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Introduction by the Organizers

The workshop Large scale stochastic dynamics organised by Thierry Bodineau
(Palaiseau), Fabio Toninelli (Lyon) and Bálinth Toth (Bristol/Budapest), was well
attended with over 50 participants with broad geographic representation.

The workshop was devoted to the wide mathematical problem of understanding
emergent structures on large space-time scales in the evolution of physical sys-
tems. These are modelled by particle systems, namely high-dimensional Markov
processes and/or by systems of particles with deterministic (Hamiltonian) dynam-
ics where randomness comes only with the initial conditions. In our choice of 29
talks, we tried to illuminate major recent advances in the field and to expose and
address at least some aspects of the works for each of the participants. An evening
session with short talks was the occasion to learn about the recent results of 10
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early career participants and to trigger further discussions afterwards. A more
detailed account of the long presentations is given below.

From deterministic dynamics to kinetic equations and stochastic processes.

Several talks were devoted to the derivation of kinetic equations and more generally
of macroscopic limits from microscopic systems following the deterministic laws of
classical physics starting with randomized initial conditions.

Herbert Spohn explained the challenges for deriving hydrodynamics of integrable
many-particle systems and used the classical Toda chain to illustrate recent ad-
vances.

Domokos Szasz presented a simplified – but still sufficiently complex – version of
the Gaspard-Gilbert model for microscopic mechanism of Fourier’s law of heat
conduction, the so-called piston model. In this one-dimensional fully deterministic
(Hamiltonian) model of interacting particles the authors are able to implement
the first part of the Gaspard-Gilbert program. Namely, deriving with full math-
ematical rigour an effective stochastic approximation in a particular low-density
limit.

Giada Basile presented a gradient flow approach to the linear Boltzmann equation
and she explained how it is related to the large deviations. Recent progress on the
large deviations for a Kac-like walk were also reviewed.

François Huveneers discussed the slow thermalization in a chain of classical an-
harmonic oscillators and how the thermalization is related to the predictions from
the Boltzmann-Peierls equation.

Christopher Lutsko presented recent results on the diffusive scaling limit of the
Lorentz gas with randomly placed spherical scatterers, in three dimensions. It
was shown that in the low-density (a.k.a. Boltzmann-Grad) limit up to divergent
time scales (given explicitly in terms of the kinetic time scale of the problem)
a diffusive approximation formulated as the invariance principle for the tagged
particle trajectory holds.

Alessia Nota surveyed the different kinetic limits arising from a Lorentz Gas with
long-range interactions. Depending on the power law decay of the interaction
potential, the linear Boltzmann equation or the linear Landau equation can be
recovered.

Carlangelo Liverani defined a family of walks on the d-dimensional integer lattice,
where an internal state of the local mechanism determines the next step of the
walker. The family of models is motivated by the urge of understanding the large
scale dynamics of the Lorentz gas with randomized positions of the fixed scatterers.
It was shown that under some particular conditions on the model family the walk
exhibits a loss of memory quantified by a uniform Gibbsian approximation. This
may open the way to a diffusive scaling limit.

Makiko Sasada surveyed recent results on discrete time versions of the KdV equa-
tion and the Toda lattice starting from random initial conditions. She has shown
how a generalization of Pitman’s transform allows to study these models.
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Isabelle Gallagher presented some recent results on the correlation in hard sphere
gas dynamics and she showed how non-equilibrium fluctuations around Boltzmann
equation can be derived from these estimates.

Sergio Simonella explained how correlations can be controlled in a wide range of
collisional dynamics including the Kac model for the Boltzmann equation, and
large quantum particle systems in the mean field regime. In this case optimal
bounds wrt the system size can be obtained.

Mario Pulvirenti has shown how the number of collisions in the backward clusters
of hard-sphere systems can be controlled in a low-density regime.

Tomasz Komorowski considered the limit of a linear phonon Boltzmann equation,
with reflection-transmission-absorption at an interface, with a degenerate scatter-
ing kernel. He described the diffusive and superdiffusive asymptotics which can
be obtained in different regimes.

Jani Lukkarinen discussed the existence of stationary non-equilibrium solutions
for coagulation systems associated with interaction kernels relevant to atmospheric
coagulation phenomena.

Approach to equilibrium and interface dynamics in reversible systems

Riddhipratim Basu showed that, for Last Passage Percolation in the infinite square

grid Z2 with i.i.d. exponential weights, almost surely no infinite geodesics exist,
except for the trivial ones (horizontal and vertical geodesics).

In a closely related talk, Márton Balázs presented an alternative, more probabilis-
tic, proof of non-existence of infinite geodesics for Last Passage Percolation on
Z2.

Chiranjib Mukherjee discussed the Kardar-Parisi-Zhang (KPZ) equation in space
dimension d ≥ 3. When the noise is suitably rescaled and regularized, the space-
time fluctuations of the process converge to a limit Gaussian process as the regu-
larization parameter is sent to zero.

Giuseppe Cannizzaro discussed stochastic growth models in (1+1)-dimensions: he
showed that beyond the well-known Edwards-Wilkinson and KPZ universality
classes, another class of models exists, with new growth exponents. The conjectural
scaling limit of these models, named “Brownian Castle”, was discussed.

Tadahisa Funaki described an ongoing research project about dynamical large de-
viations for a Markov reversible dynamics of 3-dimensional Young diagrams or
lozenge tilings

Roland Bauerschmidt described a multiscale method which generalizes the Bakry
Emery criterion and is designed to prove Log-Sobolev inequality for non-convex
interactions. An application was given for the continuum Sine-Gordon model.

Hubert Lacoin gave a panorama of new results on the Gaussian Free Field (GFF)
in dimension d ≥ 3, subject to a disordered pinning potential. Results included
sharp behavior of the free energy and of the typical interface height, when the
pinning strength is close to the critical point.
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Patrik Ferrari discussed time-time correlations, under various initial conditions,
for models in the (1+1)-dimensional KPZ universality class, and notably for Last
Passage Percolation.

Sunil Chhita presented results on fluctuations of level lines of random domino
tilings of the Aztec diamonds, with two-periodic weights. At the boundary between
liquid and gas regions, a suitably coarse-grained point process associated to the
level lines converges to the Airy kernel point process.

Alexandre Stauffer discussed multi-particle versions of the celebrated Diffusion
Limited Aggregation process. He showed that in any dimension d ≥ 2, the model
has a regime of positive speed of growth, where the aggregate includes a bulky set.

Approach to equilibrium in reversible systems.

Glauber dynamics are Markov chains that are reversible w.r.t. the Gibbs distri-
bution of a statistical mechanics system. Understanding how quickly the process
approaches the equilibrium distribution, and the occurrence of slowdown phenom-
ena, gives insight on phase transitions, glassy or metastable behavior.

Ivailo Hartarsky discussed Kinetically Constrained Models (KCM), especially on

the two-dimensional lattice Z2. He focused especially on the deep relation be-
tween KCM and bootstrap percolation and he presented results and conjectures
on universality classes for both models.

Assaf Shapira presented results about KCM in random environments. One striking
result is that, at large particle density 1− q ≈ 1, the first time where the origin is
emptied scales like q−α, with α a random exponent.

Finally, we had a few talks that cannot be classified under the above themes,
and that broadened the workshop topic to other aspects of large scale stochastic
dynamis:

Balazs Rath presented a recent result where it is shown that although the so-
called frozen percolation process on the binary tree is a well defined process – as
constructed by Aldous (2000) – it is not determined by the local random variables
which intuitively dictate its local dynamics. Extra randomness sweeps in from the
boundary (at infinity). The result answers a question of Aldous (2000) formulated
explicitly in his cited work left open since then.

Dmitry Ioffe showed that although the stationary random interchange process on
large discrete tori reflect the d-dimensional geometry of the underlying graph, in
the thermodynamic limit the dynamics of the large cycles of these random permu-
tations, properly scaled, converge to the canonical split-and-merge process which is
independent of geometry. The question is motivated by stochastic representations
of quantum spin systems.

Alessandra Faggionato presented stochastic homogeneization results for random
walks in amorphous random media with unbounded jump range. Examples include
simple random walks on Delaunay triangulations or Mott variable range hopping
in doped semiconductors.
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Tyler Helmuth showed how Pirogov-Sinai theory can be used to construct algo-
rithms that approximately sample the Gibbs measure of the Potts model with
large q in any dimension, with running time that is polynomial wrt the system
size and wrt the desired approximation precision.

Summary. The workshop helped to update the participants on the state of the
art and on the important pending open problems in the fields related to their
domain of research. The workshop triggered interactions between people working
in different fields: probability, PDE analysis and dynamical systems. It was also
the occasion to initiate and pursue collaborations. The scientific presentations
proved that this research field is still very active and is absorbing new ideas from
other branches of mathematics.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Riddhipratim Basu in the “Simons Visiting Professors”
program at the MFO.
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Abstracts

Fourier law from Hamiltonian dynamics

Domokos Szász

(joint work with P. Bálint, IP. Tóth, Th. Gilbert, P. Nándori)

The derivation of Fourier’s celebrated heat equation from Hamiltonian principles
has long attracted particular attention of both mathematicians and physicists. All
this without any hope until in 2008 the Belgian physicists Gaspard and Gilbert,
[2] came up with a billiard type model and a two-step strategy applied to it.
(The model is an adaptation of a 1992 system suggested by Bunimovich-Liverani-
Pellegrinotti-Sukhov, [1] making life simpler by ensuring that there is no mass
transport.)

In the first part of the Gaspard-Gilbert strategy, by taking the rare (but strong)
interaction limit of the energies of the particles, they provide heuristics showing
that the limit is a Markov jump process. Rigorous arguments for this step require
methods of dynamical systems. Then - in the second, probabilistic part of their
program - by executing the hydrodynamic limit of this Markov jump process one
is, indeed, expected to derive the heat equation.

Since the dynamical part of their scenario was still unreachable for a mathemat-
ical treatment, we modified it and initiated the study of the so-called piston model
instead (see [3]). In my talk I will explain the dynamical approach to the rare in-
teraction limit of the piston model resulting, really, in the Markov jump process
conjectured by [3]. With this result in hand, the next big - and at the same time
quite realistic challenge - is to take the hydrodynamic limit of this Markov jump
process.

This requires answers to two stimulating questions. The first one seems to be
simpler. This question is, roughly saying, the following. For the execution of the
hydrodynamic limit it is necessary to have an appropriate lower bound for the
spectral gap of the N particle piston model (concretely const.

N2 where const. > 0).
For N particle GG-models this has been proved in a beautiful paper by Sasada, [4]
in 2015. Similar bound is expected for the piston model though one should keep in
mind that the piston model has less symmetry than the GG models. The second
question is then the hydrodynamic limit itself. Here it is reasonable challenge to
apply the method of Varadhan’s 1993 fundamental work [5] but its conditions of
the coefficients should be weakened.

References
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[2] P. Gaspard, T. Gilbert, Heat onduction and Fourier’s law by consecutive local mixing and
thermalization Physical Review Letters 101, (2008) 20601.

[3] P. Bálint, Th. Gilbert, P. Nándori, D. Szász, IP. Tóth, On the limiting Markov process of
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A gradient flow formulation of kinetic equations and connection with
large deviations

Giada Basile

(joint work with Dario Benedetto, Lorenzo Bertini and Carlo Orrieri)

We consider linear Boltzmann equations of the following form

(1) (∂t + b(v) · ∇x)f(t, x, v) =

∫

V
π(dv′)σ(v, v′)

[
f(t, x, v′)− f(t, x, v)

]
,

where π(dv) is a probability measure on the velocity space V , b is the drift,
σ(v, v′) = σ(v′, v) ≥ 0 is the scattering kernel and f is the density of the one-
particle distribution. The condition on σ follows from a reversibility assumption.
The velocity space V can be either Rd, Td, Sd−1, or a discrete state space and the
position space is the d dimensional torus.

We consider the current as a dynamical variable. Setting ηf = σ(v, v′)
[
f(t, x, v)

−f(t, x, v′)
]
, LBE is equivalent to
{(
∂t + b(v) · ∇x

)
f(t, x, v) +

∫
π(dv′) η(t, x, v, v′) = 0,

η = ηf .

The first equation is a balance equation. Together with Dario Benedetto and
Lorenzo Bertini, we provided a formulation of the LBE in terms of an entropy
dissipation inequality. Given a couple (f, η) of density and current satisfying the
balance equation, we say that (f, η) satisfies the LBE if and only if the following
inequality holds

(2) H(fT ) +

∫ T

0

dt

∫
dxD(ft) +R(f, η) ≤ H(f0),

where H(ft) is the entropy of f at time t, D(f) is the Dirichlet form of the square
root of f , namely, denoting by L the collision operator, D(f) := (

√
f,−L√f), and

R(f, η) =
∫ T

0 dtΨ(f, η), Ψ ≥ 0 and convex (see [1] for the explicit form of Ψ). For
any couple (f, η) satisfying the balance equation, the other way inequality holds.
We proved existence and uniqueness of the solution to LBE in [1].

From a probabilistic point of view, (1) is the Fokker-Planck equation of the
process (V (t), X(t))t≥0 where V (·) is an autonomous jump process, taking value

in V , with jump rate π(dv′)σ(v, v′) and X(t) =
∫ t

0 b(Vs)ds. Given N independent
copies of the process (V (t), X(t))t≥0, one can construct the empirical measure
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αN
t (dx, dv) = 1

N

∑N
i=1 δXi(t)(dx)δV i(t)(dv) and and the associated empirical cur-

rent, satisfying a balance equation. Then (1) is the law of large numbers of the
empirical measure in the limit N → ∞.

The gradient flow formulation of the LBE is related to the large deviations.We
look at the asymptotic probability that the couple empirical measure-current differ
from the typical one (f, ηf ), solution to the LBE, and it is close to (g, ζ), satisfying
the balance equation. This probability is exponentially small for diverging N , and
the action functional has the form

I(g, ζ) = H(g0) +

∫ T

0

dt

∫
dx

∫∫

V×V
dπ ⊗ dπΦσ(g, g

′, ζ),

where g′ = g(t, x, v′). The first term on the r.h.s. is entropy of g at time 0 and
Φσ is a convex, positive function which is equal to zero iff the couple g, ζ satisfies
the LBE. Inequality (2) can be directly derived by the condition Φσ(f, f

′, ζ) ≥ 0,
which characterize the zero level set of the functional.

In a work in progress together with D. Benedetto, L. Bertini and C. Orrieri we
investigate the large deviation asymptotics for a Kac-like walk, which is described
at the kinetic level by a non linear homogeneous Boltzmann equation. At the
microscopic level, at random times two particles with velocities v and v∗ “collide”
and change their velocities with rate σ in such a way the total momentum is
preserved, i.e., denoting by v′, v′∗ their velocities after collision, v + v∗ = v′ + v′∗.
We prove a large deviation principle for the empirical measure and current. The
action functional is given by

I(g, θ) = H(f0) +

∫ T

0

dt

∫

R4d

dπ ⊗ dπ ⊗ dπ ⊗ dπΦσ(gg∗, g
′g′∗, ζ)

where, using the usual kinetic notations, g∗ = g(t, v∗), g′∗ = g(t, v′∗). The solution
to the homogeneous Boltzmann equation is then the zero level set of the rate
function. The condition Φσ ≤ 0, which characterizes the zero level set of the
functional, provides an inequality of the same type of (2).

References

[1] B. Basile, D. Benedetto, L. Bertini A gradient flow approach to linear Boltzmann equation,
to appear on the Annali della Scuola Normale di Pisa - Classe di Scienze
arxiv.org:1707.09204v2 (2018)

Slow thermalization in a chain of classical oscillators

François Huveneers

(joint work with Jani Lukkarinen)

Chains of oscillators in the thermodynamic limit are good models of crystal-like
extended systems. In this talk, I consider a one-dimensional, classical, chain of
harmonic oscillators, coupled by nearest neighbor harmonic couplings. In addition,
an anharmonic pinning potential acts on each atom. In the absence of the latter,
i.e. for a purely harmonic chain, the energy of each mode is conserved and the
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system is integrable. Instead, as soon as the anharmonic potential is added, there
is evidence that the energy is the only conserved quantity in the system. In the
regime of weak anharmonic interactions, the process of thermalization is expected
to take place on the so called kinetic time-scales.

In some cases, however, recent numerical results point towards thermalization
on a much slower rate [1]. These observations do confirm the predictions from
the Boltzmann-Peierls equation, but no hint is given on the actual time scales for
thermalization. This phenomenon is due to the presence of a pseudo-conserved
quantity that can be identified as the number of phonons in the chain, and that
do not relax on the usual kinetic scale.

It is the aim of the talk to explain a possible mechanism behind this, and to
provide predictions for the actual time scales of thermalization. Our theory is in
line with the recent framework proposed in [2], though the case at hand does not
properly falls in the class of systems analyzed there. Our predictions are backed
up by numerical results.

References

[1] C. B. Mendl, J. Lu and J. Lukkarinen Thermalization of oscillator chains with onsite an-
harmonicity and comparison with kinetic theory, Physical Review E 94 (2016), 062104.

[2] K. Mallayya, M. Rigol and W. De Roeck, Prethermalization and Thermalization in Isolated
Quantum Systems, Physical Review X 9 (2019), 021027.

Invariance Principle for the Random Lorentz Gas – Beyond the
Boltzmann-Grad Limit

Christopher Lutsko

(joint work with Bálint Tóth)

In this report we discuss results concerning two classical models of diffusion. Fore-
most we consider the random Lorentz gas. That is, given parameters r > 0 and
ρ > 0 let P be a Poisson point process of intensity ρ and consider the set of
scatterers Bd

r + P , where Bd
r is the d-dimensional ball of radius r. The Lorentz

process is then a process t 7→ Xr,ρ(t) which starts at the origin (X(r,ρ(0) = 0)
with a randomly chosen initial velocity and moves in straight lines with unit speed
until there is a collision with a scatterer at which point the point particle collides
elastically.

The randomness is introduced entirely in the initial condition: in the scatterer
configuration and the initial velocity. Hence there are two relevant notions of
convergence: The Quenched Limit - For a typical realization of the Poisson point
process averaging over the initial velocity. The Averaged-Quenched Limit - Av-
eraging over the initial velocity and the Poisson configuration. In both of these
settings, a major open problem for this model is the validity of the invariance
principle in the diffusive limit :
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(1) t 7→ Xr,ρ(T t)√
T

as T → ∞.

That is, to show that the process in (1) converges weakly (in either the quenched
or averaged-quenched limit) to a Wiener process. See either [7] or [8] for a detailed
survey. This question remains entirely open.

In the periodic setting (when scatterers are arranged on a lattice) this problem
is relatively well-understood (see the surveys by Golse [3] or Marklof [5]). This
owes to the fact that, one can use the machinary of hyperbolic dynamics, and
reduce the problem to a problem about additive functionals of the billiard flow.

In the random setting, what progress there has been towards the invariance
principle has been in the Boltzmann-Grad limit, that is

ρ→ ∞, r → 0 ρrd−1 → Cd(2)

where Cd is a constant depending on dimension chosen such that the mean free
path length is 1 (for the Lorentz gas Cd is the volume of the d−1 dimensional unit
ball). In this limit there are three results relevant to our work: Gallavotti [2] and
Spohn [6] showed that the random Lorentz gas converges to a Markovian flight
process (defined below) in the averaged-quenched limit (Spohn’s result considers
very general scatterer configurations and potentials) and Boldrighini, Bunimovich,
and Sinai [1] who proved the same convergence in the quenched setting.

In a recent work [4], Bálint Tóth and the author proved the invariance principle
in an intermediate scaling limit where the diffusive limit (1) is taken simultaneously
with the Boltzmann-Grad scaling (2) in dimension 3. Specifically

Theorem 1 ([4, Theorem 2]). In dimension d = 3. Let T = T (r) be such that
limr→0 T (r) = ∞ and limr→0 r

2| log r|2T (r) = 0. Then,
{
t 7→ T−1/2Xr,ρ(T t)

}
⇒ {t 7→W (t)} ,(3)

as r → 0, in the averaged-quenched sense. On the right hand side of (3) W is a
standard Wiener process of variance 1 in R3.

The proof is based on a novel coupling method: Given a sequence {ξn}∞n=1 EXP (1)
of i.i.d exponential flight times and velocities {un}∞n=1 ∼ UNI(Sd−1) define the
Markovian flight process to be a process {t 7→ Y (t)} which begins at the origin
(Y (0) = 0) and flies for time ξ1 in the direction u1 before adopting the velocity
u2 for time ξ2 and so forth. Classically, the invariance principle holds for the
Markovian flight process. Thus our proof will follow by coupling (jointly realiz-
ing on the same probability space) the Markovian flight process and the Lorentz
process. Then we show that with high probability, on our time scales the dis-
tance supt<T |Y (t)−Xr,ρ(t)| is negligable compared to the T 1/2 coming from the
diffusive scaling in (3).

The coupling is as follows: Given the random variables {ξn}∞n=1 and {un}∞n=1,
we construct the process {t 7→ Y (t)} as described. The Lorentz process then
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begins at the origin and flies for time ξ1 in direction u1, then it adopts the velocity
u2. At this point we place a scatterer at the position corresponding to the velocity
change u1 and u2. We then continue evolving the Lorentz process parallel to the
Markovian process, placing the appropriate scatterers along the path. There are
two occurances when this coupling is broken: if the Lorentz process encounters a
previously placed scatterer (recollision) then it respects the collision, or if a given
jump would correspond to a scatterer being placed over the old path (shadowed
collision) this scattering event is ignored. In both thesemismatches the Markovian
flight process and the Lorentz process are no longer parallel, then at the next
collision time (i.e the next time the Poisson clock rings) the two processes attempt
to make the next jump in the sequence. Because of the Poisson configuration of
scatterers, we recover the Lorentz process from this construction.

With that coupling, we implement the following argument: First we show that
up till times of order o(r−1), with high probability, mismatches will not occur.
Then we show that on our time scales only geometrically ’simple’ mismatches
occur, and after a mismatch, recoupling is possible after an order O(1) time. These
mismatches are isolated in time and altogether create a separation between the
Markovian and Lorentz processes which is of order o(T 1/2). The log corrections
in Theorem 1 do not appear in this simplified argument, however arise in the fine-
tuning. Formalizing this argument requires estimates on Green’s functions, a third
auxilliary processes used to interpolate between X and Y , a decomposition of this
auxilliary process, and precise estimates controlling the geometry of mismatches.

In a work currently in preparation, Bálint Tóth and the author showed that
the invariance principle in Theorem 1 also holds for the random wind-tree process.
That is, a similar model with the spheres replaced by cubes of side length r, all
oriented along the axes. More precisely

Theorem 2 ((In preparation)). In dimension d = 3. Let T = T (r) be such that
limr→0 T (r) = ∞ and limr→0 r

2T (r) = 0. For any initial velocity v = (v1, v2, v3)
such that v1, v2, v3 > 0, let {t 7→ X r,ρ(t)} denote the random wind-tree process
with initial velocity v. Then,{

t 7→ T−1/2X r,ρ(T t)
}
⇒ {t 7→ Wv(t)} ,(4)

as r → 0, in the averaged-quenched sense. On the right hand side of (3) Wv is a
standard Wiener process with covariance matrix diag(v21 , v

2
2 , v

2
3) in R3.

Theorem 2 follows a similar proof with a few notable differences: firstly note that
the log correction in Theorem 1 is not present in Theorem 2. This is because the log
correction comes from those collisions where the angle between the entry velocity
and the exit velocity are very small. For the wind-tree model the velocities are
restricted to a finite set. Therefore this angle is bounded. Similarly the geometry
of mismatches in the wind-tree model are far simpler which aids the calculations.
Lastly, the velocity chain for the Markovian flight process associated to the wind-
tree model is not i.i.d but a genuine Markov process. Therefore the coupling
argument is slightly more complicated. In particular recoupling is trickier. That
said, a similar strategy of proof holds.
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On the derivation of linear kinetic equations from a Lorentz Gas with
long-range interactions

Alessia Nota

(joint work with Sergio Simonella, Juan J.L. Velázquez)

During the last couple of decades, several important results have been achieved
in the derivation of kinetic equations from particle systems. Most of the rigorous
results available in this direction have been obtained for dilute gases and for sys-
tems with short-range interactions. The validity (or non-validity) of the Boltzmann
equation in the case of long-range interaction potentials still represents an open
problem. A first contribution in this direction has been proposed in [4]. The aim
of this talk is to report on the recent results obtained in [4] as well as on ongoing
progress on the problem of the derivation of kinetic equations from particle systems
with long-range interactions. More precisely, in [4] we consider a simpler particle
model where a single tagged particle moves in force fields produced by a random
distribution of fixed scatterers, which is known in the literature as Lorentz Gas.
We assume that the scatterers are distributed according to a Poisson measure with
density of order one. Each scatterer yields a potential QiΦ(x−xi) x1, x2, · · · in R3

with possibly different charges Qi ∈ R. We denote as ω =
{(
xn, Qn

)}
n∈N

∈ Ω⊗ I
a charged scatterer configuration.

We first study the properties of the random force field F associated to a po-
tential Φ that decays at infinity as a power law Φ(x) ∼ |x|−s with s > 1

2 . Two
physically relevant examples are the case of Newtonian or Coulombian potentials,
corresponding to the case s = 1. More precisely, we assume that Φ belongs to the
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class of interaction potentials

Cs :=
{
Φ ∈ C2

(
R3 \ {0};R

)
s.t. Φ (x) = Φ (|x|) and ∃A 6= 0, r > max(s, 2)

s.t. for |x| ≥ 1,
∣∣∣Φ (x)− A

|x|s
∣∣∣+ |x|

∣∣∣∇
(
Φ (x) − A

|x|s
)∣∣∣ ≤ C

|x|r
}
.

We first prove the existence of the limit stochastic force field

F (x;ω) = lim
R→∞

F
(R)
U (x;ω) := −

∑

xn∈RU

Qjn∇Φ (x− xn) , x ∈ R3, U ⊂ R3 open,

and identify the conditions under which this field is invariant under translations.
We denote the limit field as “generalized Holtsmark field” (cf. [1, 2]) associated to

Φ ∈ Cs. For instance, in the case of potentials decreasing for large |x| as |x|−s with
s ≤ 1 an electroneutrality condition is required to define spatially homogeneous
random force fields (cf. [4], Theorem 2.13). We notice that analogous results hold
also in the case of time-dependent random force fields (cf. [5]).

The dynamics of the tagged particle is defined through the solution of Newton’s
equation of motion

(1)
dx

dt
= v ,

dv

dt
= Fε (x;ω)

where Fε (x;ω) is the generalized Holtsmark field associated to the rescaled po-
tential Φ(x, ε). Here ε > 0 is a small parameter tuning the mean free path ℓε.
Moreover, for a given scatterer configuration ω we will denote as S−t

ε (x, v;ω) the
Hamiltonian flow associated to (1).

In [4] we developed a formalism which allows to obtain the kinetic equation
describing the evolution of a Lorentz Gas and to identify the conditions in the
interactions which allow to obtain the correct Markovian approximation. More
precisely, the correct scaling limits can be defined estimating the diffusive timescale
Tε. To have a meaningful definition of kinetic limit, the interaction between the
tagged particle and the scatterers must be weak enough to ensure that the mean
free path ℓε is much larger than the typical distance among the scatterers d,
i.e. ℓε ≫ d. Furthermore, a second condition is the statistical independence
of the particle deflections experienced over distances of order ℓε. To estimate
the kinetic time-scale Tε, the potential Φ and the corresponding random force
field, can be split in the sum of a Boltzmann part and a Landau part Φ (x, ε) =
ΦB (x, ε)+ΦL (x, ε) where ΦB (x, ε) is supported in a ball of radius Mλε, with M

of order one but large, and ΦL (x, ε) is supported at distances larger than Mλε

2 .
A similar decomposition can be made also in the case of arbitrary Rayleigh gases
(cf. [5], see also [6] for a rigorous derivation of the Boltzmann equation for ideal
Rayleigh gases). The parameter λε is the collision length, i.e. the characteristic
distance at which the tagged particle experiences deflections of order one due
to the interaction with one of the scatterers by means of ΦB (x, ε). Since the
scatterers are distributed according to a Poisson repartition with finite density,
the time between two such consecutive collisions is of order 1

(λε)
2 that we define
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as Boltzmann-Grad time scale, i.e. TBG = 1
(λε)

2 . The time scale in which the

deflections produced by ΦL become relevant is then denoted as Landau time scale
TL. In most of the interaction potentials considered in [4] one of the two time
scales is much larger than the other as ε→ 0. Due to the fact that the deflections
are additive in the kinetic limit, we have

ℓε = Tε ∼ min {TBG, TL} ≫ 1 as ε→ 0.

I present some examples of families of potentials and show how different linear
kinetic evolution equation arise, for a given scaling, depending on the decay s as
well as on the singularities of the potential. For instance, for potentials of the form

Φ (x, ε) = Ψ
(

|x|
ε

)
, Φ(·, ε) ∈ Cs, s > 1/2, with Ψ ∈ C2

(
R3 \ {0}

)
and Ψ (y) ∼ A

|y|s ,

∇Ψ(y) ∼ − sAy
|y|s+2 with A 6= 0, as |y| → ∞ we obtain that, under the kinetic

rescaling, the microscopic solution

fε (ℓεt, ℓεx, v) = Eω[f0(S
−ℓεt
ε (ℓεx, v;ω))]

as ε→ 0 satisfies:

• if s > 1 the linear Boltzmann equation

(∂tf + v · ∇xf) (t, x, v) =

L∑

j=1

µ
(
Qj

) ∫

S2

B (v;ω;Qj)
[
f (t, x, |v|ω)− f (t, x, v)

]
dω.

This is due to the fact that the fastest process yielding particle deflections are
binary collisions with single scatterers, namely TBG ≪ TL and TBG = 1

λ2
ε
= 1

ε2 .

• if s = 1 the linear Landau equation

(∂tf + v∂xf) (x, v, t) = κ∆v⊥f (x, v, t) , κ > 0.

In this case the deflections due to the accumulation of a large number of small
interactions yield a relevant change in the direction of the velocity before a binary
collision takes place. The time scale in which such macroscopic deflections take
place is the Landau time TL ≪ TBG and TL ∼ 1

ε2 log( 1
ε )
. Moreover, the deflections

experienced by the particle over times of order TL must be uncorrelated.
There are examples of potentials generating strongly correlated random fields

for which this lack of correlations does not take place (12 < s < 1). In such cases,
a single kinetic equation cannot be recovered in the scaling limit, but a suitable
stochastic differential equation with memory is expected since the correlations
between macroscopic deflections must be taken into account.

Furthermore, we emphasize that the proof of the independence of the deflections
is the crucial step towards any rigorous derivation of the kinetic equations. The
main difficulty towards a rigorous validation of these linear kinetic equation is
the fact that the very slow (non-integrable power law in the case of Coulombian
potentials) decay of correlations of the generalized Holtsmark fields implies a lack
of validity of the strong mixing condition at macroscopic level. The strong mixing
condition is one of the key properties that allows to obtain a rigorous validation of
the linear Landau equation in the case of weakly correlated random fields (e.g. [3]).
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In this direction, I conclude presenting some ideas and perspectives on the ongoing
project concerning the mathematically rigorous derivation of the linear Landau
equation for a Lorentz Gas with Coulombian interactions (s = 1).
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Deterministic walks in random environment

Carlangelo Liverani

(joint work with Romain, Aimino)

Motivated by the study of the Random Lorentz gas we introduce and start the
study of a class of deterministic dynamical systems which abstract the properties
of the Lorentz gas while allowing for simpler dynamics. Hence, they may serve as
a starting point in developing new techniques.

Indeed, while many results exist for the periodic Lorentz gas (e.g. see [2, 5, 6]
for the high density regime and [18] in the Boltzmann-Grad limit) the random
Lorentz gas is understood in the Boltzmann-Grad limit (e.g. see [7, 17, 16]) while
in the high density situation only very partial results are available (e.g. [3, 4, 8,
9, 10, 11, 19]). In particular, the problem of establishing a CLT is wide open and
very few ideas seem to be on the table.

To forward our understanding we consider the random Lorentz gas as a special
case of a deterministic walk in random environment.

To define a deterministic walk in random environment we consider, for sim-
plicity, a nearest neighbourhood walk in Zd, but similar considerations hold for a
walk on more general graphs G. Let A be a finite set; X be a compact manifold,
{fα}α∈A a set of endomorphisms of X and {Pα}α∈A a set of partitions of X with
2d+ 1 elements: Pα = {pα,1, . . . , pα,2d+1}

By random environment we mean a translation invariant probability measure

Pe on Ω = AZd

. We are interested in results that hold for Pe-almost all ω ∈ Ω. By
determinist walk in the environmentω ∈ Ω we mean the map Fω : X×Zd → X×Zd
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defined by

Fω(x, z) = (fωz+e(ωz,x)
(x), z + e(ωz, x))

e(ω, x) =
2d+1∑

i=1

1pω,i(x)wi.

wi ∈ {±e1, . . . ,±ed, 0} and the initial condition is random in the x variable.
In the case of the Lorentz gas the maps fωz are the Poincarè maps of the billiard

at the site z of the lattice. Their main property is the hyperbolicity. It is then
natural to start by considering a case in which the maps fα, while still being
hyperbolic, have a simpler dynamics, the simplest case being piecewise expanding
maps.

In such a case we can prove that the deterministic walk can be reduced to a
purely probabilistic model: a random walk (with memory) in random environment
[1]. The key property being that the memory is short.

More precisely, the deterministic random walk can be reduced to a Gibbs walk
in random environment:
there exists ν ∈ (0, 1) such that, for each path z(n−1), . . . , z(1) and for all random
environments ω,

P(z(n) | z(n− 1), . . . , z(1),ω) =P(z(n) | z(n− 1), . . . , z(m),ω)

+O(νn−m).

Gibbs walk in random environment are a very general model as they subsume
persistent random walks in random environment, hence the problem to prove a
CLT for such models is still out of reach. However, the Lorentz gas case has
some special features, e.g. reversibility and an explicit invariant measure for the
process as seen from the environment. It is thus conceivable that some results can
be obtained for models with such extra properties. This would yield the wanted
result provided that one could prove the reduction to a Gibbs random walk for some
classes of Lorentz gasses. This should be possible using the techniques developed
in [12, 13, 15, 14].
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Geometry of Maximal Disjoint Paths in Last Passage Percolation

Riddhipratim Basu

In this talk I presented some results obtained jointly with Christopher Hoffman
and Allan Sly regarding rarity of disjoint geodesics in exponential last passage
percolation together with some applications; and also briefly discussed some work
in preparation with Shirshendu Ganguly, Alan Hammond and Milind Hegde.

Last passage percolation on Z2, with vertices are equipped with i.i.d. nonnega-
tive passage times, is a canonical model of stochastic interface growth. We shall
restrict our attention to the exactly solvable case where the weight are standard ex-
ponential random variables and several exact formulae are available. Let {ξv}v∈Z2

is a family of i.i.d. Exp(1) variables. For any up/right path γ in Z2, the weight
of γ, denoted ℓ(γ) is define by ℓ(γ) :=

∑
v∈γ ξv. For points u, v ∈ Z2 with u co-

ordinate wise smaller than v, we define the last passage time from u to v, denoted
T (u, v) by

T (u, v) := max
γ:u→v

ℓ(γ)

where the maximum is taken over all up/right paths from u to v. The almost
surely unique path between u and v that attains T (u, v) will be called the geodesic
between u and v. For notational convenience we shall denote by Tn (resp. Tm,n)
the last passage time from (1, 1) to (n, n) (resp. (m,n)). A semi-infinite (resp. bi-
inifinte) geodesic is a semi-infinite (resp. bi-infinite) path γ such that the restriction
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of γ between any two of the vertices u, v ∈ γ is the geodesic between u and v.
Clearly the horizontal and vertical lines are trivially bi-inifinite geodesics. We
showed in [1] that almost surely these are the only ones.

Theorem 1. For exponential LPP on Z2, almost surely there does not exist any
non-trivial bi-infinite geodesic.

The main technical challenge in the proof which, at a high level, follows a
heuristic of Newman for first passage percolation is to understand the rarity of
multiple disjoint geodesics. Let A denote the line segment joining (−n2/3, n2/3)
and (n2/3,−n2/3) and let B denote the line segment (n, n) + A. Let Ln denote
the maximum number of pairwise disjoint geodesics with one endpoint on A and
the other on B. The following theorem, also obtained in [1] is a key estimate in
the proof of Theorem 1.

Theorem 2. There exist constants c, α > 0 such that for all k ∈ N and all n
sufficiently large we have

P(Ln ≥ k) ≤ e−ckα

.

Let us also explain what inputs from integrable probability go into the proofs
of the above results. The primary input is the exact correspondence between Tm,n

and the largest eigenvalue of a certain Wishart random matrix. For m ≥ n, let
X denote an m × n matrix of i.i.d. standard complex Gaussian entries. It was
shown by Johansson [3] that the largest eigenvalue λm,n of X∗X has the same
distribution as Tm,n. Using the concentration result for the largest eigenvalues in
β-ensembles, developed in [4], this immediately implies the following.

Theorem 3. There exists an absolute constant c > 0 such that for all x ≤ n2/3

we have

P(Tn − 4n ≥ xn1/3) ≤ e−cx3/2

;

P(Tn − 4n ≤ −xn1/3) ≤ e−cx3

.

This, and similar concentration bounds for Tm,n−(
√
m+

√
n)2, also available in

[4], together with their consequences developed in [2] play a key role in the proofs
of Theorem 2 and Theorem 1, not much more is utilized from the literature on
exactly solvable models.

Another context where maximal disjoint paths naturally occur is that of the so-
called polymer watermelon. For k ∈ N, let the weight of a collection of k disjoint
paths be defined by the sum of the individual path weights. Let Γn,k denote
the collection of k-disjoint paths contained in the square [1, n]2 ∩ Z2 with the
maximum total weight; called the k-polymer watermelon. Using the interlacing
property of such paths across different values of k, and arguments similar in spirit
to those in Theorem 2 we have investigated (work in preparation jointly with
Ganguly, Hammond and Hegde) the geometry of the k-polymer watermelon. I
also discussed certain results involving the transversal fluctuations of the polymer
watermelons briefly in my talk.



2626 Oberwolfach Report 42/2019

References

[1] R. Basu, C. Hoffman, and A. Sly, Nonexistence of Bigeodesics in Integrable Models of Last
Passage Percolation, arXiv:1811.04908.

[2] R. Basu, V. Sidoravicius, and A. Sly, Last Passage Percolation with a Defect Line and the
Solution of the Slow Bond Problem, arXiv:1408.3464.

[3] K. Johansson, Shape Fluctuations and Random Matrices, Comm. Math. Phys., 209(2)
(2000), 437–476.

[4] M. Ledoux, and B. Rider, Small Deviations for Beta Ensembles, Electron. J. Probab., 15
(2010), 1319–1343.

Nonexistence of bi-infinite geodesics in exponential last passage
percolation - a probabilistic way

Márton Balázs

(joint work with Ofer Busani, Timo Seppäläinen)

Take a point on the 2-dimensional integer lattice and another one North-East from
the first. Place i.i.d. Exponential weights on the vertices of the lattice; the point-
to-point geodesic between the two points is the a.s. unique path of North and East
steps that collects the maximal sum of these weights.

A bi-infinite geodesic is a doubly infinite North-East path such that any segment
between two of its points is a point-to-point geodesic. We show that this thing a.s.
does not exist (except for the trivial case of the coordinate axes). A first intuition is
roughly this: transversal fluctuations of a point-to-point geodesic are in the order
of the 2/3rd power of its length, which becomes infinite for a bi-infinite geodesic.
Hence we cannot see this path anywhere near the origin which, combined with
translation-invariance, a.s. excludes its existence.

A second thought, however, makes one wonder why geodesics from other pairs
of points are not seen around the origin. Coalescence of paths must play an
important role here, in some sense there is a small number of geodesics compared
to the pair of points that have a chance of sending them around the origin.

One needs to make this more quantitative to prove that even after taking the
union for all possible directions we cannot see a bi-infinite geodesic, a program
sketched by Newman [5]. Georgiou, Rassoul-Agha and Seppäläinen [4] proved
that a.s. no infinite geodesics occur in any fixed direction, which was a significant
step in the field. The full argument has recently been completed rigorously by
Basu, Hoffman and Sly [3] with inputs from integrable probability.

In this work [2] we also give a full proof, this time without any input from
integrable probability. Instead, we build on purely probabilistic arguments, such
as couplings and maxima of drifted random walks, to arrive to this result. There
are three cases to consider.

• Close to the horizontal and vertical axes a relatively easy argument, built
on the limiting shape of last passage percolation, rules out that even half-
infinite geodesics differ from the trivial horizontal or vertical lines.
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• When we consider non-diagonal points to connect a geodesic via the origin,
we can bound the probability of this using upper bounds on path exit
points from our early work [1]. This works when we require paths to turn
slightly more than distance N2/3 within a square of side length N .

• When we look at close to diagonal points across the origin, that is the turn
in the path is less than N2/3, then a new insight with coupling the path
with stationary geodesics, and then using simple random walk estimates
bounds the probability that the geodesic goes through the origin. At the
core of the argument is a comparison of fluctuations vs. drift of random
walks. On the short run fluctuations win, pushing the geodesic out from
near the origin.

Luckily, the above probability bounds combine to N−1/24 after a union bound for
all pairs of points, and the proof can conclude by taking N to ∞.
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interface for the corner growth model. Probab. Theory Related Fields, 169(1-2):223–255,
2017.

[5] Charles M. Newman. A surface view of first-passage percolation. In Proceedings of the In-
ternational Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), pages 1017–1023, Basel,
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KPZ equation in d ≥ 3 and construction of Gaussian multiplicative
chaos in the Wiener space

Chiranjib Mukherjee

(joint work with O. Shamov and O. Zeitouni, with F. Comets and C. Cosco, and
with Y. Bröker)

The KPZ equation in d ≥ 3 and the weak disorder regime. The Kardar-
Parisi-Zhang (KPZ) equation enjoys immense popularity as the default model of
stochastic growth in (d + 1)-dimensions. When d = 1, it has now seen a huge
upsurge of interest in the recent years and a vast amount of deep mathematical
results are available. On the other hand, despite being ill-posed for larger dimen-
sions, the KPZ equation still remains relevant for random surface growth and has
its own appeal even in the so-called small disorder regime – a distinguishing at-
tribute of this equation in higher dimensions. While recent progress has also been
made in d = 2, we will report on the results obtained pertinent to d ≥ 3. The
relevant equation is
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(1)
∂

∂t
hε =

1

2
∆hε +

[
1

2
|∇hε|2 − Cε

]
+ βε

d−2
2 ξε

Here β > 0 is a parameter called the disorder strength, ξε = ξ ⋆ φε is a spatially
smoothened (at scale ε) Gaussian space-time white noise and Cε = O(ε−2) is a
divergent constant as ε→ 0. When β is sufficiently small and ε→ 0, it was shown
in [3] that hε(t, x)−hε(t, x) → 0 in probability, where hε(t, x) = h(ξε,t,x) and h is
a non-degenrate random variable, or the limiting free energy in the weak disorder
regime and ξε,t,x stands for the diffusively rescaled, time-reversed and spatially
translated white noise, which possesses the same law as that of ξ. It was also
shown in [3] that h has sub-Gaussian tails, and thus possesses all negative (and
positive) moments in this regime. In [4] we focus on the space-time fluctuation of
the random field
(2)
(
Hε(t, x)

)
x∈Rd,t>0

def
=
(
ε1−

d
2 [hε(t, x) − hε(t, x)]

)
x∈Rd,t>0

(d)→
(
HGFF(t, x)

)
x∈Rd,t>0

which is shown to converge to a centered Gaussian field

HGFF(t, x) = γ(β)

∫ ∞

0

∫

Rd

ρ(σ + t, y − x) ξ(σ, z)dσ dz

with ρ(σ, x) being the standard heat kernel and γ(β) being an explicit constant.
The limiting process HGFF is also the (real-valued) solution of the non-noisy heat
equation ∂tHGFF = 1

2∆HGFF with a random initial condition HGFF(0, x) given

by a Gaussian free field on Rd. It is imperative to stress that the result (2)
from [4] pertaining to space-time convergence is able to glean information on the
local fluctuations of the ambient field, which remain totally impervious to recently
studied global fluctuations alone, i.e., spatial averages of the form

(3) ε1−d/2

∫

Rd

ϕ(x)[hε(t, x) −E(hε(t, x))] →
∫

Rd

dxϕ(x)HEW(t, x)

that produce averages of the solution of the stochastic heat equation with additive
noise, or the Edwards-Wilkinson equation HEW = 1

2∆HEW + γ(β)ξ. On the other
hand, as a special case of our main result, global fluctuations also dropped out
in [4] as a corollary: For test functions ϕ ∈ C∞

c (Rd) it was shown there that
∫
Rd dxϕ(x) ε

1− d
2 [hε(t, x)−hε(t, x)]

(d)→
∫
dxϕ(x))HGFF(t, x). Moreover, the latter

result combined with the averaged Edwards-Wilkinson fluctuation, implied global
fluctuations in [4]:

(4) ε1−d/2

∫

Rd

ϕ(x)[ĥε(t, x)−E(ĥε(t, x)] →
∫

Rd

dxϕ(x)[HGFF(t, x)+HEW(t, x)]

corresponding to the stationary solution ĥε(t, x) = h(ξε,t,x) of the KPZ equation

(1) itself – note that ĥε(t, x) is random, but is constant in law for any ε, t, x and

hε(t, x) solves (3) with initial condition ĥε(0, x). To compare (3) and (4), note
that the law of hε(t, x) fluctuates wildly in the space variable x, hence hε(t, x) −
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E(hε(t, x)) diverges at each fixed x and only spatial averaging makes cancelations

to happen. On the other hand, the law of ĥε(t, x) remains the same as ε, t or x
vary. Thus, the correlation structure of the limiting field (2) is not shadowed by
the spatial averaging in (4), being in contrast to (3).

The strong disorder regime and the Gaussian multiplicative chaos in
the Wiener space: Suppose we are given a centered Gaussian field {H(x)}x∈X

indexed by a metric space X carrying an ambient measure m. A Gaussian multi-
plicative chaos (GMC) is the transformed measure obtained by “exponentiating”
the Gaussian field and considering its “renormalized” version:

m̂β(dx) = exp

{
βH(x)− β2

2
E[X2(x)]

}
m(dx) β > 0.

When X = D ⊂ R2 and the ambient field is given by the Guassian free field (i.e.,
the logarithmic Green’s functions) the study of GMC has seen a lot of revived
interest in the recent years due to its connection to the Liouville quantum gravity.
A natural question is to define a GMC in infinite dimensions, which has a curious
connection to the study of the KPZ equation (1) which was observed in [5]. Indeed,
via the Cole-Hopf transform zε = exp[hε] and the Feynman-Kac formula, the

multiplicative noise stohastic heat equation solution zε
(d)
= Zβ,T is equal in law to

the total mass of the Gaussian multiplicative chaos

M̂β,T (dW ) =
1

Zβ,T
exp

{
βHT (W )− β2

2
E[H2

T (W )]
}
P0(dW )

defined w.r.t the spatially smoothened white noise field HT (W ) =
∫ T

0 (ξ ⋆ φ)(Ws)

with covariance CT (W,W
′) =

∫ T

0 (φ ⋆ φ)(Ws −W ′
s) (here φ is a fixed mollifier).

Note that the GMC Mβ,T is defined as a transformed measure w.r.t. the Wiener
measure P0 and the gaussian field {HT (W )}W is indexed by Wiener paths. In d ≥
3 and for sufficiently small β, a quenched central limit theorem for the distribution

of M̂β,T (WT /
√
T )−1 was shown in [1] which implies a total disintegration of mass

for the endpoint distribution: M̂β,T (WT ∈ dx) ≈ CT−d/2. On the other hand,

for β large, by using the covariance bound CT (W,W
′) =

∫ T

0
(φ ⋆ φ)(Ws −W ′

s) ≤
T (φ⋆φ)(0) and using Kahane’s comparison inequality it was shown in [5] that (for
β large), the total mass Zβ,T of the GMC Mβ,T loses uniform integrability and
eventually collapses to zero. Subsequently, in [2] these assertions were strengthened
and the above decay of the total mass Zβ,T was shown to be exponential and the
decay rate was quantified exactly by a variational formula:

(5) lim
T→∞

1

T
logZβ,T = − inf

ν∈m⊂X̃
IΦ(ν) where IΦ(ν) =

∫

X̃
Φ(ξ)ν(dξ)

and

Φ: X̃ → R, Φ(ξ) = C −
∑

α̃∈ξ

∫ ∫
(φ ⋆ φ)(x − y)α(dx)α(dy), ξ = {α̃} ∈ X̃ .
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Here

(6) X̃ =

{
ξ =

{
α̃j

}
j
: αj ∈ M≤1(R

d),
∑

j

αj(R
d) ≤ 1

}
.

is the space of all empty, finite or countable collections of orbits α̃ = {α ⋆ δx : x ∈
Rd} of sub-probability measures α ∈ M≤1(R

d) on Rd (its construction was intro-
duced in [6]), m is the set of fixed points of certain Markvian dynamics (or invariant

measures). It is imperative to note that the the theory pertaining to the space X̃
which is the compactification of the quotient space of orbits of probabilty measures
(under the group action of Rd) was developed in [6] and its construction implies
important properties of this Markvian dynamics (e.g. Feller continuity, existence

of invariant measures). The metric structure of X̃ also captures continuity prop-
erties of functionals like Φ (and therefore IΦ). Based on this construction, it was

shown in [2] that when β is large, the endpoint distribution Q̂β,T := M̂β,T (WT ∈ ·)
is asymptotically pure atomic, i.e.

lim
T

1

T

∫ T

0

δ
Q̂β,t(Ut,εt )

dt = 1 almost surely,

for any εt ↓ 0 and with Ut,ε = {x ∈ Rd : Q̂β,t[B1(0)] ≥ cε} being the islands
where the endpoint distribution puts uniformly positive density of mass. In other
words, the endpoint distribution accummulates all its mass in these islands, and
no mass disintegrates in the limit. Such an atomic picture of the endpoints on
these islands signify, for large β, the departure from Gaussian universality class to
the non-Gaussian nature of the endpoint GMC distributions.
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A new Universality Class for interface models in (1 + 1)-dimensions:
the Brownian Castle

Giuseppe Cannizzaro

(joint work with M. Hairer)

Randomly fluctuating interfaces in (1 + 1)-dimensions are described by maps
h : R+ × R → R whose space-time evolution is driven by a stochastic forcing. In
this context, two Universality Classes have generally been considered: the Kardar-
Parisi-Zhang (KPZ) and the Edwards-Wilkinson (EW). The first was introduced
in [4] and is presumed to include all those models that possess three features, a
smoothing mechanism, slope-dependent growth speed and an underlying space-
time locally uncorrelated noise. The scaling under which any of the height func-
tions h within this class exhibits universal fluctuations is 1 : 2 : 3, which amounts
to say that in the limit as ε goes to zero, ε1/2h(ε−3/2t, ε−1x)−Cεt, where Cε is a
model-dependent diverging constant, converges to a universal stochastic process,
the so-called KPZ Fixed Point (see [5]). If a model has the same features as above
but does not display any slope dependence, then it belongs instead to the EW
Universality Class [3], whose universal fluctuations, visible under the 1 : 2 : 4
scaling, are Gaussian, and given by those of the solution to the linear Stochastic
Heat Equation (SHE). A remarkable aspect of this story is that there appears to
be a unique interface model on R+ × R whose large scale behaviour is regulated
by the first, while its small scale statistics are those of the second. This model is
given by a singular SPDE, the KPZ Equation, which can be formally written as

(1) ∂th = ν∆h+ λ(∂xh)
2 +

√
Dξ

where ξ is a space–time white noise and ν, λ, D ∈ R are non-zero constants,
respectively describing the strength of the smoothing, slope-dependence and noise.
Moreover, the solution to the KPZ equation is universal itself, as it arises as the
limit of those models in which either the strength of the growth (intermediate
disorder) or the fluctuation mechanism (weak asymmetry) dominate the dynamic.
This corresponds to looking at large scales while simultaneously sending D, in the
first case, or λ, in the second, to 0 at a suitable rate.

The point of departure for this work is the attempt to make sense of the previous
picture in the context of the Ballistic Deposition (BD) model. In BD, particles fall
on top of a surface according to independent Poisson processes of rate 1 and then
stick to the first point they touch. Although very little is rigorously known, BD is
conjectured to belong to the KPZ Universality Class, and, in order to explore the
crossover between EW and KPZ, we needed to modify the definition of BD so to
endow it with a tunable parameter β. Let us introduce the β-Ballistic Deposition
(β-BD) whose dynamic can be described as follows. At each site the height function
u changes according to independent rate 1 Poisson processes, and when a Poisson
clock rings at x at time t then u(t, x) takes the value of its left or right neighbour
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with probability rβ−1(x), r
β
1 (x), respectively, or it increases by 1 with probability

rβ0 (x), where β ≥ 0 and

(2) rβ0 (x) = C(x)eβ and rβi (x) := C(x)eβ(u(x)−u(x+i)) for i = −1, 1,

C(x) been chosen in such a way that
∑

i r
β
i (x) = 1. Notice that for β > 0 the

choice of the rates favours the maximum among the three possible values u(t, ·)
can take and for β = +∞ it reduces to BD itself. This suggests that the large scale
behaviour should be analogous, i.e. for any β > 0, one expects β-BD to belong to
the KPZ Universality Class. On the other hand, for β = 0 all the outcomes are
equally likely and since there is no preferred direction, one might be led to think
that the process belongs to the EW Universality Class.

Figure 1. The Brownian Castle

As the simulation in Figure 1 shows, this cannot be the case since the large scale
height function exhibits discontinuities absent in the EW Fixed Point (and in the
KPZ one). This means that the object displayed is a new stochastic process that
we call the Brownian Castle (BC), the name being due to the fact that the time
evolution of the interface resembles the shape of a growing castle in which new
towers are built, survive for a macroscopic time and then disappear.

In order to guess the scaling exponents and understand the main features of
BC, it is convenient to step back and provide a description of 0-BD based on
Harris graphical representation for interacting particle systems (see Figure 2). Let
us fix a time horizon T > 0 (T = 1 in Figure 2) and consider [0, T ] × Z. For
all y ∈ Z, draw between the lines [0, T ] × {y} and [0, T ] × {y + 1} left and right
arrows according to independent Poisson processes of intensity 1

3 and, on top of the
lines [0, T ]× {y}, draw dots according to a Poisson process of the same intensity.
Then, it is immediate to see that, if we start with a function u0 : Z → N at
time 0 and let u evolve according to the rules of 0-BD, then, for every x ∈ Z,
u(T, x) can be obtained by going downward following the arrows along the unique
path connecting (T, x) to a point, say (0, x̄), and summing u0(x̄) and all the dots
we have met on the way from (0, x̄) to (T, x), (the red paths in Figure 2). The
family of paths connecting {T } × Z to {0} × Z is then a system of coalescing
backward random walks on top of which we have a branching Poisson process that
branches at the times the backward walks coalesce. Upon subtracting the average
growth, i.e. compensating the (branching) Poisson process, we see that we need to
rescale both space/time and height/time, diffusively so that the backward random
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Figure 2. Harris graphical representation of 0-BD

walks converge to Brownian motions and the compensated Poisson process on top
converges, again, to a Brownian motion. In other words, the scaling exponents
should be given by 1 : 1 : 2 as opposed to 1 : 2 : 3 for KPZ or 1 : 2 : 4 for EW.

Thanks to the previous representation we can actually say more, namely, we
can characterise the finite dimensional distributions of the Brownian Castle, which
can then be defined as follows.

Definition 1 (The Brownian Castle). Given h0 ∈ D(R,R), the Brownian Castle
starting at h0 is the process hbc : R+ × R → R such that

(1) hbc(0, ·) = h0
(2) for any z1, . . . , zn ∈ (0,+∞)×R, the distribution of (hbc(z1), . . . , hbc(zn))

is that of m(≤ n) independent branching Brownian motions starting at
time 0 from h0(x1), . . . , h0(xm), branching at the times n coalescing back-
ward Brownian motions starting at z1, . . . , zn, coalesce.

We would like to have a description of the Brownian Castle which goes beyond
the finite dimensional distributions and allows to prove further properties the
process enjoys. To do so, the previous definition suggests that BC is composed of
two strongly interrelated parts, a family of coalescing Brownian motions starting
from every point on R2 and a real-valued Gaussian process indexed by points in
the trajectories of the coalescing family and whose covariance function is given by
the time it takes two backward Brownian motions to coalesce. The first of these
objects is called Brownian Web (BW) and was introduced and studied in [6], but
in order to add the second on top of it, we provide a new construction of BW,
describing it as a random spatial R-tree in the language of [2]. Thanks to it we
are able to show the following theorem (see [1]).

Theorem 1 (C.-Hairer, ’19+). For every càdlàg funtion h0, the Brownian Castle
hbc is right-continuous in time and càdlàg in space. Moreover,

- it admits no version which admits left limits (in time) in the Skorokhod
space of càdlàg functions,

- it is invariant under the 1 : 1 : 2 scaling
- it is Markov, strong Markov and Feller,
- modulo vertical translations, it admits an invariant measure to which,
when restricted to the torus, it converges exponentially fast,

- the invariant measure is a càdlàg process whose two-point distribution is
Cauchy, but whose law is singular with respect to that of the Cauchy pro-
cess.
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Log-Sobolev inequality for the continuum Sine-Gordon model

Roland Bauerschmidt

(joint work with Thierry Bodineau)

We consider a probability measure on RN with density written as

(1) ν0(dϕ) ∝ e−H(ϕ) dϕ = e−
1
2 (ϕ,Aϕ)−V0(ϕ) dϕ

where A is a positive definite N ×N matrix. By the Bakry–Émery theorem [1],

(2) A ≥ λid and HessV0(ϕ) ≥ 0 as quadradic forms

implies the Log-Sobolev inequality

(3) Entν0F ≤ 2

λ
Eν0(∂

√
F )2.

We generalise this theorem to measures that are not required to be log-concave
as follows. Write

(4) A−1 =

∫ ∞

0

e−tA dt, Ct =

∫ t

0

Ċs ds, Ċs = e−sA,

and denote by ECt the Gaussian expectation with covarianceCt acting on a variable
ζ. The renormalised potential Vt(ϕ) is defined by

(5) e−Vt(ϕ) = ECt(e
−V0(ϕ+ζ)).

Essentially equivalently, Vt solves the Polchinski equation

(6) ∂tVt =
1

2
∆Ċt

Vt −
1

2
(∂Vt)

2
Ċt
,

where (u, v)w =
∑

i,j wijuivj , (∂F )
2
w = (∂F, ∂F )w, and ∆wF = (∂, ∂)wF .

If V0 is convex then Vt is convex for all t ≥ 0. This follows for example from the
Brascamp–Lieb inequality, but can also be seen from the maximum principle. In
view of this fact, the our following theorem generalises the Bakry–Émery theorem.

Theorem [2]. Suppose there are real numbers µ̇t (possibly negative) such that

(7) A ≥ λid, QtHessVt(ϕ)Qt ≥ µ̇tid, where Qt = e−tA/2,
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and define µt =
∫ t

0 µ̇s ds. Then ν0 satisfies the Log-Sobolev inequality

(8) Entν0(F ) ≤
2

γ
Eν0 (∂

√
F )2,

1

γ
=

∫ ∞

0

e−λt−2µt dt,

provided the integral is finite.

The proof of the theorem shares significant elements with the Bakry–Émery
proof, but with the crucial difference that we do not use the canonical semigroup
associated to the Dirichlet form to decompose the relative entropy, but instead a
semigroup associated to the Polchinski equation defined as follows:

(9) Ps,tF (ϕ) = eVt(ϕ)
ECt−Cs(e

−Vs(ϕ+ζ)F (ϕ+ ζ)),

where ϕ ∈ X , the expectation ECt applies to ζ. This is a time-dependent Markov
semigroup (the renormalisation semigroup) with time-dependent generator

(10) LtF =
1

2
∆Ċt

F − (∂Vt, ∂F )Ċt
.

Defining the renormalised measure νt by

EνtF = Pt,∞F (0) = eV∞(0)
EC∞−Ct(e

−Vt(ζ)F (ζ)),(11)

one has Eν0F = EνtP0,tF . From this, a computation shows that

(12) Entν0(F ) =
1

2

∫ ∞

0

Eνt

(∂P0,tF )
2
Ċt

P0,tF
dt = 2

∫ ∞

0

Eνt(∂
√
P0,tF )

2
Ċt
dt.

To bound the right-hand side we proceed as in the Bakry–Émery argument, using
that Pt has time-dependent generatorLt. One difference compared to the standard
proof is that the quadratic form also depends on time via Ċt. Interestingly, using
that Ċt satisfies the heat equation C̈t = −AĊt, this dependence interacts perfectly
with the remainder of the argument.

As an application of this method to prove a Log-Sobolev inequality, we consider
the continuum Sine–Gordon model. This probability measure is a fundamental
example of non-Gaussian Euclidean Quantum Field Theory in two dimensions (see,
e.g., [7, 3, 6]), and its Glauber dynamics is a singular SPDE recently considered
using regularity structures [8, 5]. For both Glauber and Kawasaki dynamics, we
apply the above criterion to obtain Log-Sobolev inequalities.

For clarity, we consider the model in a lattice approximation of a two-dimension-
al torus, and prove estimates uniformly in the lattice spacing and in the size of
the torus. Therefore, from now on, let d = 2, let ΩL = LTd be the torus of side
length L > 0, and let Ωǫ,L = ΩL ∩ ǫZd be its lattice approximation with mesh size
ǫ > 0 (where we always assume L is a multiple of ǫ). The continuum Sine-Gordon
model νǫ,L in the lattice approximation is the probability measure on RΩǫ,L with

density proportional to e−Hǫ,L(ϕ) where Hǫ,L is defined for ϕ : Ωǫ,L → R by
(13)

Hǫ,L(ϕ) =
ǫd

2

∑

x∼y∈Ωǫ,L

(ϕx − ϕy)
2

ǫ2
+ ǫd

∑

x∈Ωǫ,L

(
m2

2
ϕ2
x + 2zǫ−β/4π cos(

√
βϕx)

)
,
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and where the sum over x ∼ y is over all pairs of nearest neighbour vertices
contained in Ωǫ,L. The divergent factor ǫ−β/4π is a counterterm needed to obtain
a non-Gaussian measure as ǫ → 0. Indeed, at least for m2 > 0 and z 6= 0 small,
this normalisation ensures that, for 0 < β < 8π, the measures νǫ,L converge weakly
to a non-Gaussian probability measure on D′(R2) as ǫ→ 0 and L→ ∞.

Our first theorem is a uniform Log-Sobolev inequality for the Glauber dynamics
of the massive Sine-Gordon measure νǫ,L. The Glauber Dirichlet form is given by

(14) Dǫ,L(F ) =
1

ǫ2

∑

x∈Ωǫ,L

Eνǫ,L

((
∂F

∂ϕx

)2
)
,

corresponding to the system of SDEs

(15)
∂

∂t
ϕǫ
x = (∆ǫϕǫ)x +m2ϕǫ

x + ǫ−β/4π2z
√
β sin(

√
βϕǫ

x) +
√
2Ẇ ǫ

x.

.

Theorem [2]. Fix β < 6π, and assume that Lm ≥ 1 and that |z|m−2+β/4π is
sufficiently small. There is γǫ(β, z,m,L) > 0 such that, for all F ≥ 0,

(16) Entνǫ,L(F ) ≤
2

γǫ(β, z,m,L)
Dǫ,L(

√
F ).

The limiting Log-Sobolev constant γ(β, z,m,L) = lim infǫ↓0 γǫ(β, z,m,L) satisfies

(17) γ(β, z,m,L) ≥ m2 +Oβ(m
β/4πz).

The constant Oβ(z) is uniform in L ≥ 1/m.

There is also a version of this theorem for (conservative) Kawasaki dynamics
(see [2]). Our proof relies on the approach to the Sine-Gordon model of Brydges–
Kennedy [4]. The starting point is the representation of Vt as a Fourier series
(18)

V (ϕ) =
∞∑

n=0

V (n)(ϕ), V (n)(ϕ) =
1

n!

∑

ξ1,...,ξn

Ṽ (n)(ξ1, . . . , ξn)e
i
√
β
∑n

i=1 ϕxi
σi

where Ṽ (n) : (Λ × {±1})n → R and

(19) ξi = (xi, σi) ∈ Λ× {±1}.
We think of ξi as a particle with position xi and charge σi. The Duhamel formula
gives a formulation of the Polchinski equation as a system of integral equations
for the coefficients Ṽ (n). These can be estimated inductively to obtain strong
estimates for Vt. This analysis is simplest for β < 4π and requires more careful
treatment of V (n) for n = 2, 3, 4 when 4π ≤ β < 6π.
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Disordered pinning for the Gaussian Free Field

Hubert Lacoin

(joint work with Giambattista Giacomin)

We shortly review and present new results concerning the localization transition
of a lattice free field φ = (φ(x))x∈Zd , d ≥ 1 in presence of a quenched disordered
substrate that interacts on the interface’s sites whose height is close to zero. This
corresponds to a Hamiltonian

(1)
∑

x∈Zd

(βωx − λ(β) + h)δx,

where δx = 1[−1,1](φ(x)), (ωx)x∈Zd is an IID centered field and λ(β) := logE[eβω]
is the log-laplace transform of ωx (which we assume to be finite for every β. A
transition takes place when the average pinning potential h goes past a threshold
hc: from a delocalized phase h < hc, where the field is macroscopically repelled
by the substrate to a localized one h > hc where the field sticks to the substrate.

The localization transition can be identified by the study of the free-energy (whose
existence in the disordered was estiablished in [6]). If EN denote the distribution
of the lattice free field in J0, NKd, it is defined by

f(β, h) := lim
N→∞

1

N2
logEN

[
e
∑

x∈Zd
(βωx−λ(β)+h)δx

]
.

The critical point for the phase transition is given by

hc(β) := inf{h : f(β, h)} > 0.

A simple annealing compution shows that f(β, h) ≤ f(0, h) =: f(h) and hence
that hc(β) ≥ hc(0). An interesting question is to know whether the characteristics
of the disordered model are similar to the one observed for β = 0 (for which the
critical behavior was identified in [1].

The case of dimension 1 was extensively studied and it is known that in this
case hc(β) > 0 and that the phase transition is at least quadratic (see e.g. the
introduction of [2] for an extensive review). When d = 2 it was shown in [5] that
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hc(β) = 0 but that the transition is of infinite order (in the sense that for every
K ≥ 2, we have f(β, h) ≤ CKh

K for every h ≥ 0.

Our talk focus on the case d ≥ 3 which was first investigated in [3] and for which
we obtained much more detailed results in [4]. First we obtain a sharp asymptotic
of the free-energy

(2) lim
hց0+

f(β, h)

h2
=

1

2Var[eβω−λ(β)]

Second, we show that in the limit when h → 0+ most points are located at
height

√
2πσd

√
log(1/h)+o(

√
log(1/h)) in absolute value where σd is the standard

deviation of the lattice free field on Zd.
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[6] L. Coquille and P. Mi loś, A note on the discrete Gaussian free field with disordered pinning
on Zd, d ≥ 2, Stoch. Proc. and Appl. 123 (2013) 3542–3559.

From particles to fluids: study of correlations

Isabelle Gallagher

(joint work with Thierry Bodineau, Laure Saint-Raymond, Sergio Simonella)

Consider a system of N ≥ 1 spheres of diameter ε > 0 in the d-dimensional
space TdN with d ≥ 2. The positions and velocities of the particles are denoted
respectively by XN := (x1, . . . , xN ) ∈ TdN and VN := (v1, . . . , vN ) ∈ RdN , and we
set ZN := (XN , VN ). The positions and velocities of the particles satisfy Newton’s
laws

dxi
dt

= vi ,
dvi
dt

= 0 as long as |xi(t)− xj(t)| > ε for 1 ≤ i 6= j ≤ N ,

with specular reflection at a collision. The probability density W ε
N of finding N

hard spheres of diameter ε at configuration ZN at time t is governed by the Liou-
ville equation in the 2dN -dimensional phase space

(1) ∂tW
ε
N + VN · ∇XNW

ε
N = 0 on Dε

N ,

where Dε
N :=

{
ZN ∈ R2dN / ∀i 6= j , |xi − xj | > ε

}
, and with specular reflection

on the boundary. Given a continuous probability distribution f0, exponentially
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decaying in the velocity variable, the initial probability density is defined on the
configurations (N,ZN ) as

(2)
1

N !
W ε,0

N (ZN ) :=
1

Zε

µN
ε

N !

N∏

i=1

f0(zi) on Dε
N

where Zε is a the normalization constant. Note that the particles are “exchange-
able”, in the sense that W ε,0

N is invariant by permutation of the particle labels in
its argument. The total number of particles N is random and one can check that
for µε = ε−(d−1)

(3) lim
ε→0

Eε (N ) εd−1 = 1 ,

where Eε stands for the expectation with respect to the measure (2). The limit (3)
ensures that the Boltzmann-Grad scaling holds, i.e. that the inverse mean free path
is of order 1. Thus we choose µε = ε−(d−1). The (rescaled) n-particle correlation
function at time t ≥ 0 is defined on Dε

n as

F ε
n(t, Zn) := µ−n

ε

∞∑

p=0

1

p!

∫
dzn+1 . . . dzn+p 1Dε

n+p
(Zn+p)W

ε
n+p(t, Zn+p)

and we have

Eε

( ∑

i1,...,in
ij 6=ik,j 6=k

ψ
(
zi1(t), . . . , zin(t)

))
= µn

ε

∫

Dε
n

dZn F
ε
n(t, Zn)ψ

(
Zn

)
.

Lanford’s theorem [2] states that in the Boltzmann-Grad limit µε → ∞, the
rescaled one-particle density F ε

1 (t) converges uniformly to the solution f(t) of
the Boltzmann equation

(4)

∂tf + v · ∇xf = Q(f, f) ,

Q(f, f)(t, x, v) :=

∫

Rd

∫

Sd−1

(
f(t, x, w′)f(t, x, v′)− f(t, x, w)f(t, x, v)

)

× ((v − w) · ν)+ dν dw
f(0, x, v) = f0(x, v)

where the precollisional velocities (v′, w′) are defined by the scattering law

v′ := v − (v − w) · ν ν , w′ := w + (v − w) · ν ν ,
on a time interval [0, T ⋆] which depends only on the size of f0 in L∞, and its
rate of exponential decay. Furthermore for each n, the rescaled n-particle cor-
relation function F ε

n(t) converges almost everywhere to f⊗n(t) on the same time
interval. This result can be seen as a law of large numbers, and we are interested
in fluctuations. We therefore define the fluctuation field ζε as follows for any test
function h

ζεt
(
h
)
:=

√
µε

(
πε
t (h)−

∫
F ε
1 (t, z)h

(
z
)
dz
)
,
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with πε
t the empirical measure at time t

πε
t (ψ) :=

1

µε

N∑

i=1

ψ (zi(t)) .

Initially πε
0 starts close to the density profile f0 and the initial fluctuation ζ0 is a

Gaussian white noise with covariance

E (ζ0(h1) ζ0(h2)) =

∫
h1(z)h2(z) f

0(z) dz .

We prove that in the limit µε → ∞, starting from “almost independent” hard
spheres, ζε converges to the generalized Ornstein-Uhlenbeck process

(5) dζt = Lt ζt dt+ dηt ,

where Lt is the linearized Boltzmann operator around the solution f(t) of the
Boltzmann equation (4)

Lt h(x, v) := −v · ∇xh(x, v) +

∫

Rd

∫

Sd−1

dν dw ((v − w) · ν)+
× (f(t, x, w′)h(x, v′) + f(t, x, v′)h(x,w′)− f(t, x, v)h(x,w) − f(t, x, w)h(x, v)) ,

and dηt(x, v) is a Gaussian noise with zero mean and covariance

E

(∫
dt dz1h1(z1)dηt(z1)

∫
ds dz2 h2(z2)dηs(z2)

)

=
1

2

∫
dtdµ(z1, z2, ω)f(t, z1) f(t, z2)∆h1 ∆h2

denoting dµ(z1, z2, ω) := δx1−x2

(
(v1 − v2) · ω

)
+
dω dv1 dv2dx1dx2 and defining for

any h, ∆h(z1, z2, ω) := h(z′1) + h(z′2)− h(z1)− h(z2) with z
′
i := (xi, v

′
i).

Our result is the following. Consider a system of hard spheres initially distributed
according to the grand canonical measure (2). Assume f0 is a Lipschitz function,
with Gaussian decay in velocities. Then, in the Boltzmann-Grad limit µε → ∞,
the fluctuation field (ζεt )t≥0 converges in law to the the Ornstein-Uhlenbeck pro-

cess (ζt)t≥0 defined in (5) on a time interval [0, T ⋆], where T ⋆ only depends on the
size of f0 in L∞, and on its rate of exponential decay.

The convergence towards the limiting process (5) was conjectured by Spohn and
the non-equilibrium covariance of the process at two different times was computed
in [3]. The noise emerges after averaging the deterministic microscopic dynamics.
It is white in time and space, but correlated in velocities so that momentum and
energy are conserved.

The result is obtained by a careful study of the cumulants associated with the
family F ε

N : denoting Ps
n the set of parts of {1, . . . , n} with s elements, we define

f ε
n(Zn) :=

n∑

s=1

∑

σ∈Ps
n

(−1)s−1(s− 1)!F ε
σ , F ε

σj
:= F ε

|σj |(Zσj ) , F ε
σ :=

|σ|∏

j=1

F ε
σj
.
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By iterating the Duhamel formula for F ε
N , in the spirit of Lanford’s proof, we are

able to prove that the cumulant f ε
n is localized on particular (pseudo)-trajectories

involving at least n− 1 recollisions or overlaps between collision trees, and we can

compute precisely their size: the cumulant of order n is of size O(µ
−(n−1)
ε ) in L1.

This enables us to obtain limiting equations on the cumulants, to prove that only
the first two are involved in the fluctuation field, and their precise dynamics leads
to the equation on the limiting fluctuation field. We refer to [1] for more.
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Correlation bounds in collisional dynamics

Sergio Simonella

(joint work with Thierry Paul, Mario Pulvirenti)

This talk presents a recent result in collaboration with T. Paul and M. Pulvirenti
[1] on a quantitative evaluation of the propagation of chaos for a class of models
including the Kac model for the Boltzmann equation, and large quantum particle
systems in the mean field regime.

Motivated by the Grad limit of hard spheres (see the companion talk by Is-
abelle Gallagher in the same workshop) we base our analysis on the hierarchical
method, which is the most systematic approach to the quantification chaos. We
show that, applying this approach to the (much easier) case of an arbitrary mean
field process with bounded transport and two-body collision operator, the typical
difficulties of BBGKY expansions preventing sharp bounds are simply resolved,
by introducing suitable correlation errors (i. e. ”truncated functions”) which we
export from previous work on the low-density gas [2].

Let the state of the system be given by a symmetric probability measure
fN = fN (t, ZN), where ZN = (z1, · · · , zN) is a configuration of particles. We
assume that fN (0) = (f0)

⊗N . Denoting by
(
fN
j = fN

j (t, Zj)
)
j≥1

the correspond-

ing marginals, the hierarchy tells that the evolution of fN
1 depends on fN

2 , which
depends on fN

3 and so on. At the level of Duhamel iterated series, this gives rise to
a branching process with the number of particles proliferating backward in time.

The dynamics creates small correlations and even if at time zero the variables
(z1, · · · , zN) are assumed to be independent, the statistical independence is lost at
positive times. Our purpose is to prove that ∆N

j (t) := fN
j (t) − f(t)⊗j → 0 where

f(t) is the solution to an effective equation, and quantify the rate.
More precisely, consider the quantity

S := sup
{
α ≥ 0

∣∣∣ lim
N→∞

sup
j<Nα

‖∆N
j (t)‖L1 = 0

}
.
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At fixed time t > 0, S gives a sharp information on the size of chaos. Roughly, it
determines the maximum number of particles which behave as statistically inde-
pendent when N → ∞.

The BBGKY iteration leads to a simple bound ‖∆N
j (t)‖L1 ≤ CjN−γ , C, γ > 0

for fixed time t > 0. This provides no information on S. The expected result
‖∆N

j (t)‖L1 ≤ Cj2/N can be however recovered by replacing the family
(
fN
j

)
j≥1

with the family of correlation errors
(
EN

j

)
j≥1

introduced as follows.

Suppose that for a moderately large j, say j ≈ Nα, α ∈ (0, 1), fN
j (t) ≈

(fN
1 (t))⊗j . Then it is tempting to replace fN

j (t) − f(t)⊗j with (fN
1 (t) − f(t))⊗j ,

for which we expect much better decay. Expanding the latter quantity we find

(1)
∑

K⊂J

(−1)|K|fN
J\K(t)f(t)⊗K =: EN

j (t)

where J = {1, 2, · · · , j}, |K| = is the cardinality of K, fN
A (t) stands for the |A|-

marginal fN
|A|(t) computed in the configuration {zi}i∈A, and f(t)⊗K = f(t)⊗|K|

evaluated in {zi}i∈K (with the conventions fN
∅ = f(t)⊗∅ = 1).

Technically we treat this again by a crude Duhamel expansion. Now the family(
EN

j

)
j≥1

satisfies a hierarchy of equations where the evolution of EN
j depends on

EN
j+1, but also on EN

j−1, E
N
j−2. At variance with the BBGKY, where the colli-

sion operator creates one extra particle, the new hierarchy includes annihilation
operators. As a consequence, the branching process associated to the BBGKY is
replaced by a random walk on the number of particles, with positive and negative
jumps. Since EN

j (0) = δj,0, such a random walk is killed at the origin and the series

expansion is virtually finite. This leads to the improved rate ‖EN
1 (t)‖L1 ≤ C/N

and

‖EN
j (t)‖L1 ≤

(
Cj√
N

)j

, j ≥ 2

for some positive C. In particular (after inverting formula (1)) it follows that

‖∆N
j (t)‖L1 ≤ C

N
+

j∑

k=2

(
j

k

)(
Ck√
N

)k

≤ C
j2

N
.
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On the size of backward clusters in a low-density regime for
Hard-sphere systems

Mario Pulvirenti

(joint work with S. Simonella)

We consider a system of N hard spheres of diameter ǫ > 0 in the 3-D torus T3. We
are interested in a low-density regime, namely when N → ∞, ǫ→ 0, Nǫ2 < +∞.

Fixed a time t > 0, for a given particle (say particle i), we consider its backward
cluster BC(i), which is the minimal subset of particles which really influence the
motion of this particle up to the time t.

This notion is interesting because as far as the behaviour of particle 1 is con-
cerned, we can consider a much simpler dynamics. Therefore it would be inter-
esting to bound the mean size of a backward cluster, for a given measure on the
configurational space of the system. At moment only local (in time) estimates are
available. Now I present an estimate global in time, uniform in ǫ,N , when the av-
erages are computed by means of an equilibrium measure at a given temperature.
This is a work in progress, in collaboration with S. Simonella.

Diffusive and superdiffusive asymptotics of a linear kinetic equation
with interface

Tomasz Komorowski

We consider the limit of a linear phonon Boltzmann equation, with reflection-
transmission-absorption at an interface, with a degenerate scattering kernel. An
equation of this type arises from a microscopic harmonic chain of oscillators whose
dynamics is perturbed by a stochastic term, conserving energy and momentum.
The system is in contact, via one oscillator, with a heat bath at temperature T .
It is known that in the absence of the interface, the solution of the kinetic equa-
tion of this type exhibits superdiffusive, or diffusive behavior in the proper long
time - large scale limit, depending on the behavior of the group velocity ω̄′(k)
of the phonons corresponding to the wavenumbers |k| ≪ 1. In the acoustic case
(ω̄′(k) ∼ signk for |k| ≪ 1) and when the absorption probability of phonons,
corresponding to |k| ≪ 1, at the interface does not vanish, the superdifusive limit
is the unique solution of a version of the fractional in space heat equation, with
reflection-transmission-absorption at the interface. The limit problem corresponds
to a certain symmetric stable process that is either absorbed, reflected, or trans-
mitted upon crossing the interface.

If the dispersion relation is optical (ω̄′(k) ∼ k for |k| ≪ 1), then, under the
diffusive scaling, the solutions of the kinetic equation tend to the solution of a
heat equation with the Dirichlet boundary condition determined by temperature
T . The presented results have been obtained in collaboration with G. Basile (Univ.
Roma I), S. Olla (Univ. Paris-Dauphine) and L. Ryzhik (Stanford Univ.).
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Time-time covariance for last passage percolation with generic initial
profile

Patrik L. Ferrari

(joint work with Alessandra Occelli and Herbert Spohn)

This talk is based on the papers [10] with H. Spohn and [9] with A. Occelli. In [10]
we made some well-funded predictions on the time-time correlations for models in
the Kardar-Parisi-Zhang universality class, while in [9] we provide mathematical
proofs of the results presented below.

Stochastic growth models in the Kardar-Parisi-Zhang (KPZ) universality
class [14] on a one-dimensional substrate are described by a height function h(x, t)
with x denoting space and t time. The height function evolves microscopically
according to a random and local dynamics, while on a macroscopic scale the evo-
lution is a deterministic PDE and the limit shape is non-random. In particular,
if the speed of growth as a function of the gradient of the interface is a strictly
convex or concave function, then the model is in the KPZ universality class. One
expects large time universality under an appropriate scaling limit.

Away from shocks, the fluctuations of the height functions growth as t1/3, while
the spatial correlations are of order t2/3. Furthermore, along space-time trajec-
tories given by the characteristic lines of the PDE for the macroscopic evolution,
non-trivial correlations survive on the macroscopic time scale, i.e., on scales of
order t [8, 5].

The study of the time-time process is recent. On the experimental and numeri-
cal simulation side observables like the persistence probability or the covariance of
an appropriately rescaled height function have been studied [19, 17, 18, 16]. On the
analytic and rigorous side, the two-time joint distribution of the height function
is known for special initial conditions: Johansson, later with Rahman, analyzed
a model on full space [11, 12, 13], while Baik and Liu considered a model on a
torus [2, 1]. For general (random) initial conditions exact formulas on the joint
distributions are not yet available. Also, the analysis of the covariance starting
from the available formulas [13, 12, 1] seems to be a very difficult task.

In [10] and [9] we consider the last passage percolation as model with generic
initial conditions. The predictions of [10] are made under the assumptions that
the exchange of the large time limit and maximum over sums of Airy processes
and that the covariances of the rescaled processes converges holds. In [9] we
provide mathematical proofs, using (1) the method of Corwin, Liu and Wang [7],
who lifted the finite-dimensional slow-decorrelation result of [8, 5] to a functional
slow-decorrelation statement, and (2) the method of comparison with stationarity
developed by Cator and Pimentel [4, 15].

The model is the following. Consider a collection of i.i.d. random variables
ωi,j , i, j ∈ Z with exponential distribution of parameter one. An up-right path
π = (π(0), π(1), . . . , π(n)) on Z2 from a point A to a point E is a sequence of
points in Z2 with π(k + 1)− π(k) ∈ {(0, 1), (1, 0)}, with π(0) = A and π(n) = E,
and n is called the length ℓ(π) of π. Given a set of points SA with some random
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variables (not necessarily independent) h0 on SA, but independent of the ω’s, and
given a point E, one defines the last passage time LSA→E as

(1) LSA→E = max
π:A→E
A∈SA

(
h0(π(0)) +

∑

1≤k≤n

ωπ(k)

)
.

Here we consider SA = L := {(i, j) ∈ Z2 | i + j = 0} for the point-to-point
geometry and SA = {(0, 0)}, E = (τN, τN) for the remaining geometries. Define
the limiting rescaled LPP time

(2) τ 7→ χ⋆(τ) = lim
N→∞

L⋆
SA→E − 4τN

24/3N1/3
,

where the superscript ⋆ denotes the different configurations, point-to-point (•),
point-to-line (�), stationary (B) and random (σ), which are given as follows:

• Point-to-point: SA = {(0, 0)} and h0 = 0,
• Point-to-line: SA = L and h0 = 0.
• Stationary: SA = L and h0 as follows. Let {Xk, Yk}k∈Z be i.i.d. random
variable Exp(1/2)-distributed. Then define

(3) h0(x,−x) =





∑x
k=1(Xk − Yk), for x ≥ 1,

0, for x = 0,

−∑0
k=x+1(Xk − Yk), for x ≤ −1.

• A family of random initial conditions. We consider the case where for a
given σ ≥ 0, h0 is given by (3) multiplied by σ. Clearly, the cases σ = 0
and σ = 1 correspond to the flat and to the stationary cases.

The main results proven in [9] are the following (in [9] the results are extended
to points in neighborhoods of the characteristics as well):

Theorem 1. For the stationary LPP, the covariance of the limiting height func-
tion for all τ ∈ (0, 1) can be expressed as

(4) Cov
(
χB(τ), χB(1)

)
=

1+ τ2/3 − (1− τ)2/3

2
Var(ξBR),

where ξBR is a Baik-Rains distributed random variable.

Theorem 2. As τ → 1 we have, for ⋆ = {•,�,B},

(5) Cov (χ⋆(τ), χ⋆(1)) =
1 + τ2/3

2
Var (χ⋆(1))− (1− τ)2/3

2
Var (ξBR)+O(1−τ)1− .

Here χ•(1) (resp. 22/3χ�(1)) is distributed according to a GUE (resp. GOE) Tracy-
Widom law.

Shortly after finishing our paper, for the point-to-point geometry, Basu and
Ganguly obtained the same exponents for the behaviour at close or far away
points [3]. Unlike in our paper, they did not identify the prefactor, but on the
other hand, their result are non-asymptotic as well. Very recently, a result ana-
logue to [3] for the KPZ equation with sharp wedge initial condition has been
obtained in [6].
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The local geometry at the rough-smooth interface in the two-periodic
Aztec diamond

Sunil Chhita

(joint work with Vincent Beffara and Kurt Johansson)

An Aztec diamond graph of size n is a bipartite graph which contains white vertices
given by

(1) W = {(i, j) : i mod 2 = 1, j mod 2 = 0, 1 ≤ i ≤ 2n− 1, 0 ≤ j ≤ 2n}
and black vertices given by

(2) B = {(i, j) : i mod 2 = 0, j mod 2 = 1, 0 ≤ i ≤ 2n, 1 ≤ j ≤ 2n− 1}.
The edges of the Aztec diamond graph are given by b − w = ±e1,±e2 for b ∈ B

and w ∈ W, where e1 = (1, 1) and e2 = (−1, 1). The coordinate of a face in the
graph is defined to be the coordinate of its center. For an Aztec diamond graph
of size n = 4m with m ∈ N, define the two-periodic Aztec diamond to be an Aztec
diamond graph with edge weights a for all edges around the faces (i, j) with (i+ j)
mod 4 = 2 and edge weights b for all the edges around the faces (i, j) with (i+ j)
mod 4 = 0. A dimer covering is an arrangement of edges so that each vertex
is incident to exactly one edge. Each dimer covering is picked with probability
proportional to the product of the edge weights.

For large two-periodic Aztec diamonds, it is well known that a limit shape
emerges whose curves are described by an 8 degree curve [5], separating the ran-
dom tilings into three macroscopic regions. These macroscopic regions are called
frozen, where the tiling is supposed to be deterministic; rough, where the corre-
lations between dimers should decay polynomially with distance; smooth, where
the correlations between dimers should decay exponentially with distance. These
measures were characterized in [6].

It is well known that dimers on bipartite graphs form a determinantal point pro-
cess, with the correlation kernel given by entries from the inverse of the so-called
Kasteleyn matrix. In general, computing the inverse of the Kasteleyn matrix is
challenging. For the two-periodic Aztec diamond, the inverse of the Kasteleyn
matrix was computed in [4]. Using these formulas, Chhita and Johansson in [2]
were able to find formulas for probabilities of the dominoes at the rough-smooth
interface, finding that there was a complicated mixture of full-plane smooth terms
and Airy kernel correction terms. Similar results of this form were also obtained
by Duits and Kuijlaars in [3], who found a new approach for computing the corre-
lation kernel via Riemann Hilbert analysis. Later, Beffara, Chhita and Johansson
in [1] were able to show that a very specific averaging of the height function for
dominoes converges weakly to the Airy kernel point process under suitable scaling
and centering.

None of these results, however, showed whether there is a set of lattice paths
whose last path converges to the Airy process, which is similar to what is observed
at the frozen-rough interface. Indeed, this is what is expected from simulations.
In this talk, we describe a way to formulate paths, which in some sense are the
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level lines of the height function. Moreover, we show that the point process built
from these paths converges to the Airy kernel point process provided that a < 1/3.
This restriction in the parameter is purely technical. A surprising feature of these
paths is that they are allowed to have small back tracks, which is different from
what is observed at the frozen-rough interface. It remains open to show that there
is a last path which converges to the Airy process, as one would expect.
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Multi-particle diffusion limited aggregation

Alexandre Stauffer

We consider the following process for the growth of an aggregate on Zd. Initially,
the aggregate occupies only the origin of Zd, and each site x ∈ Zd \ {0} hosts one
particle with probability µ or no particle with probability 1− µ, independently of
one another. Then, particles perform a simple exclusion process on Zd; that is,
particles jump at rate 1 to a neighboring site chosen uniformly at random, with
jumps towards sites already occupied by another particle being suppressed. In
addition, whenever a particle jumps from a site x to a site already occupied by the
aggregate, the jump is suppressed, x is added to the aggregate and the particle at x
will stop moving, remaining indefinitely at x. In other words, the aggregate grows
by attaching particles at its boundary whenever a particle attempts to jump onto
the aggregate. We let At ⊂ Zd denote the set of sites occupied by the aggregate
at time t.

This process, which we refer to as multi-particle diffusion limited aggregation
(MDLA), was introduced in 1980 by Rosenstock and Marquardt [5] and popular-
ized by Voss [8]. Previous rigorous results on MDLA were restricted to the case of
dimension 1 [2, 4]. In particular, Kesten and Sidoravicius [4] showed that in d = 1

the aggregate grows with speed zero and reaches to distance of order
√
t by time

t.
In a joint work with Vladas Sidoravicius [6], we showed that in dimensions d ≥ 2

the aggregate has a regime of positive speed of growth. We also showed that when
µ is large enough the aggregated produces a bulky set. More precisely, let Āt be
the set of sites disconnected from infinity by the aggregate (in other words, Āt
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is composed of At and the finite components of its complement). We show the
following result.

Theorem 1 ([6]). For any d ≥ 2, there exists µ0 ∈ (0, 1) such that for all µ ∈
(µ0, 1) there is a constant c > 0 for which

P(Āt ⊃ Bct for all t ≥ 0) > 0,

where Br stands for the ball of radius r centered at the origin of Zd.

The above result is expected to hold for all large enough t almost surely. Re-
cently, Allan Sly [7] obtained partial results on this question. If we let ‖At‖ =
supx∈At

‖x‖1 stand for the furthest away distance the aggregate reaches by time
t, then [7] shows that almost surely ‖At‖ is of order t for all large enough t. But,
unfortunately, the result in [7] does not give any further information regarding the
geometry of the aggregate.

In order to prove Theorem 1, we introduced a novel growth process with compe-
tition, which we describe now. There are two growth processes, which we call type
1 and type 2. Type 1 starts from the origin, whereas for each site in Zd \ {0} with
probability p we place a so-called type 2 seed, otherwise we leave the site empty.
Then type 1 starts spreading through Zd as a first passage percolation process at
rate 1 (that is, with passage times distributed as independent exponential random
variables of rate 1). Type 2 initially does nothing. Whenever a process (type 1
or type 2) attempts to occupy a site which hosts a type 2 seed, the occupation
does not happen and that seed is activated. From that moment on, type 2 starts
spreading from that seed as a first passage percolation process of rate λ. As other
type 2 seeds are activated, more and more clusters of type 2 will start to grow.
Each site of Zd will be occupied by the type that arrives to each first, and will
never switch types afterwards. The above process is refereed to as first passage
percolation in a hostile envronment (FPPHE).

FPPHE is related to MDLA as type 1 represents the growth of the aggregate.
The locations of the seeds represent the sites of Zd where the aggregate will discover
a hole, which is a site that does not host a particle of the exclusion process of
MDLA. Thus, intuitively, we should have µ = 1−p. Then, once a seed is activated
at a site x in FPPHE, which represents the event that the aggregate just discovered
the presence of a hole at x in MDLA, the cluster of type 2 that grows from x in
FPPHE represents the region inside which the hole will be located as it moves.
The above description is just intuitive, and we must emphasize that there is no
coupling between FPPHE and MDLA that shows, for example, that the aggregate
in MDLA contains the sites occupied by type 1 in FPPHE. The proof of Theorem 1
using FPPHE is rather delicate, and we refer the reader to [6] for the details.

There are three possible outcomes for FPPHE: extinction (meaning that type
1 stops growing in finite time almost surely), strong survival (meaning that, with
positive probability, type 1 produces an infinite cluster and all clusters of type 2
are finite), and coexistence (meaning that both types 1 and 2 produce an infinite
cluster with positive probability). We refer to a cluster of type 2 as a maximal set
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of sites that are occupied by type 2, regardless of whether they were all occupied
from the activation of the same type 2 seed or from several type 2 seeds.

Let η1t and η2t be the set of sites occupied by type 1 and type 2, respectively, at
time t (where non-active seeds of type 2 are not included in η2t ). With Vladas Sido-
ravicius we showed the following result, whose proof can be adapted to establish
Theorem 1.

Theorem 2 ([6]). For any d ≥ 2 and any λ < 1, there exists p0 > 0 such that for
all p ∈ (0, p0) there exists a constant c > 0 for which

P(η̄1t ⊃ Bct for all t ≥ 0) > 0.

In other words, the above theorem shows the existence of a strong survival
regime for all λ < 1, provided p is small enough.

Intuitively, one expects that increasing p or λ favors type 2, however there is
no proof of monotonicity for FPPHE (neither is there a proof of monotonicity for
MDLA). Yet, some further results can be obtained. It is not difficult to see that
when p > 1− psitec , where psitec is the critical probability for site percolation on Zd,
there is extinction because almost surely the origin is confined to a finite cluster
of sites not hosting a type 2 seed. One can also show that when λ ≥ 1 there is
extinction for all p. In a joint work with T. Finn [3] we study such extreme cases
and show strong survival and coexistence when λ approaches zero while p remains
fixed.

When the underlying graph is not Zd, but a hyperbolic (and non-amenable)
graph, the results drastically change. In a joint work with E. Candellero [1], we
showed the following two theorems.

Theorem 3 ([1]). For any hyperbolic, vertex-transitive graph, any λ > 0 and any
p ∈ (0, 1), we have

P(type 2 produces an infinite cluster) = 1.

Theorem 4 ([1]). For any hyperbolic, non-amenable graph and any λ > 0, there
exists p0 > 0 such that for all p ∈ (0, p0) we have

P(type 1 produces an infinite cluster) > 0.

Theorem 4 above gives a somehow analogous result as Theorem 2 but with Zd

replaced by a hyperbolic, non-amenable graph. But there is one interesting differ-
ence. In Zd, we know that type 1 cannot produce an infinite cluster when λ ≥ 1;
however, in a hyperbolic, non-amenable graph type 1 has a positive probability
of producing an infinite cluster for all λ > 0, provided p is small enough. Theo-
rems 3 and 4 together imply that there is a regime coexistence when the graph is
hyperbolic, non-amenable and vertex transitive.
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A kinetically constrained model in a random environment

Assaf Shapira

Kinetically constrained models are a family of interacting particle systems that
were introduced in order to study glassy materials. They are based on the hy-
pothesis, that glassy behavior is caused by an out of equilibrium dynamic effect,
and that interactions don’t play an important role. More specifically, when a liq-
uid is cooled down very quickly, and becomes very dense, molecules are not able to
move and relax to equilibrium. In kinetically constrained models, these features
are translated to a Markov process reversible with respect to a non-interacting
equilibrium (i.e. a product measure), and sites are blocked whenever their neigh-
borhood is too dense.

The model I’ve talked about is one example of a kinetically constrained model
in a random environment, where the notion of ”too dense” is determined indepen-
dently at random for each site. For simplicity, take the dynamics on Z2. Before
starting the dynamics, choose for each site whether it’s easy or difficult, indepen-
dently with probabilities π and 1−π (for some π ∈ [0, 1]). These are the quenched
variables (denoted ω), and they’ll be kept frozen when the process runs. The mea-
sure from which we choose them is called ν. The dynamic variables, which will
change with time, are given by the sites’ occupation. Each site could be either
empty or occupied, defining the configuration η. Initially η is chosen according to
the measure µ, setting independently each site to ”empty” with probability q and
”occupied” with probability 1 − q. Since the glass is dense, we think of the limit
q → 0. We then run the following dynamics – on each site we put a clock ringing
with rate 1. Whenever the clock rings, we need to decide whether the ring is legal.
For an easy site, the ring is legal if at least one of its four neighbors is empty, and
for a difficult site if at least two neighbors are empty. When the ring is not legal we
don’t do anything, and when it is legal we toss a coin (independent of everything),
giving ”empty” with probability q and ”occupied” with probability 1−q. We then
set the site’s occupation to the result of the coin toss. This is a reversibly process
with respect to µ, and we denote the measure of rings and tosses by Pµ,Eµ (the
subscript µ indicates stationary initial state).
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When q is small many rings are illegal, and time scales diverge. The goal of the
talk was to compare the divergence of different time scales, and notice some new
phenomena that we don’t see in homogeneous environments. The first time scale
that I mentioned was the relaxation time τrel, which is the best constant for which
all centered local functions f satisfy

Eµ[f(η(0))f(η(t))] ≤ Var(f) e−t/τrel .

In the homogeneous cases, [3, 4] show that τrel ≈ q−2 when π = 1 and e1/q when
π = 0 (the ≈ symbol is used quite freely throughout). In the inhomogeneous case,
since τrel describes the uniform decay of all functions, it will focus on remote areas
of the lattice that have many difficult sites. This is the reason that the relaxation
time is ≈ e1/q when π ∈ (0, 1). That’s not very satisfying if we want to understand
the typical behavior at a typical position, e.g., near the origin. One observable
that will describe the true behavior near the origin is its emptying time

τ0 = inf{t : η0(t) = empty}.
In the homogeneous case it scales like the relaxation time (≈ q−2 for π = 1 and
e1/q for π = 0). When π ∈ (0, 1) this will no longer be true.

One way to analyze the emptying time is to consider the bootstrap percolation
time τBP

0 , which is the time it would take the origin to become empty if all coin
tosses gave ”empty”. This is a very optimistic assumption, but it does give an
upper bound on τ0, and it’s an interesting quantity on its own. In the homogeneous
case we know that τBP

0 ≈ q−1/2 for π = 1 and e1/q for π = 0 [2].
The results that I presented (theorems 2.1 and 2.2 of [1]) state (loosely) that in

the inhomogeneous case the bootstrap percolation time scales like q−1/2, and that
τ0 scales like q−α, for some ν-random α (so different realizations of the quenched
variables will give different values of α). The reason for this difference is that the
bootstrap percolation is dominated by long range effects, which are self-averaging,
while the kinetically constrained model is affected by the local neighborhood of
the origin.

There are many open questions concerning kinetically constrained models in
random environments. First, studying more random environments would be in-
teresting (e.g., random graphs). Many of them have been studied for bootstrap
percolation, but not much is known about kinetically constrained models. One
more question is to consider other time scales, and in particular the relaxation
of local correlations. A simple example is to understand for which time t the

correlation becomes small, i.e., E[η0(0)η0(t)]−µ(η0)
2

Var(η0)
< ǫ. Finally, going beyond the

stationary dynamics is also a very interesting (and challenging) problem.

References

[1] Assaf Shapira, Kinetically constrained models with random constraints, arXiv preprint
arXiv:1812.00774 (2018).

[2] Michael Aizenman and Joel Lebowitz, Metastability effects in bootstrap percolation, Journal
of Physics A: Mathematical and General 21 (1988).



Large Scale Stochastic Dynamics 2653

[3] Nicoletta Cancrini, Fabio Martinelli, Cyril Roberto and Cristina Toninelli, Kinetically con-
strained spin models, Probability Theory and Related Fields 140 (2008).

[4] Fabio Martinelli and Cristina Toninelli, Towards a universality picture for the relaxation to
equilibrium of kinetically constrained models, The Annals of Probability 47 (2019).

Frozen percolation on the binary tree is nonendogenous

Balázs Ráth

(joint work with Jan M. Swart, Tamás Terpai)

Let (T,E) be a regular tree where each vertex has degree 3, and let U = (Ue)e∈E be
an i.i.d. collection of uniformly distributed [0, 1]-valued random variables, indexed
by the edges of the tree. We write Et := {e ∈ E : Ue ≤ t} (t ∈ [0, 1]). Aldous
[Ald00] has proved the following theorem.

Theorem 1. It is possible to couple U to a random subset F ⊆ E with the following
properties:

(1) e 6∈ F if and only if no endvertex of e is part of an infinite cluster of
EUe \ (F ∪ {e}).

(2) The law of (U , F ) is invariant under automorphisms of the tree.

At time t ∈ [0, 1], we call edges in Et \ F open, edges in Et ∩ F frozen, and
all other edges closed. Then property (i) can be described in word as follows.
Initially all edges are closed. At time Ue, the edge e opens provided neither of its
endvertices is at the time part of an infinite open cluster; in the opposite case, it
freezes.

In [Ald00, Section 5.7], Aldous asks whether for the pair (U , F ) that he con-
structs, F is measurable w.r.t. the σ-field generated by U . Our main result is that
almost sure uniqueness does not hold.

Theorem 2. There exists a triple (U , F, F ′) such that U = (Ue)e∈E is an i.i.d.
collection of uniformly distributed [0, 1]-valued random variables, F and F ′ are
random subsets of E satisfying property (i) of Theorem 1, the law of (U , F, F ′) is
invariant under automorphisms of the tree, and F 6= F ′ a.s.

The construction of Theorem 1 uses a so-called recursive tree process (RTP),
c.f. [AB05, Section 2.3], and we prove Theorem 2 by showing that this RTP is
nonendogenous, c.f. [AB05, Section 2.4]. In fact, we prove Theorem 2 by explicitly
constructing a non-diagonal fixed point of the bivariate recursive distributional
equation (RDE) associated to the frozen percolation RTP, c.f. [AB05, Theorem
11]. An essential role in our proofs is played by a frozen percolation process on a
continuous-time binary GaltonWatson tree that has nice scale invariant properties.
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Split-and-Merge in Stationary Random Stirring on Lattice Torus

Dmitry Ioffe

(joint work with Bálint Tóth)

For n ∈ N and N = nd let TN = (Z/n)d be the d-dimensional lattice torus of
linear size n and, accordingly, of volume N , and BN the set of nearest neighbour
unoriented edges b of TN . Let ΣN be the symmetric group of all permutations of
{1, . . . , N}

The random stirring (or, random transposition) process on TN is the continuous
time Markov process t 7→ ηN (t) on the state-space ΣN , generated by independent
Poisson flows (of rate one) of elementary transpositions τb along the unoriented
edges b ∈ BN . Its infinitesimal generator, acting on functions f : ΣN → R, is

LNf(σ) =
∑

b∈BN

(f(τbσ)− f(σ)) .

The uniform distribution of permutations, µN , is the unique invariant measure of
the Markov process t 7→ ηN (t) which is also reversible under this measure.

Given η ∈ ΣN denote by C(η) = (Ci(σ))i≥1 the cycle decomposition of the
permutation η, listed in decreasing order of their sizes, so that in case of ties
the order of cycles is given by the decreasing lexicographic order of their largest
element. The cycle structure ξ = p(η) of η is the ordered list

ξi = pi(η) :=
|Ci(η)|
N

; i = 1, 2 . . .

By construction, ξ ∈ Ω, where Ω is the set of ordered partitions,

Ω =

{
p = (pi)i≥1 : pi ∈ [0, 1], p1 ≥ p2 ≥ · · · ≥ 0,

∑

i

pi = 1

}

We use L(η) = max {i : pi > 0} for the number of cycles of η.
Define the slowed down cycle structure process ξN (t) of ηN via

ξN (t) = ηN
(

t

dN

)
,

where ηN is the above random transposition process on TN . Note that the time
scaling we have chosen leads to the unit total rate of change of ξN . Note also that,
since ηN feels the geometry of TN , ξN is not Markovian. Nevertheless, our main
result asserts that in any dimension d ≥ 1, the equilibrium random cycle structure
ξN induced by the random transposition process on TN converges, as the size of
the torus N → ∞ tends to infinity, to the canonical Markovian split and merge
process ζ on Ω. The latter is specified by the generator

Gf(p) = 2
∑

i<j

pipj (f(Mijp)− f(p)) +
∑

i

p2i

∫ 1

0

(f(Sui p)− f(p)) du,

where, for 1 ≤ i < j, the map Mij : Ω → Ω merges the partition elements pi and
pj into one of size pi + pj, and subsequently rearranges the partition elements in
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decreasing order, whereas, for 1 ≤ i and u ∈ [0, 1), the map Sui : Ω → Ω splits
the partition element pi into two pieces of size upi, respectively, (1 − u)pi and
subsequently rearranges the partition elements in decreasing order. This canonical
process is much studied and well understood. In particular, it is a known fact –
see [4], [2] – that the Poisson-Dirichlet law PD(1) on Ω is the unique stationary
measure for the process t 7→ ζ(t) which is also reversible under this measure.

In the case of transient dimensions d ≥ 3 the problem is motivated by attempts
to understand the onset of long range order in quantum Heisenberg models via
random loop representations of the latter.

The random loop representation of the latter was developed in [7, 8], see also
[1, 3, 5] for the related material. However, for finite temperatures β < ∞ one
should consider the random stirring process t 7→ ηN (t) on TN which starts from
the initial state ηN (0) = id and runs β units of time on the original time scale of
unit stirring rate per edge, rather than being stationary. We use subscripts 0, β
in P0,β(·) to stipulate this initial condition and finite horizon. One should the
consider the modified path measures Pθ

0,β (·);

Pθ
0,β

(
dηN

)
∝ θL(ηN (β))P0,β

(
dηN

)
,

with θ = 2 (measures Pθ
0,β with other values of θ 6= 2 are perfectly well defined,

but only integer values θ = 2, 3, 4, . . . are related to stochastic representations
of quantum spin systems with spin s = θ−1

2 with pair interactions - see [6] for
details).

The basic and best known conjecture in the above context of (modified) random
stirrings on TN is the ”long cycle conjecture” of Tóth [8] which states that, once
d ≥ 3 and β is sufficiently large, then under Pθ

0,β the eventual random permu-

tation ηN (β) contains macroscopic cycles. Affirmative settling of this conjecture
for θ = 1/2 would be essentially equivalent to proving existence of off-diagonal
long range order at low temperatures for the isotropic spin- 12 quantum Heisenberg
ferromagnet, in dimensions d ≥ 3 – a Holy Grail of mathematically rigorous
quantum statistical physics. For details see [8, 5]. The conjecture is, however,
open for any θ ∈ N, including the case θ = 1 of pure random stirring on TN

considered here.

References

[1] M. Aizenman, B. Nachtergaele: Geometric aspects of quantum spin states. Commun. Math.

Phys. 164: 17–63 (1994)
[2] P. Diaconis, E. Mayer-Wolf, O. Zeitouni, M.P.W. Zerner: The Poisson-Dirichlet law is the

unique invariant distribution for uniform split-merge transformations. Ann. Probab. 32:
915–938 (2004)

[3] D. Ioffe: Stochastic geometry of classical and quantum Ising models. In: Methods of con-

temporary mathematical statistical physics, Lecture Notes in Mathematics 1970: 87–127,
Springer, 2009

[4] E. Mayer-Wolf, O. Zeitouni, M.P.W. Zerner: Asymptotics of certain coagulation-
fragmentation processes and invariant Poisson-Dirichlet measures. Electr. J. Probab. 7:
paper no. 8. 1–25 (2002)



2656 Oberwolfach Report 42/2019

[5] C. Goldschmidt, D. Ueltschi, P. Windridge: Quantum Heisenberg models and their proba-
bilistic representations. In: Entropy and the quantum II Contemp. Math. 552 pp. 177–224
(2011)

[6] D. Ueltschi: Random loop representations for quantum spin systems. J. Math. Phys. 54:
(8) pp. 1–40. (2013)
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Coagulation equations with a source term

Jani Lukkarinen

(joint work with Marina Ferreira, Alessia Nota, Juan J. L. Velázquez)

We study coagulation equations under non-equilibrium conditions which are in-
duced by addition of a source term for small cluster sizes, resulting in the evolution
equation

∂tf(x, t) =
1

2

∫ x

0

K (x− y, y) f (x− y, t) f (y, t) dy(1)

−
∫ ∞

0

K (x, y, t) f (x, t) f (y, t) dy + η (x) .

We consider measure valued solutions to the equation which allows to study both
discrete and continuous coagulation equations simultaneously. We also allow for
a large class of coagulation rate kernels, aiming to capture all kernels relevant to
atmospheric coagulation phenomena; reviews of the related physics and chemistry
may be found in [1] and of mathematical properties in [2]. To this end, we consider
continuous kernel functions which are bounded from above and below by

w(x, y) = xγ+λy−λ + yγ+λx−λ ,(2)

where γ and λ ∈ R. That is, we assume that there are c1, c2 > 0 such that
c1w(x, y) ≤ K(x, y) ≤ c2w(x, y) for all x, y > 0. The assumptions cover, in
particular, the commonly used free molecular (aka ballistic) and diffusion limited
aggregation coagulation kernels.

Our main result, described in detail in Ref. [3], is to show that, when the source
term is present, the parameters γ and λ determine whether the system can have
stationary solutions. Namely,

(1) if |γ + 2λ| < 1, then there exists at least one stationary solution, but
(2) if |γ + 2λ| ≥ 1, then there are no stationary solutions.

In particular, we find that the diffusive kernel allows for stationary solutions while
there can be no such solutions for the free molecular kernel. The argument to
prove the non-existence of solutions relies on a novel power law lower bound, valid
in the appropriate parameter regime, for the decay of stationary solutions with
a constant flux. We obtain optimal lower and upper estimates of the solutions
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for large cluster sizes, and prove that the solutions of the discrete model behave
asymptotically as solutions of the continuous model.

Many applications of coagulation phenomena involve several coagulating par-
ticle species. For d species, this can be taken into account by considering in (1)
clusters which are labelled by their composition vectors, x = (x1, x2, . . . , xd) where
xi ≥ 0, i = 1, 2, . . . , d, and x 6= 0. The solutions to the multicomponent case, with
or without a source term, exhibit unusual “spontaneous localization” phenomena.
This is evident for instance from the explicit solutions available for the stationary
constant kernel case in Ref. [4]. However, the effect appears to be quite generic,
and we can prove that there are examples of coagulation kernels, covering both
γ = 0 and γ = 1 above, for which nearly all clusters have a composition which lies
ever closer to a straight line for large times. The position of the line is determined
by the source terms when they are present, and by the initial data if there are no
source terms. The extend of generality of this statement is still a work in progress.
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Discrete classical integrable systems and generalized Pitman’s
transform

Makiko Sasada

(joint work with David Croydon, Tsuyoshi Kato and Satoshi Tsujimoto)

The Korteweg-de Vries equation (KdV equation) and the Toda lattice are typical
and well-known classical integrable systems. For the KdV equation, Killip, Murphy
and Visan constructed a solution of the KdV equation started from white noise,
and further showed the invariance in distribution of this solution under the KdV
dynamics recently [2], but the (almost-sure) well-posedness of a solution starting
from a general ergodic random field on R is still an open problem. On the other
hand, for the infinite Toda lattice, the invariance under the generalized Gibbs
ensembles (GGE) are standard. Recently, Spohn shows that the generalized Gibbs
free energy of the Toda chain is related to the β-ensembles of random matrix theory
in the mean-field regime and obtained an exact variational formula for the density
of states of the Lax matrix, when its matrix elements are distributed according to
some GGE [3].
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In this talk, I present our recent results on discrete time versions of the KdV equa-
tion and the Toda lattice starting from random initial conditions. In particular,
we first need to study the (almost-sure) well-posedness of a solution.

First, I introduce the box-ball system (BBS), which is a cellular automaton that
exhibits solitonic behaviour and show results obtained in our recent paper [1]. The
box-ball system can be understood as a special class of ultra-discrete KdV equation
and also a special class of ultra-discrete Toda lattice. We study the BBS dynamics
using the transformation of a nearest neighbour path encoding of the particle
configuration given by ’reflection in the past maximum’, which was famously shown
by Pitman to connect Brownian motion and a three-dimensional Bessel process.
We use this to characterise the set of configurations for which the dynamics are
well-defined and reversible (i.e. can be inverted) for all times. The techniques
developed to understand the deterministic dynamics are subsequently applied to
study the evolution of the BBS from a random initial configuration. Specifically,
we give simple sufficient conditions for random initial conditions to be invariant in
distribution under the BBS dynamics, which we check in several natural examples,
and also investigate the ergodicity of the relevant transformation. Furthermore,
we analyse various probabilistic properties of the BBS that are commonly studied
for interacting particle systems, such as the asymptotic behavior of the integrated
current of particles and of a tagged particle.

Next, we introduce some generalization of Pitman’s transform and show that the
dynamics of several discrete integrable systems, such as the discrete KdV equation,
the ultra-discrete KdV equation, the discrete Toda lattice and the ultra-discrete
Toda lattice are given by them. We apply this observation to define the dynamics
uniquely on the infinite product space and study their invariant measures.
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Universality for Critical Kinetically Constrained Models

Ivailo Hartarsky

(joint work with Laure Marêché, Fabio Martinelli, and Cristina Toninelli[5, 6])

Kinetically constrained models (KCM) are interacting particle systems on the
integer lattice Zd, introduced in the physics literature to model the liquid-glass
transition. A generic KCM is a continuous-time Markov process of Glauber type
characterised by a finite collection U of finite nonempty subsets of Zd \ {0}, its
update family. A configuration ω is defined by assigning to each site x ∈ Zd

an occupation variable ωx ∈ {0, 1}, corresponding to an empty or occupied site
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respectively. Each site x ∈ Zd waits an independent, mean one, exponential time
and then, iff there exists U ∈ U such that ωy = 0 for all y ∈ U + x, then site x
is updated to empty with probability q and to occupied with probability 1 − q.
Since each U ∈ U is contained in Zd \ {0}, the constraint to allow the update does
not depend on the state of the to-be-updated site. As a consequence, the product
Bernoulli(1− q) measure, µ, is reversible and invariant.

Both from a physical and from a mathematical point of view, a central issue
for KCM is to determine the speed of divergence of the characteristic time scales
as q → 0. Two key quantities are: (i) the relaxation time Trel, i.e. the inverse of
the spectral gap of the Markov generator and (ii) the mean infection time E(τ0),
i.e. the mean over the stationary process started at µ of the first time at which
the origin becomes empty. These quantities can have very different scalings for
different models. A question that naturally emerges, and that was first addressed
in [8], is whether it is possible to group all possible update families into distinct
universality classes, so that all models of the same class display the same divergence
of time scales.

Before presenting the results and the conjectures of [8], we should describe the
key connection of KCM with a class of monotone cellular automata known as U-
bootstrap percolation (or simply bootstrap percolation). U-bootstrap percolation
on Zd can be defined as the discrete time version of the corresponding U-KCM
with q = 1, but starting from a product measure with a different parameter, which
we will still denote 1−q. In other words at each time step we empty all sites whose
constraint is satisfied and never occupy additional sites. A key time scale for this
dynamics is the first time at which the origin is empty (infected), τBP. In order to
study it for models on Z2, the update families were classified by Bollobás, Smith
and Uzzell [4] into three universality classes: supercritical, critical and subcritical,
according to a simple geometric criterion involving stable directions. For super-
critical update families, [4] proved that τBP = q−Θ(1) w.h.p. as q → 0, while
in the critical case τBP = exp(q−Θ(1)). Finally, in the subcritical case Balister,
Bollobás, Przykucki and Smith [2] showed that τBP = ∞ with positive probability
for q sufficiently small. The result for critical families was later improved by Bol-
lobás, Duminil-Copin, Morris and Smith [3], who identified the critical exponent
α = α(U) such that τBP = exp(q−α+o(1)).

A natural question is whether there is a direct connection between the infection
mechanism of bootstrap percolation and the relaxation mechanism for KCM, and,
more precisely, whether the scaling of Trel and E(τ0) is connected to the typical
value of τBP when the law of the initial infections is µ. It is not difficult to establish
that µ(τBP) provides a lower bound for E(τ0) and Trel [9], but in general, as we
will explain, this lower bound fails to provide the correct behaviour.

In [8], Martinelli, Morris and Toninelli proposed that the supercritical class
should be refined into unrooted supercritical and rooted supercritical models in
order to capture the richer behavior of KCM. For unrooted models the scaling is
of the same type as for bootstrap percolation, Trel ∼ E(τ0) = q−Θ(1) as q → 0 [8],
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while for rooted models the divergence is much faster, E(τ0) ∼ Trel = eΘ((log q)2)

[7, 8].
Concerning the critical class, the lower bound with µ(τBP) mentioned above

and the results of [4] on bootstrap percolation imply that Trel and E(τ0) diverge
at least as exp(q−Ω(1)). In [8] an upper bound of the same form was established
and a conjecture was put forward on the value of the critical exponent ν such
that both E(τ0) and Trel scale as exp(| log q|O(1)/qν), with ν in general different
from the exponent of the corresponding bootstrap percolation process and match-
ing the upper bound. Furthermore, a toolbox was developed for the study of the
upper bounds. The main issue left open in [8] was to develop tools to establish
sharp lower bounds. A first step in this direction was made by Martinelli, Marêché
and Toninelli [7] by analyzing a specific critical model known as the Duarte model.
They established that the divergence is again much faster than for the correspond-
ing bootstrap percolation model, namely the critical exponent for the Duarte KCM
is twice the critical exponent for the Duarte bootstrap percolation.

In [5], with Marêché and Toninelli, we extend this result that ν = 2α to all
critical models for which it holds – those with an infinite number of stable di-
rections – by proving a lower bound matching the upper one of [8]. The sharper
divergence of time scales for KCM is due to the fact that τ0 is not well approxi-
mated by the infection mechanism of the monotone bootstrap percolation process,
but is instead the result of a much more complex emptying/occupying mechanism.
Indeed, visiting regions of the configuration space with an anomalous amount of
empty sites is heavily penalised and requires a very long time to actually take
place. The basic underlying idea is that the dominant relaxation mechanism is an
East-like dynamics for large droplets of empty sites. Here East-like means that
the presence of an empty droplet allows to empty (or fill) another adjacent droplet
but only in a certain direction (or, more precisely, in a limited cone of directions).
This is reminiscent of the relaxation mechanism for the East model, a prototype
one-dimensional KCM for which x can be updated iff x−1 is empty, thus, a single
empty site allows to create/remove an empty site only on its right. For critical
models, droplets have a size that diverges as ℓ = q−α and thus an equilibrium

density qeff = qℓ ∼ e−q−α

. Then a (very) rough understanding of the results of
[5, 7, 8] is obtained by replacing q with qeff in the time scale for the East model

T East

rel = eΘ((log q)2) [1]. The main technical difficulty, along with the lack of orien-
tation of general models, to translate this intuition into a lower bound is that the
droplets cannot be identified with a rigid structure. In [7] this difficulty for the
Duarte model was overcome by an algorithmic construction that allows to sequen-
tially scan the system in search of sets of empty sites that could (without violating
the constraint) empty a certain rigid structure. For general models, however, we
introduce a much more flexible notion of droplet playing the role of the empty
sites for the East dynamics.

In [6], with Martinelli and Toninelli, we prove that for all other critical models,
those with a finite number of stable directions, we have ν = α. This completes
the universality partition for critical KCM and disproves the conjecture of [8].
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In order to establish this stronger upper bound, we introduce a novel and very
peculiar mechanism mixing oriented dynamics on small scales and non-oriented
dynamics on large scales. The first step is to consider a droplet as above and
move it in an East-like way. However, this is done only for a distance q−O(1), until
it reaches the help required for moving in a transversal direction. At that point
the droplet is extended transversally and then one retraces the East dynamics,
bringing the extension back to the original position. This effectively results in a
step in a difficult direction requiring only O(log(1/q)) droplets at any single time.
Iterating this procedure one can move the droplet in any direction by this quasi-
local mechanism. Then one can simply move a remote droplet to the origin without
ever creating more than logarthmically many droplets – it suffices to repetitively
make a step towards the origin and remove the previous droplet as described.
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Low-temperature Sampling Algorithms

Tyler Helmuth

(joint work with Christian Borgs, Jennifer Chayes, Will Perkins, Guus Regts,
Prasad Tetali)

Associated to any discrete equilibrium statistical mechanics model are at least
two fundamental computational tasks: (approximate) counting and (approximate)
sampling. To describe these tasks and our results precisely, we begin by briefly
recalling two well-known models of interest. Throughout we let G = (V,E) denote
a finite graph.

To describe the first model, let λ ≥ 0, and let IG denote the set of independent
sets on G, i.e., sets I ⊂ V such that x, y ∈ I implies {x, y} /∈ E. The hard-core
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model on G is the probability distribution PG on IG defined by

(1) PG(I) =
1

ZG(λ)
λ|I|, ZG(λ) =

∑

I∈IG

λ|I|.

The parameter λ is called the activity, and intuitively a larger value of λ biases
PG to favour independent sets with a higher density.

To describe the second model, let q ∈ N and β ≥ 0. The q-state Potts model is
the probability distribution PG on colourings σ ∈ [q]V defined by

(2) PG(σ) =
1

ZG(β, q)
e−βH(σ), ZG(β, q) =

∑

σ∈[q]V

e−βH(σ).

Here H(σ) is the number of bichromatic edges under the colouring σ, i.e., H(σ) =∑
{x,y}∈E 1σ(x)=σ(y). The parameter β is called the inverse temperature. Lower

temperatures (i.e., larger values of β) biases PG to favour colourings with fewer
bichromatic edges.

With these examples in mind, we now define the computational tasks named in
the first paragraph. For definiteness, consider the Potts model with q and β fixed.
Given G = (V,E) and ǫ > 0,

• Counting is the task of producing a number ẐG such that e−ǫZG ≤ ẐG ≤
eǫZG, and

• Sampling is the task of producing a configuration σ̂ ∈ [q]V with law P̂ such

that ‖P̂− PG‖TV < ǫ.

Interest is focused on efficient algorithms for these tasks, meaning ones that run
in time polynomial in |V | and ǫ−1. Modern research is focused on approximation
algorithms (meaning ǫ > 0) as exact counting and sampling (meaning ǫ = 0) is
typically #P-hard. It is widely believed there is no polynomial time algorithm for
#P-hard problems. In what follows we will hence omit the adjective approximate.

We note that while this notion of efficiency may not conform to the everyday
use of the word when the runtime is a polynomial of high degree, it has proven
to be a useful and accepted notion in theoretical computer science. Moreover,
once a polynomial time algorithm is found, it is often the case that a low-degree
polynomial time algorithm is found soon after [11, Section 3.2].

Recall that the hard-core model has a phase transition on d-regular trees at
the parameter value λc(d) = (d − 1)d−1/(d − 2)d. A tantalising link between
equilibrium statistical mechanics and theoretical computer science is contained in
the following results.

Theorem 1 (Weitz [10]). Fix d ≥ 3 and 0 ≤ λ < λc(d). There is an efficient
sampling and counting algorithm for the hard-core model with activity λ on d-
regular graphs.

Theorem 2 (Sly [8], Sly–Sun [9], Galanis–Štefankovič–Vigoda [4]). Fix d ≥ 3
and λ > λc(d). Unless RP = NP , there does not exist an efficient sampling or
counting algorithm for the hard-core model with activity λ on d-regular graphs.
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Thus there is a computational phase transition for the hard-core model on d-
regular graphs. A natural, if imprecise, question arises: which input graphs G
cause difficulty for efficient counting and sampling? Particularly interesting for
theoretical computer science is the restriction to bipartite inputs [5].

Motivated by this question, consider the restriction to G being a discrete torus
of side-length n, i.e., G = (Z/nZ)d. For the low density hard-core and high
temperature Potts models it is known that the Glauber dynamics provides efficient
counting and sampling algorithms for these input graphs for all d ∈ N. Conversely,
it is also known that the Glauber dynamics fail to mix rapidly at high densities
and low temperatures. The following theorem provides the first known efficient
algorithm for the hard-core model on Zd at high densities.

Theorem 3 (Helmuth–Perkins–Regts [6]). Fix d ≥ 2 and n ∈ 2N. There are
λ0(d) > 0 and c(d) > 0 such that for λ ≥ λ0(d) there exists efficient counting and
sampling algorithms for the hard-core model on (Z/nZ)d provided ǫ > e−c(d)n.

The algorithms of [6] also apply for any ǫ > 0 for relatively general connected
subgraphs of Zd, provided one considers the hard-core model with all-even or
all-odd boundary conditions. The proof of Theorem 3 involves using the cluster
expansion and Pirogov–Sinai theory for algorithmic purposes. This approach was
inspired by work of Barvinok and of Patel and Regts [1, 7].

In fact, Pirogov–Sinai theory is very general, and as a result the results of [6] are
very general. Namely, they apply deep inside the low temperature (or high density)
phase of essentially any discrete statistical mechanics model that has finitely many
ground states, all of which are stable. An example of such a model is the Potts
model at low temperatures β ≥ β0(d, q).

Given the existence of algorithms at very low temperatures, it is natural to won-
der if the difficulty in designing efficient algorithms has to do with the behaviour
of models precisely at their critical points. This question is in general open, but
the next theorem provides some progress for the q-state Potts model. Recall that
the q-state Potts model on Zd undergoes a phase transition at a critical value
0 < βc(q, d) <∞.

Theorem 4 (Borgs–Chayes–Helmuth–Perkins–Tetali [2]). Fix d ≥ 2. There is
a q0(d) such that for q ≥ q0(d) and any β ≥ 0, there are efficient counting and
sampling algorithms for the Potts model on (Z/nZ)d.

Thus when q is large the algorithmic tasks associated to the Potts model can
be performed efficiently at all temperatures. This result also applies to a large
class of connected subgraphs of Zd with appropriate boundary conditions.

The proof of Theorem 4 is via an extension of the methods used to prove
Theorem 3, with the key advance being a technique to handle unstable ground
states. An important input was the refined Pirogov–Sinai theory for the Potts
model developed in [3].
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An intriguing open problem is to use the Glauber dynamics to obtain fast
algorithms at low temperatures. This should be possible by making use of a well-
chosen (random) initial state, e.g., a fair coin flip to decide between the all-even
and all-odd configurations for the hard-core model on (Z/nZ)d.
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Place du Maréchal de Lattre de Tassigny
75775 Paris Cedex 16
FRANCE

Prof. Dr. Mario Pulvirenti

Facolta di Scienze Matematiche
Università di Roma
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