
Mathematisches Forschungsinstitut Oberwolfach

Report No. 46/2019

DOI: 10.4171/OWR/2019/46

Mini-Workshop: Degeneration Techniques in
Representation Theory

Organized by
Evgeny Feigin, Moscow
Ghislain Fourier, Aachen

Martina Lanini, Rome

6 October – 12 October 2019

Abstract. Modern Representation Theory has numerous applications in
many mathematical areas such as algebraic geometry, combinatorics, con-
vex geometry, mathematical physics, probability. Many of the object and
problems of interest show up in a family. Degeneration techniques allow
to study the properties of the whole family instead of concentrating on a
single member. This idea has many incarnations in modern mathematics,
including Newton-Okounkov bodies, tropical geometry, PBW degenerations,
Hessenberg varieties. During the mini-workshop Degeneration Techniques in
Representation Theory various sides of the existing applications of the degen-
erations techniques were discussed and several new possible directions were
reported.

Mathematics Subject Classification (2010): 17B10, 17B35, 20G05, 14M15, 14M25, 52B20, 05E05,

05E10.

Introduction by the Organizers

The mini-workshop Degeneration Techniques in Representation Theory, organ-
ised by Evgeny Feigin (Moscow), Ghislain Fourier (Aachen) and Martina Lanini
(Rome) took place on October 6th – October 12, 2019. It was attended by 17
participants from Italy, Germany, Russia, USA, Canada, Japan, Mexico.

The mini-workshop consisted of three mini-courses (three lectures each course),
several one hour talks and several short presentations by young researchers. Special
time slots were reserved for free discussions and problem sessions to facilitate the
interactions between participants. All the participants were given a possibility to
present their research. This was especially important for the young participants
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since they could get a feedback from the more mature mathematicians. We focused
on two main goals: to discuss the results obtained by the participants of the mini-
workshop within the last year and to lay down the foundation for the directions
of the future research.

The mini-courses were given by Chris Manon (USA), Syu Kato (Japan) and
Julianna Tymoczko (USA).

The talks of Chris Manon were devoted to the description of various aspects of
the Khovanskii bases with applications in commutative algebra, algebraic geom-
etry and the theory of Newton-Okounkov bodies. The lectures of Chris Manon
were very important for the participants of the workshop since the language of
valuations and SAGBI, Gröbner and Khovanskii bases provides a natural link
between various degenerations of flag varieties, coming from the PBW-type fil-
trations, tropical geometry and quiver Grassmannians. This was illustrated by
the talks of Valentina Kiritchenko (Russia), Peter Littelmann (Germany), Naoki
Fujita (Japan), Lara Bossinger (Mexico) and Igor’ Makhlin (Russia) treating var-
ious aspects of the degenerations of flag varieties and Bott-Samelson varieties. In
particular, several types of toric degenerations were discussed and combinatorics
of convex polytopes was touched upon.

The mini-course given by Julianna Tymoczko was devoted to the Hessenberg
varieties. These are projective algebraic naturally defined as subvarieties of the
flag varieties of simple finite-dimensional complex Lie groups. The geometry, rep-
resentation theory and combinatorics of the Hessenberg varieties were discussed,
including the Goresky-Kottwitz-MacPherson approach for the computation of the
equivariant cohomology groups. The degeneration techniques play a crucial role in
the story, since the Hessenberg varieties depend on an operator and it is absolutely
necessary to consider these varieties in families. In particular, the famous Peterson
varieties can be studied as limits of regular semi-simple Hessenberg varieties. The
lectures of Julianna Tymoczko were complemented by the talk of Martha Precup
(USA), who described some particular results in the theory of Hessenberg varieties
and their connection to the famous Stanley-Stembridge Conjecture.

The lectures given by Syu Kato (Japan) were devoted to the theory of semi-
infinite flag varieties. These are infinite-dimensional ind-schemes, which are crucial
for the study of various aspects of the moduli spaces of maps to the flag varieties of
simple finite-dimensional Lie groups. In particular, they carry information about
degenerations of the maps into the so-called quasi-maps. In his talks Syu Kato gave
an overview of the modern state-of-art in the understanding of algebro-geometric,
representation-theoretic and combinatorial properties of the semi-infinite flag va-
rieties. He also stated several very recent results and decribed open directions.
The talk of Ilya Dumanski can be regarded as a companion of the Kato lectures.
More precisely, Ilya Dumanski considered the semi-infinite version of the Verones
curves and, generally, the Veronese embeddings of the flag varieties. The relation
to the theory of affine Demazure modules was described and several conjectures
were stated.
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One more central topic of the mini-workshop was the theory of quiver Grassmanni-
ans. By definition, these varieties depend on a representation of a quiver and thus
show up in a family. Degenerating a representation one gets a family of projec-
tive algebraic variety. Degenerations of representations of bipartite type A quivers
were the focus of Jenna Rajchgot’s talk, who explained how to make use of these
degenerations to determine K-theory of the relevant quiver loci. Since classical
flag varieties of type A can be realized as quiver Grassmannians for equi-oriented
type A quiver, one gets a very natural example of such a degeneration procedure.
Various PBW-type degenerations and Schubert degenerations can be obtained in
this way. The talks of Xin Fang (Germany), Markus Reineke (Germany) and
Johannes Flake (Germany) were devoted to various aspects of quiver Grassmanni-
ans. In particular, a sum of squares formula for the dimension of the cohomology
algebra of PBW degenerate was presented and a conjecture about the cohomology
algebra was formulated. Also, certain numerical results on the properties of the
maximal flat degeneration were presented.

Summarizing, the workshop was very successful: not only we were able to dis-
cuss various new results obtained by several groups working in different countries,
but we also paved the way for the future research, formulating open problems and
discussing new directions.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
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Abstracts

Degenerations of flag varieties from PBW filtration

Xin Fang

In this extended abstract I present a short summary on results around FFLV
(Feigin-Fourier-Littelmann-Vinberg) bases for Lie algebras of type A and degener-
ations of flag varieties from these bases. It is by no means complete.

Let g = sln(C) be the Lie algebra of traceless n × n-matrices and g = n ⊕
h ⊕ n− be a triangular decomposition. For a positive root β ∈ ∆+, fix 0 6=
fβ ∈ n− to be a root vector of weight −β. By assigning deg(fβ) = 1 we obtain
the classical PBW (Poincaré-Birkhoff-Witt) filtration on the universal enveloping
algebra U(n−) whose associated graded algebra is isomorphic to U(n−,a) where
n−,a is the abelianization of n− by reducing all brackets to zero. For a dominant
integral weight λ ∈ P+, the corresponding irreducible representation V (λ) of g is
U(n−)-cyclic. By fixing a highest weight vector vλ ∈ V (λ), the PBW filtration
on U(n−) induces a filtration on V (λ). Passing to the associated graded module
gives a U(n−,a)-module V a(λ). Let vaλ denote the class of vλ therein.

Ten years ago, in [11] Feigin, Fourier and Littelmann found a basis of V a(λ)
together with a nice parametrisation:

Theorem 1. (1) For λ ∈ P+, there exists an explicit lattice polytope FFLV(λ)

in R
∆+

≥0 such that {fa ·vaλ | a ∈ FFLV(λ)Z} form a C-basis of V a(λ), where

FFLV(λ)Z := FFLV(λ)∩Z∆+ and for a tuple a = (aβ)β∈∆+
∈ FFLV(λ)Z,

fa :=
∏

β∈∆+
f
aβ

β ∈ U(n−,a).

(2) For λ, µ ∈ P+, FFLV(λ+µ)Z = FFLV(λ)Z +FFLV(µ)Z as the Minkowski
sum of sets.

According to [1], such polytopes can be looked as the marked chain polytopes
associated to the root poset of g; the marked order counterparts are the famous
Gelfand-Tsetlin polytopes. There exists a piecewise-linear and lattice preserving
transfer map between them, details can be found in loc.cit.

Since n−,a acts nilpotently on V a(λ), the abelianized group N−,a := exp(n−,a)
acts on V a(λ). Feigin [9] defined the degenerate flag variety

Fa
n := N−,a · [vaρ ] ⊆ P(V a(ρ))

where ρ is the sum of fundamental weights.
Recall that the classical type A flag variety Fn admits various realizations:

(1) highest weight orbit: exp(n−) · [vρ] ⊆ P(V (ρ));

(2) linear subspaces: {(V1, · · · , Vn−1) | Vi ⊆ Vi+1} ⊆
∏n−1

k=1 Grk(C
n);

(3) vanishing locus of Plücker relations Rk
I,J in the projectivization of the sum

of fundamental representations.

A C-basis of the homogeneous coordinate ring C[Fn] is encoded in the semi-
standard Young tableaux. In [9, 10], Feigin showed that Fa

n similar descriptions
exist for Fa

n :
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(2a) linear subspaces: {(V1, · · · , Vn−1) | pri+1(Vi) ⊆ Vi+1} ⊆
∏n−1

k=1 Grk(C
n),

where for a fixed basis e1, · · · , en of Cn, prk : Cn → Cn is the linear
projection along ek;

(3a) Fa
n is the vanishing locus of degenerate Plücker relations Rk;a

I,J .

A C-basis of C[Fa
n ] is encoded in the semi-standard PBW tableaux arising from

the FFLV basis. This implies that Fa
n is a flat degeneration of Fn and is reduced.

A striking result in [5] establishes an isomorphism of projective varieties between

Fa
n and a Schubert variety Xw(λ̃) where w ∈ S2n and λ̃ is a weight of sl2n(C).

Later, the authors in [6] gave a representation-theoretical proof of this result by
showing that the abelianized representation V a(λ) is isomorphic to a Demazure
module for the double rank Lie algebra.

The description (2a) is the starting point of [4] using the quiver Grassmannian
approach. Such a description is further generalized in [2, 3] where we classify the
linear maps f := (f1, · · · , fn−2) ∈ End(Cn)n−2 such that the scheme

F f
n := {(V1, · · · , Vn−1) | fi(Vi) ⊆ Vi+1} ⊆

n−1∏

k=1

Grk(C
n)

enjoys nice geometric properties (normal, irreducible, being a flat degeneration,
etc).

There exists a subset of End(Cn)n−2 called the PBW locus. For f = (f1, · · · ,
fn−2) coming from the PBW locus, F f

n can be realized as a highest weight orbit
of some partial degenerations of n−; it can be scheme-theoretically cut off by
degenerations of Plücker relations and a basis of C[F f

n] is encoded in the semi-
standard PBW tableaux. They are isomorphic to Schubert varieties in some partial
flag varieties.

A toric degeneration of Fn to the toric variety associated to FFLV polytopes is
first constructed in [12] in an algebraic setting and later in [13] in a geometric point
of view using Newton-Okounkov bodies. From a tropical geometric point of view,
such a toric degeneration corresponds to a maximal prime cone in the tropical flag
variety with respect to the Plücker embedding. Such a cone is explicitly described
in [7] by giving all its non-redundant facets. Relations between this cone and
quantum groups are discovered in the forthcoming preprint [8].

Many of the results above hold for sp2n(C), but the entire picture is far away
from being complete.
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On the definition of semi-infinite flag manifolds and applications

Syu Kato

Geometry of flag manifolds reflects the representation theoretic pattern of a (sim-
ply connected) semi-simple algebraic group G and its Lie algebra g. It is already
apparent in the Borel-Weil theorem, that states the nef line bundle of the full flag
variety B of G is in bijection with the set of isomorphism classes of the irreducible
rational representations of G. The Beilinson-Bernstein localization theorem and
the Bezrukavnikov-Mirković-Ryuminin derived localization theorem amplified the
Borel-Weil theorem by incorporating all the g-modules.

These discoveries encourage people to develop parallel description for affine Lie
algebras and p-adic groups based on the geometry of affine flag manifolds. In such
a development, it becomes apparent that there are three affine flag manifolds that
are relevant to the representation theory of affine Lie algebras.

One of them, usually referred to as the semi-infinite flag manifolds, is defined
set-theoretically as:

X
∞

2 := G(C((z)))/H(C[[z]])N(C((z))),

where B ⊂ G is a Borel subgroup, N ⊂ G is its unipotent radical, and H ⊂ G is
a maximal torus of B. The geometry and combinatorics of X

∞

2 are expected to
represent the representation theory of G at the positive characteristic and repre-
sentation theory of the affine Lie algebra of g at the critical level [1, 2]. However,
it turned out to be impossible to put X

∞

2 a separated scheme structure. Taking
into account of this, the geometric study of a modified version of semi-infinite flag
manifold

QG := G(C[z±1])/H(C)N(C[z±1])
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was initiated in Finkelberg-Mirković [3] and Feigin-Finkelberg-Kuznetsov-Mirković
[4]. One of the important observation afforded there is that QG is the union of the
quasi-map spaces QG(β), that is a compactification of the space of maps from P1

to B of degree β, where β is an element of the non-negative span of the positive
coroots of G, identified with the effective classes in H2(B,Z). Since QG(β) admits
a resolution of singularities by a variant of the space of stable maps, this opened
a possibility to connect the theory of semi-infinite flag manifolds with the theory
of quantum cohomologies and quantum K-groups of B.

In [3], they also consider another version

Qrat
G := G(C((z)))/H(C)N(C((z))),

that we call the formal version of the semi-infinite flag manifold. It is clear that
QG ⊂ Qrat

G by set-theoretic consideration, and one can show that this inclusion
must be Zariski dense. However, the technical diffusion between them is rather
heavy as QG has countable dimension while Qrat

G has uncountable dimension. In
particular, [3] exhibits that QG exists as a scheme, but it is not suited enough for
an intensive algebro-geometric study except for G = SL(2,C).

In this series of talks, we first exhibited how to capture Qrat
G and QG(β) more

concretely in the sense one can actually characterize their homogeneous coordi-
nate rings. More precisely, we employ the theory of extremal weight modules of
quantum loop algebra associated to G to produce an ind-scheme (of infinite type)
that is reduced, normal, and is the best approximation of Qrat

G by an ind-scheme.
In particular, we exhibited that it is reasonable to define the ind-piece QG of Qrat

G

as

QG = mProj
⊕

λ∈P+

W(λ)∨,

where mProj is the multigraded proj, P+ is the set of dominant weights of G, W(λ)
is the global Weyl module of current algebra g[z] = g⊗CC[z] of extremal weight λ,
and ∨ denotes the restricted dual. In this picture, we recover QG(β) as a partic-
ular case of the Richardson variety of Qrat

G . This makes it possible to reasonably
understand the coordinate rings of Qrat

G and QG(β) from representation-theoretic
perspective, and also exhibits the higher cohomology vanishing of their natural
nef line bundles. The proofs of these results require the Frobenius splitting of the
positive characteristic analogue of them ([12]), whose proof is quite untraditional
and uses the Frobenius splitting of the thick flag manifolds exhibited in [9] that in
turn employs an argument from [8] originally due to Olivier Mathieu.

The second topic was a definition of the equivariant K-group of Qrat
G . Unfortu-

nately, we do not know whether the scheme QG is coherent or not. In particular,
a naive definition of equivariant K-group of Qrat

G using a class of finitely gener-
ated OQrat

G
-modules might break down heavily. To avoid this difficulty, we employ

a view-point that the ring
⊕

λ∈P+
W(λ)∨ is far from Noetherian, but is “graded

Artin”. This view-point enables us to define the equivariant K-group of Qrat
G

as a “convergent” functional on P modulo the constraints/relations coming from
disguises of finite generation/negligible modules. Once we have a definition of
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KH×C×(QG) or KH×C×(Qrat
G ), we can prove a Pieri-Chevalley formula in this set-

ting ([10]) by means of the analysis of the internal structure of W(λ)’s. We can
also interpret such coefficients in terms of Richardson varieties of Qrat

G .
The third topic was the connection of KH×C×(QG) with the equivariant quan-

tum K-group qKH(B) of B in the sense of Givental and Lee. In fact, Braver-
man [5] connects QG(β) with quantum cohomology of B though the J-functions,
that was further polished to the K-theoretic J-function calculation in Braverman-
Finkelberg [6, 7]. There, the main geometric portion was to (essentially) guarantee
that QG(β) is normal and has rational singularities. Thanks to the reconstruction
theorem, the knowledge of the J-fuction is enough to recover the ring structure
of the quantum cohomologies/K-groups in a sense. However, roughly speaking,
this is a kind of statement that a commutative local Artin ring is specified as the
annihilator ring of a polynomial, and it is desirable to make things more explicit.
This is achieved by specifying an isomorphism

qKH(B)
∼=
−→ KH(QG)

as based rings ([11]). The proof of this isomorphism itself only requires the Borel-
Weil-Bott theorem of QG, but the proof of the preservation of the bases are
more delicate. It requires to extend the above mentioned results of Braverman-
Finkelberg to some particular Schubert-like subvarieties of QG(β).
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An introduction to Hessenberg varieties

Julianna Tymoczko

Hessenberg varieties form a large family of subvarieties of the flag variety that
arise naturally in many areas of mathematics, including quantum cohomology,
numerical analysis, algebraic geometry, representation theory, and combinatorics.1

Hessenberg varieties can be defined in general Lie type, but we mainly consider
type An. A flag is a set of nested subspaces V1 ⊆ V2 ⊆ · · · ⊆ Vn−1 ⊆ Cn with
each Vi an i-dimensional C-vector space. The collection of flags is the flag variety
GLn(C)/B where B consists of upper-triangular invertible matrices; the coset gB
generates the flag V• whose i-dimensional subspace Vi is the span of the first i
columns of g.

The first parameter used to define Hessenberg varieties is a linear operator
X : Cn → Cn. (In fact, only the generalized Jordan type of X is needed [14].)

The second parameter has several equivalent descriptions, including:.

• A function h : {1, 2, . . . , n} → {1, 2, . . . , n} with h(i) ≥ h(i − 1) for all i
(nondecreasing) and h(i) ≥ i for all i (upper-triangular).
• A subspace H of gln with [H, b] ⊆ H and H ⊃ b.
• A subsetMH of roots so that if α ∈MH , β ∈ Φ+, α+β ∈ Φ then α ∈MH

(nondecreasing) andMH ⊃ Φ+ (upper-triangular).

Hessenberg varieties were first defined by De Mari-Shayman and then general-
ized by De Mari-Procesi-Shayman [6, 7].

Definition 1. Given X and h as above, the Hessenberg variety Hess(X,h) is

Hess(X,h) = { Flags V• : XVi ⊆ Vh(i) for all i}
= { Flags gB : g−1Xg ∈ H}

Geometry of Hessenberg varieties. Hessenberg varieties have some properties
analogous to the Schubert cell decomposition of the full flag variety.

• They are paved by affines. This is a condition like a CW-decomposition
except that closures of cells need not be a union of other cells [17].
• If the matrix X is chosen well, the affine pieces are intersections

with Schubert cells, called Hessenberg Schubert cells. This holds
in type A [17] and in some other cases [15].
• The Hessenberg Schubert cells are indexed by Young tableaux

that combinatorially record the dimension of the cell. The result
partly extends to other types [15]; see also when H = b [8].

1The author was partly supported by NSF-DMS-1800773.
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We give open questions, including: find a closed formula for the dimension or num-
ber of components; which components are singular and what kinds of singularities
do they have; characterize the pieces of cells in each component; identify which
permutation flags are in the closure of a given Hessenberg Schubert cell.

Equivariant cohomology of Hessenberg varieties. If X is regular semisimple
(namely X has n distinct eigenvalues), we have special tools to compute the equi-
variant cohomology of Hess(X,h). The main tool is often called GKM theory after
Goresky-Kottwitz-MacPherson [9], though many people contributed to its creation
[2, 5, 12]. After describing GKM theory and generalizations, we specialize to the
equivariant cohomology of regular semisimple Hessenberg varieties.

Let H be a Hessenberg space and let (ij) be the transposition switching i and
j. Let GH = (V,EH) be the graph whose vertices are permutations Sn and edges
w ↔ w(ij) if entries (i, j) and (j, i) are both free in H . Each edge w ↔ (ij)w is
labeled with the polynomial ti− tj . Note that left-multiplication gives edge-labels
while right-multiplication determines if an edge is in the graph.
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Figure 1. Graphs for H∗
T (Hess(X,h)). Label slope 1 edges by

t1 − t2, slope −1 by t2 − t3, and vertical by t1 − t3

Theorem 1 (Tymoczko, [18]). Let GH be the edge-labeled graph above. The equi-
variant cohomology of the regular semisimple Hessenberg variety Hess(X,H) is:

Hess(X,H) ∼=

{
p ∈ C[t1, . . . , tn]

n! :
if w ↔ (ij)w is an edge in EH

then (ti − tj)|(pw − p(ij)w)

}

We describe methods and questions about bases for H∗
T (Hess(X,h) like:

• how to interpret “upper-triangular bases” for equivariant cohomology [11]
• a formula for the upper-triangular (Schubert) basis of H∗

T (G/B) [1, Ap-
pendix D], [3]
• when there is a unique homogeneous upper-triangular basis [16, 19]
• Question: what can be said about other kinds of bases, e.g. symmetrized?
• Question: what is a formula for a basis of Hess(X,h)?
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Representations and Hessenberg varieties. There are two different Sn ac-
tions on the equivariant cohomology of GLn(C)/B arising from left-multiplication
and right-multiplication by permutations on the vertices of the graph Gg [18].
These give two different representations on equivariant cohomology. Only one
restricts to Hessenberg varieties: the left-multiplication action [18].

A simple transposition (i, i+ 1) acts on an arbitrary p ∈ H∗
T (Hess(X,h)) by

((i, i+ 1) · p)w = (i, i+ 1)(p(i,i+1)w)

where (i, i + 1) acts on polynomials by exchanging ti and ti+1. Extend to the
action of an arbitrary permutation by composing simple transpositions.

The left-action and right-action of Sn on H∗
T (GLn(C)/B) induce different rep-

resentations on ordinary cohomology: one is trivial while the other contains the
sign representation. The right action is called the Springer representation and is
associated to Hess(X, b). MacDonald describes the Springer representation as:

(1) Poincaré polynomial of Hess(N, b) =
∑

partitions λ

(rank of irrep. λ) K̃λµ(N)(q)

where N is nilpotent, µ(N) is its Jordan type, and K̃λµ(N)(q) is a particular
normalization of Kostka-Foulkes polynomials [13, III. Sect.7, 7.11 and Ex. 6].

The left action, which descends to Hessenberg varieties, is the monodromy ac-
tion. A version of Equation (1) applies, replacing b with H and replacing the rank
of λ with the multiplicity of λ in the Sn-representation on H∗

T (Hess(X,H)) [14].
This representation on H∗

T (Hess(X,H)) is particularly important because it
coincides with a combinatorial representation at the heart of the so-called Stanley-
Stembridge conjecture. Brosnan-Chow and Guay-Paquet [4, 10] recently proved
this, after a conjecture of Shareshian-Wachs. It suggests a geometric approach
to the Stanley-Stembridge conjecture through analysis of the representation on
H∗

T (Hess(X,H)). Another talk in this workshop will give more details.
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Khovanskii bases in three settings

Christopher Manon

In this series of three lectures we discuss computational aspects of valuations,
the existence of a degeneration to a variety of complexity one for any irreducible,
reduced projective variety, and a classification theorem for flat toric families of
finite type. These three topics share Khovanskii bases as a common feature.

Khovanskii bases and computations in algebras

(joint with Kiumars Kaveh)

The theory of Khovanskii bases generalizes SAGBI bases, which is itself an ana-
logue of the theory of Gröbner bases for subalgebras of polynomial rings. Let
k[x] = k[x1, . . . , xn] be a polynomial ring over an algebraically closed field k, and
let ≺ be a monomial order. Following a standard treatment of Gröbner theory ([3],

[11]), we have the initial form in≺(f) of a polynomial f =
∑ℓ

i=1 cix
αi , and the

initial ideal in≺(I) = 〈{x
α | cxα = in≺(f), f ∈ I}〉 of an ideal I ⊂ k[x]. In what

follows we assume that I is homogeneous with respect to some positive grading on
k[x] (say xi has degree di ∈ Z>0). Gröbner bases and the Gröbner fan are defined
as usual. A Gröbner basis allows for the resolution of the ideal membership prob-
lem, and Buchberger’s algorithm allows us to procedurally expand any generating
set of I to a Gröbner basis. In [10], Robbiano and Sweedler defined a SAGBI basis
B ⊂ A for a subalgebra A ⊂ k[x] to be a set whose initial forms generate the initial
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algebra in≺(A). If a finite SAGBI basis B ⊂ A exists, the subduction algorithm
([11]) represents any p ∈ A as a polynomial in B. Moreover, any generating set
of A can be expanded to a SAGBI basis ([11]); these are the SAGBI analogues of
the division algorithm and Buchberger’s algorithm, respectively. Notably, in≺(A)
is an affine semigroup algebra, so Proj(in≺(A)) is a toric variety.

Unfortunately there are subalgebras and monomial orders with no finite SAGBI
basis. To remedy this situation, we generalize to the setting of a valuation v :
A \ {0} → Zd, where Zd is equipped with a group order ≺. The associated graded
algebra grv(A) plays the role of in≺(A). We define a Khovanskii basis to be a
set B ⊂ A whose image B̄ ⊂ grv(A) is a generating set. In [7] it is shown that
the subduction algorithm exists in this setting (actually for quasivaluations), and
that any generating set can be expanded to a finite Khovanskii basis, provided one
exists. Moreover, a theorem of Anderson [2] shows that a toric degeneration also
exists in this setting, provided v is a full rank valuation.

The structure of the set of quasivaluations with finite Khovanskii bases comes
from Gröbner theory. Let I ⊂ k[x] be the ideal which vanishes on a generating
set B = {b1, . . . , bn} ⊂ A. We let Γ = (Zd,≺), and ΣΓ(I) ⊂ Γn be the Gröbner
complex of I [7]. Furthermore, we takeKΓ(I) ⊆ ΣΓ(I) to be the set of points of the
form w = (v(b1), . . . , v(bn)), where v : A → Γ is some quasivaluation. Finally, we
let TropΓ(I) be the Γ-tropical variety of I, this is the set of w ∈ Γn where inw(I)
contains no monomials (the tropical variety). We have the following inclusions of
complexes: TropΓ(I) ⊆ KΓ(I) ⊆ ΣΓ(I).

It is shown in [7] that KΓ(I) can be identified with the set of quasivaluations
with Khovanskii basis B. Likewise, the points w ∈ TropΓ(I) with inw(I) a prime
ideal correspond precisely to the valuations on A with Khovanskii basis B. In [7]
it is also shown that the initial ideals found in ΣΓ(I) are the same as those found
by classical Gröbner theory (ie Zd = Z). The following is a consequence.

Theorem 1. [Kaveh-M] A positively graded domain A has a full rank valuation
v : A \ {0} → Zd with finite Khovanskii basis B ⊂ A if and only if the tropical
variety Trop(I) contains a full dimensional open cell C with inC(I) a prime ideal.

Existence of finite Khovanskii bases

(joint with Kiumars Kaveh and Takuya Murata)

By Theorem 1, finding a full rank valuation on an algebra A is equivalent to
finding a full-dimensional prime cone C ⊂ Trop(I). Moreover, Anderson’s theorem
[2] and [9] imply that these conditions are both equivalent to the existence of a
homogeneous flat degeneration Spec(A) → Spec(k[S]), where S ⊂ Zd is a finitely
generated semigroup. In this context, a toric degeneration X → X0 is a flat family
π : X → A1(k), where X is equipped with a Gm(k) action which is intertwined
with the standard action on A1(k) by π, with π−1(0) = X0 a toric variety, and
π−1(C) = X for any C 6= 0.

There are positively graded algebras with no toric degenerations. Following [9,
Section 3], the section ring RD =

⊕
n≥0 H

0(C,O(nD)) of a divisor D on a smooth
curve C carries a homogeneous rank 2 valuation with finite Khovanskii basis if and
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only if nD ∼ mP for some n,m > 0 and P ∈ C. Ilten and Wröbel [5] have also
constructed examples out of non-normal rational curves.

In response, we let the special fiber of the degeneration belong to a larger class
of varieties. The complexity of a variety X equipped with an effective action by
an algebraic torus T is dim(X)− rank(T ). In this way, complexity-1 varieties are
a natural relaxation of toric varieties. Altmann and Hausen [1] have constructed a
combinatorial theory of varieties of arbitrary complexity; in particular complexity-
1 varieties are roughly captured by polyhedral data and the geometry of curves.
The following theorem from [9] says that the coordinate ring of projective variety
can be degenerated to the coordinate ring of a complexity-1 variety.

Theorem 2. [Kaveh-M-Murata] Let A be a positively graded k-domain of dimen-
sion d, then there is a homogeneous valuation v : A \ {0} → Zd−1 of rank d − 1
with a finite Khovanskii basis.

Roughly speaking, the two main ingredients of Theorem 2 are a technical result on
the finite generation of Rees algebras of symbolic powers of height 1 prime ideals,
and Bertini’s theorem.

Khovanskii bases for toric families

(joint with Kiumars Kaveh)

Fix a valuation v : A → Zd with finite Khovanskii basis, let σ ⊂ Trop(I) be
the corresponding prime cone, and let N be the lattice generated by the integer
points in σ ∩ Zn. A construction from [8] shows that there is a flat TN -family
π : X → Yσ, where Yσ is the affine toric variety associated to σ ⊂ NQ. Just as a
toric degeneration over A1(k) corresponds to the rank 1 valuation given by a point
in a prime cone in Trop(I), the family X corresponds to a valuation w : A→ Oσ,
where Oσ is the semialgebra of N -integral piecewise-linear functions on the cone σ.
If two such prime cones σ1 and σ2 share a facet σ1∩σ2 = τ , one can then consider a
corresponding valuation into OΣ, where Σ is the fan defined by σ1, σ2, τ ; this is the
natural setting for considering mutations between the Newton-Okounkov bodies
associated to the prime cones σ1, σ2. With these constructions as motivation,
it is natural to consider valuations w : A → ON , where ON is the semifield of
piecewise-linear functions on the lattice N .

A valuation w : A → ON defines a rank 1 valuation for each ρ ∈ N given by
evaluation: wρ(f) = w(f)[ρ]. We say B ⊂ A is a Khovanskii basis of w if B is
a Khovanskii basis of wρ for each ρ ∈ N . The following is a result in [8], it is a
generalization of the equivalence between toric degenerations and valuations with
finite Khovanskii bases in the classical setting.

Theorem 3. [Kaveh-M] For every valuation w : A→ ON with finite Khovanskii
basis, there is finite complete fan Σ and a corresponding flat affine TN -family
π : X (v) → YΣ of finite type with reduced, irreducible fibers and general fiber
Spec(A). Moreover, every such family arrises this way.

Theorem 3 is not stated as 1− 1 correspondence between flat toric families and
valuations because there is an indeterminacy in the choice of the fan Σ. If we
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specialize to the case where A is a polynomial ring and the Khovanskii basis is
a set of linear forms, Theorem 3 recovers Klyachko’s classification of toric vector
bundles [6]. In particular, one can take the Khovanskii basis to be the representable
matroid constructed by Di Rocco, Jabbusch, and Smith in [4].

Theorem 3 and its corollaries suggest a new way to construct toric vector bun-
dles, and other toric families. Let k[TN ] be the coordinate ring of the torus TN

and wN : k[TN ]→ ON be the canonical valuation which sends a Laurent polyno-

mial p(t) =
∑ℓ

i=1 cit
αi to the support function wN (p) = min{αi | ci 6= 0} of its

Newton polytope. This valuation immediately extends to the rational functions
k(TN ). Now, any affine variety X equipped with a k(TN ) point i : k[X ]→ k(TN )
has a valuation i∗wN : k[X ] → ON which potentially defines a toric family with
general fiber X . In this way, we produce toric vector bundles by solving linear
equations in the field k(TN ) and evaluating the result with wN . One can use
similar techniques to show that the support of functions of the m-faces of any
n-simplex are a ON -point on the tropical Grassmannian variety of m-planes in
n-space, see [8].
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[11] B. Sturmfels, Gröbner bases and convex polytopes, volume 8 of University Lecture Series.

American Math Society, Providence, RI, 1996.



Mini-Workshop: Degeneration Techniques in Representation Theory 2887

Some open problems on degerate flag varieties

Markus Reineke

We review some of the main results of [1, 2, 3] on so-called linear degenerations
of SLn+1-flag varieties. We formulate several open problems concerning their
geometry, and speculate on potential convolution-type constructions and their
representation-theoretic properties.

Let V be a complex vector space of dimension n+1 with a fixed basis v1, . . . , vn+1.
For a subset I ⊂ {1, . . . , n+1}, we denote by pri ∈ End(V ) the projection operator
defined by

prI(vi) = 0 for i ∈ I and prI(vi) = vi for i 6∈ I.

We define the degenerate flag variety

Fla(V ) = {(U1, . . . , Un) ∈

n∏

i=1

Gri(V ) | pri(Ui) ⊂ Ui+1 for i = 1, . . . , n− 1}.

It is an irreducible normal variety of dimension n(n+1)/2 which is a flat degener-
ation of the variety Fl(V ) of complete flags in V . It is acted upon by a unipotent
group Ga with finitely many orbits. The maximal torus T of GL(V ) scaling the
given basis of V admits a one-parameter subgroup whose fixed points are tuples
of coordinate subspaces indexed by

{I∗ = (I1, . . . , In) | Ii ⊂ {1, . . . , n+ 1}, |Ii| = i, Ii \ {i+ 1} ⊂ Ii+1},

and such that the attractors of the fixed points are precisely the Ga-orbits.

Problem 1: Describe the closure relation between Ga-orbits in their parametriza-
tion via tuples of sets I∗. What are the (minimal) singularities in the closures of
orbits? How to describe the intersection cohomology complexes on orbit closures
(see Problem 3below)?

The Euler characteristic of Fla(V ) can be computed as the number of cells, which
equals the (n+ 1)-st Genocchi number. One compact formula for this is

χ(Fla(V )) =
∑

f∗

(∏
i(fi + 1)

2r(f)

)
,

where the sum ranges over all Motzkin paths of length n + 1, that is, tuples
f∗ = (0 = f0, f1, . . . , fn, fn+1 = 0) of non-negative integers such that fi+1 − fi ∈
{−1, 0, 1} for all i, and r(f) denotes the number of rises of f∗, that is, indices i
such that fi+1 = fi + 1. This sum-of-squares type formula suggests the following:

Problem 2: Define a convolution-type algebra structure on HBM
∗ (Fla(V )) , mak-

ing it into a semisimple algebra whose irreducible representations are naturally
parametrized by Motzkin paths.

The variety Fla(V ) is a special case of a principal quiver Grassmannian, that is, a
variety parametrizing subrepresentations U of a representation P ⊕ I of a Dynkin
quiver Q, where P is a projective representation, I is an injective representation,
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and the class [U ] of U in the Grothendieck group of Q equals [P ]. Namely, the
variety Fla(V ) arises when Q is a linearly oriented type An quiver, P = CQ and
I = (CQ)∗. For every principal quiver Grassmannian, the group AutQ(P ⊕ I) acts
on Gr[P ](P ⊕ I) with finitely many orbits. Assuming that all these facts already
work over finite fields, we can consider spaces of functions invariant with respect
to this group action:

Problem 3: Define a Hall-algebra type multiplication on

A =
⊕

[P ],[I],e

QAutQ(P⊕I)Grd(P ⊕ I)

making it into a graded associative algebra. Let Uq(b
+) be the quantized envelop-

ing algebra of the Borel subalgebra of sln+1(C); then multiplication should induce
an isomorphism of graded vector spaces Uq(b

+) ⊗ Uq(b
+) → A. For every orbit

O in some Grd(P ⊕ I), the function associating to a point U in O the Poincaré
polynomial of the stalk over U of the intersection cohomology sheaves on the orbit
closure of O gives an element fO of A; the collection of all fO should provide A
with a canonical basis. How is this basis related to variants of Lusztig’s canonical
basis in quantized enveloping algebras?

The maximal flat linear degeneration of the flag variety Fl(V ) is defined by

FLmf (V ) = {(U1, . . . , Un) ∈

n∏

i=1

Gri(V ) | pri,i+1(Ui) ⊂ Ui+1 for i = 1, . . . , n− 1}.

It is a locally complete intersection variety which is equidimensional, and it is a
flat degeneration of both Fl(V ) and of Fla(V ).

Its irreducible components are naturally parametrized by non-crossing arc dia-
grams: an arc diagram is a subset A of {(i, j) | 1 ≤ i < j ≤ n}; it is called non-
crossing if there is no pair (i, j), (k, l) ∈ A such that i ≤ k < j ≤ l. Non-crossing
arc diagrams are counted by the n-th Catalan number. Given a non-crossing arc
diagram A, define

r(A)ij = i− |arcs starting in {1, . . . , i} and ending in {i+ 1, . . . , j}|.

Then the closure C(A) of the set of all (U1, . . . , Un) ∈ Flmf(V ) such that

rk(pr[i,j] : Ui → Uj) = r(A)i,j for all i < j

is an irreducible component of Flmf (V ), and all components arise in this way.

Problem 4: Are the components C(A) normal? What is their singular locus?
Do they admit natural closed embeddings into Schubert varieties? When are two
such components isomorphic?

As for Fla(V ), also Flmf (V ) can be realized as a quiver Grassmannian, namely
as Gr[CQ](M) for M = rad(CQ)⊕CQ/rad(CQ)⊕ (CQ)∗, thus the automorphism

group AutQ(M) acts naturally on Flmf (V ).
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Problem 5: Are there only finitely many orbits for this action? If yes, how can
they be parametrized? What is the closure relation?

Both Fla(V ) and Flmf (V ) are members of a flat family of so-called linear degen-
erations of Fl(V ): Let U be the variety of tuples (f1, . . . , fn−1) ∈ End(V )n−1 of
linear operators such that

rk(fj−1 ◦ . . . ◦ fi) ≥ n+ i− j for all i < j.

Let FU be the variety of tuples

((U1, . . . , Un), (f1, . . . , fn−1)) ∈

n∏

i=1

Gri(V )× U

such that fi(Ui) ⊂ Ui+1 for all i = 1, . . . , n−1. Then πU : FU → U is a flat family
with generic fibre isomorphic to Fl(V ), and the most degenerate fibre isomorphic

to Flmf (V ).

We can stratify FU according to a kind of attractor flow into the irreducible
components of its most degenerate fibre by defining, for every non-crossing arc
diagram A as above, a stratum S(A) consisting of all (U∗, f∗) such that

rk(fj−1 ◦ . . . ◦ fi : Ui → Uj) = r(A)ij for all i < j.

Problem 6: Study this stratification of FU .

The derived pushforward R(πU )∗QFU
decomposes into a direct sum of shifts of

simple perverse sheaves on U whose supports are indexed by Motzkin paths of
length n. This suggests:

Problem 7: Describe the convolution algebra HBM
∗ (FU ×U FU ) as a quotient of a

quiver Hecke/KLR algebra, and describe its standard representations indexed by
Motzkin paths.
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Types A and D quiver representation varieties

Jenna Rajchgot

(joint work with Ryan Kinser, Allen Knutson)

Given a quiver Q with vertex set Q0, arrow set Q1, and dimension vector d :
Q0 → Z≥0, there is a representation space repQ(d) :=

∏
a∈Q1

Mat(d(ta),d(ha)),

where ta and ha denote the tail and head vertices of the arrow a, and Mat(m,n)
denotes the space of m × n matrices with entries in a field K. The product of
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general linear groups GL(d) :=
∏

z∈Q0
GLd(z)(K) acts on repQ(d) on the right

by conjugation, that is, (Va)a∈Q1
· (gz)z∈Q0

:= (g−1
ta Vagha)a∈Q1

, for (Va)a∈Q1
∈

repQ(d), and (gz)z∈Q0
∈ GL(d). The closure of a GL(d) orbit in repQ(d) is called

a quiver locus.
Motivations for the study of quiver loci come from various disciplines includ-

ing algebraic geometry, commutative algebra, representation theory, and algebraic
combinatorics. For example, through the study of quiver loci, one encounters
well-known ideals from commutative algebra, including classical determinantal
ideals and defining ideals of varieties of complexes. The primary motivation for
the work discussed herein is from algebraic geometry, through study of degener-
acy loci : given a non-singular algebraic variety X and a map of vector bundles
φ : V →W on X , there is a degeneracy locus Ωr := {x ∈ X | rank φx ≤ r}, where
φx : Vx →Wx is the induced map on fibers. The locus Ωr is a closed subvariety of
X , defined locally by the vanishing of minors of a matrix. When φ is sufficiently
general, an expression for its fundamental class in the cohomology ring of X is
given by the Giambelli-Thom-Porteous formula. A. Buch and W. Fulton general-
ized this to sequences of vector bundle maps V1 → V2 → · · · → Vn in [6]. Related
formulas were subsequently produced in works such as [6, 2, 8, 5, 13, 18, 15, 3, 7].

The problem of producing formulas for degeneracy loci is closely related to that
of finding formulas for multidegrees of associated quiver loci (see [13]). Indeed, in
[13], A. Knutson, E. Miller, and M. Shimozono produced multiple formulas for the
multidegrees and K-polynomials of quiver loci of equioriented type A quivers (i.e.
all arrows point in the same direction). One important ingredient in this work was
the Zelevinsky map, which identifies an equioriented type A quiver locus with an
open subvariety of a Schubert variety [19, 14], thereby allowing for importation of
results from Schubert calculus to the equioriented type A quiver setting.

In joint work with R. Kinser and A. Knutson [10], we generalized three of
Knutson, Miller, and Shimozono’s formulas from [13] to all type A orientations.
Our work also generalized or recovered formulas from [16, 4, 7]. Our main result
was a proof of A. Buch and R. Rimányi’s conjectured K-theoretic component
formula from [7]. In analogy with the equioriented setting, an explicit connection
to Schubert varieties (from [11]) was important to our work.

This extended abstract focuses on algebro-geometric results on type A quiver
loci important to the proofs of the formulas in [10], as well as analogs of some of
these algebro-geometric results for type D loci. The latter part is based on recent
joint work with Kinser [12].

1. Type A

In this section we discuss some geometric results in type A, including the bipartite
Zelevinsky map from [11], and a degeneration from [10] which was central to the
proof of the K-theoretic type A quiver component formula.

1.1. Bipartite Zelevinsky map. Let Q be a bipartite (i.e. alternating) type A
quiver and d a dimension vector for Q. There is an associated general linear group
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GLd(K), parabolic subgroup P ⊆ GLd(K), opposite Schubert cell Y ⊆ P\GLd,
and closed immersion ζ : repQ(d) → Y which restricts to an isomorphism from
each quiver locus in repQ(d) to a Schubert variety intersected with Y [11]. We
refer to ζ as the bipartite Zelevinsky map. For example, the type A5 representation

Kd5
D
−→ Kd4

C
←− Kd3

B
−→ Kd2

A
←− Kd1

maps, via ζ, to the block matrix on the left below:



0 A 1 0 0
C B 0 1 0
D 0 0 0 1
1 0 0 0 0
0 1 0 0 0



∈




∗ ∗ 1 0 0
∗ ∗ 0 1 0
∗ ∗ 0 0 1
1 0 0 0 0
0 1 0 0 0



∼= Y.

Note that 1s denote identity matrices of appropriate sizes, and the matrix on
the right denotes the space of all matrices of the given form (i.e. with arbitrary
elements of K in the locations with stars). The ranks of the matrices

A,B,C,D,

[
A
B

]
,
[
C B

]
,

[
C
D

]
,

[
0 A
C B

]
,

[
C B
D 0

]
,




0 A
C B
D 0





characterize the points in the GL(d) orbit containing (D,C,B,A). This list of
ranks is equivalent to a list of ranks of certain North-West justified submatrices
of ζ(D,C,B,A). Using this, one can show that the closure of the orbit through
(D,C,B,A) is isomorphic, via ζ, to a Schubert variety intersected with Y .

The bipartite Zelevinsky map is useful beyond the bipartite setting because
of the following: given a type A quiver locus Ω ⊆ repQ(d) (for Q of arbitrary

orientation), there is as associated bipartite type A quiver locus Ω̃ and product of
general linear groups G∗ such that Ω×G∗ is isomorphic to an open subvariety of

Ω̃ [11]. It follows from this result, the bipartite Zelevinsky map, and [9, Lemma
A.4] that each type A quiver locus is isomorphic, up to a smooth factor, to an
open subvariety of a Schubert variety. This gives a uniform way of obtaining
results such as type A quiver loci are normal and Cohen-Macaulay with rational
singularities (also proved earlier via other methods by G. Bobiński and G. Zwara
[1]); quiver locus containment is governed by Bruhat order on the symmetric group;
there is a Frobenius splitting (in positive characteristic) of each representation
space of a type A quiver that compatibly splits all quiver loci; certain generalized
determinantal ideals are prime, and scheme-theoretically define type A quiver loci
(C. Riedtmann and G. Zwara [17] also obtained this result via other methods).

1.2. Degenerations. Certain degenerations of bipartite type A quiver loci are
important in the proofs of the component formulas found in [10]. To describe
these degenerations (also given in [10]), we start with a general set-up: let G be
an algebraic group over K, H ≤ G a closed subgroup, X a G-variety, and Y ⊆ X
an H-stable closed subvariety. Let µ : K× → G be a group homomorphism and
consider the right action of K× on G by g · t = µ(t−1)gµ(t) and the right action
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of K× on X by x · t = x · µ(t). With this set-up, we get two families H̃ and Ỹ
over A1 − {0} where the fiber H · t in the first family is a subgroup which acts on
the fiber Y · t in the second family.

In our case, X is a bipartite type A quiver representation space repQ(d), Y ⊆ X

is a quiver locus, G = GL(d) × GL(d), and H = GL(d)∆, a copy of GL(d)
embedded diagonally in G. The action of G on X is a conjugation action where if
((gz, hz))z∈Q0

∈ G then gz (respectively hz) acts on the map over the arrow to the
left of z (respectively to the right of z). The induced action of H on X is then the
usual action of GL(d) on repQ(d). Letting ρz(t) denote the d(z)× d(z) diagonal

matrix with t, t2, . . . , td(z) down the diagonal, the homomorphism µ is defined by

t 7→ ( (ρz(t
−1), ρz(t)) )z∈Q0

. The families H̃ and Ỹ extend to flat families over
A1 and the special fiber of the first family acts on the special fiber of the second
family. From this, one deduces that a bipartite type A quiver locus degenerates to
a union of products of matrix Schubert varieties, up to radical. One can further
prove that this degeneration is reduced. See [10] for details. Similar degenerations
appeared previously in the equioriented setting in [13].

2. Type D

In recent joint work with Kinser [12], we obtain results in type D which are analo-
gous to the type A results from [11]. Indeed, we unify aspects of the equivariant ge-
ometry of three classes of varieties: type D quiver representation varieties, double
Grassmannians Gr(a, n)×Gr(b, n), and symmetric varieties GL(a+ b)/(GL(a)×
GL(b)). In particular, we translate results about singularities of orbit closures,
combinatorics of orbit closure containment, and torus equivariant K-theory be-
tween these three families. This is accomplished by producing explicit embed-
dings of homogeneous fiber bundles over type D quiver representation spaces into
symmetric varieties. Immediate consequences of these embeddings, together with
results on symmetric varieties, include type D quiver loci are normal and Cohen-
Macaulay with rational singularities (recovering work from [1] obtained by other
methods); the poset of orbit closures in a type D representation space (and also
the poset of diagonal B-orbit closures in a double Grassmannian) is isomorphic to
a subposet of a poset of clans, which are involutions in the symmetric group with
signed fixed points.

A next step in the investigation of type D quiver loci is to make use of the
explicit embeddings in [12] to help produce formulas for multidegrees and K-
polynomials, in analogy with what was done in type A.
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Convex geometric push-pull operators and FFLV polytopes

Valentina Kiritchenko

Let X be a smooth algebraic variety, and E → X a vector bundle of rank two
on X . Define the projective line fibration Y = P(E) as the variety of all lines
in E. The natural projection π : Y → X induces pull-back π∗ : A∗(X) →
A∗(Y ) and push-forward π∗ : A∗(Y ) → A∗−1(X) (aka transfer or Gysin map) in
the (generalized) cohomology rings of X and Y . The push-pull operator π∗π∗ :
A∗(Y ) → A∗−1(Y ) is a homomorphism of A∗(X)-modules, and can be described
explicitly via Quillen–Vishik formula for any algebraic oriented cohomology theory
A∗ (such as Chow ring, K-theory or algebraic cobordism). Push-pull operators are
used extensively in representation theory (Demazure operators) and in Schubert
calculus (divided difference operators). We discuss convex geometric counterparts
of push-pull operators and their applications in the theory of Newton–Okounkov
convex bodies.

We focus on the case where Y = G/B is the complete flag variety for a connected
reductive group G. Let Pi ⊂ G be the minimal parabolic subgroup associated with
a simple root αi, and X = G/Pi the corresponding partial flag variety. Clearly,
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πi : Y → X is a projective line fibration. For instance, if G = GLn(C) then points
in G/B can be identified with complete flags (V 1 ⊂ V 2 ⊂ . . . ⊂ V n−1 ⊂ Cn)
of subspaces, and the map πi forgets the subspace V i. The corresponding push-
pull operator ∂i : CH∗(Y ) → CH∗−1(Y ) for Chow rings is often called divided
difference operator, while the push-pull operator Di : K

∗(Y ) → K∗−1(Y ) for the
K-theory is usually called Demazure operator.

A classical result of Schubert calculus [BGG, D] is an inductive description of
Schubert cycles [Xw] ∈ CH∗(Y ) for all elements w ∈ W in the Weyl group of G.
Namely, if w = si1si2 · · · siℓ is a reduced decomposition of w into the product of
simple reflections, then

[Xw] = ∂iℓ . . . ∂i2∂i1 [Xid]. (1)

A classical result in representation theory [A] is an inductive description of the
Demazure character χw(λ) for every Schubert variety Xw and a dominant weight
λ of G:

χw(λ) = D1D2 . . . Dℓ(e
λ). (2)

While formulas (1) and (2) look similar, there is no direct relation between them
since in (1) operators are applied in the order opposite to that of (2).

In [Ki16], we defined convex geometric analogs of Demazure operators. They
can be used to construct inductively polytopes Pλ such that the sum of expo-
nentials over lattice points in Pλ yields the Demazure character χw(λ). Recently,
Naoki Fujita showed that the Nakashima–Zelevinsky polyhedral realizations of
crystal bases for a special reduced decomposition of the longest element w0 ∈ W
can be constructed inductively using convex geometric Demazure operators in
types An, Bn, Cn, Dn, and G2 [Fu18]. In this setting, the convex geometric
Demazure operators are applied in the same order as in (2).

Below we define different convex geometric analogs of push-pull operators that
are more natural from the perspective of (1). When computing Newton–Okounkov
polytopes of Schubert or Bott–Samelson varieties one often needs an effective tool
for comparing the degrees of varieties with the volumes of resulting polytopes. For
a reduced decomposition w = si1si2 · · · siℓ , convex geometric push-pull operators
produce inductively polytopes such that their volume polynomials coincide with
the degrees of Bott–Samelson varieties corresponding to collections of simple roots
(αi1), (αi1 , αi2),. . . , (αi1 , αi2 , . . . , αiℓ).

Let P ⊂ Rn be a convex polytope, and I ⊂ Rn a segment. Let Q ⊂ Rn be a
polytope analogous to P (i.e., having the same normal fan). Define the push-pull
polytope ∆(P,Q, I) ⊂ Rn+1 = R× Rn as the convex hull of the following set:

(1 × P ) ∪ (0× (Q + I)).

When I = {0}, this construction produces the Newton polytope of a projective
line fibration Y = P1(E) over the toric variety X corresponding to the polytope
P . We assume that E = O ⊕ L is split so Y is also a toric variety. In this case,
there is a simple relation between the polytope Q and the first Chern class of L.
In particular, construction of Grossberg–Karshon cubes [GK] (done originally in
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the spirit of (2)) for Bott–Samelson varieties can also be reproduced in the spirit
of (1) using convex-geometric push-pull operators with I = {0}.

While Grossberg–Karshon cubes can be realized as Newton–Okounkov poly-
topes of Bott–Samelson varieties for some line bundles [Fu15, HY16, HY17], they
do not degenerate to Newton–Okounkov polytopes of flag varieties (instead they
turn into twisted cubes, which are not true polytopes). Using segment I of positive
length allows us to produce polytopes that do not break in the limit when passing
to flag varieties. The following example produces the Newton–Okounkov polytope
of a Bott–Samelson variety in type A2 with the desired degeneration.

Example 1. cf. [An13, Section 6.4] Let n = 2, and P ⊂ R2 a trapezoid with the
vertices (0, 0), (2, 0), (0, 1), (1, 1). Take I = [(0, 0), (0, 1)], and Q = P . Then the
push-pull polytope ∆(P,Q, I) ⊂ R3 is the Minkowski sum of the FFLV polytope
in type A2 corresponding to the weight ρ and the segment J = [(0, 0, 0), (1, 0, 0)]
(see [FFL] for the definition of FFLV polytopes in type A and their representation-
theoretic meaning). By shrinking J we get the degeneration to the FFLV polytope.

We plan to use convex geometric push-pull operators as a tool for proving the
following conjecture on Newton–Okounkov polytopes of Bott–Samelson varieties
in type A and generalized FFLV polytopes. We use notation of [Ki18].

Conjecture 1. Let Λi = (λi
i, . . . , λ

i
n). If j > i, put λj

i = λj
j. The Newton–

Okounkov polytope ∆v0(Xw0
, L(Λ1, . . . ,Λn−1)) is given by inequalities: ul

m ≥ 0
and

∑

(l,m)∈D

ul
m ≤

j∑

s=1

(λs
k − λs

i+j)

for all Dyck paths going from λk to ui
j in table (FFLV) where 1 < k ≤ j < n and

1 ≤ i ≤ n− j.

λ1 λ2 λ3 . . . λn

u1
1 u1

2 . . . u1
n−1

u2
1 . . . u2

n−2

. . .
. . .

un−2
1 un−2

2

un−1
1

(FFLV )
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Hessenberg Varieties and the Stanley–Stembridge Conjecture

Martha Precup

(joint work with Megumi Harada)

Recent results have forged exciting new connections between algebraic combi-
natorics and the geometry and topology of certain subvarieties of the flag vari-
ety called Hessenberg varieties. In particular, the Shareshian–Wachs conjecture
[4], proven in 2015 by Brosnan and Chow [1], established a new connection be-
tween Hessenberg varieties and the Stanley–Stembridge conjecture in combina-
torics. This talk gives a brief introduction to that story, and discusses a recent
theorem of the author and Harada which uses the topology of Hessenberg varieties
to give an inductive approach to the Stanley–Stembridge conjecture in a special
case.

Let n be a positive integer. A Hessenberg function is an increasing sequence
h = (h(1), h(2), . . . , h(n)) such that h(i) ≥ i for all i ∈ [n]. Let h be a Hessenberg
function and X be an n × n matrix in gl(n,C). The Hessenberg variety B(X,h)
associated to h and X is the subvariety of the flag variety Fℓags(Cn) defined by

B(X,h) := {V• ∈ Fℓags(C
n) | X(Vi) ⊂ Vh(i) for all i ∈ [n]}.

Let S ∈ gln(C) be a regular semisimple matrix. The Hessenberg variety B(S, h)
is called a regular semisimple Hessenberg variety. Tymoczko proved that there is
a graded symmetric group representation on the cohomology H∗(B(S, h)) for each
Hessenberg function h, called the dot action representation [10]. We will see below
that the dot action provides the essential link between Hessenberg varieties and
the Stanley–Stembridge conjecture.

Another way to interpret the data of a Hessenberg function is as a graph. We
define the incomparability graph Γh = (V,Eh) associated to a Hessenberg function
h as follows. The vertex set V is [n] = {1, 2, . . . , n} and the edge set Eh is defined
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as: {i, j} ∈ Eh if 1 ≤ j < i ≤ n and i ≤ h(j). For example, the incomparability
graph for h = (3, 4, 5, 5, 5) is given below.

1 2 3 4 5

Let Γ be a (simple) graph with vertex set [n]. A proper coloring of Γ is a
function κ : [n] → N such that κ(v) 6= κ(w) whenever {v, w} is an edge. We
define a monomial xκ in variables x = x1, x2, . . . by xκ :=

∏
v∈[n] xκ(v). Stanley’s

chromatic symmetric function is

XΓ(x) :=
∑

κ

xκ

where the sum is taken over all proper colorings of Γ. This symmetric function
was defined by Stanley in [8] and has subsequently received considerable attention
from combinatorists. We can now state the Stanley–Stembridge conjecture.

Conjecture 2. Let h be a Hessenberg function. Then XΓh
(x) is e-positive, that

is, it is a nonnegative integer combination of the elementary symmetric functions.

The original statement of the Stanley–Stembridge conjecture asserts that the
chromatic symmetric function of the incomparability graph of a (3+1)-free poset
is e-positive [9]. We will not define the incomparability graph of a poset here.
Rather, we note that work of Guay-Paquet [3] and Shareshian–Wachs [4] shows
that the original conjecture is implied by Conjecture 2 above.

One might suspect that XΓh
is the image under the Frobenius character map

of some naturally occurring Sn-representation. We have already seen an example
of such a representation, namely the dot action representation. The following
conjecture of Shareshian and Wachs [4] first established the connection between
the dot action and XΓh

(x). It is now a theorem thanks to the work of Brosnan
and Chow [1, Theorem 129].

Theorem 1. For each Hessenberg function h, XΓh
(x) = ω(ch(H∗(B(S, h)))),

where ch denotes the Frobenius character map and ω is the usual involution on
symmetric functions.

Theorem 1 can be used to recover information about the dot action represen-
tation. For example, the Schur-basis expansion of XΓh

(x) is known; there is a
combinatorial formula for the coefficients due to Gasharov obtained by enumerat-
ing Ph-tableaux [2]. Gasharov’s formula determines the decomposition of the dot
action representation into irreducible Sn-representations.

It is well known that the set of representations {Mλ := IndSn

Sλ
(1) | λ ⊢ n}

form a Z-basis for the representation ring Rep(Sn) of Sn. Thus there exist unique
integers cλ such that

(1) H∗(B(S, h)) =
∑

λ⊢n

cλM
λ

as elements in Rep(Sn). Since ω(ch(Mλ)) = eλ, Theorem 1 implies that in order
to prove the Stanley–Stembridge conjecture it suffices to show cλ ≥ 0 for all λ.



2898 Oberwolfach Report 46/2019

In [6], the author and Harada use Theorem 1 to prove a new inductive formula
for certain coefficients appearing in (1). Recall that a subset of vertices I ⊆ [n] in
the graph Γh is called independent if they are pairwise nonadjacent. We obtain a
‘smaller’ graph ΓhI

:= Γh \ I from each such subset I by deleting the vertices in
I and all adjacent edges. The graph ΓhI

uniquely determines a new Hessenberg
function hI = (hI(1), . . . , hI(n− |I|)).

Theorem 2 (Harada–Precup). Let h be a Hessenberg function and λ ⊢ n be a
partition of n with exactly ℓ parts, where ℓ is the independence number of Γh. Let
µ = (µ1, . . . , µℓ) ⊢ (n− ℓ) such that λ = (µ1 + 1, . . . , µℓ + 1). Then,

cλ =
∑

I∈Iℓ(Γh)

cIµ

where Iℓ(Γh) is the set of all independent sets of vertices of size ℓ in Γh and for
each I ∈ Iℓ(Γh), the coefficients cIµ are the coefficients as in (1) associated to the
semisimple Hessenberg variety B(S, hI) in the flag variety of GLn−ℓ(C).

As a corollary, we obtain a special case of the Stanley–Stembridge conjecture
by induction [5].

Corollary 1. Let h be a Hessenberg function such that the independence number
of Γh is at most 2. Then the integers cλ appearing in (1) are non-negative.

The technical details of the induction argument leading to Theorem 2 use–
among other things– Brosnan and Chow’s proof of the Shareshian–Wachs Conjec-
ture. In particular, Theorem 76 of [1] states that the dot action representation
is completely determined by the Betti numbers of regular Hessenberg varieties,
that is, varieties of the form B(Xλ, h) where Xλ denotes a regular matrix of Jor-
dan type λ. Combining [1, Theorem 76] with results of author on the geometry
and combinatorics of Hessenberg varieties [7] provides the necessary tools to prove
Theorem 2.
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Positive initial ideals and the FFLV polytope

Lara Bossinger

The following abstract summarizes a short talk presenting an open problem about
Feigin-Fourier-Littelmann-Vinberg polytopes (short: FFLV ) [3] and Newton-
Okounkov bodies from cluster algebras.

Consider the full flag variety Fℓn of type A, i.e. points are in correspondence
with full flags of subspaces {0} ⊂ V1 ⊂ · · · ⊂ Vn−1 ⊂ Cn with dim(Vi) = i.
We further assume n ≥ 5 and use the notation [n] := {1, . . . , n}. We embed it
into the product of Grassmannains Gr1(Cn)× · · · ×Grn−1(Cn) and further every
Grassmannain in a projective space with respect to its Plücker embedding. Hence,

Fℓn →֒ P(
n

1)−1× · · ·×P(
n

n−1)−1. The (multi-)homogeneous coordinate ring of Fℓn
with respect to this embedding is An := C[pJ |J ⊂ [n]]/In, where In is a (multi-
)homogeneous ideal generated by the Plücker relations.

On An we have a family of valuations coming from the cluster structure of
Fℓn. To be precise, by [1] the algebra An is a cluster algebra meaning that it can
be generated recursively by seeds (certain maximally algebraically independent
subsets of algebra generators for An) and an algebraic operation called mutation
(a procedure to construct new seeds from a given one). For every seed s we have
a full-rank homogeneous valuation, denoted by νs : An \ {0} → Zd+(n−1), where
d = dim(Fℓn).

These valuations have the special property that their associated initial ideals (in
the sense of Kaveh-Manon [4] as presented in Christopher Manon’s lecture series
on Khovanskii basis in this Mini-Workshop) are positive, i.e. for every seed s the
ideal inνs(In) does not contain any non-zero element of R+[pJ |J ⊂ [n]].

Following Kiritchenko [5] or Fang-Fourier-Littelmann [2] the FFLV-polytope
(that as been discussed in detail during this Mini-Workshop) can be realized
as a Newton-Okounkov body associated with a full-rank homogeneous valuation
νFFLV : An \ {0} → Zd+(n−1). We have FFLV(ρ) = ∆(An, νFFLV). Since a few
years the following question has been studied but not yet answered:

Question: Does the FFLV-polytope occur as a Newton-Okounkov polytope
∆(An, νs) for some seed s?

While studying this question the following observation might give some new
insights.

Proposition: The initial ideal inνFFLV
(In) associated with the FFLV-valuation is

not positive.
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This suggests that the answer to the above question might be no. However, it
should be noted that positivity of ideals is not preserved under isomorphisms.
Already isomorphisms induced by the action of the symmetric group on Plücker
coordinates does not preserve positivity on the level of ideals.
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Global Demazure modules and semi-infinite Veronese curves

Ilya Dumanski

Let g = n− ⊕ h ⊕ n+ be a simple Lie algebra and let g[t] be its current algebra.
Fix a dominant weight λ =

∑r
i=1 miωi. The global Weyl module Wλ of weight λ

over g[t] is defined as a cyclic module with cyclic vector v with defining relations
n+[t].v = 0, ht0.v = λ(h)v and (fαt

0)(λ,α).v = 0 for any positive root α.
We also define the local Weyl module Wλ as a cyclic g[t]-module with a cyclic

vector v and defining relations n+[t].v = 0, th[t].v = 0, ht0.v = λ(h)v and
(fαt

0)(λ,α).v = 0 for any positive root α.
For arbitrary g[t]-module W and c ∈ C we define the g[t]-module W (c), which

is isomprphic to W as a vector space, and xtm act as x(t+ c)m on it.
The following important theorem was proved in [2], [4], [6]:

Theorem 1. (1) Wλ admits an h[t]-action, induced by htm.uv = uhtmv (for
u ∈ U(g[t])).

Define Aλ = U(h[t])/AnnU(h[t])v.

(2) As algebra Aλ is isomorphic to C[z1, . . . , zm1+...+mr
]Sm1

×...×Smr .
(3) For x = (x1,1, . . . xr,mr

) ∈ Am+...+mr with pairwise distinct coordinates we
have

Wλ ⊗Aλ
Cx ≃

r⊗

i=1

mi⊗

i=1

Wωi
(xi,j).

(4) Wλ ⊗Aλ
C0 ≃Wλ

(5) dimWλ =
∏r

i=1(dimWωi
)mi .

This theorem implies that the specialisation of Wλ as Aλ-module have equal di-
mension every point. Hense, Wλ is projective Aλ-module, and taking into account
the Quillen-Suslin theorem we state that it is free Aλ-module.
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Geometric realisation of Wλ was given in [1], [5]. It was proved that the homoge-
neous coordinate ring of Drinfeld-Plücker embedding of semi-infinite flag variety
to

∏r
i=1 P(Vωi

[t]) is isomorphic to
⊕

λ W
∗
λ.

Kato [5] also proved that the natural map Wλ+µ →Wλ⊗Wµ is injective. Note
also that for type A one has Wλ = Vλ ⊗C[t], where Vλ is an irreducible g-module
of highest weight λ.

Taking it into account we conclude that in type A we have

Wλ ≃ U(g[t]).v ⊂

r⊗

i=1

Vωi
[t]⊗mi ,

where v is a tensor product of the highest vectors of Vωi
[t].

Fix some l ∈ Z>0. Our idea is to consider the slr+1[t]-module

Dl,λ ≃ U(g[t]).v ⊂

r⊗

i=1

Vlωi
[t]⊗mi ,

where v is a tensor product of the highest vectors of Vlωi
[t].

We are trying to prove the analogue of Theorem 1 for arbitrary l. So far we
can prove the following steps:

Theorem 2. (1) Dl,λ admits an h[t]-action, induced by htm.uv = uhtmv (for
u ∈ U(g[t])).

Define Al,λ = U(h[t])/AnnU(h[t])v.

(2) As algebra Al,λ is isomorphic to C[z1, . . . , zm1+...+mr
]Sm1

×...×Smr .
(3) For x = (xi,1, . . . xr,mr

) ∈ Am+...+mr with pairwise distinct coordinates we
have

Dl,λ ⊗Al,λ
Cx ≃

r⊗

i=1

mi⊗

i=1

Dl,ωi
(xi,j),

Where Dl,λ is the slr+1-stable Demazure module of level l and highest

weight lλ in the integrable ŝlr+1-module L(lΛ0).

It suffices to study Dl,λ ⊗Al,λ
C0 to finish the theorem.

Geometric realisation of Dl,λ is the following. Consider the embedding of semi-
infinite flag variety into

∏r
i=1 P(Vlωi

[t]), which can be thought as a composition of
Drinfeld-Plücker embedding and r-tuple of semi-infinite Veronese maps of degree
l, νi : P(Vωi

[t])→ P((SlVωi
)[t]) = P(Vlωi

[t]). The homoheneous coordinate ring of
this variety is isomorphic to

⊕
λ D

∗
l,λ.

We study the case of sl2 more precisely. In this case the described embedding
is just an arc scheme of finite-dimensional Veronese curve of degree l, P(Vω [t])→
P(Vlω [t]).

Knowing representation-theoretic facts about Dl,λ for sl2 we deduce the reduced
structure of this scheme. Let (x0 : · · · : xl) be standard homogeneous coordinates
on Pl. To obtain the corresponding arc scheme one uses the infinite set of coordi-

nates x
(k)
a , k ≥ 0 packed into the formal series xa(t) =

∑
k≥0 x

(k)
a tk.
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Theorem 3. The reduced scheme structure of arc sheme of Veronese curve of
degree l is given by the quadratic ideal generated by all the coefficients of certain

linear combinations of expressions of the form dixa(t)
dxi xb(t).

Note that relations with derivatives first appeared in [3] in the homogeneous co-
ordinate ring of usual Drinfeld-Plücker embedding of the semi-infinite flag variety
in type A.
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Newton-Okounkov bodies of Schubert varieties and tropicalized

cluster mutations

Naoki Fujita

(joint work with Hironori Oya)

A Newton-Okounkov body ∆(X,L, v) is a convex body constructed from a polar-
ized variety (X,L) with a valuation v on the function field C(X), which gives a
systematic method of constructing toric degenerations of X by [1]. In the case
of flag varieties and Schubert varieties, their Newton-Okounkov bodies realize the
following representation-theoretic polytopes:

(1) Berenstein-Littelmann-Zelevinsky’s string polytopes [8],
(2) Nakashima-Zelevinsky polytopes [4],
(3) Feigin-Fourier-Littelmann-Vinberg polytopes [3, 9].

One motivating problem is to relate these polytopes by using the framework of
cluster algebras. The theory of cluster algebras also gives a general framework to
obtain toric degenerations of projective varieties, following Gross-Hacking-Keel-
Kontsevich [6]. They introduced the notion of positive polytopes, and showed that
it gives toric degenerations of compactified A-cluster varieties. Our aim in this
talk is to study relations between these two constructions of toric degenerations.

To be more precise, let

A =
⋃

t

At =
⋃

t

Spec(C[x1(t)
±1, . . . , xm(t)±1])

be a cluster variety, where t runs over a set of seeds which are all mutation equiv-
alent, and x1(t), . . . , xm(t) are the corresponding cluster variables. Assuming that
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X is birational to the cluster variety A, we have the following identification for
each t:

C(X) ≃ C(x1(t), . . . , xm(t)).

Fix a total order ≤t on Zm refining the dominance order introduced by Qin [11];
this ≤t induces a total order on the set of Laurent monomials in x1(t), . . . , xm(t).
We define a valuation

vt : C(X) \ {0} → Zm

to be the associated lowest term valuation. By definition, this valuation vt gener-
alizes g-vectors of cluster monomials and of the theta function basis, which implies
that Gross-Hacking-Keel-Kontsevich’s positive polytopes are identical to Newton-
Okounkov bodies associated with vt. Let us compute the Newton-Okounkov body
∆(X,L, vt) when X is a Schubert variety.

Let G be a simply-connected semisimple algebraic group over C, B a Borel
subgroup of G, W the Weyl group, and P+ the set of dominant integral weights.
We denote by X(w) ⊂ G/B the Schubert variety corresponding to w ∈ W , and
by Lλ the globally generated line bundle on X(w) associated with λ ∈ P+. We
consider the cluster structure on the unipotent cell which is naturally birational to

X(w). Let ∆i(λ) (resp., ∆̃i(λ)) denote the string polytope (resp., the Nakashima-
Zelevinsky polytope) associated with a reduced word i for w ∈W and λ ∈ P+.

Theorem 1. Let i be a reduced word for w ∈W . Then, there exists a seed t (resp.,
t̃) such that ∆(X(w),Lλ, vt) (resp., ∆(X(w),Lλ, vt̃)) is unimodularly equivalent

to ∆i(λ) (resp., ∆̃i(λ)) for all λ ∈ P+.

Analogous relations between string polytopes and cluster varieties were pre-
viously given by Magee [10] and Bossinger-Fourier [2] in type A, and by Genz-
Koshevoy-Schumann [5] in simply-laced case.

Let A∨ denote the Fock-Goncharov dual of A. By tropicalizing the cluster
mutation µk for A∨, we obtain the tropicalized cluster mutation µT

k . Using Kang-
Kashiwara-Kim-Oh’s monoidal categorification [7] of the cluster algebra, we de-
duce the following in simply-laced case.

Theorem 2. If G is of simply-laced, then the following hold for all w ∈ W and
λ ∈ P+.

(1) For each t, the Newton-Okounkov body ∆(X(w),Lλ, vt) is a rational con-
vex polytope, which induces a toric degeneration of X(w).

(2) If t′ is obtained from t by the mutation µk, then the following equality
holds:

∆(X(w),Lλ, vt′) = µT
k (∆(X(w),Lλ, vt)).

By combining the theorems above, we see that string polytopes and Nakashima-
Zelevinsky polytopes are all related by tropicalized cluster mutations.
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Non-abelian PBW degenerations

Igor Makhlin

Originally, PBW degenerations of highest weight representations of semisimple Lie
algebras were defined as associated graded spaces for filtrations given by standard
PBW degree. These spaces are acted upon by the associated graded algebra of
U(n−) (which in this case is just a polynomial algebra).

Here we are evidently dealing with a filtration by the ordered group Z. Other
filtrations by ordered groups were considered in, for instance, [1] and [2], however,
in all previous cases the ordered group in consideration was abelian. The first idea
we wish to express is that one may, in fact, consider filtrations by arbitrary totally
ordered semigroups, not necessarily abelian, and still obtain associated graded
representations acted upon by the associated graded algebra. All one needs to do
is to choose a map from the set of negative roots to a totally ordered semigroup.

Now it must be said that in this generality the theory is, apparently, not very
rich, since it is unclear how to define one of the main ingredients: the degenerate
flag variety. In the cases considered previously the associated graded algebra was
always itself a universal enveloping algebra and one could define the variety as an
orbit closure for the corresponding Lie group.

In general, the associated graded algebra is not a universal enveloping algebra.
Nevertheless, in certain situations the degenerate variety can still be defined and
this does produce degenerations which could not be obtained from abelian filtra-
tions. We focus on a particular well-known example in type A: the toric variety
associated with the Gelfand-Tsetlin polytope.
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We describe an alternative approach to the definition which does not rely on a
Lie group action. This is done by noting that if we have a monoidal structure
on degenerate representations and maps grLλ+µ → grLλ ⊗ grLλ (where grLλ is
the degeneration of the irreducible representation with highest weight λ), then the
sum

⊕
λ(grLλ)

∗ turns into a commutative ring. If this ring is finitely generated,
then we may define the degenerate flag variety as its “multigraded Proj”. (This is
equivalent to the original definition in the known cases.)

Now we are left to provide a specific ordered semigroup and a filtration thereon
which meet the above requirements and produce the Gelfand-Tsetlin toric degen-
eration as a result. To do so one may, in fact, take the free monoid in generators
corresponding to the negative roots together with a rather natural graded lexico-
graphic order on this monoid.

A detailed description of this construction can be found in the addendum of [3].
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Flag varieties, Valuations and Standard Monomial Theory

Peter Littelmann

(joint work with Rocco Chiriv̀ı, Xin Fang)

The theory of standard monomials on flag varieties is closely related to semi-toric
degenerations. The starting point of this project is the conviction that the theory
of valuations and Newton-Okounkov bodies provides a new and more algebraic-
geometric approach towards the construction of a standard monomial theory, com-
pared to the construction in [4]. Another aim is to get an algebraic-geometric
version of the LS-algebras introduced in [1]. This is a report on work in progress.

1. The setting

Let X ⊂ P(V ) be an embedded projective variety with homogeneous coordinate
ring R =

⊕
i≥0 Ri = K[X ]. We assume throughout the following that K is an

algebraically closed field. In addition we assume that we have

• a finite partially ordered set A. The partial order is graded, and A has a
unique minimal element pmin and a unique maximal element pmax;
• {Yp}p∈A is a family of projective subvarieties of X , such that Ypmin

= pt,
and p covers q if and only if Yq ⊂ Yp of codimension one;
• {fp}p∈A is a family of homogeneous functions (on V ) such that

– fp|Yp
6≡ 0, and Yp = {x ∈ X | fq(x) = 0 ∀q 6≤ p} (set theoretically)

https://arxiv.org/abs/1809.02258
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– let Hp be the hypersurface {[v] ∈ P(V ) | fp(v) = 0}, then:

Hp ∩ Yp =
⋃

q covered by p

Yq (set theoretically).

For simplicity we assume that the Yp are projectively normal. In the proofs this
condition can often be replaced by other properties like smooth in codimension 1,
or the existence of open affine patches.

Example 1. Let X = G/B ⊂ P(V (λ)) be the (generalized) flag variety, where G
is a semisimple algebraic group and λ is a regular dominant weight. The partially
ordered set is the Weyl group W , endowed with the Bruhat order. The family of
subvarieties is given by the Schubert varieties X(τ), τ ∈ W , and the functions fp
are given by extremal weight vectors {pτ}τ∈W ⊂ V (λ)∗ = R1.

Let GA be the Hasse graph of A. We put weights on the edges as follows: we
write p →b q if p covers q and fp|Yp

vanishes with multiplicity b on Yq. In case
X = G/B ⊆ P(V (λ)), the weights are fixed by the Pieri-Chevalley formula.

2. Valuations and a quasi-valuation

Let C be a maximal chain in A. The associated sequence of subvarieties (of codi-
mension one) X = Ypr

⊃ · · · ⊃ Yp0
= pt, pi ∈ C, induces a Zr+1-valued valuation.

Using ideas of Rees [6], we add to this valuation asymptotic considerations and
attach to C a new full rank valuation

VC : R→ Qr+1.

Note that r + 1 = dim X̂ is the dimension of the affine cone X̂ over X . Even in
the case X = G/B, it is in general not known whether the associated semigroup
SC = VC(R) ⊂ Qr+1 is finitely generated. The modification introduced in the
construction allows us to replace the valuations by a non-negative quasi-valuation:
we fix on Qr+1 the lexicographic order, and for a given function h we choose a
maximal chain such that VC(h) = min{VC′(h) | C′ maximal chain}. We replace
then Qr+1 by Q|A| with basis {ep}p∈A and set:

V : R→ Q
|A|
≥0 , h 7→

∑

pi∈C

(VC(h))iepi

3. Results

Theorem 1. i) The quasi-valuation V induces a filtration on R such that the
associated graded algebra grVR is finitely generated. The graded components are
at most one-dimensional.

ii) The irreducible components of the associated projective variety X0 are in
bijection with maximal chains in the partially ordered set A. There exists a flat
stepwise degeneration of X into the semitoric variety X0.

iii) The irreducible component of X0 associated to a maximal chain C is the
toric variety associated to the finitely generated semigroup:

ΓC := {V(h) | h ∈ R homogeneous ,VC(h) is minimal} ⊂ Qr+1
≥0
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4. Flag variety

In case X = G/B ⊆ P(V (λ)), the semigroup can be made explicit. Let b1, . . . , br
be the weights on the edges in the maximal chain C. Then

Theorem 2.

ΓC =























v =







ar

.

.

.

a0






∈ Qr+1

≥0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

brar ∈ Z
br−1(ar + ar−1) ∈ Z

. . .

b1(ar + ar−1 + . . .+ a1) ∈ Z
a0 + a1 + . . .+ ar ∈ N























The construction via valuations yields in a natural way an algebraic-geometric
interpretation of the path model [5]. Let C = (τr , . . . , τ0):

Proposition 1. i) The map which associates to (ar, . . . , a0) ∈ ΓC the pair
(τr, . . . , τ0; ar, ar−1 + ar, . . . , a0 + . . .+ ar) induces a bijection between the
elements of ΓC and the LS-paths of shape nλ, n ∈ N, having support in C.

ii) The Newton-Okounkov body ∆V(R) ⊂ Q|A| associated to V is the (gener-
alized) polytope with integral structure described in [2].

Conjecture 3. We conjecture that the description of the semigroup ΓC (which
only uses data which can be read off the weighted Hasse graph) is valid in general
if the functions {fp}p∈A satisfy the following additional condition: let p cover q
and let b be the weight on the edge joining the two. Then there exists a rational

function η ∈ K(Ŷp) such that ηb =
fp
fq

in K(Ŷp).
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