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Introduction by the Organizers

A fruitful approach to fundamental problems in mathematical physics is to iden-
tify and study their underlying algebraic structures. One such problem is to sys-
tematically construct and classify solutions to the Yang–Baxter equation (YBE).
During the last decade, a whole new layer of algebraic structures appeared in (or
were adapted to) the study of the YBE. Braces, bijective group 1-cocycles, Hopf–
Galois extensions and self-distributive structures are just a few examples. These
structures brought a whole new spectrum of mathematics into the study of the
YBE: group theory, ring theory, non-commutative geometry, computational and
cohomological algebra, low-dimensional topology.

The purpose of this meeting was to bring together experts in the algebraic
approach to the set-theoretic YBE and related fields. Discussions were channelled
into four directions:
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Associative invariants of solutions: Given a set X , a map r : X ×X →
X ×X is said to satisfy the Yang–Baxter equation (YBE) if one has

(r × Id) ◦ (Id×r) ◦ (r × Id) = (Id×r) ◦ (r × Id) ◦ (Id×r)

on X3. To any solution

r(x, y) = (λx(y), ρy(x))

of the YBE on the set X , one associates its structure monoid

M(X, r) = 〈x ∈ X | xy = λx(y)ρy(x), for all x, y ∈ X〉;

its structure group G(X, r) with an analogous presentation; its structure
algebra kM(X, r) over a field k; its permutation group

G(X, r) = 〈λx | x ∈ X〉,

which is a subgroup of the symmetric group SX ; its derived monoid

A(X, r) = 〈x ∈ X | xλx(y) = λx(y)λλx(y)(ρy(x)), for all x, y ∈ X〉

and its derived group with an analogous presentation, which are also the
structure monoid and group of the rack solution (X, r′) with

r′(x, y) = (y, λyρλ−1

x (y)(x)).

For the last constructions we need all λx to be bijective; such solutions are
called left non-degenerate.

Besides being important invariants of solutions, the above groups and
algebras enjoy interesting properties (Bieberbach, Garside, Koszul, Artin–
Schelter regular, left orderable etc.), provided that the solution is from a
suitable class. This has already been used for constructing counterexam-
ples to group-theoretic conjectures. The talks of Jespers, Kubat, Okniński,
Chouraqui, and Lebed highlighted recent advances in this direction and
presented multiple open problems.

In particular, Lebed presented Ryder’s conjectural characterisation of
structure groups of a particular type of solutions. The next day Eiser-
mann found a counterexample, and together they started collaboration
on an amended version of this conjecture, and its group-cohomological
implications.

Braces and classification of solutions: A (left) skew brace is the data of
two group operations + and ◦ on a set B, compatible in the sense of

(1) a ◦ (b + c) = a ◦ b− a + a ◦ c.

It is called a (left) brace if the operation + is commutative. The clas-
sification of certain types of solutions boils down to the classification of
(skew) braces, and the latter are now actively studied using group- and
ring-theoretic tools. It is not surprising that together with people from the
YBE community (Vendramin, Gateva–Ivanova, Cedó, van Antwerpen), in
this section we included talks by Byott (a specialist in Hopf–Galois theory)
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and Ballester–Bolinches (a group theorist). They presented spectacular
applications of their domains to the YBE.

Meta-structures and connections: In this section Brzeziński presented
his work on trusses, a very general structure which interpolates between
braces and rings; Dietzel explained the work of Rump and himself on l-
algebras, which generalise structure groups and connect them to lattice
theory; Catino generalised skew braces to semi-braces, and showed how to
construct solutions out of them; Verwimp explained how skew lattices give
rise to YBE solutions; and Wiertel presented a complete classification of
symmetric group actions obtained from linear unitary involutive solutions.

Yang–Baxter cohomology: Cohomology groups of YBE solutions can be
seen as solution invariants, related to structure groups (in a highly non-
trivial way!). In another vein, they yield linear YBE solutions as defor-
mations of set-theoretic ones. They are also used in knot theory and Hopf
algebra classification, and are thus interesting on their own right. Eiser-
mann and Lebed gave an overview of this direction, and presented their
recent results.

A particular accent in the talks was made on open questions and conjectures,
which were then discussed among participants. This was especially useful for
young researchers, well represented in the mini-workshop. At the end of the week,
all participants agreed that the meeting had been extremely productive, allowing
them to keep up with the numerous recent developments in the field, to initiate
collaborations, and to discuss new approaches to open problems in the area.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
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Abstracts

Associative structures associated to set-theoretic solutions of the

Yang–Baxter equation

Eric Jespers

(joint work with Ferran Cedó and Charlotte Verwimp)

Let (X, r) be a set-theoretic solution of the Yang–Baxter equation. Gateva-Ivanova
and Majid in [3] showed that the study of such solutions is determined by solutions
(M, rM ), where M = M(X, r) is the structure monoid of (X, r), and rM restricts
to r on X2. For left non-degenerate solutions, it has been shown [4] that M(X, r)
is a regular submonoid of A(X, r) ⋊ G(X, r), where we use notations from the
Introduction. The elements of A = A(X, r) are normal, i.e. aA = Aa for all
a ∈ A. It is this “richer structure” that has been exploited by several authors
to obtain information on the structure monoid M(X, r) and the structure algebra
kM(X, r) over a field k.

In this talk we report on some recent investigations, by Cedó, Jespers and
Verwimp [2], i.e. set-theoretic solutions that are not necessarily left non-degenerate
nor bijective. We prove that there is a unique 1-cocycle π : M(X, r) → A(X, r),
with respect to the natural left action λ′ : M(X, r) → End(A(X, r)), such that
π(x) = x, and a unique 1-cocycle π′ : M(X, r) → A′(X, r), with respect to natural
right action ρ′ : M(X, r) → End(A′(X, r)) such that π′(x) = x. Here A′ is the
right derived monoid

A′(X, r) = 〈x ∈ X | ρy(x)y = ρρy(x)(λx(y))ρy(x), for all x, y ∈ X〉.

It is determined when these mappings are injective, surjective, respectively bijec-
tive. One then obtains a monoid homomorphism M(X, r) → A(X, r) ⋊ 〈λx | x ∈
X〉. The mapping π is injective when all λx are injective, i.e. when (X, r) is a
left non-degenerate solution. It is surjective if and only if each λx is surjective.
Hence, it is bijective if (X, r) is a left non-degenerate solution (a result earlier
proven in [4]). In the latter case, we determine the left cancellative congruence η
on M(X, r) and show that (X, r) induces a set-theoretic solution on M(X, r)/η.
Hence one obtains that left non-degenerate set-theoretic solutions are linked with
semi-trusses as introduced by Brzeziński [1]. Conversely it can be shown that left
cancellative semi-tusses correspond to left non-degenerate solutions of the YBE.
Similar results are obtained for right non-degenerate set-theoretic solutions.

Problems of interest are:

Problem 1. Determine precisely when the 1-cocycle π is injective.

Problem 2. Determine the algebraic structure of kM(X, r) when π is injective.

Problem 3. Determine the algebraic structure of kM(X, r) for arbitrary solu-
tions.
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Structure algebras of solutions of the Yang–Baxter equation

 Lukasz Kubat

(joint work with Eric Jespers and Arne Van Antwerpen)

For a finite involutive non-degenerate solution (X, r) of the Yang–Baxter equation,
it is known that the structure monoid M = M(X, r) is a monoid of I-type, and
the structure algebra kM over a field k shares many properties with commutative
polynomial algebras. In particular, it is a Noetherian PI-domain, a maximal order
in its division ring of fractions, and also an Auslander-regular, Cohen–Macaulay,
Koszul algebra satisfying

clKdim kM = GKdim kM = |X |

(see e.g. [1, 4, 10, 9] and also [3, 5, 11, 12]). In this talk I am going to focus
on certain ring-theoretical properties of structure algebras of an arbitrary finite
bijective (one-sided) non-degenerate solution (X, r) of the YBE. Although the
structure of both the monoid M and the algebra kM is much more complicated
than in the involutive case, it is still possible to show the following result:

Theorem 1 ([8, Theorem 3]). There exists a finitely generated commutative nor-
mal submonoid T ⊆ M and a finite subset F ⊆ M such that M =

⋃

f∈F Tf .
In particular, kM is a module-finite normal extension of the commutative affine
subalgebra kT . Hence kM is a Noetherian PI-algebra. Moreover,

clKdim kM = GKdim kM = rkM 6 |X |,

and the equality holds if and only if the solution (X, r) is involutive.

Moreover, the classical Krull dimension of the algebra kM is expressible (and
easily computable) in a purely combinatorial way (see [6, Theorems 3.5 and 3.8]).
It is also possible to characterize, in ring-theoretical or homological terms of kM ,
when (X, r) is an involutive solution or when M is a cancellative monoid (a recent
question of Gateva-Ivanova, see [2, Conjecture 3.20]).

Theorem 2 ([7, Theorem 4.6]). The following conditions are equivalent:

(1) (X, r) is an involutive solution.
(2) M is a cancellative monoid.
(3) rkM = |X |.
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(4) kM is a prime algebra.
(5) kM is a domain.
(6) clKdimkM = |X |.
(7) GKdim kM = |X |.
(8) kM has finite global dimension.
(9) kM is an Auslander–Gorenstein algebra.

(10) kM is an Auslander-regular algebra.

The above mentioned results allow one to control the prime spectrum of kM and
to describe the Jacobson and prime radicals of kM as well (see [6, Proposition 5.6
and Theorem 6.5]). Finally, these results lead also to a matrix-type representations
of prime images of the algebra kM .

Theorem 3 ([6, Theorem 7.1]). If P is a prime ideal of kM , then there exists
an ideal I of kM contained in P , a finitely generated abelian-by-finite group G
which is the group of quotients of a cancellative subsemigroup of M , and a prime
ideal Q of kM such that kM/I ⊆ Mn(kG) and kM/P ⊆ Mn(kG/Q) for some
n > 1. Moreover, the algebra Mn(kG) is a localization of kM/I. In particular,
Qcl(kM/P ) ∼= Qcl(Mn(kG/Q)). If, furthermore, kM is semiprime then there exist
finitely many finitely generated abelian-by-finite groups, say G1, . . . , Gs, each being
the group of quotients of a cancellative subsemigroup of M , such that kM embeds
into Mn1

(kG1) × · · · ×Mns
(kGs) for some n1, . . . , ns > 1.

Note also that results obtained in [6, 8, 7] serve as a motivation to posing the
following questions, which may be also considered as possible directions of further
research concerning ring-theoretical aspects of the Yang–Baxter equation.

Problem 4. Determine the structure of prime images kM/P of kM . When is
kM/P a domain? When is kM/P a maximal order in its quotient ring? When
does kM/P have some good homological properties? When is kM/P Koszul or
Auslander-regular or Cohen–Macaulay? How do these properties affect the solution
(X, r)?

Problem 5. When is kM semiprime? How does the semiprimeness of kM affect
the solution (X, r)?

Problem 6. When does kM/P come from a solution of the YBE related to (X, r)?
In such a case, try to investigate the nature of this (probably simpler) solution.
How do properties of such solutions for various P reflect the properties of (X, r)?

Problem 7. Try to find new (and understand better already known) matrix rep-
resentations of K[M ] in both semiprime and non-semiprime case.

Problem 8. Is it possible to find an algebraic invariant determining the order of
the map r?
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Structure algebras and the minimality condition

Jan Okniński

(joint work with Ferran Cedo and Eric Jespers)

Given a finite non-degenerate (bijective) set-theoretic solution (X, r) of the Yang–
Baxter equation and a field k, the structure algebra kM(X, r) is a graded algebra:
kM = ⊕m≥0Am, where Am is the linear span of all the elements x1 · · ·xm, for
x1, . . . , xm ∈ X . Moreover, for every m ≥ 2, Xm receives a natural action of
the group generated by r1,2, . . . , rm−1,m, whose orbits are in a one to one corre-
spondence with the elements of degree m in the structure monoid M(X, r). Here
ri,i+1 : Xm → Xm is the map that acts as r on components i, i+1 and as the iden-
tity on the remaining components. So, this yields an action of the braid group Bm,
and one also gets an action of the symmetric group Sm in the case of involutive
solutions (X, r), i.e. when r2 = Id.

The latter case (a finite involutive non-degenerate solution (X, r)) is an impor-
tant particular case, that was first studied in [2, 3]. Namely, one of the known
results asserts that the maximal possible value of dim(A2) corresponds to involu-
tive solutions and implies several deep and important properties of kM . In this
case, if X is finite of cardinality n, then there are n singleton orbits and

(

n
2

)

orbits
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of cardinality 2 in X2 under the action of the group 〈r〉, so that dimA2 = n+
(

n
2

)

.
Moreover, the structure algebra kM shares many properties with the polynomial
algebra k[x1, . . . , xn]. In particular, it is a domain, it satisfies a polynomial iden-
tity and it is a PBW algebra of Gelfand–Kirillov dimension GK(kM) = n. It
also shares various nice homological properties with K[x1, . . . , xn]. The structure
monoid M(X, r) is embedded in the structure group G(X, r), which is isomorphic
to gr((x, λx) | x ∈ X) ⊆ Zn ⋊ SX , where SX acts naturally on the free abelian
group Zn of rank n. Also, in this case, the structure group G(X, r) is solvable and
a Bieberbach group of dimension n, i.e. a torsion-free group with a free abelian
subgroup of rank n of finite index.

Following recent ideas of Gateva-Ivanova [4], we focus on the minimal possible
values of the dimension of A2, and their impact on the growth function and the
structure of the algebra kM . We determine lower bounds and classify solutions
(X, r) for which these bounds are attained in the general case and also in the
square-free case, i.e. when r(x, x) = (x, x) for every x ∈ X . This is done in terms
of the so called derived solution, introduced by Soloviev [6] and closely related with
racks and quandles. Namely, a recent result in [5] allows to reduce the problem to
the derived solution (X, s), which is of the form s(x, y) = (σx(y), x), for x, y ∈ X ,
where σx ∈ SX for every x ∈ X .

We list some of the main results, obtained in [1]. Recall that a quadratic set is
a pair (X, r) with r : X2 → X2. It is called braided if r satisfies the Yang–Baxter
equation, see [4]. First, we show that there exists a finite non-degenerate quadratic
set (X, r) such that dim(Am) = 1, for all m > 1; so, in particular, GK(kM) = 1.

If furthermore (X, r) is a braided set, then we prove that dim(A2) ≥ |X|
2 .

Moreover, we describe explicitly all cases when the lower bound |X|
2 or |X|+1

2
(depending on whether |X | is even or odd) is reached, in terms of the derived
solution (X, s). As a consequence, it follows in these cases that the solution (X, r)
is indecomposable.

For square-free non-degenerate quadratic sets (X, r) it is easy to see that |X |+
1 is the smallest possible value of dim(A2). We present a construction with
dim(Am) = |X | + 1 for all m > 1; so that GK(kM) = 1 in this case as well.

Let (X, r) be a finite square-free non-degenerate braided set. We prove that
dim(A2) ≥ 2|X | − 1. One of the main cases that arises in this context is when
(X, s) is the braided set associated to the so called dihedral quandle. It can be
defined as (Z/(n), s), where n ≥ 3 and s(k, t) = (2k − t, k), for all k, t ∈ Z/(n).
We discuss this case in detail, as it turns out to be crucial in the context of the
impact of the size of A2 on the algebra kM . Then our main result shows that the
above lower bound is achieved if and only if the derived solution (X, s) is of one
of the following types:

(1) |X | is an odd prime and (X, s) is the braided set associated to the dihedral
quandle; moreover, GK(A) = 1 in this case,

(2) |X | = 2 and (X, s) is the trivial braided set, that is s(x, y) = (y, x) for all
x, y ∈ X ; and GK(A) = 2 in this case,

(3) X = {1, 2, 3} and σ1 = σ2 = id, σ3 = (1, 2); and GK(A) = 3 in this case.
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In particular, our results answer a number of questions raised in [4].
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On the left-orderability of structure groups of set-theoretic solutions

of the Yang–Baxter equation

Fabienne Chouraqui

A group G is left-orderable if there exists a strict total ordering ≺ of its elements
which is invariant under left multiplication, that is g ≺ h implies fg ≺ fh for
all f, g, h in G. If a group G is left-orderable, then it satisfies the unique product
property, that is for any finite subsets A,B ⊆ G, there exists at least one element
x ∈ AB that can be uniquely written as x = ab, with a ∈ A and b ∈ B. We call
a strict total ordering that is invariant under left multiplication a left order. The
positive cone of a left order ≺ is defined by P = {g ∈ G | 1 ≺ g} and it satisfies:

(1) P is a semigroup, that is P · P ⊆ P ;
(2) G is partitioned by P , that is G = P ∪ P−1 ∪ {1} and P ∩ P−1 = ∅.

Conversely, if there exists a subset P of G that satisfies (1) and (2), then P
determines a unique left order ≺ defined by g ≺ h if and only if g−1h ∈ P .

A subgroup N of a left-orderable group G is called convex (with respect to ≺),
if for any x, y, z ∈ G such that x, z ∈ N and x ≺ y ≺ z, we have y ∈ N . A
left order ≺ is Conradian if for any strictly positive elements a, b ∈ G, there is
n ∈ N such that b ≺ abn. A left-orderable group G is called Conradian if it admits
a Conradian left order. A left-orderable group G is Conradian if and only if G
is locally indicable [4, 1, 14]. Conradian left-orderable groups share many of the
properties of the bi-orderable groups.

Definition 1. [13, Definition 3.2], [12, Definition 3.1] A left order ≺ in a countable
group G is recurrent (for every cyclic subgroup) if for every g ∈ G and every
finite sequence h1 ≺ h2 ≺ ... ≺ hr with hi ∈ G, there exists ni → ∞ such that
∀i, h1g

ni ≺ h2g
ni ≺ ... ≺ hrg

ni .
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A recurrent left order is Conradian [13]. The set of all left orders of a group G is
denoted by LO(G) and it is a topological space (compact and totally disconnected
with respect to the topology induced by the Tychonoff topology on the power set
of G) [15]. The set LO(G) cannot be countably infinite [11]. A left order ≺ is
finitely determined if there is a finite subset {g1, g2, ..., gk} of G such that ≺ is
the unique left-invariant ordering of G satisfying 1 ≺ gi for 1 ≤ i ≤ k. A finitely
determined left order ≺ is also called isolated, since ≺ is finitely determined if
and only if it is not a limit point of LO(G). If the positive cone of ≺ is a finitely
generated semigroup, then ≺ is isolated.

If the order ≺ is also invariant under right multiplication, then G is said to
be bi-orderable. The braid group Bn with n ≥ 3 strands is left-orderable but
not bi-orderable [6], and if n ≥ 5 none of these orders is Conradian [14]. In [7],
the question whether every Garside group is left-orderable is raised (Question 3.3,
p.292, also in [8]). It is a very natural question as the Garside groups extend
the braid groups in many respects and it motivated our research in the context
of the structure group of a non-degenerate symmetric set-theoretical solution of
the Yang–Baxter equation. This group is a Garside group that satisfies many
interesting properties [2, 3, 5, 9]. In this note, we show this group is not bi-
orderable and we find the question whether it is left-orderable has a wide range
of answers. We now state our main results for the structure group G(X, r) of a
non-degenerate symmetric (non-trivial) set-theoretical solution of the YBE.

Theorem 2. The group G(X, r) has generalised torsion elements, and is thus not
bi-orderable.

Theorem 3. Assume that (X, r) is a retractable solution and |X | ≥ 3. Then

(1) G(X, r) has a recurrent left order.
(2) The space of left orders of G(X, r) is homeomorphic to the Cantor set.
(3) All the left orders of G(X, r) are Conradian.

Note that under the assumptions of Theorem 3, G(X, r) is locally indicable
(each non-trivial finitely generated subgroup has a quotient isomorphic to Z), as
the existence of a recurrent left order implies local indicability [13]. In contrast,
for n ≥ 5, the braid group Bn is not locally indicable [7, p. 287] and hence
Bn has no recurrent left order like most of the left-orderable groups. E. Jespers
and J. Okninski prove that the structure group of a retractable solution is poly-
(infinite)cyclic [10, p. 223], which implies locally indicable.
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Structure groups of racks and quandles

Victoria Lebed

(joint work with A. Mortier and L. Vendramin)

This talk was an overview of what is known on the structure groups G = G(X,⊳) of
YBE solutions coming from finite racks and quandles (X,⊳). After an introduction
to self-distributive structures, I presented, following [6], a dichotomy for such a
group G:

(1) either G is boring (free abelian),
(2) or G is interesting (non-abelian, with torsion, non-left-orderable, but not

too wild either: it is virtually free abelian in a very explicit way).

I then explained the recent classification of quandles with boring G(X,⊳), done
in [1] for the groups G = Z and Z2, and in [4] for the general case Zk. Further, I
showed that these quandles have no torsion in the cohomology group H2, which
is bad news for applications, since it is this torsion that is most useful in practice.

I also explicitly described the structure groups of a wide class of quandles called
abelian quandles, defined by the additional axiom

(a⊳ b) ⊳ c = (a⊳ c) ⊳ b.

Their H2 can have torsion. These torsion groups T 2 are related to the structure
groups in a way reminiscent of the connected quandle case [2, 3]. Apart from
several examples treated in [4], a precise description of these T 2 is missing.

Problem 1. Compute the torsion part of the second cohomology groups of finite
abelian quandles.
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To each left non-degenerate YBE solution (X, r) one can associate a self-distribut-
ive operation ⊳ on X (called the derived operation), which is a rack operation if
r is bijective [5]. Its structure group G(X,⊳) is often referred to as the derived
group of (X, r). The groups G(X, r) and G(X,⊳) are related by a bijective 1-
cocycle, particularly useful when its target G(X,⊳) is free abelian. This has been
extensively exploited for involutive solutions, for which the operation ⊳ is trivial,
and hence G(X,⊳) free abelian. An answer to the following question would then
allow one to extend properties of structure groups of involutive solutions to a wider
class of solutions:

Problem 2. What property of a YBE solution corresponds to its derived rack
having an abelian structure group?

In the same vein,

Problem 3. What property of a YBE solution corresponds to its derived rack
being abelian?

In the end I recalled the conjugation quandles, which yield a right adjoint Conj
to the structure group functor StrGr. Given a group Γ, these functors allow one
to construct a central extension

0 −→ K −→ StrGr(Conj(Γ))
π

−→ Γ −→ 0.

If Γ is the structure group of a rack, then the natural projection π has an explicit
section. In her PhD thesis, Ryder conjectured that it is an if-and-only-if statement:
the above short exact sequence splits iff Γ is the structure group of a rack [7].
After the talk, Eisermann found an explicit counterexample. However, it might
be possible to amend the conjecture:

Problem 4. Does the splitting of the above sequence coupled with some extra
condition characterise the structure groups of racks?

More generally,

Problem 5. Are there any group-theoretic characterisations of the structure groups
of racks?

References

[1] Valeriy Bardakov and Timur Nasybullov. Embeddings of quandles into groups. Journal of
Algebra and Its Applications, 2019.

[2] Michael Eisermann. Quandle coverings and their Galois correspondence. Fund. Math.,
225:103–168, 2014.
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Some problems on skew braces and the Yang–Baxter equation

Leandro Vendramin

The first problem I would like to mention comes from the theory of Hopf–Galois
extensions and it was first formulated by Byott [4].

Problem 1 (Byott). Let A be a finite skew left brace with solvable additive group.
Is the multiplicative group of A solvable?

To state the second problem I will first recall the following question: Which
finite solvable groups are IYB groups? Recall that IYB-groups are those groups
that are multiplicative groups of skew left braces of abelian type. The problem
was solved by Bachiller in [1], following the ideas of Rump [12]. However, I would
like to understand better the ideas behind this proof.

Problem 2. Which is the minimal size of a finite solvable group that is a non-
IYB-group?

The following two similar problems appear in [5]:

Problem 3 (Cedó–Jespers–Okniński). Is every finite nilpotent group of nilpotency
class two the multiplicative group of a (two-sided) skew brace of abelian type?

Problem 4 (Cedó–Jespers–Okniński). Which finite nilpotent groups are multi-
plicative groups of (two-sided) skew braces of abelian type?

Problem 4 is interesting even in the particular case of nilpotency class ≤ 3.

Problem 5 (Rump). Is there an example of a non-IYB finite group where all the
Sylow subgroups are IYB groups?

Now I mention some problems related to involutive multipermutation solutions.
For a finite non-degenerate involutive solution (X, r), the following properties are
equivalent:

(1) (X, r) is a multipermutation solution.
(2) The structure group G(X, r) is left orderable
(3) The structure group G(X, r) is diffuse.

The implication 1) =⇒ 2) was proved by Jespers and Okniński [9] and in-
dependently by Chouraqui [6]. The implications 2) =⇒ 1) and 3) =⇒ 1)
were proved in [2] and in [10], respectively. All these results answer a question of
Gateva–Ivanova [8]. The following problem appears in [10].

Problem 6. Let (X, r) be a finite involutive non-degenerate solution to the Yang–
Baxter equation. When does G(X, r) have the unique product property?



Mini-Workshop: Algebraic Tools for Solving the Yang–Baxter Equation 3223

Benson proved in [3] that groups that contain a finite index subgroup isomorphic
to Zn have rational growth series. The structure group of a finite solutions has a
finite index subgroup isomorphic to Zn, see [7, 11, 13].

Problem 7. Let (X, r) be a finite non-degenerate invertible solution. Compute
explicitly the growth series of the structure group G(X, r).

Finally, let me discuss a problem related to multipermutation solutions. It
seems that “almost all” non-degenerate involutive solutions to the Yang–Baxter
equation of size ≤ 8 are multipermutation solutions:

number of multipermutation solutions

number of solutions
=

36115

38698
> 0.93.

For these calculation one needs the list of small solutions computed of [7].

Problem 8. Is it true that

number of multipermutation solutions of size n

number of solutions of size n
−→
n→∞

1?

This question makes sense for non-involutive solutions as well.
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A combinatorial approach to noninvolutive set-theoretic solutions of

the Yang–Baxter equation

Tatiana Gateva-Ivanova

Let X be a nonempty set (possibly infinite), and let r : X × X → X × X be a
bijective map. Such a pair (X, r) is referred to as a quadratic set [2]. It is called

• square-free if r(x, x) = (x, x) for all x ∈ X ; square-free, and involutive;
• a braided set if r is a YBE solution;
• a symmetric set if r is an involutive YBE solution.

We propose to study a braided set in terms of the properties of its structure
monoid M(X, r), its structure algebra A = kM(X, r), and its Koszul dual, A!.
More generally, we continue our systematic study of nondegenerate quadratic sets
(X, r) and the associated algebraic objects. Next we investigate the class of square-
free solutions (X, r). It contains the special class of self-distributive solutions
(quandles). We make a detailed characterization in terms of various algebraic
and combinatorial properties, each of which shows the contrast between involutive
and noninvolutive square-free solutions. We introduce and study a class of finite
square-free solutions (X, r) of order n ≥ 3 which satisfy the minimality condition
M, that is dimk A2 = 2n − 1. Examples are some simple racks of prime order
p. Finally, we discuss general extensions of solutions and introduce the notion of
a generalized strong twisted union Z = X♮∗Y of solutions (X, rX), and (Y, rY ),
where the map r has high, explicitly prescribed order.

Theorem 1 ([3]). Let (X, r) be a square-free non-degenerate quadratic set of finite
order |X | = n. Let A = kM(X, r) be its associated quadratic algebra.

(I) If (X, r) is 2-cancellative then the following inequalities hold:

2n− 1 ≤ dimk A2 = n + q ≤

(

n + 1

2

)

,

where the upper bound is exact for all n ≥ 3, and the lower bound is exact
whenever n = p > 2 is a prime number.

(II) The following conditions are equivalent:
(1) The Hilbert series of A is

HA(z) =
1

(1 − z)n
.

(2) A is a PBW algebra with a set of PBW generators X = {x1, · · · , xn}
and with polynomial growth.

(3) A is a PBW algebra with a set of PBW generators X = {x1, · · · , xn}
and with finite global dimension, gl dimA < ∞.

(4) A is a PBW Artin–Schelter regular algebra.
(5) There exists an enumeration {x1, · · · , xn} of X such that the set

N = {xα1

1 xα2

2 · · ·xαn

n | αi ≥ 0 for 1 ≤ i ≤ n}

is a k-basis of A.
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(6)

dimk A2 =

(

n + 1

2

)

, and dimk A3 =

(

n + 2

3

)

.

(7) A is a binomial skew polynomial ring in the sense of [1].
(8) (X, r) is a symmetric set.
In this case A is a Noetherian domain. Moreover, A is Koszul, and

GKdimA = n = gl dimA,

where GKdimA is the Gelfand–Kirillov dimension of A.

For the definitions of a Koszul algebra, a PBW algebra and the Koszul dual
algebra A!, see [5].

Corollary 2 ([3]). (Characterization of noninvolutive square-free braided sets.)
Let (X, r) be a square-free non-degenerate braided set of order |X | = n, suppose
r2 6= IdX×X . Then the following conditions hold:

(1) The algebra A is not Koszul.
(2) The set of quadratic relations xy = λx(y)ρy(x), x, y ∈ X is not a Gröbner

basis with respect to any enumeration of X.
(3) A is not a binomial skew polynomial ring, with respect to any enumeration

of X.
(4) 2n− 1 ≤ dimk A2 ≤

(

n+1
2

)

− 1.
(5) GKdimA < n.
(6) dimk A3 <

(

n+2
3

)

.

(7) The Koszul dual A! satisfies 0 ≤ dimk A
!
3 <

(

n
3

)

, and A!
3 = 0 whenever

dimk A2 = 2n− 1.
(8) There exist x, y ∈ X, such that x 6= y, and xp = yp holds in the group

G(X, r).
(9) There exist a, b, x, y ∈ X, such that x 6= y, x 6= a, y 6= b, and the equality

axx = byy holds in M(X, r). Moreover, the structure monoid M(X, r) is
not cancellative.

(10) The algebra A is not a domain.

Theorem 3 ([3]). Suppose (Z, r) is a non-degenerate 2-cancellative braided set
(possibly infinite), which splits as a generalized strong twisted union Z = X♮∗Y
of its r-invariant subsets X and Y . Let (X, r1) and (Y, r2) be the induced sub-
solutions. Let S = M(X, r1), T = M(Y, r2), U = M(Z, r) be the associated
monoids,and (S, rS), (T, rT ), (U, rU ) be the corresponding braided monoids, see
[4]. Let (GZ , rGZ

), (GX , rGX
), (GY , rGY

) be the associated braided groups. Then
the following conditions hold:

(1) The braided monoid (U, rU ) has a canonical structure of a generalized
strong twisted union:

(U, rU ) = (S, rS)♮∗(T, rT ),

extending the ground actions of the strong twisted union Z = X♮∗Y .
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(2) Suppose (Z, r) is injective (i.e. Z is embedded in GZ). Then (X, r1) and
(Y, r2) are also injective, and the braided group (GZ , rGZ

) has a canonical
structure of a strong twisted union

(GZ , rGZ
) = (GX , rGX

)♮∗(GY , rGY
).
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Finite simple left braces: constructions and problems

Ferran Cedó

(joint work with David Bachiller, Eric Jespers, and Jan Okniński)

Recall the following definitions for a left brace (B,+, ·):

• B comes with an action λ : (B, ·) → Aut(B,+) defined by λ(a) = λa and
λa(b) = a · b− a, for a, b ∈ B;

• B is called trivial if ab = a + b for all a, b ∈ B;
• a left ideal of B is a subgroup L of (B,+) such that λa(b) ∈ L for all b ∈ L

and all a ∈ B;
• an ideal of B is a normal subgroup I of (B, ·) such that λa(b) ∈ I for all
b ∈ I and all a ∈ B;

• B is simple if {0} and B are distinct, and are the only ideals of B.

Theorem 1 (Etingof, Schedler, Soloviev, [6]). The multiplicative group of a finite
left brace is solvable.

Theorem 2 (Rump, [7]). Every finite simple left brace with nilpotent multiplica-
tive group is a trivial brace of prime cardinality.

Theorem 3 (Bachiller, [1]). Let p1, p2 be two prime numbers such that p2 | p1−1.
Then, for every positive integer k, there exists a finite simple left brace with additive
group isomorphic to

Z/(p1) × (Z/(p2))k(p1−1)+1.
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1. Construction of left braces

We say that a left brace B is a matched product of left ideals L1, L2, . . . , Ln if the
additive group of B is the direct sum of these left ideals.

Note that if B is a finite left brace, then every Sylow subgroup of its additive
group is a left ideal and thus B is the matched product of these left ideals.

Hegedűs left braces.

Let p be a prime. Hegedűs constructed examples of nonabelian regular subgroups
of the affine group AGL(n, p) for p > 2 and n > 3 or p = 2 and n ≥ 3 ,n odd.
Catino and Rizzo presented these examples as left braces.

Theorem 4 (Bachiller, Cedó, Jespers, Okniński, [2]). Let s be an integer greater
than 1 and let p1, p2, . . . , ps be different prime numbers. Then there exists a simple
left brace B with additive group

(Z/(p1))p1(p2−1)+1 × · · · × (Z/(ps−1))ps−1(ps−1)+1 × (Z/(ps))
ps(p1−1)+1.

Furthermore, B is the matched product of the left ideals corresponding to the Sylow
subgroups of (B,+), and every such left ideal is a Hegedűs left brace.

Asymmetric product of left braces.

Catino, Colazzo and Stefanelli in [4] introduced the asymmetric product of two
left braces.

Theorem 5 (Bachiller, Cedó, Jespers, Okniński, [3]). Let A = Z/(l1)×· · ·×Z/(ls)
be a finite abelian group and let p be a prime such that p | q − 1 for every prime
divisor q of the order of A. Then there exists a finite simple left brace B with
additive group

A× (Z/(p))l1+···+ls−s+1

Furthermore, B is an asymmetric product

((Z/(p))l1+···+ls−s ⋊A) ⋊◦ Z/(p)

of a semidirect product of two trivial braces (Z/(p))l1+···+ls−s ⋊ A by the trivial
brace Z/(p).

Using a technical construction of asymmetric product of two trivial braces we
have proved the following result.

Theorem 6 (Cedó, Jespers, Okniński, [5]). Take an integer n > 1 and distinct
primes p1, p2, . . . , pn. There exist positive integers l1, l2, . . . , ln, only depending on
p1, p2, . . . , pn, such that for each n-tuple of integers m1 ≥ l1, m2 ≥ l2, . . . ,mn ≥
ln there exists a simple left brace of order pm1

1 pm2

2 · · · pmn
n that has a metabelian

multiplicative group with abelian Sylow subgroups.
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2. Questions and references

Problem 7. Describe the structure of all left braces of order pn, for a prime p.
And describe the group Aut(B,+, ·) of automorphisms for all such left braces.

Problem 8. Determine for which prime numbers p, q and positive integers α, β,
there exists a simple left brace of cardinality pαqβ.

Problem 9. Let B be a non-trivial finite simple left brace that has a metabelian
multiplicative group with abelian Sylow subgroups. Is B the asymmetric product of
two trivial left braces?
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Factorizations of skew left braces and multipermutation solutions to

the Yang–Baxter equation

Arne Van Antwerpen

(joint work with E. Jespers,  L. Kubat and L. Vendramin)

To study bijective non-degenerate set-theoretic solutions of the Yang–Baxter equa-
tion, Rump [4] and Guarnieri and Vendramin [2] introduced (skew) left braces.
An important notion for tying properties of YBE solutions and skew left braces is
right nilpotency. Cedo, Smoktunowicz and Vendramin [1] showed that an involu-
tive non-degenerate solution is multipermutation if and only if G(X, r) is a right
nilpotent skew left brace. In this talk, we study factorizations of skew left braces.
We call a left ideal L of B a strong left ideal, if (L,+) is a normal subgroup of
(B,+). The skew left brace B is said to have a factorization, if there exist strong
left ideals L,N of B such that L + N = B.

Note that a natural example is given by examining a decomposition of a bijective
non-degenerate solution (X, r). If X = Y ∪ Z, where Y and Z are subsolutions
such that r(Y ×X) = X ×Y and r(X ×Y ) = Y ×X , write < Y > and < Z > for
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the additive subgroup generated by Y and Z respectively in the skew left brace
G(X, r). Then, G(X, r) is factorized by < Y > and < Z >.

We will discuss in this talk that a skew left brace B, which is factorized by
two strong left ideals, which are trivial as skew left braces, is right nilpotent. In
particular, this can be applied to show that some solutions are multipermutation.
Furthermore, we will discuss that these conditions can be relaxed slightly, but that
the relaxed conditions are necessary.

A continuation of this research will allow to further investigate the effect of a
decomposition on the solution. Further questions that might be interesting are:

Problem 1. Is the sum of a trivial skew left brace and a right nilpotent skew left
brace again right nilpotent?

Problem 2. Can the Kegel–Wielandt result be adapted to skew left braces? For
this a novel approach will be needed, as a naive adaptation does not work.

Problem 3. Can a classical result of Huppert, i.e. the finite sum of finite cyclic
groups is supersolvable, be adapted to skew left braces? In particular, what are both
notions for skew left braces? What is their impact on a solution?
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Hopf–Galois structures and skew braces of squarefree order

Nigel Byott

As observed by Bachiller [3], there is a connection between braces and Hopf–Galois
theory. This extends to skew braces. I will outline the relationship between the
problem of counting finite skew braces (up to isomorphism) with given additive
group A and given multiplicative group M , and the problem of counting Hopf–
Galois structures of a given type A on a Galois extension of fields with given Galois
group M . Both problems involve finding the regular subgroups in the holomorph
Hol(A) of A which are isomorphic to M . The number of Hopf–Galois structures
is obtained by multiplying the number of such regular subgroups by the factor
|Aut(M)|/|Aut(A)|, whereas the number of skew braces is the number of Aut(A)-
orbits of such regular subgroups, and in general these orbits will not all have the
same size.

As an illustration of how to solve these interrelated counting problems, I will
then describe joint work [1, 2] with my former PhD student Ali Alabdali (Univer-
sity of Mosul, Iraq) in which we treat Hopf–Galois structures on Galois extensions
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of arbitrary squarefree degree, and skew braces of arbitrary squarefree order. A
group of squarefree order n has the form

G = G(d, e, k) = 〈σ, τ : σe = 1 = τd, τστ−1 = σk〉

where de = n and where k has order d in Z×
e . Given such a group, we factorise

e as e = gz where z = gcd(k − 1, e) is the order of the centre of G. We fix two
groups G = G(d, e, k) and Γ = G(ǫ, δ, κ) of squarefree order n. Let g, z be the
quantities defined above for G, and let γ, ζ be the corresponding quantities for Γ.
Also let w = ϕ(gcd(d, δ)) where ϕ is Euler’s totient function, and let ω(g) be the
number of prime factors of g. We then have the following enumeration result for
skew braces:

Theorem 1. The number of skew braces (up to isomorphism) with additive group
G and multiplicative group Γ is

{

2ω(g)w if γ | e,

0 if γ ∤ e.

To prove this, we must first find all regular subgroups of Hol(G) isomorphic to
Γ, from which we can easily deduce the number of Hopf–Galois structures. These
regular subgroups fall into w families, in which κ is replaced by certain elements
κ1, . . . , κw of Z×

ǫ . For each prime q dividing e, let rq be the order of k in F×
q , and

let ρq be defined similarly for Γ. We define sets of primes

Sh = {q | gcd(g, γ) : rq = ρq > 2 and κh ≡ k±1 (mod q)}

for 1 ≤ h ≤ w, and

T = {q | gcd(g, γ) : rq = ρq = 2}.

Theorem 2. The number of Hopf–Galois structures of type G on a Galois exten-
sion of fields with Galois group Γ is















2ω(g)ϕ(d)γ

w





∏

q∈T

1

q





w
∑

h=1

∏

q∈Sh

q + 1

2q
if γ | e,

0 if γ ∤ e.

Having determined the regular subgroups, we then count their orbits under the
action of Aut(G) to complete the proof of Theorem 1.
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Finite groups versus finite left braces

Adolfo Ballester-Bolinches

(joint work with Ramón Esteban-Romero, Neus Fuster-Corral
and Hangyang Meng)

Some results related to several aspects of the theory of finite left braces and their
applications in the context of the Yang–Baxter equation are presented. Our ap-
proach is based on the abstract theory of finite groups.

Given an involutive non-degenerate set-theoretic solution (X, r) of the Yang–
Baxter equation, its structure group G(X, r) and permutation group G(X, r) admit
structures of left braces as a consequence of a result of [3] based on earlier results
of [8]. We can modify the Cayley graph of the permutation group with respect
to its natural generating system to obtain the Cayley graph of an abelian group
(G(X, r),+) in such a way (G(X, r),+, ◦) becomes a left brace, and we use these
Cayley graphs to obtain a brace structure for G(X, r). Both structures coincide
with the ones of [3]. As consequences of this description, some results about the
structure and the permutation groups become more transparent, we can recover a
description of a finite Coxeter-like quotient for the structure group, and we prove
that the quotient of G(X, r) by its socle is isomorphic to the permutation group
of its retraction. These results appear in [6] and [7].

The semidirect product G associated to the natural action of the multiplicative
group C of a skew left brace on its additive group K gives a triple factorisation G =
KC = KD = CD, in which σ : C → K denotes the identity, which corresponds to
a 1-cocycle or derivation between these groups with respect to the natural action,
that makes D = {σ(c)c | c ∈ C} to be a subgroup of G with K ∩D = C ∩D = 1.
This approach was presented by Sysak in [10] and opens the door to the use of
techniques of group theory to study braces. Recall that a ∗ b denotes −a + ab− b
for a, b ∈ B and for two subsets X , Y of B, X ∗ Y denotes the subgroup of
(B,+) generated by {x ∗ y | x ∈ X, y ∈ Y }, L1(X,Y ) = Y and Ln(X,Y ) =
X ∗ Ln−1(X,Y ). For example, given a set π of primes, we say that a skew left
brace B is left π-nilpotent if Ln(B,Bπ) = 0 for some n, where Bπ is the Hall π-
subgroup of the additive group of B. For a brace B with nilpotent additive group,
and a set of primes π, we can prove that B is left π-nilpotent if, and only if, the
multiplicative group is π-nilpotent. The proof depends of some computations with
commutators in the semidirect product. This result forms part of [4] and extends
some results published in [9] and [1].

This research was supported by the grant PGC2018-095140-B-I00 from the
Ministerio de Ciencia, Innovación y Universidades and the Agencia Estatal de
Investigación, Spain, and FEDER, European Union and by Prometeo/2017/057
of Generalitat (Valencian Community, Spain).
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What can we learn from trusses?

Tomasz Brzeziński

(joint work with Bernard Rybo lowicz)

The talk begins with recalling the definition of a heap [5], [1], i.e. a set with a
ternary operation that satisfies the associative law and the Mal’cev identities, and
modelled on the operation [a, b, c] = a− b+ c defined on a group. Next we explain
the connection between heaps and groups, stressing not only similarities but also
differences (e.g. there is an empty heap, there is no empty group). We the proceed
to define trusses, introduced in [2], as systems with a binary semigroup operation
distributing over a ternary (abelian) heap operation and explain how trusses are
used to build bridges between braces and rings. In particular, given a ring R or a
brace B, there are associated trusses T (R) or T (B).

We explain the notions of paragons which in trusses play the same role as
ideals in rings, and modules over trusses [3]. We proceed to make some (possibly
surprising) observations about rings and braces that arise from thinking about
them as trusses of special kinds. In particular we show that every point of a
quotient ring or, equivalently, every congruence class in a ring is a paragon in
the truss corresponding to this ring. We characterise fully rings in which units
form a paragon in the corresponding truss and the quotient truss is associated
to the ring Z2. These are precisely rings R in which either r ∈ R or 1 − r is a
unit. Finally, we describe a method of extending a truss to a truss by a one-sided
module. If the truss is associated to a brace, this gives a truss associated to brace
as well, irrespective of the nature of the extending module. This construction and
its one-sided version might lead to new examples of braces. The main new results
presented here will appear in [4].
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Desarguesian Garside groups

Carsten Dietzel

A result of Chouraqui says that each structure group G(X, r) associated to a non-
degenerate cycle set X is a Garside group whose Garside monoid is generated by
X . Rump characterised the groups arising in this way as right l-groups with a
duality and showed that they form a subclass of the broader class of geometric
Garside groups. These can also be shown to stem from a cyclic structure. We
demonstrate how to construct a geometric Garside group for each Desarguesian
finite geometry and give an explicit description of the underlying cyclic structures.
At the end of the talk, we address related results and open questions regarding
more general geometries.
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Generalized semi-braces and set-theoretic solutions of the

Yang–Baxter equation

Francesco Catino

(joint work with Ilaria Colazzo and Paola Stefanelli)

Recall that a semigroup (S, ◦) is completely regular if any element a of S there
exists a (unique) element a− of S such that

(1) a = a ◦ a− ◦ a, a− = a− ◦ a ◦ a−, a ◦ a− = a− ◦ a.

Conditions (1) imply that a0 := a◦a− = a− ◦a is an idempotent element of (S, ◦).
Let S be a set with two operations + and ◦ such that (S,+) is a semigroup (not
necessarily commutative) and (S, ◦) is a completely regular semigroup. We say
that (S,+, ◦) is a generalized (left) semi-brace if

a ◦ (b + c) = a ◦ b + a ◦
(

a− + c
)

,
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for all a, b, c ∈ S. Here we assume that the multiplication ◦ has higher precedence
than the addition +.

In addition to left semi-braces [1, 5] examples of generalized left semi-braces
may be obtained by any completely regular semigroup. Indeed, if (S, ◦) is an
arbitrary completely regular semigroup and (S,+) is a right zero semigroup (or a
left zero semigroup), then (S,+, ◦) is a generalized left semi-brace.

Among the several ways by obtaining generalized left semi-braces, we point
out the following construction. Let Y be a (lower) semilattice. For each α ∈ Y ,
let Sα be a generalized left semi-brace and assume that Sα ∩ Sβ = ∅ if α 6= β.
For each pair α, β of elements of Y such that α ≥ β, let φα,β : Sα → Sβ be
a homomorphism such tha φα,α is the identical automorphism of Sα, for every
α ∈ Y , and φβ,γφα,β = φα,γ , for all α, β, γ ∈ Y such that α ≥ β ≥ γ. Then,
S =

⋃

{Sα | α ∈ Y } with addition and multiplication defined by the rule that,
for each a ∈ Sα and b ∈ Sβ,

a + b = φα,αβ(a) + φβ,αβ(b), a ◦ b = φα,αβ(a) ◦ φβ, αβ(b).

is a generalized left semi-brace. If each Sα(α ∈ Y ) is a left semi-brace with (S,+)
left cancellative, we show that map r : S × S −→ S × S defined by

r(a, b) = ( a ◦ (a− + b), (a− + b)− ◦ b )(2)

is a set-theoretic solution of the Yang–Baxter equation. We obtain this by Theorem
9 of [1] and the following novel construction of set-theoretic solutions of the Yang–
Baxter equation.

Let Y be a (lower) semilattice. For each α ∈ Y , let rα be a solution on a set
Xα, and assume that Xα ∩ Xβ = ∅ if α 6= β. For each pair α, β of elements of
Y such that α ≥ β, let φα,β : Xα → Xβ be a map such that φα,α is the identity
map of Sα, for every α ∈ Y , and φβ,γφα,β = φα,γ , for all α, β, γ ∈ Y such that
α ≥ β ≥ γ and (φα,β × φα,β)rα = rβ(φα,β × φα,β) for all α, β ∈ Y .

If X =
⋃

{Xα | α ∈ Y }, then the map r : S × S −→ S × S defined by

r(a, b) = rαβ(φα,αβ(a), φβ,αβ(b)),

for each a ∈ Sα and b ∈ Sβ, is a set-theoretic solution of the Yang–Baxter equation.
Finally, we remark that if (S,+, ◦) is a generalized left semi-brace with (S,+)

right zero semigroup, the map r as in (2) in a solution if and only if (S, ◦) is a right
cryptogroup, that is (a◦ b)0 = (a0 ◦ b)0, for all a, b ∈ S. So we get new idempotent
solutions that are added to those obtained in [6, 7, 3].

Some questions arise naturally:

Question 1. Given a generalized radical ring S [2, 4], is the map r defined as in
(2) a solution?

Question 2. What are the generalized left semi-braces S for which the map r
defined as in (2) is a solution?
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Skew lattices and set-theoretic solutions of the Yang–Baxter equation

Charlotte Verwimp

(joint work with Karin Cvetko-Vah)

Finding all set-theoretic YBE solutions is a fundamental open problem. Recently
introduced algebraic structures, called braces and cycle sets, are related to special
classes of solutions. In an attempt to describe more general solutions, skew- and
semi-braces were defined. Still, an algebraic structure describing all solutions is
unknown. Hence, we begin this talk with stating the following problem:

Problem 1. Find algebraic structures that provide (degenerate) set-theoretic so-
lutions of the Yang–Baxter equation.

An answer to this question comes when looking at skew-lattices, an algebraic
structure that up until recently had not been related to the YBE. Solutions that
are obtained using skew lattices are degenerate in general, and thus different from
solutions obtained from braces, racks and other known structures. We recall ba-
sic information on skew lattices and state some results from [1], regarding YBE
solutions obtained using skew lattices. The main result is the following.

Theorem 2. Let (S,∧,∨) be a skew lattice. Then the map defined by r(x, y) =
((x∧y)∨x, y) is an idempotent set-theoretic solution of the Yang–Baxter equation.

It turns out that all obtained solutions (S, r) are either idempotent (i.e. r2 = r)
or cubic (i.e. r3 = r). The following question is then natural to ask:

Problem 3. Can we describe more set-theoretic solutions of the Yang–Baxter
equation using skew lattices and what kind of solutions do we obtain?

The fact that skew lattices give solutions motivates the second part of this talk,
which is on constructions of skew lattices. We recall a construction from [1] and
give some new results and ideas towards the following problem:

Problem 4. Find constructions of skew lattices. Do the constructed skew lattices
inherit properties of structures that we started from?
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We end the talk with some other open problems:

Problem 5. Are the solutions coming from skew lattices still solutions for other
non-commutative lattices? Do non-commutative lattices give new solutions?

Problem 6. Study the algebraic structures, like the structure group, associated to
set-theoretic solutions that are obtained using skew lattices.

Problem 7. Study the relation between skew lattices and other algebraic structures
that provide set-theoretic solutions of the Yang–Baxter equation.
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Solutions of the Yang–Baxter equation and representation theory of

the infinite symmetric group

Magdalena Wiertel

One of the approaches to solving the Yang–Baxter equation is to understand the
structure of the set of solutions modulo an appropriate equivalence relation. Dur-
ing the talk I will follow the recent paper [1] in which this idea is developed.

It is well known that any involutive R–matrix R, treated as element of End (V ⊗

V ) for some finitely dimensional space V , generates unitary representations ρ
(n)
R

of the symmetric group Sn, n ∈ N, given on the transpositions τk, k = 1, . . . , n− 1
(natural generating set of Sn) as

ρ
(n)
R (τk) = id⊗k−1

V ⊗R⊗ idn−k−1
V ∈ End V ⊗n.

We will say that two involutive R–matrices are equivalent if and only if for every

n ∈ N the corresponding representations ρ
(n)
R and ρ

(n)
S are equivalent.

It turns out that classes of this equivalence relation are in one to one correspon-
dence with pairs of Young diagrams. What is more, involutive R–matrices on the
space of dimension d correspond to pairs of Young diagrams with d boxes in total.

The results use the fact that the Sn–representations ρ
(n)
R define a representation

of the infinite symmetric group S∞. Theorems from the representation theory of
the group S∞ and some operator–algebraic techniques are essential in the pre-
sented approach.
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Yang–Baxter cohomology: Diagonal deformations and knot invariants

Victoria Lebed

Set-theoretic solutions to the YBE are used for colouring braids, knots, knotted
surfaces etc. Counting such colourings, one obtains algebraic invariants for topo-
logical objects. Following Carter et al. [2], these invariants can be refined by
counting colourings with Boltzmann-type weights. These weights are constructed
using maps satisfying certain conditions. A convenient way of expressing this is
to say that such a map should be a cocycle for an explicitly defined cochain com-
plex. The same complex appears if one wants to encode diagonal deformations of
set-theoretic YBE solutions, as it was done in the Hopf algebra classification pro-
gram of Andruskiewitsch et al. [1]. This complex defines the braided cohomology
H∗(X, r) of a solution (X, r).

I explained or briefly mentioned several conceptual interpretations of this co-
homology theory:

(1) in terms of a topological space (an explicit CW-complex) [7]; its funda-
mental group happens to be precisely the structure group G(X, r)!

(2) using a graphical calculus based on braids and knotted trivalent graphs
[9];

(3) involving the quantum shuffle coproduct [9];
(4) in terms of an explicit d.g. bialgebra associated to a solution [3].

The last approach suggests that braided cohomology groups are more than just
abelian groups: H∗(X, r) carries a graded commutative associative product, which
for suitable coefficients refines to a Zinbiel structure.

Computation-wise, I mentioned

(1) the formula for the Betti numbers (the ranks of the free parts of Hk(X, r)),
computed for solutions obtained from self-distributive structures [5];

(2) a splitting of H∗(X, r) into two parts for a wide class of solutions (e.g.,
those coming from quandles as opposed to racks) [13, 14, 12].

Problem 1. Compute the Betti numbers for arbitrary solutions.

Computer-aided calculations for small solutions suggest a rather intricate be-
haviour of these Betti numbers even for involutive solutions.

I concluded with two types of relations between the braided cohomology and
the structure groups and algebras of solutions:

(1) an explicit map, the quantum symmetriser QS, relating H∗(X, r) to the
Hochschild cohomology HH∗(kM(X, r));

(2) connections between G(X, r) and H2(X, r), interpretated as solution in-
variants [5, 4, 8, 12, 11].

Problem 2. Is the quantum symmetriser QS bijective for general solutions?

The answer is known to be positive for involutive and idempotent solutions
[6, 10]. In particular, the idempotent case led to results on the cohomology of
factorisable groups and plactic monoids.
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Yang–Baxter cohomology: General deformations and rigidity

Michael Eisermann

In his study of quantum groups, Drinfel′d suggested to consider set-theoretic solu-
tions (X, r) of the Yang–Baxter equation as a discrete analogon of linear solutions.
Given any commutative ring A, the pair (X, r) can be linearized to the free A–
module V = AX with basis X and the A–linear map c : V ⊗V → V ⊗V extending
r. This transfers the set-theoretic solution (X, r) in the category of sets to an
A–linear solution (V, c) in the category of A–modules.

In order to study deformations of c, we use the ring A = K[[h]] of formal power
series over some field K < A, whence A = K⊕m with the maximal ideal m = hA.
Our aim is to study deformations of c within the space of Yang–Baxter operators

YB(V ) =
{

c̃ : V ⊗ V → V ⊗ V
∣

∣ c̃1c̃2c̃1 = c̃2c̃1c̃2
}

such that c̃ ≡ c mod m. Infinitesimal deformations, modulo m
2, are classified by

the Yang–Baxter cohomology, as laid out in [1, 2]. In this talk I presented the
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general setting and some (homotopy) retraction theorems, which organize the in-
vestigation and greatly simplify calculations. These results establish a relationship
between the classical deformation theory following Gerstenhaber and the cohomol-
ogy theory of racks and quandles, all of which have numerous applications in knot
theory.

— ( ∗ ) —
As a parenthesis, I presented a counter-example to a conjecture of Hayley Ryder
[3]. This open question was brought to our attention by Lebed in her talk on the
first day of the workshop, and its solution during this week manifests that the
exchange of ideas was immediately fruitful.

We study an adjoint pair of functors: First, the functor Conj: Groups →
Quandles sending each group (G, ·) to its conjugation quandle (G,⊳), where
a ⊳ b = b−1 · a · b. Second, the functor Grp: Quandles → Groups sending each
Quandle (Q,⊳) to its structure group given by the presentation

Grp(Q,⊳) =
〈

xa : a ∈ Q
∣

∣ xa · xb = xb · xa⊳b : a, b ∈ Q
〉

.

This begs the natural question: Given a group (G, ·), when is it (isomorphic to) the
structure group Grp(Q,⊳) of some quandle? We have a simple necessary criterion:

The group G̃ = Grp(Conj(G)) always yields a central extension

E : 1 K G̃ G 1
central p

s

via p : G̃ → G : xg 7→ g for each g ∈ G. If G = Grp(Q), then E splits via

s : G → G̃ : a = xq 7→ xa for each q ∈ Q. Ryder conjectured the converse: If E
splits, then G is the structure group of some quandle Q, thus G ∼= Grp(Q).

This turns out to be false: The easiest counter-example is provided by any
non-trivial superperfect group, that is, a group G 6= {1} satisfying H1(G;Z) =
H2(G;Z) = 0. By the universal coefficient theorem, this implies H2(G,K) = 0 for
any abelian group K. Therefore every central extension of G splits, and so does
E in particular. (In the setting of perfect groups, central extension behave like
coverings, and any superperfect group G is its own universal central extension.) If
we had G ∼= Grp(Q) for some n–component quandle Q, then H1(G;Z) ∼= Gab

∼=
Zn, whence n = 0 and Q = ∅, which contradicts G 6= {1}.

The smallest example of such a group G is the binary icosahedral group Ã5
∼=

SL2 F5, of order 120. Historically, this group and its homology H1(Ã5;Z) =

H2(Ã5;Z) = 0 played a crucial rôle in Poincaré’s construction of his famous ho-

mology 3–sphere M = S3/Ã5: This is a closed 3–dimensional manifold, and we

know M 6∼= S3 by virtue of its fundamental group π1(M, ∗) ∼= Ã5. Nevertheless, it
satisfies Hn(M) ∼= Hn(S3) for all n ∈ N, disproving Poincaré’s initial conjecture
that homology detects the sphere among all closed 3–manifolds, as it does among
all closed 2–manifolds (surfaces).

Following Ryder’s conjecture, it remains an interesting open question to charac-
terize and further analyze those groups G ∼= Grp(Q) that arise as structure groups
of quandles. This will be worked out in an article in preparation.
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