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Introduction by the Organizers

The workshop, organised by Masha Gordina (University of Connecticut), Takashi
Kumagai (RIMS, Kyoto University), Laurent Saloff-Coste (Cornell University),
and Karl-Theodor Sturm (University of Bonn), was attended by over 50 partic-
ipants from Australia, Austria, Canada, China, France, Germany, Israel, Italy,
Japan, Luxembourg, United Kingdom, and USA. The program consisted of 29
talks and 7 short contributions, leaving sufficient time for informal discussions.
The general topic of the workshop was the study of linear and non-linear diffu-
sions in geometric environments: metric measure spaces, Riemannian and sub-
Riemannian manifolds, fractals and graphs, and in random environments. The
workshop brought together leading experts in three different major fields of math-
ematics: analysis, stochastics and geometry. The unifying theme was analytic,
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geometric, and stochastic calculus on degenerate, singular or randomized spaces,
based on functional inequalities and heat kernel analysis. The workshop also pro-
vided a unique opportunity for interaction between established and early career
scientists from these different areas. One after-dinner session was devoted to short
communications by junior participants.

The list of the talks provided below illustrates the wide variety of the topics
treated during the workshop. Even so no particular pressure was put on the
speakers to stress connections across fields, such connections were overwhelmingly
present, loud and clear. The questions during and following the talks demonstrated
both the high interest of the problems and results that were presented from the
point of view of the experts in the field and the curiosity of many participants for
concepts and ideas that were unfamiliar to them. The highlights of the conference
include (but are not limited to):

(a) New results on the link between elliptic and parabolic Harnack inequalities in
the context of Dirichlet forms on metric measure spaces involving quasi-symmetric
changes of metric (M. Barlow, M. Murugan and N. Kajino).

(b) Recent progress in the construction of Liouville quantum gravity, namely,
the construction of these objects as randommetric measure spaces (E. Gwynne and
J. Miller), and also the construction of the Brownian sphere based on Brownian
trees and tree-indexed Brownian motion (J-F. Le Gall and A. Riera).

(c) The beautiful result by E. Bruè and D. Semola that the dimensional strata-
structure of a metric measure space satisfying the Riemannian-curvature-dimension
property RCD(K,N) reduces essentially to a unique strata. The proof uses ideas
from mass transport and a new regularity result for Lagrangian flows in metric
measure spaces.

Another important aspect of the workshop is to encourage interactions between
people working on discrete and continuous models. Indeed, viewing continuous
models as a limit of discrete models is one of the major recurring theme. The
talks by M. Murugan, P. Alonso Ruiz and C. Li involved interactions between
analysis on graphs and on manifolds and other continuous spaces. The talks by S.
Andres, J. Norris, D. Shiraishi and A. Winter involved sophisticated limit theorems
for certain discrete models. In the talk of E. Kopfer, the stability of optimal
transports under convergence to continuous limits was analyzed. The conjectural
connections between various discrete models and the continuous models of Liouville
Quantum gravity remains a vast open area of research. L. Dello Schiavo introduced
a random geometry based on Dirichlet form techniques on the space of probability
measures. J. Kigami presented analytic characterization of the Ahlfors regular
conformal dimension by analysing the Gromov hyperbolic graph associated with
a compact metric space.

Functional inequalities appearing in the analysis of random media are key in-
gredients of the workshop as illustrated in the talks by S. Andres, N. Berger, M.
Erbar, E. Gwynne, and C. Smart; and also in the talks by M. Biskup and A. Fag-
gionato. Some recent results concerning heat kernel estimates for jump processes
were discussed by J. Wang. The Riesz transforms on non-doubling spaces were
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addressed in the talk of A. Sikora. Functional inequalities played a central role in
several talks on sub-Riemannian or variable metric spaces given by N. Eldredge,
E. Milman and A. Thalmaier as well as in the talk of F. Cipriani on spectral
invariants and conformal equivalences.

To give a more vivid impression of the mathematical content of the workshop,
we now provide a non-technical description of a sample of the topics discussed by
the speakers.

In the opening talk, Mathav Murugan (UBC, Canada) described in a beau-
tiful way significant new results (obtained jointly with M. Barlow and N. Kajino)
which establish a precise bridge between elliptic and parabolic Harnack inequali-
ties, two of the most consequential inequalities in geometric analysis and PDEs.
This bridge involves the time scaling exponents that appear in parabolic Harnack
inequalities and the notion of “conformal walk-dimension” associated with quasi-
symmetric changes of metric. These results provide new insights on heat kernel
analysis and the geometry of rough metric measure spaces including fractals.

In his talk, Robert Haslhofer (Toronto, Canada) reported on an ongoing joint
work with E. Kopfer and A. Naber on differential Harnack inequality on path space.
In the previous work by Naber and Haslhofer-Naber on the Bochner inequality on
path space, already deep new insights have been gained. In particular, it allowed
to characterize Einstein manifolds in terms of functional inequalities on the path
space. Now a first version of a Harnack inequality of Hamilton type could be
proven on path space.

Liouville quantum gravity is the name given to certain illusive random geome-
tries on the two-sphere. Here, one views triplets (M,µ, d) made of the sphere
M = S

2, a measure µ, and a distance function d, as elements in the space of
marked metric measure spaces equipped with the Gromov-Hausdorff-Prokhorov
topology. The goal is to construct random objects in that space that have uni-
versal properties reminiscent to that of Brownian motion. The suggestion that
such objects might exit and be useful goes back to the physicist A. Polyakov
(1981). Recent progress in this area is the subject of an article in Quanta Maga-
zine (July 2019, Random Surfaces Hide an Intricate Order). Clay Research Fellow
Ewain Gwynne (Cambridge, UK) is an expert on this subject. He gave a very
informative and dazzling talk which highlighted recent progress concerning the
construction of the Liouville gravity distance, one of the most subtle and impor-
tant aspect of the theory. In the context of the workshop, the area surveyed by
E. Gwynne establish a remarkable and exciting link between the general idea of
random environment and the study of metric measure spaces.

In heat kernel analysis, sharp gradient estimates are both important and difficult
to prove as they typically require rather strong geometric assumptions such as a
curvature lower bound. In her talk, Li Chen (University of Connecticut) reviewed
recent results concerning integrated gradient estimates in Lp-norm, p ∈ (1, 2],
whose virtue is to hold under very minimal assumptions on the underlying space,
and thus are widely applicable in the context of Dirichlet spaces on metric measure
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spaces. She also described the connections between such estimates, Riesz trans-
forms, and Besov-space embedding theorems, connecting her talk to the long-term
project presented at the workshop in talks by Fabrice Baudoin and Patricia Alonzo
Ruiz.

Two workshop talks presented results from a long-term project on the heat
semigroup-based Besov spaces and functions of bounded variation (BV) on Dirich-
let spaces. Fabrice Baudoin (University of Connecticut) described the setting

including one of the main assumptions, namely, a weak Bakry-Émery curvature
type condition. The aim is to be able to apply this approach to non-smooth spaces
such as fractals. A number of results have been presented such as isoperimetric
and Sobolev inequalities including a conjecture about Lp-Besov critical exponents,
that is, the exponent for which the Besov space is non-trivial. The next talk by
Patricia Alonso Ruiz (Texas A& M) applied these tools to fractional Laplacians
on metric measure spaces. Namely, she considered a class of non-local Dirichlet
forms corresponding to a semigroup obtained by subordination with the generator
being a fractional Laplacian. This simplifies the presentation though some of their
results can be extended to a somewhat more general setting.

Anita Winter (University of Duisburg-Essen) presented a novel notion of con-
tinuum trees – called algebraic trees – which generalizes countable graph-theoretic
trees to potentially uncountable structures. Under an order-separability condi-
tion, algebraic trees can be considered as tree structure equivalence classes of
metric trees. In many applications binary trees are of particular interest and the
space of binary algebraic tree is shown to be compact.

Jean-François Le Gall (Université Paris-Sud Orsay) gave a brilliant descrip-
tion of a particular construction of the Brownian sphere. Roughly speaking, the
Brownian sphere is one of the key random objects underlying the metric mea-
sure spaces of the Liouville quantum gravity discussed earlier in the week by E.
Gwynne. Le Gall explained how the Brownian sphere can be constructed using
Brownian trees (a variation on Aldous’ continuum random tree) and tree-indexed
Brownian motion in the plane. This construction leads to analogies with excursion
theory and intriguing new growth-fragmentation random processes associated the
geometry of the Brownian sphere, namely, the structure of the complement of a
ball on the Brownian sphere.

The study of metric measure spaces with synthetic lower Ricci bounds attracted
lot of attention in recent years and many deep results and insights could be ob-
tained. Of particular interest from the perspective of geometric analysis are struc-
tural results for infinitesimally Hilbertian metric measure spaces which satisfy a
curvature-dimension condition in the sense of Lott-Sturm-Villani. A first break-
through in this direction was the seminal work of Mondino and Naber leading to
dimensional decompositions for such spaces. The open challenge for several years
then was to prove constancy of the dimension. Even for Ricci limits, this was
proven only few years ago by Colding and Naber. In his talk on joint work with
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Daniele Semola, Elia Brué (SNS Pisa, Italy) presented their beautiful and tech-
nically demanding argument for proving constancy of dimension for RCD(K,N)-
spaces.

Jan Maas (IST Austria) reported on the joint work with Eric Carlen on ap-
proaches via optimal transport to challenging problems in non-commutative ge-
ometry, in particular, to the study of ergodic quantum Markov semigroups on
finite-dimensional unital C∗-algebras. They show that the evolution on the set
of states that is given by such a quantum Markov semigroup is the gradient flow
for the relative entropy with respect to a unique stationary state in a particu-
lar Riemannian metric on the set of states. As a consequence, a number of new
inequalities for the decay of the relative entropy for ergodic quantum Markov
semigroups can be deduced.

Anderson localization is a well-known trapping phenomena in the field of ran-
dom Schrödinger operators. Let H = −∆ + δV be a Schrödinger operator on
Zd, where ∆ is the discrete Laplacian and V is a random potential given by iid
0-1 Bernoulli random variables. Charles Smart gave a wonderful talk about his
recent work with Jian Ding that shows that for any δ > 0, H has Anderson local-
ization almost surely for d = 2, which resolves a long time open problem in this
area. While the proof follows the program of Bourgain and Kenig that proves the
corresponding results for Rd (continuum model), it requires completely new ideas
and significant efforts, as is often the case for discrete models in random media.
One of the key ideas of the proof is to apply a Liouville-type theorem recently
obtained by Buhovsky, Logunov, Malinnikova and Sodin.

The last talk of the workshop was given by Sebastian Andres (Cambridge,
UK). In the first part of his talk, he summarized briefly the history of the quenched
invariance principle and heat kernel estimates random conductance models, which
helped non-expert to have an overview of the area. He then discussed his recent
work with P. Taylor about the quenched and annealed local limit theorem for time
dependent random conductance models. He then explained beautiful application
of the results to the Ginzburg-Landau∇ϕ interface model. He also explained some
other possible applications of the theory of random conductance models to various
other models motivated by statistical physics.

The workshop participants came from different mathematical areas such as
analysis, geometry, probability with a strong presence of mathematical physics.
Many of them benefited from this opportunity to interact with the mathematicians
who have expertise in a related area of research. The extensive discussions by
participants at different stages of their career have produced a number of new
ideas and connections. In addition to stimulating the existing joint projects, the
workshop helped to initiate new collaborations, in particular for junior researchers.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
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Abstracts

Heat kernel approach to BV functions in non-local Dirichlet spaces

Patricia Alonso Ruiz

(joint work with F. Baudoin, L. Chen, L. Rogers, N. Shanmugalingam,
A. Teplyaev)

Functions of bounded variation (BV) appear naturally in the study of variational
problems and are intrinsically related to isoperimetric sets and sets of finite perime-
ter. In this talk we propose a notion of BV functions in metric measure spaces
equipped with a non-local Dirichlet form. Two main reasons that motivate the
study of the non-local setting are, first, the extension of results previously obtained
by the authors in the local setting [2] and second, to create stronger connec-
tions with the PDE research community, where non-local operators and fractional
Sobolev spaces appear naturally in many models under investigation.

The prototype of operator we will consider here is the fractional Laplacian, which
we see as the infinitesimal generator of a semigroup defined via subordination.
The starting point of our discussion is thus a locally compact Ahlfors dH -regular
space (X,µ, d) equipped with a strongly local and regular Dirichlet form (E ,F)
whose associated heat semigroup {Pt}t>0 is assumed to be conservative and admit
a jointly continuous heat kernel satisfying two-sided sub-Gaussian estimates

pt(x, y) ≍ t−
dH
dW exp

(
−c
(d(x, y)dW

t

) 1
dW −1

)
.

From a purely metric-measure theoretic approach that goes back to the seminal
paper by Korevaar and Schoen [6], one defines the spaces

KSλ,1(X) :=
{
f ∈ L1(X,µ) : ‖f‖KSλ,1(X) <∞

}
,

where

‖f‖KSλ,1(X) := lim sup
r→0+

∫

X

∫

B(x,r)

|f(x)− f(y)|
rλµ(B(x, r))

dµ(y) dµ(x)

and the critical exponent

λ#1 := sup{λ > 0 : KSλ,1(X) contains non-constant functions.}.

It was proved in [6] that KS1,1(Rd) = BV (Rd) and λ#1 = 1, which motivates the
following general definition of the space of BV functions and the variation of a
function

BV (X) := KSλ#
1 ,1(X)

VarE(f) := lim inf
r→0+

∫

X

∫

B(x,r)

|f(x)− f(y)|
rλ

#
1 µ(B(x, r))

dµ(y) dµ(x).
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As a combination of several ideas due to de Giorgi [4] and Ledoux [7], Miranda et
al. provided in [8] a semigroup approach to BV functions on Rd. Based on them,
we introduced in [1] the Besov-type space

B1,α(X) := {f ∈ L1(X,µ) : ‖f‖1,α <∞},
where

‖f‖1,α := sup
t>0

1

tα

∫

X

Pt(|f − f(x)|)(x) dµ(x)

as well as the critical exponent

α#
1 := sup{α > 0 : Bλ,1(X) contains non-constant functions.}.

It was proved in [8] that B1,1/2(Rd) = BV (Rd) and α#
1 = 1/2. Notice that, in

particular, α#
1 = λ#1 /2.

The correspondence between the metric-measure theoretic and the heat semigroup
approach in the framework of local Dirichlet spaces was obtained in [2] under the

following weak Bakry-Émery non-negative curvature condition

(1) |Ptf(x)− Ptf(y)| ≤ C
d(x, y)κ

tκ/dW
‖f‖L∞(X,µ)

for all t > 0, f ∈ F ∩L∞(X,µ) and κ = dW − λ#1 . In that case, it was possible to

prove that BV (X) = B1,α#
1 (X). In particular, α#

1 = λ#1 /dW and

(2) VarE(f) ≃ ‖f‖1,α#
1
≃ lim inf

t→0+
t−α#

1

∫

X

Pt(|f − f(x)|)(x) dµ(x).

With these results in hand, we are now ready to move towards the non-local
case. In the light of the classical definition of fractional Sobolev spaces due to
Gagliardo [5], we may define their analogue in our setting by

W s,1(X) :=
{
f ∈ L1(X,µ) :

∫

X

∫

X

|f(x)− f(y)|
d(x, y)dH+s

dµ(y) dµ(x) <∞
}
.

Let now (X, d, µ, E ,F) be the local Dirichlet space we started with and fix δ ∈
(0, 1). In the sequel we will be dealing with the corresponding subordinated semi-

group {P (δ)
t }t>0 whose associated heat kernel satisfies the two-sided estimate

p
(δ)
t (x, y) ≍ t · (t

1
δdW + cd(x, y))−dH−δdW .

A crucial observation concerns the effect of the subordination in the weak Bakry-
Émery condition (1). Namely, the subordinated space now satisfies

|Ptf(x)− Ptf(y)| ≤ C
d(x, y)κ

tκ/(δdW )
‖f‖L∞(X,µ).

Under these assumptions, we can finally characterize the Besov-type space as fol-
lows:

B1,α(X) =





KSαδdW ,1(X) if α ∈ (0, 1),

W δdW ,1(X) if α = 1,

{constant function 0} if α > 1.
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In addition, the critical exponent reads α#
1 = min

{
1, 1δ
(
1− κ

dW

)}
, whence

B1,α#
1 (X) =





BV (X) if δ > 1− κ
dW

,

W δdW ,1(X) if δ < 1− κ
dW

,

{constant function 0} if δ = 1− κ
dW

,

and the variation of a function will satisfy (2) when δ > 1− κ
dW

, and

VarE(f) ≃
∫

X

∫

X

|f(x) − f(y)|
d(x, y)dH+δdW

dµ(y) dµ(x)

when δ < 1− κ
dW

.

We finish our discussion with a particular application of this notion of BV func-
tions, that concerns the isoperimetric inequality available in this framework. As
in the classical theory, we may say that a Borel measurable set E ⊆ X has
finite perimeter if the indicator function of the set has bounded variation, i.e.
1E ∈ BV (X). In the present non-local setting, the inequality reads

(3) µ(E)
dH−δdW

dH ≤ C
∫

E

∫

X\E

1

d(x, y)dH+δdW
dµ(y) dµ(x).

We note that the latter is only meaningful in the range 0 < δ < 1− κ
dW

; otherwise

the right hand side need not converge. In the case of X = Rd, the parameters
are dH = d, dW = 2 and κ = 1, so that (3) holds for 0 < δ < 1/2. The question
about existence of sets of bounded perimeter is directly related to that of non-local
minimal surfaces, studied for instance in [3].
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Local Limit Theorems for the Random Conductance Model

Sebastian Andres

(joint work with Peter Taylor)

We consider the random conductance model (RCM), which is a well established
model for a random walk in random environment. For d ≥ 2 let (Zd, Ed) be the
Euclidean lattice equipped with non-oriented nearest neighbour bonds. We endow
the graph with positive random weights {ω(e), e ∈ Ed}, where we refer to ω(e) as
the conductance of an edge e ∈ Ed. Let θω : Zd → (0,∞) be a positive function
which may depend upon the environment ω ∈ Ω. For any fixed realisation of
conductances consider the continuous time Markov chain X = {Xt : t ≥ 0} on Zd

with generator

Lωθ f(x) :=
1

θω(x)

∑

y∼x

ω(x, y) (f(y)− f(x)) ,

acting on bounded functions f : Zd → R. This random walk is reversible with
respect to the speed measure θω. We denote by Pω

x the law of this process started
at x ∈ Zd. There are two natural laws on the path space - the quenched law Pω

x (·)
which concerns P-almost sure phenomena, and the annealed law EPω

x (·).
The random walk X chooses its next position with probability ω(x, y)/µω(x),

after waiting an exponential time with mean θω(x)/µω(x) at the vertex x where
µω(x) :=

∑
y∼x ω(x, y). Our main results are statements about the heat kernel of

X , which is defined as

pωθ (t, x, y) :=
Pω
x (Xt = y)

θω(y)
for t ≥ 0 and x, y ∈ Z

d.

Perhaps the most natural choice for the speed measure is θω ≡ µω, for which we ob-
tain the constant speed randomwalk (CSRW) that spends i.i.d. Exp(1)-distributed
waiting times at all vertices it visits. Another well-studied process, the variable
speed random walk (VSRW) is recovered by setting θω ≡ 1, so called because as
opposed to the CSRW, the waiting time at a vertex x does indeed depend on the
location; it is an Exp(µω(x))-distributed random variable. In what follows we will
consider a general θω assuming it is stationary and satisfies E[θω(0)] < ∞ and
E[θω(0)/µω(0)] ∈ (0,∞).

In the study of the random conductance model the question whether a functional
central limit theorem (FCLT) holds has been object of very active research, see
the surveys [5, 7] and references therein. One recent result for general ergodic
environments is the following.

Theorem 1 (Quenched FCLT [2]). Suppose d ≥ 2. Let (ωe)e∈Ed
be stationary

ergodic and p, q ∈ (1,∞] be such that 1/p+1/q < 2/d and assume that E
[
(ωe)

p
]
<

∞ and E
[
(ωe)

−q
]
< ∞ for any e ∈ Ed. Then, for P-a.e. ω, the rescaled process

X
(n)
t := 1

nXn2t converges (under Pω
0 ) in law to a Brownian motion on Rd with a

deterministic non-degenerate covariance matrix Σ2.
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We are now interested in a deriving a local limit theorem which roughly describes
how the transition probabilities of the random walk X can be rescaled in order to
get the Gaussian transition density of the Brownian motion with covariance matrix
Σ2 appearing as the limit process in the FCLT in Theorem 1. The Gaussian heat
kernel associated with that process will be denoted

kt(x) ≡ kΣt (x) :=
1√

(2πt)d detΣ2
exp

(
−x · (Σ2)−1x/2t

)
.

In general, a local limit theorem is a stronger statement than an FCLT. Define the
two measures µω(x) :=

∑
y∼x ω(x, y) and νω(x) :=

∑
y∼x

1
ω(x,y) on Zd. Further,

for x ∈ Rd write ⌊x⌋ = (⌊x1⌋, ..., ⌊xd⌋) ∈ Zd.

Theorem 2 (Quenched local limit theorem [4]). Suppose d ≥ 2. Let (ωe)e∈Ed
be

stationary ergodic and p, q, r ∈ (1,∞] satisfying

1

r
+

1

p

r − 1

r
+

1

q
<

2

d
.

Assume that

E

[(µω(0)

θω(0)

)p
θω(0)

]
+ E [νω(0)q] + E

[
θω(0)−1

]
+ E [θω(0)r] < ∞.

Then, for any T2 > T1 > 0 and K > 0,

lim
n→∞

sup
|x|≤K

sup
t∈[T1,T2]

∣∣ndpωθ (n
2t, 0, ⌊nx⌋)− akt(x)

∣∣ = 0, for P-a.e. ω,

with a := E [θω(0)]
−1

.

This result extends the local limit theorem in [3, Theorem 1.11] for the CSRW
to the case of a general speed measure. Note that in the case of the CSRW or
VSRW the moment condition in Theorem 2 coincides with the one in Theorem 1.
For the proof of Theorem 2 we adapt Di Giorgi iteration techniques from [8] to
derive Hölder regularity of solutions to parabolic PDEs in continuum. This, along
with the FCLT, is precisely what is required to prove a local limit theorem. We
stress that this approach to show Hölder regularity directly circumvents the need
for a parabolic Harnack inequality, in contrast to the proof in [3], which makes it
significantly simpler.

Next we consider the dynamic random conductance model. We define the dy-
namic variable speed random walk starting in x ∈ Zd at s ∈ R to be the continuous-
time Markov chain (Xt : t ≥ s) with time-dependent generator

(Lωt f) (x) :=
∑

y∼x

ωt(x, y) (f(y)− f(x)) ,

acting on bounded functions f : Zd → R. Note that the counting measure,
which is time-independent, is an invariant measure for X . We denote Pω

s,x the

law of this process started at x ∈ Z
d at time s. For x, y ∈ Z

d and t ≥ s, we
denote by pω(s, t, x, y) := Pω

s,x [Xt = y] the heat kernel of (Xt)t≥s. We establish an
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annealed local limit theorem for the dynamic RCM under a stronger, non-optimal
but polynomial moment condition.

Theorem 3 (Annealed local limit theorem [4]). Suppose d ≥ 2 and let (ωt(e) be
space-time ergodic. There exist exponents p, q ∈ (1,∞) such that if

E
[
ω0(e)

p
]
< ∞ and E

[
ω0(e)

−q
]
< ∞

for any e ∈ Ed, the following holds. For all K > 0 and 0 < T1 ≤ T2,

E

[
sup

|x|≤K

sup
t∈[T1,T2]

∣∣ndpω(0, n2t, 0, ⌊nx⌋)− kt(x)
∣∣
]
= 0.

In general, a quenched FCLT does imply an annealed FCLT. However, the same
does not apply to the local limit theorem. In fact, as mentioned above, the proofs
of the quenched local limit theorems in [3] and Theorem 2 rely on Hölder regular-
ity estimates on the heat kernel, which involve some random constants depending
on the exponential of the conductances. Those constants can be controlled al-
most surely, but naively taking expectations would require exponential moment
conditions. To derive the annealed local limit theorem given the corresponding
quenched result, one might hope to employ the dominated convergence theorem,
which requires that the integrand above can be dominated uniformly in n by a
function of finite expectation. We achieve this using a quenched maximal inequal-
ity from [1]. It is precisely the form of the random constants in this inequality
that allows us to anneal the result using only polynomial moments, together with
a simple probabilistic bound.

A somewhat unexpected context in which one encounters (dynamic) RCMs is
the Ginzburg-Landau ∇φ-interface model, see [6] for a survey. Mathematically,
the interface is described by a field of height variables {φt(x) : x ∈ Zd, t ≥ 0} with
dynamics given by the following infinite system of SDEs:

φt(x) = φ0(x)−
∫ t

0

∑

y:|x−y|=1

V ′(φt(x)− φt(y)) dt+
√
2wt(x), x ∈ Z

d,

where {w(x) : x ∈ Zd} is a collection of independent Brownian motions and the
potential V ∈ C2(R,R+) is even and convex. The formal equilibrium measure

for the dynamic is given by the Gibbs measure Z−1 exp(−H(φ))
∏

x dφ(x) on RZ
d

with formal Hamiltonian H(φ) = 1
2

∑
x∼y V (φ(x) − φ(y)). We are interested in

the decay of the space-time covariances of height variables under an equilibrium
Gibbs measure. By the Helffer-Sjöstrand representation such covariances can be
written in terms of the annealed heat kernel of a random walk among dynamic
random conductances. More precisely,

covµ
(
φ0(0), φt(y)

)
=

∫ ∞

0

Eµ

[
pω0,t+s(0, y)

]
ds,
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where the covariance and expectation are taken with respect to an ergodic Gibbs
measure µ and pω denotes the heat kernel of the dynamic RCM with time-depen-
dent conductances given by

ωt(x, y) := V ′′(φt(y)− φt(x)
)
, {x, y} ∈ Ed, t ≥ 0.

Thus far, all applications of the aforementioned Helffer-Sjöstrand relation have
been restricted to gradient models with strictly convex potential function, which
corresponds to uniformly elliptic conductances in the random walk picture. How-
ever, recent developments in the degenerate setting will also allow some potentials
that are convex but not strictly convex. As an example in this direction, we use
the annealed local limit theorem in Theorem 3 to derive a scaling limit for the
space-time covariances of the φ-field for a wider class of potentials.

Theorem 4 ([4]). Let d ≥ 3 and V ′′ ≥ c−. There exists p ∈ (1,∞) such that
if Eµ[V

′′(∇φt(e))p] < ∞ under any stationary, shift-invariant, ergodic φ-Gibbs
measure µ, then for all t > 0 and x ∈ Rd,

lim
n→∞

nd−2covµ (φ0(0), φn2t(⌊nx⌋) ) =
∫ ∞

0

kt+s(x) ds,

where kt is the heat kernel of a Brownian motion on Rd with a deterministic non-
degenerate covariance matrix.

The moment condition in Theorem 4 on the potential V is satisfied for any V
with V ′′ having polynomial growth. Hence, Theorem 4 applies, for instance, to
the anharmonic crystal potential V (x) = x2 + λx4 for λ > 0.
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Isoperimetric inequalities in Dirichlet spaces

Fabrice Baudoin

(joint work with P. Alonso Ruiz, L. Chen, L. Rogers, N. Shanmugalingam,
A. Teplyaev)

A basic motivating geometric question for this work is: What is the good mathe-
matical structure on a space that allows to define an intuitively reasonable notion
of perimeter for ”good” sets? In [1, 2, 3, 4] we argue that Dirichlet spaces provide a
good framework in which we can define sets of finite perimeter and prove theorems
generalizing in an elegant way classical results from the Euclidean space, like the
classical isoperimetric inequality.

Let X be a good measurable space (like a Polish space) equipped with a σ-finite
measure µ. Let (E ,F = dom(E)) be a densely defined closed symmetric form on
L2(X,µ). A function v on X is called a normal contraction of the function u if
for almost every x, y ∈ X |v(x) − v(y)| ≤ |u(x) − u(y)| and |v(x)| ≤ |u(x)|. The
form E is called a Dirichlet form if it is Markovian, that is, has the property that
if u ∈ F and v is a normal contraction of u then v ∈ F and E(v, v) ≤ E(u, u). Let
{Pt}t∈[0,∞) denote the self-adjoint heat semigroup on L2(X,µ) associated with

the Dirichlet space (X,µ, E ,F): E(f, f) = limt→0+
1
t 〈(I − Pt)f, f〉. As is well-

known, Pt : L
2(X,µ) ∩ Lp(X,µ)→ Lp(X,µ), 1 ≤ p ≤ ∞, can be extended into a

contraction semigroup Pt : L
p(X,µ)→ Lp(X,µ). We assume Pt1 = 1.

For α > 0, consider the L1 Besov type space

B1,α(E) =
{
f ∈ L1(X,µ), lim sup

t→0

1

tα

∫

X

Pt(|f − f(y)|)dµ(y) < +∞
}

and

α#
1 (E) = sup{α > 0 : B1,α(E) contains non a.e. constant functions}.

The space of bounded variation functions associated to the Dirichlet form E is

defined as BV (E) = B1,α#

(E) and for f ∈ BV (E), one defines its variation as

VarE(f) = lim inf
t→0

1

tα

∫

X

Pt(|f − f(y)|)dµ(y).

A set E ⊂ X is called a E-Caccioppoli set if 1E ∈ BV (E). In that case, its
E-perimeter is defined as PE(E) = VarE(1E).

• Euclidean space: The following can be deduced from M. Miranda Jr, D.
Pallara, F. Paronetto, M. Preunkert, 2007. Assume that E is the stan-
dard Dirichlet form on Rn, E(f, f) =

∫
Rn ‖∇f‖2 dx, f ∈ W 1,2(Rn),

then α#
1 (E) = 1

2 , BV (E) = BV(Rn) and for f ∈ BV (E), VarE(f) =
2√
π
‖Df‖(Rn).

• Sierpinski triangle: Consider on the Sierpinski triangle SG the Dirichlet
form

E(f) ≃ lim sup
r→0+

1

rdW

∫

SG

∫

B(x,r)

|f(y)− f(x)|2
µ(B(x, r))

dµ(y) dµ(x)
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where dW is the walk dimension of the Sierpinski triangle. Then α#
1 (E) =

dH

dW
, where dH is the Hausdorff dimension of the Sierpinski triangle and

VarE(f) ≃ lim inf
r→0+

∫

SG

∫

B(x,r)

|f(y)− f(x)|
rdHµ(B(x, r))

dµ(y) dµ(x)

A set E ⊂ SG is a E-Caccioppoli set if its boundary is finite.
• Riemannian manifolds: Assume that E is the standard Dirichlet form
on a complete Riemannian manifold M with Ricci curvature bounded

from below: E(f, f) =
∫
M
‖∇f‖2 dx, f ∈ W 1,2(M), then α#

1 (E) = 1
2 ,

BV (E) = BV(M) and for f ∈ BV (E),
VarE(f) ≃ ‖Df‖(M).

In the case of Riemannian manifolds, the space BV(M) and the associ-
ated notion of variation ‖Df‖(M) we are using are for instance presented
in the paper: Heat semigroup and functions of bounded variation on Rie-
mannian manifolds by M. Miranda Jr, D. Pallara, F. Paronetto & M.
Preunkert.

Let now (X,µ, E ,F) be a Dirichlet space. We consider the following property:

P∞ : VarE(f) ≃ sup
t>0

1

tα
#
1 (E)

∫

X

Pt(|f − f(y)|)dµ(y).

Theorem: (Weak Bakry-Emery estimates I) Let (X,µ, E ,F) be a strictly local
metric Dirichlet space that is locally doubling and that locally supports a 2-Poincaré
inequality on balls. If there exists a constant C > 0 such that

‖|∇Ptf |‖L∞(X,µ) ≤
C√
t
‖f‖L∞(X,µ), t > 0.

Then, α#
1 (E) = 1

2 and P∞ is satisfied.

The theorem applies to RCD(0,∞) spaces, Carnot groups and large classes
of sub-Riemannian manifolds with non-negative Ricci curvature in the sense of
Baudoin-Garofalo.

Theorem: (Weak Bakry-Emery estimates II) Let (X,µ, E ,F) be a metric Dirich-
let space with a heat kernel admitting sub-Gaussian estimates. If there exists a

constant C > 0 such that |Ptf(x)− Ptf(y)| ≤ C d(x,y)κ

tκ/dW
‖f‖L∞(X,µ), t > 0. where

κ = dW (1− α#
1 (E)) then P∞ is satisfied.

This applies to the unbounded Sierpinski triangle and their products and large
classes of fractals or products of fractals. This is however a conjecture on the
Sierpinski carpet.

Theorem: Assume P∞ is satisfied and that Pt admits a measurable heat kernel
pt(x, y) satisfying, for some C > 0 and β > 0,

pt(x, y) ≤ Ct−β , t > 0.
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Then, if 0 < α#
1 (E) < β, there exists a constant C > 0 such that for every

f ∈ BV (E),
‖f‖Lq(X,µ) ≤ CVarE(f),

where q = β

β−α#
1 (E) .

Under the assumptions of this theorem, one therefore obtains the following
general isoperimetric inequality for Caccioppoli sets in Dirichlet spaces

µ(E)
β−α

#
1

(E)

β ≤ CPE (E).

It generalizes the isoperimetric inequality which was known in Riemannian man-
ifolds or Carnot groups (due to N. Varopoulos) but also applies to new situations
like fractals.
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Harnack inequalities for balanced environments

Noam Berger

(joint work with Moran Cohen, David Criens, Jean-Dominique Deuschel and
Xiaoqin Guo)

In this talk consider difference equations in balanced random environments. To set
a precise model we let E be the set of (positive and negative) unit vectors in the
lattice Zd and let Ω be the set of all functions (later referred to as ‘environments’)
ω from Zd × E to R, satisfying

(1) (ω is an environment for a random walk)

∀x∈Zd,e∈Eω(x, e) ≥ 0 ; ∀x∈Zd

∑

e∈E

ωx, e = 1.

(2) (ω is balanced)

∀x∈Zd,e∈Eω(x, e) = ω(x,−e).
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In particular, we wish to study ω-harmonic functions, i.e. functions f : A
⋃
∂A→

R, A ⊆ Zd satisfying

∀x∈A

∑

e∈E

ωx, e
(
f(x+ e)− f(x)

)
= 0

and ω-caloric functions, i.e. functions f :
(
A
⋃
∂A
)
×
(
[0, T ]

⋂
Z
)
→ R, satisfying

∀x∈A,0<t<T

∑

e∈E

ωx, e
(
f(x+ e, t)− f(x, t− 1)

)
= 0

These were first considered by Lawler [5] and by Kuo and Trudinger [3] who,
independently and simultaneously, proved Harnack inequalities in uniform elliptic
cases. Here uniform ellipticity means that the values of ω are bounded away from
zero.

closely related to the behaviour of harmonic and caloric functions is the behavior
of the random walk on the environment ω This has been studied by Lawler [4], by
Guo and Zeitouni [2] and by Berger and Deuschel [1].

Lawler proved an invariance principle for uniformly elliptic environments under
the very general condition of stationarity and ergodicity. The methods followed
those of Papanicolaou and Varadhan [6] who proved similar results in continuous
settings. However, once one relaxes enough the condition of uniform ellipticity,
stationarity and ergodicity would no longer suffice to prove invariance principles
or Harnack inequalities, as many counter examples show. Thus, Guo and Zeitouni
showed an invariance principle for iid environments that are merely elliptic, and
Berger and Deuschel for iid environments that are non-elliptic. In the latter result,
the assumption of iid cannot be relaxed.

Given the results on invariance principles, we set to prove the (harder) Harnack
inequalities. We started by proving an elliptic Harnack inequality, and could prove
that, in the iid case, there exists a Harnack constant C s.t. a.s. there exists a
(random) finite R0 s.t. for all R > R0 and all non-negative ω-harmonic function
f : B2R → R, we have

sup
x∈BR

f(x) ≤ C inf
x∈BR

f(x),

and our Harnack constant C is optimal.
We then proved a parabolic Harnack inequality. Here the situation is more

complex: In the same setting, there exists a Harnack constant C s.t. a.s. there
exists a (random) finite R0 s.t. for all R > R0 and all non-negative ω-caloric
function f : B2R × [0, R2]→ R, satisfying the mild growth condition

(1) sup
(x,t)∈B2R×[0,R2]

f(x, t) ≤ eR2−ǫ

inf
(x,t)∈B2R×[0,R2]

f(x, t),

we have

sup
(x,t)∈BR×[R2/4,R2/2]

f(x, t) ≤ C inf
(x,t)∈BR×[3R2/4,R2]

f(x, t),

and our Harnack constant C is optimal.
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It turns out that the growth condition (1) is necessary (and optimal). The growth
condition stems from percolation theoretical properties of non-elliptic environ-
ments.
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Exceptional points of random walks in planar domains

Marek Biskup

(joint work with Yoshihiro Abe, Sangchul Lee)

Motivated by the seminal work of Erdös and Taylor [7] and Dembo, Peres, Rosen
and Zeitouni [5] on the most visited and thick points of planar random walks, we
study various exceptional sets associated with the local time of random walks in
planar domains at times of order of the cover time. More specifically, for lattice
domains DN ⊂ Z2 approximating, in the sense of vague convergence of the scaled
harmonic measure, a nice continuum domain D ⊂ R2, we study discrete-time
simple symmetric random walk X = {Xk : k ≥ 0} on a graph with vertex set
DN ∪ {̺}, where ̺ is a boundary vertex obtained by collapsing Z2 \ DN while
keeping all edges incident with DN .

Denoting by

(1) ℓn(x) :=

n∑

k=0

1{Xk=x}

the total time the walk spends at x in the first n steps, we are interested in the
(time-reparametrized) local time

(2) Lt(x) :=
1

deg(x)
ℓ⌊tdeg(DN )⌋(x),

where deg(x) is the degree of x in the resulting graph and deg(DN ) is the sum
of all degrees, including the one at ̺. We will observe the walk at times that are
proportional, in the limit as N → ∞ and with the constant of proportionality
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denoted by θ, to the cover time of the whole graph. This corresponds to taking t
to infinity along a sequence {tN}N≥1 such that

(3) lim
N→∞

tN
(logN)2

=
1

π
θ.

The value θ := 1 then corresponds to the leading-order scaling of the cover time.
In our parametrization, a typical value of LtN is tN+O(

√
tN ), while the maximal

value is (
√
θ+ 1)2/θ-multiple and the smallest value is ((

√
θ− 1) ∨ 0)2/θ-multiple

thereof, with probability tending to one. Motivated by this, we designate x ∈ DN

to be a λ-thick point if

(4) LtN (x) ≥
1

π
(
√
θ + λ)2(logN)2, λ ∈ (0, 1],

and a λ-thin point if

(5) LtN (x) ≤ 1

π

(
(
√
θ − λ) ∨ 0

)2
(logN)2, λ ∈ (0,

√
θ ].

We are also able to address the r-light points, which are those where LtN (x) ≤ r,
and the avoided points which are those not visited at all, i.e., LtN (x) = 0.

A convenient way to study these exceptional points is via vague convergence of
random measures. For the thick and thin points, this is achieved by

(6) ζDN :=
1

WN

∑

x∈DN

δx/N ⊗ δ(LDN
tN

(x)−aN )/
√
2aN

,

where {aN}N≥1 is a centering sequence with leading-order asymptotic as on the
right-hand sides of (4) or (5) depending on whether λ-thick or λ-thin points are
of concern. As it turns out, the right choice of the normalization constant is

(7) WN :=
N2

√
logN

e−π
(
√

2tN−
√

2aN )2

log N .

In order to formulate a convergence result, let d : D → [0,∞) be the unique contin-
uous function vanishing outside D whose Laplacian is (a positive) constant on D
and such that d(·)− 1 has vanishing Lebesgue integral over D. Denote by σ2

D the
integral of the continuum Green function in D with respect to both variables. Our
main result concerning the thick points is then:

Theorem 1 (Thick points). Given λ ∈ (0, 1) and θ > 0, let {tN}N≥1 and
{aN}N≥1 be positive sequences with leading-order growth as in (3) and (4), re-
spectively. Then for X sampled from P xN , for any xN ∈ DN ,

(8) ζDN (dxdh)
law−→

N→∞
c(θ, λ) eαλ(d(x)−1)Y ZD,0

λ (dx)⊗ e−αλhdh,

where α :=
√
8π, c(θ, λ) is an explicit constant, Y = N (0, σ2

D) and ZD,0
λ is the

zero-average Liouville Quantum Gravity measure in D independent of Y , at pa-
rameter λ-times critical.
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We remark that, as shown in [4], the Liouville Quantum Gravity measure ZD
λ

appears as the distribution of the λ-thick points of the Discrete Gaussian Free

Field (DGFF); see [3] for a review. Its zero-average counterpart ZD,0
λ is obtained

by conditioning the DGFF to have zero average over DN . The above theorem
hinges on the fact (proved in [2]) that

(9) ZD
λ (dx)

law
= eαλd(x)Y ZD,0

λ (dx)

for Y = N (0, σ2
D) independent of ZD,0

λ . With the normalization of ZD
λ fixed by

prescribing EZD
λ (D), the constant c(θ, λ) is completely explicit.

Our main result for the thin points is completely analogous to Theorem 1. As
mentioned earlier, we are also able to control the scaling limit of the light and
avoided points. Focusing on the latter, these are encoded via the measure

(10) κDN :=
1

ŴN

∑

x∈DN

1{LDN
tN

(x)=0}δx/N

on D, where the normalization is now given by

(11) ŴN := N2e−2π
tN

log N .

Looking back at (5), the avoided points should correspond to the
√
θ-thin points

and so we expect the measure ZD,0√
θ

play a role in their description. This is indeed

confirmed in:

Theorem 2 (Avoided points). Let {tN}N≥1 be a positive sequence satisfying (3)
for some θ ∈ (0, 1). Then for X sampled from P xN , for any xN ∈ DN ,

(12) κDN (dx)
law−→

N→∞
ĉ(θ) eα

√
θ(d(x)−1)Y ZD,0√

θ
(dx),

where ĉ(θ) is an explicit constant and Y and ZD,0√
θ

are as in Theorem 1.

Theorem 2 implies that the number of avoided points scaled by ŴN tends to
the total mass of the measure on the right of (12). For the scaling of their overall

number we get ŴN = N2(1−θ)+o(1). Similarly, by (8) and a simple integral, the
number of λ-thick points normalized by WN tends to a non-degenerate random

variable. For their overall number we thus get WN = N2(1−λ2)+o(1).
The above results are proved in full detail in joint papers with Y. Abe [1] and

with Y. Abe and S. Lee [2]. The conclusions can be augmented to include some
control of the law of the local time near the exceptional points. The proofs are
based on the Second Ray-Knight Theorem (a.k.a. Dynkin isomorphism) from [6]
that gives a strong connection of the local time to the DGFF and, in particular,
removes the need to peform second moment calculations for the local time. The
limit conclusions draw on earlier joint work with O. Louidor [4] where similar limit
results were derived for the thick points of the two-dimensional DGFF. The results
affirm the universality of Gaussian Free Field for these extremal problems.
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Long range, ergodic random conductance model

Filip Bosnić

Let α ∈ (0, 2), d ∈ N and let (Ω,F ,P) be a probability space. We consider a
random conductance c(ω, x, y) (ω ∈ Ω, x, y ∈ Zd) on discrete lattice Zd which is
assumed to be strictly positive and symmetric, c(x, y) = c(y, x) > 0. For n ∈ N

we associate to c a random form

E(n)ω (f, g) =
1

n2d

∑

x,y∈Zm

(f(x)− f(y))(g(x) − g(y))
|x− y|d+α

c (ω, nx, ny)

on the rescaled lattice Zn := (Z/n)d and shorten Eω := E(1)ω . Suppose that, for
P-a.e. ω, c(ω) satisfies the following ergodic-like sumability condition: for every
p ∈ R and every sequence A1 ⊂ A2 ⊂ . . . ⊂ Zd × Zd of convex sets

1

#Ak

∑

(x,y)∈Ak

c(ω, x, y)p
k→∞−−−−→ E[cp]

where the claim is that the limit exists in [0,∞] and we name it E[cp] as it is, by
ergodic theorem, equal to E[c(x, y)p] if the conductance is truly ergodic. Then for
p, q ≥ 1, c such that E[cp] + E[cq] < ∞ and q−1 + (p − 1)−1 ≤ α/d the following
large scale parabolic Hölder regularity estimate holds. There exist R0 : Ω→ (0,∞)
and θ > 0 such that P-a.s. in ω, for every weak solution u of parabolic equation
(∂tu, ϕ) = Eω(u, ϕ) ∀ϕ in the cylinder C(R) := [0, Rα]×B(0, R) and every r > 0,

sup
C(r)

u− inf
C(r)

u ≤ 6

(
r ∨R0(ω)

R

)θ

.

Let X
(n)
t be a sequence of (rescaled) random walks associated to Dirichlet forms

E(n)ω starting from 0 ∈ Zm, let Yt be the rotationally symmetric α-stable Lévy

process on Rd and call its Dirichlet form E(∞). If, for P-a.e. ω, E(n)ω
n→∞−−−−→ E(∞) in
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generalized Mosco sense (as is the case if c is ergodic in the appropriate sense) then

Hölder regularity presented before implies that X
(n)
t

n→∞−−−−→ Yt in finite dimensional
distributions for almost every realization of c.

Constancy of the dimension for RCD spaces via regularity of
Lagrangian flows

Elia Brué

(joint work with Daniele Semola)

In this talk we present the constancy of the dimension theorem for RCD(K,N)
spaces. After the introduction of the so-called curvature-dimension condition
CD(K,N) in the seminal and independent works [19, 20] and [17], the notion of
RCD(K,N) space was proposed in [13] after the study of its infinite-dimensional
counterpart RCD(K,∞) in [1]. This class, includes smooth and weighted Rie-
mannian manifolds with Ricci bounded below by K and dimension smaller than
N , Ricci limits, and Alexandrov spaces. Despite their generality, RCD spaces en-
joy important analytic and geometric properties typical of smooth manifolds with
Ricci bounded below. Let us mention the characterization via Bochner-inequality
[2, 5, 12, 3, 8], the Bishop-Gromov inequality, the Laplacian comparison, the split-
ting theorem and many others.

Structure theory: Nowadays RCD(K,N) spaces have a well-developed structure
theory, analogous to the one obtained by Cheeger, Colding, Naber and collabora-
tors for Ricci limit spaces.

Given an RCD(K,N) space (X , d,m) and an integer k ∈ (0, N ] we define Rk,
the set of k-regular points, as the collection of x ∈ suppm satisfying

(
X, r−1

d,
m

m(Br(x))
, x

)
→ (Rk, deucl, ckLk, 0k) as r→ 0+

in the pmGH topology. Informally, Rk is the set of points where the intrinsically
defined tangent space is the Euclidean space of dimension k.

The following structure theorem for RCD spaces collects results from [18, 15,
16, 11] and provides a complete generalization of the structure theory for Ricci
limits obtained by Cheeger and Colding.

Theorem 1. Let (X, d,m) be an RCD(K,N) metric measure space. Then

m


X \

[N ]⋃

k=1

Rk


 = 0.

Moreover, Rk is (m, k)-rectifiable (i.e., it can be covered, up to a m-negligible
set, with a countable family of bi-Lipschitz images of Borel subset of Rk), and
m|Rk ≪ Hk.
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Since the work of Mondino and Naber [18] in 2014, the following question has been
considered of central importance:

“Is there an integer n ∈ (0, N ] such that m(X \ Rn) = 0?”.

The analogous question for Ricci limits has been positively answered after the
celebrated work [9] by Colding and Naber.

The main content of my result in [6] is a new quantitative estimate for flows
associated to Sobolev vector fields over RCD spaces and, as an application, we
answer positively the question above.

Theorem 2 ([6]). Let (X, d,m) be an RCD(K,N) space. Then there exists n ∈
(0, N ], called essential dimension of X, such that m(X \ Rn) = 0.

Let me start by explaining the link between quantitative flow estimates and the
constancy of the dimension result.

It is known since the works [4, 14] that flows associated to Sobolev vector fields
exist and act “almost transitively”, in a suitable measure theoretic sense, on X . In
particular, assuming by contradiction the existence of m < n such that m(Rn) > 0
and m(Rm) > 0, we can bring a portion of positive m-measure of Rn to Rm by
means of a flow map associated to a Sobolev vector field. Therefore, if we had
at our disposal a strong enough regularity result for these flow maps (for instance
an approximate bi-Lipschitz regularity would suffice), then we would have found
a contradiction.

It is worth remarking that the approximate bi-Lipschitz regularity for flow maps
associated to Sobolev vector fields is a reasonable property, and in the Euclidean
setting holds true as a consequence of Crippa-DeLellis’ estimates [10].

In the joint work with D. Semola [7], we obtain a first result in this regard prov-
ing the analogue of Crippa-DeLellis’ estimates in the setting of Ahlfors regular
RCD(K,N) spaces.

Even though this class of spaces is quite wide (it includes non-collapsed Ricci
limits and Alexandrov spaces), it is still too restrictive for applications to the
constancy of the dimension. In order to cover collapsed spaces it is of fundamen-
tal importance to get rid of the Ahlfors regularity assumption in the regularity
statement.

Unfortunately, whether a statement of this kind holds true or not is still an open
problem. What we have obtained in [6] is a completely new estimate in terms of
the Green function of the Laplacian. For the sake of simplicity I am going to state
it in a simplified, but still meaningful, setting.

Theorem 3. Let X be a Riemannian manifold of dimension N with non-negative
Ricci curvature, satisfying

∫ ∞

1

r

Vol(Br(p))
dr <∞, for some (and thus all) p ∈ X .

Let us denote by G(x, y) = Gx(y) the positive Green-function of the Laplacian, i.e.
the solution to −∆Gx = δx.
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There exists then a constant C = C(N) such that, for any smooth time depen-
dent vector field {b}t∈[0,T ] satisfying ||÷bt||L∞ ≤ L, the flow map Xt enjoys the

following point-wise bound:

(1)
1

C
exp {−Φ(x)− Φ(y)} ≤

G(x, y)

G(Xt(x), Xt(y))
≤ C exp {Φ(x) + Φ(y)} ∀x, y ∈ X,

where Φ : X → [0,∞) fulfills

||Φ||L2 ≤ CeL
∫ T

0

||∇bt||L2 dt.

The just stated result holds for abstract RCD(0,N) spaces and, up to changing
the Green function with the one associated to the operator λI−∆ for some λ ∈ R,
we can extend the result to RCD(K,N) spaces. It is worth remarking that even the
smooth statement is new and potentially interesting, for instance it can be extend
to collapsed Ricci limits using that (1) is stable under mGH convergence.

Note that in the Euclidean space the Green function is a power of the distance,
thus in this case 3 coincides with a usual approximate Lipschitz estimate. This
is not the case in collapsed and weighted spaces where the Green function is not
necessarily comparable with a power of the distance. In particular, for the appli-
cation to the constancy of the dimension, one has to find a counterpart for the
“preservation of the Hausdorff dimension via bi-Lipschitz maps” formulated just
in terms of Green functions. This is indeed possible, the argument builds upon
the study of the asymptotic behavior of the Green function, along with a measure
theoretic result in the spirit of Sard’s lemma.
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[2] L. Ambrosio, N. Gigli, G. Savaré: Bakry-Émery curvature-dimension condition and Rie-
mannian Ricci curvature bounds. Ann. Probab., 43 (2015), 339–404.
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[7] E. Brué, D. Semola: Regularity of Lagrangian flows over RCD∗(K,N) spaces, accepted
paper: J. Reine Angew. Math.

[8] F. Cavalletti, E. Milman: The Globalization Theorem for the Curvature Dimension Condi-
tion, preprint on arXiv: 1612.07623.
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A regularization property of heat semigroups and its applications

Li Chen

Let (X,µ) be a measurable space (e.g. Riemannian manifolds, graphs or Dirichlet
spaces) equipped with a self-adjoint operator L. Let {Pt}t>0 be the associated
heat semigroup. We are interested in the following regularization property of the
heat semigroup: for 1 < p ≤ ∞,

‖ |∇Ptf | ‖p ≤
C√
t
‖f‖p,(Gp)

where ∇ denotes the gradient on Riemannian manifolds or its proper substitutes
in other settings like “carré du champ”.

To fix idea we consider complete Riemannian manifolds.

• (G2) is always true by spectral theory.

• (G∞) is the so-called weak Bakry-Émery curvature condition.
• When 2 < p ≤ ∞, (Gp) is linked to the geometry of the underlying
space, Riesz transforms, harmonic functions, Sobolev and isoperimetric
inequalities, and regularity problems of some PDEs.
• When 1 < p < 2, (Gp) is of different nature. Surprisingly it is always true.

In this talk we focus on the study of (Gp) for 1 < p ≤ 2 and its applications.
We start with the setting of graphs. Let (V,E) be an infinite connected graph
with symmetric weight µ and let d be the graph distance. Then µ induces a
weight on vertices and a measure on the graph. Denote by p(x, y) the transition
probability and by P the associated Markov operator. The discrete Laplacian is
the operator I − P . The (length of) discrete gradient is the “carré du champ”
defined as |∇f(x)|2 = 1

2

∑
y∼x p(x, y)|f(x) − f(y)|2. Nick Dungey in [6] proved
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that if (V,E, µ) satisfies the “local doubling” property: µ(B(x, 1)) ≤ Cµx, then
for any 1 < p ≤ 2,

(1) ‖|∇e−t(I−P )f |‖p ≤
C√
t
‖f‖p.

A deep original idea introduced in the proof is the use of “pseudo-gradient”:

Γp(f) = pf(I − P )f − f2−p(I − P )fp,

where 1 < p ≤ 2. This notion mimics the chain rule for the Laplace-Beltrami
operator on Rieammnian manifolds and is comparable to the carré du champ in
certain sense. Hence one can use the analyticity of heat semigroup and Hölder’s
inequality to deduce the desired gradient estimate.

Motivated by Dungey’s proof, we can show that (Gp), 1 < p ≤ 2, always
holds on any complete connected Riemannian manifold without any geometry or
volume assumption. A significant difference from the discrete case is that the local
doubling volume property is not needed. The proof in [2] relies on the chain rule
for the Laplace-Beltrami operator on appropriate function u:

∆up(x, t) = −p(p− 1)up−2(x, t)|∇u(x, t)|2 + pup−1∆u,

as well as a delicate cut-off argument.
Coming back to the setting of graphs, a natural question to ask is whether or

not one can remove the “local doubling” assumption in Dungey’s result. Together
with T. Coulhon and B. Hua [4], we work on locally finite connected graph (V,E)
endowed with a symmetric weight µ on edges and a weight ν on vertices such that

supx∈V

∑
y∼x µxy

νx
<∞. The associated bounded Laplacian is defined by

∆µ,νf =
1

νx

∑

y∼x

µxy(f(x)− f(y)).

Considering the gradient on edges |Df |({x, y}) = |f(y)− f(x)|, we prove that

(2) ‖|De−t∆µ,νf |‖ℓp(E,µ) ≤
C√
t
‖f‖ℓp(V,ν).

Our proof adopts a symmetrization argument for the “pseudo-gradient”. That is,
one writes for 1 < p ≤ 2

Γp(f)(x) = pf∆µ,νf − f2−p∆µ,ν(f
p) =

∑

y

µxy

νx
γp(f(x), f(y)),

where γp(α, β) = pα(α − β) − α2−p(αp − βp), ∀α, β ≥ 0. A crucial observation is
that γp(α, β) + γp(β, α) ≃ (α − β)2. Hence one can run the gradient estimate by
using the analyticity of heat semigroup and Hölder’s inequality.

In [1], we further carry (Gp) to Dirichlet spaces. Let X be a good measurable
space equipped with a σ-finite measure µ. Let (E ,F = Dom(E)) be a Dirichlet
form on L2(X,µ) and {Pt}t>0 be the associated heat semigroup. Assume that Pt
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is conservative, i.e. Pt1 = 1. Then the analogue of (Gp), 1 < p ≤ 2, has the form

(3) ‖Ptf‖p,1/2 ≤
C√
t
‖f‖p,

where ‖·‖p,1/2 is the seminorm of the heat semigroup-based Besov space introduced
in [1]:

B
p,α(X) =

{

f ∈ L
p(X), ‖f‖p,α := sup

t>0

1

tα

(∫

X

Pt(|f − f(y)|p)(y)dµ(y)

)1/p

< ∞

}

.

The symmetrization argument in [4] can also be applied in this setting.
The property (Gp), 1 < p ≤ 2, on Riemannian manifolds or its substitutes (1),

(2) on graphs and (3) on Dirichlet spaces describe the regularity of heat semigroups
in different settings. These properties turn to be very powerful tools dealing with
problems arising in analysis. We describe two applications here.

• One application is on the Lp boundedness of Riesz transform ∇∆−1/2 on
Riemannian manifolds or graphs. Assuming volume doubling property
and Gaussian heat kernel upper bound, Coulhon and Duong [5] proved
that ∇∆−1/2 : Lp → Lp for 1 < p ≤ 2. The key ingredient is a weighted
version of (G2) which was proved by Grigor’yan in [7] using integration by
parts. Replacing the Gaussian upper bound by a sub-Gaussian one (which
is satisfied by some fractal-like manifolds or graphs), we prove in [3] the
same results. In this case Grigor’yan’s approach does not work anymore.
As a natural substitute, we use a weighted version of (Gp) for 1 < p < 2,
which follows from Dungey’s idea on the use of chain rule.
• The other application is on the study of critical exponents of Besov spaces,
i.e., α∗(p) = sup{α : Bp,α is nontrivial}. The property (3) leads to a
stronger version of pseudo-Poincaré inequality for p ≥ 2. As a consequence,
one can deduce α∗(p) ≤ 1/2 for p ≥ 2.
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Listening to the shape of a drum

Fabio E.G. Cipriani

(joint work with J.-L. Sauvageot, C.N.R.S. Paris France)

In a famous paper H. Weyl [7] shown that the volume and the dimension of a
Euclidean domain can be captured from the asymptotics of the eigenvalues of the
Laplace operator. In a as much famous paper [4] M. Kac analyzed this and other
connections between the geometry of a domain or Riemannian manifold and the
spectrum of the Laplace operator. However the question posed by the title of his
conference relied on a vain hope as J. Milnor had just showed in [6] the existence of
two non isometric 16-dimensional tori sharing the same spectrum. Since then an
enormous amount of efforts have been dedicated to the elucidation of questions of
spectral geometry, often involving other disciplines such as Probability or Topology
as in the works of S. Bochner, K. Yano, H.P. Jr. McKean and I.M. Singer.

The starting point of our work was to reconsider Kac’s question from a new point
of view: instead to remain in the isometric category to compare metric spaces we
moved to the conformal category. This is after all natural as the original latin
acceptation of the adjective conformal, i.e. conformalis, is sharing the same shape.
Hence in this work we judge two Euclidean domains as equivalent if they are trans-
formed one into the other by a conformal transformation, i.e. a transformation
preserving orthogonality (and more in general, preserving angles between curves).
By the rigidity theorem of J. Liouville, these are just restrictions of Möbious trans-
formations, i.e. compositions of a finite number of translations, rotations, dilations
and symmetry with respect to the unit sphere (in fact reflections with respect to
spheres of arbitrary centers and radii generate the whole Möbious group).

A first novelty of our work concerns the tools we introduce. They rely on potential
theory and in particular on the notion of multiplier of the Sobolev space H1(Ω),
the latter viewed as the form domain of the Dirichlet integral D.

A second novelty is to disregard the overtones 0 < µ1(Ω, dx) < · · · < µn(Ω, dx)
< · · · of the spectrum of the Dirichlet form D with respect to L2(Ω, dx) but
rather to take into account only the first non zero eigenvalues or fundamental
tones µ1(A,Γ[a]) of D on subdomains A ⊂ Ω with respect to the space L2(A,Γ[a])
associated to the energy measures Γ[a] := |∇a|2 · dx of multipliers a of H1(A).

In a first result we prove that on the whole space Rn and for n ≥ 3, the Möbius
group G(Rn) acts isometrically on the multiplier algebraM(H1(Rn)), leaves in-
variant the Dirichlet integral D and transform unitarily the space L2(Rn,Γ[a])
onto the space L2([R]n,Γ[a ◦ γ]). Hence the spectrum of D on L2(Rn,Γ[a]) is
constant along the orbit of a ∈ M(H1(Rn)) in the multiplier algebra under the
action of the Möbius group. This result is then localized in various ways.

The second main result shows that the conformality of an homeomorphism γ
between Euclidean domains Ω and γ(Ω) can be detected spectrally from the
invariance of the fundamental tone of the Dirichlet integral D on all subdo-
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mains A ⊆ Ω with respect to the energy measure of all finite energy multipliers
a ∈ FM(H1(Rn))

µ1(γ(a),Γ[a]) = µ1(A, γ[a ◦ γ]).

Similar spectral characterizations of the class of quasi-conformal and quasi-regular
maps are also proved.

The method used to prove the first mean result combines the known conformal
invariance of the Hardy-Littlewood- Sobolev functional, the isometric action of
the Möbius group G(Rn) on the multiplier algebra M(H1(Rn)) and the unitary
conformal flow of the energy measures G(Rn) ∋ γ 7→ Γ[a ◦ γ] of multipliers.

The second main result is based on i) a property of persistence of the spectral
gap of D under a change of reference measure from the Lebesgue one dx to the
energy measure Γ[a] of a multiplier (the ratio of these spectral gaps is bounded
in terms of the multiplier seminorm η(a) of a ∈ M(H1(Rn))) and on ii) an upper
bound on the fundamental tone of D with respect to an energy measure Γ[a],
involving the conformal volume of the domain ( results due to Li-yau in [5] for
surfaces and to Colbois-El Soufi-Savo in [3] for general Riemannian manifolds).

Finally, the results of this work suggest that the natural setting to discuss
geometric properties of the spectrum is the one of the Potential Theory of Dirichlet
forms [1] and their multipliers [2]. In particular, a distinguished role is played by
the extended Dirichlet space H1

e (R
n) and its multiplier algebra and by the process

of random time change in Dirichlet spaces as elaborated in [1].
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The Dirichlet–Ferguson Diffusion on the Space of Probability
Measures over a Closed Riemannian Manifold

Lorenzo Dello Schiavo

Wasserstein geometry. In the last two decades, the space P of all Borel
probability measures over a Riemannian manifold (M, g), endowed with the L2-
Kantorovich–Rubinshtein distance W2, has proven both a powerful tool and an
interesting geometric object in its own right. Since the fundamental works of
Y. Brenier, R. J. McCann, F. Otto, C. Villani, N. Gigli, and many others, sev-
eral geometric notions have been introduced, including those of geodesics, tangent
space TµP at a point µ in P and gradient ∇u(µ) of a scalar-valued function u at
µ. Indeed, the metric space P2 := (P,W2) may — to some extent — be regarded
as a kind of infinite-dimensional Riemannian manifold. Furthermore, provided
that (M, g) be a closed manifold with non-negative sectional curvature, P2 has
non-negative lower curvature bound in the sense of Alexandrov.

Volume measures on P2. The question of the existence of a Riemannian volume
measure on P2, say dvolP2 , has been insistently posed and remains to date not
fully answered. A first natural requirement that one might ask of such a measure
— if any — is an integration-by-parts formula for the gradient, which would imply
the closability of the form

E(u, v) :=
∫

P

〈
∇u(µ)

∣∣∇v(µ)
〉
TµP

dvolP2(µ) .(E)

Further requirements are the validity of a Rademacher-type property, i.e. the
dvolP2 -a.e. differentiability of W2-Lipschitz functions, and of its converse, the
so-called Sobolev-to-Lipschitz property. Together, these properties would grant
the identification of W2 with the intrinsic distance induced by E .

Diffusions processes on P. When the Dirichlet form (E) is regular, it is asso-
ciated with a corresponding Markov process µ• deserving the name of “Brownian
motion” on P2. Several processes constructed in this fashion have been studied
on P2 when M is a one-dimensional manifold, possibly with boundary. Indeed,
in this case — and only in this case — P2 is a compact convex subset in a sep-
arable Hilbert space, and the problem may be addressed by finite-dimensional
approximation techniques involving orthonormal bases.

One-dimensional base spaces. In the case whenM = S1, the unit circle, orM = I,
the closed unit interval, M.-K. von Renesse and K.-T. Sturm proposed the entropic
measure Pβ [11] as a candidate for dvolP2 and constructed the associated Wasser-
stein diffusion µwd

• . Whereas the construction of the entropic measure in the case
when M is an arbitrary closed Riemannian manifold was subsequently achieved
by K.-T. Sturm in [13], many of its properties, in particular the closability of the
associated form (E), remain unknown. Similar constructions to the Wasserstein
diffusion — up to now confined to one-dimensional base spaces — include J. Shao’s



Heat Kernels, Stochastic Processes and Functional Inequalities 3349

Dirichlet–Wasserstein diffusion [12], whenM = S
1 or I; V. V. Konarovskyi’smod-

ified massive Arratia flow [7, 9], whenM = I; and Konarovskyi and von Renesse’s
coalescing-fragmentating Wasserstein dynamics [8], when M = R.

Multi-dimensional base spaces. In [4], we provide two constructions of a Markov
diffusion µdf

• with state space P whenM is an arbitrary closed manifold of dimen-
sion d ≥ 2. On the one hand, combining results by Bendikov–Saloff-Coste [2] and
Albeverio–Daletskii–Kondratiev [1] about elliptic diffusions on infinite products,
we characterize µdf

• as the super-process constituted by up to countable indepen-
dent massive Brownian particles with volatility equal to the inverse of their mass.
Thus, we may regard µdf

• as a possible counterpart overM of Konarovskyi’s Modi-
fied Massive Arratia Flow [7] over the unit interval. Here, no coalescence occurs by
reasons of the dimension ofM . On the other hand, we show that µdf

• is associated
with the symmetric strongly local regular Dirichlet form (E) when dvolP2 is the
Dirichlet–Ferguson random measure D introduced in [6]. In this case, the form
additionally satisfies the Rademacher property, so that µdf

• is a possible candidate
for a canonical diffusion process on P2.

Some open questions. Several open questions remain in addressing the exis-
tence and properties of natural “Riemannian volume measures” on P2. Firstly,
that one may consider different measures dvolP2 from those listed above. Sec-
ondly, that there is an interplay between such measures and some representa-
tions of infinite-dimensional Lie groups on L2(dvolP2). Thirdly, that for every
such measure one may study synthetic curvature bounds for the metric measure
space (P,W2, dvolP2).

Other measures. For the choice dvolP2 = D, it is possible to show that the set
of measures µ0 on M absolutely continuous w.r.t. dvolg is polar for the form (E).
In particular, µdf

• may not have the Feller property on the whole of P2, in which
case it would not be possible to start the process at any such measure µ0. This
prompts to investigate the closability and other properties of the (pre-)Dirichlet
form (E) with different choices for dvolP2 , possibly concentrated on the set of
probability measures on M with density w.r.t. dvolg. A meaningful requirement
for these measures is their quasi-invariance w.r.t. the natural action on P of the
(Lie) group of diffeomorphisms Diff(M), granting the validity of the Rademacher
property, [5].

Representations of large groups. The (quasi-)invariance of dvolP2 under the action

ψ. : µ 7→ ψ♯µ := µ ◦ ψ−1 , ψ ∈ Diff(M)(	)

induces a (quasi-)regular representation of Diff(M) acting unitarily on the Hilbert
space L2(dvolP2). The latter space is sufficiently large for the representation to
capture important properties of the group: for instance the fact that the Dirichlet–
Ferguson measure D is not quasi-invariant w.r.t. (	) is related to the fact that
the natural action of Diff(M) on M is n-transitive for every finite n, but not σ-
transitive. The invariance properties of other choices for dvolP2 remain to date an
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open problem, related to a long-standing program in the representation of infinite-
dimensional Lie groups initiated by I. M. Gel’fand, M. I. Graev and A. M. Vershik,
see [10] and Ref.s therein.

Curvature properties. As an effect of the dimension of the base space M , the
process µdf

• is not ergodic, having in fact a continuum of disjoint invariant sets.
For the metric measure space (P,W2,D) this partially rules out the study of

synthetic Ricci-curvature lower bounds in the sense of Bakry–Émery or Lott–
Sturm–Villani. Other negative results are known, including the fact that, for
the entropic measure, the space (P(S1),W2,Pβ) does not satisfy any curvature-
dimension condition, [3]. The validity of the (Riemannian) curvature-dimension
condition for (P,W2, dvolP2) for some appropriate choice of dvolP2 would provide
a new class of examples of non-flat, infinite-dimensional spaces with synthetic
Ricci-curvature lower bounds.
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Uniform volume doubling and functional inequalities
on compact Lie groups

Nathaniel Eldredge

(joint work with Maria Gordina, Laurent Saloff-Coste)

Summary: We say a compact connected Lie group K is uniformly doubling if
there is a uniform upper bound for the volume doubling constants DK,g of all left-
invariant Riemannian metrics g on K. In this setting, many interesting functional
inequalities for the Laplacian ∆g hold with constants depending only on DK,g,
and so in a uniformly doubling group, they hold with constants uniform over all g.
Abelian Lie groups trivially have this property, but in our paper [4], we present a
first example of a non-abelian uniformly doubling group: the special unitary group
SU(2).

Recall that the volume doubling constant DK,g is defined as

DK,g := sup
x∈K,r>0

Volg(Bg(x, 2r))

Volg(Bg(x, r))

where Volg denotes the Riemannian volume induced by g (here a multiple of Haar
measure) and Bg is the ball of the Riemannian distance. It can be shown, via the
group invariance, that (K, g) satisfies a Poincaré inequality on balls, with constant
depending only on DK,g [7, 11, 13]; namely, for all f ∈ C∞(K) we have

∫

B(x,r)

|f − fx,r|2 dVol ≤ 2DK,gr
2

∫

B(x,2r)

|∇f |2 dVol

where fx,r =
∫
B(x,r)

f dVol is the average of f over B(x, r). It is well known

that doubling and Poincaré together imply several other interesting functional
inequalities, which in this case will therefore hold with constants depending only
on DK,g:

• Heat kernel estimates [3, 6, 10, 11, 12] of the form

pt(x, y) ≤ C
(1 + d(x, y)2/4t)κ

V (
√
t)

exp

(
−d(x, y)

2

4t

)

pt(x, y) ≥
c

V (
√
t)

exp

(
−Ad(x, y)

2

t

)

where V (r) = Volg(Bg(e, r)) denotes the volume of a ball of radius r;
• Parabolic Harnack inequalities [5, 9];
• Spectral gap and Weyl eigenvalue estimates [8], of the form

c
Vol(K)

V (s−1/2)
≤W(s) ≤ C Vol(K)

V (s−1/2)
.

where W(s) is the number of eigenvalues less than s;
• Riesz transform bounds [1, 3] of the form

c‖∇f‖Lp ≤ ‖∆1/2f‖Lp ≤ C‖∇f‖Lp
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As such, in a uniformly doubling group, the above inequalities would hold for all
g ∈ L(K) with constants depending only on DK , independent of g.

The main result of our paper [4] is that the special unitary group SU(2) is
uniformly doubling; to our knowledge, this is the first example of a non-abelian
group known to have this property. (It is trivially satisfied in an abelian Lie group.)
The proof is based on explicit estimation of the volume function V (r) in terms
of a convenient parametrization of metrics g ∈ L(SU(2)), which also provides for
each g an orthogonal basis satisfying simple Lie bracket relations. We show that
at different scales, the g-balls of SU(2) can resemble those of Euclidean space R

3,
the sub-Riemannian geometry on the Heisenberg group H3, or the sphere S2.

The proof also gives uniform doubling results for the left-invariant sub-Rie-
mannian geometries on SU(2), implying that their corresponding sub-Laplacians
satisfy the same functional inequalities mentioned above (suitably renormalized),
with the same uniform bounds on the constants.

We remark that in the recent paper [2], the authors showed that the Sasakian
left-invariant Riemannian metrics on SU(2), which form a proper subfamily of
L(SU(2)) uniformly satisfy a measure contraction property MCP (κ,N). This
raises the question as to whether this property could hold uniformly over all g ∈
L(SU(2)).

We conjecture that every compact connected Lie group may be uniformly dou-
bling, and seek to obtain more examples. As work in progress, we consider the
unitary group U(2); because of its close connection to SU(2), we believe that simi-
lar methods may show that it is uniformly doubling, but the computations become
considerably more complex. However, to resolve the question for large classes of
groups, we expect that new methods will be required.
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A variational characterization of the Sineβ process

Matthias Erbar

(joint work with Martin Huesmann, Thomas Leblé)

We prove that, at every positive temperature, the infinite-volume free energy of
the one dimensional log-gas, or beta-ensemble, has a unique minimiser, which is
the Sine-beta process arising from random matrix theory. We rely on a quantita-
tive displacement convexity argument at the level of point processes, and on the
screening procedure introduced by Sandier-Serfaty.

The one-dimensional log-gas in finite volume can be defined as a system of particles
interacting through a repulsive pairwise potential proportional to the logarithm of
the distance, and confined by some external field. For a fixed value of β > 0, called
the inverse temperature parameter, and for N ≥ 1, we consider the probability

measure PN,β on ~XN = (x1, . . . , xN ) ∈ RN defined by the density

(1) dPN,β( ~XN ) :=
1

ZN,β
exp


−β


∑

i<j

− log |xi − xj |+
N∑

i=1

N
x2i
2




 ,

with respect to the Lebesgue measure on RN . The quantity ZN,β is a normalization
constant, the partition function. We call PN,β the canonical Gibbs measure of
the log-gas. Part of the motivation for studying log-gases comes from Random
Matrix Theory (RMT), for which PN,β describes the joint law of N eigenvalues in
certain classical models: the Gaussian orthogonal, unitary, symplectic ensemble
respectively for β = 1, 2, 4, and the “tridiagonal model” discovered in [DE02] for
arbitrary β. We refer to the book [For10] for a comprehensive presentation of the
connection between log-gases and random matrices. Log-gases are also interesting
from a statistical physics point of view, as a toy model with singular, long-range
interaction.

Questions about such systems usually deal with the large N limit (also called
thermodynamic, or infinite-volume limit) of the system, as encoded by certain
observables. For example, in order to understand the “global” behavior, one may

look at the empirical measure 1
N

∑N
i=1 δxi , and asks about the typical behavior

of this random probability measure on R as N tends to infinity. By now, this is
fairly well understood, we refer e.g. to the recent lecture notes [Ser17] and the
references therein. In the present work, we are rather interested in the asymptotic
behavior at microscopic scale.
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Let CN,0 be the point configuration CN,0 :=
∑N

i=1 δNxi , where ~XN = (x1, . . . , xN )
is distributed according to PN,β. The limit in law of CN,0 as N → ∞ was con-
structed in [VV09] and named the Sineβ process. We refer to [KS09] for a different
construction of a process that turns out to be the same, and to [VV17a, VV17b]
for recent developments concerning Sineβ . This process is the universal behavior

of log-gases (in the bulk), in the sense that replacing the
x2
i

2 term in (1) by a
general potential V (xi) yields the same microscopic limit, up to a scaling on the
average density of points (our convention is that Sineβ has intensity 1) and mild
assumptions on V , see e.g. [BEY14].

In [LS17], the infinite-volume free energy of the log-gas (and of other related
systems) was introduced as the weighted sum Fβ := βW+E , where the functionals
W , E and the free energy Fβ are defined on the space of stationary random point
processes. The functionalW corresponds to the “renormalized energy” introduced
in [SS12], and E is the usual specific relative entropy. The free energy Fβ appears in
[LS17] as the rate function for a large deviation principle concerning the behavior of

log-gases at the microscopic level. If ~XN = (x1, . . . , xN ) is an N -tuple of particles
distributed according to the Gibbs measure (1) of a log-gas, they are known to
typically arrange themselves on an interval approximately given by [−2, 2]. For
x in this interval, we let CN,x be the point configuration (x1, . . . , xN ) “seen from

x”, namely CN,x :=
∑N

i=1 δN(xi−x). We may then consider the empirical field

EmpN ( ~XN ) of the system in the state ~XN , defined by averaging CN,x over x,
which yields a probability measure on (finite) point configurations in R, and it
was proven in [LS17] that its law satisfies a large deviation principle, at speed
N , with a rate function built using Fβ . We refer to the paper cited above for a
precise statement, here it suffices to say that understanding the minimisers of Fβ

gives an understanding of the typical microscopic behavior of a finite N log-gas at
temperature β, when N is large.

For any β in (0,+∞), the functional Fβ is known to be lower semi-continuous,
with compact sub-level sets. In particular, it admits a compact subset of minimis-
ers. However, the question of uniqueness of minimisers for Fβ remained open, and
is our main result in this work.

Theorem 1. For any β in (0,+∞), the free energy Fβ has a unique minimiser.

Since it was proven in [LS17, Corollary 1.2] that Sineβ minimises Fβ, we deduce
that for any β in (0,+∞), the Sineβ process is the unique minimiser of Fβ. This
provides a variational characterization of Sineβ .

Let us briefly highlight the main ideas of the proof, where we will leverage ideas
from optimal transport. Since the free energy Fβ is affine, it is not strictly convex
for the usual linear interpolation of probability measures. We use instead the
notion of displacement convexity, which was introduced in [McC97] to remedy
situations where energy functionals are not convex in the usual sense.

We start with two stationary point processes P0,P1 such that P0 6= P1, and as-
sume that both are minimisers of Fβ. We cannot argue via displacement convexity
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directly on the level of P0,P1 since they are probability measures on infinite point
configurations. Instead, we use transport theory between finite measures together
with a careful approximation argument relying on screening of electric fields. More
precisely,

Fβ(P) = lim
R→∞

1

|ΛR|
(βWR(P) + ER(P)) ,

where WR, ER are quantities (the energy, and the relative entropy) depending on
the restriction of P to the line segment ΛR := [−R,R]. Then we can approximate
P0,P1 by finite point processes P0

R,P
1

R which are the restriction of P0,P1 to ΛR

carefully modified at the extremities of ΛR via a version of the “screening proce-
dure” of Sandier-Serfaty in order to obain processes with exactly 2R point such
that entropy and interaction energy are well approximated. Viewing P0

R,P
1

R as
probability measures on [−R,R]2R, let TR be the optimal transport map which
pushes P0

R onto P1

R and let Ph

R be the half-interpolate along the displacement TR,
i.e. the push-forward of P0

R by 1
2 (Id +TR). Since relative entropy is displacement

convex, we have

ER[Ph

R] ≤
1

2

(
ER(P0) + ER(P1)

)
.

Moreover, the interaction potential − log |x−y| is strictly convex, hence the energy
WR is also displacement convex. More precisely, we have

WR[P
h

R] ≤
1

2

(
WR(P

0) +WR(P
1)
)
−GainR,

where GainR > 0 is some quantitative positive gain due to the strict convexity of
the interaction. With some work, using the fact that P0,P1 are stationary, we are
able to show that the gain is at least proportional to R.

We turn Ph

R into a process on the full line by pasting independent copies of
itself on disjoint intervals of length 2R. The relative entropy is additive, and we
can show that the interaction of two independent copies is almost zero. Thanks
to the quantitative convexity estimate, we obtain a global candidate Ph for which

Fβ(P
h) <

1

2

(
Fβ(P

0) + Fβ(P
1)
)
,

which is the desired contradiction, hence the minimiser of Fβ is unique.
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[VV17a] B. Valkó and B. Virág. The Sineβ operator. Invent. math., 209(1):275–327, 2017.
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[SS12] É. Sandier and S. Serfaty. From the Ginzburg-Landau model to vortex lattice problems.
Communications in Mathematical Physics, 313(3):635–743, 2012.

[BEY14] P. Bourgade, L. Erdös, and H.-T. Yau. Universality of general β-ensembles. Duke Math.
J., 163(6):1127–1190, 2014.

Mott’s law for the Miller-Abrahams random resistor network and for
Mott’s random walk

Alessandra Faggionato

Mott’s law [10, 11] is a physical law concerning the low temperature decay of
conductivity in doped semiconductors and, in general, in strongly disordered d–
dimensional solids (d ≥ 2) in the regime of Anderson localization. It states that,
for β large,

(1) σ(β) ≍ A(β) exp
{
− c0β

1+α
1+α+d

}
,

where β = 1/kBT is the inverse temperature, σ(β) is the conductivity, A(β) de-
pends only weakly on β, c0 > 0 and α ≥ 0 are β–independent physical parameters
of the solid.

We recall that doped semiconductors are crystalline solids with inserted atoms of
a different type, called impurities. Due to Anderson localization, the wavefunctions
of conduction electrons are localized around impurities and can hop by quantum
tunneling. In the regime of low impurity density one can model the electron
transport by independent random walks, encoding the electron interactions into
the jump rates. The final object is therefore a suitable random walk on a marked
simple point process, which we call Mott’s random walk.

We now give the rigorous definition of Mott’s random walk. Let {xi} be the
realization of a stationary and ergodic simple point process on Rd having finite
mean density. We mark each point xi with a random variable Ei, called energy
mark. The random variables (Ei) are i.i.d. with common distribution ν. Physically
relevant distributions ν are of the form

(2) να(dE) ∝ |E|αI(|E| ≤ C0)dE ,

for suitable constants C0 > 0 and α ≥ 0. Then ω := {(xi, Ei)} is the realization
of the marked simple point process. We call P its law.

Given ω as above, Mott’s random walk (Xω
t )t≥0 is the continuous time random

walk with state space {xi} and probability rate for a jump from xi to xj 6= xi
given by

(3) cxi,xj(ω) = exp
{
−|xi − xj | − β(|Ei|+ |Ej |+ |Ei − Ej |)

}
.
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In [1] we have proved (under suitable conditions and for d ≥ 2) that for P–a.a.
ω = {(xi, Ei)}, as ǫ ↓ 0, the diffusively rescaled Mott’s random walk

(4)
(
ǫXω

t/ǫ2

)
t≥0

weakly converges to a Brownian motion with diffusion matrix D(β), which is non-
random and strictly positive. Moreover, D(β) admits the following variational
characterization: for all a ∈ Rd it holds

(5) a ·D(β)a = inf
f∈L∞(P0)

1

2

∫
dP0(ω)

∑

xi∈ω̂

c0,xi(ω) (a · xi −∇xif(ω))
2
.

Above P0 denotes the Palm distribution associated to P, ω̂ := {xi} if ω =
{(xi, Ei)}, ∇xif(ω) := f(τxiω) − f(ω) and finally τxω := {(xi − x,Ei)} if ω =
{(xi, Ei)} and x ∈ Rd. From now on we restrict to isotropic media, thus implying
that D(β) = d(β)I. Assuming that Mott’s random walk satisfies Einstein’s rela-
tion (as proved in [4] for d = 1), Mott’s law (1) can be restated by replacing σ(β)
with d(β) in (1). We point out that in [5, 8] we proved lower and upper bounds on
the diffusion coefficient d(β) in agreement with Mott’s law: for suitable positive
constants c1, c2 > 0 and for β large it holds

(6) exp
{
− c1β

1+α
1+α+d

}
≤ d(β) ≤ exp

{
− c2β

1+α
1+α+d

}
.

In our talk we discuss the derivation of Mott’s law for d(β) recently obtained in
[2]. More precisely, under suitable conditions, we have proved that

(7) lim
β→∞

β− 1+α
d+1+α ln d(β) = c ,

where c < 0 admits a percolative characterization. The proof uses previous results
in homogenization and percolation theory recently obtained in [3, 6, 7] and the
variational characterization (5).

By using 2-scale homogenization, we have proved in [3] that d(β) coincides P–
a.s. with limL→∞L2−dσL(ω, β), where σL(ω, β) is the effective conductivity along
a given direction of the so called Miller-Abrahams random resistor network in a
box of size L (cf. [9, 10]). As a consequence, the limit (7) implies also Mott’s
law for the infinite volume rescaled conductivity of the Miller-Abrahams random
resistor network.
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Existence and uniqueness of the Liouville quantum gravity metric for
γ ∈ (0, 2)

Ewain Gwynne

(joint work with Jason Miller)

Fix γ ∈ (0, 2), let U ⊂ C be an open domain, and let h be the Gaussian free
field (GFF) on U , or some minor variant thereof. The γ-Liouville quantum grav-
ity (LQG) surface described by (U, h) is formally the random two-dimensional
Riemannian manifold with metric tensor

(1) eγh (dx2 + dy2),

where dx2 + dy2 is the Euclidean Riemannian metric tensor.
LQG surfaces were first introduced in the physics literature by Polyakov in

the 1980’s as canonical models of random two-dimensional Riemannian manifolds.
Another motivation to study LQG surfaces is that they describe the scaling limit
of random planar maps. The special case when γ =

√
8/3 corresponds to uni-

form random planar maps, including uniform triangulations, quadrangulations,
etc. Other values of γ correspond to random planar maps sampled with probabil-
ity proportional to the partition function of an appropriate statistical mechanics
model on the map.

The definition (1) of the LQG metric tensor does not make literal sense since
h is only a distribution, not a function, so it does not have well-defined pointwise
values and hence cannot be exponentiated pointwise. Nevertheless, it is well known
that one can make sense of the associated volume form µh = eγh(z) dz (where dz
denotes Lebesgue measure) as a random measure on U via various regularization
procedures [10, 5].

In order for γ-LQG to be a reasonable model of a “random two-dimensional
Riemannian manifold”, one also needs to construct the Riemannian distance func-
tion associated with an LQG surface, which should be a random metric Dh on U .
Certain special LQG surfaces equipped with this distance function should describe
the scaling limits of random planar maps equipped with the graph distance with
respect to the Gromov-Hausdorff topology. Constructing a distance function on γ-
LQG is a much more difficult problem than constructing the measure µh. Indeed,
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any natural regularization schemes for LQG distances involves minimizing over a
large collection of paths, which results in a substantial degree of non-linearity.

Prior to our work, the γ-LQG distance function has only been constructed in
the special case when γ =

√
8/3 in a series of works by Miller and Sheffield [13, 14].

In this case, for certain special choices of the pair (U, h), the random metric space
(U,Dh) agrees in law with a Brownian surface, such as the Brownian map [11,
12]. These Brownian surfaces are continuum random metric spaces which arise as
the scaling limits of uniform random planar maps with respect to the Gromov-
Hausdorff topology.

We construct the γ-LQG distance function for all γ ∈ (0, 2) via direct reg-
ularization of the Riemannian distance function associated with (1). We now
describe how this distance function is constructed. It is shown in [2, 3] that for
each γ ∈ (0, 2), there is an exponent dγ > 2 which describes distances in vari-
ous approximations of γ-LQG (e.g., random planar maps). A posteriori, once the
γ-LQG distance function is constructed, one can show that dγ is its Hausdorff
dimension [9]. The value of dγ is not known explicitly except in the case when

γ =
√
8/3, in which case we know that d√

8/3
= 4. For γ ∈ (0, 2), we define

(2) ξ = ξγ :=
γ

dγ
.

For ε > 0, let {hε}ε>0 be a family of continuous functions which approximate
the GFF h as ε → 0 (for technical convenience we take hε to be the convolution

of h with the heat kernel pε(z) :=
1

2πεe
−|z|2/2ε). For z, w ∈ C and ε > 0, we define

(3) Dε
h(z, w) := inf

P :z→w

∫ 1

0

eξhε(P (t))|P ′(t)| dt

where the infimum is over all piecewise continuously differentiable paths from z to
w.

Let aε be the median of the Dε
h-distance between the left and right boundaries

of the unit square in the case when h is a whole-plane GFF normalized so that
its average over the unit circle is zero. It was shown by Ding, Dubédat, Dunlap,
and Falconet [1] that the laws of the functions a

−1
ε Dε

h are tight w.r.t. the local
uniform topology on C× C, and every possible subsequential limit is a metric on
C which induces the Euclidean topology. In [7], building on [1, 8, 4, 6] we proved
that the subsequential limit is unique that that the convergence in fact occurs in
probability.

Theorem 1 (Convergence of LFPP). The random distance functions a−1
ε Dε

h con-
verge in probability w.r.t. the local uniform topology on C×C to a random distance
function Dh on C which is a.s. determined by h.

We define the limiting distance function in Theorem 1 to be the γ-LQG distance
function. In addition to proving the existence of the limit we also show that the
limiting distance function is uniquely characterized by a list of natural properties
that any reasonable notion of a γ-LQG distance function should satisfy, so is in
some sense the only “correct” distance function on γ-LQG.
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Our proofs are completely elementary in the sense that they use only basic prop-
erties of the Gaussian free field.
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Differential Harnack inequalities on path space

Robert Haslhofer

(joint work with Eva Kopfer and Aaron Naber)

Consider a Riemannian manifold (Mn, g) and for f :M → R denote by ft :M → R

the solution of the heat equation (∂t−∆)ft = 0 with f0 = f . The classical Li-Yau
differential Harnack inequality [3] tells us that if f is nonnegative and Rc ≥ 0,
then we have

∆ft
ft
− |∇ft|

2

f2
t

+
n

2t
≥ 0 .(1)

Hamilton [1], under the more restrictive assumption that sec ≥ 0 and ∇Rc = 0,
proved the Hessian version of (1) given by

∇2ft
ft
− ∇ft ⊗∇ft

f2
t

+
g

2t
≥ 0 .(2)

In [2], we found differential Harnack inequalities on path space, which can be
viewed as generalizations of the above classical inequalities on manifolds.
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Recall that path space PxM is the space of all continuous curves γ : [0,∞)→M
starting at x. It comes equipped with the Wiener measure Px of Brownian motion,
which is characterized by the formula

(3) Px[γt1 ∈ U1, . . . , γtk ∈ Uk] =

∫

U1×...×Uk

ρt1(x, dy1) . . . ρtk−tk−1
(yk−1, dyk),

where ρt(x, dy) denotes the heat kernel measure.
We consider the following new notions of gradients, Hessians and Laplacians

on path space. Let ϕ : [0,∞) → R be an H1
0 -function. The ϕ-gradient ∇ϕF :

PxM → TxM is defined by

〈∇ϕF, v〉 =
d

ds

∣∣∣
s=0

F (γs) ,(4)

where γs is a family of curves with ∂s|s=0γs = ϕV . Here, V denotes the vector
field along γ obtained by parallel translating v. Similarly, the ϕ-Hessian HessϕF :
PxM → T ∗

xM ⊗ T ∗
xM is defined by

HessϕF (v, v) =
d2

ds2

∣∣∣
s=0

F (γs) ,(5)

where γs is a family of curves with ∂s|s=0γs = ϕV and ∇ϕV

(
∂sγs

)
= 0. Finally,

the ϕ-Laplacian ∆ϕF : PxM → R obtained by tracing the ϕ-Hessian:

∆ϕF = tr
(
HessϕF

)
.(6)

Let us now state our main theorem in the context of Ricci flat spaces:

Theorem. Let M be a Ricci-flat manifold, and let F : PxM → R+ be a nonneg-
ative function on path space. Then, for all ϕ ∈ H1

0 (R
+) we have the inequality

Ex [∆ϕF ]

Ex[F ]
−
∣∣Ex [∇ϕF ]

∣∣2

Ex[F ]2
+
n

2
||ϕ||2 ≥ 0.(7)

For illustration, consider a function F : P0M → R
+ which only depends on the

value of the curve at a single time. Namely, let F (γ) = f(γt), where f :M → R+

and t > 0 are fixed. Let ϕ(s) = s
t for s ≤ t and ϕ(s) = 1 for s ≥ t. First, note

that ||ϕ||2 = 1
t . Next, it is an instructive exercise to compute

∇ϕF (γ) = Pt(γ)∇f(γt) ,
∆ϕF (γ) = ∆f(γt) ,(8)

where Pt(γ) : Tγ(t)M → TxM denotes parallel transport. Finally, using this and
the Feynman-Kac formula we can derive the equalities

Ex[F ] =

∫

M

f(y)ρt(x, dy) = ft(x) ,

Ex[∆ϕF ] = ∆ft(x) ,

Ex[∇ϕF ] = ∇ft(x) .(9)

Plugging all of this into (7) we obtain precisely the Li-Yau Harnack inequality (1).
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Plugging in a (smeared) delta function, our main theorem implies

−∆ϕ lnPx ≤
n

2
(10)

for all normalized ϕ, which can be viewed as Laplace comparison theorem for the
Wiener measure on the path space of Ricci-flat manifolds.

Finally, we also have a differential Matrix Harnack inequality on path space of
general manifolds, meant to generalize Hamilton’s Matrix Harnack (2):

Theorem. Let F : PxM → R+ be a nonnegative ΣT -measurable function on path
space. Then, for every ϕ ∈ H1

0 (R
+) we have the inequality

(11)
Ex[HessϕF ]

Ex[F ]
− Ex[∇ϕF ]⊗ Ex[∇ϕF ]

Ex[F ]2

+

(
1

2
+ CT (Rc) + CT (Rm,∇Rc)

Ex[F
2]1/2

Ex[F ]

)
||ϕ||2gx ≥ 0,

where CT (Rc) <∞ and CT (Rm,∇Rc) <∞ are constants, which converge to 0 as
|Rc| → 0 and |Rm|+ |∇Rc| → 0, respectively.
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Transport inequalities on the Poisson space

Ronan Herry

(joint work with N. Gozlan, G.Peccati)

We establish new transport-entropy inequalities for various random point measures
including the important case of the Poisson random measures. Roughly speaking,
understanding what happens to transport-entropy inequalities in the framework
of random point processes serves as the basic motivation behind this work. The
investigation of transport-entropy inequalities starts in the nineties with works
by Marton [10, 11] and by Talagrand [16], in connection with the concentration
of measure phenomenon for product measures. We refer to [9, Chapter 6], [17,
Chapter 22], [3, Chapter 9] and [7, 6] for general introductions and surveys on
these intimately related topics. For simplicity, we only present what happens to
Marton’s inequality on the Poisson space.

The relative entropy H of ν1 with respect to ν2 is defined by

(1) H(ν1|ν2) =
∫

log
dν1
dν2

dν1,
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if ν1 ≪ ν2, and +∞ otherwise. The Maton cost which is a variant of the Monge-
Kantorovich costs is defined as follows:

(2) M2(ν1|ν2) = inf E
[
P(X1|X2)

2
]
,

where the infimum runs over the set of all couples (X1, X2) of random variables
such that X1 ∼ ν1 and X2 ∼ ν2. We refer to [8] for the presentation of the
unifying framework of generalized transport costs which contains in particular
Monge-Kantorovich as well as Marton transport costs. Marton’s transport cost
also admits the following explicit expression: if ν1 and ν2 are absolutely continuous
with respect to some measure µ on Z, with ν1 = f1µ and ν2 = f2µ, then by [10]

(3) M2(ν1|ν2) =
∫ [

1− f1
f2

]2

+

f2 dµ.

Contrary to Talagrand’s inequality which is satisfied only by some specific prob-
ability measures, according to [10] Marton’s inequality holds for any probability
measures. A classical version of Marton’s universal transport inequality reads as
follows: for any probability measure µ on Z, it holds

(4) M2(ν1|ν2) ≤ 4H(ν1|µ) + 4H(ν2|µ),
for all ν1, ν2 ∈ P (Z). One can understand this inequality as a reinforcement of the
classical Csiszar-Kullback-Pinsker inequality (see e.g [7] and the references therein)
comparing the squared total variation distance to relative entropy. We refer to
[5, 13, 14] for subsequent refinements of Marton’s inequality. Similarly to the
classical Talagrand’s inequality, Marton’s inequality has interesting consequences
in terms of concentration of measure. As [10] shows, Eq. 4 gives back the universal
concentration of measure inequalities for product measures involving the so-called
“convex distance” discovered by Talagrand in [15]. To avoid entering into too
technical details in this introduction, let us recall a more concrete application
of Eq. 4 in terms of deviation inequalities for convex functions. Namely, if we
equip Z = Rp with the standard Euclidean norm and µ ∈ P (Rp) has a bounded
support whose diameter is denoted by D, then for any n ≥ 1, and for any vector
(X1, . . . , Xn) of i.i.d random variables with common law µ, it holds

(5) P(f(X1, . . . , Xn) ≥ t) ≤ e−t2/4D2

, ∀t ≥ 0,

for all convex or concave function f : (Rp)n → R which is of mean 0 with respect
to µ⊗n and 1-Lipschitz with respect to the Euclidean norm on (Rp)n.

We consider a Πν that is the law of a Poisson point process with intensity
ν, which, for simplicity, we assume finite. In our work, we highlight a general
principle leading to transport-entropy inequalities for point processes: Πν inherits
the transport inequalities satisfied by its intensity measure ν. We now state a
representative result illustrating this general rule in the setting of Eq. 4. We
introduce the following cost: for any Π1,Π2 ∈ P (Mb(Z)),

M
2(Π1|Π2) = inf E



∫

E

[[
1− η1(x)

η2(x)

]

+

∣∣∣∣∣ η2
]2

η2(dx)


 ,
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where ηi(x) is a slightly abusive notation for ηi({x}), and where the infimum runs
over the set of couples (η1, η2) of random measures such that η1 ∼ Π1 and η2 ∼ Π2.

Theorem 1. For any ν ∈ Mb(Z), the Poisson point process Πν satisfies the
following inequality: for all Π1,Π2 ∈ P (Mb(Z)),

M
2(Π1|Π2) ≤ 4H(Π1|Πν) + 4H(Π2|Πν).

In the setting of Poisson point processes, [12] uses the Talagrand convex distance
to prove concentration of measure results for Poisson random measures. We can
recover, in the spirit of Marton’s work, the results of [12] using Thm. 1. Building
on the ideas of [4], [1] considers a different approach towards concentration on
measure for Poisson point processes. They obtain various general conditions on
a functional F : Mb(Z) → R in order for the random variable F (η) to satisfy a
deviation inequality. Since the spaceMb(Z) does not come with a natural distance,
a rather involved technical condition replaces the condition of being Lipschitz that
is classical in the theory of concentration of measure. However, [1, 2] shows that
the so-called geometric U -statistics always satisfy this condition, and hence always
satisfy some concentration of measure. Based on Thm. 1, we recover a deviation
inequality for U -statistics in the spirit of [1, 2] with a simple argument. We also
obtain from Thm. 1 a modified logarithmic Sobolev inequality on the Poisson space
for convex non-decreasing functionals.
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Quantum Optimal Transport

David F. Hornshaw

We consider the following problem:

How do we transport qubits of arbitrary size “optimally”?

For all n ∈ N, we understand an n-qubit to be a state on the finite-dimensional
C∗-algebra Aj := ⊗j

n=1M2(C). The arbitrary size condition requires us to pass to
the limit, i.e. the CAR-algebra A := ⊗∞

n=1M2(C) and its state space S(A). The
latter consists of all positive functionals on A of norm one.

The principal idea considered in several papers by E. Carlen and J. Maas for the
finite-dimensional case is to consider a noncommutative, or quantum, version of a
dynamic transport metric (cf. [2],[3]) in the spirit of Benamou-Brenier (cf. [1]). In
fact, we consider the more general setting of AF-C∗-algebras in [4] for which the
above is but one illustrative example.

We thus give an extension of quantum transport metrics to different infinite-
dimensional cases based on the finite-dimensional ones. Returning to our example
above, we require: a module derivation ∇ defined on A mapping into another
AF-C∗-algebra and an energy functional E on a set of admissible paths.

We moreover require both to be compatible with the approximately finite-
dimensional structures in use. Here, the majority of technical work takes place
and we obtain a crucial locality property for ∇. In essence and upon choosing in-
ner products induced by faithful traces on domain and codomain, locality ensures
∇(Aj) ⊂ Aj and ∇∗(Aj) ⊂ Aj for all j ∈ N.

Locality allows us to control the continutiy equation given by ∇ by controlling
all finite-dimensional ones given by ∇|Aj

. This shows compatibility of admissible
paths w.r.t. the finite-dimensional structure.

Energy functionals Ej are given on each finite-dimensional problem, where it is
essential to use quasi-entropies as functionals in the integrand to mirror division by
a density. Doing so allows us to apply different monotonicity properties of quasi-
entropies upon restriction to C∗-subalgebras. We obtain a Γ-limit type energy
functional E = Γ-limj∈N Ej in the limit.

The answer to our starting question thus becomes: by defining first a finite-
dimensional dynamic transport distance of states on Aj for all j ∈ N, then extend-
ing to infinity using a locality property of a suitable module derivation. Examples
include iteration of infinite tensor products
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∇j := ∇j−1 ⊗ I + I ⊗∇1

starting with ∇1(x) := i([σ1, x], [σ2, x], [σ3, x]). Here, we consider the Pauli matri-
ces σk, 1 ≤ k ≤ 3, as directions and commutators as directional derivatives.

Commonly, properties of finite-dimensional quantum dynamic transport lift
readily. We thus recover relations to noncommutative relative entropy, lower Ricci
bounds and implied functional inequalities.
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Brownian disks and excursion theory for Brownian motion indexed by
the Brownian tree

Jean-François Le Gall

Brownian disks are models of random geometry that arise as scaling limits of ran-
dom planar maps with a boundary when the size of the boundary tends to infinity.
More precisely, for every p ≥ 1, consider a random Boltzmann quadrangulation
Qp with a boundary of size 2p: the probability that Qp is equal to a given (deter-
ministic) quadrangulation Q with boundary size 2p is proportional to 12−n, where
n is the number of faces of Q. Then, if one equips the vertex set V (Qp) with

the graph distance rescaled by the factor (2p/3)−1/2, the resulting random metric
space converges in distribution as p → ∞, in the Gromov-Hausdorff sense, to a
limiting random metric space (D1,∆) called the Brownian disk with boundary size
1 (by scaling, one can then consider the boundary disk Dz with boundary size z,
and one can also define the Brownian disk with fixed boundary size and volume).

The main goal of the lecture is to present a new construction of the Brownian
disk and to develop certain applications. Similarly as for the Brownian sphere
(also called the Brownian map), this construction is based on the random process
called Brownian motion indexed by the Brownian tree. The Brownian tree is a
variant of David Aldous’ CRT, and is most conveniently viewed as the compact
R-tree (Te, de) coded by a Brownian excursion (es)0≤s≤σ under the Itô measure.
Conditionally on Te, one may consider the centered Gaussian process (Ya)a∈Te

such that Yρ = 0, where ρ denotes the root of Te, and E[|Ya − Yb|2] = de(a, b)
for every a, b ∈ Te. The process (Ya)a∈Te is then called Brownian motion indexed
by the Brownian tree, or one may say that the quantities Ya are Brownian labels
assigned to the vertices of Te.
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The excursion theory developed in [1] provides a description of the connected
components of the set {a ∈ Te : Ya > 0} and the labels (values of the process
Y ) on these components. This description involves an excursion measure N∗,
which (informally) is supported on the space of compact R-trees equipped with
nonnegative continuous labels — a more rigorous presentation depends on the
concept of a snake trajectory as developed in [1]. Under N∗, one can make sense
of a “boundary size” Z0 which measures (in some sense) the number of vertices
with zero label. For every z > 0, one can also define the conditional probability
measure N∗,z = N∗(· | Z0 = z).

A basic result of [2] provides a construction of the Brownian disk with boundary
size z, which is similar to the construction of the Brownian sphere but involves
the probability measure N∗,z. Roughly speaking, if we consider a random R-tree
equipped with nonnegative labels distributed according to the measure N∗,z, the
Brownian disk is obtained by identifying pairs (a, b) of points in this tree that have
the same positive label, and such that one can go from a to b “around the tree”
encountering only points with greater label. A nice feature of this construction
is the fact that labels exactly correspond to distances from the boundary in the
Brownian disk: This allows for a simple approach to the definition of a uniform
measure on the boundary.

The preceding construction also makes it possible to identify various subsets
of the Brownian sphere as Brownian disks. In particular, connected components
of the complement of a ball in the Brownian sphere equipped with their intrin-
sic metrics are independent Brownian disks conditionally on their boundary sizes
and volumes [2]. A similar result holds for the connected components of the set
of points in a Brownian disk whose distance to the boundary is greater than a
fixed constant h ≥ 0. Moreover, the collection of the boundary sizes of these com-
ponents, viewed as a process indexed by h, evolves like a growth-fragmentation
process whose law is determined explicitly [3]. This is the continuous version of an
earlier result of Bertoin, Curien and Kortchemski dealing with large triangulations
with a boundary.
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Optimal transport: discrete to continuous

Eva Kopfer

(joint work with Peter Gladbach, Jan Maas, Lorenzo Portinale)

Dynamic discrete optimal transport has been introduced to establish a natural no-
tion of generalized lower Ricci bounds and gradient flows in the space of probability
measures. We provide convergence results for these transport metrics and will see
that they are not always compatible with the well-established 2-Wasserstein met-
ric.

Lott and Villani in [8] and Sturm in [10] independently introduced the notion
of lower Ricci bounds on metric measure spaces (X, d,m). The defining prop-
erty is given by the convexity of the relative entropy Ent( · |m) along Wasserstein
geodesics. These spaces are said to satisfy the curvature condition CD(K,∞),
where K is a lower bound of the synthetic Ricci curvature.

On these CD(K,∞)-spaces, or more restrictively on RCD(K,∞)-spaces, a pow-
erful analysis has been developed in a series of papers, like e.g. [1, 2]. One achieve-
ment is given by the fact that the heat flow can be unambiguously defined as the
L2-gradient flow of the Cheeger energy or the Wasserstein gradient flow of the
relative entropy. On RCD(K,∞) spaces this heat flow is required to be linear,

which constitutes a bridge between the Lott–Sturm–Villani and the Bakry–Émery
approach of synthetic lower Ricci bounds, leading to a characterization by Bakry-
Émery gradient estimates and Bochner inequalities.

Due to the lack of geodesics, the picture is completely different when X is a
discrete space. In particular, the Wasserstein metric W2 is not the right object
for studying evolution equations of measures or synthetic lower Ricci curvature
bounds. This observation motivated several authors to define a Riemannian-
like distance W on P(X) over the discrete set X endowed by a Markov kernel
Q with stationary, reversible measure π. The distance is a discrete variant of
the Benamou–Brenier formula, where the Markov kernel encodes the geometrical
structure of the space X : for two probability measures ρ0, ρ1 ∈ P(X) we define

W(ρ0, ρ1)
2 = inf





∫ 1

0

1

2

∑

x,y∈X

(π(x)Q(x, y))−1 Vt(x, y)
2

θ(ρt(x)
π(x) ,

ρt(y)
π(y) )

dt





where the infimum is taken among all curves (ρt, Vt)t∈[0,1] ⊂ P(X)×RX×X solving
the discrete continuity equation

∂tρt(x) +
∑

y∈X

Vt(x, y) = 0 ∀x ∈ X

and connecting ρ0 with ρ1. Here, θ : R+ × R+ → R+ is an arbitrary symmetric
mean function.

If θ is given by the logarithmic mean, this new distance W is able to model
the discrete heat flow as the gradient flow of the entropy [9], and to give meaning
to synthetic lower Ricci bounds according to Lott, Sturm, and Villani [3], as W2
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does in the continuous setting. This suggests that W is an adequate discrete
counterpart of W2.

Gigli and Maas showed in [4] that the spaces of probability measures P(Td
N )

on the periodic lattice with mesh size 1
N endowed with the renormalized distance

WN converge to the usual Wasserstein space (P(Td),W2) on the flat torus in the
sense of Gromov–Hausdorff.

In [5] we consider the more general setting of finite volume discretizations T =
{Kx}x∈X of a bounded, convex domain Ω ⊂ Rn. The conductance is then given
by

π(x)Q(x, y) =
|(Kx|Ky)|
|x− y| ,

where |(Kx|Ky)| is the Hausdorff measure of the interface of the two cells. As the
mesh size goes to 0 we prove that Gromov–Hausdorff convergence of the metric
spaces (P(T ),W) to the usual Wasserstein space (P(Ω),W2) holds if and only if
the so-called isotropy condition

1

2

∑

y

|(Kx|Ky)|
|x− y| (x − y)⊗ (x− y) = |Kx|id ∀x ∈ X

holds in an asymptotic sense. This condition puts a strong geometric constraint
on the family of discretizations. In particular general Voronoi tessellations will not
satisfy the isotropy condition.

More generally in [7] we compute by means of Γ-convergence the homogenized
limit functional for general convex cost functions fx,y : R+ × R+ × R→ [0,∞) on
periodic network graphs (X,E) in arbitrary dimensions. The homogenized cost
fhom : R+ × Rd → R is then given by the cell formula

fhom(m,V ) = inf
{1
2

∑

[x],[y]∈X/Zd

f[x][y](ρ[x], ρ[y], V[x],[y]) :

∑

[x]∈X/Zd

ρ[x] = m,
∑

[(x,y)]∈E/Zd

V[x],[y](y − x) = V,

for all x
∑

[y]∼[x]

V[x],[y] = 0
}
.

For one-dimensional periodic lattices T with usual quadratic cost this homogenized
cost boils down to

fhom(m,V ) = inf
{1
2

∑

[x],[y]∈X/Zd n.n

|x− y|
θ( ρ(x)π(x) ,

ρ(y)
π(y))

: ρ ∈ P(X)
}V 2

m
.

In particular we have shown in [6] that in this setting Gromov-Hausdorff con-
vergence of (P(T ),W) to (P(T1),Whom) holds as the mesh size goes to 0, with
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Whom(ρ0, ρ1)
2 := inf

{∫ 1

0

fhom(mt, Vt) dt

}
,

where the infimum is taken among all solutions to the continuity equation

∂tmt +∇ · Vt = 0.
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Ahlfors regular conformal dimension of compact metric spaces and
parabolic index of infinite graphs

Jun Kigami

Let (X, d) be a metric space. Immediately by definition, the Hausdorff dimension
dimH(X, d) depends on the metric d. For example, for any α ∈ (0, 1], dα is a
metric and

dimH(A, dα) =
1

α
dimH(A, d).

Hence the Hausdorff dimension can be arbitrary large. On the other hand, lower-
ing the Hausdorff dimension is not so easy. One of the interesting question is how
low the Hausdorff dimension can be with a Ahlfors regular quasisymmetric mod-
ification of a metric. Such a lower bound is called the Ahlfors regular conformal
dimension. The exact definition is

dimAR(X, d) = inf{α|there exists a metric ρ and a measure µ such that ρ

and d are quasisymmetric and µ is α-Ahlfors regular with respect to ρ.},
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where µ is said to be α-Ahlfors regular with respect to ρ if and only if there exist
c1, c2 > 0 such that

c1r
α ≤ µ(Bρ(x, r)) ≤ c2rα,

where Bρ(x, r) = {y|y ∈ X, ρ(x, y) < r}. It is known that dimAR(R
n, dE) = n for

any n ≥ 1, where dE is the Euclidean metric. Also by Tyson and Wu[1], we know
dimAR(SG, dE) = 1, where SG is the Sierpinski gasket. In this talk we are going
to show an analytic characterization of the Ahlfors regular conformal dimension.

When you study the Ahlfors regular conformal dimension for example, the main
problem is how to manipulate metrics and measures on a space. To deal with such
a problem, we introduce the notions of a partition and a weight function of a
compact metrizable space X . A partition of a space X consists of a tree T and
a map K : T → the collection of compact subsets of X . A tree T is defined as
follows: T = ∪m≥0Tm, where Tm ⊆ Nm for any m ≥ 0, T0 = {φ} and there exists
kp ∈ N for any p ∈ T such that

Tm+1 =
⋃

p∈Tm

{p1, p2, . . . , pkp}

for any m ≥ 0. Let C(X) be the collection of compact subsets of X . Then
K : T → C(X) is called a partition of X if and only if

(P1) K(φ) = X ,d (P2) for any p ∈ Tm, K(p) = ∪kp

i=1K(pi) and
(P3) If (p0, p1, p2, . . .) satisfy pi+1 = pij for some 1 ≤ j ≤ kpi for any m ≥ 0, then

⋂

i≥1

K(pi) = a single point

Typical example of a partition is a self-similar set. For example, let p1 = 0, p2 =
1
2 , p3 = 1, p4 = 1+ 1

2

√
−1, p5 = 1+

√
−1, p6 = 1

2+
√
−1, p7 =

√
−1 and p8 = 1

2

√
−1.

Define Fi : C→ C by

Fi(z) =
1

2
(z − pi) + pi.

Then the Sierpinski Carpet (SC for short) is the unique nonempty compact set
K ⊆ C satisfying

K =

8⋃

i=1

Fi(K).

In this case, let Tm = {1, 2, . . . , 8}m and let K(i1 . . . im) = Fi1i2...im(K), where
Fi1i2...im = Fi1◦Fi2◦ . . . ◦Fim . Then K is a partition of the Sierpinski carpet. In
this case we write Ki1...im = K(i1 . . . im).

A weight function g on a partition K is a function g : T → (0, 1] satisfying the
following conditions (W1), (W2) and (W3):
(W1) g(φ) = 1, (W2) g(pj) ≤ g(p) for any p ∈ T and any j ∈ {1, . . . , k(p)},
(W3) limm→∞ supp∈Tm

g(p) = 0.
There are two special classes of weight functions. One comes from the metrics

and the other comes from measures. Namely, let ρ be a metric on X satisfying
diam(X, ρ) = 1. Define gρ : T → (0, 1] by gρ(p) = diam(K(p), ρ). Then gρ is a
weight function. Or, let µ be a Borel regular probability measure on X satisfying
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µ(O) > 0 for any nonempty open subset O and µ({x}) = 0 for any x ∈ X . Define
gµ(p) = µ(K(p)). Then gµ is a weight function. The collection of weight functions
naturally contains metrics and measures. In [2], the theory of weight functions has
been developed in order to manipulate metrics and measures.

In [3], Carassco-Piaggio has shown a characterization of the Afhlfors regular
conformal dimension using discrete modulus of curves. Here we can translate his
result by using the theory of weight functions. and have obtained the following
characterization using p-energy of functions. For p ≥ 1, w ∈ Tm and k ≥ 0, define

Ep,w,k = inf{
∑

x,y∈Tm+k,Kx∩Ky 6=∅
|u(x)− u(x)|p

∣∣u : Tm+k → [0, 1],

u(x) = 1 if x = wim+1 . . . im+k,

u(x) = 0 if x = vjm+1 . . . jm+k for some v ∈ Tm with Kv ∩Kw = ∅}
Define

Ep = lim sup
k→∞

sup
w∈T
Ep,w,k.

Then the analytic characterization of the Ahlfors regular conformal dimension is

dimAR(X, d) = inf{p|Ep = 0}.
On infinite graphs, non-linear potential theory was developed by Yamasaki et

al [5, 4] in 1970’s (and completely forgotten for some time.) Let G = (V,E) be a
(non-directed) graph, locally finite and connected. For u : V → R, define

Ep(u) =
1

2

∑

(x,y)∈E

|u(x)− u(y)|p

and

Fp(G) = {u|u : V → R, Ep(u) < +∞}
Choose x∗ ∈ V as the reference point, define

||u||p = |u(x∗)|+ Ep(u)
1
p

It is known that (Fp, || · ||p) is a reflective Banach space. Define

ℓ0(V ) = {u|u : V → R, u(x) = 0 except finite points}
Fp

0 (G) = the closure of ℓ0(V ) w.r.t. || · ||p
By the results from [5] and [4],

1 ∈ Fp
0 (G)⇔ Fp

0 (G) = Fp(G)

In view of this result, G called p-transient (or p-hyperbolic) if and only if 1 /∈
Fp

0 (V ). Otherwise, G called p-recurrent (or p-parabolic). Then there exists
p∗(G) > 0 such that G is p-recurrent for p > p ∗ (G) and G is p-transient for
p < p∗(G). This value p∗(G) is called the parabolic index of G. Yamasaki et al
have shown that p∗(Zn) = n for any n ≥ 1, where Zn is provided the standard
graph structure.
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Now we consider the partition associated with self-similar set like the Sierpinski
carpet as we have seen above. Let Gn = (Tn, En), where En = {(x, y)|x 6= y ∈
Tn,K(x) ∩K(y) 6= ∅}. For any (j1, j2, . . .) ∈ {1, . . . , N}N, where N is the number
of contractions, we identify Gm as a subset of Gm+1 through the following injective
map πjm : Gm → Gm+1 define by πjm = jmi1 . . . im for any i1 . . . im ∈ Gm. The
we may think of {Gm}m≥1 as an increasing sequence of graphs and we can obtain
an infinite graph G = ∪m≥1Gm as a limit. This G is called the blowup associated
with (j1, j2, . . .). Since both Ahlfors regular conformal dimension and parabolic
index are defined through p-energy of a function, one may naturally expect some
relation. In fact,
Theorem(R. Shimizu) For any blowup G of K,

p∗(G) ≤ dimAR(X, d)

In particular, for the SG, p∗(G) = dimAR(X, d) = 1.
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Entropy inequalities for quantum Markov semigroups

Jan Maas

We study a class of ergodic quantum Markov semigroups on finite-dimensional
unital C∗-algebras. These semigroups have a unique stationary state σ, and we
are concerned with those that satisfy a quantum detailed balance condition with
respect to σ. We show that the evolution on the set of states that is given by such a
quantum Markov semigroup is gradient flow for the relative entropy with respect
to σ in a particular Riemannian metric. This result is a quantum analogue of
the classical Jordan–Kinderlehrer–Otto Theorem, which asserts that the diffusion
equation is the gradient flow of the 2-Wasserstein metric from optimal transport.
Our metric is a non-commutative analog of the 2-Wasserstein metric, defined in
terms of a Benamou–Brenier formula:

W2(ρ0, ρ1) := inf
ρ,A

{
∫

1

0

∑

j

Tr
[

(∂jA)∗ρ •j ∂jA
]

dt : ∂tρ+
∑

j

∂
†
j (ρ •j ∂jA) = 0

}

.

Here the infimum runs over all curves (ρt)t∈[0,1] connecting a given pair of den-
sity matrices ρ0 and ρ1, and all matrix-valued curves (At)t∈[0,1] satisfying the
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stated continuity equation. The partial derivatives ∂jA := [Vj , A] denote commu-
tators with the Kraus operators Vj , and the tilted non-commutative multiplication

ρ •j B :=
∫ 1

0

(
e−ωj/2ρ

)1−s
B
(
eωj/2ρ

)s
ds is defined in terms of suitable Bohr fre-

quencies ωj ∈ R.
In several interesting cases we are able to show that the relative entropy is

strictly and uniformly convex with respect to the Riemannian metric introduced
here. As a consequence, we obtain modified logarithmic Sobolev inequalities,
which yield sharp rates of convergence to equilibrium for Bose and Fermi Ornstein-
Uhlenbeck semigroups. We also obtain Talagrand inequalities that provide upper
bounds for the transport distance in terms of quantum relative entropy. These
results are quantum counterparts of seminal classical results by Bakry–Émery and
Otto–Villani. The proofs of the geodesic convexity results combine intertwining
properties of the semigroups with trace inequalities.

This is based on joint work with Eric Carlen.
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Functional inequalities on sub-Riemannian manifolds via QCD

Emanuel Milman

We are interested in obtaining good quantitative estimates for functional inequali-
ties on domains of a given diameter in various sub-Riemannian manifolds (equipped
with their natural sub-Riemannian metric and volume measure).

In the Riemannian setting, a natural requirement on the domain is geodesic
convexity, but this is not a viable option in the sub-Riemannian one, as geodesically
convex domains are known to be scarce; for instance, it was shown by Monti and
Rickly that a geodesically convex set in the Heisenberg group H1 containing three
distinct points which do not lie on a common geodesic is necessarily H1 itself.
Consequently, we treat arbitrary domains Ω but take their two-point geodesic hull
geo(Ω) = ∪{γ ; γ ∈ Geo(X), γ0, γ1 ∈ Ω} (which need not be geodesically convex)
on the energy side of the inequality.

It is well-known from the work of Juillet that strictly sub-Riemannian manifolds
do not satisfy any type of Curvature-Dimension condition CD(K,N), introduced
by Lott-Sturm-Villani some 15 years ago, so we must follow a different path.
Fortunately, it is known that many natural sub-Riemannian structures satisfy
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the weaker Measure Contraction Property MCP(0, N) of Sturm and Ohta for an
appropriate generalized dimension N .
We use a recent interpolation inequality of Barilari and Rizzi to upgrade the
MCP(0, N) information to a new property we call Quasi Curvature-Dimension
(QCD). The QCD(Q,K,N) condition is a “quasi-convex” relaxation of the
CD(K,N) condition, where the defining interpolation inequality need only hold
up to a factor of Q ≥ 1. Our starting observation is that while ideal (strictly)
sub-Riemannian manifolds do not satisfy any type of CD condition, they satisfy
the QCD(Q, 0, N) condition with Q = 2N−n (where n is the topological dimen-
sion). As a consequence, we show that these spaces satisfy numerous functional
inequalities with exactly the same quantitative dependence as their CD counter-
parts, up to a factor of Q. This is obtained by extending the localization paradigm
to completely general interpolation inequalities, and a one-dimensional comparison
of QCD densities with their “CD upper envelope”.

We thus obtain the best known quantitative estimates for (say) the Lp-Poincaré
and log-Sobolev inequalities on domains in the ideal sub-Riemannian setting, which
in particular are independent of the topological dimension. For instance, the Li–
Yau / Zhong–Yang spectral-gap estimate holds on domains Ω of diameter at most
D in the Heisenberg groupsHd of arbitrary dimension (endowed with the Lebesgue
measure m) up to a factor of 4:

∫

Ω

fm = 0 ⇒ 1

4

π2

D2

∫

Ω

f2
m ≤

∫

geo(Ω)

|∇Hdf |2m.

Similar estimates are obtained for the Lp-Poincaré and log-Sobolev inequalities;
up to the above factor of 4, these estimates are best-possible. Analogous estimates
hold, with 1

4 above replaced by an appropriate numeric constant, on ideal general-
ized H-type Carnot groups, the Grushin plane, Sasakian and 3-Sasakian manifolds
with appropriate curvature lower bounds, and general ideal Carnot groups.

A bridge between elliptic and parabolic Harnack inequalities

Mathav Murugan

(joint work with Martin T. Barlow, Naotaka Kajino)

The notion of conformal walk dimension serves as a bridge between the elliptic
and parabolic Harnack inequalities. The importance of this notion is due to the
fact that the finiteness of the conformal walk dimension characterizes the elliptic
Harnack inequality. The conformal walk dimension is the infimum of all possible
values of the walk dimension that can be attained by a time-change of the process
and by a quasisymmetric change of the metric. Two natural questions arise (a)
What are the possible values of the conformal walk dimension? (b) When is the
infimum attained? We discuss the answer to (a) and mention partial progress
towards (b).

We recall the relevant definitions now. The setting for this work is complete,
locally compact, geodesic metric space (X, d) with a Radon measure m with full
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support and a strongly local regular Dirichlet form (E ,F). This defines a Hunt
process onX that is symmetric with respect to the measurem, a sheaf of harmonic
functions (solutions to the corresponding Laplace equation), and a sheaf of caloric
functions (solutions to the corresponding heat equation).

We say that the elliptic Harnack inequality (EHI) holds if there exists C,A > 1
such that for all h ≥ 0 harmonic in B(x,Ar)

sup
B(x,r)

h ≤ C inf
B(x,r)

h.

We say the parabolic Harnack inequality PHI(β) holds if there exists C,A > 1 such
that for all u ≥ 0 caloric in u : (0, T )×B(x,AR) with T = Rβ , we have

sup
Q−

u ≤ C inf
Q+

u,

where Q− = (T/4, T/2)×B(x,R), Q+ = (3T/4, T )×B(x,R). Here β signifies the
space-time scaling exponent of the process, and is known as the walk dimension.

We say that a metric θ : X ×X → [0,∞) on X is quasisymmetric to d, there
exists a homeomorphism η : [0,∞)→ [0,∞) such that

θ(x, y)

θ(x, z)
≤ η

(
d(x, y)

d(x, z)

)
for all x, y, z ∈ X , x 6= z.

Quasisymmetry is a generalization of conformal maps to the context of metric
spaces. It was introduced by Ahlfors and Beurling on real line as boundary exten-
sions of quasiconformal self maps on the upper half-space. The above definition is
due to Tukia and Väisälä. The conformal gauge of a metric space (X, d) is defined
as the set of metrics that are quasisymmetric to d. The conformal walk dimension
dcw of a strongly local Dirichlet space (E ,F , L2(m)) on (X, d) is defined as the
infimum of all β > 0 such that PHI(β) is satisfied for the time-changed Dirichlet
space (E ,Fe ∩ L2(µ), L2(µ)) on (X, θ), where θ belongs to the conformal gauge
of (X, d) and µ is a smooth measure with full quasi-support. In other words, we
seek to minimize the walk dimension by reparametrizing space (by choosing a dif-
ferent metric in the conformal gauge) and by reparametrizing time (by doing a
time change with respect to a smooth measure with full quasi-support). The fol-
lowing theorems clarifies the relationship between elliptic and parabolic Harnack
inequalities.

Theorem 1. [2] In the above setting, we have the following characterization of
EHI:

EHI ⇐⇒ dcw <∞.
The above theorem states that it is possible to upgrade spatial regularity of

process (given by EHI) to space time regularity (given by PHI(β)). It is well known
that the walk dimension is always at least two; that is dcw ≥ 2. An important
consequence of Theorem 1 along with the stability of parabolic Harnack inequality
is the stability of elliptic Harnack inequality [3, 7, 8, 1, 4]. The following theorem
identifies the value of conformal walk dimension.
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Theorem 2. [6] We have the following equivalence.

EHI ⇐⇒ dcw = 2.

In other words, Theorem 2 states that we can always upgrade from EHI to
PHI(2+ǫ) for all ǫ > 0 after a time-change and a quasisymmetric change of metric.
Next, we address the following question: when is the infimum in the definition of
dcw attained? In other words, when is it possible to upgrade from EHI to PHI(2)?
This leads to a natural uniformization question.
Gaussian uniformization problem (attainment problem for dcw): Given a
strongly local regular Dirichlet space on (X, d) that satisfies EHI, is the value
dcw = 2, attained? If so, construct a metric θ in the conformal gauge and a
smooth measure µ with full quasi-support such that PHI(2) holds.

We describe some partial results towards the Gaussian uniformization problem.
The first result states that if the conformal walk dimension is attained, the metric
is determined by the measure up to a bi-Lipschitz equivalence.

Theorem 3. [6] If dcw = 2 is attained for some metric θ and a measure µ, then
θ is bi-Lipschitz equivalent to the intrinsic metric dint(µ).

As a consequence of the above theorem, in order to find an ‘optimal’ metric
and measure that satisfies PHI(2), it is enough to search for an optimal measure.
The following theorem describes that any such measure is a minimal energy dom-
inant measure. In particular, any optimal measure is determined uniquely up to
a absolutely continuous change of measure.

Theorem 4. [6] If dcw = 2 is attained for some metric θ and a measure µ, then µ
is a minimal energy dominant measure, that is µ satisfies the following properties:
(a) (Energy dominance) Γ(f, f)≪ µ for every f ∈ F , where Γ(f, f) is the energy
measure of f ; (b)(Minimality) If µ̃ satisfies (a), then µ≪ µ̃.

As a consequence of the above result, any two ‘optimal’ measures must be
mutually absolutely continuous. In fact, they satisfy a stronger A∞ relation.
We recall the A∞ relation among measures. Let (X, d,m) be a complete metric
measure space such that m is a doubling measure. Let m′ be another doubling
Borel measure on X . Then m′ is said to be A∞-related to m is for each ǫ > 0
there exists δ > 0 such that

m(E) < δm(B) implies m′(E) < ǫm′(B)

whenever E is a measurable subset of a ball B. The following theorem describes
A∞ relation between any two optimal measures.

Theorem 5. [6] If (X, d1, µ1) and (X, d2, µ2) are two metrics and measures that
attain dcw = 2, then µ1 and µ2 are A∞ related in (X, d1) (and also in (X, d2)).

The above theorem and its proof are motivated by a similar result on the at-
tainment of Ahlfors regular conformal dimension in Loewner spaces by Heinonen
and Koskela [5]. In the setting of self-similar sets (examples include fractals like
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Sierpinksi gasket, Sierpinksi carpet, Vicsek set), the following theorem further nar-
rows down the candidates for optimal measures to energy measures of harmonic
functions.

Theorem 6. [6] Let X be a self-similar set and X∂ be its ‘natural boundary’. If
the conformal walk dimension is attained, then the conformal walk dimension is
also attained by the energy measure of a harmonic function; that is µ = Γ(h, h)
where h is a harmonic function on X \X∂.

As an easy consequence of the above theorem, Vicsek tree doesn’t attain the
conformal walk dimension since the energy measure of any harmonic function on
X\X∂ fails to have full support. On the other hand, Kigami showed that Sierpinski
gasket attains the conformal walk dimension. We do not know if Sierpinksi carpet
attains the conformal walk dimension.
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Scaling limits for planar aggregation with subcritical fluctuations

James Norris

(joint work with Amanda Turner, Vittoria Silvestri)

We study a family of planar random growth processes in which clusters grow by
the successive aggregation of particles. Clusters are encoded as a composition of
conformal maps, following an approach first introduced by Carleson and Makarov,
and Hastings and Levitov. The specific models that we study fall into the class
of Laplacian growth models in which the growth rate of the cluster boundary
is determined by the density of harmonic measure of the boundary as seen from
infinity. In our case, the location of each successive particle is distributed according
to the density of harmonic measure raised to some power. This set-up is closely
related to the physically occurring dielectric-breakdown models, which include the
Eden model for biological growth and diffusion-limited aggregation.
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We establish scaling limits of the growth processes in the scaling regime where the
size of each particle converges to zero as the number of particles becomes large.
We show that, when the power of harmonic measure is chosen within a particular
range, the macroscopic shape of the cluster converges to a disk, but that as the
power approaches the edge of this range the fluctuations approach a critical point,
which is a limit of stability. This phase transition in fluctuations can be interpreted
as the beginnings of a macroscopic phase transition, from disks to non-disks.

Our clusters will grow from the unit disk by the aggregation of many small
particles. Let

K0 = {z ∈ C : |z| ≤ 1}, D0 = {z ∈ C : |z| > 1}.
We fix a non-empty subset P of D0 and set

K = K0 ∪ P, D = D0 \ P.
We assume that P is chosen so that K is compact and simply connected. Then
we call P a basic particle.

We will call a conformal map F , defined on D0 and having values in D0, a basic
map if it is univalent and satisfies

F (∞) =∞, F ′(∞) ∈ (1,∞).

By the Riemann mapping theorem, there is a one-to-one correspondence between
basic particles and basic maps given by

P = {z ∈ D0 : z 6∈ F (D0)}.
The logarithmic capacity of P is given by

c = logF ′(∞).

Then c > 0 and F has the form

F (z) = ec

(
z +

∞∑

k=0

akz
−k

)

for some sequence (ak : k ≥ 0) in C.
Given a sequence of attachment angles (Θn : n ≥ 1), set

Fn(z) = eiΘnF (e−iΘnz).

Define a process (Φn : n ≥ 0) of conformal maps on D0 as follows: set Φ0(z) = z
and for n ≥ 1 define recursively

Φn = Φn−1 ◦ Fn = F1 ◦ · · · ◦ Fn.

Then Φn encodes a compact set Kn ⊆ C, given by

Kn = K0 ∪ {z ∈ D0 : z 6∈ Φn(D0)}
and Φn is the unique conformal map D0 → Dn such that

Φn(∞) =∞, Φ′
n(∞) ∈ (0,∞)



3380 Oberwolfach Report 54/2019

where Dn = C \Kn. It is straightforward to see that Kn may be written as the
following disjoint union

Kn = K0 ∪ (eiΘ1P ) ∪ Φ1(e
iΘ2P ) ∪ · · · ∪ Φn−1(e

iΘnP ).

We think of the compact set Kn as a cluster, formed from the unit disk K0 by the
addition of n particles.

By choosing the sequences (Θn : n ≥ 1) in different ways, we can obtain a wide
variety of growth processes. Set

hn(θ) =
|Φ′

n−1(e
σ+iθ)|−η

Zn
, Zn =

1

2π

∫ 2π

0

|Φ′
n−1(e

σ+iθ)|−ηdθ

and consider a sequence of random variables (Θn : n ≥ 1) whose distribution given
by

P(Θn ∈ B|Fn−1) =
1

2π

∫ 2π

0

1B(θ)hn(θ)dθ

where Fn = σ(Θ1, . . . ,Θn). We refer to the model so obtained as the aggregate
Loewner evolution or ALE(η) model with basic map F and regularization param-
eter σ. We focus on the case where η ∈ (−∞, 1] and establish scaling limits in the
small-particle regime, where c → 0 and σ → 0, while allowing n → ∞ to obtain
clusters of macroscopic logarithmic capacity.

Let F be a basic map of logarithmic capacity c ∈ (0, 1]. We say that F has
regularity Λ ∈ [0,∞) if, for all |z| > 1,

∣∣∣∣log
(
F (z)

z

)
− cz + 1

z − 1

∣∣∣∣ ≤
Λc3/2|z|

|z − 1|(|z| − 1)
.

Here and below we choose the branch of the logarithm so that log(F (z)/z) is
continuous on {|z| > 1} with limit c at ∞. Our results concern the limit c → 0
with Λ fixed, but are otherwise universal in the choice of particle. We show that,
for η ∈ (−∞, 1], in this limit, provided the regularisation parameter σ does not
converge to 0 too fast, the cluster Kn converges to a disk of radius ecn, and the
fluctuations, suitably rescaled, converge to the solution of a certain stochastic
partial differential equation. We show the following statement.

Let η ∈ (−∞, 1], Λ ∈ [0,∞) and ε ∈ (0, 1/3) be given. Let (Φn : n ≥ 0) be an
ALE(η) process with basic map F and regularization parameter σ. Assume that
F has logarithmic capacity c and regularity Λ, and that eσ ≥ 1 + c1/3−ε. For all
η ∈ (−∞, 1), m ∈ N and T ∈ [0,∞), there is a constant C = C(η, ε,Λ,m, T ) <∞
with the following property. There is an event Ω1 of probability exceeding 1 − cm
on which, for all n ≤ T/c and all |z| = r ≥ 1 + c1/3−ε,

|Φn(z)− ecnz| ≤ C
(
c1/2−ε +

c1−ε

(eσ − 1)2

)
.

Moreover, in the case where η = 1, provided ε ∈ (0, 1/5) and eσ ≥ 1 + c1/5−ε,
there is also a constant C = C(ε,Λ,m, T ) <∞ with the following property. There
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is an event Ω1 of probability exceeding 1 − cm on which, for all n ≤ T/c and all
|z| = r ≥ 1 + c1/5−ε,

|Φn(z)− ecnz| ≤ C
(
c1/2−ε

(
r

r − 1

)1/2

+
c1−ε

(eσ − 1)3

)
.

We also establish the following characterization of the limiting fluctuations,
which shows in particular that they are universal within the class of particles
considered.

Let η ∈ (−∞, 1], Λ ∈ [0,∞) and ε ∈ (0, 1/6) be given. Let (Φn : n ≥ 0) be an
ALE(η) process with basic map F and regularization parameter σ. Assume that F
has logarithmic capacity c and regularity Λ. Assume further that

σ ≥
{
c1/4−ε, if η ∈ (−∞, 1),
c1/6−ε, if η = 1.

Set n(t) = ⌊t/c⌋. Then, in the limit c→ 0 with σ → 0, uniformly in F ,

(e−cn(t)Φn(t)(z)− z)/
√
c→ F(t, z)

in distribution on D([0,∞),H), where H is the set of holomorphic functions on
{|z| > 1} vanishing at ∞, equipped with the metric of uniform convergence on
compacts, and where F is given by the following stochastic PDE driven by the
analytic extension ξ in D0 of space-time white noise on the unit circle,

dF(t, z) = (1− η)zF ′(t, z)dt−F(t, z)dt+
√
2dξ(t, z).

Analysis and geometry on tamed spaces

Chiara Rigoni

(joint work with Matthias Erbar, Karl-Theodor Sturm, and Luca Tamanini)

Synthetic lower bounds for the Ricci curvature as introduced in the foundational
papers by Lott and Villani on one side [6], and Sturm on the other [7], [8] ini-
tiated the development of the theory of metric measure spaces (X , d,m) with
lower bounded Ricci curvature. The crucial property of any such definition is the
compatibility with the smooth Riemannian case and the stability with respect to
measured Gromov-Hausdorff convergence. The theory is particularly rich if one
assumes in addition that the spaces are infinitesimally Hilbertian. For such spaces,
Ambrosio, Gigli, and Savaré in a series of seminal papers [1], [2], [3] developed a
powerful first order calculus, based on (minimal weak upper) gradients of functions
and on gradient flows for semiconvex functionals, and also a second order calculus
can be established [4].
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In this talk we introduce distributional valued lower Ricci bounds for metric mea-
sure spaces, extending the theory of synthetic lower Ricci bounds far beyond uni-
form bounds. In order to do it we present a formulation of the Bochner’s inequlity,
or Bakry-Émery inequality, BE2(κ,N), where N ≥ 1 and κ can be:

• a signed measure such that its total variation is Kato, or
• a ‘distributional’ lower bound, i.e., κ ∈ W−1,Kato(X ) := {κ ∈W−1,1

loc (X ) :
ψ = (I −∆)−1κ ∈ L∞(X ,m), |∇ψ|2 Kato}.

Indeed, it well known that Bochner’s inequality is one of the most fundamental
estimates in geometric analysis on Riemannian manifolds. It states that

1

2
∆|∇u|2 − 〈∇u,∇∆u〉 ≥ K · |∇u|2 + 1

N
· (∆u)2

for any smooth function u on a Riemannian manifold, providedK is a lower bound
for the Ricci curvature on and N is an upper bound for the dimension. This
inequality can be suitably generalized in the setting of metric measure spaces,
requiring that the following inequality holds

1

2

∫
∆ϕ|∇f |2 dm−

∫
ϕ〈∇f,∇∆f〉 dm

≥ K
∫
ϕ|∇f |2 dm+

1

N

∫
ϕ(∆u)2 dm

(BE2(K,N))

for any f ∈ D(∆) with ∆f ∈ W (X ), and for any ϕ ∈ D(∆), bounded and
nonnegative, with ∆ϕ ∈ L∞(X ,m). An important result by Erbar, Kuwada,
and Sturm [5] ensures that the validity of BE2(K,N) is actually equivalent to the
RCD(K,N) condition introduced in terms of optimal transport.

The approach we follow in order to introduce a distributional lower bound on
the Ricci curvature is based on the theory of Dirichlet forms. Let (X , d,m) be a
complete and separable metric space equipped with a with a (non-negative) Borel
measure which is finite on bounded sets. Let us also assume that (X , d,m) is
infinitesimally Hilbertian. In this setting locality properties and calculus rules for
differential, gradient and Laplacian hold true, and the Cheeger energy Ch admits
a Carré du champ given by the pointwise scalar product on the Hilbert tangent
module. Hence, we perturb the Cheeger energy associated to the space by a term
involving κ, namely we consider the perturbed energy given by

Eκ(f) := Ch(f) + 2

∫
f2 dκ, for all f ∈ D(Ch).

Associated to this energy we have the Schrödinger operator Lκ which is such that
for any f, g ∈ D(Lκ) it holds

−
∫
fL2κg dm = −

∫
fLg dm+ 2

∫
f · g dκ.

Then we can introduce the following:
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Definition. Let (X , d,m) be an infinitesimally Hilbertian space. We say that
(X , d,m) is a tamed space if the L2-Bochner inequality

(BE2(κ,N))
1

2

∫
L2κϕΓ(f) dm−

∫
ϕΓ(f, Lf) dm ≥ 1

N

∫
ϕ(Lf)2 dm,

holds for any f ∈ D(L) such that Lf ∈ D(E), and any ϕ ∈ D(L2κ) ∩ L∞(X ,m)
with L2κf ∈ L∞(X ,m).

In particular, it turns out that BE2(κ,N) is equivalent to the validity of the fol-
lowing gradient estimate GE2(κ,N):

Γ(Ptf)
1/2 +

1

N

∫ t

0

P 2κ
s

(
1{Γ(Pt−sf)>0}

(LPt−sf)
2

Γ(Pt−sf)1/2

)
ds ≤ P 2κ

t Γ(f)1/2,

where {P 2κ
t }t≥0 is the semigroup associated to L2κ.
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Local limit theorem for the killed Green kernel of a random walks
among random conductances

Annika Rothhardt, Anna-Lisa Sokol

(joint work with Martin Slowik)

Consider the d-dimensional Euclidean lattice, (Zd, Ed), for d ≥ 2, where we denote
by Ed the set of all non-oriented nearest neighbour bonds. The graph (Zd, Ed)

is endowed with a family ω = {ω(e) : e ∈ Ed} ∈ Ω := (0,∞)E
d

of non-negative
weights. For any ω ∈ Ω, we refer to ω(e) as the conductance of the edge e. We
also write x ∼ y if {x, y} ∈ Ed. A space shift by z ∈ Zd is a map τz : Ω→ Ω

(τz ω)({x, y}) := ω({x+ z, y + z}), ∀ {x, y} ∈ Ed.
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Further, consider a probability measure, P, on the measurable space (Ω,F) where
F denotes the Borel-σ-algebra on Ω, and we write E to denote the corresponding
expectation with respect to P.

Assumption 1. Assume that P satisfies the following conditions:

(i) P is ergodic and stationary with respect to space shifts.
(ii) E

[
ω(e)

]
<∞ for all e ∈ Ed.

For any given realization ω ∈ Ω, we consider the homogeneous Markov process,
X ≡ (Xt : t ≥ 0) on Zd in the random environment ω with generator Lω acting
on bounded functions f : Zd → R as

(Lωf)(x) :=
∑

y∼x

ω(x, y)
(
f(y) − f(x)

)
.(1)

We study the Green’s function, gA(x, y), of the random walk, X , which is killed
upon exiting a finite set A ⊂ Zd. For any d ≥ 2, it is given by

gA(x, y) = Eω
x

[∫ τA

0

1Xt=y dt

]
=

∫ ∞

0

Pω
x

[
Xy = y, t < τA

]
dt,

Our result relies on the following integrability condition.

Assumption 2 (Integrability condition). For some p, q ∈ [1,∞] with

1

p
+

1

q
<

2

d
,(2)

assume that the following integrability condition holds

E
[
ω(e)p

]
< ∞ and E

[
ω(e)−q] < ∞,(3)

where we used the convention that 0/0 = 0.

Our main result is the local limit theorem of the killed Green’s function.

Theorem 1. Given Assumptions (0.1) and (0.2) hold. For every ε > 0 and every
δ > 0 the following holds.

lim
n→∞

sup
x,y∈B1−δ

|x−y|>ε

∣∣nd−2gB(n)([nx], [ny])− gBM
B1

(x, y)
∣∣ = 0.

where B1 denotes the unit ball in Rd and B(n) := nB1 ∩ Zd.

To prove this we exploit that a quenched functional central limit theorem holds
for the random walk X and show Hölder-regularity for the solution of the Poisson
equation of Lω .
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Scaling limit of uniform spanning tree in three dimensions

Daisuke Shiraishi

(joint work with Omer Angel, David Croydon and Sarai Hernandez-Torres)

Notation: Let Un be the uniform spanning tree in 2−nZ3 equipped with the
graph distance dUn . We suppose that the metric space (Un, dUn) is always pointed
at the origin. We write µUn for the counting measure in 2−n

Z
3 which places a

unit mass on each vertex of Un. To retain information of the uniform spanning
tree with respect to the Euclidean topology, we consider a map φUn : Un → R3,
which we take to be simply the identity map. Now we have a random quintuplet
(Un, dUn , 0, µUn , φUn). After properly rescaling this random quintuplet, we will
consider its weak limit as n → ∞ with respect to the spatial Gromov-Hausdorff-
Prokhorov topology (see [1] for this topology). Thus, the first task is to determine
the correct rescaling factor.

Some results for loop-erased random walk: Wilson’s algorithm (see [4] for
the algorithm) guarantees that the uniform spanning tree Un generates by using
loop-erased random walks as follows (see [2] for the loop-erased random walk). We
write 2−nZ3 = {xi}∞i=1 for a sequence of all points in 2−nZ3, where the order of
points is arbitrary. Let Sx be the simple random walk on in 2−n

Z
3 started at x.

Then Wilson’s algorithm is as follows:

• Consider LE
(
Sx1[0,∞)

)
, the loop-erasure of Sx1 [0,∞). We moreover let

U1
n = LE

(
Sx1 [0,∞)

)
.

• Given Uk
n (k ≥ 1), we consider Sxk+1 (which is independent of Uk

n) until
it hits Uk

n . We denote the first hitting time by tk+1. Let Uk+1
n = Uk

n ∪
LE
(
Sxk+1 [0, tk+1]

)
.

• Let U∞
n =

⋃
k≥1 Uk

n .

Then for any choice of {xi}, it follows that U∞
n has the same distribution as that

of Un.
With this in mind, to determine the correct rescaling factor of dUn , we need to

estimate the length (the number of steps) for loop-erased random walks. For this,
the following result was proved in [3].

Theorem 1. (Corollary 1.3 of [3]) Let S be the simple random walk on 2−n
Z
3

started at the origin. We writeMn be the first time that the loop-erasure of S[0,∞)
exits from D := {x ∈ R3 : |x| < 1}. Then there exist universal constants β ∈
(1, 5/3], c, C ∈ (0,∞) such that for all n ≥ 1,

(1) c2βn ≤ E(Mn) ≤ C2βn.
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Remark 1. The constant β in the theorem above is called the growth exponent
for loop-erased random walk in three dimensions. Numerical simulation suggests
that β = 1.624± 0.001 (see [5]).

By Theorem 1 plus some extra works, one can prove the tightness of

2−βndUn

(
0, y0

)

where y0 = (1, 0, 0). Therefore, the correct rescaling factor for dUn should be 2−βn.
Our main results (which will be stated in the next section) ensure that this is the
case.

Main results: The first result shows the existence of the scaling limit of uniform
spanning trees in three dimensions.

Theorem 2. As n → ∞, the random quintuplet (Un, 2−βndUn , 0, 2
−3nµUn , φUn)

converges weakly with respect to the spatial Gromov-Hausdorff-Prokhorov topology.

Let (T , dT , ρT , µT , φT ) be the weak convergence limit of

(Un, 2−βndUn , 0, 2
−3nµUn , φUn).

We obtain various topological properties of the limit as follows.

Theorem 3. With probability one, it follows that:

• (T , dT ) is a complete, locally finite real tree with precisely one topological
end at infinity;

• the Hausdorff dimension of (T , dT ) is 3/β;
• maxv∈T degT (v) = 3, where degT (v) stands for the degree of v in the tree
T ;

• given R > 0, there exist a random r0(T ) > 0 and deterministic c1, c2, C ∈
(0,∞) such that

c1r
3
β (log r−1)−C ≤ µT

(
BT (x, r)

)
≤ c2r

3
β (log r−1)C ,

for every x ∈ BT (ρT , R) and r ∈ (0, r0(T ), where BT (x, r) = {y ∈ T :
dT (x, y) < r};

• µT = L ◦ φT , where L stands for Lebesgue measure on R3.

The final result deals with the simple random walk on the uniform spanning
tree. To state the theorem, we will introduce some notations.

Let U be the uniform spanning tree in Z
3 equipped with the graph distance dU .

We write XU =
((
XU (k)

)
k≥0

,
(
PU
x

)
x∈Z3

)
for the simple random walk on U . Let

τUx,R := inf
{
k ≥ 0

∣∣ dU (x,XU (k)) > R
}
and let τEx,R := inf

{
k ≥ 0

∣∣ |x−XU (k)| >
R
}
. We denote the heat kernel of XU by pUk (x, y) = PU

x

(
XU(k) = y

)
/µU

y , where

µU
y stands for the degree of y in U . Finally, we write XT for the Brownian motion

on the space (T , dT , µT ) started at ρT . Then we have the following theorem.
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Theorem 4. It follows that:

• For a.s. realization of U and all x ∈ U ,

lim
R→∞

logEU
x (τ

U
x,R)

logR
=

3 + β

β
, lim

R→∞

logEU
x (τ

E
x,R)

logR
= 3 + β,

and

− lim
k→∞

2 log pU2k(x, x)

log k
=

6

3 + β
;

• as n→∞, the annealed laws of the rescaled processes
(
2−nXU(2(3+β)nt

))
t≥0

converge to the annealed law of
(
φT (XT

t )
)
t≥0

.
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Riesz transform on manifolds with ends

Adam Sikora

(joint work with Andrew Hassell and Daniel Nix)

We study boundedness of the Riesz transform on class of manifolds obtained
by taking connected sum of several N -dimensional manifolds such as Rni ×Mi,
i = 1, . . . , l where Mi are compact Riemannian manifolds of dimension N − ni.
In many cases one can also include in the sum product of compact manifolds with
Lie groups with polynomial growth or divergence form operator with periodic co-
efficients acting on Rni . The most interesting case is the situation when when the
Euclidean dimensions ni are not all equal. Then the ends have different ‘asymp-
totic global dimension’, this implies that the Riemannian manifold M does not
satisfy the doubling condition. In [4] Grigor’yan and L. Saloff-Coste studied heat
kernel estimates on such connected sums of Euclidean ends. Our aim is to fully
describe the range of exponents 1 ≤ p ≤ ∞ for which the corresponding Riesz
transform act as a bounded operator on Lp(M).
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Lp boundedness of the Riesz transform is a central topic in harmonic analysis
and heat kernels theory and it has been studied for almost 100 years, starting
with the classical work of Riesz [7]. For complete Riemannian Manifolds the Riesz
transform can be defined as

R = ∇∆−1/2.

where ∇ the gradient corresponding to the Riemannian structure and ∆ is the
Laplace-Beltrami operator. In 1983 Strichartz formulated the question of continu-
ity of the Riesz transform in the above mentioned Riemannian manifolds setting,
see [8].

In the considered setting of manifolds with ends, under assumption that ni ≥ 3
for each i, a comprehensive answer to the Strichartz question is provided by the
following theorem obtained in [6], compare also [1, Proposition 3.3]

Theorem 1. Let Rn1 × M1, . . . ,R
nl × Ml be a set of l ≥ 2 manifolds which

are products of a Euclidean factor of dimension ni with a compact Riemannian
manifold Mi, with the product metric, for 1 ≤ i ≤ l. Suppose that M = (Rn1 ×
M1)# . . .#(Rnl ×Ml) is a manifold with l ≥ 2 Euclidean ends with ni ≥ 3 for
each i. Then the Riesz transform ∇∆−1/2 defined on M is bounded on Lp(M) if
and only if 1 < p < min{n1, . . . , nl}. In addition, the Riesz transform ∇∆−1/2 is
of weak type (1, 1).

Including the case ni = 2 for some i, is not possible by simple modification of
the prof of Theorem 1. In fact, distinction between transient and recurrent ends
seems to essentially impact the expected heat kernel and resolvent behaviour and
asymptotics. It is illuminating in this context to compare the papers [4] and [3].
The following result which includes possibility of an end of asymptotic dimension
equals 2 was descried in [5]

Theorem 2. Let Rn− ×M− and Rn+ ×M+ be two manifolds which are products
of a Euclidean factor of dimension n± with a compact Riemannian manifoldM±,
with the product metric. Suppose that M = (Rn− × M−)#(Rn+ × M+) is a
connected sum, with n− = 2 and n+ ≥ 3. Then the Riesz transform defined onM
is bounded on Lp(M) if and only if 1 < p ≤ 2. That is, there exists C such that

∥∥ |∇∆−1/2f |
∥∥
p
≤ C‖f‖p, ∀f ∈ Lp(X,µ)

if and only if 1 < p ≤ 2. In addition the Riesz transform operator is of weak type
(1, 1).

The approach developed in [6, 5] is in a sense continuation of the strategy
described in [2], where the Riesz transform is studied for connected sum of several
copies of Rn. A significant difference between these settings is that the manifolds
considered in [2] still satisfy the doubling condition.

The most essential part of the proofs of Theorems 1 and 2 is to calculate the
kernel of the resolvent operator (∆ + k2)−1 for low energy limits k → 0 in a
way which allows to estimate its gradient. Then one can use such estimates to
investigate the Riesz transform using the well-known formula
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∇∆−1/2 =
2

π
∇
∫ ∞

0

(∆ + k2)−1 dk.

In both papers [6] and [5] a crucial step to calculate the required resolvent
kernel or its parametrix is to describe the behaviour of solutions (or approximate
solutions) u to the resolvent equation

(1) (∆ + k2)u = v, v ∈ C∞
c (M),

in the low energy limit k → 0. However, there a significant difference between
the asymptotic behaviour of the solution u of (1) in the setting of Theorem 1
considered in [6] and Theorem 2 studied in [5].
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Unique continuation and localization on the planar lattice

Charles K. Smart

Recall that the Anderson–Bernoulli model is a random linear operator on ℓ2(Zd)
given by

H = −∆+ βV,

where ∆ is the graph Laplacian, β > 0 is the noise strength, and V : Zd → {0, 1}
is a Bernoulli potential. We discuss the following two results.

Theorem 1 (Ding–Smart [1]) If d = 2, then H almost surely has pure-point
spectrum in [0, ε].

Theorem 2 (Li–Zhang [2]) If d = 3, thenH almost surely has pure-point spectrum
in [0, ε].

These results advance the state of the art by establishing localization for singular
noise in dimensions larger than one. Following the program of Bourgain–Kenig,
the key ingredients of these theorems are the following unique continuation results.
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Theorem 3 (Ding–Smart [1]) The following holds for all α > 1 > ε > 0 and
sufficiently large L > 0. If d = 2, |λ̄| < α, and Q = [−L,L]2 ∩ Z2, then

P[E ] ≥ 1− e−L1/4−ε

where E is the event that

Hψ = λψ in Q and |λ− λ̄| ≤ e−L1/2+ε

implies

#{x ∈ Q : |ψ(x)| ≥ e−L1+ε |ψ(0)|} ≥ L3/2−ε.

Theorem 4 (Li–Zhang [2]) There is a p > 0 such that, for all α > 1 > ε > 0,
the following holds for sufficiently large L > 0. If d = 3, |∆ψ| ≤ α|ψ| holds in
Q = [−L,L]3 ∩ Z3, then

#{x ∈ Q : |ψ(x)| ≥ e−L1+ε |ψ(0)|} ≥ L3/2+p.

Both of these unique continuation theorems use ideas from recent work of
Buhovsky–Logunov–Malinnikova–Sodin.
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Configuration spaces over metric measure spaces

Kohei Suzuki

(joint work with Lorenzo Dello Schiavo)

The aim of this research is to explore foundations of infinite-dimensional analysis
and geometry on configuration spaces over non-smooth spaces. The configuration
space Υ(X) over the base space X is the set of all locally finite point measures on
X , describing random dynamics of infinite particle systems onX . IfX has a metric
measure structure (X, d,m), there are two conceptually different objects on Υ(X)
with the Poisson measure πm: one is the Dirichlet form (EΥ,D(EΥ)) generated by
the square-field operator ΓΥ lifted from X (cf. Ma–Röckner [5]); the other is the
extended metric measure space (Υ(X), d2, πm) induced by the L2-transportation
distance d2:

(EΥ,D(EΥ))←→ (Υ(X), d2, πm).

As a main result, these two structures are identified under suitable assumptions
on X whereby various non-smooth spaces are included. This result gives a natural
differential geometric structure on Υ(X) over non-smooth X and various funda-
mental consequences are obtained. As a consequence, EVI(K,∞) is established
on Υ(X) over RCD spaces X , which gives a new family of infinite-dimensional
examples satisfying Curvature-Dimension Conditions. Furthermore, the stability
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of Cheeger energies and Brownian motions on Υ(X) under the pointed measured
Gromov (pmG) convergence of RCD spaces X is obtained.

Main Results.
Identification: One of the main results is the complete idenitification of analytic
and geometric structures on configuration spaces Υ(X) with the Poisson measure
πm over metric measure spaces (X, d,m) under suitable assumptions, which can
be summarised in the following diagram:

(EΥ,D(EΥ)) // (Υ, dEΥ , πm) ///o (Chd
EΥ
,D(Chd

EΥ
)) (EΥ,D(EΥ))

(Υ, d2, πm) ///o/o (Chd2 ,D(Chd2)) // (Υ, dChd2 , πm) (Υ, d2, πm)

→ Take intrinsic distance
 Take Cheeger energy
= Main results

The above diagram tells us that one can commute between (EΥ,D(EΥ)) and
(Υ(X), d2, πm) through the two operations → and  .

The identification enables us to unify both of the analytic approach (Dirichlet
form theory) and the geometric approach (metric measure theory) to investigate
various fundamental problems on configuration spaces. One of the most funda-
mental consequence is that

(Chd2 ,D(Chd2)) turns out to be non-trivial and quadratic,

which is revealed only after the identification. Furthermore, (Υ(X), d2, πm) turns
out to be an extendedmetric measure space in the sense of Ambrosio–Erbar–Savaré
[2]. Further applications are explained in the following.

Curvature Bounds on Υ(X): As a main result, the Bakry–Émery (BE) Curva-
ture-Dimension Condition is established on Υ(X) over BE(K,∞) spaces X with
some additional condition (VH) for volume growth and heat kernel estimates,
which is satisfied, e.g. for RCD(K,N) spaces. Combined with the identification
result, an Evolution-Variation Inequality (EVI) is obtained on Υ(X) over RCD
spaces X :

(X,Γ,m) is BE(K,∞) + (VH) =⇒ (Υ(X),ΓΥ, πm) is BE(K,∞)
y Identification

(X, d,m) is





RCD(K,∞) + (VH)

or

RCD(K,N)

=⇒ (Υ(X), d2, πm) is EVI(K,∞).

This is a generalisation of Erbar–Huesmann [4] to the non-smooth setting.
Stability: As a main result, the stability of the Dirichlet forms is proved in the
sense of the Kuwae–Shioya–Mosco (KSM) convergence by utilising the Fock space
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structure of L2(Υ, πm). Combined with the identification result, the stability of
Cheeger energies and Brownian motions on Υ(X) under the pmG convergence of
RCD(K,N) spaces X is proved:

(Xn,Γn,mn)
KSM−−−−→ (X,Γ,m) =⇒ (Υ(Xn),Γ

Υ
n , πmn)

KSM−−−−→ (Υ(X),ΓΥ, πm)y Identification

(Xn, dn,mn)
pmG−−−→ (X, d,m) =⇒





(Chdn2 ,D(Chdn
2
))

Mosco−−−−→ (Chd2 ,D(Chd2))

({Bn
t },P

πmn
n )

weak−−−→ ({Bt},Pπm).

Historical and Technical Remarks Comparison with the Smooth Case:
In the smooth framework, the identification is obtained by the combination of
Albeverio–Kondratiev–Röckner [3], Röckner–Schied [6] and Erbar–Huesmann [4].
Some main difficulties for extending these results to non-smooth spaces are

(1) No flow of diffeomorphism generated by vector fields;
(2) No core of C1-functions.

(1) is essentially used for most proofs in the smooth setting and even for the
construction of (EΥ,D(EΥ)). (2) is also used in various instances, in particular, to
show (Chd2 ,D(Chd2)) = (EΥ,D(EΥ)). Note that it is not sure if the semigroup has
the Feller property on Υ(X) (even if X is smooth), due to which the continuous
regularisation by semigroup actions cannot be used. So (2) is a serious problem in
the non-smooth setting. For these reasons, more robust proofs are required in the
non smooth setting, for which combinatorial computations, closed forms in infinite-
product spaces, finite-dimensional approximation in the sense of Kuwae–Shioya,
and the Varadhan-type short-time asymptotic in the sense of Hino–Ramirez come
into play. The identification can be achieved by establishing the Rademacher
theorem, the continuous-Sobolev-to-Lipschitz property and the topological upper
regularity.
Comparison with standard metric measure geometry: The configuration
space (Υ(X), d2, πm) is out of the scope of standard metric measure geometry (e.g.,
Ambrosio–Gigli–Savaré [2]) since d2 explodes on sets of positive measures, which
typically happens in infinite-dimensional spaces (e.g. the Wiener space with the
Cameron–Martin distance). As a consequence, the extended distance d2 cannot
be continuous on Υ(X)×Υ(X), only lower semi-continuous. This breaks various
fundamental properties – which hold in usual metric measure spaces:

• Lipschitz functions are not necessarily continuous, nor Borel;
• d2-metric balls are πm-negligible, d2-open balls are not open.

These facts require a number of careful arguments to establish our results compared
to standard metric measure geometry.
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Functional inequalities on path space of sub-Riemannian manifolds
and horizontal Ricci curvature

Anton Thalmaier

(joint work with Li-Juan Cheng, Erlend Grong)

Sub-Riemannian geometry deals with the investigation of geometric structures in-
trinsically induced by the sub-Riemannian data (M,H, gH) where M is a smooth
manifold, H a subbundle of the tangent bundle (describing the “horizontal” di-
rections), and gH a metric tensor defined on the “horizontal” subbundle H . The
subbundle H is assumed to be bracket-generating, meaning that its sections and
their iterated brackets span the entire tangent bundle. We describe recent work
related to the concept of “horizontal Ricci curvature”. Our approach relies on a
study of sub-Riemannian Brownian motions and stochastic analysis on path space
over sub-Riemannian manifolds. Analogously to the work of Aaron Naber [6] (see
also [5]) we show that certain functional inequalities and gradient estimates on the
path space overM are equivalent to boundedness of the horizontal Ricci tensor [3].
To this end, we adopt the methods of [1, 2] to the sub-Riemannian setting.

We work with a connection ∇ on M which is compatible with (H, gH) in the
sense that parallel transport along smooth curves in M takes orthonormal frames
in H to orthonormal frames in H . Since H is bracket-generating, compatible
connections ∇ always have torsion T:

∇AB −∇BA− [A,B] = T(A,B), A,B ∈ Γ(H).

To construct canonical connections one starts with a partial connection ∇ : Γ(H)×
Γ(H) → Γ(H), (A,B) 7→ ∇AB on H and extends it to a full connection in an
appropriate way. A connection ∇ on M compatible with (H, gH) is uniquely
determined by its torsion. Choosing a complement V for H , that is TM = H⊕V ,
there is a unique such connection with T(H,H) ⊂ V .
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Let R be the curvature of a compatible connection ∇ and Ric : TM → TM the
corresponding Ricci operator given by

Ric(v) = traceHR(v, ×)×

where the trace is taken over H with respect to the inner product gH . Our object
of interest is the horizontal Ricci curvature RicH = Ric|H ∈ End(H) defined as
the restriction Ric of H . We consider the corresponding sub-Laplacian

∆H = traceH∇2
×,×

defined as horizontal trace of the Hessian ∇2. Diffusion processes on M with
generator 1

2∆
H are called sub-Riemannian Brownian motions, cf. [4].

For fixed T > 0, let WT = C([0, T ];M) be the path space over M equipped
with the measure induced by the sub-Riemannian Brownian motion with starting
point x ∈M , and let

FC∞
0,T =

{
WT ∋ γ 7→ f(γt1 , . . . , γtn) : 0 < t1 < . . . < tn ≤ T, f ∈ C∞

c (Mn)
}

be the class of smooth cylindrical functions on WT . We consider the Cameron-
Martin space

H =

{
h : [0, T ]→ Hx absolutely continuous

∣∣∣∣
∫ T

0

|ḣ(t)|2gHdt <∞
}

which becomes a Hilbert space with inner product

〈h1, h2〉H =

∫ T

0

〈ḣ1(t), ḣ2(t)〉gH dt.

For F ∈ FC∞
0,T we define a directional derivative DhF in the direction of h ∈ H

and associated derivative operators Dt on FC∞
0,T such that

DhF =

∫ T

0

〈DtF, ḣt〉gHdt.

The definition of Dh incorporates explicitly the torsion of the connection, for
details see [3].

Theorem (Characterization of RicH by functional inequalities on path space) For
a non-negative constant K the following conditions are equivalent:

(1) the horizontal Ricci curvature RicH is bounded by K, i.e.

−K ≤ RicH ≤ K;

(2) (Gradient estimate) for any smooth cylindrical function F ∈ FC∞
0,T on

path space the following estimate holds:

|D0Ex[F ]|gH ≤ Ex

[
|D0F |gH +

K

2

∫ T

0

e
K
2 s|DsF |gH ds

]
;
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(3) (Log-Sobolev inequality) for any F ∈ FC∞
0,T and t > 0 in [0, T ],

Ex

[
Ex[F

2|Ft] logEx[F
2|Ft]

]
− Ex[F

2] logEx[F
2]

≤ 2

∫ t

0

e
K
2 (T−r)

(
Ex|DrF |2gH +

K

2

∫ T

r

e
K
2 (s−r)

Ex|DsF |2gH ds
)
dr;

(4) (Poincaré inequality) for any F ∈ FC∞
0,T and t > 0 in [0, T ],

Ex

[
Ex[F |Ft]

2
]
− Ex[F ]

2

≤
∫ t

0

e
K
2 (T−r)

(
Ex|DrF |2gH +

K

2

∫ T

r

e
K
2 (s−r)

Ex|DsF |2gH ds
)
dr.

Here Ex denotes the expectation with respect to the probability measure on path
space induced by the sub-Riemannian Brownian motion on M starting at x ∈M ,
and (Ft) denotes its natural filtration.

The theorem above can be extended to a characterization of K1 ≤ RicH ≤ K2

with arbitrary constants K1 ≤ K2 by redefining Dh appropriately, see [3].
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Heat kernel estimates for symmetric Dirichlet forms

Jian Wang

(joint work with Zhen-Qing Chen, Takashi Kumagai)

Let (M,d, µ) be a metric measure space such that (M,d) is a locally compact
separable metric space, and µ is a positive Radon measure onM with full support.
We consider the Dirichlet form (E ,F) on L2(M,µ) as follows

E(f, g) = E(c)(f, g)+
∫

M×M\diag
(f(x)− f(y)(g(x)− g(y))J(dx, dy), f, g ∈ F ,

where (E(c),F) is the strongly local part of (E ,F) (namely E(c)(f, g) = 0 for all
f, g ∈ F having (f − c)g = 0 µ-a.e. on M for some constant c ∈ R) and J(·, ·) is a
symmetric Radon measure M ×M \ diag.
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Denote the ball centered at x with radius r by B(x, r) and µ(B(x, r)) by V (x, r).

Definition 1. (i) We say that (M,d, µ) satisfies the volume doubling property
(VD), if there exists a constant Cµ ≥ 1 such that for all x ∈M and r > 0,

V (x, 2r) ≤ CµV (x, r).

(ii) We say that (M,d, µ) satisfies the reverse volume doubling property (RVD), if
there exist constants lµ, cµ > 1 such that for all x ∈M and r > 0,

V (x, lµr) ≥ cµV (x, r).

Let R+ := [0,∞), and φc : R+ → R+ (resp. φj : R+ → R+) be a strictly
increasing continuous function with φc(0) = 0 (resp. φj(0) = 0), φc(1) = 1
(resp. φj(1) = 1) and satisfying that there exist constants c1,φc , c2,φc > 0 and
β2,φc ≥ β1,φc > 1 (resp. c1,φj , c2,φj > 0 and β2,φj ≥ β1,φj > 0) such that

c1,φc

(R
r

)β1,φc ≤ φc(R)

φc(r)
≤ c2,φc

(R
r

)β2,φc

for all 0 < r ≤ R.
(
resp. c1,φj

(R
r

)β1,φj ≤ φj(R)

φj(r)
≤ c2,φj

(R
r

)β2,φj

for all 0 < r ≤ R.
)(1)

We always assume that

(2) φc(r) ≤ φj(r) for r ∈ (0, 1] and φc(r) ≥ φj(r) for r ∈ [1,∞).

Since β1,φc > 1, there exists a strictly increasing continuous function φ̄c(r) : R+ →
R+ such that there are constants c2 ≥ c1 > 0 so that

c1
φc(r)

r
≤ φ̄c(r) ≤ c2

φc(r)

r
for all r > 0.

Given φc and φj satisfying (2), we set

φ(r) := φc(r) ∧ φj(r) =
{
φc(r), r ∈ (0, 1],

φj(r), r ∈ [1,∞).

Definition 2. We say that the (weak) Poincaré inequality PI(φ) holds if there
exist constants C > 0 and κ ≥ 1 such that for any ball Br = B(x, r) with x ∈ M
and for any f ∈ Fb,
∫

Br

(f − fBr
)2 dµ ≤ Cφ(r)

(∫

Bκr

Γc(f, f) +

∫

Bκr×Bκr

(f(y)− f(x))2 J(dx, dy)
)
,

where Γc is the energy measure of local bilinear form of (E ,F), and fBr
=

1
µ(Br)

∫
Br
f dµ is the average value of f on Br.

Let U ⊂ V be open sets ofM with U ⊂ U ⊂ V . We say a non-negative bounded
measurable function ϕ is a cut-off function for U ⊂ V , if ϕ ≥ 1 on U , ϕ = 0 on
V c and 0 ≤ ϕ ≤ 1 on M .
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Definition 3. We say that condition CS(φ) holds if there exist constants C0 ∈
(0, 1] and C1, C2 > 0 such that for every 0 < r ≤ R, almost all x0 ∈ M and any
f ∈ F , there exists a cut-off function ϕ ∈ Fb for B(x0, R) ⊂ B(x0, R + r) so that
the following holds:

∫

B(x0,R+(1+C0)r)

f2 dΓ(ϕ, ϕ)

≤ C1

(∫

B(x0,R+r)

ϕ2 dΓc(f, f)

+

∫

B(x0,R+r)×B(x0,R+(1+C0)r)

ϕ2(x)(f(x) − f(y))2 J(dx, dy)
)

+
C2

φ(r)

∫

B(x0,R+(1+C0)r)

f2 dµ.

Define

p(c)(t, x, y) =
1

V (x, φ−1
c (t))

exp

(
− d(x, y)

φ̄−1
c (t/d(x, y))

)
, t > 0, x, y ∈M0,

This kernel arises in the two-sided estimates of heat kernel for strongly local Dirich-
let forms; see [3]. Set

p(j)(t, x, y) :=
1

V (x, φ−1
j (t))

∧ t

V (x, d(x, y))φj(d(x, y))
.

This is just two-sided estimates for symmetric pure jump processes with scaling
function φj as in [1].

Definition 4. (i) We say that HK(φc, φj) holds if there exists a heat kernel
p(t, x, y) associated with (E ,F) and the following estimates hold for all t > 0
and all x, y ∈M0,

c1

( 1

V (x, φ−1
c (t))

∧ 1

V (x, φ−1
j (t))

∧
(
p(c)(c2t, x, y) + p(j)(t, x, y)

))

≤ p(t, x, y)

≤ c3
( 1

V (x, φ−1
c (t))

∧ 1

V (x, φ−1
j (t))

∧
(
p(c)(c4t, x, y) + p(j)(t, x, y)

))
,

(3)

where ck > 0, k = 1, · · · , 4, are constants independent of x, y ∈M0 and t > 0.
(ii) We say HK−(φc, φj) holds if the upper bound in (3) holds but the lower

bound is replaced by the following: there are constants c0, c1 > 0 so that for all
x, y ∈M0,

p(t, x, y) ≥ c0
(

1

V (x, φ−1(t))
1{d(x,y)≤c1φ−1(t)}

+
t

V (x, d(x, y))φj(d(x, y))
1{d(x,y)>c1φ−1(t)}

)
.
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With the notations above, we now can state the following stable characterizations
of two-sided heat kernel estimates for diffusions with jumps.

Theorem 1. Assume that the metric measure space (M,d, µ) satisfies VD and
RVD, and that the scale functions φc and φj satisfy (1) and (2). Let φ := φc∧φj .
The following are equivalent:

(i) HK−(φc, φj).
(ii) Jφj , PI(φ) and CS(φ).

If, additionally, (M,d, µ) is connected and satisfies the chain condition, then all
the conditions above are equivalent to:

(iii) HK(φc, φj).

[2, Theorem 1.14] contains more equivalent characterizations of HK−(φc, φj).
We emphasize again that the connectedness and the chain condition of the un-
derlying metric measure space (M,d, µ) are only used to derive optimal lower
bounds off-diagonal estimates for heat kernel when the time is small (i.e., from
HK−(φc, φj) to HK(φc, φj)), while for the equivalence between (i) and (ii) in the
result above, the metric measure space (M,d, µ) is only assumed to satisfy the
general VD and RVD; that is, neither do we assumeM to be connected nor (M,d)
to be geodesic.
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Regularity for nonlocal parabolic operators

Marvin Weidner

(joint work with Jamil Chaker, Moritz Kassmann)

We study weak solutions u : I × Rd → R to

(1) ∂tu− Lu = f in I × Ω =: Q,

where f ∈ L∞(Q) and Ω ⊂ Rd is a bounded domain, I ⊂ R is a bounded open
interval and L is a linear, nonlocal operator of the form

(2) Lu(t, x) := 2 p.v.

∫

Rd

(u(t, y)− u(t, x))µt(x, dy).

Here, µt(x, dy) = a(t, x, y)µ(x, dy), where a : R×Rd×Rd → [1/2, 1] is a measurable
function that is symmetric in the second and third variable and (µ(x, ·))x∈Rd is an
admissible family of measures.
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Our goal is to derive Hölder regularity estimates for weak solutions to (1) with
f = 0 given an admissible family of measures (µ(x, ·))x∈Rd .
More specifically, we say that (HR(α)) is satisfied by (µ(x, ·))x∈Rd if for every
weak solution u to (1) in Q with f = 0, it holds that for every Q′ ⊂⊂ Q

(3) sup
(t,x),(s,y)∈Q′

|u(t, x)− u(s, y)|(
|x− y|+ |t− s|1/α

)γ ≤
‖u‖L∞(I×Rd)

ηγ
,

where η = η(Q,Q′) and γ = γ(d) ∈ (0, 1) is the Hölder exponent.

A very prominent example of a family of measures that satisfies the Hölder regular-
ity estimate is given by µα(x, dy) = k(x, y)dy, where α ∈ (0, 2) and k : Rd×Rd →
[0,∞) is a symmetric, measurable function with

k(x, y) ≍ c(d, α)|x − y|−d−α,(4)

where c(d, α) > 0 is a normalizing constant. Note that if k(x, y) = c(d, α)|x −
y|−d−α, we have L = −(−∆)α/2. It was shown in [1] that in this case (HR(α))
holds true. In [2] and [3] the authors use Moser iteration to derive (HR(α)) for
families of measures (µ(x, ·))x∈Rd that do not need to be comparable to
(µα(x, ·))x∈Rd in the sense of (4) but (among other assumptions) require to have
comparable energies on small scales, i.e. there exists Λ ≥ 1 such that for every
x0 ∈ Rd, ρ ∈ (0, 2) and every v ∈ L2(Bρ(x0)):

Λ−1EµBρ(x0)
(v, v) ≤ Eµα

Bρ(x0)
(v, v) ≤ ΛEµBρ(x0)

(v, v),

where we write

EµD(v, v) :=

∫

D

∫

D

(v(x) − v(y))2µ(x, dy)dx, D ⊂ R
d

for the restriction of the energy form associated to L. This allows us to consider
families (µ(x, ·))x∈Rd that are singular with respect to Lebesgue measure, as for
example

(5) µα
axes(x, dy) :=

d∑

k=1

(
|xk − yk|−1−α dyk

∏

i6=k

δ{xi}(dyi)
)
,

where α ∈ (0, 2). Note that µα
axes(x, ·) assigns mass only to the coordinate axes

with respect to x ∈ Rd. The corresponding operator L according to (2) is given

by L = −∑d
k=1(−∂k∂k)α/2.

In our main result, we take (5) as a starting point, but generalize to a highly
anisotropic situation where the order of differentiability α depends on the coor-
dinate direction. Given α1, . . . , αd ∈ (0, 2), we set αmax := {αk|1 ≤ k ≤ d} and
define

(6) µα1,...,αd
axes (x, dy) :=

d∑

k=1

(
|xk − yk|−1−αk dyk

∏

i6=k

δ{xi}(dyi)
)
.
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In order to deal with the anisotropy of µα1,...,αd
axes (x, ·) let us introduce rectangles

Mρ(x) with radius ρ > 0 and center x ∈ Rd as follows:

Mρ(x) :=
d×

k=1

(
xk − ρ

αmax
αk , xk + ρ

αmax
αk

)
.

Theorem 1. Let (µ(x, ·))x∈Rd be symmetric, i.e. for every two measurable sets
A,B ∈ B(Rd):

∫

A

∫

B

µ(x, dy)dx =

∫

B

∫

A

µ(x, dy)dx.

Furthermore, assume that there exists Λ ≥ 1 such that the following holds true:

(i) tail estimate: For every x0 ∈ R
d and ρ ∈ (0, 2):

µ(x0,R
d \Mρ(x0)) ≤ Λρ−αmax .

(ii) comparability assumption: For every x0 ∈ Rd, ρ ∈ (0, 2) and every v ∈
L2(Mρ(x0)):

Λ−1EµMρ(x0)
(v, v) ≤ Eµ

α1,...,αd
axes

Mρ(x0)
(v, v) ≤ ΛEµMρ(x0)

(v, v).

Then, (µ(x, ·))x∈Rd satisfies (HR(αmax)).

Note that by choosing α1,= . . . , αd = α for some α ∈ (0, 2), Theorem 1 im-
plies that (µα

axes(x, ·))x∈Rd and (µα(x, ·))x∈Rd satisfy (HR(α)), so we reobtain the
Hölder regularity for the two examples from above. An interesting feature of the
comparability assumption is that it allows to consider kernels of the form

µ(x, dy) ≍ |x− y|−d−γ1Γ(x− y)dy

where γ could be any (!) positive number.
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The space of algebraic measure trees and the Aldous chain in the
diffusion limit

Anita Winter

(joint work with Wolfgang Löhr, Leonid Mytnik)

In [1] a symmetric Markov chain on cladograms is investigated and bounds on its
mixing and relaxation times are given. The latter bound was sharpened in [6].

In this talk we encode cladograms as binary, algebraic measure trees which
can be considered as (continuum) metric trees for which one ignores the metric
distances and rather focuses on the tree structure. We show that any separable
algebraic tree can be represented by a metric tree. We further consider algebraic
measure trees which are algebraic trees additionally equipped with a sampling
(probability) measure. This measure gives rise to the branch point distribution
which turns out to be the length measure of an intrinsic choice of such a metric
tree representation.

Further, we provide a notion of convergence of algebraic measure trees which
resembles the idea of the Gromov-weak topology which itself is defined through
weak convergence of sample distance matrices. Binary algebraic (measure) trees
are of particular interest due to their close connection to triangulations of the
circle. We will rely on this connection to show that the subspace of binary algebraic
measure trees is compact and that in this subspace weak convergence of sample
shapes and sample branch point distribution distance matrices are equivalent.

This allows us to show that the Aldous Markov chain on cladograms with a fixed
number of leaves converges in distribution as the number of leaves goes to infinity.
We give a rigorous construction of the limit, whose existence was conjectured by
Aldous and which we therefore refer to as Aldous diffusion, as a solution of a well-
posed martingale problem. We show that the Aldous diffusion is a Feller process
with continuous paths, and the algebraic measure Brownian CRT is its unique
invariant distribution.

Our approach is complement to a long series of papers by Forman, Pal, Rizzolo
and Winkel on the construction of the Aldous diffusion (e.g., [2, 3]), which gives a
detailed description of the Aldous diffusion in equilibrium but (so far) don’t state
convergence.
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