−1(Ω)) for all T < T ∗. Assume that

sup
0<T<T∗

‖u(T )‖Hs(Ω) = ∞.

Then, for any 1 < p <∞:
∫ T∗

0

γ2p(t) dt = ∞,

and especially
lim sup

T→T∗

γp(T ) = ∞.

This is equivalent to the contrapositive which states that stability controls the
regularity. This result shows that if the solution u blows up at t = T ∗, then small
perturbations on the initial value induce huge discrepancies on the solution when
time approaches T ∗. Numerical experiments involves unavoidable numerical in-
accuracies. Therefore, due to the growing instabilities of the exact solution close
to the blow-up time, we cannot expect any predictability of the numerical experi-
ment about the blow-up. This explains why, even with the current computational
power, it is so difficult to obtain numerical scenarios for a possible blow-up. The
difficulty to predict finite time blow-ups is well documented. Note that the result
of Corollary 1 covers the case of blow-ups at the boundary.
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Partial Dissipation and Stability

Jiahong Wu

In collaboration with Peter Constantin, Charlie Doering and a group of young
colleagues, we have been attempting to understand how partial or fractional dis-
sipation affects the regularity, stability and large-time behavior of solutions. This
talk presents three examples in which we successfully established the global sta-
bility and obtained the large-time behavior. They include the 2D Boussinesq
equations near the hydrostatic equilibrium, several partially dissipated magneto-
hydrodynamic systems near a background magnetic field, and partially dissipated
Oldroyd-B models near the trivial solution.

In a joint work with Charlie Doering, Kun Zhao and Xiaoming Zheng [1], we
studied the stability and large-time behavior of the two-dimensional Boussinesq
equations without buoyancy diffusion near the hydrostatic equilibrium. Hydro-
static equilibrium or hydrostatic balance in fluid dynamics refers to the status of
a fluid when it is at rest. This occurs when the gravity is balanced out by the
pressure-gradient force. Our atmosphere is mostly in the hydrostatic equilibrium.
The pressure-gradient force prevents gravity from collapsing Earth’s atmosphere
into a thin shell, whereas gravity prevents the pressure gradient force from diffus-
ing the atmosphere into space. [1] obtains the global stability and the large-time
asymptotics of the full nonlinear perturbation. In particular, it shows that the
kinetic energy and the first order spatial and temporal derivatives of the velocity
field converge to zero as time goes to infinity, regardless of the magnitude of the
initial data, and the flow stratifies in the vertical direction in a weak topology.
Strikingly, the second-order spatial derivatives of the velocity are shown to be
bounded uniformly in time. In a followup work [2], we investigate the evolution of
the temperature and provide a precise description of the final buoyancy distribu-
tion in case of general initial conditions. In addition, [2] also obtained analytical
results on the explicit decay rate of the velocity field.

In a joint work with Hongxia Lin, Ruihong Ji and Li Yan [3] and another joint
work with Yi Zhu [4], we successfully established the global stability on perturba-
tions near a background magnetic field to several incompressible magnetohydro-
dynamic (MHD) equations with only partial dissipation. These stability results
provide significant examples for the stabilizing effects of the magnetic field on elec-
trically conducting fluids. The vorticity gradient of the 2D incompressible Euler
equation can grow double exponentially in time while the same quantity to the 2D
Navier-Stokes equation decays algebraically in time. However, the stability and
large-time behavior of the vorticity gradients of the 2D Navier-Stokes equation
with only vertical or horizontal dissipation appears to be unknown. When the
partially dissipated Navier-Stokes is coupled with the equations of the magnetic
field, we do have stability.

In a joint work with Peter Constantin, Jiefeng Zhao and Yi Zhu [5], we establish
a new small data global well-posedness result on the incompressible Oldroyd-B
model with only dissipation in the equation of stress tensor (without stress tensor
damping or velocity dissipation). The dissipation is not necessarily given by the
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standard Laplacian operator and any fractional dissipation with fractional power
equal to or greater than 1/2 suffices. The previous best result in this direction
requires the full Laplacian dissipation and also a damping term in the stress tensor.

References

[1] C.R. Doering, J. Wu, K. Zhao and X. Zheng, Long time behavior of the Two-dimensional
Boussinesq Equations without Buoyancy Diffusion, Physica D 376/377 (2018), 144–159.

[2] L. Tao, J. Wu, K. Zhao and X. Zheng, Stability near hydrostatic equilibrium to the 2D
Boussinesq equations without thermal diffusion, Archive for Rational Mechanics and Anal-
ysis, submitted for publication.

[3] H. Lin, R. Ji, J. Wu and L. Yan, Stability of perturbations near a background magnetic
field of the 2D incompressible MHD equations with mixed partial dissipation, J. Functional
Analysis, submitted for publication.

[4] J. Wu and Y. Zhu, Global solutions of 3D incompressible MHD system with mixed partial
dissipation and magnetic diffusion near an equilibrium, Advances in Math., submitted for
publication.

[5] P. Constantin, J. Wu, J. Zhao and Y. Zhu, The Oldroyd-B model with only dissipative stress
tensor, preprint.

The Navier-Stokes Equations in Domains with Moving Boundaries

Reinhard Farwig

(joint work with Hideo Kozono, Kazuyuki Tsuda, David Wegmann)

Consider the (Navier-)Stokes system on a bounded or exterior domain Ω(t) ⊂ Rn

with moving boundary and Dirichlet boundary conditions. This problem goes
back to E. Hopf [7] and O.A. Ladyzhenskaya [10] who proved the existence of
weak and strong solutions in L2, respectively. Periodic solutions in the L2–setting
for bounded domains were constructed by T. Miyakawa & Y. Teramoto [11] and
Y. Teramoto [14]. J. Neustupa [12] analyzed the problem for a very general class
of bounded and unbounded domains without smoothness of the boundary in L2

proving also an adequate energy estimate of weak solutions. Finally, the existence
of suitable weak solutions satisfying a localized energy inequality was proved by
H.J. Choe, Y. Jang & M. Yang [1].

The first results on Lq-solutions involving the concept of maximal regularity are
due to J. Saal [13] in 2006. He proved that the Stokes operator in a domain with
moving boundary has the property of maximal regularity provided that the Stokes
operator is invertible. This result can be applied to get global-in-time solutions if
the domain is bounded or - by a spectral shift - if the domain is an exterior one
leading to exponentially increasing terms.

For t ∈ (0, T ] let Ω(t) ⊂ Rn (n > 2) be a bounded domain with ∂Ω(t) ∈ C3,
set Q :=

⋃

t∈(0,T ]Ω(t) × {t} and let Ω0 := Ω(t0) denote a reference domain. The
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Navier-Stokes equations on the non-cylindrical space-time domain is described by

vt −∆v + v · ∇v +∇p = f in Q,

div v = 0 in Q,

v = 0 on
⋃

t∈(0,T ]

∂Ω(t)× {t},

v(0) = v0.

(1.1)

Here v = v(x, t) denotes the unknown velocity of an incompressible, viscous fluid
(with viscosity ν = 1) and p = p(x, t) denotes the pressure, respectively, at time
t ∈ (0, T ] and position x ∈ Ω(t). Moreover, let f be a given external force. For
simplicity, we assume that v = 0 on ∂Ω(t); the correct kinetic boundary condition
will lead by classical trace arguments to a Navier-Stokes system with perturbation
terms which are of order zero and one in v.

In the following, let Ω(·) be a family of either bounded or exterior domains.

Assumption 0. There exists a family of domains Ω(t) ⊂ Rn with ∂Ω(t) ∈ C3,
t ∈ R, and a map

φ : Ω0 × (0,∞) → Rn, (ξ, t) 7→ φ(ξ, t),

where Ω0 ⊂ Rn is a reference domain with ∂Ω0 ∈ C3. Furthermore, the function
φ has the following properties:

(1) For t ∈ R+ the map φ(·, t) : Ω0 → Ω(t) is a C3-diffeomorphism with
φ(·, 0) = id. Let φ(·, t)−1 denote the inverse for fixed t.

(2) Concerning the function φ as a map on Ω0 × R+ we assume that

φ ∈ C3,1
b :=

{

f ∈ C0(Ω0×R+) | ∂kt ∂αξ f ∈ C0
b , 0 6 2k+|α| 6 3, k ∈ N0, α ∈ N3

0

}

.

(3) The map φ is volume preserving, that is, det∇ξφ(·, t) = 1 for all t.
(4) For global-in-time solutions: φ(·, t) → φ(·,∞) as t → ∞ in C3(Ω0) and

∂tφ(·, t) → 0 as t → ∞ in C1(Ω0). In this case, Ω(∞) = φ(Ω0,∞) is a
domain of class C3.

(5) For exterior domains: The map φ acts locally in space, i.e., there exists
an R > 0 such that φ(ξ, t) = ξ for all |ξ| > R.

(6) For t-periodic solutions: The map φ is µ-Hölder continuous in time in the
semi-norm of C3.1

b , i.e., there exist constants δ0 > 0 and µ ∈ (0, 1] such
that |φ(t)− φ(s)|C3,1

b
6 δ0|t− s|µ for t, s ∈ R.

System (1.1) on Q will be reformulated as a problem in the cylindrical space-
time domain Ω0 × (0, T ] as follows, cf. [2, 13]:

Let t ∈ (0, T ] and v : Ω(t) → Rn be a function with parameter t. Given φ as in
Assumption 0 let us define the map

Φ(t) : Lq(Ω(t)) → Lq(Ω0), v(·, t) 7→ u(·, t) := ((∇φ)−1(·, t))v(φ(·, t), t)
which maps solenoidal vector fields to solenoidal ones. Based on the Helmholtz
projection PΩ(t) for the domain Ω(t), the operators

P (t) = Φ(t)PΩ(t)Φ(t)
−1 : Lq(Ω0) → Lq(Ω0)
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are projections onto Lq
σ(Ω0) since Φ(t) : Lq

σ(Ω(t)) → Lq
σ(Ω0) is an isomorphism.

The same holds for the spaces W k,q, k = 1, 2 and W 1,q
0 . However, P (t) does not

coincide with the Helmholtz projection PΩ0 = P (0) because its kernel given by

Gq(t) = {∇φ(t)(π ◦ ψ) : π ∈ Ẇ 1,q(Ω(t))} may depend on t; here

∇φ(t)g := (∇φ(t))−1
(

(∇φ(t))−1
)⊤ ∇g.

Concerning the differential operators ∆ and ∂t we calculate

Φ(t)∆xΦ(t)
−1 = ∆ξ +

∑

|α|62

aα(ξ, t)∂
α,

Φ(t)∂tΦ(t)
−1 = ∂t +

∑

|β|61

bβ(·, t)∂β ,

where aα(·, t), bβ(·, t) are bounded compactly supported matrix-valued functions.
Finally, we define the modified Stokes operators

A(t) = P (t)
(

−∆−
∑

|α|62

aα∂
α +

∑

|β|61

bβ∂
β
)

= Φ(t)AΩ(t)Φ(t)
−1 + P (t)

∑

β
bβ∂

β,

with domain D(A(t)) = W 2,q(Ω0) ∩ W 1,q
0 (Ω0) ∩ Lq

σ(Ω0). Thus we get the non-
autonomous Cauchy problem

∂tu(t) +A(t)u(t) = f̃(t), u(0) = u0.(1.2)

The aim of the talk is threefold. First, in the case of exterior domains, we extend
the known maximal regularity result in Ls(0, T ;Lq) for the Stokes and Navier-
Stokes problem to global-in-time solutions under suitable smallness assumptions
on the prescribed motion of ∂Ω(t) for large t. The approach is based on results by
M. Giga, Y. Giga & H. Sohr ( [6]) on abstract non-autonomous systems for large
t and on local-in-time results of [13]. The main result on the nonlinear problem
reads as follows:

Theorem 1. Let 1 < q < 3
2 and 2 < p < ∞ such that 2

p + 3
q = 3. Let f ∈

Lp(0,∞;Lq
σ(Ω0)), and let the initial value u0 be an element of the real interpolation

space (Lq
σ,D(AΩ0 ))1− 1

p ,p
. Then there exists an ε > 0 with the following property:

If
sup
t

|φ− id|C3,1
b

+ ‖f‖q,p + ‖u0‖ < ε,

then the Navier-Stokes system (1.1) possesses a unique global-in-time solution u
with ut, A(·)u ∈ Lp(0,∞;Lq

σ(Ω0)).

The second result concerns the existence of time-periodic solutions in Lq-spaces
for bounded domains with a periodically moving boundary.

Theorem 2. Let n > 2, P (·)f ∈ C(R;Lq(Ω0)) be T -periodic with µ as in
Assumption 0 satisfying n

2q < µ 6 1. If

|||f, φ||| := supt∈[0,T ] ‖P (t)f(t)‖Lq(Ω0) + supt∈[0,T ] |φ(t)− φ(0)|C3,1
b
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is sufficiently small, then there exists a unique T -periodic solution u in the space
C(R;W 1,q

0,σ (Ω0)) such that

sup
t

‖u(t)‖W 1,q
0,σ(Ω0)

6 C|||f, φ|||,

where C > 0 is a constant independent of f and φ.

To prove Theorem 2, we construct by Banach’s fixed point theorem mild T -
periodic solutions in the class C0(R;W 1,q

0,σ (Ω0)). For lack of initial values, the
classical variation-of-constants formula is replaced by the representation

u(t) =

∫ t

−∞

S(t, τ)
{

P (τ)f(τ) − P (τ)u · ∇φ(τ)u
}

dτ

using the evolution operator S(t, s); this formula was introduced by Kozono-Nakao
( [9]) to get existence of time-periodic solutions for the Navier-Stokes system in
exterior domains. To apply this formula, we need that S(t, s) decays exponentially
fast as t − s → ∞. This property is natural if the family of domains (Ω(t)) is
bounded. It is an open problem how this approach can be generalized to the case
of exterior domains.

To show as a third result ( [4]) that the T -periodic solution of Theorem 2 is
smooth with ∂tu,A(t)u in Lq we generalize the Fujita-Kato iteration ( [5,8]) to the
non-autonomous setting following the work of Yagi [15]. In this context, estimates
of fractional powers of the modified Stokes operators A(t) play a prominent role.
We note that the domains D(A(t)) are t-independent, but that this property is
not proved for fractional powers A(t)α, 0 < α < 1, due to the structure of the
coefficients aα and bβ .
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Newtonian gravitational collapse beyond dust dynamics

Juhi Jang

(joint work with Yan Guo and Mahir Hadžić)

The simplest hydrodynamic model to describe the motion of gaseous stars is given
by the Euler-Poisson system:

∂tρ+∇ · (ρu) = 0

∂t(ρu) +∇ · (ρu⊗ u) +∇P = −ρ∇Φ

∆Φ = 4πρ

where ρ is the density, u is the velocity, Φ is the gravitational potential, and
P = ργ , 1 < γ < 2. The system admits static equilibria, called polytopes or
Lane-Emden stars, having exact balance between the gravity and the pressure.
The exponent γ plays an important role in the existence, uniqueness and stability
of Lane-Emden solutions. In particular, if 6

5 < γ < 2, at least one compactly
supported solution exists and the enthalpy behaves like a distance function near
the boundary: ργ−1 ∼ (R − r). This boundary behavior causes the standard
theory of hyperbolic system inaccessible even for local-in-time existence theory. A
suitable framework is to consider the free boundary problem:

∂tρ+∇ · (ρu) = 0 in Ω(t)

ρ (∂tu+ (u · ∇)u) +∇ργ = −ρ∇Φ in Ω(t)

∆Φ = 4πρ, in R3

lim
|x|→∞

Φ(t, x) = 0

ρ = 0 on ∂Ω(t)

V(∂Ω(t)) = u · n(t) on ∂Ω(t)

(ρ(0, ·),u(0, ·)) = (ρ0,u0) , Ω(0) = Ω0
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where Ω(t) is the support of the fluid to be solved dynamically. The free boundary
Euler or Euler-Poisson system is well-posed under the physical vacuum boundary
condition [6]:

−∞ < ∇
(

dP

dρ

)

· n < 0, P = ργ

which is satisfied by Lane-Emden stars. A recent development [4, 7, 8] shows that
the vacuum free boundary Euler problem admits global-in-time solutions which
demonstrate stable expansion phenomena. Even in the presence of gravity, such
expansion solutions exist for γ = 4

3 (the mass-critical case) [3] or when perturbed
by expanding Euler solutions [5].

On the other hand, collapsing phenomena driven by self-gravitation is still
poorly understood. For γ > 4

3 (sub-critical) it is known that the collapse by

density concentration for the Euler-Poisson system cannot occur [1]. For γ = 4
3 ,

due to the special symmetries, self-similar collapsing solutions exist since 1980
due to Goldreich and Weber. Despite its strong belief, no collapsing solutions
have been available for 1 < γ < 4

3 (super-critical) until recently [2] where we
provided an affirmative answer by constructing an infinite dimensional family of
collapsing solutions.

A key starting point is to introduce a small scaling parameter representing the
size of the domain into the system and identify the regime where the gravitational
force dominates the pressure gradient and the pressureless blowup triggers a col-
lapse to the full system. To this end, for any λ > 0, consider the mass preserving
rescaling:

ρ = λ−3ρ̃(s, y), u = λ−1/2ũ(s, y), Φ = λ−1Φ̃(s, y),

where s = λ−3/2t, y = λ−1x. If (ρ,u,Φ) solve the Euler-Poisson, then the rescaled

quantities (ρ̃, ũ, Φ̃) solve

∂sρ̃+∇ · (ρ̃ũ) = 0

ρ̃ (∂sũ+ (ũ · ∇)ũ) + ε∇(ρ̃γ) + ρ̃∇Φ̃ = 0

∆Φ̃ = 4π ρ̃, lim
|y|→∞

Φ̃(s, y) = 0

where ε := λ4−3γ . For λ≪ 1 the factor ε in front of the pressure is small precisely
in the supercritical range 1 < γ < 4

3 . For sufficiently small ε, one might expect
the leading order singular behavior to be driven by the pressure-less dynamics.
However, from the PDE point of view, the pressure enters to the system as the
highest order term, and in fact, controlling the pressure is the most challenging
task in the construction of collapsing solutions.

To analyze the rescaled system, we use the Lagrangian coordinates and study
the flow map:

∂sη(s, y) = ũ(s, η(s, y)), η(0, y) = η0(y)

Furthermore, we restrict ourselves to radial flows and consider

η(s, y) = χ(s, r)y, r = |y|, r ∈ [0, 1],
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and denote χ(0, r) by χ0(r). The Jacobian determinant of Dη expressed in terms
of χ takes the form J [χ] := χ2(χ+ r∂rχ). The momentum equation reduces to a
nonlinear second order degenerate hyperbolic equation for χ:

χss +
G(r)

χ2
+ εP [χ] = 0

where G(r) = 1
r3

∫ r

0 4πwαs2 ds (mean density), w(r)α := ρ̃0(χ0(r)r)J [χ0](r), and
nonlinear pressure operator P

P [χ] :=
χ2

wαr2
(r∂r)

(

w1+αJ [χ]−γ
)

.

The density is recovered by ρ̃(s, χ(s, r)y) = wα(r)J [χ]−1. The goal is then to
show that there exists a choice of initial conditions χ(0) = χ0 and ∂sχ(0) = χ1

with a choice of the enthalpy w such that J [χ] becomes zero in finite time! This
will give the existence of initial density and velocity in Eulerian coordinates.

The construction will be done via the truncated expansion: χ =
∑M

I=0 ε
iχi+R.

Plugging this ansatz and comparing the coefficients in ε, we have χ0 = (1−g(r)s) 2
3 ,

g(r) =
√

9G(r)
2 solving the pressureless Euler-Poisson system: χss +

G(r)
χ2 = 0, χi

solving the inhomogeneous ODEs, and the remainder R satisfies the PDE with the
source generated by expansion coefficients. It turns out to be possible to choose χi

smaller than χ0 due to the super-criticality γ < 4
3 and its feedback by the pressure

with suitable flatness of g. This gain is crucial to control the source term and
various coefficients appearing in the equation for R. Desired initial data will be
obtained by solving R equation backward in time.

The χ constructed by the above procedure behaves like the dust solution χ0.

In particular, | χ
χ0

| ∼ 1 and | J [χ]
J [χ0]

| ∼ 1. Further, for any r ∈ [0, 1]

lim
s→ 1

g(r)

χ

χ0
= lim

s→ 1
g(r)

J [χ]

J [χ0]
= 1.

Consequently, the corresponding density blows up along the space time singularity
s = 1

g(r) , and the support shrinks to a point, and mass is absorbed into the

singularity.
Interesting future directions include non-radial collapse, more general pressure

laws, dynamics of collapsing solutions.
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A generalization of the entropy identity for Burgers’ equation and
application to the Kuramoto-Sivashinsky equation

Felix Otto

(joint work with Michael Goldman and Marc Josien)

1. Theme

We are interested here in large-scale and low-regularity estimates on solutions of
the forced inviscid Burgers’ equation

(1.1) ∂tu(t, x) + u(t, x)∂xu(t, x) = ∂xg(t, x) for t ∈ R+ and x ∈ R,

where u and g are assumed to be smooth and L-periodic in x, for a large length
L≫ 1. More precisely, we show that the following estimate is almost true:

∫ T

0

∫ L

0

∣

∣

∣
|∂x|

1
3 u
∣

∣

∣

3

dxdt .

∫ L

0

|u(0, x)|2 dx+

∫ T

0

∫ L

0

∣

∣

∣
|∂x|

2
3 g
∣

∣

∣

3
2

dxdt,(1.2)

where the operator |∂x|α is of Fourier symbol |k|α and roughly corresponds to a
derivative of order α. In this perspective, the conservative operator u∂xu acts as a

coercive term; we could formally read u∂xu as |∂x|
1
3 Q′

(

|∂x|
1
3 u
)

, for Q(z) := |z|3.
Rigorously, estimate (1.2) holds in Besov spaces (or fractional Sobolev spaces)

as

sup
l>0

∫ T

0

∫ L

0

|δlu|3
l

dxdt .

∫ L

0

|u(0, x)|2 dx+

∫ ∞

0

dl

l

∫ T

0

∫ L

0

|δlg|
3
2

l
dxdt,

for δlu := ul−u and ul(x) := u(x+ l). It may be written in a more compact form:

‖u‖3
Ḃ

1/3
3,∞

. ‖u(0, ·)‖2L2 + ‖g‖
3
2

Ḃ
2/3

3/2,1

.(1.3)

Estimate (1.3) was first established in [3] by studying fine properties of Besov
spaces. This was further simplified in [1], by appealing to the regularizing effect of
Burgers’ equation found by Golse & Perthame [2] (considering the entropy solution
of (1.1) with g = 0). These authors were using the kinetic formulation of Lions,
Perthame and Tadmor ’94, and the div-curl structure investigated by Tartar ’08,
De Lellis, Otto & Westdickenberg ’04.

We show here an elementary proof of (1.3) via a modified Howarth-von Kármán-
Monin (HvKM) identity (see [1]).



Mathematical Aspects of Hydrodynamics 2375

2. Connection between [2] and the HvKM identity

2.1. HvKM identity for the forced Euler equation. We first enunciate the
so-called HvKM identity for the forced Euler equation:

∂tu+ u · ∇u+∇p = f with ∇ · u = 0.(2.1)

It reads:

(2.2) ∂t

∫

Rd

1

2
|δlu|2 dx+∇l ·

∫

Rd

1

2
|δlu|2 δludx =

∫

Rd

δlu · δlfdx,

or, in its local version (which generalizes the local energy identity, taking l ↑ ∞):

∂t

(1

2
|∂lu|2

)

+∇l ·
(1

2
|δlu|2 δlu

)

+∇x ·
(1

2
|δlu|2 u+ δlpδlu

)

= δlu · δlf.

2.2. Forced inviscid Burgers’ equation. Getting back to Burgers’ equation
(1.1), where we momentarily denote f := ∂xg, the entropy identity reads

∂tη (u) + ∂xq (u) = η′(u)f.

provided q′(z) = zη′(z). Defining the additional quantity Q by Q′ (z) = zη′(z)−
η(z), it deforms into

∂tη (δlu) + ∂lQ (δlu) + ∂x
(

ulη (δlu)− q (δlu)
)

= η′ (δlu) δl (∂tu+ u∂xu) .(2.3)

The latter identity turns into the entropy identity as l ↑ ∞ (for fixed (t, x)).
Integrating (2.3) yields a global formulation

∂t

∫

η (δlu) dx+ ∂l

∫

Q(δlu)dx =

∫

η′ (δlu) δlfdx.(2.4)

Three special cases of (2.4) are especially relevant: η(z) = |z| ⇒ Q(z) = 0, in
which we obtain the L1 contraction:

∂t

∫

∣

∣ul − u
∣

∣dx =

∫

sign
(

ul − u
)

δlfdx;

η(z) = 1
2 |z|2 ⇒ Q(z) = 1

6z
3, which gives the HvKM identity for Burgers’ equation:

∂t

∫

1

2
(δlu)

2
dx+ ∂l

∫

1

6
(δlu)

3
dx =

∫

δluδlfdx;

and η(z) = 1
2z

2
+ ⇒ Q(z) = 1

6z
3
+, which produces the modified HvKM identity (in

which the second left-hand integral is coercive):

∂t

∫

1

2
(δlu)

2
+ dx+ ∂l

∫

1

6
(δlu)

3
+ dx =

∫

(δlu)+ δlfdx.(2.5)

2.3. Coercivity estimate. By integrating the estimate (2.5) in t and then l, and
using the Hölder inequality, we obtain

sup
l 6=0

1

|l|

∫ T

0

∫

1

6
(δlu)

3
+ dxdt 6 sup

l

{∫

1

2
(δlu(0, ·))2+ dx+

∫ T

0

∫

|δlu| δlfdxdt
}

.

Recalling that f = ∂xg, we derive (1.3).
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3. Application to the Kuramoto-Shivashinsky equation

We consider L-periodic solutions of the Kuramoto-Sivashinsky equation:

∂tu+ u∂xu+ ∂2xu+ ∂4xu = 0 for t ∈ R+, x ∈ R,(3.1)

where, by the Galilean invariance, we may assume that
∫ L

0
u = 0. In this equation,

the second term provides the energy cascade, the third one pumps in the energy
on large scales ≫ 1, and the fourth one takes out the energy on small scales ≫ 1.
It is conjectured in Michelson ’86 that the function u remains bounded for long
time and large scales:

lim sup
T,L↑∞

1

T

∫ T

0

1

L

∫ L

0

|u|2 dxdt . 1.

We prove the weaker result (see Goldman, Josien & Otto [1]):

Theorem. The following estimate holds:

lim sup
T↑∞

1

T

∫ T

0

1

L

∫ L

0

∣

∣

∣|∂x|
1
3 u
∣

∣

∣

3

dxdt . ln
5
6+ L.(3.2)

We denote by 〈h〉 the average 1
TL

∫ T

0

∫ L

0
hdxdt. The proof of (3.2) relies on

three ingredients (modulo the logarithmic loss due our use of Besov spaces Ḃ
1/3
3,∞

instead of Ḃ
1/3
3,3 ): the coercivity of Burgers’ equation ∂tu+u∂xu = −∂4xu (ignoring

the term ∂2xu), which induces a gain in homogeneity (from 3 to 2 in u):

〈∣

∣ |∂x|
1
3 u
∣

∣

3〉
.
〈∣

∣∂xu
∣

∣

5
2
〉

2
5
〈∣

∣∂3xu
∣

∣

5
3
〉

3
5 ;

the energy estimate on ∂tu + u∂xu + ∂4xu = −∂2xu (the second left-hand term is
irrelevant), which is neutral in terms of homogeneity:

〈∣

∣∂2xu
∣

∣

2〉
.
〈∣

∣ |∂x|
1
3 u
∣

∣

3〉 2
3 ;

the “maximal regularity” for the capillary Burgers’ equation ∂tu + ∂4xu = −u∂xu
(ignoring the term ∂2xu), which suffers from a loss in homogeneity (from 1 to 2 in
u):

〈∣

∣∂5xu
∣

∣

5
4
〉

.
〈∣

∣∂xu
∣

∣

5
2
〉

.

The result (3.2) is then obtained by combining these three ingredients with the
two following interpolation inequalities:

〈∣

∣∂3xu
∣

∣

5
3
〉

.
〈∣

∣∂5xu
∣

∣

5
4
〉

4
9
〈∣

∣∂2xu
∣

∣

2〉 5
9 and

〈∣

∣∂xu
∣

∣

5
2
〉

.
〈∣

∣ |∂x|
1
3 u
∣

∣

3〉 1
2
〈∣

∣∂2xu
∣

∣

2〉 1
2 .

In this perspective, remark that all the norms are in form of
〈∣

∣ |∂x|
10
p −3

u
∣

∣

p〉 1
p .
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Asymptotic criticality of the Navier-Stokes regularity problem

Zoran Grujić

(joint work with Liaosha Xu)

3D Navier-Stokes equations (NSE) – describing a flow of 3D incompressible viscous
Newtonian fluid – read

ut + (u · ∇)u = −∇p+△u,
supplemented with the incompressibility condition div u = 0, where u is the ve-
locity of the fluid and p is the pressure (the viscosity is set to 1).

NS regularity problem has been super-critical in the sense that there has been
a ‘scaling gap’ between any presently known regularity criterion and the cor-
responding a priori bound; a classical example is the LPS regularity criterion,
u ∈ Lp(0, T ;Lq),

3

q
+

2

p
= 1

vs. the a priori bound u ∈ Lp(0, T ;Lq),

3

q
+

2

p
=

3

2
.

Moreover, all the known regularity criteria are (at best) scaling-invariant, while all
the a priori bounds have been on the scaling level of the energy bound, regardless
of the functional framework utilized. This abstract delineates a mathematical set-
up, based on a suitably defined ‘scale of sparseness’ of the super-level sets of the
higher order derivatives of the velocity field, in which the scaling gap shrinks to
0 as the order of the derivative goes to infinity (in the vicinity of the possible
singular time), demonstrating asymptotic criticality.

local sparseness

Let S be an open subset of R3, x0 a point in R3, r ∈ (0,∞), and δ ∈ (0, 1) (mn

will denote the n-dimensional Lebesgue measure)

S is 1D δ-sparse around x0 at scale r if there exists a unit vector d in S2 such
that

m1
(

S ∩ (x0 − rd, x0 + rd)
)

2r
6 δ
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S is 3D δ-sparse around x0 at scale r if

m3
(

S ∩B(x0, r)
)

m3
(

B(x0, r)
) 6 δ

(It is straightforward to check that 3D δ-sparseness at scale r implies 1D (δ)
1
3 -

sparseness at scale ρ, for some ρ in (0, r] (at any given pair (x0, r).)

In what follows, let us denote the positive and the negative parts of the vectorial
components of f by f±

i , and compute the norm of a vector v = (a, b, c) as |v| =
max{|a|, |b|, |c|}.
For a positive exponent α, and a selection of parameters λ in (0, 1), δ in (0, 1) and
c0 > 1, the class of functions Zα(λ, δ; c0) consists of bounded, continuous functions
f : R3 → R3 subjected to the following uniformly local condition. For x0 in R3,
select the/a component f±

i such that f±
i (x0) = |f(x0)|, and require that the set

{

x ∈ R3 : f±
i (x) > λ‖f‖∞

}

be 1D δ-sparse around x0 at scale c 1
‖f‖α

∞
, for some c, 1

c0
≤ c ≤ c0. Enforce this for

all x0 in R3 (shortly, we require sparseness of the/a locally maximal component
only).

Consider the higher order spatial fluctuations of the velocity field (more spatial in-
termittency, an increased chance to deviate from ‘the scaling’ .. ). As an example,

consider the sequence of functional classes Z
(k)
αk defined by

u ∈ Z(k)
αk

if D(k)u ∈ Zαk
;

then we have the following (for k = k(‖u0‖2, ‖u0‖∞) large enough:

Regularity class A priori bound Energy-level class

u(τ) ∈ Z
(k)
1

k+1

for a suitable

τ < T

u(τ) ∈ Z
(k)

1

k+3
2

a.e. τ < T

whenever ‖D(k)u(τ)‖∞ is
sufficiently large

u(τ) ∈ Z
(k)

1
3
2
(k+1)

a.e. τ < T

The key technical component of the proof is managing the interplay between the
higher order and the lower order derivatives; in particular, local-in-time dynamics
of the forms
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sup
t1<t<t2

max
0≤κ1(t)≤i≤κ2(t)≤k

{

ci,k ‖D(i)u(t)‖
k+1
i+1
∞

}

plays the central role.

a remark on what happens in Sobolev (and other ‘standard’ function-

al) spaces as the order of the derivative increases (the scaling

gap remains the same):

Regularity class A priori bound Energy-level class

∫ T

0 ‖u(t)‖
4

2m−1

Hm dt <∞
∫ T

0 ‖u(t)‖
2

2m−1

Hm dt <∞
∫ T

0 ‖u(t)‖
2

2m−1

Hm dt <∞

Back to the Z
(k)
αk framework.

a remark on ‘constants’:

Regularity class-scale A priori bound-scale Energy-level class-scale

1
C1(k)

1

‖D(k)u‖
1

k+1
∞

C2(‖u0‖2) 1

‖D(k)u‖

1
k+3

2
∞

C3(‖u0‖2) 1

‖D(k)u‖

1
3
2
(k+1)

∞

a remark on scaling of the dynamical quantities:

Regularity class-scale A priori bound-scale Energy-level class-scale

1

‖D(k)u‖
1

k+1
∞

≈ r 1

‖D(k)u‖

1
k+3

2
∞

≈ r
k+1

k+3
2

1

‖D(k)u‖

1
3
2
(k+1)

∞

≈ r
2
3

r
k+1

k+3
2 → r, k → ∞

asymptotic criticality!
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Fluid-Squeezing singularities for the incompressible Euler equations

Diego Córdoba

(joint work with Alberto Enciso and Nastasia Grubic)

I will discuss a new result on the existence of a stationary solution with a fluid-
squeezing singularity for the two-fluid incompressible Euler equations. The proof
is based on a new set of estimates that permits us to analyze a fluid squeezed by
a self-intersecting interface. We will exploit these estimates in the dynamical case
and show a local existence result starting from a fluid-squeezing singularity.

References
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Global existence of Navier-Stokes equations for non-decaying initial
data

Tai-Peng Tsai

(joint work with Hyunju Kwon, Zachary Bradshaw)

Consider the Cauchy problem of incompressible Navier-Stokes equations in R3 with
uniformly locally square integrable initial data. If the square integral of the initial
datum on a ball vanishes as the ball goes to infinity, the existence of a time-global
weak solution was known. However, such data do not include constants, and the
only known global solutions for non-decaying data are either for perturbations of
constants, for data in critical Morrey space M2,1, or when the velocity gradients
are in Lq with finite q. In this talk, I will outline how to construct global weak
solutions for non-decaying initial data, first for those whose local oscillations decay,
no matter how slowly, and second for those whose uniform local square integral
grows in scale under a certain rate. These are joint work with Kwon and Bradshaw,
respectively.
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A uniqueness/weak-strong uniqueness result for 3D
incompressible/compressible fluid-rigid body interaction problem

Šárka Nečasová

(joint work with Ondřej Kreml, Boris Muha, Tomasz Piasecki, Ana Radošević )

We study a 3D nonlinear moving boundary fluid-structure interaction problem
describing the interaction of the fluid flow with a rigid body. The fluid flow is
governed by 3D incompressible/compressible Navier-Stokes equations, while the
motion of the rigid body is described by a system of ordinary differential equations
called Euler equations for the rigid body. The equations are fully coupled via
dynamical and kinematic coupling conditions. We consider two different kinds
of kinematic coupling conditions: no-slip and slip. In both cases we prove a
generalization of the well-known weak-strong uniqueness result for the Navier-
Stokes equations to the fluid-rigid body system. More precisely, in incompressible
case we prove that weak solutions that additionally satisfy Prodi-Serrin Lr − Ls

condition are unique in the class of Leray-Hopf weak solutions, see [4].
In the compressible case we show that the strong solution, which is known to

exist under certain smallness assumptions, is unique in the class of weak solutions
to the problem, see [3].

Let Ω ⊂ R3 be a bounded domain which represents a container containing a
fluid and a rigid body, and let S0 ⊂ Ω be a connected open set representing the
rigid body at the initial time t = 0 with the center of mass denoted by q0 ∈ Ω.
The motion of the rigid body is fully described by two functions q : [0, T ] → R3

and Q : [0, T ] → SO(3), where SO(3) is the 3D rotation group, representing the
position of the center of mass and the rotation around the center of mass at the
time moment t, respectively. More precisely, the trajectories of all points of the
body are described by an orientation preserving isometry

(1.1) B(t,y) = q(t) +Q(t)(y − q(0)), y ∈ S0, t ∈ [0, T ],

and at time t the body occupies the set S(t) = {x ∈ R3 : x = B(t,y),y ∈
S0} = B(t, S0), t ∈ [0, T ], The fluid domain at time t is defined by ΩF (t) =

Ω \ S(t). Since the domain changes in time, we introduce the following notation:
(0, T ) × ΩF (t) =

⋃

t∈(0,T ){t} × ΩF (t) = QT . The fluid flow is described by the

incompressible/compressible Naiver-Stokes equations. with u is the fluid velocity,
̺F is the fluid density, T = −pI + 2µDu is the fluid Cauchy stress tensor, Du =
1
2

(

∇u+ (∇u)T
)

is the deformation-rate tensor, p is the fluid pressure and µ > 0

is the fluid velocity.
The Eulerian velocity of the rigid body is given by:

(1.2) uS(t,x) := ∂tB(t,B−1(t,x)) = a(t) + P(t)(x− q(t)) for all x ∈ S(t),

where a(t) = q′(t) is the translation velocity and P(t) = Q′(t)QT is the angular
velocity. The angular velocity P is a skew–symmetric matrix and therefore there
exists a vector ω = ω(t) ∈ R3 such that P(t)x = ω(t)× x, ∀x ∈ R3.
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The coupling conditions: The fluid and the rigid body are coupled via dynamic
and kinematic coupling condition. The dynamic boundary condition is the bal-
ance of forces and torques. The kinematic condition: we can consider the no-slip
condition which says that the fluid and the rigid body velocities are equal at the
rigid body boundary, or the Navier’s slip boundary condition which allows for the
discontinuity of the tangential component of the velocity along the interface.

Incompressible case
We consider the following problem: Find (u, p,q,ω) such that

(1.3)

∂tu+ (u · ∇)u = div (T(u, p)) ,
divu = 0

}

in
⋃

t∈(0,T ){t} × ΩF (t),

d2

dt2q = −
∫

∂S(t) T(u, p)n dS(x),
d
dt (Jω) = −

∫

∂S(t)(x− q(t)) × T(u, p)n dS(x)

}

in (0, T ),

u = q′ + ω × (x− q), on
⋃

t∈(0,T ){t} × ∂S(t),

u = 0 on ∂Ω,
u(0, .) = u0 in Ω, q(0) = q0, q′(0) = a0, ω(0) = ω0.

We define a function space: V (t) = {v ∈ H1
0 (Ω) : div v = 0, Dv = 0 in S(t)}.

Definition 1.1. The couple (u,B) is a weak solution to the system (1.3) if the fol-
lowing conditions are satisfied: 1) The function B(t, ·) : R3 → R3 is an orientation
preserving isometry given by the formula (1.1), which defines a time-dependent
set S(t) = B(t, S), and the corresponding Eulerian velocity uS given by (1.2) is
compatible with B(t, ·).
2) The function u ∈ L2(0, T ;V (t))∩L∞(0, T ;L2(Ω)) satisfies the integral equality

∫ T

0

∫

Ω\∂S(t)

{u · ∂tψ + (u⊗ u) : Dψ − 2Du : Dψ } dxdt = −
∫

Ω

u0ψ(0) dx,

which holds for any test function ψ ∈ H1(0, T ;V (t)), ψ(T, .) = 0.

Now we can state the main result of incompressible section, for details see [4].

Theorem 1.1. [4] Let (u1,B1) and (u2,B2) be two weak solutions corresponding
to the same data. Assume that d(Si(t), ∂Ω) > δi, i = 1, 2, for some constants
δi > 0. If u2 satisfies the following condition:

(1.4) u2 ∈ Lr(0, T ;Ls(Ω)) for some s, r such that
3

s
+

2

r
= 1, s ∈ (3,+∞]

then (u1,B1) = (u2,B2).
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Compressible case
We consider the following problem: find (̺,u,q,ω)

(1.5)

∂t̺+ div(̺u) = 0,
∂t(̺u) + div(̺u⊗ u) +∇xp(̺)− div T(∇xu) = 0,

}

in QT ,

d2

dt2q = −
∫

∂S(t)(T(∇xu)− p(̺)I)n dS(x),
d
dt(Jω) = −

∫

∂S(t)
(x − q(t))× (T(∇xu)− p(̺)I)n dS(x)

}

in (0, T ),

(1.6)

u = q′ + ω × (x− q), on
⋃

t∈(0,T ){t} × ∂S(t),

u = 0 on ∂Ω,

̺u(0) = (̺u)0, ̺(0) = ̺0 in Ω,
q(0) = q0, q′(0) = a0, ω(0) = ω0.

We recall that the rate of the strain tensor of the fluid and its stress tensor
are defined by D(u) = 1

2 (∇xu + (∇xu)
T ) and T(∇xu) = 2µD(u) + λdivxuI. A

pressure satisfies p = a̺γ , with a positive constant, γ > 1.

Theorem 1.2. [3] Let ¯̺ be the mean value of ̺0 in ΩF (0). Assume that
d(B0, ∂Ω) > 0 and the initial conditions (̺0,u0, a0,ω0) satisfy appropriate com-
patibility conditions, see [1, formulas (15), (16)]. Let moreover ‖̺0 − ¯̺‖H3(F0) +
‖u0‖H3(F0) + |a0| + |ω0| < δ, be satisfied, γ > 3/2 and let (̺2,u2, a2,ω2) be the
strong solution to (1.5) on (0, T ) given by [1] satisfying d(B(t), ∂Ω) > κ > 0 ∀t ∈
[0, T ] for some d(B0, ∂Ω) > κ > 0. Let (̺1,u1, B1) be a weak solution to (1.5) on
(0, T ) emanating from the same initial data given by [2] . Then B1(t) = B2(t),
and (̺1F ,u1F ) = (̺2F ,u2F) for all (t,x) ∈ QF1 = QF2.

Concluding remarks:
Incompressible case:
(1) Weak-strong uniqueness holds in the case of Navier type of boundary condi-
tions, see [4].
(2) Work in progress with A. Mazuccato and N. Chemetov, global existence of
weak solution in case of slip boundary conditions
(3) Work in progress with B. Muha and A. Radosevič concerning regularity of
solution
Compressible case
(1) Work in progress with A. Schlömerkemper, M. Ramaswamy, A. Roy concerning
existence of weak solution with the Navier type of boundary condition
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Endpoint maximal regularity and application to a free boundary
problem for the incompressible Navier-Stokes equations

Raphaël Danchin

(joint work with Matthias Hieber, Piotr B. Mucha, Yoshihiro Shibata, Patrick
Tolksdorf)

We are concerned with a free boundary problem for viscous incompressible flows
with no surface tension and no gravity. The governing equations for the velocity
field v = v(t, x) and the pressure P = P (t, x) are the incompressible Navier-Stokes
equations in the (unknown) moving domain Ωt ⊂ R3, namely











































∂tv + (v · ∇)v − divT(v, P ) = 0, t ∈ R+, x ∈ Ωt

div(v) = 0, t ∈ R+, x ∈ Ωt

T(v, P )n = 0, t ∈ R+, x ∈ ∂Ωt

v|t=0 = v0, x ∈ Ω0,

Ωt|t=0 = Ω0,

v · n = −(∂tη)/|∇xη|, t ∈ R+, x ∈ ∂Ωt.

(1.1)

Above, T(v, P ) denotes the stress tensor of the form

T(v, P ) = D(v) − P Id with D(v) = ∇v + [∇v]⊤.

The boundary ∂Ωt is described by the equation η(t, x) = 0. By n we denote the
outward unit normal vector to ∂Ωt, i.e., n = ∇xη/|∇xη|. Finally, v0 stands for
the velocity field at time t = 0 and we assume that Ω0 is the half-space R3

+ (hence
−n|t=0 = e3 := (0, 0, 1)).

For small and smooth enough v0, the global existence of a unique strong solution
has been established by Y. Shibata in [6] in the case where the fluid moves in a
bounded container. However, in the half-space case we aim at investigating here
only local existence is known (unless surface tension is taken into consideration,
see [5]).

Compared to the bounded domain case, the main difficulty in our framework
is that both the domain and the boundary are unbounded. Consequently, 0 is
in the spectrum of the Stokes operator corresponding to the linearized equations
and the classical methods based either on the maximal regularity for the Stokes
semi-group in R3

+ or on energy estimates fail to yield the global existence. A closer

analysis reveals that what we lack is a global-in-time L1 integrability estimate of
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the solution of the linearized system:























∂tv − divT(v, P ) = f in R+ × R3
+,

divv = g in R+ × R3
+,

T(v, P )e3 = h on R+ × ∂R3
+,

v|t=0 = v0 in R3
+.

(1.2)

In the present work, we establish the global existence of a strong solution for (1.1)
if some ‘critical’ norm of v0 is small enough. After performing a Lagrangian change
of coordinates like in [2], we recast the equations as in (1.2), where all the nonlin-
earities are in f, g and h, and the general strategy is to implement a fixed point in
a suitable functional framework, that will be given by endpoint maximal estimates
for (1.2). Typically, those estimates involve spaces like L1(R+; Ḃ

s
p,1(R

n
+)). Let us

recall that those estimates are obvious if one considers Rn instead of Rn
+ and that

they have been generalized by the first two authors in [1, 3] to the bounded do-
main, exterior domain or half-space cases for the Stokes system supplemented with
Dirichlet boundary conditions. The method therein was based on localization and
explicit computations of the Stokes semi-group in the half-space, and involved a
number of steps with complicated computations.

The approach that is chosen here is borrowed from an abstract interpolation
argument by G. Da Prato and P. Grisvard [4] that just requires the semi-group
associated to the linear system under consideration to be bounded and analytic,
a property that possesses the Stokes operator supplemented with the above Neu-
mann boundary conditions (see [7]). However, in order to obtain in the end esti-
mates in L1(R+;X), the space X has to be ‘homogeneous’ (so as to respect the
scaling invariance of (1.2)) so that one has to revisit Da Prato-Grisvard approach
in the context of ‘abstract homogeneous spaces’ constructed from an homogenous
version of the domain of the Stokes operator.

Let us emphasize that this part of our work is rather general (as it just requires
the semi-group to be bounded analytic), and is likely to have other applications
in fluid mechanics.
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opérationelles, J. Math. Pures Appl., 54(3), (1975), 305–387.

[5] Y. Guo and I. Tice: Decay of viscous surface waves without surface tension in horizontally
infinite domains, Anal. PDE, 6(6), (2013), 1429–1533.



2386 Oberwolfach Report 38/2019

[6] Y. Shibata, On some free boundary problem of the Navier-Stokes equations in the maximal
Lp-Lq regularity class, J. Differential Equations, 258(12), (2015), 4127–4155.

[7] Y. Shibata and S. Shimizu: On the maximal Lp-Lq regularity of the Stokes problem with first
order boundary condition; model problems, J. Math. Soc. Japan, 64(2), (2012), 561–626.

On the regularity criterion for the axisymmetric 3D Euler equations

Dongho Chae

(joint work with J. Wolf)

In this talk we present new local blow-up criterion for smooth axisymmetric solu-

tions to the 3D incompressible Euler equation. If the vorticity satisfies
∫ t∗
0 (t∗ −

t)‖ω(t)‖L∞(B(x∗,R0))dt < +∞ for a ball B(x∗, R0) away from the axis of symmetry,
then there exists no singularity at t = t∗ in the torus T (x∗, R) generated by rota-
tion of the ball B(x∗, R0) around the axis. This implies that possible singularity
at t = t∗ in the torus T (x∗, R) is excluded if the vorticity satisfies the blow-up rate

‖ω(t)‖L∞(T (x∗,R)) = O
(

1
(t∗−t)γ

)

as t → t∗, where γ < 2, and the torus T (x∗, R)

does not touch the axis. This would be published in [1]. The crucial part of the
proof is establishment of a new blow-up criterion for the 2D Boussinesq equations
with variable coefficients, which is a localized version of the result in [2].
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Weak solutions of the Euler equations, D’Alembert Principle, and
Turbulence

Alexander Shnirelman

Let M ⊂ Rn be a bounded domain with a sufficiently regular boundary. We con-
sider the motion of an ideal incompressible fluid in M with the slipping condition
on ∂M which is described by the classical Euler equations

∂u

∂t
+∇u · u+∇p = 0

∇ · u = 0

un|∂M = 0

A vector field u(x, t) ∈ L2(M × [0, T ],Rn) is called a weak solution of the Euler
equations if for any test field v(x, t) ∈ C∞

0 , ∇ · v = 0, and any scalar function
ϕ(x, t) ∈ c∞,
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∫ T

0

∫

M

[(

u,
∂v

∂t

)

+ (u⊗ u,∇v)
]

dxdt = 0

∫ T

0

∫

M

(u,∇ϕ) dxdt = 0

Weak solutions (or some sort thereof) are regarded as candidates to describe the
turbulent motion of the fluid, especially the phenomenon of anomalous energy
dissipation. However, the known nontrivial weak solutions (see, for example, [1],
[2], [3]) appear quite nonphysical. For example, there exist weak solutions u(x, t) ∈
C1/3−ǫ such that the kinetic energy E(t) is any given continuous function e(t),
while for any physically reasonable weak solution the energy should be monotone
decreasing. Moreover, a closer look at the construction described in these works
shows that the flow is in fact driven by forces with infinitesimally small space
scale. This means that in these flows we see the inverse energy cascade, namely
the energy is pumped in at a small scale, and then propagates to the larger scales
due to the nonlinearity. This is contrary to the direct cascade observed in the
real turbulence, and hence the known weak solutions are not good models of
turbulent flows. Beside this, the construction is time-reversible (i.e. if u(x, t) is
a weak solution constructed by the proposed method with some parameters of
construction, then −u(x,−t) is also an acceptable solution constructed by the
same method with some different parameters). The only known exception is the
solution constructed in [4] whose energy is monotone decreasing. Its construction
is explicitly time-irreversible; however, it has many unphysical properties, and is
not a good model of turbulence, too.

Our construction of a weak solution is based on the D’Alembert Principle.
Remind that if a material point moves without friction along a smooth surfaceD ⊂
X where X is an euclidean space, then its trajectory x(t) satisfies the equations

x(t) ∈ D; ẋ(t) ∈ Tx(t)D; ẍ(t) ⊥ Tx(t)D

In other words, the acceleration is orthogonal to the constraint (i.e. the surface
D).

In the case of fluid, let Ω be the space of fluid particles, i.e. Ω is a measure space
endowed with σ-algebraF and a probability measure µ. The spaceX = L2(Ω,Rn),
and the “surface”

D = {f ∈ X | f(ω) ∈M for a.a.ω ∈ Ω, andf∗(dµ) = dx}
This set is far from being smooth. The only available piece of information

about its regularity was found in [5]. Let f, g ∈ D. Let δ(f, g) be the path
distance between them along D, i.e. the infimum of the length of curves ht, 0 ≤
t ≤ 1, ht ∈ D, h0 = f, h1 = g. Then there exists C > 0 such that for any
f, g ∈ D,

δ(f, g) ≤ C‖f − g‖αX ;
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for n = 3, α = 2/7, and this exponent can’t be increased (note that if D were
smooth then the exponent α should be 1). Hence the D’Alembert Principle should
be modified to accomodate such irregular constraint.

To this end, we define at every f ∈ D a substitute of a tangent space

Yf = {V ∈ L2(Ω,Rn) | ∃v ∈ L2(M,Rn) s.t. ∇ · v = 0,

vn|∂M = 0, and V (ω) = v(f(ω)) a.e.}.

Let Pf be the orthogonal projection onto Yf ; suppose f(0) = f0 ∈ D and

ḟ(0) = V0 ∈ Yf0 be the initial conditions. Then the Lagrangian weak solution f(t)
is defined by the following equations:

f(t) = f0 +

∫ t

0

V (s)ds

V (s) =

(−→
∏

0≤σ≤sPf(σ)

)

· V0

The operator in the left hand side is the ordered product of projections, i.e.

−→
∏

0≤σ≤s
Pf(σ) = limPf(σN ) · . . . · Pf(σ0)

as N → ∞, and max0≤k≤N−1(σk+1 − σk) → 0.
We construct the approximate trajectory using the D’Alembert Principle as

follows. Fix some small τ > 0, and define the following sequences:

g1 = f0 + τV0; f1 = prDg1; V1 = Pf1V0(1.1)

. . .

gk+1 = fk + τVk; fk+1 = prDgk+1; Vk+1 = Pfk+1
Vk;

. . .

Here prDg is the closest to g point f ∈ D (if there are many such points, we take
arbitrary one of them).

Thus we define a sequence of points fk ∈ D and vectors Vk ∈ Tfk . Now define
a function f(t) = fk for t = kτ , interpolate it linearly between kτ and (k + 1)τ ,
and define V (t) = Vk for kτ ≤ t < (k + 1)τ . This is the approximate trajectory
and velocity. Let us denote them by f(t, f0, V0, τ) and V (t, f0, V0, τ), including
explicitly all the parameters these function depend of.

Now we have to pass to limit as τ → 0. To this end we use the tools of the Non-
standard Analysis (NSA) [6]. We consider a nonstandard model ∗U of the standard
mathematical universe U . In the nonstandard universe we define the functions
∗f(t, f0, V0, τ) and

∗V (t, f0, V0, τ) which are the ∗-images of the standard functions
in ∗U ; all their arguments are now nonstandard. Let us fix an infinitesimaly small
τ ∈ ∗R+ \R; define f(t) = st(∗f(t, f0, V0, τ)) and V (t) = st(∗V (t, f0, V0, τ)) where
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st(a) denotes the standard part of a nonstandard entity a. Then V (t) ∈ Yf(t),
namely V (t)(ω) = v(f(t)(ω), t).

Theorem. v(x, t) is a weak solution of the Euler equations satisfying the initial
condition v(x, 0) = v0(x).
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