
Mathematisches Forschungsinstitut Oberwolfach

Report No. 45/2019

DOI: 10.4171/OWR/2019/45

Mini-Workshop: Operator Algebraic Quantum Groups

Organized by
Michael Brannan, College Station

Martijn Caspers, Delft
Moritz Weber, Saarbrücken

Anna Wysoczanska-Kula, Wroclaw

6 October – 12 October 2019

Abstract. This mini-workshop brought together a rich and varied cross-
section of young and active researchers working on operator algebraic aspects
of quantum group theory. The primary goals of this meeting were to high-
light the state-of-the-art results on the subject and to trigger new research by
advertising some of the main open directions in operator algebraic quantum
group theory: classification problems for C∗- and von Neumann algebras,
relations to free/non-commutative probability, applications in quantum in-
formation theory, and the creation of new quantum groups and potential
classification results for subclasses of quantum groups.

Mathematics Subject Classification (2010): 46L05, 46L10, 46L54.

Introduction by the Organizers

The mini-workshop Operator Algebraic Quantum Groups, organised by Michael
Brannan (College Station), Martijn Caspers (Delft), Moritz Weber (Saarbrücken),
and Anna Wysoczanska-Kula (Wroclaw) was very well attended with 17 partic-
ipants with broad geographic representation from Europe, North America, and
Asia. The vast majority of participants in this mini-workshop were highly ac-
tive early-career researchers (graduate students, postdocs, or pre-tenure faculty),
resulting in a very productive and stimulating meeting for all who were present.
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General background. Quantum groups form a relatively new area of mathe-
matics. Their roots lie somewhere in the second half of the 20th century with
the discovery of Hopf algebras and attempts to use them in quantum physics and
quantum gravity. In mathematics, quantum groups provide the right framework
for Pontrjagin duality in harmonic analysis, they give the correct notion of sym-
metry in Jones’s subfactor theory, and they play a key role in non-commutative
geometry and operator algebras.

Quantum groups appear in different guises: as Hopf algebras, tensor categories
or operator algebras. Often one studies these different incarnations of quantum
groups at the same time, as well as the interactions between them. In this work-
shop the focus was on the operator algebras generated by quantum groups and
how they can be studied using free probability, C∗-tensor categories and of course
C∗- and von Neumann algebras themselves. This workshop concentrated on topo-
logical quantum groups, i.e., on locally compact quantum groups in the sense of
Woronowicz and Kustermans-Vaes.

Recent developments. In the early development of quantum groups (≈ 1990’s),
operator algebras were mainly used as a tool to define what a quantum group
actually is. In a nutshell a quantum group is a topological algebra (a C∗- or
von Neumann algebra) equipped with a comultiplication and a coinverse (or anti-
pode). If the algebra is commutative then it is the algebra of functions on a locally
compact group with comultiplication and coinverse given by the pullbacks of the
group multiplication and group inverse.

At the same time, quantum groups provide new and interesting examples of
operator algebras. These are the analogues of group C∗-algebras and group von
Neumann algebras, which are suitable closures of the image of the left regular rep-
resentation (i.e. the group algebra). That this class of operator algebras should
be studied was clear straight from the beginning: in the classical setting of groups,
major questions around the Baum-Connes conjecture, Popa’s deformation/rigidity
programme, free probability, the Elliott programme, etc. had been studied in de-
tail. But for the operator algebras coming from quantum groups, things are much
less clear. But as examples were sparse and tools to tackle such major prob-
lems were absent not much was done; except on the somewhat isolated examples
given by the free orthogonal and free unitary quantum groups ([Ban97], [VaVe07],
[Wan95]).

In the past 5 − 7 years, the landscape changed drastically and significant contri-
butions to the structure, existence and sometimes even classification of quantum
groups were made. The key example would again be the quantum orthogonal
groups of which we know by these efforts many structural properties: approxi-
mation properties [Bra12], [CLR15], [CFY14], [Fre13], rigidity properties [Ara17],
classification of semi-groups [Cas18], [CKF14], Baum-Connes conjecture and K-
theory [Voi11], [VoVe13], description of MASA’s [FrVe16], [Iso15], [Iso17], and
many more. These results required new insights (many came from young re-
searchers entering the area) and provided new techniques, especially concerning
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connections to category theory (see e.g. [Wor88], [CFY14], [NeYa17]), probability
and naturally within the area of operator algebras/functional analysis itself.

This workshop focused on the state–of–the–art of our understanding of quantum
group operator algebras and highlighted some of the major open directions in the
field. The program was divided roughly into the following 4 themes.

1. Structure of the C∗- and von Neumann algebras of quantum groups. The free
orthogonal quantum groups (mentioned above) are in a sense just a showcase ex-
ample of a much larger class of quantum groups: compact matrix quantum groups.
They are constructed through deformation and/or liberation techniques and give
an uncountable class of examples. Outside the free orthogonal case (see again
above) almost nothing is known about the structure of these quantum groups and
their operator algebras (this is quite a remarkable in fact). The first focus of the
workshop was on unraveling the structure of compact matrix quantum groups in
general: specifically approaches to problems involving approximation properties,
boundary actions, property (T), the Connes embedding problem, Baum-Connes
Conjecture, free entropy dimension, L2-Betti numbers, and so on. Work in this di-
rection was reported on in the minicourses given by Roland Vergnioux and Chris-
tian Voigt, and also in the lectures given by Mehrdad Kalantar, Sven Raum,
Alexandru Chirvasitu, Adam Skalski, Yuki Arano, and Martijn Caspers.

2. Creation of quantum groups. Whereas the class of classical groups is large, find-
ing examples of quantum groups is a serious task. The initial work of Woronowicz
and Drinfeld created deformations of compact simple Lie groups (like SUq(n) or
its quantized enveloping Lie algebra suq(n)) and for a long time Wang’s free uni-
tary/orthogonal quantum groups [Wan95] had been a more or less isolated exam-
ple. New quantum groups were only found much later [BaSp09], [Kul15], [Web13],
[RaWe16], [SpWe16]. This workshop’s second focus was on on extending the class
of examples even further. Recent progress in this direction was reported on in the
minicourse given by Amaury Freslon, and also in the lectures by Laura Maassen,
Piotr Søltan, Kari Eifler, and Moritz Weber.

3. Classification of subclasses of quantum groups. In group theory, classification
programmes have been a central theme of research, for example the classification
of (finite) simple groups. It is natural to try and classify certain classes of quantum
groups. For the so-called easy (or partition) quantum groups, such a classification
is known [BaSp09], [Web13], [RaWe16]. A central topic at the meeting was on
the development of methods to extend classification results to broader classes, for
example those arising in [TaWe16], [SpWe16], and describe their structure com-
prehensively. This material was also covered in the lectures by Amaury Freslon,
Laura Maassen and Moritz Weber.

4. Connections to non-commutative probability. Quantum groups provide natural
models for non-commutative probability spaces and therefore immediately pro-
vide a fruitful probabilistic playground. This interplay takes place for example if
one studies a quantum group as a non-commutative space in which case suitable
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analogues of Lévy processes and stochastic processes have been found and some-
times classified [CKF14]. On the other hand there is a very strong connection
with Voiculescu’s theory of free probability (e.g. [KoSp09], [BCS12]). In many
cases such connections also shed light on structural properties of quantum group
operator algebras (see e.g. [BCV17]). This topic was covered in great detail by
the minicourse given by Uwe Franz, and also the lectures given by Pierre Tarrago
and Isabelle Baraquin.

Structure of the workshop. Each participant in the workshop had the opportu-
nity to present a 45 minute lecture on their work. In addition, Uwe Franz, Amaury
Freslon, Roland Vergnioux, and Christian Voigt each gave a 2-lecture minicourse
on subjects related to the 4 topics outlined above. All lectures toook place in the
morning and late afternoon, leaving plenty of time after lunch each day for small
group discussions and collaborations.
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Abstracts

Some Properties of Discrete Quantum Group C∗-algebras

Roland Vergnioux

Following the advice of the organizers, I gave a survey talk about C∗- and von Neu-
mann algebras associated with compact/discrete quantum groups. What follows
is an introductory overview of this survey. Quite conveniently, the available space
does not allow for a complete list of references, so that I prefer not to mention any
reference.

The theory of compact quantum groups was initially formulated, and is actually
most easily formulated, in the framework of C∗-algebras, as follows. A Woronowicz
C∗-algebra is a unital C∗-algebra A equipped with a unital ∗-homomorphism ∆ :
A→ A⊗A (the coproduct) such that i) (∆⊗id)∆ = (id⊗∆)∆ and ii) ∆(A)(1⊗A)
and ∆(A)(A⊗1) are dense in A⊗A. Woronowicz proved the existence of a unique
(Haar) state h : A → C such that (h ⊗ id)∆ = (id ⊗ h)∆ = 1 ⊗ h. The image
Ar = πh(A) of A under the GNS representation associated with h is again a
Woronowicz C∗-algebra, and we say that A is reduced if πh is faithful.

A compact quantum group G, and its discrete dual Γ, are given by a reduced
Woronowicz C∗-algebra Ar, which is then denoted Ar = Cr(G) = C∗

r (Γ). There
are potentially other Woronowicz C∗-algebras A which admit Ar as their reduced
version, and among them a universal one, denoted Au = Cu(G) = C∗

u(Γ). The
von Neumann algebra associated with Γ and G is πh(A)′′ = L∞(G) = L(Γ). We
say that Γ, G are of Kac type if h is tracial.

The notation above is motivated by the examples associated with usual groups:
if G is a compact group, we can consider the algebra of continuous functions
on G, C(G) = Cr(G) = Cu(G), with coproduct ∆(f) = ((r, s) 7→ f(rs)), and
if Γ is a discrete group we can consider the reduced and universal group C∗-
algebras with coproduct ∆(γ) = γ ⊗ γ, where group elements are identified with
the corresponding unitaries in the respective group algebras.

Wang’s algebra Ao(Q) = Cu(O+
Q) = C∗

u(FOQ) is a genuinely quantum and
prototypical example for the properties considered in the rest of the talk. It is
defined, for Q ∈ GLN (C) such that QQ̄ = ±IN , by generators and relations as
follows:

Ao(Q) = 〈1, vij | vv∗ = v∗v = 1 and v = Qv̄Q−1〉,
where v = (vij) and v = (v∗ij) ∈MN(Ao(Q)). The corresponding quantum groups
are of Kac type iff Q is unitary. For Q = IN one uses the shorthand notation
O+

N , FON . There are other interesting variants, such as the unitary ones, U+
Q

and FUQ (a notation invented by C. Voigt), as well as the quantum permutation
group S+

N and its dual, not to mention other non crossing easy quantum groups.
Also celebrated, but quite different examples are the q-deformations Gq of simple
compact Lie groups G, such as SUq(2), for q ∈ ]0, 1].
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In the case of a usual discrete group Γ, the coproduct allows to recover the group
inside its algebras as the set of group-like unitaries:

Γ ≃ {u ∈ C∗(Γ) | u unitary, ∆(u) = u⊗ u}.
This admits a higher-dimension version which becomes interesting in the general,
quantum case: a corepresentation u of a Woronowicz C∗-algebra A on a finite-
dimensional Hilbert space Hu is an invertible element u ∈ B(Hu) ⊗ A such that
(id ⊗ ∆)(u) = u12u13, using the leg notation.

What one recovers in this way is not a group anymore, but a rigid tensor C∗-
category. Starting from A = Cr(G) = C∗

r (Γ), we denote this category Rep(G) =
Corep(Γ), and we write I = Irr(G) = Irr(Γ) for the set of irreducible corepresen-
tations up to equivalence. A central tool in the theory is the bicharacter

V =
⊕

u∈I

u ∈M((
⊕

u∈IB(Hu)) ⊗A),

which becomes the multiplicative unitary when represented on an appropriate
Hilbert space. The left leg of V lives in the dual C∗-algebra c0(Γ) = C∗(G) =⊕

u∈I B(Hu), and taking an ℓ∞-sum instead of a c0-sum one obtains the von
Neumann algebra ℓ∞(Γ) = L(G).

For u ∈ Corep(Γ) and ω ∈ B(Hu)∗ the element (ω ⊗ id)(u) ∈ C∗
r (Γ) is called

a coefficient of u. The set of coefficients of all f.-d. corepresentations forms a
canonical dense sub-∗-algebra O(G) = C[Γ] ⊂ C∗

r (Γ) which is actually a Hopf-∗-
algebra with respect to the restriction of the coproduct. One can in fact axiomatize
the theory purely algebraically at the level of this Hopf-∗-algebra.

The discrete quantum group Γ is called (strongly) amenable if the GNS repre-
sentation πh : C∗

u(Γ) → C∗
r (Γ) is faithful — i.e. there is only one Woronowicz

C∗-algebra associated to Γ. This is equivalent to the existence of an invariant
(non-normal) state on ℓ∞(Γ) (in the locally compact case this equivalence is still
open). Amenability implies nuclearity of C∗

r (Γ) and injectivity of L(Γ) ; the con-
verse holds in the Kac case but is open in general.

We also have the following useful characterization of amenability in terms of
positive-definite functions: the existence of a net of linear maps µi : C[Γ] → C

such that i) µi is a state for all i, ii) for all i we have (id ⊗ µi)(u) = 0 for all but
a finite number of u ∈ Irr(Γ), iii) for all u ∈ Irr(Γ) we have (id ⊗ µi)(u) → id as
i→ ∞.

The duals of all compact groups and all q-deformations Gq are amenable — and
this includes in fact FOQ when N = 2. On the other hand Banica proved that
FOQ (resp. FUQ) is not amenable when N ≥ 3 (resp. N ≥ 2). However, there
are still values of Q for which we don’t know whether L(FOQ) is non-injective,
see below.

As in the classical case, it is possible and interesting to study weaker versions of
amenability. Weak amenability with constant ≤ C (also called CBAP) is obtained
by relaxing condition i) into i’) (µi ⊗ id)∆ extends to a completely bounded map
mi : C∗

r (Γ) → C∗
r (Γ) with ‖mi‖cb ≤ C for all i. The Haagerup approximation



Mini-Workshop: Operator Algebraic Quantum Groups 2831

property (HAP) is obtained by relaxing condition ii) into ii’) for all i we have
(id ⊗ µi)(u) → 0 in norm as u→ ∞ in Irr(Γ).

These properties imply the corresponding ones for the von Neumann algebra
L(Γ), defined as approximation properties (in the pointwise ∗-weak sense) of the
identity map id : L(Γ) → L(Γ) by uniformly completely bounded (resp. completely
positive), finite rank (resp. L2-compact) maps. The converse is again known in
the Kac case but open in general.

Thank to the work of many agile hands (most of them participating to the mini-
workshop) it was shown that all (non-classical) discrete quantum groups mentioned
in this survey have the HAP and the CBAP with constant 1. In fact, they even have
these properties centrally, meaning that the µi’s can be chosen so that (id⊗µi)(u)
is a scalar multiple of the identity matrix for all u ∈ Irr(Γ).

The advantage of central approximation properties is that they transfer through
monoidal equivalence, a major tool in the study of compact quantum groups. Ex-
amples of discrete quantum groups which do not have such central approximation
properties — even satisfying the central Property (T), but however (non-centrally)
amenable — have been discussed in Y. Arano’s lecture.

We now arrive to the structure of C∗
r (Γ) and L(Γ). In the case of FUQ (N ≥ 2) it

is relatively easy to show, using the free combinatorics of the fusion rules between
irreducible corepresentations, that C∗

r (FUQ) is simple with unique KMS state
(with respect to the KMS group of the Haar state), and that L(FUQ) is a full
factor, of type II1 in the Kac case, IIIλ (0 < λ ≤ 1) otherwise.

In the case of FOQ (N ≥ 3) the fusion rules are commutative and one has to use
a delicate spectral gap property for the operator of “conjugation by generators”,
so that simplicity, uniqueness of KMS state, factoriality, fullness and type as above
are only known for certain matrices Q, including allQ sufficiently close to unitaries.
In theses cases fullness entails non-injectivity of L(FOQ). It is of course tempting
to seek a better method that would prove these properties for all parameters Q.

One can then go further and prove that M = L(FOQ), L(FUQ) are strongly
solid von Neumann algebras i.e., for every diffuse amenable subalgebra Q ⊂ M
with expectation, the normalizer NM (Q) = {u ∈ U(M) | uQu∗ = Q}′′ is amenable.
When M is a non-injective factor, this implies that it cannot be decomposed as a
tensor product of non-type I factors, nor as a group measure space factor. Note
that L(FOQ) was the first known example of a solid type III factor, back in 2005.

Strong solidity clearly implies, in the non-injective case, the absence of Car-
tan subalgebras, i.e. maximal abelian subalgebras A ⊂ M such that NM (A) =
M . It remains however interesting to study general maximal abelian subalgebras
(MASA). One can show for instance that the subalgebra A = χ′′

1 ⊂ L(FON )

generated by the fundamental character χ1 =
∑N

i=1 vii is a singular MASA, i.e.
NM (A) = A. This is an analogue of the radial MASA in free group factors, and it
would be interesting to know whether the subalgebras generated by one generator,
e.g. A = u′′11, are maximal abelian, or maybe even maximal amenable as in the
free group case.
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In view of all results mentioned above, it is natural to ask whether L(FON ),
L(FUN ) are isomorphic to free group factors. It was proved recently, using deep
results from the theory of free entropy, that this is not the case for L(FON ). In
the unitary case Banica proved that L(FU2) ≃ L(F2), and the question remains
wide open for higher values of N .

As far as the reduced C∗-algebras C∗
r (Γ) are concerned, the first task beyond

simplicity and nuclearity is to compute their K-theory groups. Since this is the
subject of C. Voigt’s lecture, let us just mention the values K∗(C∗

r (FON )) =
Z(0) ⊕ Z(1) and K∗(C∗

r (FUN )) = Z(0) ⊕ Z2
(1). In particular K-theory does not

allow to recover the value of N as in the free group case, and it remains open to
know whether C∗

r (FOM ) ≃ C∗
r (FON ) for M 6= N .

In the last part of the lecture I discussed the Property of Rapid Decay (RD), which
is a basic tool for the study of reduced C∗- and von Neumann algebras of discrete
(quantum) groups, and is actually needed to prove some of the results mentioned
above.

In the case of a classical discrete group Γ, Property RD amounts to controlling
the norm of C∗

r (Γ) from above by the 2-norm. More precisely a discrete group Γ
has Property RD if there exists a polynomial P such that

(1) ‖x‖C∗

r (Γ)
≤ P (k)‖x‖2

for all k ∈ N and all x ∈ C∗
r (Γ) supported on group elements of length k (with

respect to some fixed length, for instance a word length if Γ is finitely generated).
Note that the reverse inequality ‖x‖2 ≤ ‖x‖C∗

r (Γ)
is always true.

I introduced in 2007 a quantum generalization of Property RD by means of the
same inequality, with appropriate notions of length and support (and the 2-norm
associated with the Haar state). It was shown in that article that Property RD
holds for FON and FUN but fails for any discrete quantum group which is not of
Kac type.

Then a modification of the definition was proposed by Bhowmick, Voigt and
Zacharias so as to accommodate non-Kac examples such as SUq(2), Gq, and more
generally all discrete quantum groups with polynomial (classical) growth. This
modification is obtained by replacing the 2-norm on the right-hand side of (1)
by a still “easily computable” twisted 2-norm, ‖x‖2,√C = ‖x ∗ ϕ√

C‖2, where

x ∗ ϕ = (ϕ⊗ id)∆(x) for x ∈ C[Γ], ϕ ∈ C[Γ]∗, and ϕ√
C is determined by

(id ⊗ ϕ√
C)(u) =

√
Cu with Cu =

qdim(u)

dim(u)
Fu

for all u ∈ Irr(Γ). Here the Fu ∈ B(Hu)+ are Woronowicz’ modular matrices.
However we could prove recently, with M. Brannan and S.-G. Youn, that the

non-Kac type, non-amenable discrete quantum groups FOQ still do not satisfy
this twisted Property RD. It is then possible, and sometimes useful, to formulate
an even weaker statement, where the matrices

√
Cu above are replaced with the

diagonal matrices Du = ‖Fu‖ id. The right-hand side of (1) is then exponentially
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growing with k in the non-Kac case, but at least the statement holds true for all
quantum groups FOQ and all discrete quantum groups with polynomial growth.

On the Baum-Connes conjecture for complex semisimple quantum

groups

Christian Voigt

Let G be a locally compact group. The Baum-Connes conjecture [2] asserts that
the assembly map

µ : Ktop
∗ (G) → K∗(C∗

r (G))

is an isomorphism. Here K∗(C∗
r (G)) denotes the K-theory of the reduced group

C∗-algebra of G, and the so-called topological K-theory Ktop
∗ (G) is defined as

the equivariant K-homology with G-compact supports of the universal proper G-
space. The Baum-Connes conjecture is known to hold for large classes of groups,
including in particular all connected Lie groups.

We study an analogue of this conjecture for complex semisimple quantum
groups, that is, Drinfeld doubles of q-deformations of compact semisimple Lie
groups [6]. Here the definition of Ktop

∗ (G) in terms of the universal proper G-
space does not make sense a priori, but a general framework for formulating an
assembly map in our situation has been developed by Meyer and Nest [3].

We fix q ∈ (0, 1) and consider the standard q-deformation Kq of a simply
connected compact semisimple Lie group K. The complex semisimple quantum
group Gq corresponding to the complexification of K is defined in terms of its
C∗-algebra of functions

C0(Gq) = C(Kq) ⊗ C∗(Kq),

which becomes a Hopf C∗-algebra with the comultiplication

∆Gq
= (id⊗σ ⊗ id)(id⊗ad(W ) ⊗ id)(∆ ⊗ ∆̂).

Here ad(W ) denotes conjugation with the fundamental multiplicative unitary W ∈
M(C(Kq) ⊗ C∗(Kq)) associated with the compact quantum group Kq, and σ is
the flip map.

The equivariant Kasparov category KKGq has a objects all separable Gq-C∗-
algebras, that is, separable C∗-algebras with a continuous injective coaction of the
Hopf C∗-algebra C0(Gq). Morphisms in KKGq are given by the equivariant Kas-
parov groups KKGq(A,B), and composition of morphisms is given by Kasparov
product, see [1]. It is known that the equivariant Kasparov category is a trian-
gulated category in a natural way. The analogous category KKKq associated to
the quantum subgroup Kq ⊂ Gq is linked to KKGq via induction and restriction
functors.

In analogy to the classical situation we consider the full subcategories CC and
CI of KKGq defined by

CC = {A ∈ KKGq | res
Gq

Kq
(A) ∼= 0 in KKKq}
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and

CI = {A ∈ KKGq | A ∼= ind
Gq

Kq
(B) for some B ∈ KKKq},

respectively. The category CC is localising, and we let 〈CI〉 be the localising
subcategory generated by CI.

Using the fact that Kq ⊂ Gq is an open quantum subgroup, it follows from
the results in [4] that the categories CC and 〈CI〉 are complementary. Hence the
general machinery from [4] shows that there exists an exact triangle in KKGq of
the form

P C N P [1]

with P ∈ 〈CI〉 and N ∈ CC. Taking reduced crossed products with Gq gives an
exact triangle in KK, and in particular a morphism Gq⋉rP → Gq⋉rC = C∗

r (Gq).
The assembly map for Gq is the map on the level of K-theory induced by this
morphism.

Our main result is the following theorem.

Theorem 1. Let q ∈ (0, 1) and let Gq be a complex semisimple quantum group.
Then Gq satisfies the Baum-Connes conjecture in the sense that the assembly map

µq : K∗(Gq ⋉r P) → K∗(C∗
r (Gq))

is an isomorphism.

Our proof proceeds by constructing a model for the algebra P obtained from
the Koszul complex for the representation ring of Kq.

We also show that the the assembly map in the deformation picture obtained in
[5] is canonically isomorphic to the assembly map µq obtained from the abstract
categorical setting as above.
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Probability on Quantum Groups

Uwe Franz

1. Lévy processes

We give a short introduction to the theory of Lévy processes on quantum groups
and dual groups. In the first section we present the basic definitions. In the
second section we recall a recent result that characterizes the Haagerup property
of discrete quantum groups in terms of their Schürmann triples.

1.1. On topological semigroups. In classical probability, a Lévy processes is a
stochastic process with independent and stationary increments. They are exactly
the Markov processes that are time and space homogeneous. Here is a general
definition for Lévy processes with values in a (topological) semigroup.

Definition. Let (G, ·, e) be a semigroup with unit e. A stochastic process
(Xst)0≤s≤t of G-valued random variables is called a Lévy process, if it has the
following properties:

(i) (Increment property) Xst ·Xtu = Xsu almost surely for all 0 ≤ s ≤ t ≤ u;
(ii) (Independence) The increments Xs1t1 , . . . , Xsntn are stochastically inde-

pendent for all x ∈ N and 0 ≤ s1 ≤ t1 ≤ · · · ≤ sn ≤ tn;
(iii) (Stationarity) The marginal distributions PXst

depend only on t− s, i.e.,
Xst and Xs+h,t+h are identically distributed for all 0 ≤ s ≤ t and h ≥ 0;

(iv) (Weak continuity) Xst
tցs−−−→ e in probability for all s ≥ 0.

1.2. On involutive bialgebras. In quantum probability [12, 15], probability
spaces are replaced by algebraic (or quantum) probability spaces which are pairs
(A,Φ), where A is a unital *-algebra and Φ : A → C a normalized positive linear
functional, i.e., a state. Random variables are replaced by unital *-homomorphisms
j : B → A taking values in the *-algebra of some quantum probability space.

To define Lévy processes in the context of quantum probability, we need fur-
thermore a notion of independence and a composition of random variables. The
approach by Accardi, Schürmann, and von Waldenfels [1] uses tensor indepen-
dence, see (ii) in the Definition below, which corresponds to the independence of
observables in quantum mechanics. They also require B to be a *-bialgebra, so
that quantum random variables j, k : B → A can be composed using the convolu-
tion j ⋆ k = mA ◦ (j ⊗ k) ◦ ∆B. If j and k are independent, so that their ranges
commute, then j ⋆ k is again a unital *-homomorphism.

Definition. Let (A,Φ) be an algebraic probability space and B an involutive
bialgebra. A family of *-homomorphisms (jst : B → A)0≤s≤t is a Lévy process on
B over (A,Φ), if it satisfies the following conditions.

(i) (Increment property) jss = ε1A and jst ⋆ jtu = jsu for all 0 ≤ s ≤ t ≤ u;
(ii) (Independence) js1t1(a)js2t2(b) = js2t2(b)js1t1(a) for all a, b ∈ B, 0 ≤ si ≤

t1, whenever (s1, t1) ∩ (s2, t2) = ∅, and

Φ
(
js1t2(b1) · · · jsntn(bn)

)
= Φ

(
js1t2(b1)

)
· · ·Φ

(
jsntn(bn)

)
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for all n ≥ 1, 0 ≤ s1 ≤ t1 ≤ le · · · ≤ sn ≤ tn, b1, . . . , bn ∈ B;
(iii) (Stationarity) Φ

(
jst(b)

)
= Φ

(
js+h,t+h(b)

)
for all 0 ≤ s ≤ t and h ≥ 0;

(iv) (Weak Continuity) limtցs Φ
(
jst(b)

)
= Φ

(
jss(b)

)
= ε(b) for all b ∈ B,

s ≥ 0.

It follows that ϕt−s(b) = Φ
(
jst(b)

)
defines a convolution semigroup of states

on B and Schürmann [16] showed that Lévy processes and their convolution semi-
groups are uniquely determined (up to stochastic equivalence) by their generating
functional, which can be defined as

ψ(b) = lim
tց0

1

t

(
ϕt(b) − ε(b)

)
b ∈ B.

Definition. Let B be a unital *-algebra and ε : B → B a unital *-homomorphism.

A linear functional ψ : B → C is called a generating functional (w.r.t. ε), it

(i) (Normalization) ψ(1B) = 0;

(ii) (Hermitianity) ψ(b∗) = ψ(b) for all b ∈ B;
(iii) (Conditional positivity) ψ(b∗b) ≥ 0 for all b ∈ ker ε.

Schürmann’s Schönberg correspondence [16, Theorem 3.2.7] states that for an
involutive bialgebra B, a linear functional ψ : B → C is a generating functional
(w.r.t. the counit) if and only if exp⋆ tψ is a state for all t ≥ 0.

1.3. On dual groups. Let C be a category that has coproducts for any finite
collection of objects B1, . . . , Bn ∈ ObC. A coproduct for the empty collection
is an initial object, i.e., an object I ∈ ObC that has a unique morphism iB :
I → B for any B ∈ ObC. It is characterized by the universal property that
for any morphism f : A → B we have iB = f ◦ iA. The coproduct of a single
object B ∈ Ob C is simply the object itself, (B, idB : B → B). The coproduct
(A
∐
B, jA : A → A

∐
B.jB : B → A

∐
B) of two objectis is also characterized

by a universal property: for any pair of morphisms h : A → C and k → C there
exists a unique morphism h�k : A

∐
B → C such that h = (h�k) ◦ jB and

k = (h�k) ◦ jB . All other finite coproducts can be construction from the initial
object and the coproducts of pairs, see [11, Proposition III.5.1].

To arrive at the definition of a co-group in a category with finite products, on
reformulates the axioms for the unit element, the product, and the inverse of a
group, as commutative diagrams, and one reverses the direction of the arrows.

Definition. (Cf. [2, Definition 2.1], [14, Theorem 2.2]) Let C be a cateory with
finite coproducts. A co-group in C is a quadruple (A, ε,∆, S), where

(i) A ∈ Ob C;
(ii) (Coassociativity) ∆ : A→ A

∐
A is a morphism s.t.

(∆
∐

idA) ◦ ∆ = (idA

∐
∆) ◦ ∆;

(iii) (Unit property) ε : A→ I is a morphism s.t.

(ε
∐

idA) ◦ ∆ = idA = (idA

∐
ε) ◦ ∆

(where we identify I
∐
A ∼= A ∼= A

∐
I);
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(iv) (Inverse or antipode property) S : A→ A is a morphism such that

(S�idA) ◦ ∆ = iA ◦ ε = (idA�S) ◦ ∆.

Commutative Hopf algebras are co-groups in the category of unital associative
algebras. Voiculescu [18] defined and studied dual groups as co-groups in the
category of pro-C∗-algebras. Schürmann defined dual groups and dual semigroups
as co-groups and co-semigroups (defined similarly as co-groups, but without the
antipode S), resp., in the category of unital *-algebras, and then defined Lévy
processes on them.

To define independence for quantum random variables he used natural products
of algebraic probability spaces. A product on the category of algebraic probability
spaces is called natural, if it is of the form (A,Φ) • (B,ψ) = (A

∐
B,Φ • Ψ),

i.e., the underlying algebra of the product is given by the free product, and • :
States(A) × States(B) → States(A

∐
B) is associative and ‘functorial.’ See, e.g.,

[13] for details.

Definition. Let • be a natural product on the category of algebraic probability
spaces. Then two random variables j : B → (A,Φ) and k : C → (A,Φ) with values
in the same algebraic probability space (A,Φ) are called independent, if

Φ ◦ (j�k) = (Φ ◦ j) • (Φ ◦ k).

In [4] it is explained how this definition can be motivated by dualizing the definition
of stochastic independence in classical probability.

Muraki [13] has shown that there exist (essentially) five natural products: the
tensor product, the free product, the boolean product, the monotone product, and
the anti-monotone product. See also [8].

Definition. Let (B, ε,∆) be a dual semigroup in the category of unital *-algebras,
• a natural product on the category of quantum probability spaces, and (A,Φ) an
algebraic probability space. A family of *-homomorphisms (jst : B → A)0≤s≤t is
a Lévy process (w.r.t. •) on B over (A,Φ), if the following hold:

(i) (Increment property) jss = ε1A and (jst�jtu) ◦ ∆ = jsu for all 0 ≤ s ≤
t ≤ u;

(ii) (Independence) js1t1 , . . . , jsntn are independent (w.r.t. •) for all n ≥ 1,
0 ≤ s1 ≤ t1 ≤ le · · · ≤ sn ≤ tn, b1, . . . , bn ∈ B;

(iii) (Stationarity) Φ
(
jst(b)

)
= Φ

(
js+h,t+h(b)

)
for all 0 ≤ s ≤ t and h ≥ 0;

(iv) (Weak Continuity) limtցs Φ
(
jst(b)

)
= Φ

(
jss(b)

)
= ε(b) for all b ∈ B,

s ≥ 0.

When working with dual semigroups, one has to distinguish between the convolu-
tion of random variables, j ⋆ k = (j�k) ◦∆ that is used in the increment property,
and the convolution of states φ ⋆• ψ = (φ • ψ) ◦ ∆ which depends on the choice of
the natural product •.

Schürmann [17] showed that the marginal states φt−s = Φ ◦ jst of a Lévy
process form again a convolution semigroup, and that the Lévy processes and
their convolution semigroups of states are again uniquely characterizes by their
generating functional. Franz [5] gave a different proof of these results for the
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tensor, boolean, monotone, and anti-monotone product, and construction of the
processes on the symmetric Fock space, using a ‘reduction’ (or ’unification’) of
independences.

Question. Does their exist a ‘reduction’ of the free product of algebraic proba-
bility spaces?

Gilliers [9] has introduced a construction of noncommutative gauge theories
based on Lévy on dual semigroups (called Zhang algebras in his paper, for Zhang’s
contribution [19])

2. Generating functionals and Hochschild cohomology

Lévy processes on involutive bialgebras and dual semigroups turned out to be
uniquely characterized by their generating functionals, which are normalized her-
mitian linear functional that are positive on the kernel of the counit. Therefore
it becomes interesting to classify these functionals for given algebras, e.g., for the
Hopf *-algebras of compact quantum groups.

In the first step, on shows that one can complete any generating functional to
a Schürmann triple, by a kind of GNS construction.

Definition. Let D be a pre-Hilbert space and denote by L(D) the *-algebra of
linear adjointable operators on D. A triple (π : B → L(D), η : B → D,ψ : B → C)
is called a Schürmann triple on (B, ε) over D if

(i) π is a unital ∗-representation,
(ii) η is a π-ε-cocycle, i.e., η(ab) = π(a)η(b) + η(a)ε(b) for a, b ∈ B

(iii) ψ is a hermitian linear functional with B⊗B ∋ (a⊗b) 7→ −〈η(a∗), η(b)〉 ∈ C

as coboundary, i.e.,

ε(a)ψ(b) − ψ(ab) + ψ(a)ε(b) = −〈η(a∗), η(b)〉, a, b ∈ B.

A crucial step in classifying generating functionals on a given *-algebraB (w.r.t.
to a fixed *-hom. ε : B → C) is deciding if a given *-representation π and a given
π-ε-cocyle can be completed to a Schürmann triple, i.e., whether the bilinear map
in condition (iii) in the Definition above is a coboundary. (It is always a cocycle,
cf. [7, Proposition 3.1]).

[3, Theorem 2.8] gives a positive answer to this question for so-called α-real
cocycles, thereby generalizing a result by Vergnioux (first published in [10]). This
allowed us to prove the following characterisation of the Haagerup property for
discrete quantum groups.

Theorem. [3, Theorem 3.6] A discrete quantum group Γ = Ĝ has the Haagerup
property if and only if CΓ ∼= Pol(G) admits a proper cocycle.
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On the classification of non-crossing partition quantum groups

Amaury Freslon

The connection between compact quantum groups and the combinatorics of par-
titions has been known since the founding works of T. Banica on representation
theory. It was formalized in a systematic way by T. Banica and R. Speicher in the
seminal paper [2], under the name of easy quantum groups. This was followed by
several generalisations, and we will focus on one called partition quantum groups
and introduced in [3]. Classifying these compact quantum groups is a natural and
fundamental problem which has attracted a lot of attention in the past ten years
and the purpose of this mini-course is to describe some of the results obtained
with a perspective which is different from the original one.

Let us start by recalling the fundamental construction. A category of partitions
is a collection C of partitions of finite sets which is stable under a set of operations
defined through a graphical representation : horizontal concatenation, vertical
concatenation, reflection and rotation. Given any integer N , there is a canonical
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way to turn C into a concrete rigid C*-tensor category, and the machinery of
Tannaka-Krein duality [7] then produces a compact quantum group GN (C). This
can be extended to the setting where the partitions are coloured in a suitable sense
by a set A, and the resulting objects are called partition quantum groups.

We focus on the case of non-crossing partitions, that is to say those which can
be drawn in such a way that lines do not cross. The uncoloured case was settled
by M. Weber in [6], building on the results of [2]. One first defines a local invariant
BS(C) recording the size of blocks of partitions in C. This already yields a set of
four examples, namely

S = {O+
N , B

+
N ∗ Z2, H

+
N , S

+
N × Z2}.

Then, a global invariant BN(C) counting the number of odd blocks encodes the
possibility of making the non-trivial one-dimensional representation trivial, yield-
ing B+

N and S+
N . Eventually, considering the presence or absence in C of the

so-called positioner partition

p = {{1}, {2, 4}, {3}}
enables to make the non-trivial one-dimensional representation of B+

N ∗Z2 central,

yielding B+
N × Z2.

The previous quantum groups are orthogonal in the sense that their defining
representation is self-conjugate. The general unitary case is obtained by consid-
ering two colours which are in a sense inverse to one another and implement the
conjugation operation. These were classified by P. Tarrago and M. Weber in [5]
using a family of complexification operations inspired by the free complexification
of T. Banica in [1], called the d-free, d-tensor and r-self-adjoint d-free complexifi-
cations. It then turns out that all non-crossing partition quantum groups can be
obtained from S by applying at most once each of these three operations.

We then consider the case of two colours which are their own conjugates and use
a different approach based on the connection between the combinatorial structure
of a category of partitions C and the representation theory of the corresponding
compact quantum group GN(C) established in [4]. Using this, three natural op-
erations on the class of compact quantum groups appear to play a central role,
namely

• Quotienting by relations inside the group of one-dimensional representa-
tions,

• Quotienting by commutation relations between one-dimensional represen-
tations and higher-dimensional ones,

• Making amalgamated free product in a twisted way (see [4, Def 3.12]).

This is however not enough to describe all non-crossing partition quantum
groups on two colours. More precisely, this class can be divided into two sub-
classes, one which is obtained from the generating set S using the three opera-
tions, and one which consists in all free wreath products of pairs (see [4, Sec 3.2]),
a generalization of free wreath products allowing for non-trivial one-dimensional
representations. That this yields everything is the main result of [4].
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Non-local games and the graph isomorphism game

Kari Eifler

(joint work with Michael Brannan, Alexandru Chirvasitu, Samuel Harris,
Vern Paulsen, Xiaoyu Su, Mateusz Wasilewski)

Non-local games give us a way of observing quantum behaviour through the ob-
servation of only classical data. A non-local game consists of two players, Alice
and Bob, cooperating to win a round of the game. The referee gives each player
a question from a set list, and the two players then resond with an answer from a
set list of outputs. The referee uses the rules of the game to determine whether
the two players win that round or not. Their goal, of course, is to win every round
of the game. The catch is that the the players are separated and are unable to
communicate by any classical means during each round of the game, leading to the
term ‘non-local’. They can, however, agree upon a shared strategy for producing
winning answers.

For certain games, the two players cannot win using only classical means. In
order to win, the players must utilize some shared resource of quantum entangle-
ment between the players, which we will call a quantum strategy. There a number
of mathematical strategies to describe these quantum strategies: quantum, quan-
tum spacial, quantum approximate, and quantum commuting. For one class of
non-local games, called synchronous games, each game G has an associative al-
gebra A(G) associated to the game whose structure completely characterizes the
existence of winning strategies for the game.

In this talk, I will focus on the graph isomorphism game, Iso(X,Y ). In this
game, two graphs X and Y are fixed and the disjoint union of the vertices will be
the questions and answers; the rules of the game come from the structure of the
two graphs. Winning conditions require that

• the input and output vertices for Alice belong to different graphs
• ditto for Bob
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• the relation between the inputs of the two players is the same as the
relation between the two outputs, where the relation may be equal, adjoint,
or distinct and disconnected

As shown in [2], the rules are such that a winning strategy exists if and only if
the two graphs are isomorphic. For the graph isomorphism game, the game ∗-
algebra A(Iso(X,Y )) can be viewed as a non-commutative analogue of the space
of isomorphisms from X to Y . If a quantum winning strategy exists, then we call
the two graphs “quantum isomorphic”. In [1], we show that

Theorem 1. Given two graphs, X and Y , the following are equivalent:

(1) A(Iso(X,Y )) is non-zero (in this case, we call X and Y algebraically quan-
tum isomorphic)

(2) A(Iso(X,Y )) admits a non-zero C∗-representation
(3) Iso(X,Y ) has a perfect quantum commuting strategy

We consider quantum graphs (finite-dimensional C∗-algebras equipped with
some additional structure mimicking an adjacency matrix). Every quantum graph
X has a quantum automorphism group GX , which as the name suggests, is a
quantum group.

Theorem 2. Let X and Y be two quantum graphs. If the quantum isomorphism
space A(Iso(X,Y )) is non-trivial, then it admits a faithful state and the two quan-
tum groups GX and GY are monoidally equivalent.

We have a sort of converse to this statement:

Theorem 3. If a quantum graph G is monoidally equivalent to GX for a classical
or quantum graph X, then there exists a quantum graph Y such that G ∼= GY and
X and Y are algebraically quantum isomorphic as graphs.
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Deligne categories and easy quantum groups

Laura Maassen

(joint work with Johannes Flake, Moritz Weber)

The symmetric group Sn ⊆ Cn×n and the partition algebra Pk(n) centralise one
another in their actions on (Cn)⊗k. Hence, we can describe the category of finite-
dimensional representations of the symmetric group Rep(Sn) using set partitions.
This was the starting point for Deligne’s work [4] in which he defined the categories
Rep(St) for arbitrary t ∈ C which interpolate in a certain way the representation
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categories Rep(Sn), n ∈ N. An analogous construction has also been considered for
groups other than Sn, like On and GLn (Deligne, Milne [4], [5]) or wreath products
Sn ≀ Γ, for Γ a finite group (Knop [9]).

The symmetric group Sn and the orthogonal group On are special cases of easy
quantum groups, a class of compact matrix quantum groups introduced by Banica
and Speicher [1]. Representation categories of easy quantum groups are always
described by set partitions. This allows us to generalise Deligne’s construction to
all easy quantum groups, see [7]. We will study these interpolation categories with
regards to semisimplicity and indecomposable objects.

The categories Rep(C, t)
For all k, l ∈ N, we consider P (k, l) := {set partitions of {1, . . . , k, 1′, . . . , l′}}.
These partitions can be pictured by diagrams, as for example

p = ∈ P (4, 5),

where connected components are parts of a partition. A category of partitions
is a set C ⊆ ⋃

k,l∈N0
P (k, l) such that | ∈ P (1, 1), ⊔ ∈ P (2, 0) and C is closed

under composition (vertical concatenation), taking tensor products (horizontal
concatenation) and involution (flip along the horizontal axis) of partitions. For
any such category of partitions C and t ∈ C we define the category Rep

0
(C, t) via:

Objects: [k], k ∈ N0,

Morphisms: Hom([k], [l]) = CC(k, l),

Composition: q ◦ p = tl(q,p) qp.

Here qp denotes the composition of p and q and l(q, p) denotes the number of
connected components in the vertical concatenation of p and q, which are not
connected to any upper point of p or lower point of q.

The generalised Deligne category or partition C∗-tensor category Rep(C, t) is the
Karoubi envelope of Rep

0
(C, t), i.e. the additive and idempotent completition of

Rep
0
(C, t) (see [7]). It is a rigid monoidal category with the Krull-Schmidt prop-

erty, i.e. every object can be decomposed as a finite direct sum of indecomposable
objects which is unique up to a permutation of the summands. If C is the set of
all partitions, we recover Deligne’s category Rep(St).

Representation categories of easy quantum groups

In order to show that the categories Rep(C, t), t ∈ C interpolate representation
categories of easy quantum groups, let us briefly recall some facts about easy
quantum groups. A compact matrix quantum group G = (A, u) consists of a unital
C∗-algebra A and a matrix u ∈ An×n (fundamental corepresentation) such that

• A is generated by the matrix entries uij , 1 ≤ i, j ≤ n,
• u and ut are invertible matrices,
• and ∆ : A→ A⊗min A, uij 7→

∑n
j=1 uik ⊗ ujk is a *-homomorphism.
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A finite-dimensional representation of G is a matrix v ∈ Am×m such that for all
1 ≤ i, j ≤ n we have ∆(vij) =

∑n
j=1 vik ⊗ vjk. The intertwiner space of two

representations v ∈ Am×m and v′ ∈ Am′×m′

is defined as HomG(v, v′) = {φ :

Cm → Cm′ | φv = v′φ} (see [11]).
There exists a linear map T : CP (k, l) → Hom((Cn)⊗k, (Cn)⊗l) which respects

the operations compostition, taking tensor products and involution/dualisation
(see [1] for more details). A compact matrix quantum group G = (A, u) is called
(orthogonal) easy quantum group if Sn ⊆ G ⊆ O+

n and if there exists a category of
partitions C such that HomG(u⊗k, u⊗l) = {T (p) | p ∈ CC(k, l)}.
By a Tannaka-Krein type result of Woronowicz [12] there exists an easy quantum
group Gn(C) for any category of partitions C and n ∈ N, whose fundamental
corepresentation is of size n and whose intertwiner spaces are described by C as
above.

If C is the set of all partitions, then Gn(C) corresponds to the C∗-algebra of
complex valued functions on the symmetric group C(Sn). Hence in this case the
representation category Rep(Gn(C)) is the representation category of the symmet-
ric group Sn.

The interpolation functor

For any n ∈ N we consider the functor:

F : Rep(C, n) → Rep(Gn(C)), [k] 7→ u⊗k, p 7→ T (p).

Then F is full and essentially surjective, but it is in general not faithful. We

consider the quotient category R̂ep(C, t) := Rep(C, t)/N by the tensor ideal of
negligible morphism

N := {f : X → Y | tr(f ◦ g) = 0 for all g : Y → X}.

Then the induced functor F̂ : ̂Rep(C, n) → Rep(Gn(C)) is an equivalence of
monoidal categories. Furthermore, a result of Etingof and Ostrik [6] implies that
Rep(C, t) is semisimple if and only if the ideal of negligible morphisms N is trivial.
Hence the categories Rep(C, t), t ∈ C, interpolate the representation categories
Rep(Gn(C)), n ∈ N, in the sense that for each n ∈ N the semisimplification of
Rep(C, n) is equivalent to Rep(Gn(C)).

Results

The categories Rep(St) and Rep(Ot) are semisimple if and only if t ∈ N (see [4]).
Moreover, in both cases the indecomposable objects up to isomorphism are in cor-
respondence with Young diagrams of arbitrary size (see [2],[3]).
We consider the categories Rep(NC2, t) and Rep(NC, t), which interpolate the rep-

resentation categories of the free symmetric quantum group S+n and the free orthog-
onal quantum group O+

n . Using that the endomorphism algebras of Rep(NC2, t)
are Temperley-Lieb algebras, we can show that Rep(NC2, t) is semisimple if and
only if t 6= 2 · cos(kπ/j), j ∈ N, k ∈ {1, . . . , k − 1} and that the indecomposable
objects up to isomorphism are in correspondence with the Jones-Wenzel idempo-
tents. We can further show that Rep(NC, t2) can be embedded into Rep(NC2, t).
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This embedding allows us to determine the semisimplicity and indecomposable
objects of Rep(NC, t).

C P = all par-
titions

P2 = pair
partitions

NC2 = non-
crossing pair
partitions

NC = non-
crossing parti-
tions

Gn(C) Sn On O+
n S+n

End([k]) Partition
algebras

Brauer
algebras

Temperley-
Lieb algebras

Semisimple t /∈ N t /∈ N t 6=
2 · cos(kπ/j)

t 6=
(2 · cos(kπ/j))2

Indecomp.
objects up to
isomorphism
corr. to

Young
diagrams
of arbitrary
size

Young
diagrams
of arbitrary
size

Jones-Wenzel
idempotents

”Jones-Wenzel
idempotents”

All categories of partitions have been classified by Raum and Weber [10] and their
representation catgeories have been studied by Freslon and Weber [8]. We aim to
use these combinatorial results to study Rep(C, t) for other examples of C.
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Random walks on Sekine finite quantum groups

Isabelle Baraquin

We study convergence of random walks, arising from linear combination of irre-
ducible characters, on the Sekine family of finite quantum groups.

First, let us present a family of finite quantum groups defined in 1996 by Sekine
[1]. They are given by their algebra An =

⊕
i,j∈Zn

Ce(i,j)⊕Mn(C), the direct sum

of n2 copies of C and the matrices of size n× n, and the coproduct ∆n satisfying
the following formulas:

∆n(e(i,j)) =
∑

k,l∈Zn

e(k,l) ⊗ e(i−k,j−l) +
1

n

n∑

k,l=1

ηi(k−l)Ek,l ⊗ Ek+j,l+j

∆n(Ei,j) =
∑

k,l∈Zn

η−k(i−j)e(k,l) ⊗ Ei+l,j+l +
∑

k,l∈Zn

η−k(i−j)Ei−l,j−l ⊗ e(k,l)

where η = e
2iπ
n is a primitive nth root of unity and the Ei,j ’s are the image in An

of the elementary matrices in Mn(C). As any finite quantum groups, (An,∆n)
admits a tracial Haar state hn, whose explicit form is

hn


 ∑

i,j∈Zn

x(i,j)e(i,j) +

n∑

i,j=1

XijEi,j


 =

1

2n2


 ∑

i,j∈Zn

x(i,j) + n

n∑

i=1

Xii




for any complex numbers x(i,j) and any matrix X = (Xij)1≤i,j≤n. Moreover, the
representation theory of these groups can be determined [2, 3]. In particular, the
irreducible characters are, up to equivalence:

• ρ±l =
∑

i,j∈Zn
ηile(i,j) ±

∑n
i=1 Ei,i+l

• if n is even, σ±
l =

∑
i,j∈Zn

(−1)jηile(i,j) ±
∑n

i=1(−1)iEi,i+l

• χ(Xu,v) = 2
∑

i,j∈Zn
ηiu cos

(
2πjv
n

)
e(i,j)

for any l, u ∈ Zn and v ∈
{

1, 2, . . . ,
⌊
n−1
2

⌋}
. Note that ρ+0 = 1An

is the trivial
representation.

A random walk on a quantum group is defined as a convolution semigroup of
state (φ⋆k)k≥1, where φ ⋆ ψ = (φ ⊗ ψ)∆ is the convolution of linear functionals.
The Quantum Diaconis-Shahshahani Theory, introduced by McCarthy [2], allows
us to bound from above and below the distance, in total variation, between the
kth step and the Haar measure hn.

Let us fix a =
∑

α aαχ(α) a linear combination of irreducible characters in An.
Then the Fourier transform of a, denoted F(a) and given for any x ∈ An by

F(a)(x) = hn(xa)

is a linear functional on An. This is a state if the coefficients of a in the canonical
basis satisfy some conditions [4]. In particular, we have to set the coefficient of
the trivial representation aρ+

0
to 1. Moreover, if F(a) is a state, then |aα| ≤ dα

for any non trivial representation α.
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Assume now that a satisfies the conditions such that F(a) is a state. Then the
random walk is called central, because it commutes with any other linear functional
for the convolution product.

The quantum Diaconis-Shahshahani lower and upper bounds give that:

Theorem 1. The random walk
(
F(a)⋆k

)
k≥1

converges to the Haar state hn if and

only if, for any non trivial irreducible representation α, |aα| < dα.

Once we know this necessary and sufficient condition for the random walk to
converge to the Haar state, we can ask what happens when, for some non trivial
irreducible representation, |aα| = dα.

Note that, in this case, the limit state, if it exists, is a central idempotent state.
Thanks to the study of idempotent states on Sekine quantum groups by Zhang [5],
we are able to obtain a classification of the asymptotic behaviour of the central
random walks:

Theorem 2 ([3]). Assume that n is odd. Let us denote by µ the limit state of the
random walk

(
F(a)⋆k

)
k≥1

if it exists. Then, there are four possible situations:

• µ = hh, which is equivalent to

∀α 6= ρ+0 , |aα| < dα

• µ = 2n
#Γ

∑
(i,j)∈Γ F(e(i,j)) for Γ a subgroup of Zn × Zn such that

(k, l) ∈ Γ ⇔ (k,−l) ∈ Γ

which is equivalent to

∀α 6= ρ+0 , |aα| < dα or aα = dα, and aρ−

0
= 1

• µ = n
∑

j∈Zn
F(e(0,j)) +

∑n
i,j=1 F(Ei,j), which is equivalent to

∀α 6= ρ+0 , |aα| < dα or aα = dα, but aρ−

0
6= 1, and ∃β 6= ρ+0 , aβ = dβ = 1

• the random walk diverges, which is equivalent to

∃α, |aα| = dα and aα 6= dα
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Quantum harmonic functions

Adam Skalski

(joint work with Matthias Neufang, Pekka Salmi and Nico Spronk)

Convolution operators associated to measures on locally compact groups appear
in a variety of contexts: from purely operator-theoretic considerations, via partial
differential equations, to the study of random walks on the groups in question.
They act boundedly on several function spaces: if say ω is a bounded measure on
a locally compact group G, then the (suitably interpreted) formula

Lω(f)(g) =

∫

G

f(h−1g)dω(h)

yields a contractive operator on C0(G), Lp(G) (p ∈ [1,∞]), etc. In the study
of such operators an important role is often played by their fixed point spaces,
which can be, at least in the case of positive measures, interpreted as collections
of harmonic functions with respect to a given measure or as the means to realize
the measure-theoretic boundary of an associated random walk.

Questions about the structure and nature of the fixed point spaces have been in
recent years studied also in the dual context, that is that of the Herz-Schur multi-
pliers acting on a von Neumann algebra of a locally compact group ([ChL]). The
unified view on these two frameworks (and a far-reaching generalization of both)
is provided by the notion of convolution operators on locally compact quantum
groups in the sense of Kustermans and Vaes ([KV]).

Thus in what follows we will assume that G is a locally compact quantum
group, Mu(G) denotes the space of ‘universal’ quantum measures on G and for
ω ∈ Mu(G) by Lω : L∞(G) → L∞(G) we will denote the associated (completely
bounded, normal) convolution operator acting on the von Neumann algebra repre-
senting ‘bounded measurable functions on G. We might also consider its universal
counterpart, Lu

ω, acting on the universal version of the C∗-algebra of continuous
functions, Cu

0 (G), and on its multiplier algebra, Cu
b (G).

The composition of convolution operators corresponds to the convolution ⋆ of
(quantum) measures; thus the initial case to be studied is that of idempotent
measures, for which the relevant fixed point space coincides with the range of the
operator and the convergence questions become trivial. This was addressed in
the positive case (for example) in [SaS], and for general contractive idempotents
in [NSSS1] (see also [Kas]). It is worth to notice that even in the classical case
the structure of idempotent measures is fully known only under the contractivity
assumptions ([Gre]); thus everywhere below we will consider only the quantum
measures in the unit ball, Mu(G)1.

The first result describes when a contractive convolution operator has non-
trivial fixed points at all. It turns out that nice tools to express this are provided
by RUC(G) and RUCu(G), the reduced and universal versions of spaces of right
uniformly continuous functions on G, which are certain operator systems contained
respectively in Cb(G) and Cu

b (G). These possess also natural left versions.
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Theorem 1. Let ω ∈Mu(G)1. The following are equivalent:

(i) Lω has no non-zero fixed points in L∞(G);
(ii) Lω has no non-zero fixed points in RUC(G);

(iii) 1
n

∑n
k=1 ω

⋆k → 0 weak* in RUCu(G)∗.

The fixed point spaces for convolution operators associated to states were al-
ready studied for example in [KNR]. The positivity assumption simplifies many
considerations, and it is very desirable to relate the quantum harmonic functions
for a general contractive measure to these related to a state. Naturally any ele-
ment in Mu(G) decomposes into a combination of positive ones, but this seems
to give no information on the fixed point spaces. A more useful tool is that of a
polar decomposition: the right absolute value of ω ∈ Mu(G) is a positive func-
tional |ω| in Mu(G) defined through the polar decomposition ω = |ω|(·u) where
u ∈ Cu

0 (G)∗∗ is a partial isometry satisfying some extra properties (see Definition
III.4.3 of [Tak]). We call ω non-degenerate if its both right and left absolute values
are non-degenerate in the sense of [KNR], so that in particular for every non-zero
positive a ∈ Cu

0 (G) there exists k ∈ N such that |ω|⋆k(a) > 0.

Theorem 2. Suppose that ω ∈ Mu(G)1 is non-degenerate. If Lu
ω has a non-zero

fixed point in LUCu(G), then there is a unitary v ∈ LUC(G) such that

∆(v) = v ⊗ v,

and FixLω = (FixL|ω|)v
∗.

The next result describes the situation where non-zero fixed points exist already
in C0(G).

Theorem 3. Let ω ∈Mu(G)1. Then the following are equivalent:

(i) Cesàro sums 1
n

∑n
k=1 ω

⋆k → 0 do not converge to 0 weak∗ on Cu
0 (G);

(ii) Lu
ω has a non-zero fixed point in Cu

0 (G);
(iii) Lω has a non-zero fixed point in C0(G);
(iv) there is a non-zero τ ∈Mu(G) such that τ ⋆ ω = τ ;
(v) Lω has a non-zero fixed point in L∞(G) and there exists e in Cu

0 (G)+ such
that |ω|⋆k.e = e.|ω|⋆k = |ω|⋆k and |ω|⋆k((ae − a)∗(ae − a)) = 0 for every
k ∈ N and a ∈ Cu

0 (G).

The last condition above should be interpreted as a compactness requirement
for the subsemigroup generated by the support of ω; and the theorem above after
some extra work yields also certain triviality results for fixed points of quantum
convolution operators acting on non-commutative Lp-spaces, generalising several
statements of [Kal].

We conclude this sample of results with an example showing how the properties
of the fixed points of convolution operators, or rather their pre-annihilators, can be
used to characterise (co-)amenability of the quantum group in question. Denote
by P (G) the state space of Cu

0 (G) and for ω in P (G) write Iω for the set of these
elements of L1(G) which vanish on each fixed point of the operator Lω. The proof
of the theorem below borrows several ideas from [Wil].
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Theorem 4. Assume that G is second countable and consider the following list
of conditions:

(i) G is coamenable;
(ii) G is amenable;

(iii) for each ω ∈ P (G), the right ideal Iω admits a bounded left approximate
identity;

(iv) the collection I := {Iω : ω ∈ P (G)} admits a unique maximal element.

Then the following implications/equivalences hold: (ii)⇐⇒(iv), (i)=⇒(iii) and
(i)+(ii)⇐⇒(iii)+(iv). Moreover if (iv) holds then Imax = L1

0(G), where the right
hand side denotes the augmentation ideal of L1(G).

Theorems 1-3 can be significantly strengthened and given parallel interpreta-
tions in the classical and dual-to-classical cases mentioned in the beginning of this
report. For the details we refer to the preprint [NSSS2], where for example certain
extensions of classical Choquet-Deny ([ChD]) and Derriennic-Mukherjea ([Der],
[Muk]) theorems are established.
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[Gre] F. P. Greenleaf, Norm decreasing homomorphisms of group algebras, Pacific J.Math.
15 (1965), 1187–1219.

[Kal] M. Kalantar, On harmonic non-commutative Lp-operators on locally compact quantum
groups, Proc. Amer. Math. Soc. 141 (2013), no. 11, 3969–3976.

[KNR] M. Kalantar, M. Neufang and Z.-J. Ruan, Poisson boundaries over locally compact quan-
tum groups, Int. J.Math. 24 (2013), 1350023.

[Kas] P. Kasprzak, Shifts of group-like projections and contractive idempotent functionals
for locally compact quantum groups, Internat. J.Math., to appear, available at arXiv
1804.03532.

[KV] J. Kustermans and S. Vaes, Locally compact quantum groups, Ann. Sci. École
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Superrigidity of group operator algebras

Sven Raum

In this talk, I presented different aspects of the problem to recover a discrete group
from one of its group rings or group operator algebras. Further, I shared sugges-
tions of superrigidity problems around the free discrete quantum group FUN .

The classical group ring isomorphism problem asks, given a group G and a
ring R, when the group G is remembered by the R-algebra RG. Formally, given
any other group H , does RG ∼= RH imply G ∼= H? The conjecture that this
problem should have a positive solution for every domain R and every torsion-
free discrete group goes back to the PhD thesis of Higman [2]. In analogy with
the group ring isomorphism problem, similar problems have been considered for
group operator algebras. A discrete group G is called C*-superrigid if for any
other group H the existence of an isomorphism C∗

red(G) ∼= C∗
red(H) implies the

existence of an isomorphism G ∼= H . Replacing reduced group C*-algebras by
group von Neumann algebras, we arrive at the definition of W*-superrigidity.
Taking instead the reduced group Lp-operator algebra, we arrive at the definition
of Lp-superrigidity.

In the first part of the talk, I discussed existing methods of proof for a positive
solution to the group ring isomorphism problem for torsion-free groups. In the
focus stood the so-called unique product property, which was explained with the
examples of the group of integers and the free group. I then suggested to study
analogue problems for the free discrete quantum group FUN . Given any other
discrete quantum group H such that C(FUN ) ∼= C(H) as C-algebras, does it follow
that H ∼= FUN?

The second part of the talk reviewed results from recent years on C*-superrigidi-
ty, W*-superrigidity and Lp-superrigidity. Extending the above mentioned prob-
lem, I finished by suggesting the problem to prove an Lp-superrigidity result for
FUN in view of the Lp-superrigidity results of Gardella-Thiel [1], which hold for
arbitrary locally compact groups and all p ∈ (1,∞), p 6= 2.
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Universal coefficient theorem for discrete quantum groups

Yuki Arano

In [4], Rosenberg and Schochet has introduced a property of C*-algebras called
the Universal Coefficient Theorem (UCT in short) for K-theory of C*-algebras
and has shown it for C*-algebras in the bootstrap class. The UCT gives a for-
mula computing the KK-groups only from the K-groups. This property plays an
important role in the classification of nuclear C*-algebras.
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The UCT for group C*-algebras is related to (a variation of) the Baum–Connes
conjecture of groups. In [5], Tu proved that the group C*-algebra of a discrete
group with Haagerup property satisfies the UCT using the Higson–Kasparov type
argument for groupoids. It is a more subtle problem whether the UCT is preserved
under taking crossed products. This is true when the group is torsion-free, but
when the group is finite, the problem is equivalent to the famous open problem,
namely, all nuclear C*-algebras satisfy the UCT or not.

The Baum–Connes conjecture for quantum groups first appeared in the series of
works of Meyer and Nest [2], [3]. Even though there is no unified method proving
the Baum–Connes conjecture for fairly general quantum groups, it is proven for
many known examples of discrete quantum groups [1], [6], [7],[8].

In this talk, I first summarize the current status of the Baum–Connes prop-
erty for discrete quantum groups. Next I explain how to apply the Baum–Connes
conjecture to obtain the UCT for group C*-algebras and the crossed products by
discrete quantum groups. First we study the general theory of the Baum–Connes
conjecture for discrete quantum group with possible torsions, which is studied in
many special cases. As a byproduct of the general theory, we observe that the
group C*-algebra of a discrete quantum group with the strong Baum–Connes con-
jecture satisfies the UCT. Furthermore, for torsion-free discrete quantum groups
with the Baum–Connes conjecture, we observe that the UCT is preserved under
taking crossed products.

References

[1] A. Freslon, R. Martos, Torsion and K-theory for Some Free Wreath Products, Int. Math.
Res. Not. IMRN, 2018

[2] R. Meyer, Homological algebra in bivariant K-theory and other triangulated categories. II,
Tbil. Math. J., 1 (2008), 165–210.

[3] R. Meyer, R. Nest, Homological algebra in bivariant K-theory and other triangulated cate-
gories. I, Triangulated categories, vol 375 of London Math. Soc. Lecture Note Ser., 236–289,

Cambridge Univ. Press, Cambridge 2010.
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The Furstenberg boundary of discrete quantum groups

Mehrdad Kalantar

(joint work with Pawe l Kasprzak, Adam Skalski, Roland Vergnioux)

The notion of topological boundary actions has recently found striking applications
in the study of operator algebras associated to discrete groups. In view of this, it
is very natural to develop a boundary theory in the setting of quantum groups.
In joint work with Pawe l Kasprzak, Adam Skalski and Roland Vergnioux, we
introduce and develop this notion, and in particular the Furstenberg boundary
of a discrete quantum group G. Motivated by the identification result of [2] we
define a unital G-C∗-algebra A to be a G-boundary if for every state ν on A the
Poisson transform Pν : A → ℓ∞(G) defined by Pν(x) = (ν ⊗ id)α(x) is completely
isometric. Then, we can prove that every discrete quantum group G admits a
unique (up to G-isomorphism) universal G-boundary C(∂GF ), in the sense that
for any G-boundary A there is a completely isometric G-map A → C(∂GF ). We
call C(∂GF ) the Furstenberg boundary of G.

The construction of the universal object above is similar to Hamana’s original
work [1], but the fact that this object is a G-C∗-algebra is not obvious at all.

It follows that a discrete quantum group G is amenable iff its Furstenberg
boundary C(∂GF ) is trivial. We further prove the following important facts:

(1) Let G be a unimodular discrete quantum group. If the action of G on
its Furstenberg boundary C(∂GF ) is faithful, then G has the unique trace
property.

(2) If G is a C∗-simple discrete quantum group or a unimodular discrete quan-
tum group with the unique trace property, then G has no non-trivial nor-
mal amenable quantum subgroups.

We prove a general result, which provides a systematic way to obtain non-trivial
examples of boundary actions, namely we prove that with some additional mild
conditions, unique stationarity implies boundary actions.

In particular, for the Van Daele and Wang’s free orthogonal discrete quantum
group FOQ with Q ∈MN(C) such that QQ̄ = ±IN , N ≥ 2 we prove the Gromov
boundary B∞ (in the sense of [3]) admits a unique µ-stationary state for a gen-
erating positive state µ ∈ ℓ∞(G)∗. As a consequence, we conclude that B∞ is a
G-boundary.

In combination of general properties of boundary actions, the latter result allow
us to prove the simplicity of the reduced crossed product of the action of a C∗-
simple free orthogonal discrete quantum group G on its Gromov boundary B∞.

Furthermore, the unique stationarity result further allow us to prove Ozawa’s
nuclear embedding conjecture for the free orthogonal quantum groups, namely
we prove the C∗-embedding of the reduced crossed product of the action of a
free orthogonal discrete quantum group G on its Gromov boundary B∞ into the

injective envelope I(C(Ĝ)) of the reduced C∗-algebra C(Ĝ) of the dual quantum

group Ĝ.
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There are still several important problems that remain open. In particular, we do
not know whether C∗-simplicity implies the unique trace property in the discrete
quantum group case. We also do not know if the unique trace property implies
faithfulness of the Furstenberg boundary action.
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Vectorial cumulants for compact quantum group

Pierre Tarrago

(joint work with Jonas Wahl)

The goal of this talk is to explain some similarities that appear between the com-
binatorics of free probability and the representation theory of certain compact
quantum groups. The starting point of this project is the following conjecture of
Banica and Bichon [1] :

Suppose that (F, u) and (G, v) are non-commutative permutation quantum group
and let F ≀∗G denote the free wreath product of both quantum groups. Then, under
the irreducibility assumption dim(Fix(u)) = dim(Fix(v)) = 1, the distribution of
the fundamental character χF≀∗G with respect to the Haar measure satisfies the
relation

χF≀∗G = χF ⊠ χG,

where ⊠ denotes the free multiplicative convolution.
Let us recall some basic facts from free probability theory. We consider a

∗-algebra A (the algebra of random variables) together with a positive linear func-
tional φ, which represents the expectation in the classical case. Once given a
self-adjoint element a ∈ A, we are interested in the sequence of moments of a,
namely the sequence (φ(an))n≥1. When we consider two variables a and b which
are free in (A, φ), it is often hard to express directly mixed moments of a and b.
Following Speicher’s idea [5], the way to circumvent this problem is to introduce
the free cumulants (kn(a))n≥1, defined implicitly by the formula

(1) φ(an) =
∑

π∈NC(n)

∏

S∈π

k|S|(a).

The free cumulants satisfy in particular the simple relation kn(a+b) = kn(a)+kn(b)
when a and b are free. The formula for the product of two free variables is slightly
more involved, since we have
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kab(n) =
∑

π∈NC(n)

∏

S∈π

k|S|(a)
∏

S∈kr(π)

k|S|(b),

where kr(π) denotes the Kreweras complement of the partition π.
Since a compact matrix quantum group (G, u) is a non-commutative probability

space with respect to the Haar state h, we can define free cumulants for the
fundamental characters χG. The main property of the character of a representation
u of G is that h(χn

u) = dim Fix(u⊗n), where u⊗n denotes the n-th tensor product
of u and Fix(v) denote the vector space of fixed vectors in a representation v of
G. It is then natural to ask whether the free cumulants of χu are also dimensions
of some vector spaces.

A tempting approach is to define directly free cumulants at the level of the
collection of vector spaces {Fix(u⊗n)}n≥1. Mimicking the situation in the scalar
case, we are looking for a sequence of vector spaces (Kn(u))n≥1, such that Kn ⊂
Fix(u⊗n) and such that we have the decomposition

Fix(u⊗n) ≃
⊕

π∈NC(n)

⊗

S∈π

K|S|(u)

for each n. When such a relation holds for any n ≥ 1, we say that (Kn)n≥1 is
a free decomposition of (Fix(u⊗n))n≥1, and the vector space Kn(u) is called the
n-th free vectorial cumulant of u. This approach works fairly well in the setting
of a free wreath product of a orthogonal matrix compact quantum group (G, u)
with S+

n . In the latter case, a result of Lemeux and myself [4] shows that when w
is the fundamental representation of G ≀∗ S+

n , we have indeed the decomposition

Fix(w⊗n) ≃
⊕

π∈NC(n)

⊗

S∈π

Fix(u|S|,

so that setting Kn(w) = Fix(u⊗n) gives a free decomposition (Kn(w))n≥1 of (G ≀∗
F, w). In general however, there is no hope to get such decomposition : indeed, we
easily see that if we had a free decomposition (Kn(u))n≥1 for a compact matrix
quantum group (G, u), we would have kn(χG) = dimKn(u). But in general,
kn(χG) can be negative, which prevents the existence of a free decomposition (see
for example the case of Z2 with the one-dimensional non-trivial representation).
Two first open questions are thus the following :

• When do there exist a free decomposition of a compact matrix quantum
group (G, u) ? Is it the case if and only if G has a free fusion semi-ring ?

• How to generalize the definition of a free decomposition, in order to take
into account the possibly negative values of free cumulants?

See [3] for some backgrounds and interesting results on free fusion semi-rings.
Since there is in general no free decomposition of the sequence (Fix(u⊗n))n≥1, we
can therefore look for other type of cumulants. There exist actually four kinds
of cumulants, and among them one, the Boolean cumulant, shares many good
properties with the free cumulants. The Boolean cumulants of a random variable
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a is the sequence (bn(a))n≥1 such that the decomposition (1) is replaced by

φ(an) =
∑

I∈I(n)

∏

S∈I

b|S|(a),

where I(n) denotes the set of interval partition of n. Like in the free case, one can
define a Boolean decomposition for the sequence of vector spaces (Fix(u⊗n))n≥1.
In the Boolean case, the situation is much better, since we can prove that a Boolean
decomposition always exists for any compact matrix quantum group (G, u). More-
over, using planar algebras results, we also show in [6] that if (Bn(u))n≥1 and
(Bn(v))n≥1 are Boolean decompositions for irreducible non-commutative permuta-
tion groups (F, u) and (G, v), then we get a Boolean decomposition (Bn(u ≀∗ v))n≥1

of (F ≀∗ G, u ≀∗ v), with the formula

Bn(u ≀∗ v) ≃
⊕

π∈NC(n)

(⊗

S∈π

B|S|(u)

)
 ⊗

S′∈kr(π)

B|S′|(v)


 .

This formula is exactly the vectorial version of the formula discovered by Belinschi
and Nica [2]

bn(ab) =
∑

π∈NC(n)

(∏

S∈π

b|S|(a)

)
 ∏

S′∈kr(π)

b|S′|




for a and b free. This proves in particular the conjecture of Banica and Bichon
mentioned at the beginning of this report.
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Braided Quantum Spheres

Piotr M. So ltan

Quantum deformation of the compact Lie group SU(2) was introduced by S.L. Wo-
ronowicz in the seminal paper [5]. The C∗-algebra C(SUq(2)) playing the role of
the algebra of all continuous functions on this quantum group is the universal
C∗-algebra generated by two elements α and γ satisfying the relations

α∗α+ γ∗γ = 1, αγ = qγα,

αα∗ + |q|2γ∗γ = 1, γγ∗ = γ∗γ

with q a real parameter in the interval [−1, 1]. One can easily check that there
exists a unital ∗-homomorphism ∆ : C(SUq(2)) → C(SUq(2)) ⊗ C(SUq(2)) such
that

∆(α) = α⊗ α− qγ∗ ⊗ α, ∆(γ) = γ ⊗ α+ α∗ ⊗ γ

which for q 6= 0 endows the quantum space SUq(2) with the structure of a compact
quantum group.

It has been noted in [1] that this C∗-algebra can also be defined for any complex
q with |q| < 1, but it is also easily checked that a morphism ∆ as described above
exists only when q is real.

Nevertheless in [2] P. Kasprzak, R. Meyer, S. Roy and S.L. Woronowicz in-
troduced a way to define a comultiplication on C(SUq(2)) for complex q. They
proposed to have ∆ take values not in the tensor product C(SUq(2))⊗C(SUq(2)),
but in a braided tensor product C(SUq(2)) ⊠ζ C(SUq(2)), where ζ is a certain
complex parameter related to q.

This braided tensor product is defined for C∗-algebras endowed with an action
of the circle group T in the following way: let A and B be such C∗-algebras
and let ζ be a complex number of modulus 1. Furthermore let C(T2

ζ) be the C∗-

algebra of functions on the quantum torus (generated by unitary u and v such that
uv = ζvu). There are unique unital ∗-homomorphisms j1 : A → C(T2

ζ) ⊗ A ⊗ B

and j2 : B → C(T2
ζ) ⊗ A⊗ B such that

j1(a) = udeg(a) ⊗ a⊗ 1, j2(b) = udeg(a) ⊗ 1⊗ b

for all homogeneous elements a ∈ A and b ∈ B. The braided tensor product
A ⊠ζ B is defined as the closed linear span of all products of the form j1(a)j2(b)
for all a ∈ A and b ∈ B (often denoted

[
j1(A)j2(B)

]
). Letting 1 and 2 be the

maps j1 and j2 treated as homomorphisms A → A⊠ζ B and B → A⊠ζ B we obtain
embeddings whose ranges do not necessarily commute. They replace the mappings
a 7→ a⊗ 1 and b 7→ 1⊗ b into the standard tensor product.

The braided product ⊠ζ is a bifunctor. Its action on morphisms is uniquely
determined by the following: if Φ : A → A′ and Ψ : B → B′ are T-equivariant then
Φ ⊠ζ Ψ is the unique unital ∗-homomorphism A⊠ζ B → A′

⊠ζ B
′ such that

Φ ⊠ζ Ψ
(
1(a)2(b)

)
= 1

(
Φ(a)

)
2
(
Ψ(b)

)
, a ∈ A, b ∈ B.

The algebra C(SUq(2)) carries a unique action of T such that deg(α) = 0 and
deg(γ) = 1. With this action we have
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Theorem 1 ([2]). Let ζ = q
q . Then there exists a unique ∆ : C(SUq(2)) →

C(SUq(2)) ⊠ζ C(SUq(2)) such that

∆(α) = 1(α)2(α) − q1(γ)∗2(α), ∆(γ) = 1(γ)2(α) + 1(α)∗2(γ).

Moreover we have (∆ ⊠ζ id) ◦ ∆ = (id ⊠ζ ∆) ◦ ∆ and
[
∆
(
C(SUq(2))

)
2
(
C(SUq(2))

)]

=
[
1
(
C(SUq(2))

)
∆
(
C(SUq(2))

)]
= C(SUq(2)) ⊠ζ C(SUq(2)).

The classical group T with trivial action of T is a “braided quantum subgroup” of
SUq(2) via the unital ∗-homomorphism π : C(SUq(2)) → C(T) given by π(α) = z

(the canonical generator of C(T)) and π(γ) = 0. We call the associated “quotient
space” the braided quotient sphere S2q:

C(S2q) =
{
a ∈ C(SUq(2))

∣∣ (id ⊠ζ π)∆(a) = 1(a)
}
.

Theorem 2. The C∗-algebra C(S2q) coincides with the unital C∗-subalgebra of
C(SUq(2)) generated by γ∗γ and αγ∗. It is isomorphic the the quotient quantum
sphere SU|q|(2)/T.

Let Γ = ∆
∣∣
C(S2q)

. Then Γ is T-equivariant and

(1) (id ⊠ζ Γ) ◦ Γ = (∆ ⊠ζ id) ◦ Γ,
(2)

[
1
(
C(SUq(2))

)
Γ
(
C(S2q)

)]
= C(SUq(2)) ⊠ζ C(S2q),

(3) for x ∈ C(S2q) we have Γ(x) = 2(x) if and only if x ∈ C1.

Put

V =



v−1,−1 v−1,0 v−1,1

v0,−1 v0,0 v0,1
v1,−1 v1,0 v1,1


 =




α2 −(1 + |q|2)2γ∗α −qγ∗2
ζαγ 1− (1 + |q|2)2γ∗γ γ∗α∗

−qζγ2 −(1 + |q|2)2α∗γ α∗2


 .

Then V can be interpreted as a unitary representation of the braided quantum
SUq(2) (with appropriate action of T on C3, cf. [2, Section 5]). Clearly C(S2q) is
generated by the middle column of V . Moreover one can check that

• putting ei = vi,0 we have Γ(ei) =
∑
k

1(vi,j)2(ej),

• deg(ei) = i for all i,
• span e−1, e0, e1 is the unique subspace of C(S2q) possessing a basis which

transforms in this manner under the action of SUq(2).

Theorem 3. Let X be a compact quantum space with an action of T such that
there is an action Γ of the braided quantum group SUq(2) such that

(1) if Γ(x) = 2(x) then x ∈ C1,
(2) there exist linearly independent elements e−1, e0, e1 ∈ C(X) such that

Γ(ei) =
∑
k

1(vi,j)2(ej),

(3) deg(ei) = i for all i,
(4) span e−1, e0, e1 is the unique subspace of C(S2q) possessing a basis which

transforms in this manner under the action of SUq(2).



Mini-Workshop: Operator Algebraic Quantum Groups 2859

Then (possibly after rescaling by a non-zero constant) we have ei
∗ = e−i for all i

and there exist λ, ρ ∈ R such that

e−1e1 + (1 + |q|2)e20 + |q|2e1e−1 = ρ1,

(1 + |q|2)(e−1e0 − |q|2e0e−1) = λe−1,

|q|2(e1e−1 − e−1e1) + (1 − |q|4)e20 = λe0,

(1 + |q|2)(e0e1 − |q|2e1e0) = λe1.

In other words the existence of an action with the properties which we described
for the quotient sphere implies strong algebraic relations on the generators.

The final result can be summarized in the next theorem.

Theorem 4. For ρ, λ ∈ R define the compact quantum space Xq,ρ,λ by setting
C(Xq,ρ,λ) to be the universal C∗-algebra generated by e−1, e0, e1 such that ei

∗ = e−i

for all i and

e−1e1 + (1 + |q|2)e20 + |q|2e1e−1 = ρ1,

(1 + |q|2)(e−1e0 − |q|2e0e−1) = λe−1,

|q|2(e1e−1 − e−1e1) + (1 − |q|4)e20 = λe0,

(1 + |q|2)(e0e1 − |q|2e1e0) = λe1.

Then C(Xq,ρ,λ) carries an action of T such that deg(ei) = i for all i and there is
an action Γq,ρ,λ : C(Xq,ρ,λ) → C(SUq(2))⊠ζ (Xq,ρ,λ) of SUq(2) on Xq,ρ,λ such that
conditions (1), (2) and (4) from theorem 3 hold.

Moreover for λ′ = λ
|q|(1+|q|2) and ρ′ = ρ

|q|2(1+|q|2) the C∗-algebra C(Xq,ρ,λ) is

isomorphic to C(X|q|λ′ρ′) defined by Podleś in [3, Section 3].

The classification of the quantum spaces X|q|λ′ρ′ was already performed in [3]
and it follows from this classification that for a fixed q each element of the family
of quantum spaces {Xq,ρ,λ} is SUq(2)-equivariantly isomorphic to one member of
the family of Podleś spheres

{
S2|q|,c

}
c∈R∪∞ and they are not SUq(2)-equivariantly

isomorphic for different c.
For all details we refer the reader to the preprint [4].
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Quantum isometries

Alexandru Chirvasitu

The talk is concerned with quantum symmetry groups of compact metric spaces
(X, d) in the sense of [3, Definition 3.1]: an action

ρ : C(X) → C(X) ⊗A

of a compact quantum group A with bounded antipode κ is isometric if, denoting

dp(−) = d(p,−), ∀p ∈ X,

we have

ρ(dx)(y) = κ (ρ(dy)(x)) , ∀x, y ∈ X.

While finite metric spaces always have quantum isometry groups (i.e. universal
isometric compact quantum group actions in the sense above) [1], it is unclear
whether all compact metric spaces (X, d) do.

[3, Corollary 4.9] says that (X, d) does indeed have a compact quantum isometry
group provided it admits what we will refer to as a loose embedding in some
Euclidean metric space (Rn, dRn): a continuous map

φ : X → R
n

that preserves equality and difference of distances, i.e. such that

dRn(φx, φy) = dRn(φx′, φy′) ⇐⇒ d(x, y) = d(x′, y′), ∀ x, y, x′, y′ ∈ X.

We then say that (X, d) is loosely embeddable in Rn. The talk poses a number of
questions that arise naturally in the present context:

• Let (X, d) be a compact metric space all of whose finite subspaces are
loosely embeddable in RN for the same uniformly-chosen N . Is (X, d)
itself uniformly embeddable in RN?

• Does every compact Riemannian manifold, equipped with the geodesic
distance, satisfy the hypothesis of the preceding question?

While the machinery developed in [3] requires loose embeddability in finite-dimensional
Hilbert spaces, one can pose the same problem for the countably infinite-dimensional
Hilbert space ℓ2. In that case, I do not know even a single example of a compact
metric space that is not loosely embeddable.

• Is every compact metric space (X, d) loosely embeddable in the countably
infinite-dimensional Hilbert space?

Finally, moving back to compact quantum groups, the question that motivated
the work of [3] remains:

• Does every compact metric space have a compact quantum isometry group?

It is an unpublished result [2] that countable compact metric spaces do.
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L2-cohomology, derivations and quantum Markov semi-groups on

q-Gaussian algebras

Martijn Caspers

(joint work with Yusuke Isono, Mateusz Wasilewski)

The aim of this talk is to connect the theory of Markov semi-groups in quantum
probability to cohomology theory. This gives fundamentally new links between
these two worlds with surprising new applications to rigidity questions of von
Neumann algebras. Let us illuminate this in more detail.

Markov processes plays a central role in classical probability. They are time-
continuous probabilistic processes in which the future state of a system depends on
the current state only and in particular does not depend on any information from
the past. Where probability deals with probability spaces (normalized measure
spaces), quantum probability deals with quantum probability spaces (a matrix
algebra or von Neumann algebra with a tracial state). The right notion of a
quantum Markov process is then a time-continuous semi-group of trace preserving
unital completely positive maps.

Now take such a quantum Markov semi-group (QMS) and write it as a semi-
group (Φt = exp(−t∆))t≥0 of trace preserving unital completely positive maps
with generator ∆. ∆ then plays the role of a non-commutative Laplacian. There
has been an incredible study of such semi-groups in several contexts; classically in
the theory of harmonic analysis and PDE’s, differential (Riemannian) geometry
(see the work of Ledoux, Bakry and many others) and in the non-commutative
setting in quantum probability with very recent links to the structure of von Neu-
mann algebras. In the latter context we refer especially to the recent results by
Cipriani-Sauvageot [3], [4] and the author [1], [2].

A crucial first connection between cohomology theory and quantum Markov semi-
groups was found in [4]. They showed that every non-commutative Laplacian ∆
(i.e. generator of a QMS) admits a derivation as its square root. So there exists

some algebra A in the domain of ∆
1
2 and a derivation ∂ : A → H into some

A−A-bimodule H such that,

〈∂(a), ∂(b)〉 = 〈∆ 1
2 (a),∆

1
2 (b)〉.

Ignoring technicalities of domains, this says that ∆ = ∂∗∂ so that indeed ∂ is a
square root. Since derivations are 1-cocycles in Hochschild cohomology, this is the
first evidence that QMS’s are related to cohomology.
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In [2] we study the consequences for higher order cohomology theory. We show
that from a QMS one can naturally construct n-cocycles in Hochschild cohomology
at the expense of changing the bimodule. More precisely, let A be an algebra and
assume ∆(A) ⊆ A (plus some extra conditions of technical nature). Let H be
a Hilbert space equipped with an A-A-bimodule structure. There exists a chain
map:

G• : H•(A, H) → H•+1(A,A⊗∆ H)

where A⊗∆ H is the natural completion of A⊗H with pre-inner product

(1) 〈a⊙ ξ, b⊙ η〉 = 〈Γ(a, b)ξ, η〉,
and

Γ(a, b) = ∆(b)∗a+ b∗∆(a) − ∆(b∗a).

The chain map is given by

G∂(a0 ⊗ . . .⊗ an) = a0 ⊗∆ ∂(a1 ⊗ . . .⊗ an).

Algebraically this construction is a well-known method from cohomology theory.
Here an analytic part enters the scene as we use Hilbert spaces and the inner prod-
uct (1). Note that Gn(ξ) for any vector ξ in a Hilbert space K yields an n-cocycle
with values in A⊗∆n ⊗∆K. So we have a natural way of constructing cocycles at
the expense of changing bimodules. We remedy this change of bimodules to some
extend using the following theorem.

Theorem A. Suppose that A is contained in a finite von Neumann algebra M .
Suppose that for every a, b ∈ A the mapping

x 7→ ∆(axb) + a∆(x)b − ∆(ax)b − a∆(xb)

is in the Schatten-von Neumann S2n-class of L2(M). Then A⊗∆n ⊗∆ L2(M) is
quasi-contained in the coarse bimodule of M .

Combining this, Theorem A gives tools to construct higher order cocycles that
are quasi-contained in the coarse bimodule of M . It is nice that such natural
cocycles exist, however on the level of cohomology Theorem A may not give much.
In fact for q-Gaussian algebras, the n-th cohomology for n ≥ 2 vanishes ([2]), so
everything we construct is a coboundary. Nevertheless, for the 1-cocycles we find
important applications. We show the following using the machinery developed by
Ozawa-Popa [5], [6] and Peterson [7].

Theorem B. Suppose that the conditions of Theorem A are fulfilled. Suppose
further that ∆ has compact resolvent, the eigenvalues λ1 < λ2 < . . . of ∆ have
subexponential growth and further that the eigenspaces A(λ) of an eigenvalue λ
are in A and satisfy the filtering condition

A(λk)A(λl) ⊆ ⊕k+l
i=0A(λk+l).

Suppose further that A‖ ‖
is locally reflexive. Then M has the Akemann-Ostrand

property. If M is moreover weakly amenable, then it is strongly solid.
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As an example, we obtain the following improvement of Shlyakhtenko’s result [8]

in low dimensions. The upper bound
√

2 − 1 comes from [8].

Theorem C. Bozejko-Speicher q-Gaussian algebras have the Akemann-Ostrand
property for 0 < q < max(dim(H)−1/2,

√
2 − 1).
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Quantum mathematics and quantum groups

Moritz Weber

In the recent decades, a number of mathematical theories have been developed
dealing with quantum phenomena in a broad sense. A common theme is a formu-
lation which is compatible with noncommutativity, i.e. with algebraic structures
whose multiplication is noncommutative. One might view these theories as a kind
of quantum mathematics containing the following branches amongst others:

• Quantum topology (C∗-algebras)
• Quantum measure theory (von Neumann algebras)
• Quantum probability (Voiculescu’s free probability and other quantum

probability theories)
• Quantum groups (Woronowicz’s compact quantum groups and Kustermans-

Vaes’s locally compact quantum groups)
• Quantum information theory
• Quantum complex analysis (free analysis)

Several of these theories are based on Gelfand-Naimark duality, but not all of them.
However, there are links between these fields and we are just in the beginning of
finding and exploring them and it seems that quantum groups provide exactly the
right notion of symmetry in this context. It appears to be a fruitful task to explore
the interplay within quantum mathematics as well as the links between quantum
mathematics and other domains of mathematics.
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Besides discussing this general framework a bit, we reported on two examples
for the latter kinds of links arising from the subclass of quantum groups G with
Sn ⊂ G ⊂ U+

n :

(1) The categories of partitions underlying easy quantum groups [1, 2] provide
examples of new kinds of categories in the sense of Deligne’s categories
interpolating the representation categories of the symmetric group. See
the talk by Laura Maaßen.

(2) The unitary easy half-liberations are indexed by cyclic groups on the one
hand and by subsemigroups D ⊂ (N0,+) on the other [3, 4]. They provide
an operator algebraic and a combinatorial model for numerical semigroups,
a link to be explored further.

Furthermore, we sketched the outcomes of joint work with Daniel Gromada (funded
by SFB-TRR 195 ):

(a) Using computer experiments, we found a couple of new non-easy linear
categories of partitions, some of which don’t containing singletons. [5]

(b) While seeking for an interpretation, we discovered a functor V which de-
scribes subrepresentations of easy quantum groups. More precisely, given
an easy quantum group Sn ⊂ G ⊂ O+

n with category C containing the dou-
ble singleton, it is isomorphic to a quantum group Sn−1 ⊂ Girr ⊂ O+

n−1.
Its irreducible part, and its intertwiner spaces may be described as

HomGirr
= span{TVp | p ∈ C}.

The definition of the functor V is derived from the above mentioned ex-
amples of non-easy quantum groups: in a way it is “killing” singletons.
[6]

(c) Going one step further, we take the converse perspective and construct
“superrepresentations” by adding extra singletons to the category. We
then obtain a number of new products of quantum groups interpolating
the free product and the direct product [7].

It will be interesting to study properties of quantum groups which pass
through the free product but not through the direct product (or vice versa)
and to check for which of the interpolating products the property holds,
such as weak amenability. One could also try to make observations on the
variation of ℓ2-Betti numbers along the interpolating products.
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