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Introduction by the Organizers

In the mathematical physics, a wave or diffusion process inside an object occupying
e.g. a domain in a Euclidian space is described by a suitable differential expression,
while the interaction with the surrounding correspond to a boundary condition. In
many cases, the problem under study is expected to be governed by a self-adjoint
operator (e.g. if the problem is linear and shows some energy conservation), in
this case the choice of a boundary condition corresponds to the choice of a self-
adjoint extension of some minimal operator: as a prominent example one can
mention Laplace operators with Dirichlet/Neumann boundary conditions, which
coincide on functions vanishing near the boundary. In some situations no boundary
condition needs to be specified (or, more precisely, the functions in the domain
of the operator obey automatically some hidden boundary condition), in this case
the operator is essentially self-adjoint. For example, for the Laplace operator on
a geodesically complete manifold, no specific boundary condition at infinity is
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required, and many results of this type are available for Schödinger operators as
well.

Recently, many new models were brought to the attention. The analysis of
differential operators on sub-Remannian manifolds provides a great sources of
challenges: so far, only a limited number of situations are understood and only a
limited class of operator machineries was tested in this setting. In this context, the
question of essential self-adjointness may have a special meaning as it is related to
penetrability of singular sets and is strongly related to the underlying geometry,
which can be understood via techniques of control theory. One may also mention
some classes of transmission problems with a degeneration along a submanifold;
such operators show a non-trivial link between the geometry of the interface and
the regularity of the functions in the domain, which results in a number of unusual
spectral properties.

The study of quantum graphs, i.e. of differential operators on systems of cou-
pled segments, represents an extremely active domain of mathematical physics and
spectral theory during the last decades. The well-established theory mostly applies
if the underlying geometry has a kind of limited complexity (e.g. if suitable bounds
on the length of the intervals and the degree of the nodes are available). The most
general case raises a number of new questions concerning an accurate description
of boundary value problems in this setting. In this connection let us mention
a close relationship with the corresponding problems for (combinatorial) graph
Laplacians, where the crucial role is played by various notions of graph bound-
aries (graph ends, Royden boundary, Martin and Poisson boundaries etc.). An
additional motivating aspect in this direction is provided by recent papers appear-
ing in the numerical analysis: if one rephrases it in the adapted language, one deals
with self-adjoint realisations of Laplacians on a class of fractal networks arising
from concrete modeling problems, and the construction of functional (Sobolev-
type) spaces on the boundary appears to be closely related to some truncation
issues for the numerical treatment. It is curious to mention that the study of ran-
dom walks on trees naturally leads to a similar sort of problems. Moreover, these
problems are tightly connected with the study of (ordinary) differential operators
whose coefficients are self-similar measures.

The idea of the meeting arose during recent contacts amongst the organizers
and the proposed participants on new classes of boundary value problems for dif-
ferential operators in some non-classical geometric settings, such as fractal graphs
and sub-Remannian manifolds or non-elliptic transmission problems in quantum
mechanics, and which deal with a number of common topics from the operator
theory. The objectives of the meeting are, on one hand, to provide the partici-
pants with a consolidated picture of the operator tools allowing to deal with large
classes of boundary value problems and, on the other hand, to motivate further
progress on the operator-theoretical side by providing an introduction into new
potential applications.
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Abstracts

An introduction to Sub-Laplacians and their self-adjointness
properties

Luca Rizzi

(joint work with V. Franceschi, D. Prandi, M. Seri)

1. Introduction to sub-Laplacians

On Rn consider the second order differential operator

(1) L =
n∑

i,j=1

aij(x)
∂2

∂xi∂xj
+

n∑

i=1

bi(x)
∂

∂xi
+ c(x),

where a, b, c are smooth and real functions. We say that L is hypoelliptic if, locally,
for all distributions u such that Lu ∈ C∞ it follows that u ∈ C∞. A first necessary
condition for hypoellipticity is the following.

Theorem 1 (Hörmander). If L is hypoelliptic its principal symbol is semi-definite
at any point, i.e. for all x ∈ Rn it holds

∑n
i,j=1 aij(x)ξiξj ≥ 0 or ≤ 0 for all ξ ∈ Rn.

This results leads us to consider a large class of operators that satisfy the above
necessary condition, that is operators that can be written as a “sum of squares”:

(2) L =

N∑

i=1

X2
i +X0 + c, (Hörmander-type operator).

Here, N is an integer possibly greater than n, and X0, X1, . . . , XN are smooth
vector fields on Rn, that is Xµ =

∑n
j=1 αµj∂j . A sufficient condition for the

hypoellipticity of Hörmander-type operators is given by the next result.

Theorem 2 (Hörmander). Assume that the smallest Lie algebra of vector fields
generated by X0, X1, . . . , XN has maximal dimension at each point x ∈ Rn, that is

Lie(X0, X1, . . . , XN )(x) = Rn, ∀x ∈ Rn.

Then the operator L given in (2) is hypoelliptic.

Theorem 2 is a sufficient condition for hypoellipticity, but not necessary, and it
is false for operators with complex coefficients, see for example [3]. Hypoellipticity
is a local property, hence the above results are immediately extended to second
order differential operators on smooth manifolds.
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2. Geometry of Hörmander-type operators

Let L be a Hörmander-type operator as in (2) on a smooth manifold M, and
consider the family of smooth vector fields {X1, . . . , XN}. Notice that the drift
X0 is not included in the family, and that different families of vector fields can
define the same operator. We define the set of admissible directions at each point

(3) D(x) = span{X1(x), . . . , XN (x)}, ∀x ∈ M,

and a scalar product gx defined along admissible directions, induced by the norm

(4) ‖v‖2g = min

{
N∑

i=1

u2i | v =

N∑

i=1

uiXi(x)

}
, ∀v ∈ D(x), ∀x ∈ M.

Admissible trajectories are then absolutely continuous curves γ : [0, 1] → M for
which there exist u1, . . . , uN ∈ L∞([0, 1],R) such that

(5) γ̇(t) =

N∑

i=1

ui(t)Xi(γ(t)), for a.e. t ∈ [0, 1].

Finally, we can define a distance via the usual variational formulation

(6) d(x, y) = inf

{∫ 1

0

‖γ̇(t)‖g dt | γ is admissible between x and y

}
.

A priori there might be no admissible curve between two given points (e.g. when
D is an integrable distribution). However, if X1, . . . , XN satisfy the Hörmander
condition, it turns out that d is a true distance.

Theorem 3 (Chow-Rashevskii). If the family X1, . . . , XN satisfies the Hörmander
condition, then d : M ×M → R is finite and the topology induced by d coincides
with the topology of M. In particular d is continuous.

In other words, a Hörmander-type hypoelliptic operator L =
∑N

i=1X
2
i + lower

order terms such that the elements X1, . . . , XN satisfy the Hörmander condition
induces a metric structure d on the ambient space M, called sub-Riemannian (or
Carnot-Carathéodory) metric. X0 and c in (2) play no role in the construction of
all above objects, which depend only on the principal symbol of L.

Example 1 (Riemannian). Any global set of vector fields X1, . . . , XN on M with
maximal rank at each point (equal to n = dimM) satisfies the condition of Theo-

rem 2 and hence L =
∑N

i=1X
2
i is trivially hypoelliptic (and also elliptic). In this

case d is a Riemannian metric structure. The metric g can be obtained intrinsically
by inversion of the principal symbol of L.

Example 2 (Heisenberg). Consider, on M = R3, the operator L = X2
1 +X

2
2 , with

X1 =
∂

∂x
− 1

2
y
∂

∂z
, X2 =

∂

∂y
+

1

2
x
∂

∂z
.

The rank of the family X1, X2 is constant and equal to 2. The corresponding
metric structure on R3 is called the Heisenberg group.

For more details on sub-Riemannian structures we refer to [1].
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3. Self-adjointness properties of L

Consider a Hörmander-type operator L as in (2), and the corresponding sub-
Riemannian structure (M, d) as defined in Section 2. Fix a smooth measure µ on
M. The requirement that L with domain C∞

c (M) is symmetric on L2(M, µ), fixes
the first-order term X0. In particular L must have the following form:

(7) L =

N∑

i=1

X2
i + divµ(Xi)Xi + c, Dom(L) = C∞

c (M),

where divµ(·) is the divergence operator defined with respect to the measure µ.
The following result is well-known, cf. for example [8].

Theorem 4. If (M, d) is complete then L is essentially self-adjoint on L2(M, µ).

The completeness of (M, d) is by no means a necessary condition.

Example 3 (Grushin). Consider on M = R2 the operator L = X2
1 + X2

2 + X0,
with X0 to be fixed later and

X1 =
∂

∂x
, X2 = x

∂

∂z
.

The rank of the family X1, X2 is equal to 2 everywhere, with the exception of the
singular set S = {x = 0}, where the rank is equal to 1. The principal symbol of L
defines (cf. Section 2) a metric structure, called the Grushin metric. This metric
is Riemannian on the set R = R2 \ S, and is given by g = dx2 + 1

x2 dz
2. The

corresponding Riemannian measure is µg = 1
|x|dxdz. We restrict L to the regular

region R, with domain C∞
c (R). The symmetry requirement fixes X0, so that

(8) L =
∂2

∂x2
+ x2

∂2

∂z2
− 1

x

∂

∂x
, Dom(L) = C∞

c (R),

which is just the Laplace-Beltrami operator ∆g of g. Notice that (R, d) is
not complete! However, the operator (8) is essentially self-adjoint on
L2(R, µ). This fact can be proved by performing a Fourier decomposition w.r.t.
z, and then showing that each component is essentially self-adjoint, cf. [2].

3.1. Almost-Riemannian structures. The above is an example of a general
class of sub-Riemannian structures, called almost-Riemannian, that we now in-
troduce. Assume that {X1, . . . , XN} are global smooth vector fields on an n-
dimensional manifold M, satisfying the Hörmander condition. Let then

• R be the set where dim span{X1(x), . . . , XN(x)} = n (regular set);
• S be the set where dim span{X1(x), . . . , XN(x)} < n (singular set).

In particular, M = R⊔S. According to the construction in Section 2, these vector
fields define a metric d on M, which is Riemannian on R, i.e. locally given by a
smooth Riemannian metric g. We also assume that (M, d) is complete. In this way,
any connected component of R adjacent to S is a non-complete Riemannian man-
ifold whose metric boundary is contained in the singular set S. We then consider
the Laplace-Beltrami operator ∆g on L2(R, µg), with domain C∞

c (R). Motivated
by the example of the Grushin metric, the main question is the following:
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Question. Is the Laplace-Beltrami operator ∆g on the regular region R, with
domain C∞

c (R), essentially self-adjoint on L2(R, µg)?

An affirmative answer to this question means that classical particles, following
the geodesic dynamics, can cross S and move between different connected com-
ponents of R while quantum particles, obeying the Schrödinger equation, remain
confined to different components of R, by Stone’s theorem. The standing conjec-
ture, due to Boscain and Laurent, is that the above question always has affirmative
answer. The state-of-the is as follows:

2009. Boscain and Laurent, in [2], stated and proved the conjecture in the case
n = 2, and assuming that X1, . . . , XN verify the two-step Hörmander
condition (i.e. Lie brackets of length not greater than 2 are enough to
verify the Hörmander condition). This fact in particular implies that S
is a smooth hypersurface. The proof relies on the machinery of normal
forms, fully developed only for almost-Riemannian surfaces.

2016. Prandi, Rizzi and Seri, in [7], proved the conjecture for general n, assum-
ing that S is a smooth hypersurface with no tangency points (i.e. S is
transverse to the family X1, . . . , XN ), and assuming that close to S, and
letting δ the distance from S, it holds µg ∼ δ−a × smooth measure, for
some a necessarily ≥ 1. The proof is based on the method of effective
potential developed in [7] and Agmon-type estimates inspired by [6].

2017. Franceschi, Prandi and Rizzi, in [5], extended the above result under anal-
ogous assumptions to the case of rank-varying sub-Riemannian structures.

The general case is far from being understood. There are in particular two prob-
lems, of different nature, which we are not able to treat using the available meth-
ods. We illustrate them by means of two examples.

3.2. Problem 1. Consider the almost-Riemannian structure on R2 defined by

(9) X1 =
∂

∂x
, X2 = x(x2ℓ + z2)

∂

∂z
, ℓ ∈ N.

The singular region is S = {x = 0} and R is its complement. The distance from
S is δ = |x|, which is smooth on R. The Riemannian measure there is given by

µg =
1

|x|(x2ℓ + z2)
dxdz.

It is not true that µg ∼ δ−a × smooth measure, for some constant a, so that we
cannot apply the techniques from [7]. However, the case ℓ = 1 is special and we
can still prove the essential self-adjointness of the Laplace-Beltrami on the regular
region, cf. [7, Example 7.7]. We expect this fact to be true for all ℓ ≥ 1, but
we are not able to prove it. A natural conjecture is that the Laplace-Beltrami
operator on the regular region of a real-analytic almost-Riemannian structure on
a 2-dimensional manifold with no tangency points is essentially self-adjoint.
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3.3. Problem 2. When S has tangency points the distance from S is no longer
smooth, and the techniques from [7, 5] do not work. This is perhaps the hardest
problem and the proof of the essential self-adjointness of ∆g in this case would re-
quire the development of new techniques. The simplest example of such a situation
is the almost-Riemannian structure on R2 defined by

(10) X1 =
∂

∂x
, X2 = (z − x2)

∂

∂z
.

The singular region is the parabola S = {z−x2 = 0}, and the origin is a tangency
point. Letting φ(x, z) := z − x2, the associated Laplace-Beltrami operator reads:

(11) ∆g = ∂2x + φ(x, z)2∂2z + φ(x, z)∂z +
∂xφ(x, z)

φ(x, z)
∂x, Dom(∆g) = C∞

c (R),

We stress that the natural Riemannian measure on the regular region is µg =
1

|z−x2|dxdz and therefore the above operator is symmetric on L2(R, µg). More

details on this example can be found in [4].
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Transparent boundary conditions for wave propagation in fractal trees

Maryna Kachanovska

(joint work with P. Joly and A. Semin)

This work is devoted to a study of the weighted wave equation on a 1D fractal tree
(which models the wave propagation in human lungs). Because the problem is
defined on a structurally infinite domain, we aim at truncating the computations
to the sub-tree consisting of a finite number of generations, by imposing trans-
parent boundary conditions at the truncated boundary of the tree. Construction
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and analysis of such transparent boundary conditions leads to exciting theoretical
questions and is the main goal of the present work.

Geometric setting. We consider a p-adic infinite tree T , defined as follows.
Each edge Σ has p children edges. The set of all edges of the tree will be denoted
by E(T ). We will say that the root edge belongs to the first generation; if an edge
belongs to a n-th generation, its children belong to the (n+ 1)-st generation. We
will denote by T m a sub-tree of T consisting of all the edges ofm first generations.

With such a tree we associate two p−uplets, α = (αi)
p
i=1 and µ = (µi)

p
i=1. If

the length of an edge equals ℓ, the lengths of its p children are correspondingly
α1ℓ, α2ℓ, . . . , αpℓ. We will assume that αi < 1 for all i. To each edge we assign a
positive weight µ > 0; again, if the weight of an edge equals ν, the weights of its p
children are correspondingly µ1ν, µ2ν, . . . , µpν. This defines a piecewise-constant
weight function µ(s) on the tree T . Let µΣ be the value of µ(s) on the edge Σ.

Problem setting. In order to define the problem in question, let us introduce a
proper Sobolev space framework. First of all, provided f : T → R, let

∫

T

fµ :=
∑

Σ∈E(T )

∫

Σ

f(s)µΣds.

Let C(T ) be a space of continuous functions on T , and

C0(T ) := {v ∈ C(T ) : v = 0 on T \ T m, for some m ∈ N}.

The following spaces generalize weighted Sobolev spaces on an interval:

L2
µ(T ) := {v : ‖v‖L2

µ(T ) <∞}, ‖v‖2L2
µ(T ) = ‖v‖2 =

∫

T

µ|v|2,

H1
µ(T ) := {v ∈ C(T ) ∩ L2

µ(T ) : ‖∂sv‖ <∞}, ‖v‖2H1
µ(T ) = ‖v‖2 + ‖∂sv‖2,

H1
µ,0(T ) := C0(T ) ∩ H1

µ(T )
‖.‖H1

µ(T )
.

Denoting by M∗ the root vertex of the tree T , let us introduce

Vn(T ) = {v ∈ H1
µ(T ) : v(M∗) = 0}, Vd(T ) = {v ∈ H1

µ,0(T ) : v(M∗) = 0}.

With the above, we consider the following two problems.
Neumann problem. Provided f ∈ L1([0, T ]; L2

µ(T m)) (f ≡ 0 on T \ T m), find

un ∈ C([0, T ];Vn) ∩ C1([0, T ]; L2
µ(T )), s.t. un(., 0) = ∂tun(., 0) = 0, and

∫

T

µ
d2

dt2
un v +

∫

T

µ∂sun∂sv =

∫

T

µfv, ∀v ∈ Vn.(N)
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Dirichlet problem. Provided f ∈ L1([0, T ]; L2
µ(T m)) (f ≡ 0 on T \ T m), find

ud ∈ C([0, T ];Vd) ∩ C1([0, T ]; L2
µ(T )), s.t. ud(., 0) = ∂tud(., 0) = 0, and

∫

T

µ
d2

dt2
ud v +

∫

T

µ∂sud∂sv =

∫

T

µfv, ∀v ∈ Vd.(D)

Distinction between (D) and (N). First of all, we would like to know whether
the solutions to (N) and (D) differ (in particular whether H1

µ = H1
µ,0). Let

〈
µα
〉
:=

p∑

i=1

µiαi,
〈
µ

α

〉
:=

p∑

i=1

µi

αi

.

Theorem 1. If
〈
µα
〉
≥ 1 or

〈
µ

α

〉
≤ 1, the spaces H1

µ,0(T ) and H1
µ(T ) coincide,

and thus un = ud. Otherwise, H1
µ,0(T ) ( H1

µ(T ), and un 6= ud.

The proof relies on characterizing H1
µ,0(T ) as the kernel of a certain trace operator

on T , cf. [1].

Truncating the computational domain. Truncation of the computational
domain to T m is done by imposing transparent boundary conditions at each end
point M (omitting the root M∗) of the truncated tree T m in the following form:

∂su(t,M) = −
p∑

i=1

µiΛi(∂t)u(t,M).(1)

The operators Λi(∂t) are defined via Λi(∂t) = ℓ−1
i Λ(ℓi∂t), where ℓi, i = 1, . . . , p,

are the lengths of the p edges whose parent vertex is M . The operator Λ(∂t) is a
DtN operator associated to the root edge of the tree. It is a convolution operator
with a causal kernel, whose symbol (i.e. Fourier-Laplace transform of the kernel)
will be denoted by Λ(ω).

Characterization of the operator Λ(∂t). We will need the following result [1].

Theorem 2. The embedding of H1
µ(T ) into L2

µ(T ) is compact.

This immediately leads to the following result. First of all, the bilinear form

aa : Va × Va → R, aa(u, v) =

∫

T

µ∂su ∂sv, a ∈ {n, d},

defines (in a classical way) an operator Aa : D(Aa) → L2
µ(T ), (Aau, v) = aa(u, v).

By Theorem 2, the spectrum of this operator is a pure point spectrum, with
eigenvalues of finite multiplicity and the only accumulation point ∞. Let

Aaφa,n = ω2
a,nφa,n, ‖φa,n‖L2

µ(T ) = 1, 0 < ω2
a,0 ≤ ω2

a,1 ≤ . . .→ ∞.(2)

The fact that the eigenvalues do not vanish was shown in [1, Remark 1.20]. With
the above, we obtain the following characterization of the symbol Λ(ω) = Λa(ω)
for the Dirichlet (Neumann) problems (a ∈ {n, d}).
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Theorem 3 ([1]). The symbol of the reference DtN Λa, a ∈ {n, d} satisfies

Λa(ω) = Λa(0)−
+∞∑

n=0

aa,nω
2

(ωa,n)2 − ω2
, aa,n = ω−2

a,n (∂sφa,n(M
∗))2 .(3)

The above series converges uniformly on compact subsets of C that do not contain
the poles of Λa. Moreover, Λa(0) ≥ 0.

Approximation of the operator Λ(∂t). Theorem 3 provides a convenient way
to approximate Λ(∂t) by truncating the respective series (we omit the index a):

ΛN (ω) = Λ(0)−
N−1∑

n=0

anω
2

ω2
n − ω2

.

A realization of ΛN(∂t) in the time domain is rather simple and can be found in
[2]. The respective approximated transparent boundary conditions (1) rewrite

∂su(t,M) = −
p∑

i=1

µiΛ
N
i (∂t)u(t,M), ΛN

i (∂t) = ℓ−1
i ΛN (ℓi∂t).(4)

The error induced by (4) is quantified below and depends on the following quantity:

rN =
∞∑

n=N

an
ω2
n

.

Theorem 4 ([2]). Let u solve the Dirichlet (Neumann) problem (D) (resp. (N)),
and let uN solve the respective problem on the truncated tree T m, with the approx-
imated boundary conditions (4). Then, with c > 0,

‖∂s(u− uN )(t)‖T m + ‖∂t(u− uN)(t)‖T m ≤ c rN t‖∂su‖W 4,1(0,t;L2
µ(T )).

Precise bounds on rN depend on the (Weyl) asymptotic estimates on the eigen-
values (2) and estimates on the derivatives of the eigenfunctions ∂sφn(M

∗). This
is summarized below.

Theorem 5 ([2]). If
p∑

i=1

αi < 1, rN = O(N−1).

If
p∑

i=1

αi = 1, rN = O(N−1 logN).

If
p∑

i=1

αi > 1, rN = O(N− 1
ds ), where ds > 1 is a unique number s.t.

p∑
i=1

αds

i = 1.
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Dirichlet forms and boundaries of graphs I and II

Daniel Lenz, Matthias Keller

The study of graphs and their Laplacians has a long history. A systematic approach
of certain features within the context of Dirichlet forms was pursued in recent years
in various works starting with [6]. The point of view of Dirichlet forms gives both
manifolds and graphs an equal footing. Indeed in this context graphs and their
Laplacians present the paradigm of the non-local situation whereas Laplace Bel-
trami operators on manifolds present the paradigm of a local situation. Whereas
earlier investigations of graphs have often focused on the normalized Laplacian,
which is a bounded operator, this setting allows for unbounded operators and these
give rise to a variety of new phenomena, see e.g. the survey articles [7, 5].

A graph on a set X consists of a pair (b, c) with c : X −→ [0,∞) arbitrary and
b : X ×X −→ [0,∞) symmetric, vanishing on the diagonal with

∑

y∈X

b(x, y) <∞

for all x ∈ X . In order to set up a proper theory one needs a measure m on X
giving rise to the Hilbert space ℓ2(X,m). Each graph gives rise to the form

Q(f) :=
1

2

∑

x,y∈X

b(x, y)|f(x)− f(y)|2 +
∑

x∈X

c(x)|f(x)|2

for complex valued f on X . The restriction of Q to suitable subspaces of ℓ2(X,m)
are then the associated Dirichlet forms of the graph. A basic result then asserts
that there is a one-to-one correspondence between so-called regular Dirichlet forms
on ℓ2(X,m) and graphs in our sense above, see e.g. [6].

Dirichlet forms on a graph allow one to set up and study intrinsic geometry of the
graph as given by

• intrinsic metrics [1, 8],
• canonical compactness and uniform transience [2, 10],
• Royden boundary [2, 10].

A multitude of results has been obtained in these directions in the last years. In
the context of the topic of the workshop we highlight in particular the following
results. The first result focuses on the graph as a metric space and the second
result focuses on the graph as a measure space.

Theorem. (Huang/Keller/Masamune/Wojciechowski ’13 [3]) The Laplacian on a
graph is essentially selfadjoint (on the functions with finite support) if the graph
is complete with respect to an intrinsic metric.

Theorem. (Keller/Lenz ’12 [6]) The Laplacian on a graph is essentially selfadjoint
(on the functions with finite support) if all infinite paths have infinite measure.
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Although not mentioned explicitly it is assumed in both theorems that the Lapla-
cian maps the compactly supported functions Cc(X) into ℓ2(X,m) to be a sym-
metric operator on ℓ2(X,m) to begin with.

The two results above make it clear that one should look at incomplete graphs
with finite measure in order to study self-adjoint extensions. Clearly, it is an nearly
impossible task to study all self-adjoint extensions in a general setting. Hence, we
focus on Markov extensions in the following.

Specifically, we look at forms Q which lie between Q(D) and Q(N). Here Q(D)

is the restriction of Q to the form closure of Cc(X) in ℓ2(X,m) and Q(N) is the
restriction to D ∩ ℓ2(X,m) where

D = {f : X → C | Q(f) <∞}
is called the space of functions of finite energy.

We employ Gelfand theory to define a boundary arising from Q. This is done
by considering the commutative C∗-algebra of the uniform closure of bounded
functions of finite energy as the continuous functions on a compact Hausdorff
space R, i.e.,

D ∩ ℓ∞(X)
‖·‖∞ ≃ C(R)

whenever c is summable (otherwise one has to replace C(R) by C0(R)). The space
R is called the Royden compactification and X embeds into R via identifying
elements of X by the corresponding point evaluation, which is a character on the
C∗-algebra. The complement

∂X := R \X
is called the Royden boundary.

Typically the Royden boundary is a rather monstrous object, [11, 12]. How-
ever, there are cases of graphs where the Royden boundary is rather accessible to
analysis. Two large classes of such cases are

• canonically compactifiable graphs, i.e., when D ⊆ ℓ∞(X), [2],
• uniform transient graphs, i.e., when D0 ⊆ C0(X), [8],

where D0 is the closure of Cc(X) with respect to Q and pointwise convergence
and C0(X) is the uniform closure of Cc(X). Indeed, all canonically compactifiable
graphs are uniformly transient. In more special situations one can even show that
the Royden boundary is homeomorphic to a metric boundary with respect to a
certain metric.

When the underlying measure is finite, it can be seen that on these graphs the
Laplacian is not essentially self-adjoint and has not even a unique Markov exten-
sion. It turns out that one can characterize all Markov extensions via Dirichlet
forms on the Royden boundary [9]. To this end one equips the Royden boundary
with a harmonic measure µ = µx for some x ∈ X which is characterized via the
equality for all bounded harmonic functions h in D

h(x) =

∫

∂X

(Tr h)dµ
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where Trf is the restriction to ∂X of the continuous extension of f to R. We can
extend the trace operator to an operator Tr : D → L2(∂X, µ). Furthermore, the
trace TrQ of a Dirichlet form Q on L2(∂X, µ) is defined by

TrQ(f) = Q(Hf)

where Hf is the harmonic extension of a function on ∂X (and the domain is given
by the traces of functions in the extended Dirichlet space). The trace of Q(N) is
called the Dirichlet-to-Neumann form and it is denoted by q(DN).

In [9] it is shown that for any Q between Q(D) and Q(N) there is a Dirichlet
form (in the wide sense) q on L2(∂X, µ) such that

Q(f) = Q(D)(f0) + q(Trf) = Q(N)(f) + (q − q(DN))(Trf),

where f0 is the projection of f to D(Q(D)) and q = TrQ. Furthermore, the form
q − q(DN) is Markovian, i.e., compatible with normal contractions. Indeed, the
following theorem holds.

Theorem. (Keller/Lenz/Schmidt/Schwarz ’19 [9]) Assume the graph is uniformly
transient with finite measure. Then there is a bijection between Dirichlet forms
Q such that Q(D) ≥ Q ≥ Q(N) and the Dirichlet forms (in the wide sense) q on
L2(∂X, µ) such that q − q(DN) is Markovian.
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An introduction to Martin boundary theory

Wolfgang Woess

Upon invitation by the workshop organisers, I gave a classroom-style introduction
to the Martin boundary theory for infinite networks (denumerable Markov chains).
This goes back to the classical work of Doob [1] and Hunt [2]. See my textbook
[3].
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Brownian motion at a family of geometric singularities

Robert Neel

(joint work with U. Boscain)

Let α ∈ R. On R× S1 with coordinates (x, θ), consider the pair of vector fields

X =

(
1
0

)
and Y =

(
0

|x|α
)
.

Letting these be an orthonormal frame onM =
(
R\{0}

)
×S1 gives the Riemannian

metric
g = dx2 + |x|−2αdθ2,

which degenerates on the singularity Z = {x = 0}. We let M− = {x < 0} and
M+ = {x > 0} be the two Riemannian components. We also let ω denote the
Riemannian volume measure on M =M+ ∩M−.

There is a (possibly degenerate) distance associated to this geometry that ex-
tends across Z. Note the case α = 1 gives the (fairly well-studied) Grushin cylinder
(the natural quotient of the Grushin plane). We define

Mcylinder = R× S1, Mcone =Mcylinder/ ∼,
where (x1, θ1) ∼ (x2, θ2) if and only if x1 = x2 = 0. From Boscain-Prandi [2],
when α ≥ 0 (resp. α < 0) this distance makesMcylinder (resp.Mcone) into a metric
space in a way that induces onMcylinder (resp.Mcone) its original topology; that is,
Mcylinder (resp. Mcone) gives the metric compactification of M . We denote these
metric spaces by Mα.

Except for the standard cylinder (α = 0), the Riemannian structure on M is
singular at Z. Thus the heat and Schroedinger equations, as well as Brownian
motion, are a priori not well defined at Z, and we can consider how they might
extend. Boscain-Prandi [2], via Fourier transform methods, showed that there is a
unique Markovian extension of ∆|C∞

c (M) in L
2(M,ω) if and only if α ∈ (−∞,−1]∪
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[1,∞), and it does not permit any heat flow between M+and M−. When α ∈
(−1, 1), there are Markovian self-adjoint extensions of ∆ that permit heat to flow
between M+ and M−, and in particular, there is a self-adjoint extension called
the bridging extension realizing the “maximal communication.”

Here (see [1] for the details), we take the alternative, and complementary, route
of extending Brownian motion on M to a diffusion on Mα. Note that, under
Brownian motion,

dxt = dW 1
t − α

2x
dt and dθt = |x|α dW 2

t ,

until the first hitting time of Z. So xt is a 1−α dimensional Bessel process. Thus,

• the process doesn’t explode to infinity (in finite time) for any value of α,
• for α ≤ −1, 0 is an entrance-only boundary (in the standard Feller classi-
fication for one-dimensional diffusions),

• for α ∈ (−1, 1), 0 is a regular boundary, and thus one needs to specify
boundary conditions,

• for α ≥ 1, 0 is an exit-only boundary.

This gives a probabilistically natural explanation of the dependence of the unique-
ness of Markovian extensions on α. Moreover, the only interesting cases to consider
are when α ∈ (−1, 1).

When α ∈ (−1, 0), Z is a single point. Thus for any diffusion, xt is independent
of θt, which allows us to determine all diffusions extending Brownian motion onM
using mostly classical methods. In particular, we first determine the possible dif-
fusions for xt that extend Brownian motion in terms of the classical 1-dimensional
theory of Feller and Ito-McKean (see, for example, [4] for a readable account, and
the references therein for some of the history). Given the possibilities for xt, we
can then find the θt diffusions they support. Moreover, of these extensions, there
is a natural candidate for the “best” one (which is also the unique symmetric one-
point extension of Brownian motion on M in the sense of Chen-Fukushima [3]),
which we now describe.

Theorem 1 ([1]). Let Mα and ω be as above, for −1 < α < 0. Then the unique
(conservative) diffusion on Mα that extends Brownian motion on M , spends time
0 at Z, and is ω-symmetric is given as follows. Let (x2t , θt) be the diffusion on
[0,∞) × S1 that undergoes instantaneous normal reflection at the boundary and
letting xt be constructed from x2t by giving each excursion a positive or negative
sign with probability 1/2. Then let θt take initial value uniformly on S1 every time
the process enters M from Z (each time independent of the previous, of course).
This diffusion is also the unique extension of Brownian motion spending time 0 at
Z that is invariant under the isometry group of Mα.

By conformal methods, we can show that the Martin boundary of M “at Z” is
two copies of S1, which is much larger than Z. Indeed, several of the self-adjoint
extensions of ∆ considered in [2] (in particular, the Neumann extension and the
bridging extension) give diffusions that are carried by the Martin compactification,
not by Mα.



2930 Oberwolfach Report 47/2019

Next, we discuss the case α ∈ [0, 1). Now Z = S1, and an exact classification
of diffusions would be messy, if possible. However, we can again determine a
natural candidate for the “best” diffusion (in particular, in this case, the bridging
extension is carried by Mα).

Theorem 2 ([1]). For 0 ≤ α < 1, the only (conservative) diffusion on Mα extend-
ing Brownian on M that spends 0 time at Z and is invariant under the isometry
group of Mα is given by letting (x2t , θt) be the diffusion on [0,∞)× S1 that under-
goes instantaneous normal reflection at the boundary and letting xt be constructed
from x2t by giving each excursion a positive or negative sign with probability 1/2.
Moreover, this is the diffusion associated to the bridging extension.
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Density and trace results in generalized fractal networks

Adrien Semin

(joint work with S. Nicaise)

We presented some part of the work we published in [1] concerning the density
and trace results in generalized fractal networks and that are a generalization of
some results published in [2]. The first aim of this talk was to give different and
necessary sufficient conditions that guarantee the density of the set of compactly
supported functions into the Sobolev space of order one in infinite p-adic weighted
trees. The second goal is to define properly a trace operator in this Sobolev space
if it makes sense.

One question that remained open in [1] is the characterization of the closure
space of the compactly supported functions for the weighted norm on the derivative
by the trace at infinity. Although the compactly supported functions have a null
trace at infinity, it is not obvious that a limit of sequence of compactly supported
functions will have a null trace at infinity as well. Discussion in this workshop with
Prof. Dr. Daniel Lenz and Prof. Dr. Matthias Keller lended to the assumption
that a limit of sequence of compactly supported functions will have a null trace at
infinity on the Royden boundary [3] and conversely.
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Essential self-adjointness of sub-Laplacians

Valentina Franceschi, Dario Prandi

(joint work with R. Adami, U. Boscain, L. Rizzi)

In this talk we present some results about the essential self-adjointness of sub-
Laplacians on non-complete sub-Riemannian manifolds. We refer to Luca Rizzi’s
talk for the introduction to sub-Laplacians and sub-Riemannian manifolds, and
we will follow his notation in the present abstract.

1. sub-Riemannian geometry

Let M be a smooth manifold of dimension n ∈ N. We recall that, given a family
of smooth vector fields {X1, . . . , XN} ⊂ TM satisfying Hörmander condition, and
a smooth measure ω on M , the sub-Laplacian is the operator

∆ω =

N∑

i=1

X2
i + divω(Xi)Xi + c, Dom(∆ω) = C∞

c (M).

Essential self-adjointness of ∆ω holds if (M,d) is complete as a metric space,
where d is the associated sub-Riemannian distance (see [13] and Theorem 4 in
Luca Rizzi’s talk). In this seminar, we address the case where (1) either the
measure (chosen to be intrinsic) is non-smooth (see Section 2), or (2) the metric
structure is non-complete (see Section 3).

1.1. Examples of sub-Riemannian manifolds.

• The Heisenberg Group H1 is R3 endowed with the non-commutative group
law defined for (x, y, z), (x′, y′, z′) ∈ H1 as

(1) (x, y, z) ∗ (x′, y′, z′) =
(
x+ x′, y + y′, z + z′ +

1

2
(xy′ − x′y)

)
.

This is a sub-Riemannian structure on R3 when the distribution of ad-
missible directions D is given by the Lie algebra of left-invariant vector
fields

D(x, y, z) = span
{
X1 := ∂x − y

2
∂z , X2 := ∂y +

y

2
∂z

}
, (x, y, z) ∈ H1.

In this case, the Hörmander condition is satisfied at step 2: [X1, X2] ≡ ∂z .
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• The Grushin plane is R2 endowed with the following distribution of ad-
missible directions

D(x, y) = span{X1 := ∂x, X2 := x∂y}, (x, y) ∈ R2.

In this case, the Hörmander condition is satisfied at different steps, de-
pending on the point (x, y) ∈ R2, namely:
{
dimD(x, y) = 2 if x 6= 0,

dimD(x, y) = 1 if x = 0 and in this case [X1, X2](x, y) = ∂z,

so that Hörmander condition is globally satisfied at step 2, but a difference
in dimension is recorded in the distribution, depending on the position.

• The Martinet distribution in R3 is

D(x, y, z) = span

{
X1 := ∂x, X2 := ∂y +

x2

2
∂z

}
.

Observe that dimD ≡ 2, but a difference in dimension is recorded by
computing the first order commutator:

[X1, X2] = x∂z ,

so that

dim
(
D(x, y, z) + span{X1(x, y, z), X2(x, y, z)}

)
=

{
3 if x 6= 0,

2 if x = 0.

In conclusion, the Martinet distribution defines a sub-Riemannian struc-
ture on R3, since Hörmander condition is globally satisfied at step 3, but
the step changes depending on the position.

The Grushin plane and the Martinet distribution constitute exemples of non-
equiregular sub-Riemannian manifolds, see [3] for a precise definition.

2. Singular intrinsic sub-Laplacians

2.1. The choice of the measure. In a Riemannian manifold (M, g) of dimension
n there is a canonical choice of the volume measure ω, that can be explicitly
computed in coordinates in terms of g and coincides up to a constant factor with
the n-Hausdorff measure with respect to the Riemannian distance on M .

This is not the case in sub-Riemannian manifolds, where the problem of finding
canonical measures is still open in the general case of (possibly non-equiregular)
sub-Riemannian manifolds. In [10] a canonical volume measure has been proposed:
this is the Popp’s measure and it turns out to be smooth on the equiregular regions
of M , cf. also [5]. 1 For instance, Popp’s measure on the Heisenberg group (which
is an equiregular structure) is proportional to the Lebesgue measure on R3. On the
other hand, on the singular region where the sub-Riemannian structure “looses its
regularity”, Popp’s measure blows up. For instance, in the Martinet case, Popp’s

1To conclude the picture, we mention that Popp’s measure and the Hausdorff measure with
respect to the sub-Riemannian distance are in general not equivalent, as it is shown in [2].



Mini-Workshop: Self-adjoint Extensions in New Settings 2933

measure is proportional to |x|−1dx dy dz, and in the Grushin plane Popp’s measure
reads |x|−1dx dy.

2.2. Essential self-adjointness of singular sub-Laplacians. Motivated by
Section 2.1, we study essential-self adjointness properties of sub-Laplacians in the
case where the intrinsic Popp’s measure ωPopp is smooth only outside a singular
region Z ⊂M . To this purpose, in [8] we proved the following result, that gener-
alizes [4, 11] and has been mentioned in Luca Rizzi’s talk in the present workshop.

Theorem 1. Let M be a smooth manifold and Z ⊂ M be a smooth compact
hypersurface such that TqZ is transversal to D(q) for any q ∈ Z. Assume that
locally near Z, Popp’s measure reads ωPopp ≃ δ−a × σ, where δ(·) = d(·,Z) is
the sub-Riemannian distance from Z, σ is a smooth measure and a ≥ 1. Then
∆ωPopp

with domain C∞
c (M \Z) (or any of its connected components) is essentially

self-adjoint in L2(M,ωPopp).

The key ingredients of the proof are Hardy-type inequalities combined with
Agmon-type estimates. A comment on these techniques is presented (for a different
case) in section 3.2.

3. Non-complete sub-Laplacians

A simple way to obtain non-complete manifolds from a complete one is by removing
a point. In the Euclidean setting, the pointed Laplacian ∆ = ∂21+· · ·+∂2n defined on
C∞

c (Rn \{0}) is essentially self-adjoint if and only if n ≥ 4, and the correspondent
result still holds true in the Riemannian case (see for instance [6]).

In the last part of this talk, we want to understand essential self-adjointness
properties of pointed sub-Laplacians on 3D equiregular sub-Riemannian structures,
whose local model is the Heisenberg group.

We henceforth focus on the Heisenberg sub-Laplacian ∆H = X2
1+X

2
2 , Dom(∆H)

= C∞
c (R3) that is essentially self-adjoint by Strichartz’ theorem and on its pointed

counterpart ∆̊H = X2
1 +X2

2 , Dom(∆̊H) = C∞
c (R3 \ {0}). (Here we fixed the vol-

ume measure ω to be the Lebesgue measure, that corresponds to Popp’s measure
and to the Haar measure.)

3.1. Relevant dimensions on the Heisenberg group. Two important prop-
erties of the Heisenberg group H1 are the following

• The sub-Riemannian distance d is left-invariant on H1:

d(p ∗ q1, p ∗ q2) = d(q1, q2), q1, q2 ∈ H1.

• The sub-Riemannian distance is 1-homogeneous w.r.t. the family of aniso-
tropic dilations δλ(x, y, z) = (λx, λy, λ2z), λ > 0:

d(δλ(q1), δλ(q2)) = λd(q1, q2), q1, q2 ∈ H1.

According to the Ball-Box theorem (see for instance [3] for details), one can then
deduce that the metric ball of radius ε << 1 w.r.t. the sub-Riemannian distance
d is equivalent to a box [−ε, ε]2 × [−ε2, ε2]. From all these facts one can deduce
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that the Hausdorff dimension (also called Homogeneous dimension) is 4. We are
then in presence of three relevant dimensions

• The topological dimension is 3,
• The dimension of the distribution of admissible directions is 2,
• The Hausdorff dimension is 4.

Recalling that in the Riemannian setting essential self-adjointed of the pointed
Laplace-Beltrami operator change between dimension 3 and 4, the following nat-
ural question arises. What is the relevant dimension in terms of essential self-
adjointness of the associated pointed sub-Laplacian?

3.2. Possible strategies: Hardy-type inequalities. We plan to exploit the
classical essential self-adjointness criterion [12, Thm X.I and Corollary] ensuring

that ∆̊H is essentially self-adjoint if and only if

(2) −∆̊∗
Hψ = Eψ, ψ ∈ L2(H1), E < 0 =⇒ ψ ≡ 0.

One can show that ∆H = div(∇H), where for a smooth function u we let ∇Hu =
(X1u)X1 + (X2u)X2. In particular, ∆H is naturally associated with the following
Dirichlet energy:

(3)

∫

H1

‖∇Hu‖2 dp = −(u,∆Hu)L2(H1).

A first attempt to prove (2) would be via Hardy-type inequality combined with
Agmon type estimate. We briefly show the idea, and then explain why this does
not work.

Let δ(·) = d(·, 0) be the sub-Riemannian distance from the origin. Suppose that
the following Hardy inequality holds true in a neighborhood O of the origin:

(4)

∫

O
‖∇Hu‖2 ≥

∫

O

u2

|δ|2 , u ∈ C∞
c (H1 \ {0}).

Observe that since the Heisenberg sub-Laplacian ∆H is hypoelliptic, the equation
on the left-hand side of (2) implies that ψ is a smooth function. We multiply it by
a function f = F ◦ δ compactly supported outside the origin and only depending
on δ. Plugging u = fψ into (4), through (3), we obtain

∫

O

|fψ|2
δ2

≤ ‖∇H(fψ)‖22 = E‖fψ‖22 + 〈ψ, ‖∇Hf‖2ψ〉.

Rearranging the terms and using f = F ◦ δ we get

−E‖fψ‖ ≤
∫

O

(
F ′(δ)2 − F (δ)2

δ2

)
|ψ|2

and for a suitable choice of F that is only possible if (4) holds with a constant
≥ 1 on the right-hand side, this implies the statement (see [8, Rmk. 4.2] for more
details).

Seeking for Hardy-type inequalities as (4), one discovers that an optimal Hardy
inequality with constant 1 for the Heisenberg operator has been proved in 1990 by
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Garofalo an Lanconelli in [9]. Unfortunately, instead of δ2, the latter inequality
involves a singular weight that prevents to apply the previous technique.

In [7] we proved that the optimal constant for the Heisenberg Hardy inequality
with respect to the non-weighted distance from the origin δ is strictly smaller than
one. This concludes our attempts to prove (2) via Hardy inequalities.

3.3. Essential self-adjointness of ∆̊H . In [1] we proved the following

Theorem 2. ∆̊H is essentially self-adjoint.

Motivated by Section 3.2 the proof of the above does not involve Hardy-type
inequalities.

3.3.1. Idea of the proof. We start by proving that the essential self-adjointness
criterion (2) can be equivalently formulated by saying that there does not exists
θ ∈ L2, θ 6≡ 0 solving the following equation in the distributional sense

(5) (−∆H + i)θ =
∑

|α|<N

cαD
αδ0, (cα)α∈N3 6≡ 0.

We present here the ideas to prove absence of L2 solutions to the latter equa-
tion in the Euclidean n-dimensional setting, by exploiting the classical Fourier
transform. A suitable adaptation of these arguments involving non-commutative
Fourier analysis leads to the conclusion in the Heisenberg group.

Assume that there exists θ ∈ L2, θ 6≡ 0 solving (5) c(0,0,0) = 1, cα = 0 for
α 6= (0, 0, 0) (that is, we only have δ0 on the r.h.s.). We compute the Fourier
transform of both sides obtaining

(|λ|2 + i)θ̂(λ) = 1 ⇐⇒ θ̂(λ) =
1

|λ|2 + i
.

By Plancherel theorem we then get

‖θ‖L2(Rn) = ‖θ̂‖L2(Rn) =

∫

Rn

1

(|λ|2 + i)2
dλ &

∫ ∞

0

ρn−1 dρ

(ρ2 + 1)2
&

∫ ∞

1

ρn−5 dρ.

Namely, if n ≥ 4 we are contradicting the fact that θ ∈ L2, while for n ≤ 3 we do
not get any contradiction. This proves that for n ≥ 4 there are no L2 solutions
to (5), implying in turn that the Euclidean Laplacian is essentially self-adjoint if
n ≥ 4. Since it is then easy to prove that for n ≤ 3 equation (5) has non-trivial
solutions in L2, we obtain essential self-adjointness of the Euclidean Laplacian if
and only if n ≥ 4.

Remark 1. In [1] we show that Theorem 2 can be generalized to any sub-Laplacian
∆ω on a 3D contact manifold M (i.e.,the distribution of admissible directions D
is of rank 2 and the step in Hörmander condition is 3 at every point).
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Self-adjoint extensions of infinite quantum graphs

Noema Nicolussi

(joint work with A. Kostenko, D. Mugnolo)

This talk is concerned with developing extension theory for quantum graphs. Quan-
tum graphs are Schrödinger operators on metric graphs, that is combinatorial
graphs where edges are considered as intervals with certain lengths. The Kirch-
hoff Laplacian H provides the analog of the Laplace-Beltrami in this setting. The
main goal of this talk is to address the self-adjointness problem for H, which
classically consists of the following three questions:

• Is the Kirchhoff Laplacian H self-adjoint?
• If H is not self-adjoint, what are the deficiency indices n±(H)?
• ... and how can obtain a description of all self-adjoint extensions?

Whereas on finite metric graphs, the Kirchhoff Laplacian H is always self-adjoint,
the question is more complicated for graphs with infinitely many edges since their
geometrical structure can be quite complex. The search for self-adjointness criteria
in this case is an open problem. For instance, a uniform lower bound for the edge
lengths guarantees self-adjointness [1], but this commonly used condition is to some
extent unsatisfactory (e.g., it is independent of the combinatorial graph structure).
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Based on connections with discrete Laplacians on graphs, several Gaffney-type
criteria were obtained recently in [5]. However, by the example of antitrees (a
particular class of highly connected graphs) we demonstrate that these sufficient
criteria are in general very far from being necessary (see also [6]). Moreover, we
provide a simple example of an antitree which allows to realize all possible values
N ∈ Z≥0 ∪ {∞} as deficiency indices by different choices of edge lengths.

In order to simplify the problem, we restrict our attention to a suitable subclass

of self-adjoint extensions and consider the class of finite energy extensions H̃: that

is, the functions in the domain of H̃ belong to the Sobolev space H1 (=continuous
L2-functions of finite energy). On the one hand, finite energy extensions should
intuitively have good properties. Indeed, it turns out that their resolvents and
semigroups (under some additional technical assumption) are integral operators
with a bounded, continuous kernel and belong to the trace class in case of finite
total volume. On the other hand, all Markovian extensions (i.e. the corresponding
quadratic is a Dirichlet form) are of finite energy, and hence this class contains all
extensions which typically are considered in context with the heat equation.

The problem of extension theory is closely related to finding suitable boundary
notions for infinite graphs. In this context, a natural idea is to consider rays (i.e.,
infinite self-avoiding paths), which intuitively should lead to different directions
at infinity. This approach is formalized in the concept of graph ends introduced
independently by Freudenthal [3] and Halin [4]. Graph ends are in bijection with
the topological ends of the graph and hence they coincide with the boundary in
the sense of the Freudenthal compactification [2]. However, the definition of graph
ends is purely combinatorial and hence must be modified to capture the additional
metric structure of our setting. Based on the correspondence between graph ends
and topological ends we introduce the concept of graph ends of finite volume [7]. It
turns out that this notion is indeed well suited for the study of the H1-space and
finite energy extensions. For instance, it leads to a geometrical characterization of
uniqueness of Markovian extensions:

H has a unique Markovian extension if and only if
all graph ends have infinite volume.

Moreover, returning to the question of deficiency indices, we provide a lower esti-
mate for n±(H) in terms of the number of finite volume graph ends. This estimate
is sharp and we also find a necessary and sufficient condition for the equality be-
tween the number of finite volume graph ends and n±(H) to hold. Finally, under
the additional assumption that the number of finite volume graph ends is finite, we
obtain a complete description of all finite energy extensions of H in terms of self-
adjoint linear relations on the corresponding boundary space. This also leads to a
description of all Markovian extensions in this case. Related results on Markovian
extensions of discrete Laplacians on graphs (in terms of the Royden boundary)
were proven recently in [8].
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Brownian motion and curvature in sub-Riemannian geometry

Anton Thalmaier

(joint work with L.-J. Cheng, E. Grong)

The goal of sub-Riemannian geometry is the investigation of geometric structures
intrinsically induced by the sub-Riemannian data (M,H, gH) whereM is a smooth
manifold, H a subbundle of the tangent bundle (describing the “horizontal” di-
rections), and gH a metric tensor defined on the “horizontal” subbundle H . The
subbundle H is assumed to be bracket-generating, meaning that its sections and
their iterated brackets span the entire tangent bundle. We describe recent work
related to the concept of “horizontal Ricci curvature”. Our approach relies on a
study of sub-Riemannian Brownian motions and stochastic analysis on path space
over sub-Riemannian manifolds. Analogously to the work of Aaron Naber [6] (see
also [5]) we show that certain functional inequalities and gradient estimates on
path space are equivalent to boundedness of the horizontal Ricci tensor [3]. For
the proofs we adopt the methods of [1, 2] to the sub-Riemannian setting.

We work with a connection ∇ on M which is compatible with (H, gH) in the
sense that parallel transport along smooth curves in M takes orthonormal frames
in H to orthonormal frames in H . Since H is bracket-generating, compatible
connections ∇ always have torsion T:

∇AB −∇BA− [A,B] = T(A,B), A,B ∈ Γ(H).

To construct canonical connections one starts with a partial connection ∇ : Γ(H)×
Γ(H) → Γ(H), (A,B) 7→ ∇AB on H and extends it to a full connection in
a canonical way. A connection ∇ on M compatible with (H, gH) is uniquely
determined by its torsion, and choosing a complement V for H , that is TM =
H ⊕ V , there is a unique such connection with T(H,H) ⊂ V .
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Let R be the curvature of a compatible connection ∇ and Ric : TM → TM the
corresponding Ricci operator given by

Ric(v) = traceHR(v, ×)×

where the trace is taken over H with respect to the inner product gH . Our object
of interest is the horizontal Ricci curvature RicH = Ric|H ∈ End(H) defined as
the restriction Ric of H . We consider the corresponding sub-Laplacian

∆H = traceH∇2
×,×

defined as horizontal trace of the Hessian ∇2. Diffusion processes on M with
generator 1

2∆
H are called sub-Riemannian Brownian motions, cf. [4]. For fixed

T > 0, let WT = C([0, T ];M) be the path space over M equipped with the
measure induced by the sub-Riemannian Brownian motion with starting point
x ∈M , and let

FC∞
0,T =

{
WT ∋ γ 7→ f(γt1 , . . . , γtn) : 0 < t1 < . . . < tn ≤ T, f ∈ C∞

c (Mn)
}

be the class of smooth cylindrical functions onWT . Consider the Cameron-Martin
space

H =

{
h : [0, T ] → Hx absolutely continuous

∣∣∣∣
∫ T

0

|ḣ(t)|2gHdt <∞
}

which becomes a Hilbert space with inner product

〈h1, h2〉H =

∫ T

0

〈ḣ1(t), ḣ2(t)〉gH dt.

For F ∈ FC∞
0,T we define a directional derivative DhF in the direction of h ∈ H

and associated derivative operators Dt on FC∞
0,T such that

DhF =

∫ T

0

〈DtF, ḣt〉gHdt.

The definition of Dh incorporates explicitly the torsion of the connection.

Theorem. (Characterization of RicH by functional inequalities)
For a non-negative constant K the following conditions are equivalent:

(1) the horizontal Ricci curvature RicH is bounded by K, i.e.

−K ≤ RicH ≤ K;

(2) (Gradient estimate) for any smooth cylindrical function F ∈ FC∞
0,T on

path space the following estimate holds:

|D0Ex[F ]|gH ≤ Ex

[
|D0F |gH +

K

2

∫ T

0

e
K
2 s|DsF |gH ds

]
;



2940 Oberwolfach Report 47/2019

(3) (Log-Sobolev inequality) for any F ∈ FC∞
0,T and t > 0 in [0, T ],

Ex

[
Ex[F

2|Ft] logEx[F
2|Ft]

]
− Ex[F

2] logEx[F
2]

≤ 2

∫ t

0

e
K
2 (T−r)

(
Ex|DrF |2gH +

K

2

∫ T

r

e
K
2 (s−r)Ex|DsF |2gH ds

)
dr;

(4) (Poincaré inequality) for any F ∈ FC∞
0,T and t > 0 in [0, T ],

Ex

[
Ex[F |Ft]

2
]
− Ex[F ]

2

≤
∫ t

0

e
K
2 (T−r)

(
Ex|DrF |2gH +

K

2

∫ T

r

e
K
2 (s−r)Ex|DsF |2gH ds

)
dr.

Here Ex denotes the expectation with respect to the probability measure on path
space induced by the sub-Riemannian Brownian motion on M starting at x ∈M ,
and (Ft) denotes its natural filtration.

The theorem above can be extended to a characterization of K1 ≤ RicH ≤ K2

with arbitrary constants K1 ≤ K2 by redefining Dh appropriately.
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Fractal string and its spectral properties

Igor Sheipak

We consider the spectral boundary value problem

−y′′ = λP ′y,(1)

y(0) = y(1) = 0(2)

with singular weight function P , y ∈
◦
W 1

2[0; 1]. The derivative is understood in
the sense of the distributions. M.G. Krein considered this problem in the case
of nondecreasing function P and in [1] obtained following eigenvalues asymptotic
formula

lim
n→∞

n√
λn

=
1

π

∫ 1

0

√
P ′(x) dx.
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In terms of counting function of eigenvalues this asymptotics can be presented as

N(λ) =
√
λ
π

∫ 1

0

√
P ′(x) dx.

So if function P is singular or equivalently its absolutely continuous part equals
to zero, then P ′ = 0 almost everywhere and Krein formula gives no information
on eigenvalues asymptotics.

In [2] the class of self-similar non-decreasing continuous functions P was consid-
ered. In this case dP defines self-similar measure singular with respect to Lebesgue
measure. The main result of [2] is following: the asymptotic of counting function
has the form

N(λ) = λD(s(ln λ) + o(1)),

where D ∈
(
0; 1

2

)
can be calculated via characteristics of self-similarity of measure

dP . Function s is a periodic in the case of arithmetical self-similarity of the
measure dP and is a constant in the case of non-arithmetical self-similarity of the
measure dP .

The results in [2] were generalized later in [3] where non-sign-definite weight
functions were considered. The class of functions P is defined as follows. We
consider integer n ≥ 2 and positive numbers a1, a2, . . . , an satisfying conditions
n∑

k=1

ak = 1. Further we introduce numbers α1 = 0, αk =
∑k−1

j=1 aj , k = 2, 3, . . . , n+

1 and for all k = 1, 2, . . . , n define affine transformations of the segment [0, 1] on
segments [αk;αk+1]: Sk(x) = akx+ αk.

For some sets of real numbers {dk}nk=1 {βk}nk=1, k = 1, . . . , n we define operator

(3) [G(f)](x) =
n∑

k=1

(
dk · f

(
S−1
k (x)

)
+ βk

)
· I(αk;αk+1),

where I(a,b) is an indicator of the interval (a, b).

If
∑n

k=1 ak(dk)
2 < 1, then G is compressive in L2[0; 1]. The unique function P

that is a fixed point of the operator G is called self-similar. For P ∈ L2[0; 1] the
problem (1), (2) is understood in in the sense of a quadratic form

∀y ∈
◦
W 1

2[0; 1]

∫ 1

0

|y′(x)|2 dx− λ

∫ 1

0

P (x)(|y(x)|2)′ dx = 0.

In common case of non-monotonic function P ∈ L2[0; 1] the problem (1), (2)
has both negative and positive eigenvalues.

Theorem 1. ([3]) Under the requirements that among numbers di (i = 1, 2, . . . , n)
at least two are nonzero, and among numbers βi (i = 1, 2, . . . , n) — at least one,
then the corresponding counting functions N±(λ) := #{λn : 0 < λn ≤ λ} have
asymptotics

N±(λ) = |λ|D(s±(ln |λ|) + o(1),

where D ∈ (0; 1) is the unique solution of the equation
∑n

k=1(ak|dk|)t = 1. For
any D ∈ (0; 1) it is possible to build an example of a function P so that the
asymptotics of the problem (1), (2) has the desired power D.
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The following studies are related to discrete weights: only one number in set
{di} and at least one in set {βi} (i = 1, 2, . . . , n) is nonzero. In this case the
self-similar function P is piecewise constant, weight P ′ has representation P ′ =∑

k=1mkδ(x − xk) with special numbers mk and xk. Such self-similar functions
are called self-similar functions with of zero spectral order.

Denote by M ∈ {1, 2, . . . , n} the only index for which dM is not zero and
define quantity q := 1

aM |dM | > 1. The condition P ∈ L2[0; 1] is equivalent to the

inequality am(dM )2 < 1. Consider quantities ζk, k = 2, . . . n defined by

ζk :=





βM − βM−1 + dMβ1 if k =M,

βM+1 − βM − dMβn if k =M + 1,

βk − βk−1 otherwise.

Also, let Z± denote two quantities Z± := #{k ∈ {2, 3, . . . , n} : ±ζk > 0}. Some
results are given in the following two theorems

Theorem 2. ([4]) Suppose that the relations dM > 0, Z+ > 0 and Z++Z− = n−1
hold. Then there exist real numbers cl > 0, where l = 1, 2, . . . , Z+, for which the
sequence {λk}∞k=1 of positive eigenvalues of problem (1), (2) numbered in increasing
order satisfies the asymptotics

λl+kZ+ = clq
k(1 + o(1)) as k → +∞.

Theorem 3. ([4]) Suppose that the relations dM > 0, Z− > 0 and Z++Z− = n−1
hold. Then there exist real numbers cl > 0, where l = 1, 2, . . . , Z−, for which
the sequence {λ−k}∞k=1 of negative eigenvalues of problem (1), (2) numbered in
decreasing order satisfies the asymptotics

λ−(l+kZ−) = −clqk(1 + o(1)) as k → +∞.

The boundary conditions (2) do not affect the asymptotics in theorems above.
Any selfadjoint boundary conditions can be considered. However, Dirichlet bound-
ary conditions allow us to consider more singular weights than P ∈ L2[0; 1] or

equivalently P ′ ∈
◦
W−1

2 [0; 1]. In [5] the weight P ′ from the space of the multipliers

M := M[
◦
W 1

2[0; 1],
◦
W−1

2 [0; 1]] was considered.

Theorem 4. ([5]) If aM |dM | < 1, then the generalized derivative P ′ of a self-
similar function P of zero spectral order is compact multiplier. In this case the
spectrum of the problem (1), (2) is discrete and its behavior is completely described
by theorems 2,3.

Theorem 5. ([5]) If aM |dM | = 1, then the generalized derivative P ′ of a self-
similar function P of zero spectral order is non-compact multiplier.

The complete description of the spectrum of the problem (1), (2) with non-
compact multiplier as a weight is an open problem.

Let us show that the spectrum of the problem (1), (2) is absolutely continuous
in the case of two-term self-similar functions (n = 2) provided that a1d1 = 1. For
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brevity, we put a1 = 1− a, a2 = a, d2 = d. Recall that d1 = 0 and ad = 1. In this
notation, the formula (3) for the similarity operator G takes a simpler form:

G(P )(x) = β1I[0;1−a)(x) + d ·
(
P

(
x− 1 + a

a

)
+ β2

)
I[1−a;1](x).

Theorem 6. Suppose that n = 2, ad = 1 and the self-similar function P is non-
constant. Then the spectrum of the problem (1), (2) is absolutely continuous and
equals the closed interval

[
(1−√

a)2

a(dβ1 + β2 − β1)
,

(1 +
√
a)2

a(dβ1 + β2 − β1)

]
.

If aM |dM | > 1 and P is not equal to a constant, then P ′ does not belong to M.

Conjecture. Let function P is n-term self-similar function of zero spectral order.
Then the spectrum of the problem (1), (2) with a non-compact multiplier P ′ as a
weight consists of n − 1 segments of a continuous spectrum that can overlap. In
each gap in continuous spectrum there can be no more than one eigenvalue and
correspondingly no more than n-2 eigenvalues in total.

The talk is based on joint works with Yu. Tikhonov and A. Vladimirov
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Self-adjoint indefinite Laplacians

Konstantin Pankrashkin

(joint work with C. Cacciapuoti, A. Posilicano)

The mathematical study of metamaterials of negative refraction index is closely
related to the study of differential operators of the form −∇ · (h∇), where ∇
is the gradient and h is a real-valued function: usually one has h > 0 in the
regions occupied by a dielectric and h < 0 in the regions occupied by a negative
metamaterial [8]. In the simplest model situation one has an open set Ω ⊂ Rn, its
open subset Ω− (we then denote Ω+ := Ω \ Ω−) and the function h given by

h(x) =

{
1, x ∈ Ω+,

−µ, x ∈ Ω−,
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where µ > 0 is a parameter called contrast. One is then interested in the operator
L acting as u 7→ −∇ · (h∇u) on the functions u satisfying the Dirichlet boundary
condition u = 0 on ∂Ω. In view of the differential expression for L one can naturally
expect its self-adjointness in L2(Ω) on a suitable domain. A possible approach to
find a self-adjoint realization is to consider the quadratic form

H1
0 (Ω) ∋ u 7→ q(u) =

∫

Ω

h|∇u|2dx,

and to find the associated operator, i.e. a self-adjoint operator L in L2(Ω) whose
domain D(L) is contained in H1

0 (Ω) and such that
∫

Ω

uLu dx = q(u) for all u ∈ D(L).

The condition h ≥ c with some constant c > 0 would guarantee the existence and
uniqueness of such an operator by the standard representation theorems. Never-
theless, this initial assumption on the sign of h does not hold anymore, and addi-
tional arguments are needed. In the present talk we discuss the self-adjointness of
such operators under suitable assumptions on Ω±.

Namely, assume that both Ω and Ω− are bounded domains in Rn with smooth
boundaries and such that Ω− ⊂ Ω, which implies that Ω+ := Ω \ Ω− is also a
bounded domain with a smooth boundary, moreover,

∂Ω+ = ∂Ω ∪ Σ, Σ := ∂Ω− = Ω+ ∩ Ω−, ∂Ω ∩ Σ = ∅.
Remark that the discontinuity of h along the interface Σ implies that the functions
u from the domain of L should satisfy, in a suitable sense, a specific transmission
condition along Σ in order to have a compensation of singularities guaranteeing
∇ · (h∇u) ∈ L2(Ω). We identify L2(Ω) with L2(Ω+) ⊕ L2(Ω−) by u ≃ (u+, u−),
u± = u|Ω±

, and denote

Dmax :=
{
u ∈ L2(Ω) : ∆u± ∈ L2(Ω±) ,

u+ = u− and
∂u+
∂N+

= µ
∂u−
∂N−

on Σ , u+ = 0 on ∂Ω
}
,

Ds := Dmax ∩ Hs(Ω \ Σ), s ≥ 0,

where N± stands for the unit normal on Σ pointing to the exterior of Ω±. Recall
that for u± ∈ L2(Ω±) with ∆u± ∈ L2(Ω±), the boundary traces on Σ and ∂Ω are
defined in suitable negative Sobolev spaces using the duality with the help of the
Green formula. We further denote by L the linear operator in L2(Ω) acting on the
domain Dmax by (u+, u−) 7→ (−∆u+, µ∆−), and by S we denote its restriction to
D2. The standard integration by parts shows that the operator S is symmetric.
Moreover, it is known for a long time that for µ 6= 1 one simply has S = L, and
L is self-adjoint with compact resolvent [2, 5]. We are going to discuss the case
µ = 1.

Theorem. Assume that µ = 1, then the operator S is not closed but is essentially
self-adjoint, and its unique self-adjoint extension is L.
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• If n = 2, then the essential spectrum of L is {0}, and D(L) 6⊂ Ds for any
s > 0.

• If n ≥ 3, then D1 ⊂ D(L), and
– if each connected component of Σ is strictly convex, then D(L) = D1,

and L has compact resolvent,
– if a part of Σ is flat, then the essential spectrum of L contains the

point 0, and D(L) 6⊂ Ds for any s > 0.

The above theorem is proved in [4], and the proof combines the theory of bound-
ary triples [3, 7] with some pseudodifferential tools. In particular, an important
role is played by the subprincipal parts of suitably defined Dirichlet-to-Neumann
maps on the both sides of Σ. We remark that the presence of a non-empty essen-
tial spectrum is a rather cutious fact as we deal with a differential operator in a
bounded domain. Before this effect was only observed in very particular cases [1].

Let us formulate some open questions which can be viewed as a program for
future study:

(1) In the above setting with n ≥ 3 and µ = 1, can the essential spectrum of
L be larger than just one point? In particular, can it contain a non-empty
interval?

(2) If the essential spectrum of L consists of a single point, can one estimate
the accumulation rate of the eigenvalues to this point in geometric terms?
For a particular configuration with separated variables, an exponential
accumulation was obtained in [9].

(3) Can one develop an approach based on boundary triples for the case when
the relative position of Ω+ and Ω− is different, i.e. without assuming
Ω− ⊂ Ω?

(4) Can one develop an approach based on boundary triples for the case of a
non-smooth interface Σ? Remark that a direct analog of the operator S is
known to have non-zero defficiency indices for some particular geometries
[2, 6].
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To the spectral theory of infinite quantum graphs

Mark Malamud

During the last two decades, quantum graphs became an extremely popular sub-
ject because of numerous applications in mathematical physics, chemistry and
engineering. Indeed, the literature on quantum graphs is vast and extensive and
there is no chance to give even a brief overview of the subject here. We only
mention recent monographs [1], [2], with a comprehensive bibliography.

Let G = (V , E) be a (combinatorial) graph with finite or countably infinite sets
of vertices V and edges E . For two different vertices u, v ∈ V , we shall write u ∼ v
if there is an edge e ∈ E connecting u with v.

We investigate quantum graphs with infinitely many vertices and edges without
the common restriction on the geometry of the underlying metric graph that there
is a positive lower bound on the lengths of its edges. To simplify our considerations,
we assume that the graph G is connected and there are no loops or multiple edges.

Our central result is a close connection between spectral properties of a quantum
graph and the corresponding properties of a certain weighted discrete Laplacian
on the underlying discrete graph. Emphasize that the biggest part of results are
new even in the case infe∈E |e| > 0 while our main results are valid without this
assumption, i.e. in the case

(1) inf
e∈E

|e| ≥ 0.

Turning to a more specific problem, we need to make further assumptions on
the geometry of a connected metric graph G.

In what follows we assume that G is locally finite, that is, every vertex v ∈ V has
finitely many neighbors. Moreover, there is a finite upper bound on the lengths of
edges,

(2) sup
e∈E

|e| <∞.

Let α : V → R be given and equip every vertex v ∈ V with the so-called δ-type
vertex condition:

(3)




f is continuous at v,

∑
e∈Ev

f ′
e(v) = α(v)f(v),

Let us define the operator Hα as a closure of the operator H0
α given by

H0
α = Hmax|dom(H0

α),

dom(H0
α) = {f ∈ dom(Hmax) ∩ L2

c(G) : f satisfies (3), v ∈ V}.(4)
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Alongside the operator Hα we consider the following minimal difference operator
hα defined in ℓ2(V) by
(5)

(τG,αf)(v) =
1√
m(v)

(
∑

u∈V
b(v, u)

( f(v)√
m(v)

− f(u)√
m(u)

)
+

α(v)√
m(v)

f(v)

)
, v ∈ V ,

where b : V × V → [0,∞) is given by

(6) b(v, u) =

{
|ev,u|−1, v ∼ u,

0, v 6∼ u,

and the function m : V → (0,∞) is defined by

(7) m : v 7→
∑

e∈Ev

|e|, v ∈ V .

More precisely, we define the operator hα in ℓ2(V) as the closure of the pre-minimal
symmetric operator

h0α : dom(h0α) → ℓ2(V), f 7→ τG,αf, dom(h0α) := ℓ2c(V)
Notice that the assumption that G is locally finite ensures that h0α is well defined
since τG,αf ∈ ℓ2(V) for every f ∈ ℓ2c(V).

We also need another discrete Laplacian. Namely, in the weighted Hilbert space
ℓ2(V ;m) consider the minimal operator defined by the difference expression

(8) (τ̃G,αf)(v) :=
1

m(v)

(
∑

u∈V
b(v, u)(f(v)− f(u)) + α(v)f(v)

)
, v ∈ V .

In the following we shall use hα to denote the closures of both operators. Now we
are ready to formulate the main result.

Theorem 1 ([3]). Assume that the graph G is connected, there are no loops or
multiple edges, and condition (2) holds. Let α : V → R and let Hα be a closed
symmetric operator associated with the graph G = (V , E) and equipped with the δ-
type coupling conditions (3) at the vertices. Let also hα be the discrete Laplacian
defined either by (5) in ℓ2(V) or by (8) in ℓ2(V ;m), where the functions m : V →
(0,∞) and b : V × V → [0,∞) are given by (7) and (6), respectively. Then:

(i) The deficiency indices of Hα and hα are equal and

(9) n+(Hα) = n−(Hα) = n±(hα) ≤ ∞.

In particular, Hα is self-adjoint if and only if hα is self-adjoint. Assume
in addition that Hα (and hence hα) is self-adjoint. Then:

(ii) The operator Hα is lower semibounded if and only if the operator hα is
lower semibounded.

(iii) The operator Hα is nonnegative (positive definite) if and only if the oper-
ator hα is nonnegative (positive definite).

(iv) The total multiplicities of negative spectra of Hα and hα coincide,

(10) κ−(Hα) = κ−(hα).
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(v) Moreover, for the negative parts H−
α and h−α of the operators Hα and hα,

respectively, the following equivalence holds

(11) H−
α ∈ Sp(L

2(G)) ⇐⇒ h−α ∈ Sp(ℓ
2(V ;m)), p ∈ (0,∞].

In particular, negative spectra of Hα and hα are discrete (with the only
accumulation point zero) simultaneously.

(vi) If h−α ∈ S∞(ℓ2(V ;m)), then for each p ∈ (0,∞) the following equivalence
holds

(12) λj(Hα) = j−p(a+ o(1)) ⇐⇒ λj(hα) = j−p(b + o(1)),

as j → ∞, where either ab 6= 0 or a = b = 0.
(vii) If in addition hα is lower semibounded, then inf σess(Hα) > 0 (inf σess(Hα)

= 0) if and only if inf σess(hα) > 0 (inf σess(hα) = 0).
(viii) The spectrum of Hα is purely discrete if and only if the number #{e ∈

E : |e| > ε} is finite for every ε > 0 and the spectrum of the operator hα is
purely discrete.

(ix) Let α̃ : V → R and let Hα be the corresponding Hamiltonian and let hα̃
be the corresponding difference operator. Then for every p ∈ (0,∞] the
following equivalence holds

(Hα − λ)−1 − (Hα̃ − λ)−1 ∈ Sp(L
2(G)) ⇐⇒ (hα − λ)−1 − (hα̃ − λ)−1 ∈ Sp(ℓ

2(V)).
The proof of this result as well as its numerous applications can be found in

[3]. Note that for Schrodinger operators with δ-interactions on a discrete subset
X = {xn}∞n=1 of the half-line (line) Theorem 1 was proved in [4]. In this case δ-type
coupling conditions (3) at the points {xn} turn into the conditions of δ-interactions
and the discrete Laplacian hα turns into the minimal operator generated in l2(N)
by a special the Jacobi matrix.

Using the connection described in Theorem 1 together with spectral theory
of (unbounded) discrete Laplacians on infinite graphs, it is proved in [3] a num-
ber of new results on spectral properties of quantum graphs. For instance, using
Theorem 1 it is proved several self-adjointness results on Hamiltonians Hα includ-
ing a Gaffney type result. Several spectral estimates (bounds for the bottom of
spectra and essential spectra of quantum graphs, CLR-type estimates) are also
investigated in [3].
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