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Introduction by the Organizers

The workshop Innovative Approaches to the Numerical Approximation of PDEs
was organised by Stephan Dahlke (Marburg), Gitta Kutyniok (Berlin), Ricardo
Nochetto (Maryland), and Rob Stevenson (Amsterdam). The meeting was at-
tended by 47 participants from 9 countries. Unfortunately, it turns out that Ri-
cardo Nochetto was not able to attend the meeting.

Numerical approximation of PDEs is one of the central areas of computational
mathematics, stimulated by the multitude of applications of PDEs in mathemat-
ical models in the sciences, engineering and economics. There is a rich arsenal of
numerical techniques for PDEs, including finite difference methods, finite element
methods, finite volume methods, spectral methods, and wavelet methods, to name
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just a few. The finite element method (FEM), in particular, has been successfully
applied to linear and nonlinear PDEs in, typically, conservative form, that arise
in continuum mechanics, such as the fundamental partial differential equations
of solid and fluid mechanics. Some of the noteworthy features of finite element
methods include their applicability to a wide class of problems, their convenience
in terms of the use of locally refined computational grids and local variation of the
polynomial degree in the finite element space, their flexibility in representing com-
putational domains possessing complicated geometries, and their solid theoretical
foundation.

There are, however, areas where the finite element theory needs further devel-
opments, or where the finite element approach is less suited or even not applicable
at all. Exactly those topics were the focus of the workshop.

Examples where the theory needs further developments include (adaptive) hp
finite element methods, or other numerical methods that can provide exponen-
tial convergence rates, and the convergence theory of (h-)adaptive finite element
methods for non-elliptic PDEs.

Ultimately the convergence of any numerical solution method hinges on a certain
type of regularity of the exact solution of the PDE. This is a very well studied
question for elliptic PDEs, but less is known for e.g. nonlinear PDEs and parabolic
PDEs, whereas for low rank tensor approximation methods it is even less clear what
kind of regularity is required to guarantee favourable rates.

Other examples where numerical solution techniques are currently under devel-
opment include PDEs on possibly moving interfaces, and PDEs of fractional order.
A currently emerging field is that of the simultaneous space-time discretisation
methods of evolutionary PDEs, as an alternative for the classical time march-
ing schemes. Advantages of the space-time methods include the possibility of a
massively parallel implementation, and the potential for space-time adaptive re-
finements that provide optimal convergence rates.

A nowadays very important area where classical numerical methods as the finite
element method are not applicable are PDEs in very high space dimensions, as they
arise in e.g. quantum chemistry or as reformulations of stochastic PDEs as deter-
ministic PDEs with many or even infinitely many parameters. For those problems
low rank tensor approximation methods and model order reduction methods are
in the center of interest.

Finally, deep neural networks are rapidly emerging in many fields of science and
technology. Restricting to solving PDEs they seem to have the largest potential
for ‘difficult’ problems where classical methods are known to fail, in particular
PDEs in high space dimensions.

The workshop features 27 talks. Highlights of the presentations include:

• Reduced modeling for state estimation: Wolfgang Dahmen discussed
approximating the solution of a parametric PDE where the parameters
are unknown, but where instead information on the solution is available
in the form of values of m linear functionals. He demonstrated that a
quasi-optimal approximation of the solution is possible from a reduced
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basis space Vn when the angle between Vn and the span of the Riesz
representers of the measurement functionals is under control.

• Numerical solution of surface Stokes equations: Arnold Reusken
presented a surface analogy of the Taylor-Hood mixed finite element
method for solving the Stokes equations. Main issues are the enforce-
ment of the tangential flow constraint, which is realised by replacing the
surface PDE by a PDE on the ambient space while penalising normal com-
ponents of the velocity, and a sufficiently accurate approximation of the
surface. The latter is realized by defining the trial spaces as traces of finite
element spaces in the ambient space while adding an appropriate stabil-
isation term to control instabilities caused by exceptionally small cuts of
the finite element with the surface.

• hp-fem for the fractional Laplacian: Since the work of Caffarelli and
Silvestre it is known that the solution of the (spectral) fractional Laplace
equation on a two-dimensional polygon Ω can be obtained as a boundary
trace of the solution of a degenerate elliptic second order PDE on the
cylinder Ω × (0,∞). Markus Melenk presented a very carefully designed
hp-fem discretisation w.r.t. geometrically refined tensor meshes with which
the solution can be approximated at an exponential rate.

• Empirical risk minimization over deep neural networks over-
comes the curse of dimensionality in the numerical approxima-
tion of Kolmogorov equations: In this talk, Julius Berner explained
how ideas from deep learning can be applied to the numerical treatment
of high-dimensional PDEs. The approach applies to PDEs that admit a
statistical interpretation in the sense of Kolmogorow equations. Then, one
can reformulate the numerical solution of the Kolmogorow equation as a
classical statistical learning problem. It seems that by proceeding this way
one can overcome the curse of dimensionality to some extent, at least it is
possible to go up to dimensions where even modern tensor approximation
schemes fail.

• Higher regularity of the p-Poisson equation in the plane: In this
talk, Lars Diening presented new regularity results of the solutions to non-
linear elliptic PDEs, i.e., the p-Poisson equations, in specific Besov and
Triebel-Lizorkin spaces. This kind of regularity determines the approx-
imability of solutions by means of adaptive finite elements. The proofs
are based on the fact that it is possible to transfer the local Besov and
Triebel-Lizorkin regularity up to first order derivatives from the force to
the flux.

The gained scientific knowledge can be summarized as follows. For high-dimension-
al problems, low rank tensor approximations schemes demonstrated their very high
potential. The theory is still not completely developed and will be the topic of
further researches. Fractional PDEs will probably be one of the hot topics in
the future. Some important progress has been achieved, but there seems to be
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an urgent need for alternative discretization schemes beyond, e.g., the Caffarelli-
Sylvestre approach. A quite positive surprise was the fact that even in the well-
established field of adaptive finite element methods new and important challenges
showed up, in particular concerning adaptive hp- finite element and their possibly
exponential convergence. For the numerical solution of geometric PDEs such as
equations on possibly moving surfaces several competing approaches have been
presented that differ in the way the surface is approximated, and whether the
PDE posed on the surface is extended to a (small) neighbourhood in the ambient
space or not. A new aspect that came into play was the application of deep learning
for the numerical approximation of PDEs. This will probably also one of the hot
topics in the future. Current numerical experiments are quite impressive, but the
theoretical foundation of this approach is still in its infancy.

During this workshop there have been many lively discussions in a good at-
mosphere. The organisers would like to take the opportunity to thank MFO for
providing support and a very inspiring environment for the workshop.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
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Abstracts

Analysis of tensor approximation schemes for continuous functions

Helmut Harbrecht

(joint work with Michael Griebel)

1. Introduction

We analyze tensor approximation schemes for continuous functions. We assume
that the function to be approximated lies in an isotropic Sobolev space and dis-
cuss the cost when approximating this function in the continuous analogue of the
Tucker tensor format or of the tensor train format. We especially show that the
cost of both approximations are dimension-robust when the Sobolev space under
consideration provides appropriate dimension weights.

2. Tucker tensor format

2.1. Continuous Tucker decomposition. We consider a product domain which
consists of m different domains Ωj ⊂ Rnj , j = 1, . . . ,m. For given f ∈ L2(Ω1 ×
· · · × Ωm) and j ∈ {1, 2, . . . ,m}, we apply the singular value decomposition to
separate the variables xj ∈ Ωj and

(x1, . . . ,xj−1,xj+1, . . . ,xm) ∈ Ω1 × · · · × Ωj−1 × Ωj+1 × · · · × Ωm.

We hence get

f(x1, . . . ,xj−1,xj ,xj+1, . . . ,xm)

=

∞∑

αj=1

√
λj(αj)ϕj(xj , αj)ψj(αj ,x1, . . . ,xj−1,xj+1, . . . ,xm),

where the left eigenfunctions {ϕj(αj)}αj∈N form an orthonormal basis in L2(Ωj).
Consequently, if we iterate over all j ∈ {1, 2, . . . ,m}, this yields an orthonormal
basis {ϕ1(α1) ⊗ · · · ⊗ ϕm(αm)}α∈Nm of L2(Ω1 × · · · × Ωm), and we arrive at the
representation

f(x1, . . . ,xm) =

∞∑

|α|=1

ω(α)ϕ1(α1,x1) · · ·ϕm(αm,xm).

The tensor
[
ω(α)

]
α∈Nm is the core tensor, where a single coefficient is given by

ω(α1, . . . , αm) =

∫

Ω1×···×Ωm

f(x1, . . . ,xm)ϕ1(α1,x1)

· · ·ϕm(αm,xm) d(x1, . . . ,xm).
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Theorem 1. Let f ∈ Hk(Ω1 × · · · × Ωm) and choose the ranks according to
rj = ε−nj/k for all j = 1, . . . ,m. Then, the truncation error of the truncated
Tucker decomposition is

∥∥f − fTFr1,...,rm
∥∥
L2(Ω1×···×Ωm)

.
√
mε,

while the cost of the core tensor are
∏m
j=1 rj = ε−(n1+···+nm)/k.

2.2. Sobolev spaces with dimension weights. The cost of the core tensor
of the Tucker decomposition exhibit the curse of dimension as the number m
of subdomains increases. Nonetheless, in case of Sobolev spaces with dimension
weights, the curse of dimension can be beaten.

For sake of simplicity, we assume that all subdomains are identical to a sin-
gle domain Ω ⊂ R

n of dimension n. Moreover, we assume Sobolev spaces with
dimension weights by means of the property

(1)

∥∥∥∥
∂kf

∂xβ
j

∥∥∥∥
L2(Ωm)

. γkj ‖f‖Hk(Ωm) for all |β| = k and j = 1, 2, . . . ,m.

It turns out that algebraically decaying weights (2) are sufficient to beat the
curse of dimension in case of the Tucker tensor decomposition.

Theorem 2. Let f ∈ Hk+n(Ωm). Choose δ > 0 and assume that the weights in
(1) decay like

(2) γj . j−(1+δ′)/k for some δ′ > δ +
k

n
,

and choose the ranks in accordance with

rj =
⌈
γnj j

(1+δ)n/kε−n/k
⌉
.

Then, the error of the continuous Tucker decomposition is of order ε while the
complexity of the core tensor stays bounded independent of the dimension m.

3. Tensor train format

3.1. Continuous tensor train decomposition. For the discussion of the con-
tinuous tensor train decomposition, we should assume that the domains Ωj ⊂ Rnj ,
j = 1, . . . ,m, are arranged in such a way that it holds n1 ≤ · · · ≤ nm.

Now, consider f ∈ Hk(Ω1 × · · · × Ωm) and separate the variables x1 ∈ Ω1 and
(x2, . . . ,xm) ∈ Ω2 × · · · × Ωm by the singular value decomposition

f(x1,x2, . . . ,xn) =

∞∑

α1=1

√
λ1(α1)ϕ1(x1, α1)ψ1(α1,x2, . . . ,xm).

Since [√
λ1(α1)ψ1(α1)

]∞

α1=1

∈ ℓ2(N)⊗ L2(Ω2 × · · · × Ωm),
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we can separate (α1,x2) ∈ N × Ω2 from (x3, . . . ,xm) ∈ Ω3 × · · · × Ωm by means
of a second singular value decomposition and arrive at

[√
λ1(α1)ψ1(α1,x2, . . . ,xm)

]∞

α1=1

=

∞∑

α2=1

√
λ2(α2)

[
ϕ2(α1,x2, α2)

]∞

α1=1

ψ2(α2,x3, . . . ,xm).

By repeating the last step and successively separating (αj−1,xj) ∈ N × Ωj from
(xj+1, . . . ,xm) ∈ Ωj+1 × · · · × Ωm for j = 3, . . . ,m − 1, we finally arrive at the
representation

f(x1, . . . ,xm) =

∞∑

α1=1

· · ·
∞∑

αm−1=1

ϕ1(α1,x1)ϕ2(α1,x2, α2)

· · ·ϕm−1(αm−2,xm−1, αm−1)ϕm(αm−1,xm),

where

ϕm(αm−1,xm) =
√
λm−1(αm−1)ψm−1(αm−1,xm).

In contrast to the Tucker format, we do not obtain a huge core tensor since each
of the m − 1 singular value decompositions of the tensor train decomposition
removes the actual first spatial domain from the approximant. We just obtain a
product of matrix -valued functions (except for the first and last factor which are
vector-valued functions), each of which is related with a specific domain Ωj . This
especially results in only m − 1 sums in contrast to the m sums for the Tucker
format.

Theorem 3. Let f ∈ Hk+max{n1,...,nm}(Ω1 × · · · × Ωm). Then, the over-all trun-
cation error of the tensor train decomposition with truncation ranks (4) is

‖f − fTTr1,...,rm−1
‖L2(Ω1×···×Ωm) .

√
mε.

The cost of the tensor train format are given by

(3) r1 +

m−1∑

j=2

rj−1rj = ε−n1/k + ε−(2n1+n2)/k + · · ·+ ε−(2n1+···+2nm−2+nm−1)/k

and hence are bounded by O(ε−(2m−1)max{n1,...,nm−1}/k).

3.2. Sobolev spaces with dimension weights. Like for the Tucker decomposi-
tion, the cost of the tensor train decomposition suffer from the curse of dimension
as the number m of subdomains increases. We therefore consider again appropri-
ately Sobelev spaces with dimension weights, where we assume that all subdomains
are identical to a single domain Ω ⊂ Rn of dimension n.

Theorem 4. Let f ∈ Hk+n(Ωm). Choose δ > 0 and assume that the weights in
(1) decay like (2) and choose the ranks successively in accordance with

(4) rj =
⌈
rj−1γ

n
j j

(1+δ)n/kε−n/k
⌉
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if j ≤ M and rj = 0 if j > M , where M = ε−1/(1+δ′). Then, the error of the
continuous tensor train decomposition is of order ε while the complexity of the core
tensor stays bounded independent of the dimension m.

References

[1] H. Harbrecht and M. Griebel, Analysis of tensor approximation schemes for continuous
functions, arXiv e-prints (2019), arXiv:1903.04234.

New notions of numerical conditioning for multilevel tensor
representations of differential operators

Markus Bachmayr

(joint work with Vladimir Kazeev)

By folding vectors of size 2L into Lth-order tensors of mode sizes 2×· · ·×2 and ap-
plying low-rank decomposition in the tensor train format to these tensors, one can
obtain nonlinearly parametrized compressed representations or approximations.
For instance, provided that the corresponding rank parameters remain bounded
independently of L, the number of required coefficients in the tensor decomposition
scales linearly in L and thus logarithmically with respect to the original number
of degrees of freedom. This multilevel decomposition technique, also termed quan-
tized tensor trains or tensorization in the literature, has been shown to result in
highly efficient approximations when applied to grid vectors obtained for various
classes of functions, including solutions of elliptic PDEs on nonsmooth domains
[4] or with oscillatory data [3]. Such a tensor-structured approach is attractive be-
cause it leads to highly efficient, adaptive approximations based on simple uniform
discretizations.

Standard choices of the underlying bases, such as piecewise multilinear fi-
nite elements on uniform tensor product grids, entail the well-known matrix ill-
conditioning of discrete operators. In [1] we demonstrate that, for low-rank rep-
resentations, the use of multilevel tensor structure for discretized differential op-
erators itself additionally introduces representation ill-conditioning, a new effect
specific to computations in tensor networks. The main difficulty here is that
the action of such multilevel tensor decompositions of stiffness matrices on corre-
sponding vector representations leads to higly redundant representations of result
vectors that contain substantial cancellations; any further numerical manipulation
of these result representations can then introduce extremely large deviations in
the represented vectors. To quantify this effect, we introduce on the one hand
notions of amplification factors and condition numbers of vector representations
in tensor train form, and on the other hand a representation condition number of
corresponding matrix representations. This latter representation condition num-
ber gives the smallest upper bound for the factor by which the application of the
matrix representation can deteriorate the condition number of a vector represen-
tation. For the considered discretizations, we find this representation condition
number to scale exactly as the usual matrix condition number, that is, as O(4L).
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These two condition numbers, however, are independent of each other: in par-
ticular, well-conditioned matrices can be given in ill-conditioned multilevel tensor
representations.

As the main result of [1], we show how a careful construction of tensor de-
compositions of preconditioned matrices can be used to mitigate these issues. We
first analyze the tensor structure of a BPX preconditioner for second-order lin-
ear elliptic operators and construct an explicit tensor-structured representation of
the preconditioner, with ranks independent of the number L of discretization lev-
els. The straightforward application of the preconditioner yields discrete operators
whose matrix conditioning is uniform with respect to the discretization parameter,
but in decompositions that suffer from unchanged representation ill-conditioning.
By explicitly eliminating redundancies in the representations of the preconditioned
discrete operators, we obtain reduced-rank decompositions that are free of both
matrix and representation ill-conditioning. For an iterative solver based on soft
thresholding of low-rank tensors analyzed in [2], we obtain convergence and com-
plexity estimates and demonstrate its reliability and efficiency for discretizations
with up to 250 nodes in each dimension.

References
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multilevel preconditioning for elliptic PDEs, arXiv Preprint arXiv:1802.09062 (2018).

[2] M. Bachmayr and R. Schneider, Iterative methods based on soft thresholding of hierarchical
tensors, Found. Comput. Math. 17 (2017), 1037–1083.

[3] V. Kazeev, I. Oseledets, M. Rakhuba, and C. Schwab, QTT-finite-element approximation
for multiscale problems I: model problems in one dimension, Adv. Comput. Math. 43 (2017),
411–442.

[4] V. Kazeev and C. Schwab, Quantized tensor-structured finite elements for second-order
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Dynamical low rank approximation of random time dependent PDEs

Fabio Nobile

In this talk we consider time dependent PDEs with few random parameters and
seek for an approximate solution in separable form that can be written, at each
time instance, as a linear combination of a fixed number of linearly independent
spatial functions multiplied by linearly independent random variables (low rank
approximation). Since the optimal deterministic and stochastic modes can signifi-
cantly change over time, we consider a dynamical approach where those modes are
computed on the fly as solutions of suitable evolution equations. We discuss the
construction of the method, present an existence result for the low rank approx-
imate solution of a random semi-linear evolutionary equation of dissipative type,
and introduce a possible unnumerical discretization of the low rank equations for
which we can prove conditional stability.
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Higher Regularity of the p-Poisson Equation in the Plane

Lars Diening

(joint work with Anna Kh. Balci, Markus Weimar)

In this work we are concerned with the regularity of solutions of the p-Laplace
equation

− div(A(∇u)) := − div(|∇u|p−2∇u) = − divF

on a planar domain Ω. We focus in this work on the super-linear case 2 ≤ p <
∞. We show that it is possible to transfer the local Besov and Triebel-Lizorkin
regularity up to first order derivatives from the force F to the flux A(∇u).

In particular, we show that if s ∈ (0, 1) and ρ, q ∈ (0,∞] are such that

2

(
1

ρ
− 1

p′

)

+

< s < 1,(1)

i.e., Bs
ρ,q(B) →֒→֒ Lp

′

(B). Then for any ball B with 2B ⊂ Ω there holds

|A(∇u)|Bs
ρ,q(B) ≤ c |F |Bs

ρ,q(2B) +

(
1

|2B|

∫

2B

|A(∇u)− 〈A(∇u)〉2B |p
′

dx

) 1
p′

.(2)

If additionally ρ <∞ and

d

(
1

q
− 1

p′

)

+

< s < 1,(3)

then the same estimate (2) holds true when Bs
ρ,q is replaced by Fsρ,q.

This kind of regularity determines the approximability of solutions my means of
the adaptive finite element method. The higher the differentiability s, the better
it is possible to approximate a function by means of adaptivity.

The proof of the regularity transfer is based on the characterization of regularity
by means of oscillation estimates. As a crucial ingredient we derive new almost
linear decay estimates of the flux of a p-harmonic function. Such estimates are
only possible in the super-linear case due to the limited regularity of p-harmonic
functions. Our estimates rely on complex analysis and are therefore restricted to
the plane.

The optimal regularity for p-harmonic functions for dimensions d ≥ 3 is still
a well known open problem. Based on the Kacanov iteration proposed in [1] we
explain how to solve this problems numerically. So far we were able to recover the
exponents of the planar case up to a relative error of 10−4 for p ∈ [1.1, 10]. The
results for the 3D case will be presented in a future work.
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Sobolev and Besov regularity of parabolic PDEs

Cornelia Schneider

(joint work with Stephan Dahlke)

The talk is concerned with the regularity of solutions to linear and nonlinear evo-
lution equations on nonsmooth domains. In particular, we study the smoothness
in a specific scale of Besov spaces. It is known that in many cases the order of
convergence of adaptive wavelet schemes depends on the regularity of the solution
in these Besov spaces. On the other hand it is the fractional Sobolev regularity
which determines the rate of convergence of non-adaptive (uniform) algorithms.
Therefore, in order to justify the use of adaptive schemes for solving parabolic
PDEs, an analysis of the regularity of the solution in the scale of Besov spaces and
a comparison with its Sobolev regularity is needed.

We show that for all cases under consideration the Besov regularity is high
enough to justify the use of adaptive algorithms. The talk is based on the papers
[2] and [1].
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Regularity and rate of approximation for obstacle problems for a class
of integro-differential operators

Abner J. Salgado

(joint work with A. Bonito, J.P. Borthagaray, W. Lei, R.H. Nochetto)

We consider the finite element approximation of a nonlocal obstacle problem. Let
Ω ⊂ Rn be a bounded, Lipschitz domain. We seek for u : Rn → R that satisfies

(1) min {−b∆u+ β · ∇u + (−∆)su− f, u− χ} = 0, in Ω, u = 0, in Ωc.

Here b ∈ Z2, β is a sufficiently smooth and solenoidal vector field, f is a given and
sufficiently smooth source term, and χ is an obstacle which we assume satisfies
the condition χ < 0 on ∂Ω. By (−∆)s we mean the integral fractional Laplacian
of order s ∈ (0, 1), which is given by

(−∆)sw(x) = cn,sv.p.

∫

Rd

w(x) − w(y)

|x− y|n+2s
dy, cn,s =

22sΓ
(
s+ n

2

)

πn/2Γ(1 − s)

The study of (1) is motivated by optimal stopping time problems [PS06] for
stochastic processes with Lévy jumps; a model for American options [CT04].
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Case b = 0, β = 0. In [BNS18] we consider the obstacle problem for the integral
fractional Laplacian. One of the main difficulties in the numerical approximation
of problems involving the integral fractional Laplacian is its lack of regularity. As
[VÈ65, Gru15] shows, if Ω is C∞, and g ∈ L2(Ω), then Φg, solution of

(2) (−∆)sΦg = g, in Ω, Φg = 0, in Ωc,

satisfies Φg ∈ Hmin{2s,s+1/2−ǫ}(Ω). This is result is sharp [Get61].
We extend the regularity results on weighted Sobolev spaces for the linear case

of [AB17], which in turn rely on the Hölder estimates of [ROS14], to the obstacle
problem. Define, for θ ∈ (0, 1) and α ≥ 0 the weighted Sobolev norm

‖w‖H̃1+θ
α (Ω) = ‖w‖2H1

α(Ω)) +

∫∫

Rn×Rn

|∇w(x) −∇w(y)|2
|x− y|n+2θ

δ(x, y)2θdxdy,

with δ(x, y) = min{dist(x, ∂Ω), dist(y, ∂Ω)),
and ‖w‖H1

α(Ω)) = ‖(w +∇w)dist(·, ∂Ω)α‖L2(Ω).

Theorem 1 (regularity). Let u ∈ H̃s(Ω) solve (1) with b = 0 and β = 0. Then

‖u‖H̃1+s−2ǫ
1/2−ǫ

(Ω) ≤
c

ǫ
.

In addition, the so-called Lagrange multiplier Λ := (−∆)su− f ∈ C0,1−s(Ω̄).

The proof is by a nonstandard localization. Because of nonlocality, if η is a
smooth cutoff function that equals one in a neighborhood of a point z ∈ Ω then
(−∆)s(ηw)(z) 6= (−∆)sw(z). A correction term appears and must be dealt with.

This theorem lays the foundation for the numerical approximation of (1) with
b = 0 and β = 0. In particular, in two dimensions, one can consider a finite element
space Vh of piecewise linears over a shape regular simplicial mesh τh = {T } that
is graded according to the rule

(3) hT ≈
{
h2, T ∩ ∂Ω 6= ∅,
h · dist(T, ∂Ω)1/2, T ∩ ∂Ω = ∅.

Here h > 0 is a parameter. Note that #τh ≈ h−2| log h|.
Theorem 2 (error estimate). Let u ∈ H̃s(Ω) solve (1) with b = 0 and β = 0. Let
uh ∈ Vh be its finite element approximation where Vh is constructed over a mesh
that is graded and satisfies (3). Then we have the following error estimate.

‖u− uh‖H̃s(Ω) ≤ ch| log h|.
We comment that the proof of this result contains two key steps. First, the

properties of the positivity preserving interpolation operator of [CN00] need to
be extended to fractional Sobolev spaces using the localization results of [Fae00,
Fae02]. Second, a subtle interplay between the complementarity conditions and
growth conditions on the solution and Lagrange multiplier must be used.

We conclude by mentioning that our regularity results, and thus the finite ele-
ment error estimates, apply to more general integral operators of convolution type,
provided that they satisfy suitable ellipticity conditions.
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Case b = 0, β 6= 0. In [BLS19] we analyze the remaining cases. For s ≥ 1
2 we

studied the fractional Laplacian with drift. Note that the fractional Laplacian is
an operator of order 2s, so that for s > 1

2 the drift is a compact perturbation of

it. This is enough to conclude well posedness. In the case s = 1
2 the operators are

of the same order, so a smallness condition must be imposed on the drift.
A bootstrapping argument allows us to show that, if Ω is C∞ the linear problem:

Given g find Φg ∈ H̃s(Ω) that solves

(−∆)sΦg + β · ∇Φg = g, in Ω, Φg = 0, in Ωc

has the same regularity as the solution to (2). This will be used when studying
the regularity of the solution to (1) in this case.

Case b 6= 0. To study the full problem we must consider first the regularity of the
linear problem. In [BLS19] we showed the following result.

Theorem 3 (regularity). Let g ∈ L2(Ω) and Φg ∈ H1
0 (Ω) solve

−∆Φg + (−∆)sΦg + β · ∇Φg = g, in Ω, Φg = 0, in Ωc.

Then Φg ∈ Hµ(Ω) with µ = 2 if s < 3
4 and µ = 7

2 − 2s− ǫ otherwise.

We do not know if this result is sharp for s ≥ 3
4 .

A penalization argument, that follows the techniques of [KS00] allows us to
carry these results to the obstacle problem. Thus, we can show.

Theorem 4 (error estimate). Let u ∈ H̃s(Ω) solve (1) with s ≥ 1
2 if b = 0. As-

sume that uh ∈ Vh is its finite element approximation over a space Vh of piecewise
linears constructed on a quasiuniform mesh. In the setting of Theorem 3 we have

‖u− uh‖H̃s(Ω) + b‖u− uh‖H1
0(Ω) ≤ chmin{σ,3/2−s−ǫ}| log h|,

where

σ =

{
1
2 − ǫ, b = 0,

min
{
1, 52 − 2s− ǫ

}
, b = 1.

In computations, the bilinear form of the fractional Laplacian can be treated
as in [BLP19].
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Stochastic subspace correction and fault tolerance

Peter Oswald

(joint work with Michael Griebel)

With the recent advent of petascale compute systems and exascale computers to
arrive in the near future, there is tremendous parallel compute power available for
huge parallel simulations. However, it is predicted that large parallel applications
may suffer from faults as frequently as once every 30 minutes on future exascale
platforms. Thus, for growing parallel computers there is the need to develop not
just scalable and fast parallel algorithms but to make them fault-tolerant as well.

One particular idea to achieve fault-tolerance is to adapt and to apply results
on stochastic subspace correction methods which have recently gained a lot of at-
tention for large-scale convex optimization, see [1, 6, 7]. The attractive feature of
stochastic subspace correction schemes in this respect is the fact that hard faults
such as compute node failure or communication losses (as long as they are de-
tectable) can be modeled as a random process of selecting the set of acceptable
subproblem solves in each iteration step. Depending on the communication struc-
ture of the compute network, the randomness and independence assumptions of the
convergence theory developed in [2, 5] are fulfilled either ideally or approximately
which ultimately leads to convergence guarantees also in a faulty setting. As il-
lustration, and to test the theory in numerical simulations, in [5] we have used a
standard overlapping domain decomposition (DD) method for the Poisson problem
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as prototypical example of scalable and asymptotically optimal subspace correc-
tion methods for solving second-order elliptic PDE problems. In particular, our
tests show that a larger amount of local storage and communication redundancy
in a typical distributed DD implementation potentially improves the performance
of the algorithm and makes it more robust in a faulty compute network.

In the talk, we have surveyed some of our work on stochastic subspace correction
methods for solving symmetric and coercive variational problems in a separable
Hilbert space V equipped with a(·, ·) as scalar product: For given F ∈ V ′, find
u ∈ V such that

(1) a(u, v) = F (v) ∀v ∈ V.

The underlying space splitting is given by a collection of separable Hilbert spaces Vi
with scalar products ai(·, ·) (not necessarily subspaces of V ), and bounded linear
operators Ri : Vi → V such that their ranges span V , where i belongs to a certain
index set I. Their adjoints Ti = R∗

i : V → Vi are given by solving subproblems in
Vi:

(2) ai(Tiv, vi) = a(v,Rivi) ∀ vi ∈ Vi.

In the m-th step of a prototypical stochastic subspace correction method for solv-
ing (1), for each i ∈ Im from a certain random finite index subset Im ⊂ I the

corresponding subproblem (2) is solved with v = e
(m)
u := u− u(m), and an update

of the form

(3) u(m+1) = αmu
(m) + ξmd

(m)
u , d(m)

u :=
∑

i∈Im
ωiRiTie

(m)
u , m = 0, 1, . . . ,

is performed, where the relaxation parameters αm, ξm are at our disposal, and ωi
are given scaling parameters. The recursion (3) basically represents a one-step
method, we also considered two-step methods inspired by [6] for acceleration.

The convergence theory of such methods is usually cast in terms of the expecta-

tion E(‖e(m)
u ‖2) of the squared error which controls both expectation and variance

of the random error trajectory {e(m)
u }. The results depend on the spectral prop-

erties of the positive operator P :=
∑

i∈I ωiRiTi : V → V , on assumptions on the
distribution and independence of the index subsets Im, and are qualitively different
for finite and infinite I. For the case of infinite I which appears in applications to
incremental approximation processes in infinite-dimensional V and online learning
with kernels, the one-step method (3) was considered in [3, 4] under the assump-
tion that Im is a singleton randomly and independently chosen according to a fixed

probability distribution on I. Convergence E(‖e(m)
u ‖2) → 0 can be established for

arbitrary u ∈ V , rates of the form E(‖e(m)
u ‖2) = O(m−s), 0 < s ≤ 1, are proved

for u belonging to compact subsets of V determined in terms of spectral classes
induced by the operator P . For infinite I, the theory of accelerated methods is
still incomplete.

For the case of finite I := {0, 1, . . . , n} which is typical for applications to large-
scale numerical discretization methods, in [2] we considered singleton Im, and in
[5] a more general case of Im using the following assumptions:
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A Im is a uniformly at random chosen subset of size pm in I = {0, 1, . . . , n},
i.e., |Im| = pm and P(i ∈ Im) = P(i′ ∈ Im) for all i, i′ ∈ {0, 1, . . . , n}.

B The choice of Im is independent for different m.

While A suffices to prove expected error reduction rates per iteration step, as-
sumption B is needed to obtain asymptotic convergence results. Let λmin(P ) and
λmax(P ) denote (tight) lower and upper spectral bounds for P , respectively, and
set κ(P ) = λmax(P )/λmin(P ).

Theorem 1 ([5]). Let the relaxation parameters in (3) be given by αm = 1 and
0 < ξm := ξ < 2/λmax(P ). If A holds then in each step the algorithm (3) reduces
the squared error in expectation according to
(4)

E(‖e(m+1)
u ‖2 |u(m)) ≤

(
1− λmaxξ(2− λmaxξ)pm

κ(P )(n+ 1)

)
‖e(m)
u ‖2, m = 0, 1, . . . .

If in addition B holds then the algorithm (3) converges in expectation for any
u ∈ V and

(5) E(‖e(m)
u ‖2) ≤

m−1∏

s=0

(
1− λmaxξ(2 − λmaxξ)ps

κ(n+ 1)

)
‖u‖2, m = 1, 2, . . . .

In order to apply this result, an upper bound for λmax(P ) is needed. If ξm is

determined for given u(m) and d
(m)
u by the steepest descent rule, such knowledge

is not necessary, and the theorem holds with ξλmax(P ) replaced by 1.

The dependence on κ(P ) can be reduced to a dependence on
√
κ(P ) by running

a two-step iteration method. In the deterministic case, there are several slightly
different proposals to achieve this kind of acceleration. It turns out that so far
only versions of Nesterov acceleration can be extended to the stochastic setting
with convergence guarantees while generalizations of the heavy ball and conjugate
gradient methods seem to fail. Following in spirit [6], we consider a two-step
iteration written in vector form: With u(0) = v(0) = 0 at start, for m = 0, 1, . . .
execute

(6)
u(m+1) = u(m) + ξmd

(m)
v ,

v(m+1) = u(m+1) + θm(u(m+1) − u(m)) + ηmd
(m)
v ,

m ≥ 0.

As for the iteration (3), in each step pm subproblems have to be solved but storage
and update work slightly increase. The following result was proved in [5] using a
equivalent form of (6):

Theorem 2. Under the assumptions A, B and with parameters ξm = λmax(P )
−1,

and ηm, θm depending on κ(P ) and {pm}, the vector iteration (6) admits the esti-
mate

(7) E(‖e(m)
u ‖2) ≤ 2

m−1∏

s=0

(
1− ps

(n+ 1)
√
κ̄

)
‖u‖2, m = 1, 2, . . . .
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Note that the dependence of the convergence on the quotient pm/(n+ 1) (the
portion of subproblems solved in them-th step) is to be expected and in some sense
the best one can hope for. Work on making the parameter choice in accelerated
methods less dependent on a priori knowledge about the spectral properties of the
underlying operator P is in progress.
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Optimal Adaptivity and Infinite Matrices

Michael Feischl

The theory of rate optimal adaptive algorithms for finite element methods origi-
nated in the seminal paper [23] by Stevenson and was further improved in [8] by
Cascon, Kreuzer, Nochetto, and Siebert. (Note that the notion of rate optimal-
ity differs from that of instance optimality for adaptive finite element methods
introduced in the seminal papers [4, 11].) These papers prove essentially, that a
standard adaptive algorithm of the form

Solve −→ Estimate −→ Mark −→ Refine

generates asymptotically optimal meshes for the approximation of the solution of
a Poisson problem. The new ideas sparked a multitude of papers applying and ex-
tending the techniques to different problems, see e.g., [20, 9] for conforming meth-
ods, [22, 2, 3, 6, 21] for nonconforming methods, [10, 7, 19] for mixed formulations,
and [17, 18, 1, 15, 14] for boundary element methods (the list is not exhausted,
see also [5] and the references therein). All the mentioned results, however, focus
on symmetric and definite problems in the sense that the underlying equation in-
duces a symmetric and definite operator. The missing link required to extend the
theory to non-symmetric and indefinite problems is the quasi-orthogonality and
consequently the linear convergence of the error. The first is usually an estimate
of the form

‖uℓ+1 − uℓ‖2 ≤ c‖u− uℓ‖2 − C‖u− uℓ+1‖2 + terms of higher order(1)
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with c ≈ C ≈ 1. However, for indefinite and non-symmetric problems such an
estimate does not seem to hold. The first proof of rate optimality for a non-
symmetric problem which does not rely on additional assumptions on the initial
mesh is given in [16] for a general second order elliptic operator with non-vanishing
diffusion coefficient of the form

−div(A∇u) + b · ∇u+ cu = f.

This approach, however, relies heavily on the fact that the non-symmetric part
of the operator (b · ∇u + cu) is only a compact perturbation (one differentiation
instead of two for the diffusion part). The first optimality proof of a strongly non-
symmetric problem was given in the recent work [12] for a finite-element/boundary-
element discretization of a transmission problem. The proof relies on a novel form
of quasi-orthogonality introduced in [5, 16] called general quasi-orthogonality

∞∑

k=ℓ

‖uk+1 − uk‖2 . ‖u− uℓ‖2.(2)

This notion of quasi-orthogonality is the last missing building block to apply the
theory developed in [23, 8] and culminating in [5] to prove linear convergence and
ultimately rate optimal convergence for strongly non-symmetric problems

The first idea to prove (2) and hence optimality of strongly non-symmetric
problems was as follows: Find an X -orthogonal basis v1,v2, . . . of X such that all
the adaptive spaces generated by the adaptive algorithm are spanned by it, i.e.,
Xℓ = span{v1, . . . ,vNℓ

} for all ℓ ∈ N and numbers Nℓ ∈ N. Then, consider the
infinite stiffness matrix A ∈ RN×N, Aij := a(vj ,vi) (where a(·, ·) is the bilinear
form corresponding to the problem at hand) and rewrite the original problem as an
infinite matrix problem. Then, we show that a (block)-LU -factorization A = LU
with bounded factors implies general quasi-orthogonality (2). A bound on the
factors L and U would hence conclude the proof.

The main problem here is that the available LU -factorization results are not strong
enough to show that the matrix A has a bounded LU -factorization. Hence, we
require more structure (bandedness, exponential decay) of the infinite stiffness ma-
trix and therefore have to replace the orthogonal basis v1,v2, . . . by a hierarchical
(wavelet-type) Riesz basis which is local in a certain sense. Unfortunately, this
introduces some technical difficulties as well as the need for mildly graded meshes.
It seems that the topic of the stability of the LU -factorization is very complex and
not well-understood in the literature. Advances in this direction could significantly
reduce the length of this work.

The benefit of this undertaking is that the abstract theory allows us to ask
questions about matrices instead of asking questions about Galerkin approxima-
tions. This allows us to prove optimality of a standard adaptive algorithm for the
stationary Stokes problem with standard Taylor-Hood discretization in [13] as well
as optimality of a standard adaptive algorithm for a Poisson transmission problem
discretized via finite-element/boundary-element coupling in [12].
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Adaptive quarkonial domain decomposition methods for elliptic
partial differential equations

Alexander Sieber

(joint work with Stephan Dahlke, Ulrich Friedrich, Philipp Keding, Thorsten
Raasch)

This talk is concerned with new discretization methods for the numerical treatment
of elliptic partial differential equations. We derive an adaptive frame scheme that
is based on quarkonial decompositions. These new frames are constructed from a
finite set of functions by translation, dilation and multiplication by monomials. By
means of nonoverlapping domain decompositions, we establish quarkonial frames
on domains that can be decomposed into the union of parametric images of unit
cubes. We also show that these new representation systems constitute stable
frames in scales of Sobolev spaces. The construction is performed in such a way
that, similar to the wavelet setting, the frame elements, the so-called quarklets,
possess a certain amount of vanishing moments. This enables us to generalize the
basic building blocks of adaptive wavelet algorithms to the quarklet case. The
applicability of the new approach is demonstrated by numerical experiments for
the Poisson equation on L-shaped domains.

References

[1] S. Dahlke, U. Friedrich, P. Keding, T. Raasch, A. Sieber, Adaptive quarkonial domain
decomposition methods for elliptic partial differential equations, Bericht Mathematik Nr.
2018-01 des Fachbereichs Mathematik und Informatik, Universität Marburg (2018).

Adaptive hp discontinuous Galerkin methods for the Helmholtz
equation

Ilaria Perugia

(joint work with Scott Congreve, Joscha Gedicke)

Consider the Helmholtz problem with impedance boundary condition

−∆u− k2u = f in Ω,

∇u · n− iku = g on ∂Ω,
(1)
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where Ω ⊂ R
2 is a bounded, Lipschitz domain, n the outer unit normal to ∂Ω,

f ∈ L2(Ω), g ∈ L2(∂Ω), and k > 0 is the (constant) wavenumber.
Following [1], I have presented an hp a posteriori error estimator for a poly-

nomial-based discontinuous Galerkin (DG) approximation of problem (1), which
is based on the technique of equilibrated fluxes.

On a triangulation T of Ω with sets of interior and boundary edges denoted
by E(Ω) and E(∂Ω), respectively, the considered DG formulation reads as follows:
Find uhp ∈ Vhp such that

ahp(uhp, vhp) = Fhp(vhp) for all vhp ∈ Vhp,(2)

with the DG space Vhp defined by

Vhp := {vhp ∈ L2(Ω) : vhp|T ∈ PpT (T ) for all T ∈ T },

PpT (T ) being the space of polynomials of degree at most pT ≥ 1 on T ,

ahp(u, v) := (∇hu,∇hv)− k2(u, v)

−
∑

E∈E(Ω)

([[u]]N , {{∇hv}})E −
∑

E∈E(Ω)

({{∇hu}}, [[v]]N)E

−
(
γk

h

p
u,∇hv · n

)

∂Ω

−
(
γk

h

p
∇hu · n, v

)

∂Ω

− i
∑

E∈E(Ω)

(
β
h

p
[[∇hu]]N , [[∇hv]]N

)

E

− i
∑

E∈E(Ω)

(
α
p2

h
[[u]]N , [[v]]N

)

E

− i

(
γ
h

p
∇hu · n,∇hv · n

)

∂Ω

− i

(
k(1− γk

h

p
)u, v

)

∂Ω

,

and

Fhp(v) := (f, v)− i

(
γh

p
g,∇hv · n

)

∂Ω

+

(
(1− γk

h

p
)g, v

)

∂Ω

.

Here, with standard DG notation, ∇h denotes the elementwise application of ∇,
{{·}} and [[·]]N denote the interelement averages and (normal) jumps, respectively,
and h and p are the piecewise constant mesh size function and polynomial degree
function, respectively, defined on the mesh faces as follows: h|E = min(hT+ , hT−

)
and p|E = max(pT+ , pT−

), if E = ∂T+ ∩ ∂T−, or h|E = hT and p|E = pT , if
E = ∂T ∩ ∂Ω. Finally, α > 0, β > 0, and 0 < γ < 1/3 are constant penalty pa-
rameters. The discrete problem (2) is unconditionally well-posed, and its a priori
error analysis was carried out in [4].

The presented a posteriori estimator for (2) is defined in terms of an equilibrated
flux reconstruction for the shifted Neumann-Poisson problem

−∆w = f + k2uhp in Ω,

∇w · n = g + ikuhp − γk
h

p
(g −∇huhp · n+ ikuhp) on ∂Ω;
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the error due to the nonconformity of the discretization is controlled by a potential
reconstruction [2, 3]. The estimator is defined by

η
2
hp :=

∑

T∈T

(

‖G(uhp) + σhp‖0,T +
diam(T )

j1,1
‖f + k

2
uhp − divσhp‖0,T

+ Ctr

∑

E∈E(T )∩E(∂Ω)

|E|1/2σhp · n+ g + ikuhp − γk
h

p
(g −∇huhp · n+ ikuhp)‖0,E





2

+
∑

T∈T

‖G(uhp)−∇shp‖
2
0,T .

(3)

Here, G denotes the DG gradient defined in terms of local gradients and jump
liftings by

G(uhp) := ∇huhp −
∑

E∈E(Ω)

L0
E([[uhp]]N )−

∑

E∈E(Ω)

L1
E([[∇uhp]]N ),

σhp and shp are equilibrated flux and potential reconstructions, respectively, Ctr is
a trace inequality constant, and j1,1 is the first positive root of the Bessel function
of the first kind of index 1.

For any σhp ∈ H(div; Ω) satisfying the equilibration conditions
∫

T

divσhp dx =

∫

T

f + k2uhp dx ∀T ∈ T ,
∫

E

σhp · n ds =
∫

E

−(g + ikuhp) + γk
h

p
(g −∇huhp · n− ikuhp) ds ∀E ∈ E(∂Ω),

and any shp ∈ H1
∗ (Ω) := {v ∈ H1(Ω) : (v, 1) = 0}, ηhp defined in (3) is proven

to be a reliable estimator for the error ‖∇u − G(uhp)‖0,Ω, up to an additional
L2 error term, which resembles the pollution error, similarly to the residual a
posteriori error estimator for the DG method in [5]. A specific local construction
of σhp and shp on vertex patched is devised, for which ηhp is also p-uniformly
efficient.
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Adaptive energy minimization for hp–finite element methods

Thomas P. Wihler

(joint work with Paul Houston)

This presentation is concerned with an energy-driven adaptive mesh refinement
approach for the purpose of solving numerically convex, possibly nonlinear varia-
tional problems. More precisely, we develop an iterative minimization technique
which allows for the successive enrichment of an underlying discrete approximation
space in an adaptive manner. Specifically, we outline a new methodology in the
context of hp-adaptive FEM employed for the efficient numerical solution of lin-
ear and nonlinear second-order boundary value problems. Numerical experiments
are presented which highlight the practical performance of this new hp-refinement
technique for both one- and two-dimensional problems.
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Gradient Flow Finite Element Discretizations with Energy-Based
Adaptivity for the Gross-Pitaevskii Equation

Benjamin Stamm

(joint work with Pascal Heid, Thomas Wihler)

In this talk, we considered the results presented in [1] for the numerical discretiza-
tion of the Gross-Pitaevskii Equation (GPE), which is a nonlinear eigenvalue prob-
lem that represents the Euler-Lagrange equation of the Gross–Pitaevskii energy
functional, given by

E(v) :=

∫

Ω

(
1

2
|∇v|2 + V (x)|v|2 + β

2
|v|4

)
dx,(1)

under the following normalization constraint for the single particle functions v:

(2) v ∈ SH := {v ∈ H : ‖v‖L2(Ω) = 1}.
Here, Ω ⊂ Rd, d = {1, 2, 3}, is a bounded, connected, and open set with Lipschitz
boundary, V ∈ L∞(Ω) is a potential function with V ≥ 0 almost everywhere,
and β ≥ 0 is a constant. We note that the fourth-order term in E (causing
the associated eigenvalue to be nonlinear if β > 0) results from the interaction
of particles. The global minimizer of E under the constraint (2) is called the
(normalized) ground state of (1).

The Fréchet derivative of the energy functional E on the Sobolev space H :=
H1

0(Ω) is given by

〈E′(v), w〉 =
∫

Ω

(
∇v · ∇w + 2V (x)vw + 2β|v|2vw

)
dx, v, w ∈ H,(3)
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where 〈·, ·〉 signifies the dual product in H
⋆ ×H. The Euler-Lagrange formulation

of the constrained minimization problem

argmin
v∈SH

E(v),

is given by

v ∈ H : 〈E′(v), w〉 = λ(v, w)L2(Ω) ∀w ∈ H.(4)

Here, the scalar λ takes the role of a Lagrange multiplier corresponding to the
norm constraint (2). The nonlinear eigenvalue problem (4) is called the Gross–
Pitaevskii equation (GPE). Given that V ≥ 0 (almost everywhere in Ω) and β ≥
0, the Gross–Pitaevskii eigenvalue problem (4) has a unique (L2(Ω)-normalized)
positive eigenfunction uGS > 0 which is the ground state of the Bose–Einstein
condensate (1), see [2, Lem. 5.4]; in particular, uGS is an eigenfunction to the
minimal (and simple) eigenvalue, signified by λGS of (4), see [3].

The ground state uGS will be determined iteratively. To this end, we employ
the projected gradient flow approach proposed in [2]. One of the key ideas is to
introduce a weighted energy inner product on H × H, which, for fixed z ∈ H, is
given by

az(v, w) :=

∫

Ω

(
∇v · ∇w + 2V (x)vw + 2β|z|2vw

)
dx, v, w ∈ H.(5)

We now introduce the tangent space

Tz := {w ∈ H : (z, w)L2(Ω) = 0}.

Owing to the Riesz representation theorem, for any v ∈ H, there exists a unique
Gz(v) ∈ H such that

az(Gz(v), w) = (v, w)L2(Ω) ∀w ∈ H.(6)

Then, we can give an explicit expression for the orthogonal projection Pz : H → Tz ,
defined by

az(v − Pz(v), w) = 0 ∀v ∈ H, ∀w ∈ Tz ,(7)

by

(8) Pz(v) = v − (z, v)L2(Ω)

az(Gz(z),Gz(z))
Gz(z).

We now consider a trajectory u : [0,∞) → H which, for a given initial value u(0) =
u0 ∈ SH, follows the dynamical system

u̇(t) = −Pu(t)(u(t)), t > 0,(9)

which is the continuous gradient flow with respect to the inner product (5). The
existence of a solution u has been discussed in [2, Sec. 3.1 & 3.2].
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For the purpose of computing an approximation of the continuous gradient flow
trajectory from (9), we use the forward Euler discretization method. For a given
initial value u0 ∈ SH this yields a sequence of functions {un}n≥0 ⊂ SH which,
for n ≥ 0, is defined by

un+1 =
ûn+1

‖ûn+1‖L2(Ω)

where ûn+1 = un − τnPun(un),(10)

where {τn}n≥0 is a sequence of positive (discrete) time steps. The scheme (10) is
called discrete gradient flow iteration (GFI).

Consider a sequence of conforming and shape-regular partitions {TN}N∈N of
the domain Ω into simplicial elements TN = {κ}κ∈TN (i.e. triangles for d = 2 and
tetrahedra for d = 3). Moreover, for a (fixed) polynomial degree p ∈ N and any
subset ω ⊂ TN , we introduce the finite element space

V(ω) =
{
v ∈ H : v|κ ∈ Pp(κ), κ ∈ ω, v|Ω\ω = 0

}
,

with Pp(κ) signifying the (local) space of all polynomials of maximal total degree p
on κ, κ ∈ TN . Furthermore, similarly as before, we denote by

SV(ω) =
{
v ∈ V(ω) : ‖v‖L2(Ω) = 1

}

the L2(Ω)-unit sphere in V(ω). In the sequel, we apply the notations XN := V(TN )
and SN := SV(TN ). Due to the compactness of SN , it exists a minimizer uN ∈ XN

of EN , i.e. E(uN) = minv∈SN E(v).
From a practical viewpoint, once the discrete GFI approximation unN ∈ XN

from (10) is close to the solution uN ∈ XN , we expect that any further GFI steps
will no longer contribute an essential decay to the energy in (11). In this case,
in order to further reduce the energy, we need to enrich the finite element space
appropriately. More specifically, for N ≥ 1, suppose that we have performed a
reasonable number n ≥ 1 (possibly depending on N) of GFI-iterations (10) in
XN−1. Consider now a (hierarchically) refined mesh TN of TN−1. Then we may
embed the final guess unN−1 ∈ XN−1 on the previous space into the enriched finite
element space XN in order to obtain an initial guess on the refined mesh TN :

u0N := unN−1 ∈ XN .

For each GFI-iteration n we monitor two quantities. Firstly, we introduce the
increment on each iteration given by

incnN := E(un−1
N )− E(unN), n ≥ 1.

Secondly, we compare incnN to the energy loss as compared to the previous mesh
refinement, i.e.

∆EnN := E(u0N)− E(unN), n ≥ 1.(11)
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We stop the iteration for n ≥ 1 as soon as incnN becomes small compared to
∆EnN , i.e. once there is no notable benefit (relatively speaking) in performing any
more discrete GFI steps on the current space XN . Specifically, for n ≥ 1, this is
expressed by the bound

(12) incnN ≤ γ∆EnN ,

for some parameter 0 < γ < 1.
In the sequel, we will outline the mesh refinement procedure. Assume that an
approximation unN ∈ XN , after n ≥ 0 gradient flow iterations in XN , is given and
that the criteria (12) indicates a mesh-refinement. Then, for any element κ ∈
TN we consider the open patch ωκ comprising of κ and its immediate face-wise
neighbours. Moreover, given κ ∈ TN , we define the modified patch ω̃κ by uniformly
(red) refining the element κ into a (fixed) number of subelements and by removing
hanging nodes in ωκ by doing (e.g. green) refinements of the adjacent elements.
We consider basis functions {ξ1κ, . . . , ξmκ

κ } of the locally supported space V(ω̃κ).
Furthermore, we introduce the extended space

V̂(ω̃κ;u
n
N ) := span{ξ1κ, . . . , ξmκ

κ , unN}.

Then, by performing one local discrete GFI-step in V̂(ω̃κ;u
n
N) ⊂ H we obtain a

new local approximation, denoted by ũnN,κ ∈ V̂(ω̃κ;u
n
N ), with ũnN,κ ∈ SH.

By modus operandi, the above construction leads to the (local) energy decay

−∆EnN(κ) := E(ũnN,κ)− E(unN ) ≤ 0,

for all κ ∈ TN . The value ∆EkN(κ) indicates the potential energy reduction due to
a refinement of the element κ. These local energy-decays are then used within a
Dörfler marking strategy to select elements for the next mesh-refinement

We finish with a numerical test. We choose Ω = (−6, 6)2 and β = 1000, with
an oscillating potential function V . More precisely, the energy functional is given
by

E(u) =
1

2

∫

Ω

(
|∇u|2 + 2

( |x|2
2

+ 20 + 20 sin(2πx) sin(2πy)

)
|u|2 + 1000|u|4

)
dx.

This experiment was also considered in [2] with an asserted approximation
E(uGS) ≈ 30.40965 of the ground state energy. Based on the adaptive Algo-
rithm presented in this work, a smaller value for the ground state energy has been
computed; we suppose that this (improved) approximation results from the adap-
tive (and thereby more effective) refinement of the meshes. In Figure 1 (left) we
have depicted the error for the approximations of the ground state energy with
respect to our reference value. This plot indicates an asymptotically optimal rate
of convergence of the adaptive algorithm for the given problem. The suboptimal
behaviour in the pre-asymptotic phase is due to the fact that the mesh is not fine
enough to resolve the oscillations of the potential V sufficiently well.
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Figure 1. Left: Convergence plot for the ground state energy.
Right: Approximated ground state.
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Low-Rank Approximability and Entropy Area Laws for PDEs

Mazen Ali

1. Curse of Dimensionality and Tensor Product Approximation

Let u ∈ L2
(
Rd

)
represent the solution of a partial differential equation (PDE). The

computational complexity of accurate approximations to u is a central question of
numerics of PDEs. Suppose we approximate u as

u ≈ uN :=
N∑

k=1

ckvk,

where the coefficients ck are determined by a numerical procedure and vk is chosen
from some a priori fixed set of basis functions. The statement is very roughly as
follows [4]: the function u has Besov/Sobolev smoothness s if and only if

‖u− uN‖L2 ≤ CN−s/d,

for come constant C > 0. The estimate can be improved if we consider product
domains and sparse grid or adaptive approximations [6, 5]. However, in all cases,
for a given approximation accuracy, the required number of degrees of freedom N
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in general grows exponentially with d. This is an expression of the so-called curse
of dimensionality.

Tensor methods are a common and effective tool to combat this curse. Suppose
we approximate u by a sum of tensor products as

u ≈ ur :=
r∑

k=1

v1k ⊗ · · · ⊗ vdk.

If we require O(n) degrees of freedom for each vjk, then overall we require O(ndr)
degrees of freedom to represent ur. In order for this ansatz to truly break the
curse of dimensionality, both n and r have to scale at most polynomially in d for
a fixed approximation accuracy. If we assume as before Sobolev regularity for u
and consider a more sophisticated tensor format, we obtain the general statement
[12]

‖u− ur‖L2 ≤ Cr−s/d,

for some constant C > 0. It seems we have not gained anything by consid-
ering tensor formats. Yet, experience shows such formats perform quite well
[3, 11]. Hence, we require different structural assumptions on u than classical
Sobolev/Besov smoothness.

2. Operator Structure

We consider Hamiltonians of the following nearest neighbor interaction (NNI)
structure

H =

d−1∑

j=1

Hj,j+1, Hj,j+1 = Hj +Hj+1 +Φj,j+1,(1)

acting on a tensor product Hilbert space X = X1 ⊗ · · · ⊗ Xd, where Hj , Hj+1

are unbounded one-site operators and Φj,j+1 is a two-site bounded interaction. A
typical example to keep in mind is the following.

Let X =
⊗d

j=1 Xj =
⊗d

j=1 L
2(Rn), where in practice n ∈ {1, 2, 3}. Let the

PDE operator be given as

H = −∆+ V.

The Laplacian ∆ is the one-site unbounded operator where Hj = − ∂2

∂x2
j
. The

potential V contains the bounded interaction operators. E.g., V =
∑d−1

j=1 Φj,j+1,
where Φj,j+1 : X → X is a bounded operator such as

(Φj,j+1u)(x) = c(xj , xj+1)u(x), or

(Φj,j+1u)(x) =

∫

R2n

κ(xj , xj+1, yj , yj+1)u(x1, . . . , yj , yj+1, . . . , xd) d(yj , yj+1),

where c(·) is a bounded coefficient function and κ(·) is an integral kernel.
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3. Results and Key Techniques

Our result [1] states the following: given a Hamiltonian of the form as in (1) and
the corresponding ground state

ρ0 = 〈·, u0〉X , Hu0 = 0, ‖u0‖X = 1,

for any 1 ≤ j ≤ d− 1 and any 0 ≤ l ≤ min{j − 1, d− 1− j}, there exist bounded,
self-adjoint operators OL, OR and OB supported (roughly) on [1, j], [j+1, d] and
[j − l, j + 1 + l], respectively, such that

‖ρ0 −OBOLOR‖L ≤ C exp(−cl),(2)

for some constants C, c > 0. Under additional assumptions on the operator OB ,
this implies an area law for the ground state. The constants C, c depend on the
physical properties of the system such as spectral gap and interaction strength,
not on j, l or the order of the tensor product d. This result is based on the work
for 1D entropy area laws for NNI spin systems from [7]. We single out two key
techniques to establish the bound in (2).

First, quasi-adiabatic continuation by Hastings [8]. The idea is roughly based
on two ground states belonging to the same phase [2]. Two gapped ground states
uτ=0
0 and uτ=1

0 are said to belong to the same phase, if there exists a curve of
Hamiltonians H(τ) for a parameter τ ∈ [0, 1], differentiable (in the strong sense)
in τ , such that uτ=0

0 is the ground state for H(0) and uτ=1
0 the ground state for

H(1). In this case, there exists a family of unitary operators U(τ) such that we
have the evolution

ρτ0 = U(τ)ρτ=0
0 U(τ)∗, τ ∈ [0, 1].(3)

Applying this to (2), we set ρτ=1
0 := ρ0, i.e., the ground state of H =: H(1), and

find a corresponding local H(0) with a local ground state ρτ=0
0 that we evolve as

in (3) to ρτ=1
0 = ρ0.

The next step is to show that this ρτ=1
0 , obtained by a quasi-adiabatic evolution

from a local ρτ=0
0 , is at least approximately local. To this end, we use the second

key technique of this work: Lieb-Robinson bounds [9, 10]. Such estimates bound
the velocity of information propagation in a system governed by a Hamiltonian
satisfying certain properties. Put in terms of equations: if A and B are two
bounded operators on X with disjoint support such that [A, B] = 0, then, if we
evolve A according to our system Hamiltonian

A(t) := exp(iHt)A exp(−iHt), t ∈ R,

the operator A(t) remains approximately local in the sense

[A(t), B] ≈ 0,

for “small” |t|.
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Quantic Tensor-rank bounds for point singularities in R3

Christoph Schwab

(joint work with Carlo Marcati, Maksim Rakhuba)

In Q = (0, 1)3, we consider tensor-formatted function approximation in W 1,2(Q)
of functions u in weighted Gevrey-classes in Q with sing supp(u) = {0}; i.e.

u ∈ κω,pγ (Q,C,A, δ) := {v ∈
⋂

s∈N

κs,pγ (Q) : ‖v‖κs,p
γ (Q) ≤ CAs(s!)δ, s ∈ N},

where, for 1 ≤ p <∞, κs,pγ (Q) is the weighted Kondrat’ev space with norm

‖v‖κs,p
γ (Q) =

∑

|α|≤s
‖r|α|−γ∂αv‖pLp(Q) (Kondrat’ev space)

We show: for 0 < ε ≤ 1 ex. quantized tensor train formatted (“qTT”) approxi-
mation vεqTT ∈ H1(Q) s.t.

‖u− vεqTT ‖H1(Q) ≤ ε and Ndof(v
ε
qTT ) ≤ Cu(1 + | log(ε)|R)

where Ndof denotes # of degrees of freedom in vεqTT , H
1 = W 1,2 (i.e. p = 2),

Cu > 0 depends on C,A, δ,
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R > 0 depends on the tensor format and on the regularity parameter δ ≥ 1:

R =





4δ + 3 classic qTT,

6δ + 1 transposed order qTT,

3δ + 3 Tucker qTT.
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Reduced Modeling for State and Parameter Estimation

Wolfgang Dahmen

(joint work with Albert Cohen, Ron DeVore, Olga Mula, James Nichols)

Physical processes are often modeled by partial differential equations (PDEs) in-
volving coefficients that need yet to be determined in order to approximately iden-
tify partially observed states of interest. Additional information on such states,
in turn, is often given in terms of data obtained through measurements or sen-
sors. Neither the mathematical model by itself nor available data usually suffice
to recover the states of interest with satisfactory accuracy. Trying to best inte-
grate classical model based and data-driven methods is sometimes referred to as
data-assimilation or state and parameter estimation which incidentally amounts
to regularizing such otherwise ill-posed estimation tasks. We discuss concepts
that could be viewed as alternatives to stochastic regularization through Baysian
inversion.

We focus in this talk on models where coefficients in the underlying PDEs de-
pend on parameter vectors y that range over a parameter domain Y. We always
assume though that the variational formulations of the underlying parametric fam-
ily of PDEs are uniformly stable with respect to a suitable pair U, V of trial and
test (Hilbert) spaces. We are particularly concerned with scenarios where the di-
mension of Y is large or even infinite. This situation arises, for instance, when a
random diffusion coefficient field of a second order elliptic problem is parametrized
through a Karhunen-Loève expansion.

The set M ⊂ U of states that can be obtained when the parameters y range
over Y is often referred to as solution manifold and is used to provide priors for the
estimation tasks. Numerical tractability in the above scenario, even for infinitely
many parameters, hinges in the elliptic case on the fact that the parameter-to-
solution map y 7→ u(y) is holomorphic. From this one can deduce, in particular,
that under suitable assumptions on the parametric expansions, the Kolmogorov
n-widths of the solution manifold decay rapidly independent of the parametric
dimension, [5].

Specifically, this talk is concerned with estimation problems of the following
type. Given data provided by a fixed finite number m of sensors in terms of
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bounded linear functionals on the Hilbert space U , (i) recover a state that (ap-
proximately) gives rise to the observed data and is possibly close to the solution
manifold M, or (ii) find a parameter y ∈ Y so that the corresponding state u(y)
(approximately) gives rise to the observed data. For elliptic problems and affine
parameter expansions, using well-posedness of the underlying PDEs, (ii) can be
reduced to a constrained linear least squares problem once a good state estimate
is at hand. Therefore, we concentrate on state estimation (i), discussing related
benchmarks, intrinsic information limits, and the construction of optimal recovery
schemes.

We adopt the Adaptive Parametrized Background Data-Weak (APBDW) frame-
work introduced in [6] and further analyzed in [2], i.e., the measurement functionals
are (Riesz-)lifted to the ambient energy space U so that their representers in U
span an m-dimensional subspace W ⊂ U , referred to as measurement space. Con-
sidering for conceptual clarity the noise-free case, we are then interested in finding
recovery maps A : W → U of the form A(w) = w + B(w), where B : W → W⊥

may be any map. Defining E(A,W ) := supu∈M ‖u − A(PWu)‖U , where PW
is the U -orthogonal projection to W , the recovery benchmark is E(M,W ) :=
infA:W→U E(A,W ).

A central role in the construction of such maps A is played by judiciously
chosen “reduced spaces” Un ⊂ U . In fact, suppose one has at hand a space Un
satisfying dist (M, Un)U := supu∈M ‖u− PUnu‖U ≤ εn with a computable bound
εn. The initially ill-posed estimation problem can be regularized by exploiting the
knowledge that the observations w = PWu stem from a state u that belongs to,
or more realsistically, is close to M. This can be done by replacing M with the
εn-neighborhood Kn of the space Un which contains M. One can then show that
the optimal lifting operator B∗ = B∗(Un) :W →W⊥ is linear and can be realized
through a least squares problem of size n in Un followed by a correction in W . In
fact, for each slice Knw := Kn∩ (w+W⊥), this determines the Chebychev radius of
the ellipsoid Knw which realizes E(Knw ,W ), see [2]. The sharp recovery error-bound
for A∗

Un
(w) = w +B∗(w) is then given by

(1) E(A∗
Un
,W ) ≤ µ(Un,W )dist (M, Un)U ,

where µ(Un,W ) := supv∈Un
‖v‖U/‖PW v‖U , see [2, 6]. Thus, the recovery error is

finite only if n = dimUn ≤ m = dimW since otherwise Un ∩W⊥ is non-trivial.
This is called in [2] the one-space method because there is a one-to-one relation
between a given space Un and the corresponding optimal lifting operator B∗ and
hence the whole recovery map A∗ = A∗

Un
.

These results extend verbatim when replacing the linear space Un by an affine
space which one expects can have, for a given dimension, a favorable effect on the
stability factor µ(Un,W ) and the approximation accuracy [4]. In view of its bearing
on parameter estimation, it would be highly desirable to identify a best space Un. A
first natural option for determining a “good” space Un is to employ the weak greedy
algorithm used in the Reduced Basis Method. This generates a nested sequence
of subspaces Uwg

n . Specifically, given Uwg
k , k ≤ n, it generates Uwg

n+1 by including
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an element un+1 from M that satisfies ‖un+1 − PUwg
n
un+1‖U ≥ γdist (M, Uwg

n )U ,
where γ ∈ (0, 1] is a fixed weakness parameter. It is shown in [1] that these
spaces are rate-optimal in the following sense: suppose that the Kolmogorov-n-

widths dn(M)U := infdimV=n dist (M, V )U are bounded by Cn−α or Ce−cn
β

for
some positive constants c, C, β ≤ 1, then the quantities dist (M, Uwg

n )U are also

bounded by C̄n−α or C̄e−c̃n
β

, where C̄ and c̃ depend in an explicitly given way on
c, C, α, β and γ. For elliptic problems with affine parameter dependence this is, in
principle, an established strategy. Since the quantities µ(Un,W ) can be computed
via a Singular Value Decomposition of the cross-Gramian of a basis for Un and a
basis for W , tight a posteriori bounds for dist (M, Uwg

n )U allow one to evaluate
the quantities µ(Uwg

n ,W )dist (M, Uwg
n )U for n = 1, . . . ,m. This suggest taking

the space

(2) U∗ = Uwg
n∗ , n∗ = argmin {µ(Uwg

n ,W )dist (M, Uwg
n )U : n = 1, . . . ,m}.

It is however, not clear whether this yields a near-best affine recovery map of
the form Aaff = id + z +B, B :W →W⊥ linear, which would be given by

(3) A∗
aff ∈ argmin

{
sup
u∈M

‖PW⊥u− z −BPWu‖U : z ∈ W⊥, B ∈ L(W,W⊥)
}
.

It is shown in [4] that a minimizer of (3) exists. Of course, it cannot be computed
exactly since this would require exploring the whole solution manifold M as well as
minimizing over all linear mappings B with range in the infinite-dimensional space
W⊥. Instead in [4] a computable minimization problem is analyzed where M and

W⊥ are replaced by an η-net ofM and a finite dimensional space W̃⊥, respectively.
Specifically, W̃⊥ is the orthogonal complement of W in a finite-dimensional space
of the formW+UL. It can be shown that if η and dist (M, UL)U are of the order of

dm+1(M)U the minimizer of the correspondingly perturbed recovery scheme Ã∗
aff

realizes an estimation error that remains proportional to the one achieved by the
ideal map (3). For the model problem considered in [4] the accuracy achieved by

Ã∗
aff is observed to be indeed significantly better than that provided by the adapted

one-space estimator (2), at the expense of a significantly higher computational cost
though.

The above requirement on the space UL shows that also in this context it is
important to have rate-optimal reduced spaces. In the high-dimensional parameter
regime one can expect an algebraic decay of the n-widths of M (perhaps of high
order, depending on the parameter expansion). This suggest taking Uwg

L with L
proportional to m = dimW . However, in the high-dimensional parameter regime
already the corresponding off-line cost in running the weak greedy scheme turns
out to be a serious obstruction. Although each surrogate evaluation is relatively
inexpensive the size of training sets Ỹ ⊂ Y, needed to ensure the weak greedy
property over all of Y, would be subject to the Curse of Dimensionality and would
quickly become prohibitively large when d increases, see [3]. As a possible remedy
deterministic certifiability of the reduced bases can be traded against probabilistic
accuracy guaranties. It is shown in [3] that running the greedy algorithm over
randomly selected training sets whose size grows only algebraically with respect
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to the target accuracy, gives under certain circumstances rise to reduced bases
that realize this accuracy with high probability while their dimension grows at a
quantifiable but slightly suboptimal rate.
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Advances in Model Order Reduction for Large Scale or Multi-Scale
Problems

Mario Ohlberger

(joint work with A. Buhr, D. Eikhorn, C. Engwer, S. Rave)

Model order reduction for parameterized systems has gained a lot of attention in
recent years. Classical approaches such as the Reduced Basis Method, Balanced
Truncation or Proper Generalized Decomposition are meanwhile well established
for parameterized PDEs with a fast decay of the Kolmogorov width of the solution
manifold [2, 1]. However, challenges still exist for problems with either a slow decay
of the Kolmogorov width or for large scale or multi-scale problems, where the
enormous computational and storage requirements of model reduction methods in
the so called ”offline-phase” are still prohibitive. One such example is model order
reduction for degradation processes of lithium-ion batteries [8] where we employ a
POD-Greedy algorithm [9] together with empirical operator interpolation [7]. As
we don’t have efficient and robust a posteriori error estimators at hand for such
complex applications, we make use of an heuristic strategy based on hierarchical
error estimation [10].

Localization, with respect to both parameter and space provide a path to so-
lution for such problems in combining ideas from numerical multiscale methods,
domain decomposition and model order reduction. Here we refer for instance to
the recent review article [5], where a common framework for localized model re-
duction has been presented. This framework includes non-conforming approaches,
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such as the localized reduced basis multiscale method [11], as well as conform-
ing approaches. If Vh denotes an underlying high dimensional reference Hilbert
space with inner product, we call the direct sum decomposition of Vh into subdo-
main spaces, interface spaces, edge spaces and vertex spaces a localizing domain
decomposition with respect to a given macroscopic underlying grid TH , i.e.

Vh =

M⊕

m=1

Vmh ⊕
⊕

γ∈T γ
H

V γh ⊕
⊕

e∈T e
H

V eh ⊕
⊕

v∈T v
H

V vh ,(1)

The approach is called conforming, if Vh ⊂ V , where V is the underlying infinite
dimensional solution space of a variational problem. The idea of projection-based
localized model order reduction is then to consider local reduced approximation
spaces for each element of the localizing space decomposition (1), in order to obtain
a similarly decomposed reduced space VN ⊂ Vh:

VN =

M⊕

m=1

V mN ⊕
⊕

γ∈T γ
H

V γN ⊕
⊕

e∈T e
H

V eN ⊕
⊕

v∈T v
H

V vN ,(2)

with reduced subdomain spaces V mN ⊂ V mh , reduced interface spaces V γN ⊂ V γh ,
reduced edge spaces V eN ⊂ V eh and reduced vertex spaces V vN ⊂ V vN .

As a promising conforming approach to construct the local reduced approxima-
tion spaces, we present a localized method that is able to deal with parameterized
problems that in addition can handle arbitrary local modifications (ArbiLoMod) of
the underlying problem [3, 4]. Important ingredients of this method are random-
ized local training to construct the interface spaces and a local Greedy algorithm
to construct the local volume spaces. Additionally, we employ an adaptive en-
richment procedure to incorporate missing global information in the local reduced
approximation spaces. To this end, we derive efficient localized a posteriori error
estimates that are derived from localizing the dual norm of the residual of the
underlying variational problem.

A rigoros framework for randomized local training has recently been presented
in [6]. We apply major ideas of this approach in a new setting with localized
Robin-type transfer operators for the efficient approximation of the Helmholtz
equation in the context of a generalized finite element method (GFEM). Numerical
experiments demonstrate the efficiency of the approach. Numerically we evaluate
how to optimally choose the Robin-type boundary condition in the localization
process. The results suggest, that the optimal Robin parameter depends on the
wave number of the underlying Helmholtz problem in a quadratic manner.
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hp-FEM for the spectral fractional Laplacian in polygons

Jens M. Melenk

(joint work with Lehel Banjai, Christoph Schwab)

We consider two different discretizations of problem (1) involving the spectral frac-
tional Laplacian in a polygon. The first one is a high order discretization (hp-FEM)
of the (degenerate) elliptic problem given by the Caffarelli-Silvestre extension. The
second discretization is based on approximating the integral representation of the
solution, the so-called Balakrishnan formula. Both discretizations rely on geomet-
ric meshes on the polygon Ω that are refined (anisotropically) towards the edges
of Ω and also refined towards its vertices. Exponential convergence is achieved
assuming analyticity of the data f .

Model problem and the Caffarelli-Silvestre extension. On a bounded
polygon Ω ∈ R2, we consider for the spectral fractional Laplacian (−∆)s with
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Figure 1. Left: geometric mesh Tx that is anisotropically re-
fined towards the edges and isotropically towards the vertices.
Right: error versus polynomial degree p for s = 0.8 for the
Galerkin method (3) (solid line) and Balakrishnan formula (9)
(dashed line). error =

∫
Ω
f(u− uN). For (3), q = p ∼ Lx ∼ Ly ∼

Y; for (9) p ∼ Lx ∼M . Ω is shown on the left, f ≡ 1.

s ∈ (0, 1) the following problem: Given f ∈ H−s(Ω), find u ∈ H̃s(Ω) such that (in
strong form)

(1) (−∆)su = f in Ω, u|∂Ω = 0.

Here, H̃s(Ω) is the closure of C∞
0 (Ω) under the Hs(Ω)-norm and H−s(Ω) =(

H̃s(Ω)
)′
. The operator (−∆)s is a nonlocal operator. However, Caffarelli and

Sivestre showed (for the fractional Laplacian in Rd) [7] and then Cabré & Tan
[6] and Stinga & Torrea [11] for bounded domains that this operator can be un-
derstood as a Dirichlet-to-Neumann operator for a (degenerate) elliptic problem.
That is, the solution u of (1) is given by the trace u = trΩ U , where the function
U = U(x, y) on C = Ω× (0,∞) satisfies

−∇ · (yα∇U) = 0 in C, α = 1− 2s,(2a)

U(x, y) = 0, (x, y) ∈ ∂Ω× (0,∞),(2b)

− lim
y→0

yα∂yU(·, y) = dsf, ds = 21−2sΓ(1− s)/Γ(s).(2c)

The pertinent norm is the energy norm ‖v‖E := (
∫
C y

α|∇v|2)1/2 dx dy and the

relevant space is H̊1(C) = {v | ‖v‖E < ∞, v(x, y) = 0 for (x, y) ∈ ∂Ω× (0,∞)}.
One has the trace estimate ‖ trΩ v‖H̃s(Ω) ≤ C‖v‖E.
hp-FEM based on the Caffarelli-Silvestre extension. The solution U

of (2) can be approximated by a Galerkin method, [10, 1]: Given a subspace
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VN ⊂ H̊1(C) with dimVN = N , the approximation UGalN ∈ VN is determined by

(3) a(UGalN , v) :=

∫

C
yα∇UGalN · ∇v = ds

∫

Ω

fv ∀v ∈ VN .

We select VN = Sp0 (Tx) ⊗ Sq{Y}(Ty) where Tx, Ty are regular meshes on Ω and

the interval (0,Y), respectively. Here, we denote by Sr(T ) the space consisting
of globally continuous, piecewise polynomials of degree r on the mesh T ; the
subscript 0 indicates the incorporation of homogeneous boundary conditions, and
the subscript {Y} indicates that homogeneous boundary conditions are enforced at
y = Y. The solution U is analytic in y, [1], it decays exponentially in y, and it has
an algebraic singularity at y = 0, [10]. Thus, the mesh Ty is taken to be a geometric
mesh on (0,Y) with mesh points 0, σLxY, σLx−1Y, . . . , σ0Y, where σ ∈ (0, 1) is the
grading factor and Lx ∈ N0 is the number of layers of geometric refinement. The
exponential decay of U as y → ∞ and the algebraic singularity at y = 0 lead one
to select Y ∼ Lx ∼ q. To motivate the choice of the mesh Tx, we consider the
semi-discrete Galerkin approximation Usemi ∈ H1

0 (Ω) ⊗ Sq{Y}(Ty) to U . It can

be written in the form Usemi =
∑M
i=1 Ui(x)vi(y), where M = dimSq{Y}(Ty), the

(µi, vi) ∈ R× Sq{Y}(Ty) are the eigenpairs of

(4) µi

∫ Y

0

yαv′i(y)w
′(y) dy =

∫ Y

0

yαvw dy ∀w ∈ Sq{Y}(Ty),
∫ Y

0

yα|v′i(y)|2 dy = 1,

and the functions Ui are given by

(5) µi

∫

Ω

∇Ui · ∇v + Uiv dx = dsvi(0)

∫

Ω

fv dx ∀v ∈ H1
0 (Ω).

By [1] one has q−2Y2σ2Lx . µi . Y2 so that, for smooth f , the problems (5)
are of singular perturbation type. For this problem class on polygonal domains
Ω, exponential approximability can be established on geometric meshes that are
refined towards the boundary as well as the vertices:

Theorem 1 ([2], [9]). Let Ω ⊂ R2 be a polygon and f be analytic on Ω. Fix
c1 > 0. Let ũ solve, for some ε ∈ (0, 1],

−ε2∆ũ+ ũ = f in Ω, ũ|∂Ω = 0.

Let Tx be a geometric mesh that is (anisotropically) refined towards the edges and
(isotropically) towards the vertices with Lx layers of refinement and grading factor
σ ∈ (0, 1). Assume that p and Lx satisfy σLx/(pε) ≤ c1. Then:

(6) inf
v∈Sp

0 (Tx)
ε‖ũ− v‖H1(Ω) + ‖ũ− v‖L2(Ω) ≤ C [exp(−bp) + exp(−b′Lx)] ,

where C, b, b′ depend only on Ω, f , and c1.

An example of a geometric mesh Tx that is refined towards the edges and vertices
is depicted in Fig. 1. A systematic construction of geometric meshes having the
approximation properties of Theorem 1 that is based on the concept of mesh
patches is given in [2]. Based on Theorem 1, one obtains for the Galerkin error
the following exponential convergence result:
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Theorem 2 ([3]). Let Ω ⊂ R
2 be a polygon, f be analytic on Ω, and let U be the

solution of (2). Let Ty be the geometric mesh on (0,Y) with Ly layers and grading
factor σ ∈ (0, 1), and let Tx be a geometric mesh on Ω that is refined towards the
edges and vertices of Ω with Lx layers and grading factor σ ∈ (0, 1). Assuming
q ∼ Ly ∼ Y ∼ Lx ∼ p, the Galerkin approximation UGalN from (3) satisfies

‖ trΩ(U−UGalN )‖H̃s(Ω) ≤ C1‖U−UGalN ‖E ≤ C2 exp(−bp), N = dim VN ≤ C3p
6,

where the constants C1, C2, C3, b > 0 are independent of p.

Balakrishnan formula. An alternative to using the extension problem is to
use the Balakrishnan formula, a solution formula for (1), given by

(7) u = ((−∆)s)
−1
f = cB

∫ ∞

t=−∞
e−st

(
I−e−t∆

)−1
f dt, cB =

sinπs

π
.

As proposed in [4], sinc-quadrature can be brought to bear by approximating the
integal with the trapezoidal rule:

ũM := cBk

M∑

j=−M
ε2sj

(
I−ε2j∆

)−1
f, εj := e−yj/2, yj := jk := jM−1/2.

One has the semi-discrete error bound ‖u − ũN‖H̃s(Ω) ≤ Ce−
√
M‖f‖L2(Ω), [3].

Computing ũM amounts to solving 2M+1 decoupled (singularly perturbed) elliptic
problems. A fully discrete scheme is obtained by discretizing these problems: For
a mesh Tx on Ω let uj ∈ Sp0 (Tx) solve

(8)

∫

Ω

ε2j∇uj · ∇v + ujv dx =

∫

Ω

fv dx ∀v ∈ Sp0 (Tx)

and set

(9) uBKN := cMk
M∑

j=−M
uj.

The functions uj are Galerkin approximations to the solutions ũj := (I−ε2j∆)−1f
of singularly perturbed problems (if εj is small); Theorem 1 shows that exponential
convergence can be achieved for the errors ũj − uj if the meshes are geometrically
refined towards the edges and vertices of the polygon Ω. We therefore obtain:

Theorem 3 ([3]). Let Ω ⊂ R2 be a polygon, and let f be analytic on Ω. Let Tx
be a geometric mesh that is refined towards the edges and vertices of Ω with Lx
layers and grading factor σ ∈ (0, 1). If M ∼ p ∼ Lx, then

‖u− uBKN ‖H̃s(Ω) ≤ C exp(−bp),
where C, b are independent of p. The total problem size is O(p6).

Fig. 1 illustrates for f ≡ 1 and the L-shaped domain Ω shown in Fig. 1 the
convergence of both the Galerkin hp-FEM based on the extension problem and
the Balakrishnan formula. The error measure is |

∫
Ω
f(u − uN)| (with uN being

trΩ U
Gal
N or uBKN ). Exponential convergence in the polynomial degree is visible.
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Neural networks for the approximation of solutions of PDEs and
related problems

Ivan Oseledets

Deep learning has become very popular in the recent years, yielding wonderful re-
sults. In this talk, I gave a brief overview of basic definitions in machine learning,
deep learning and their possible applications, including solutions of PDEs, approx-
imations of solution manifolds. I also discussed the connections beween ResNet
and OdeNet.

Empirical risk minimization over deep neural networks overcomes the
curse of dimensionality in the numerical approximation of Kolmogorov

equations

Julius Berner

(joint work with Philipp Grohs, Arnulf Jentzen)

The development of new classification and regression algorithms based on empiri-
cal risk minimization (ERM) over deep neural network hypothesis classes, coined
Deep Learning, revolutionized the area of artificial intelligence, machine learning,
and data analysis. Moreover, these methods have been applied to the numerical
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solution of high dimensional PDEs with great success. Recent simulations indi-
cate that deep learning based algorithms are capable of overcoming the curse of
dimensionality for the numerical solution of linear Kolmogorov equations

{
∂tu(t, x) =

1
2Trace

(
σ(x)σT (x)Hessxu(t, x)

)
+ µ(x) · ∇xu(t, x)

u(0, x) = ϕ(x),

which are widely used in models from engineering, finance, and the natural sci-
ences [1].

We mathematically supported these empirical observations by establishing com-
bined approximation and generalization results. We considered under which con-
ditions ERM over a deep neural network hypothesis class approximates, with high
probability, the end value u(T, ·) of a d-dimensional Kolmogorov equation with
affine drift µ and diffusion σ coefficients up to error ε. We show that such an
approximation can be achieved with both the size of the hypothesis class and
the number of training samples scaling only polynomially in d and ε−1 [4]. The
proofs are based on tools from statistical learning theory [5] and the following key
properties of linear Kolmogorov equations:

(1) One can reformulate the numerical solution as a classical statistical learn-
ing problem [1].

(2) Typical initial conditions ϕ arising from problems in computational finance
are exactly representable as neural networks with ReLU activation function
without incurring the curse of dimensionality [6].

(3) Efficient approximation of the initial condition ϕ and coefficient functions
σ, µ by neural networks transfers to an efficient approximation of the end
value u(T, ·) [6].

In joint work with Dennis Elbrächter, we investigated the regularity proper-
ties of neural networks to further develop the approximation theory of neural
networks in the context of PDEs. In particular, we analyzed the (weak) deriv-
ative of a neural network with ReLU activation function [3]. This can then be
used to approximate a large class of functions (including multivariate polyno-
mials, high-frequent sinusoidal functions, and Sobolev-regular functions) in the
W 1,∞-norm [7, 8]. Moreover, one can obtain global pointwise error estimates
and Lipschitz constant estimates of the approximating networks, as required, for
instance, in (3).

To understand the optimization of neural networks (which is not included in the
analysis above) we recently considered the stability of neural network parametriza-
tion, asking if the proximity of realization functions must imply proximity of cor-
responding parametrizations. After discovering several pathologies which prevent
this in general, we established a restricted set of parametrizations where we have
stability w.r.t. to the W 1,∞-norm [2].

Future plans include the extension of the above work to the solution map
(ϕ, σ, µ, t, x) 7→ u(t, x) and to more general PDEs with stochastic representation
(general Kolmogorov equations, combined Dirichlet-Poisson problems, semi-linear
parabolic PDEs), including numerical simulations.
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Towards exponential convergence of adaptive quarklet methods

Thorsten Raasch

(joint work with Stephan Dahlke, Ulrich Friedrich, Philipp Keding,
Alexander Sieber)

We are concerned with the design and applications of compressive quarkonial
frames within the adaptive numerical solution of operator equations on a bounded
computational domain [1]. Such so-called quarklet systems can be seen as a wavelet
version of hp-finite element dictionaries, as the individual quarklet functions take
the shape of polynomially enriched spline wavelets. Rescaled quarklet systems
are frames in a large range of Sobolev and Besov spaces, including negative-order
spaces, which enables their application in numerical solvers for differential and
singular integral equations, and in anisotropic tensor product approximation.

In [2], we have shown that smooth functions with local singularities can be
approximated from spline quarklet dictionaries Ψ = {ψλ : λ ∈ J } at subexpo-
nential rates. Similar results are known for hp-finite element dictionaries since
the early 1980s [3, 4], thereby justifying the application of such super-redundant
ansatz systems to the adaptive numerical solution of operator equations.

As a first step, we have proved in [2] that that the univariate singularity function
u(x) = xγ on (0, 1), γ > 1/2, can be approximated from spline quarklets of order
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m ≥ 2 with a best N -term H1 approximation error bounded by

(1) inf
|Λ|≤N

v=
∑

λ∈Λ vλψλ

‖u− v‖H1(0,1) ≤ Ce−αN
β

, N ≥ 0,

where α, β > 0 are suitable rate parameters. A subexponential rate β ≥ 1/5 can
be achieved by expanding the variable-knot, variable degree spline approximand
from [3] into a multiscale quarklet dictionary. In fact, a more refined analysis
based on discussions during and after the workshop has revealed that β can be
improved to 1/3 in special cases, which is very close to the approximation rate
1/2 of univariate hp-finite element dictionaries [3] that, however, are not stable in
L2(0, 1).

As a second step, we have investigated the case of anisotropic edge singularities
on a two-dimensional box domain (0, 1)2. It is straightforward to see that the
special singularity function u(x) = xγ1 or, similarly, u(x) = xγ1r(x2) with r ∈
Pq, can be approximated from tensor product quarklet dictionaries at the very
same one-dimensional rates β = 1/5 or 1/3. In the case of more complicated
edge singularities like u(x) = xγ1v(x2) with smooth v, the rate β will most likely
deteriorate slightly, which is due to the additional approximation of v via, e.g.,
truncated Legendre series. However, we expect that for such anisotropic edge
singularities and also for corner singularities like u(x) = ‖x‖γ2 , the applicateion
of sparse grid tensor product approximation techniques known from the wavelet
setting [5] can ensure the exponential approximability of singularity functions from
quarklet dictionaries with rates that only mildly depend on the spatial dimension.

Current research focuses on the design and analysis of adaptive quarklet schemes
that can realize such subexponential rates also in practice, without a priori assump-
tions on the distribution of active quarklet expansion coefficients.
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Higher order trace finite element methods for surface Stokes equations

Arnold Reusken

(joint work with Thomas Jankuhn, Maxim Olshanskii)

In the past two decades many papers on numerical methods for scalar partial
differential equations on surfaces have appeared, starting with the work of Dziuk-
Elliott around 2000, cf. the overview paper [2]. Very few papers on numerical
methods for surface (Navier-)Stokes equations have appeared. In recent work
[1, 3, 4, 5] we studied numerical methods for surface Stokes equations. In particular
a class of unfitted finite element methods, also called trace FEM or cut FEM, is
investigated. In this presentation recent results, obtained in [5, 3], are treated.

We consider the surface analogon of the very popular Taylor-Hood pair. Not
only the lowest order P2–P1 pair but also higher order ones are treated. Compared
to Stokes equations in Euclidean domains, the surface variant leads to several ad-
ditional issues that have to be addressed. The two most important issues are the
following:
1. Tangential flow constraint. In surface flow problems the flow has to be tan-
gential to the surface. It is not obvious how this constraint (which is trivially
satisfied in Euclidean domains) can be treated numerically. A technique used in
several recent papers is as follows: the surface PDE for the tangential flow field is
replaced by a PDE that allows fully three-dimensional velocities, defined on the
surface and a penalty approach is used to control the component of the velocity
field that is normal to the surface.
2. Sufficiently accurate geometry approximation. This topic resembles the problem
of a sufficiently accurate boundary approximation for (Navier-)Stokes equations in
Euclidean domains. For the latter the isoparametric finite element technique is a
standard approach. It is evident that for the case in which the domain is a surface
the issue of geometry approximation becomes much more important. To say it dif-
ferently, for problems in Euclidean domains with a polygonal boundary standard
higher order finite elements can yield optimal higher order accuracy, whereas in
a surface finite element method one always needs a “sufficiently accurate” surface
approximation for optimal higher order accuracy.

As mentioned above, we restrict to trace finite element techniques. In such
a setting, already for the case of scalar surface PDEs, one needs an appropriate
stabilization to control instabilities caused by “small cuts”.

In this setting several important questions arise that are non-existent in Stokes
problems in Euclidean domains. For example, what is an appropriate scaling (in
terms of the mesh size parameter h) of the penalty parameter, or, how does the
error in the geometry approximation influence the discretization error.

We present a class of mixed trace finite element methods with the following key
ingredients:
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• We use a penalty formulation for treating the tangential constraint.
• We use the parametric trace finite element spaces, known from scalar sur-
face PDEs and unfitted FEM for scalar interface problems, to obtain a
higher order surface approximation.

• A specific stabilization, namely the so-called volume normal derivative
stabilization, known from the literature, is used.

• Specific parameter choices are proposed, based on recently obtained rig-
orous results on P2–P1 surface Taylor-Hood elements and on error bounds
for trace FEM applied to surface vector-Laplace equations.

In the presentation these ingredients are explained and rigorous results concern-
ing LBB stability and error bounds are briefly addressed. Results of numerical
experiments are shown that illustrate the optimal order convergence of this class
of finite element methods for surface Stokes equations.
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Quasi-optimal and pressure robust discretizations of the Stokes
equations.

Pietro Zanotti

(joint work with Christian Kreuzer, Rüdiger Verfürth)

Abstract discretization of the Stokes equations. Let Ω ⊆ Rd, d ∈ {2, 3}, be
an open and bounded polytopic domain. The weak formulation of the stationary
Stokes equations in Ω, with viscosity µ > 0 and load f ∈ H−1(Ω), looks for
u ∈ H1

0 (Ω)
d and p ∈ L2

0(Ω) such that

(1)

∀v ∈ H1
0 (Ω)

d µ

∫

Ω

∇u : ∇v −
∫

Ω

pdivv = 〈f, v〉

∀q ∈ L2
0(Ω)

∫

Ω

qdivu = 0.

Here : denotes the euclidean scalar product of d× d tensors and 〈·, ·〉 is the dual
pairing of H−1(Ω) and H1

0 (Ω)
d. Due to the boundary condition on the analytical

velocity u, the analytical pressure p belongs to L2
0(Ω) := {q ∈ L2(Ω) |

∫
Ω q = 0}.
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Let Vh and Qh be finite dimensional linear spaces. We assume Qh ⊆ L2
0(Ω),

whereas Vh is possibly nonconforming, meaning that it is not required to be a
subspace of H1

0 (Ω)
d. Hence, we equip the sum H1

0 (Ω)
d + Vh with an extension

‖ · ‖h of the H1-norm. We assume also that the pair Vh/Qh is inf-sup stable,
meaning that there is a bilinear form bh : Vh ×Qh → R satisfying

(2) sup
vh∈Vh

bh(vh, qh)

‖vh‖h
≥ β‖qh‖L2(Ω)

for some β > 0 and for all qh ∈ Qh.
We consider the following abstract discretization of (1): Find uh ∈ Vh and

ph ∈ Qh such that

(3)
∀vh ∈ Vh µah(uh, vh) + bh(vh, ph) = 〈f, Ehvh〉
∀qh ∈ Qh bh(uh, qh) = 0,

where ah : Vh × Vh → R is a coercive bilinear form and Eh : Vh → H1
0 (Ω)

d is a
linear operator. It is also worth introducing the discrete divergence div

h
: Vh → Qh

(4) ∀qh ∈ Qh

∫

Ω

qhdivhvh = −bh(vh, qh).

Quasi-optimality and pressure robustness. We are interested in the question
whether the discretization (3) enjoys the following a priori error estimates.

(i) We say that (3) is a quasi-optimal discretization of (1) when there is a
constant Cqo ≥ 1 such that

µ‖u− uh‖h + ‖p− ph‖L2(Ω) ≤ Cqo

(
µ inf
wh∈Vh

‖u− wh‖h + inf
qh∈Qh

‖p− qh‖h
)

for all f ∈ H−1(Ω) and µ > 0.
(ii) We say that (3) is a quasi-optimal and pressure robust discretization of (1)

when there is a constant Cqopr ≥ 1 such that

‖u− uh‖h ≤ Cqopr inf
wh∈Vh

‖u− wh‖h

for all f ∈ H−1(Ω) and µ > 0.

Property (i) entails that the pair (uh, ph) is a near-best approximation of (u, p)
in Vh × Qh. Similarly, property (ii) entails that uh is a near-best approximation
of u in Vh. An abstract framework to verify the validity of such conditions and to
identify the respective best constants can be found in [5]. Interestingly, property
(ii) ensures also that uh is pressure robust, i.e. independent of p and µ, thus
reproducing a remarkable invariance property of its analytical counterpart u. The
importance of pressure robustness in the context of the (Navier)-Stokes equations
has been the subject of several recent research papers, see e.g. [2, 4] and the
references therein.

The following results are well-established in the literature, see [1, Chapter 5].
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• Property (i) holds if (3) is a standard discretization of (1) with a conform-
ing pair, i.e. Vh ⊆ H1

0 (Ω)
d and

ah(wh, vh) =

∫

Ω

∇wh : ∇vh bh(vh, qh) = −
∫

Ω

qhdivvh Eh = IdVh
.

Moreover, the constant Cqo can be bounded in terms of the inverse of the
inf-sup constant β from (2).

• Properties (i) and (ii) hold if (3) is a standard discretization of (1) with
a conforming and divergence-free pair pair, meaning that Vh ⊆ H1

0 (Ω)
d

with divVh = Qh and ah, bh and Eh as above. In this case, both Cqo and
Cqopr are bounded in terms of β−1.

More recently, the following result has been established for general conforming
pairs Vh/Qh of finite element spaces on a simplicial mesh M of Ω, see [3].

• Assume that the discrete divergence divh from (4) satisfies

(5) ∀K ∈ M
∫

K

divhvh =

∫

K

divvh

for all vh ∈ Vh. There is a linear operator Eh : Vh → H1
0 (Ω), which can

be computed element-wise, such that divEhvh = divhvh. Then, setting

ah(wh, vh) =

∫

Ω

∇Ehwh : ∇Ehvh +
∫

Ω

∇(Ehwh − wh) : ∇(Ehvh − vh)

with η > 0 and letting bh be as above, the discretization (3) enjoys proper-
ties (i) and (ii), with Cqo and Cqopr depending only on β−1 and the shape
parameter of M.

Variants of this result have been established for nonconforming pairs as well,
see [3, 6].

Future perspectives. The following issues are still left open by the aforemen-
tioned results.

• The a priori estimates in (i) and (ii) are not fully satisfactory if the ap-
proximation of p by ph is concerned separately from the approximation of
u by uh. Indeed, the pressure error can be guaranteed to be smaller than a
prescribed tolerance only if both the best velocity error and the best pres-
sure are sufficiently small. In other words, the velocity robustness of the
pressure error is not guaranteed. In this respect, it would be desirable to
find pairs Vh/Qh and (computationally feasible) forms ah, bh and Eh such
that the discretization (3) satisfies a pressure error estimate in the form
‖p− ph‖L2(Ω) ≤ Cqovr infqh∈Qh

‖p− qh‖L2(Ω) for some constant Cqovr ≥ 1

and for all f ∈ H−1(Ω) and µ > 0.
• In general, condition (5) fails to hold for conforming pairs with continu-
ous pressure (i.e. Qh ⊆ C0(Ω)), like the so-called Hood-Taylor pairs. It
is shown in [3, section 4.2], that this issue can be circumvented, at the
price of a significantly more involved construction of the operator Eh. A
simplification of that idea could be obtained introducing a nonstandard
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modification of the bilinear form bh (or, equivalently, of the discrete di-
vergence divh). This, however, requires the proof of a new variant of the
inf-sup condition (2).
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On a diffuse interface approach to PDEs on surfaces and networks

Björn Stinner

(joint work with Oliver Dunbar, Kei Fong (Andrew) Lam, Andreas Dedner,
Charles Elliott)

Problems with free, usually moving boundaries involving lateral processes feature
in numerous applications, for instance, in cell biology (biochemistry on the cell
boundaries), in materials science (diffusion along grain boundaries), or in multi-
phase flow (surface active agents). We are particularly interested in the case of
more than two phases so that the phase interfaces can form triple junctions where
three phases meet. Diffuse interface models based on the phase field methodology
represent the phase interfaces by thin layers so that, as the interfacial thickness
converges to zero, a model with moving hypersurfaces is obtained. Interface cap-
turing approaches such as the phase field method naturally account for topological
changes and make relatively standard numerical approches such as adaptive finite
element methods accessible.

Our objective has been to account for any interfacial processes in the diffuse
interface approach. Assuming that these phenomena can be described by partial
differential equations on the moving hypersurfaces, the question is how these equa-
tions can be consistently approximated if the hypersurfaces are replaced by thin
layers, and are recovered when the thickness converges to zero.

To illustrate the problem, consider a stationary situation as in Figure 1 on the
left. Three phases occupying domains Ω(i) are separated by interfaces Γ(i,j) that
form a triple junction T (i,j,k), i, j, k ∈ {0, 1, 2}. On the interfaces there are species
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Figure 1. Domain separated into three phases (left) for some
numerical tests and a cross profile of a function to approximate a
surface distribution (right).

densities c(i,j) subject to diffusion equations of the form

∂tc
(i,j) = −∇Γ(i,j) · J(i,j)

c , J(i,j)
c = −M (i,j)

c ∇Γ(i,j)c(i,j)

where ∇Γ(i,j) is the surface gradient on Γ(i,j) andM
(i,j)
c > 0 is a diffusion constant.

In the triple junctions we assume a Robin type condition of the form

J(i,j)
c · µ(i,j,k) = β(i,j)↔(i,k)

(
c(i,j) − c(i,k)

)
+ β(i,j)↔(j,k)

(
c(i,j) − c(j,k)

)

where µ(i,j,k) is the external co-normal of Γ(i,j) and the β(i,j)↔(i,k) > 0 are con-
stants.

Following and extending the arguments in [1] we can write this problem in a
distributional form:

∂t
(
δΓ(i,j)c(i,j)

)
−∇ ·

(
δΓ(i,j)M (i,j)

c ∇Γ(i,j)c(i,j)
)

=
∑

k 6=i,j
τT (i,j,k)

(
β(i,k)↔(i,j)(c

(i,k) − c(i,j)) + β(j,k)↔(i,j)(c
(j,k) − c(i,j))

)

where δΓ(i,j)(φ) =
∫
Γ(i,j) φ and τT (i,j,k)(φ) = φ(T (i,j,k)) for φ ∈ C∞

0 (Ω) are interface
and triple junction distributions, respectively. An idea to model these equations
in a diffuse interface is to replace these distributions by smoothed distributions
δi,j → δΓ(i,j) and τi,j,k → τT (i,j,k) as ε→ 0 where ε is a small smoothing parameter
related to the interfacial thickness. A cross profile for δi,j is illustrated in Figure
1 on the right. These concepts date back to [6] and have been rigorously proved
to be successful, for instance, in [4] for the case of a moving curve.

Computational approaches have to account for the degeneracy of the profile
functions δi,j and τi,j,k. Own computations are based on the method presented in
[5]. The profile functions are expressed in terms of phase fields that are relaxed
using the method described in [2]. In a specific example illustrated in Figure 1
on the left, species are present at the interfaces Γ(1,2) (green interval) and Γ(0,1)

(blue interval) only so that the problem can be re-parameterized and formulated
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Figure 2. Left: Snapshot of a typical simulation, we display the
fields δi,jc

(i,j). Right: Convergence of profiles close to the triple
junction as ε decreases (from grey to blue), the solution to the
limiting model is black.

over a real interval, which here is chosen so that the triple junction is in the point
zero. Initially, the species densities are zero. Mass is then provided by a Dirichlet
boundary condition in the point where Γ(1,2) intersects with the domain boundary
(green dot in Figure 1), whilst we impose a no-flux boundary condition on the
point where Γ(0,1) intersects the boundary (blue dot).

Figure 2 on the left shows a snapshot after some time, indicating that the species
has been diffusing into Γ(1,2) and has been transported to the other interface Γ(0,1)

through the triple junction. As ε→ 0 we observe convergence of the profiles along
the interfaces to the solution profile of the limiting model. See Figure 2 on the
right for a zoom into several profiles close to the triple junction (which is located
at zero). A formal asymptotic analysis predicts convergences rates of one, EOCs
for our simulations reveal slightly lower values around 0.9.

The above approach can been used to model surface active agents in multi-
phase flow involving three or more fluids. We refer to [3] for a recent preprint on
a thermodynamically consistent phase field model for this problem including an
formal asymptotic analysis.
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A fully practical phase field method for an elliptic surface PDE

Klaus Deckelnick

(joint work with John W. Barrett, Vanessa Styles)

Let Γ ⊂ Rn+1 (n = 1, 2) be a compact hypersurface without boundary. We con-
sider the elliptic surface PDE

(1) −∆Γu+ u = f on Γ,

in which ∆Γ denotes the Laplace–Beltrami operator and f is a given function on
Γ. Let us briefly describe the various approaches in order to tackle (1) numerically.
Further references can be found in the survey articles [8] and [2].
A finite element method that uses a shape regular polyhedral approximation of
Γ was proposed by Dziuk in [7]. The trace finite element method, suggested by
Olshanskii, Reusken and Grande in [11], employs an approximation of Γ that is in
general not regular. In both approaches piecewise linear finite elements are used
and optimal error estimates are obtained. Extensions of the above approaches to
higher order FEM spaces have been investigated in [6] and [9] respectively.
If Γ is given implicitly, methods which avoid a direct approximation of Γ have been
proposed. In [1] the authors consider a PDE which holds in an open neighbourhood
of Γ and has the property that (1) is satisfied simultaneously on all neighboring
level surfaces. The discretization of this problem then is amenable to bulk methods:
in [1] finite differences are used, while Burger investigates a finite element scheme
in [3] . An error analysis in a narrow band setting has been carried out in [4].
A difficulty for the above approach lies in the fact that the extended PDE is
degenerate in normal direction. One can address this problem by considering the
extension of u which is constant in normal direction as it is done in the closest
point method, see e.g. [10] in the parabolic case.
In order to make this idea more precise we denote by d the signed distance function
to Γ. It is well known that there exists δ > 0 such that for every x ∈ Uδ :=
{x ∈ Rn+1 | |d(x)| < δ} there exists a unique p(x) ∈ Γ such that |x − p(x)| =
miny∈Γ |x− y| and

x = p(x) + d(x)ν(p(x)),

where ν denotes the unit outer normal to Γ. The function ue : Uδ → R given
by ue(x) := u(p(x)) then extends u constantly in normal direction and it can be
shown that ue satisfies the uniformly elliptic PDE

(2) −∆ue + ue = fe + d g(·,∇Γu,∇2
Γu) in Uδ.

The derivation of (2) and the precise form of g can be found in [5], where a finite
element method based on (2) is proposed and analyzed both on an approximate
surface and in a narrow band around Γ which is not fitted to a bulk mesh.
A way to aovid the calculation of an approximate surface or a narrow band is
offered by a diffuse interface approach, see [12]. In this approach, the geometry
is incorporated into a phase field function which enters as a weight into the weak



2528 Oberwolfach Report 40/2019

formulation. More precisely, let ǫ > 0 and define ̺(x) := σ
( d(x)

ǫ

)
, where the profile

function σ is chosen as

σ(r) :=

{
cos4 r |r| ≤ π

2 ,

0 |r| > π
2 .

Multiplying (2) by ǫ−1v ̺, integrating over U ǫπ
2

and using integration by parts as
well as the relation ∇ue · ∇d = 0 we obtain

(3)
1

ǫ

∫

U ǫπ
2

(
∇ue · ∇v + ue v

)
̺ dx =

1

ǫ

∫

U ǫπ
2

(
fe + d g

)
v ̺ dx, ∀v ∈ H1(U ǫπ

2
).

In view of the coarea formula, the above relation can be seen to approximate the
weak form of (1) for small ǫ > 0.
Let us next use (3) in order to derive a finite element scheme. To do so, we denote
by (Th)0<h<h0 a regular family of triangulations of a neighbourhood of Γ with
mesh size h := maxT∈Th

diamT < ǫ. In order to define our computational domain
we set

T̃h := {T ∈ Th | |d(a)| < ǫ arccos(
h

ǫ
) for each vertex a ∈ T } and Dh :=

⋃

T∈T̃h

T.

Introducing the finite element space

Vh := {vh ∈ C0(Dh) | vh|T ∈ P1(T ) for all T ∈ T̃h}
we now define our fully practical scheme as follows: find uh ∈ Vh such that

(4)
1

ǫ

∫

Dh

(
∇uh · ∇vh Ih̺ + Ih

(
uhvh̺

))
dx =

1

ǫ

∫

Dh

Ih
(
fevh̺

)
dx ∀vh ∈ Vh.

In the above, Ih denotes the standard Lagrange interpolation operator, so that
the implementation of the method is straightforward. Our main result reads:

Theorem. The scheme (4) has a unique solution uh ∈ Vh and the error
eh := Ihu

e − uh satisfies

(1
ǫ

∫

Dh

(
|∇eh|2Ih̺+ Ih(e

2
h ̺)

)
dx

) 1
2 ≤ C

(
h+ (

h

ǫ
)2 + ǫ2

)
.

If in addition there exists a constant γ > 0 which is independent of h such that
γh ≤ hT for all T ∈ Th with |T ∩ Γ| > 0, then

‖u− uh‖H1(Γ) ≤ C

√
ǫ

h

(
h+ (

h

ǫ
)2 + ǫ2

)
.

Remark. The above result suggests to couple the width ǫ to the mesh size h in
the form ǫ =

√
h yielding uh → u in H1(Γ) with a rate of O(h

3
4 ) as h → 0. A

relation of the form ǫ = hα with 1
2 < α < 1 will give a worse convergence rate, but

leads to a smaller computational effort.



Innovative Approaches to the Numerical Approximation of PDEs 2529

References

[1] M. Bertalmio, L.T. Cheng, S. Osher, G. Sapiro, Variational problems and partial differen-
tial equations on implicit surfaces: The framework and examples in image processing and
pattern formation, J. Comput. Phys. 174, 759–780 (2001).

[2] A. Bonito, A. Demlow, R.H. Nochetto, Finite element methods for the Laplace-Beltrami
operator, arXiv:1906.02786, to appear in the Handbook of Numerical Analysis (2019).

[3] M. Burger, Finite element approximation of elliptic partial differential equations on implicit

surfaces, Comput. Vis. Sci. 12, 87–100 (2009).
[4] K. Deckelnick, G. Dziuk, C.M. Elliott, C.-J. Heine, An h-narrow band finite-element method

for elliptic equations on implicit surfaces, IMA J. Numer. Anal. 30, 351–376 (2010).
[5] K. Deckelnick, C.M. Elliott, T. Ranner, Unfitted finite element methods using bulk meshes

fur surface partial differential equations, SIAM J. Numer. Anal. 52, 2137–2162 (2014).
[6] A. Demlow, Higher-order finite element methods and pointwise error estimates for elliptic

problems on surfaces, SIAM J. Numer. Anal. 47, no. 2, 805–827 (2009).
[7] G. Dziuk, Finite elements for the Beltrami operator on arbitrary surfaces, in: Partial dif-

ferential equations and calculus of variations, S. Hildebrandt and R. Leis, eds., vol. 1357 of
Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1988, pp. 142–155.

[8] G. Dziuk, C.M. Elliott, Finite element methods for surface PDEs, Acta Numer. 22, 289–396
(2013).

[9] J. Grande, C. Lehrenfeld, A. Reusken, Analysis of a high-order trace finite element method
for PDEs on level set surfaces, SIAM J. Numer. Anal. 56, 228–255 (2018).

[10] C.B Macdonald, S.J Ruuth, The Implicit Closest Point Method for the Numerical Solution
of Partial Differential Equations on Surfaces, SIAM J. Sci. Comput. 31, 4330–4350 (2009).

[11] M.A. Olshanskii, A. Reusken, J. Grande, A finite element method for elliptic equations on
surfaces, SIAM J. Numer. Anal. 47, no. 5, 3339–3358 (2009).

[12] A. Rätz, A. Voigt, PDE’s on surfaces - a diffuse interface approach, Comm. Math. Sci. 4,
575–590 (2006).

Port-Hamiltonian Partial- Differential-Algebraic Systems: A New
Approach for Multiscale, Multiphysics Modelling, Simulations and

Control

Volker Mehrmann

Motivated by modern energy networks, in particular those from different physi-
cal domains the modelling framework of port-Hamiltonian systems is discussed.
The classical PH approach is extended to construct dynamical stems (partial-
differential-algebraic equations). A new algebraically and geometric defined struc-
ture is derived which has more favourable mathematical properties. It is shown
that this structure is invariant under projection, changes of basis in space and
time, and a dissipation inequality holds. We show that the new representation is
close to physics, robust to perturbations and many mathematical properties (like
stability and positivity ) follow from the structure.
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Space–time finite element methods

Olaf Steinbach

(joint work with Marco Zank)

Space–time finite element methods for time–dependent partial differential equa-
tions are well suited for an adaptive resolution of the solution simultaneously in
space and time, and for the space–time parallel solution of the resulting linear
systems. Applications include problems in moving domains, and optimal con-
trol problems subject to time–dependent partial differential equations, where the
adjoint problem is backward in time.

As a first model problem we consider the Dirichlet problem for the heat equa-
tion,

α∂tu(x, t)−∆xu(x, t) = f(x, t) for (x, t) ∈ Q := Ω× (0, T ),

u(x, t) = 0 for (x, t) ∈ Σ := ∂Ω× (0, T ),

u(x, 0) = 0 for x ∈ Ω,

where Ω ⊂ Rn, n = 2, 3, is a bounded Lipschitz domain, α > 0 is the heat capacity,
and f is a given source term. The related variational formulation is to find u ∈ X
such that
∫ T

0

∫

Ω

[
α∂tu(x, t)v(x, t) +∇xu(x, t) · ∇xv(x, t)

]
dx dt =

∫ T

0

∫

Ω

f(x, t)v(x, t) dx dt

is satisfied for all v ∈ Y , where the test and ansatz spaces Y and X have to be
specified, respectively. Unique solvability of this general Galerkin–Petrov varia-
tional formulation then follows from a stability condition of the associated bilinear
form,

cS ‖u‖X ≤ sup
06=v∈Y

a(u, v)

‖v‖Y
for all u ∈ X.

The most standard choice, see, e.g., [3, 4], is to consider the Bochner spaces
X := L2(0, T ;H1

0 (Ω)) ∩ H1
0,(0, T ;H

−1(Ω)) and Y := L2(0, T ;H1
0 (Ω)). Moreover,

for conforming finite element spaces Xh ⊂ X and Yh ⊂ Y satisfying Xh ⊂ Yh and
using a discrete norm in Xh we can prove a discrete inf–sup condition, and we
can establish quasi–optimal a priori error estimates [3] for the space–time finite
element solution. A different choice is to consider the anisotropic Sobolev spaces

X := H
1,1/2
0;0, (Q) = L2(0, T ;H1

0(Ω)) ∩ H
1/2
0, (0, T ;L2(Ω)), and Y := H

1,1/2
0;,0 (Q),

respectively; for the related stability condition see [5]. For u ∈ H1
0,(0, T ) we may

consider the Fourier series

u(t) =

∞∑

k=0

uk sin
((π

2
+ kπ

) t
T
, uk =

2

T

∫ T

0

u(t) sin
((π

2
+ kπ

) t
T
dt,

and we define the modified Hilbert transformation [5]

(HTu)(t) =

∞∑

k=0

uk cos
((π

2
+ kπ

) t
T
.
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It turns out that HT : H1
0,(0, T ) → H1

,0(0, T ) is norm preserving, non–negative,

i.e., 〈HT v, v〉L2(0,T ) > 0 for all v ∈ H1
0,(0, T ), and the bilinear form 〈∂tu,HT v〉(0,T )

is self–adjoint and elliptic, i.e., 〈∂tv,HT v〉(0,T ) = ‖v‖2
H

1/2
0, (0,T )

. Hence we consider

the Galerkin–Bubnov variational formulation to find u ∈ H
1,1/2
0;0, (Q) such that

〈∂tu,HT v〉Q + 〈∇xu,∇xHT v〉L2(Q) = 〈f,HT v〉Q
is satisfied for all v ∈ H

1,1/2
0;0, (Q). Again we can establish a related inf–sup stability

condition [5]. Moreover, for any conforming finite element approximation Xh ⊂ X
we have unique solvability of the space–time finite element scheme, and when
consider space–time tensor–product approximations we can prove quasi–optimal
a priori error estimates. For a given space–time finite element solution one can
define suitable a posteriori error indicators to drive an adaptive refinement simul-
taeneously in space and time, see the discussion as given in [4]. For the solution of
the resulting linear system of algebraic equations one may use parallel iterative so-
lution strategies, in combination with geometric and algebraic multigrid methods,
see, e.g., [4].

As a second model problem we consider the Dirichlet problem for the wave
equation,

∂ttu(x, t)−∆xu(x, t) = f(x, t) for (x, t) ∈ Q := Ω× (0, T ),

u(x, t) = 0 for (x, t) ∈ Σ := ∂Ω× (0, T ),

u(x, 0) = ∂tu(x, t)|t=0 = 0 for x ∈ Ω.

The related variational formulation is to find u ∈ X := H1,1
0;0,(Q) such that

−〈∂tu, ∂tv〉L2(Ω) + 〈∇xu,∇xv〉L2(Ω) = 〈f, v〉Q
is satisfied for all v ∈ H1,1

0;,0(Q). As in the parabolic case we can establish unique

solvability of the space–time variational formulation [5], but we have to assume
f ∈ L2(Q). As in the case of the heat equation we can introduce a modified Hilbert

transformation H̃T : H1
0,(0, T ) → H1

,0(0, T ), given as (H̃T v)(t) := v(T ) − v(t).
However, for a conforming finite element approximation Xh ⊂ X , and when using
space–time tensor–product finite element spaces, we have to assume a CFL condi-
tion ht ≤ hx/

√
n which restricts the use of adaptive refinements. Instead, we can

consider a stabilized variational formulation to find ũh ∈ Xh such that

〈∂tũh, ∂tvh〉L2(Ω) + 〈∇xQht ũh,∇xH̃T vh〉L2(Ω) = 〈f, H̃T vh〉Q
is satisfied for all vh ∈ Xh, where Qht is the L

2 projection on the space of functions
which are piecewise constant in time. It turns out that this perturbed variational
formulation is unconditionally stable, and provides optimal convergence of the
space–time finite element error in L2(Q) and H1(Q), respectively, see [6].

The approach as given for the scalar wave equation can be generalized when
considering the electromagnetic wave equation [2]. Moreover, one may also con-
sider space–time boundary element methods [1], and the coupling of space–time
finite and boundary element methods.
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A structure-preserving finite element method for uniaxial nematic
liquid crystals

Juan Pablo Borthagaray

(joint work with Ricardo H. Nochetto, Shawn W. Walker)

We consider a uniaxially-constrained Landau-de Gennes model for nematic liquid
crystals. In such a model, a tensor field Q(x) measures the discrepancy between
the probability distribution of the molecular orientation at x and a uniform distri-
bution on Sd−1 [5]. We assume that Q takes the state Q = s

(
n⊗ n− 1

3I
)
, where

the scalar field s is called the degree of orientation.

Formulation of the problem. Let Θ = n⊗ n above. We study a one-constant
model, in which the energy is given by Euni[Q] := Euni−m[s,Θ] + Ebulk[s], with

Euni−m[s,Θ] :=
1

2

(
d− 1

d

∫

Ω

|∇s|2 dx+

∫

Ω

s2|∇Θ|2 dx
)
, Ebulk[s] :=

∫

Ω

ψ(s) dx.

Above, the function Euni−m is an elastic energy, whereas Ebulk is a bulk energy
with a double-well potential ψ that confines the eigenvalues of Q to a physically
meaningful range. Introducing the auxiliary variable U = sΘ yields the identity

Euni−m[s,Θ] =
1

2

(
−1

d

∫

Ω

|∇s|2 dx +

∫

Ω

|∇U|2 dx
)

=: Ẽuni−m[s,U].

This formula shows that U must be of class H1 in order to the energy be finite.
Motivated by this observation, we consider the admissible class

Auni :={(s,Θ) ∈ H
1(Ω) × [L∞(Ω)]d×d : (s,U,Θ) satisfies (1), with U ∈ [H1(Ω)]d×d},
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with the structural condition

− 1

d− 1
≤ s ≤ 1, U = sΘ, Θ ∈ Ld−1 a.e. in Ω,(1)

where Ld−1 := {A ∈ Rd×d : there exists n ∈ Sd−1, A = n ⊗ n}. Our problem
consists in seeking the minimizer of Euni overAuni. Naturally, boundary conditions
should be incorporated in the model; here, we omit the details for brevity.

Discretization. We assume Th = {T } is a conforming simplicial triangulation of
Ω, and introduce the discrete spaces

Sh := {sh ∈ H1(Ω) : sh|T is affine for all T ∈ Th},
Uh := {Uh ∈ [H1(Ω)]d×d : Uh|T ∈ P1(T ), ∀T ∈ Th},
Th := {Θh ∈ Uh : Θh(xi) ∈ Ld−1, for all nodes xi}.

We consider the discrete admissible class,

Ah
uni :=

{
(sh,Θh) ∈ Sh × Th : (sh,Uh,Θh) satisfies (2), with Uh ∈ Uh

}
,

where

(2) Uh = Ih(shΘh), − 1

d− 1
≤ sh ≤ 1 in Ω.

We set δijsh := sh(xi)− sh(xj), δijΘh := Θh(xi)−Θh(xj), and define

E
h
uni−m[sh,Θh] :=

d− 1

4d

n
∑

i,j=1

kij (δijsh)
2 +

1

4

n
∑

i,j=1

kij

(

sh(xi)
2 + sh(xj)

2

2

)

|δijΘh|
2
.

Above, the first term corresponds to 1
2

∑n
i,j=1 kij (δijsh)

2
=

∫
Ω |∇sh|2dx, while the

second term is a first order approximation of
∫
Ω
s2|∇Θ|2dx. The bulk energy is

discretized in a standard fashion, namely, Ehbulk[sh] :=
∫
Ω
ψ(sh)dx.

Our discrete problem consists in finding a minimizer of

Ehuni[sh,Θh] := Ehuni−m[sh,Θh] + Ehbulk[sh]

over Ah
uni. Because the discrete spaces consist of piecewise linear functions, the

structural condition Uh = shΘh is only satisfied at the nodes (cf. (2)); thus, there
is a variational crime that we need to account for. More precisely, if we define

Ẽhuni−m[sh,Uh] :=
1

2

(
−1

d

∫

Ω

|∇sh|2dx+

∫

Ω

|∇Uh|2dx
)
,

then the consistency of the method can be expressed as whether

lim
h→0

Ehuni−m[sh,Θh]− Ẽhuni−m[sh,Uh] = 0.
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Computation of discrete minimizers. We propose an alternating direction
method that, at each step, first performs a tangential variation on the director
line field and then a gradient flow step on the degree of orientation. Let

Vh(nh) = {vh ∈ [H1(Ω)]d : vh|T ∈ P1(T ) ∀T ∈ Th,
vh(xi) · nh(xi) = 0 for all nodes xi}.

Given (s0h,Θ
0
h) ∈ Ah

uni, with Θ0
h = n0

h ⊗ n0
h, and a time step δt > 0, we iterate

steps 1–3 for k ≥ 0:
1. (Weighted) tangent flow step for Θh: find tkh ∈ Vh andTk

h = nkh⊗tkh+tkh⊗nkh
such that, for all Vh = nkh ⊗ vh + vh ⊗ nkh,

(3)
1

δt

∫

Ω

(∇tkh : ∇vh(s
k
h)

2 + tkh · vh) + δΘE
h
uni−m[s

k
h,Θ

k
h +Tk

h;Vh] = 0.

2. Projection: update Θk+1
h ∈ Th at each node xi by

(4) Θk+1
h (xi) :=

nkh(xi) + tkh(xi)

|nkh(xi) + tkh(xi)|
⊗ nkh(xi) + tkh(xi)

|nkh(xi) + tkh(xi)|
.

3. Gradient flow step for sh: find s
k+1
h ∈ Sh such that

1

δt

∫

Ω

(sk+1
h − skh) zh + δsE

h
uni[s

k+1
h ,Θk+1

h ; zh] = 0 ∀zh.

The algorithm above is energy-decreasing provided meshes are weakly acute
and the time step is sufficiently small [2].

Theorem 1. If the meshes are weakly acute and δt ≤ Chd/2 then, for all N ≥ 1,

E
h
uni[s

N
h ,Θ

N
h ] +

1

δt

N−1
∑

k=0

(

‖skh∇t
k
h‖

2
L2(Ω)+‖tkh‖

2
L2(Ω) + ‖sk+1

h − s
k
h‖

2
L2(Ω)

)

≤ E
h
uni[s

0
h,Θ

0
h].

Two comments are in order. The weakly acuteness requirement is needed to
guarantee that step 2 be energy-decreasing [1]. We also point out that, although
our method is implicit, we have a time-step restriction. This is caused by the
second-order inconsistency when updating Θk

h with a non-tangential variation.

Indeed, a proper tangential perturbation of Θk
h would consist in taking Θ̃k+1

h =

Θk
h+Tk

h. However, this update would not have rank one. Our choice in (4) (before
normalization) preserves the rank-one constraint but differs from Θk

h + Tk
h by a

term tkh ⊗ tkh. Therefore, we need to bound

1

2

∑

i,j

kij

(
skh(xi)

2 + skh(xj)
2

2

)
|δij(tkh ⊗ tkh)|2 ≈

∫

Ω

(skh)
2|∇(tkh ⊗ tkh)|2dx

in terms of the norm induced by the inner product in (3). In the end, this intro-
duces a time-step restriction.
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Convergence. Convergence of our numerical scheme is expressed in terms of the
Γ-convergence of the energy minimization problems as h → 0. We follow the
general principle [3]

equi-coerciveness + Γ-convergence ⇒ convergence of minimum problems.

Equi-coercivity of the discrete energies and weak-lower semicontinuity can be
proved by essentially the same arguments as in [4]. The construction of a recovery
sequence (or lim-sup inequality) depends on the use of Lagrange interpolation: we
recall that our discrete admissibility conditions (2) are enforced nodewise. There-
fore, because the natural space for (s,U) is [H1(Ω)]d×d, a key component of our
work is showing that smooth (or at least continuous) pairs (s,U) are dense in
Auni. As a final result, we derive the following theorem [2].

Theorem 2. Let (sh,Uh,Θh) ∈ Ah
uni be a sequence of global minimizers of the

discrete energies Ehuni. Then, every cluster point is a global minimizer of the
continuous energy Euni.
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On analysis of discrete exterior calculus

Gantumur Tsogtgerel

(joint work with Erick Schulz)

Among the major applications of discrete exterior calculus (DEC, in the sense of
[1]) are a discretization of the Hodge-Laplace operator and various related prob-
lems. However, convergence issues for those problems are not completely resolved;
as far as we are aware, there is no proof of convergence except for the Poisson
equation in two dimensions, which is immediate because the discrete problem is
identical to the one that arises from affine finite elements. Moreover, even in two
dimensions, there have been some puzzling numerical experiments reported in the
literature, apparently suggesting that there is convergence without consistency.

In [2], we developed a general independent framework for analyzing issues such
as convergence of DEC without relying on theories established for other discretiza-
tion methods, and demonstrate its usefulness by proving that DEC solutions to
the scalar Poisson problem in arbitrary dimensions converge to the exact solution
as the mesh size tends to 0. The proved rate of convergence in H1-type norms is
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O(h), which is consistent with general expectations and numerical experiments.
However, our proof only gives the convergence rate O(h) for the L2-type norms,
although numerical experiments and comparison with finite element methods in-
dicate that the true convergence rate is indeed O(h2).

Since the publication of [2], we have made an attempt to extend our theory
to general p-forms, and as a result have collected some evidence that in fact no
convergence occurs for general p-forms.

Conjecture: DEC does not converge in general.

However, despite the possibility of this conjecture being true, DEC is thriving
in many fields, which provide many interesting theoretical problems. Thus I end
this abstract by listing some open problems.

• Prove that DEC converges in L2 with the rate O(h2).
• Study convergence of DEC for the B

∗-problem.
• DEC for computing harmonic forms and eigenvalue problems.
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Equilibrated Stress reconstruction for Nonlinear Elasticity

Fleurianne Bertrand

(joint work with Gerhard Starke, Marcel Moldenhauer)

A stress equilibration procedure for hyperelastic material models is presented and
analyzed in this talk. Based on the displacement-pressure approximation com-
puted with a stable finite-element pair, it constructs, in a vertex-patch-wise man-
ner an H(div)-conforming approximation to the first Piola-Kirchhoff stress. This
is done in such a way that its associated Cauchy stress is weakly symmetric in the
sense that its anti-symmetric part is zero tested against continuous piecewise linear
functions. Our main result is the identifications of the subspace of test functions
perpendicular to the range of the local equilibration system on each patch, which
turn out to be the rigid body modes associated with the current configuration.
Momentum balance properties are investigated analytically and numerically and
the resulting stress reconstruction is shown to provide improved results for surface
traction faces by computational experiments.

Reporter: Alexander Sieber
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