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Introduction by the Organizers

The aim of the workshop was to bring together researchers from different areas in
order to discuss various topics concerning rank one groups. A rank one group is a
pair (G,X) consisting of a group G and a set X such that each point stabilizer Gx

contains a normal subgroup Ux (called a root group) acting regularly on X \ {x}
and such that all Ux are conjugate in G. Thus, in particular, G acts 2-transitively
on X . Rank one groups were introduced by Jacques Tits in the early 1990s under
the name Moufang sets, although they have been studied long before that, and
the idea already plays a crucial role in Tits’ Bourbaki notes on the Suzuki and
Ree groups from 1960/1961. Since 2000, they also appear in the literature under
the name abstract rank one groups, which is due to Franz Timmesfeld.

There is a relatively concise list of known examples of rank one groups which
are all of algebraic origin (i.e., related to an algebraic group over a field, a classical
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group, or some variations of these in small characteristics) and it is a prominent
open question whether this list is complete. It has been known since a long time
that exceptional algebraic groups and non-associative algebras play an important
role in the structure theory of rank one groups, but it was only over the last few
years that these interactions have been studied thoroughly from an algebraic and
geometric point of view. Due to these recent developments, we decided to organize
this workshop.

As we had participants with quite different mathematical backgrounds, we were
grateful that some of them agreed to give introductory talks on topics which were
central to the theme of the conference. Vladimir Chernousov talked on cohomo-
logical invariants, Victor Petrov on the classification of simple algebraic groups,
Oleg Smirnov on structurable algebras, Yoav Segev on Moufang sets and Richard
Weiss on Moufang buildings and polygons. These lectures were given during the
first two days of the conference.

In addition to these introductory talks we had 11 research talks, 4 of which
were delivered by the younger participants. Most of them concerned geometric
and algebraic structures that are directly linked to the structure theory of rank
one groups.

Oleg Smirnov talked about Kantor pairs which are used in constructions of
rank one groups of nilpotence class ≤ 2. Victor Petrov talked about a specific
construction of Lie algebras that is closely related to one family of exceptional
rank one groups of type E7.

The contributions of Jeroen Meulewaeter and Simon Rigby concerned a class of
non-associative algebras called structurable algebras. These algebras are closely
related to Kantor pairs and produce exceptional rank one groups of nilpotence
class ≤ 2 in a systematic way, as explained in the recent work of Lien Boelaert,
Tom De Medts and Anastasia Stavrova.

Richard Weiss presented a characteristic free approach to exceptional rank one
groups that is based on descent in Moufang buildings and Tits polygons. Paulien
Jansen’s talk dealt with a geometric reinterpretation of those Tits polygons.

Matthias Grüninger presented a classification result for boundary Moufang sets,
and Hendrik Van Maldeghem provided some new results about Tits webs which are
geometries introduced by Tits for rank one groups with non abelian root groups.

Vladimir Chernousov presented a solution of the Kneser-Tits problem for al-
gebraic rank one groups of type E78

7,1. Philippe Gille discussed several versions
of the notion of compactness for smooth affine algebraic groups, which is impor-
tant for understanding anisotropic kernels of algebraic rank one groups. Torben
Wiedemann talked about C3-graded groups.

Apart from the talks we had two further sessions. The first was a problem session
where each participant could present an open research problem. The second session
was devoted to discuss specifically the classification problem for rank one groups
with abelian root groups. There were lively discussions during both sessions;
especially during the second session, novel approaches towards the classification
problem were revealed.
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Our main motivation for organizing this workshop was to stimulate the scientific
exchange between researchers from different mathematical areas in order to make
progress on various questions on rank one groups. The introductory talks given
during the first days of the conference gave a fairly complete up to date account of
our current knowledge on rank one groups and laid the ground for further scien-
tific interaction. The intenseness of the discussions during the talks and problem
sessions was beyond our expectations and therefore we consider the meeting as
most successful. We are confident that it provided a base for further scientific
interactions between the participants and it is our hope that it will lead to fruitful
new collaborations.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
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Abstracts

Introduction to Moufang sets

Yoav Segev

I gave two 50 minutes talks in which I introduced some basic notions and results
concerning Moufang sets. I also tried to show an application (see [7]), namely,
a sketch of the proof that in a special Moufang set M := (X, (Ux)x∈X), given
two distinct points 0,∞ ∈ X, the root group U∞ contains no proper, nontrivial
subgroup which is invariant (via conjugation) under the two point stabilizer G0,∞

(the Hua subgroup), where G is the rank one group associated with M, namely
G := 〈Ux | x ∈ X〉. This result could turn out useful in showing two major
open problems concerning special Moufang sets: (1) Show that all special Moufang
sets have abelian root groups (see [2], [1] and [6]) and (2) Show that all Moufang
sets with abelian root groups (hence special, see [5]) come from quadratric Jordan
division algebras (see [3], [2] and [4]).

In my talks I defined what a Moufang set is: It consists of a set X , with |X | ≥ 3;
A group G ≤ Sym(X) (nowadays called a rank one group); A subgroup Ux ≤ Gx

(Gx is the stabilizer of x in G), for each x ∈ X . Such that: (M1) Ux fixes x it is
normal in Gx and it acts regularly on X \{x}, for each x ∈ X . (M2) {Ux | x ∈ X}
is a conjugacy class of subgroups of G. (M3) G = 〈Ux | x ∈ X〉.

I discussed the notation M(U, τ) due to De Medts and Weiss ([3]). In particular
I discussed in detail the µ-maps, the hua maps, I proved some of their properties,
and a variety of small technical details that help one to get a grip on the above
simple definition of a Moufang set and start classifying those from scratch.
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On Simple Kantor Pairs

Oleg N. Smirnov

(joint work with Bruce N. Allison, John R. Faulkner)

The talk contains the current version of our classification of simple Kantor pairs.
A Kantor pair is a polarized Kantor triple system. These triple systems were
introduced by Isai Kantor in 1972 [1]. He classified finite dimensional simple non-
polarized triple systems over algebraically closed fields of characteristic 0 using a
classification of 5-gradings on simple Lie algebras.

These triple systems constitute one of the largest classes of nonassociative ob-
jects for which such a classification result has been obtained. The class includes
Jordan triple systems as well as triple systems constructed from associative alge-
bras, alternative algebras, Jordan algebras, and many other interesting exceptional
objects.

Currently we focus on simple Kantor pairs that correspond to nonexceptional
simple Lie algebras. Every such pair is either Jordan, or a reflection of a Jordan
pair (as in [2]), or constructed from a right-polarized associative triple system.
Simplicity criteria for these constructions are also obtained.
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On the group of R-equivalence classes of strongly inner forms of

type E6

Vladimir Chernousov

(joint work with Seidon Alsaody and Arturo Pianzola)

In the talk we discuss a proof of the long standing Tits–Weiss conjecture on U -
operators in Albert algebras and the Kneser–Tits conjecture for algebraic groups
of type E78

7,1 and E78
8,2.

The Tits–Weiss conjecture asserts that the structure group Str(A) of an arbi-
trary Albert algebra A is generated by the inner structure group, formed by the
so-called U -operators, and the central homotheties. This problem was raised by
Tits and Weiss in their 2002 book [5], where they studied spherical buildings and
the corresponding generalized polygons attached to isotropic groups of relative
rank 2. Despite many efforts, this problem has remained out of reach.

If G is an isotropic simple simply connected group over K of relative rank ≥ 2
then by [4] the group G(K) is generated by K-points of isotropic subgroups of G
of relative rank 1. This result allows to reduce many problems for G(K) to groups
of relative rank 1. For instance, this is the case for the Kneser-Tits problem (see
below). Note also that isotropic groups of relative rank 1 give rise to important
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examples of more general groups of rank one. The latter were introduced by
Tits in the early 1990s, who called them Moufang sets. They have proved to be
important in the classification of simple groups, incidence geometry, the theory of
buildings, and other areas. Further still, rank one groups are useful in studying
isotropic groups of exceptional types, where algebraic groups and their associated
root subgroups are typically parametrized by a nonassociative structure, and, as
emphasized in [2], a rich interplay emerges between rank one groups, nonassociative
algebras, and linear algebraic groups.

The Kneser–Tits conjecture for a simple simply connected isotropic group G

over a fieldK asserts that the abstract groupG(K) ofK-points ofG coincides with
its normal subgroup G(K)+ generated by the unipotent radicals of the minimal
parabolic K-subgroups of G. We refer to [1] for a survey of the history and recent
results on this conjecture. Its importance comes from the fact that the group
G(K)+ has a natural BN -pair structure and hence is projectively simple (i.e.
simple modulo its centre), by a celebrated theorem of Tits. So if G(K) = G(K)+

we would have many more new examples of projectively simple abstract groups
given by K-points of isotropic simple simply connected algebraic groups. In this
way, we would obtain analogues of finite simple groups of Lie type in the case of
infinite fields. It is also worth mentioning that the information about the normal
subgroup structure of G(K) is crucial in the arithmetic of algebraic groups for
studying, among other things, congruence subgroups, discrete subgroups, lattices,
and locally symmetric spaces. In general, the Kneser–Tits conjecture does not
hold, and the first counterexample was constructed by V. Platonov in 1975 [3].
However, it is believed by specialists that the conjecture holds for many isotropic
groups of exceptional type, including those of type E78

7,1 and E78
8,2.

The bridge connecting the Tits–Weiss conjecture and the Kneser–Tits conjec-
ture for the abovementioned forms of type E7 and E8 is provided by a theorem of
Tits and Weiss, which states that the two conjectures are equivalent. Furthermore,
using P. Gille’s results in [1] on Whitehead groups, one can easily see that

(1) the Kneser–Tits conjecture for the abovementioned groups reduces to the
R-triviality of structure groups of Albert algebras, and

(2) the conjecture holds in arbitrary characteristic once it is established in
characteristic zero.

Our main result is the following.

Theorem. Let A be an Albert algebra over a field K. Then the structure group
Str(A) of A is R-trivial, i.e. for any field extension F/K the group of R-equiva-
lence classes Str(A)(F )/R is trivial.

As explained above, this implies that the Tits–Weiss conjecture on U -operators
holds for Albert algebras over any field, and that the same is true for the Kneser–
Tits conjecture for groups of type E78

7,1 and E78
8,2. Our proof is of a geometric

nature. We carefully analyze the properties of the natural action of the structure
group Str(A) on the corresponding Albert algebra A. The information that we
need is encoded in the Galois cohomology of the stabilizers of subalgebras of A. We
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compute the Galois cohomology of all these stabilizers and using this information,
we explicitly construct a system of generators of Str(A)(K), which we prove is
R-trivial.

Applications. To a reductive algebraic group G over a field K one can attach
the functor of R-equivalence classes

G/R : Fields/K −→ Groups, F/K → G(F )/R

where Fields/K is the category of field extensions ofK and Groups is the category
of abstract groups. The experts expect that this functor factors through the
subcategory Abelian ⊂ Groups of abelian groups and that the group G(F )/R is
finite if F is finitely generated over its prime subfield. Furthermore, we expect
that the functor G/R has transfers. The following consequences of our main result
provides an evidence that the above mentioned properties might be true in general
case.

Corollary 1. Let G be a simple simply connected strongly inner form of type E6

over a field K of arbitrary characteristic. Then G(K)/R is an abelian group.

Corollary 2. Let G be a simple simply connected strongly inner form of type E6

over a field K of arbitrary characteristic. Then the functor G/R has transfers.
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Moufang polygons and buildings

Richard M. Weiss

A generalized polygon is the same thing as an irreducible spherical building of
rank 2. Tits observed that the generalized polygons associated with absolutely
simple groups of relative rank 2 as well as the generalized polygons that appear
as residues in irreducible spherical buildings of higher rank all have a property
he called the Moufang condition. In [1], the classification of Moufang polygons
(i.e. generalized polygons satisying the Moufang condition) in terms of various
algebraic structures was given. The algebraic structures that arise in this context
include anisotropic cubic norm structures, anisotropic quadrangular algebras and
composition division algebras. In this talk, we gave a brief overview of this classi-
fication and indicated out it can be used to classify irreducible spherical buildings
of rank at least 3.
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D6 + A1-construction of E7

Victor Petrov

We describe a construction of a Lie algebra of type E7 out of an algebraic structure
called “gift” by Skip Garibaldi. “Gift” stands for “generalized Freudenthal triple
system” and means that the underlying representation is allowed to be a vector
space over quaternions and not over the base field. The automorphism group of
the structure is (HSpin12 × SL2)/µ2, so the construction corresponds to the map
of Galois cohomology

H1(F,D6 +A1) → H1(F,E7),

and by a simple argument of Steinberg produces all Lie algebras of type E7 up to
an odd degree extension. Using basic theory of symmetric space we give necessary
and sufficient conditions for isotropy of the resulting Lie algebra.
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Exceptional Moufang sets

Richard M. Weiss

(joint work with Bernhard Mühlherr)

LetM be a spherical Coxeter diagram with vertex set S. Suppose that |S| > 1 and
let ∆ be a Moufang building of type M . Let ϕ be the standard homomorphism
from G := Aut(∆) to Aut(M) and let ψ be the standard homomorphism from G
to Aut(k), where k is the field of definition of ∆. Let Γ be a subgroup of G. The
group Γ is called Galois if the restriction of ψ to Γ is injective. A polarity of ∆ is
a non-type-preserving automorphism of order 2.

In light of [2, Thm. 12.2(ii)], the following is a special case of [1, Thm. 22.20].

Theorem 1. Suppose that either Γ is Galois and acts with finite orbits on ∆ or
that Γ is generated by a polarity of ∆ and M = B2, F4 or G2. Let Ω be the set of
proper residues of ∆ fixed by Γ. Suppose that Ω 6= ∅ and that the residues in Ω are
pairwise disjoint. Then the subgroup of Sym(Ω) induced by the centralizer CG(Γ)
is a Moufang set.

We say that a Moufang set arises by descent, Galois or polar, if it arises from
a pair (∆,Γ) as in Theorem 1; we say that it is exceptional if, in addition, the
building ∆ is exceptional. Aside from PSL2(F ) for some field F (or a minor
variation of this Moufang set in characteristic 2), every known Moufang set arises
by descent.
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A Tits n-gon is a pair (Γ, {≡v}v∈V ), where Γ is a bipartite graph with vertex set
V and for each v ∈ V , ≡v is a symmetric non-reflexive relation on Γv satisfying
axioms given in [3, 1.1.8]. A Moufang n-gon is the same thing as a Tits n-gon in
which the relations ≡v are all trivial.

Let ∆ be a Moufang spherical building of type M and let T = (M,A,Θ) be a
Tits index of absolute type M and of relative rank 2. Thus, in particular, Θ is
a subgroup of Aut(M), A is a Θ-invariant subset of S and there are exactly two
Θ-invariant subsets J1 and J2 of S containing A. The J1- and J2-residues of ∆
form a bipartite graph which has the natural structure of a Tits n-gon, where 2n
is the order of the relative Coxeter group of T . We denote this Tits polygon by
X∆,T . There is a canonical isomorphism from the group of automorphisms of ∆
stabilizing T to X∆,T , so it makes sense to talk of Galois groups of X∆,T . An
exceptional Tits polygon is a Tits polygon of the form X∆,T for ∆ exceptional.
The following is proved in [3] and [4]:

Theorem 2. Every exceptional Moufang set with non-abelian root groups arises
by descent from a pair (X∆,T ,Γ), where X∆,T is an exceptional Tits quadrangle
or hexagon and Γ is a Galois group of X∆,T of order 2.

The exceptional Tits hexagons are classified by isotopy classes of reduced cubic
norm structures and the exceptional Tits quadrangles are classified by isotopy
classes of reduced quadrangular algebras. In [3] and [4], we applied Theorem 2
to obtain explicit formulas in terms of these reduced algebras for the structure
equation of an arbitrary exceptional Moufang set with non-abelian root groups in
arbitrary characteristic.
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The tensor product of two octonion algebras and its structure group

Simon W. Rigby

Structurable algebras are a class of nonassociative algebras with involution that Al-
lison defined in [2] with the express purpose of rationally constructing all isotropic
simple Lie algebras over a field of characteristic zero. Given a simple structurable
algebra (A, )̄ over a field k of characteristic neither two nor three, the output
of the Tits-Kantor-Koecher (TKK) construction is a 5-graded simple Lie algebra
denoted by K(A, )̄. Allison [3] together with Hein [5] wrote germane definitions
of inverses, structurable division algebras, and isotopes, and proved the following
statements:

(1) K(A, )̄ ∼= K(A′, )̄ as Z-graded algebras if and only if (A, )̄ and (A′, )̄ are
isotopic.
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(2) If char(k) = 0, then K(A, )̄ has relative rank one if and only if (A, )̄ is a
structurable division algebra.

The structure group of (A, )̄ is an algebraic subgroup Str(A, )̄ of GL(A) de-
fined as the set of all isotopies from (A, )̄ to itself. This group is isomorphic to
the group of all grade-preserving automorphisms of K(A, )̄, and its connected
component Str(A, )̄◦ is isomorphic to a Levi subgroup of Aut(K(A, )̄)◦.

There are many reasons to be interested in the structure groups of structurable
algebras. For instance, the Kneser-Tits problem for some groups of type E8 (dif-
ferent from those that featured in this talk) has several equivalent formulations
in terms of Str(J, id) for J an exceptional simple Jordan algebra. In this talk,
we presented some results on Str(A, )̄ and Aut(K(A, )̄)◦ for the interesting case
when (A, )̄ or some scalar extension of it is a tensor product of two octonion
algebras.

If (C1, σ1) and (C2, σ2) are composition algebras with their canonical involu-
tions, then they are simple structurable algebras and so is their tensor product
(A, )̄ = (C1 ⊗ C2, σ1 ⊗ σ2). The Albert form of (A, )̄ is a quadratic form on
S = Skew(A, )̄ ∼= Skew(C1, σ1) ⊕ Skew(C2, σ2) defined as Q = n′

1 ⊥ 〈−1〉n′
2

where n′
i is the pure norm of Ci. There is a particularly important isometry

♮ ∈ O(Q), namely the map (s1, s2)
♮ = (s1,−s2) for all si ∈ Skew(Ci, σi). If

dimC1 = dimC2 = 4 or 8, then we call A a biquaternion or a bioctonion al-
gebra and we have Q ∈ I26(k) or I314(k), respectively, where Ind (k) is the set of
d-dimensional forms represented in the n-th power of the fundamental ideal in the
Witt ring.

Allison [4] showed that any algebra with involution (A, )̄ that becomes iso-
morphic to a bioctonion algebra over some field extension K/k, does so over a

quadratic extension K = k(
√
d). In that case, either (A, )̄ was already a biocto-

nion algebra over k or there exists an octonion algebra (C, σ) over K such that
A is the corestriction corK/k(C, σ). The natural way to define the Albert form of

this twisted bioctonion algebra is the trace transfer Q = tr∗(〈
√
d〉n′) = corK/k(n

′)
where n′ is the pure norm of C. More details on these twisted forms are exposed
in [4].

The main results that featured in the talk are summarised below, and they
apply to any form of a bioctonion algebra (A, )̄ over a field k of characteristic
neither two nor three.

Theorem 1. There is a short exact sequence of algebraic groups

1 Gm Ω(Q) Str(A,¯)◦ 1,θ

where Ω(Q) is the extended Clifford group of the Albert form and θ is the restriction
of the unique homomorphism θ : C+(Q) → End(A) such that θ(st) = −LsLt♮ for
all s, t ∈ S. Further restricting θ yields an isomorphism of the derived subgroups:

D(Ω(Q)) = Spin(Q) D(Str(A, )̄◦).
∼=



3256 Oberwolfach Report 52/2019

Some of the ideas behind Theorem 1 are implicit in the 1988 paper of Allison [4].
Using classification results of Tits and Selbach [9, 8] and Rost [7, Theorem 21.3],
we obtain:

Theorem 2. Every simple algebraic group of type E8 in the image of the Galois
cohomology map H1(k,Spin14) → H1(k,E8) is isomorphic to G = Aut(K(A, )̄)◦

for some (possibly twisted) bioctonion algebra (A,¯). The group G has Tits index
E91

8,1, E
66
8,2, E

28
8,4, or E

0
8,8 according as Q has Witt index 0, 1, 3, or 7. The semisim-

ple anisotropic kernel of G is isomorphic to Spin(Qan).

According to [6, Theorem 4.3.1], (A, )̄ is a structurable division algebra if and
only if Aut(K(A, )̄)◦ has k-rank one. Combining this statement with Theorem 2,
we obtain an analogue for bioctonions of Albert’s Theorem on biquaternions [1]:

Theorem 3. The following are equivalent:

(1) Q is anisotropic.
(2) (A, )̄ is a structurable division algebra.

Theorem 3 was proved in a different way by Allison [4, Theorem 3.14] with the
assumption that k has characteristic zero.
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Boundary Moufang sets

Matthias Grüninger

(joint work with Pierre-Emmanuel Caprace)

Let T be a thick tree, X a subset of the set of ends of T satisfying certain properties,
G a subgroup of Aut(T,X) and (Ux)x∈X a family of subgroups of G such that
Ux ≤ Gx for all x ∈ X . Then

(

T,X,G, (Ux)x∈X

)

is called a boundary Moufang

tree if
(

X, (Ux)x∈X

)

is a Moufang set and G = 〈Ux〉. The Bruhat-Tits tree of
a simple algebraic group G over a field k with a discrete valuation provides an
example for a boundary Moufang tree.

The case that is best understood is the following: T is locally finite, X = T∞

and G and the groups Ux are closed in AutT . In this case the group G and the
root groups Ux are locally compact groups and each group Ux has a contracting
automorphism induced by a translation of an apartment containing x. Using the
theory of locally compact contraction groups, P.-E. Caprace and T. De Medts
proved in [1] that if Ux is torsion-free, then G is essentially an algebraic group
over a p-adic field for some prime p and T is essentially the Bruhat-Tits tree for
G.

There is analogue of this result in case that the root groups Ux are abelian
torsion groups. In this case P.-E. Caprace and I proved in [2] that T is one half of
a twin tree satisfying the boundary Moufang condition for twin trees. Using the
classification result for boundary Moufang twin trees in [3] one can now prove that
G is a simple algebraic group over a field of Laurent series with finite constant
field and T is isomorphic to the Bruhat-Tits of G.
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Geometries from structurable algebras and inner ideals

Jeroen Meulewaeter

(joint work with Hans Cuypers, Tom De Medts)

Structurable algebras are a class of non-associative algebras introduced by Allison
in 1978, see [1], which includes the class of Jordan algebras. Any structurable
algebra A has an involution and hence a subspace S of skew elements. Using a
generalized Tits-Kantor-Koecher-construction, one can associate a 5-graded Lie
algebra K(A) to any structurable algebra A. As a vector space, we have

K(A) = S− ⊕A− ⊕ Instrl(A) ⊕A+ ⊕ S+,
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with S− and S+ two copies of S, A− and A+ two copies of A and Instrl(A)
a certain subspace of End(A). The (−2)-component of the 5-grading is S−, the
(−1)-component A− and so forth.

When we consider structurable algebras the characteristic is always assumed to
be different from 2 and 3 and if we consider Lie algebras the characteristic is always
assumed to be different from 2. All algebras are assumed to be finite-dimensional
k-algebras, with k a field.

There exist well known close connections between simple linear algebraic groups,
(classical) Lie algebras, and (algebraic) spherical buildings. As noted before, struc-
turable algebras and Lie algebras are also closely related. In earlier study of low
rank geometries related to exceptional groups [2, 3], it became clear that struc-
turable algebras play an important role. The natural question arose to what extent
it would be possible to recover those geometries directly from the structurable al-
gebras and their associated Tits-Kantor-Koecher Lie algebra. It turns out that
the notion of an inner ideal is essential. We have been able to recover many ge-
ometries of rank one and two directly from the algebras in a surprisingly direct
fashion. This is related to the extremal geometries studied intensively by Arjeh
Cohen and his collaborators, but our approach allows for more geometries. We
also discuss a generalization of extremal geometries, which allows one to obtain
polar spaces as well.

Inner ideals are defined in a few (related) algebras:

Definition 1. An inner ideal in a Jordan algebra J is a subspace I satisfying
Ui(J) ≤ I for all i ∈ I.

Example 2. If J is the Jordan algebra associated with a non-degenerate quadratic
form Q with basepoint, then I ≤ J is an inner ideal if and only if Q(I) = 0 or
I = J , by [8]. Geometrically, these inner ideals form a polar space.

Definition 3 ([7]). An inner ideal of a skew-dimension one structurable algebra
A is a subspace I satisfying Ui(A) ≤ I, for all i ∈ I.

Example 4 ([7]). If A is a Brown algebra, a 56-dimensional skew-dimension one
structurable algebra, then Garibaldi constructed a building of type E7 using the
inner ideals of A.

Definition 5. An inner ideal of a Lie algebra L is a subspace I which satisfies
[I, [I, L]] ≤ I.

Example 6. Using the 5-grading of the Lie algebra K(A), one sees that S− is
always an inner ideal.

Let L be a Lie algebra. We call 0 6= x ∈ L extremal if [x, [x, L]] ≤ 〈x〉. In
particular 〈x〉 is a 1-dimensional inner ideal. If moreover [x, [x, L]] = 0, then x is
called an absolute zero divisor. Any extremal element which is not an absolute
zero divisor is called pure and a Lie algebra is called non-degenerate if it does not
contain absolute zero divisors.
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We call the 1-dimensional inner ideals the extremal points of the Lie algebra, and
denote the set containing these by E(L). We denote the set of extremal elements
by E(L). In 2006, Cohen and Ivanyos [4] introduced a point-line geometry in L,
called the extremal geometry. Its points set is E(L), its line set is

F(L) = {〈x, y〉 | λx + µy ∈ E(L), for all (λ, µ) ∈ k2\{(0, 0)}},
and incidence is just containment. They showed:

Theorem 7 ([4]). Let L be a non-degenerate simple Lie algebra generated by its
set of extremal elements. If F(L) 6= ∅, the extremal geometry (E(L),F(L)) is
isomorphic to a root shadow space of type An,{1,n} (n ≥ 2), BCn,2 (n ≥ 3), Dn,2

(n ≥ 4), E6,2, E7,1, E8,8, F4,1 or G2,2.

However, one class of root shadow spaces is missing in the above list, namely
root shadow spaces of type BCn,1. These are the polar spaces. In order to recover
the polar spaces one needs a new definition of lines.

We define an inner line ideal to be a proper inner ideal containing two distinct
extremal points which is minimal with these properties. Then denote by F ′(L)
the set of all inner line ideals and call the point-line geometry (E(L),F ′(L)), with
containment as incidence, the inner line ideal geometry of L.

Theorem 8 ([5]). Suppose L is a simple Lie algebra generated by pure extremal
elements over a field of characteristic not 2. Then we have one of the following:

• F(L) 6= ∅ and in this case F(L) = F ′(L). Hence the inner line ideal
geometry coincides with the extremal geometry.

• F(L) = ∅, but L contains two commuting, linearly independent extremal
elements; the inner line ideal geometry is a non-degenerate polar space of
rank at least 2.

• L does not contain a pair of commuting, linearly independent extremal
elements, and the inner line ideal geometry has no lines.

So by using this more general definition of lines we recover both the extremal
geometries and polar spaces.

Using geometric arguments we made a connection with structurable algebras:

Theorem 9 ([5]). Let L be a simple non-symplectic Lie algebra generated by pure
extremal elements over a field of characteristic different from 2 and 3. Then there
exists a skew-dimension one structurable algebra A such that L ∼= K(A).

Then we discussed the case when the extremal geometry is a generalized hexa-
gon, i.e. is of type G2,2. For any cubic Jordan algebra J there exists a skew-
dimension one structurable algebra associated to J , denote it by M(J). Now
assume J to be anisotropic. It turns out that the only proper non-trivial inner
ideals of K(M(J)) are 1- and 2-dimensional and form a Moufang hexagon, which
coincides with the extremal geometry. One can show that we get an embedding of
the proper non-trivial inner ideals of M(J), which form a Moufang set, into the
geometry of the proper non-trivial inner ideals ofK(M(J)), which form a Moufang
hexagon.
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If there are no inner line ideals in the Lie algebra L, then, using [3], the extremal
points of L actually form a Moufang set. More generally, we have the following:

Theorem 10 ([6]). If A is a central simple structurable division algebra, then the
proper non-trivial inner ideals of K(A) form a Moufang set. Moreover any proper
non-trivial inner ideal can be mapped onto S− if S 6= 0 or onto A− otherwise,
using a Lie algebra automorphism.

Note that if the dimension of the inner ideals in the previous theorem is not
1, the inner line ideal geometry has an empty point and line set. This is also the
case in this last result relating structurable algebras with generalized polygons:

Theorem 11 ([6]). Let F be an alternative division algebra with Z(F ) = k, and set
n = dim(F ). Consider the structurable algebra F ⊕ F opp with involution mapping
(x, y) onto (y, x). Then the proper non-trivial inner ideals of K(F ⊕ F opp) have
dimension n or 2n and form a thin generalized hexagon, associated with a Moufang
triangle.

References

[1] Bruce Allison, A class of nonassociative algebras with involution containing the class of
Jordan algebras, Mathematische Annalen 237 (1978), 133–156.

[2] Lien Boelaert, Tom De Medts, Exceptional Moufang quadrangles and structurable algebras,
Proceedings of the LMS 107 (2013), 590–626.

[3] Lien Boelaert, Tom De Medts, Anastasia Stavrova, Moufang sets and structurable division
algebras, Memoirs of the AMS 259 (2019), number 1245.

[4] Arjeh Cohen, Gabor Ivanyos, Root filtration spaces from Lie algebras and abstract root
groups, Journal of Algebra 300 (2006), 433-454.

[5] Hans Cuypers, Jeroen Meulewaeter, Extremal elements in Lie algebras, buildings and struc-
turable algebras, in preparation.

[6] Tom De Medts, Jeroen Meulewaeter, Inner ideals and structurable algebras: Moufang sets,
triangles and hexagons, in preparation.

[7] Skip Garibaldi, Structurable algebras and groups of type E6 and E7, Journal of Algebra 236

(2001), 651–691.
[8] Kevin McCrimmon, Inner ideals in quadratic Jordan algebras, Transactions of the AMS

159 (1971), 445–468.

Root Graded Groups and the Blueprint Technique

Torben Wiedemann

Let φ be a finite irreducible root system. A φ-grading of a group G is a family
of non-trivial subgroups (Uα)α∈φ generating G, called the root groups of G, such
that some commutator relations and a non-degeneracy condition are satisfied and
such that so-called Weyl elements exist for each root. They appear in Shi’s paper
[14] as an analogue of the corresponding notion of root graded Lie algebras. For
these Lie algebras, which were introduced by Berman and Moody in [5], there
exists a complete classification which is due to Allison, Benkart, Berman, Gao,
Moody, Neher, Smirnov and Zelmanov (see [1, 2, 4, 3, 5, 12]). Further, several
concepts which are very similar to Shi’s notion of a φ-graded group had been
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studied before. Examples include Faulkner’s groups of Steinberg type or groups
with Steinberg relations (see [6, 7]), the notion of Données radicielles introduced
by Bruhat and Tits and Tits’ definition of RGD-systems. Our definition of a
φ-graded group is very general in the sense that it encompasses all previously
mentioned concepts as special cases.

The following theorem was proven by Shi in [14] for the higher rank case. The
study of the lower rank case (that is, φ = A2) has older roots: It dates back to
works of Moufang on Moufang planes, see [9, 10]. In the framework of root graded
groups, an explicit proof of Theorem 1 for the case φ = A2 can be obtained by
a slight modification of Faulkner’s arguments in [7]. (For a modern reference, see
[8].)

Theorem 1. Let φ be a simply laced irreducible root system of rank at least 2.
Then every φ-graded group is parametrized (in a suitable sense) by a nonassociative
ring R. If the rank of φ is at least 3, then R must be associative. If φ is of type
D or E, then R must be commutative.

In [6], Faulkner constructs an A2-graded group which is parametrized by R for
any alternative ring R. In fact, all known examples of such rings are alternative.

Open Question. Is every ring which parametrizes an A2-graded group alterna-
tive?

For this open problem, there exist some partial results: In [6, (A.14)], Faulkner
showed that the assertion is true for A2-graded groups satisfying some additional
conditions and in [11, 3.2, 3.9], Mühlherr and Weiss showed that it holds for any
A2-graded group which comes from a 5-plump Tits polygon.

If φ is not simply laced, the situation is more difficult. For Cn, serious difficulties
arise in the case of characteristic 2. If we exclude this case (and make some
additional assumptions), then we have the following result which was proven by
Zhang in his PhD thesis [15].

Theorem 2. Let n ≥ 3 and let G be a Cn-graded group which satisfies some
additional suitable assumptions. (For example, “characteristic 2” is not allowed.)
Then G is parametrized by a nonassociative ring R with a nuclear involution r 7→
r∗.

For C3, the situation is similar to the situation for A2: Every known exam-
ple of a ring which parametrizes a C3-graded group is alternative and for every
(finitely generated) alternative ring R, there exists a C3-graded group which is
parametrized by R. (For the latter assertion, see [15].) We were able to prove the
following theorem.

Theorem 3. Let R be ring which parametrizes a C3-graded group and assume
that 2R is not a zero divisor. Then R is alternative.

Theorem 3 follows from certain computations involving a self-homotopy of the
longest word in Weyl(C3) and some rewriting rules. (A self-homotopy is a sequence
of elementary homotopies which transforms a word into itself.) This method,
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which we call the blueprint technique, is inspired by Ronan-Tits’ construction of a
building from a blueprint in [13]. The idea to apply this technique in the context
of root graded groups is due to Mühlherr and Weiss.
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Tits polygons: a geometric point of view

Paulien Jansen

Recently, Mühlherr and Weiss introduced the notion of a Tits polygon [2]. Essen-
tially, a Tits polygon is a bipartite graph, equipped with an opposition relation in
every vertex neighbourhood and with a group which acts very transitively on the
graph while preserving all these opposition relations. Under some extra assump-
tions, the authors proved that these polygons are paremetrized by certain algebraic
structures. Most prominent examples of Tits polygons were already studied be-
fore, from a geometric point of view, using shadow spaces of buildings. The aim
of this talk was to present this geometric framework, while showing its connection
with certain Tits polygons of index type. We also present a classification theorem
of parapolar spaces inspired by this connection.
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Shadow spaces [1]. Let ∆ be a thick, spherical, irreducible building of type Xn,
with associated Coxeter system (W,S), |S| ≥ 3. For any element j of S, there
is a canonical way to associate a point-line geometry (P ,L) to the pair (∆, j):
the points P are defined to be the j-vertices of ∆, the lines L are defined to be
the L-simplices of ∆, with L ⊆ S consisting of those elements in S that do not
commute with j. A point is incident with a line if the corresponding simplices in
∆ are incident. The point-line geometry we obtain in this way is called the shadow
space of ∆ of type Xn,j.

A shadow space of type An,1 is a projective space, one of type Cn,1 or Dn,1 is a
polar space. In all other cases, we obtain a space which has a lot of substructures
that form projective and polar spaces.

Theorem 1. Let (P ,L) be a shadow space of type Xn,j (n ≥ 3). Then Xn,j is
a projective space (in case of An,1), a polar space (in case of Dn,1 or Cn,1) or a
parapolar space (in all other cases); in particular, it satisfies the following axioms:

(1) For every point p and every line L, p is collinear with 0, 1 or all points of
L.

(2) Let x and y be non-collinear points. If there exist at least two points
collinear to both, then the convex closure of x and y forms a polar space,
substructures obtained in this way are called symps.

Tits polygons of index type [2]. For a given spherical Tits index T (of relative
rank 2 and absolute type Xn), and a thick building ∆ (of type Xn), there exists a
canonical construction that results in a Tits polygon. This construction is closely
related to the construction of shadow spaces above. In fact, when we take the
type Xn to be exceptional, all Tits hexagons and quadrangles obtained this way
have as underlying graph the point-line (in case of Tits hexagons) or point-symp
(in case of Tits quadrangles) incidence graph of the corresponding root shadow
spaces, these are shadow spaces of types:

F4,1, E6,2, E7,1 or E8,8.

Moreover, the opposition relation in each vertex neighbourhood can be deduced
from the geometry. In the point-line incidence graphs for example:

• Two points p, q on a line L are opposite in L if they are distinct.
• Two lines L, M through a point p are opposite in p as soon as:

– We can find a sequence (L0 = L,L1, L2, L3 =M) of length 3 of lines
Li through p such that every two consecutive lines are contained in a
common plane.

– We cannot find such a sequence of length < 3.

A classification theorem. We used the observations above to find a new classi-
fication theorem for parapolar spaces. We call two lines through a point p opposite
in p if the opposition criteria from above holds.
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Theorem 2. Let Ω = (P ,L) be a parapolar space, with G = Aut(Ω) such that:

(1) For every point p and two lines L1, L2 through p, there exists a third line
through p opposite both L1 and L2 in p.

(2) Let L be any line, containing points p 6= q. Then the group:

G
(1)
L,p := {σ ∈ G |σ fixes L pointwise and fixes all lines through p}

acts transitively on the set

{lines M through q |L opposite M in q}.
Then Ω is the shadow space of a building. Moreover, it is of type

Bn,2 (n ≥ 3), Dn,2 (n ≥ 4), F4,1, E6,2, E7,1 or E8,8.

References

[1] B. Cooperstein, A characterization of some Lie incidence structures, Geom. Dedicata 6

(1977), 205-258.
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Residues on Affine Grassmannians

Philippe Gille

(joint work with Mathieu Florence)

The compact Lie groups play an essential role in the theory of Lie groups and it
makes sense to generalize the notion of compacity for a smooth affine group G
over a base field k, that is a closed k-subgroup of some GLn (e.g. the orthogonal
group of a quadratic form). We consider the fourth following candidates.

(I) (rank one subgroups) G does not carry any k–subgroup isomorphic to the
additive group Ga nor the multiplicative group Gm;

(II) (Boundedness property) G
(

k((t))
)

is bounded for the valuation topology.

(III) G
(

k[[t]]
)

= G
(

k((t))
)

;

(IV) (No point at infinity) There exists a (projective) compactification X of G
such that G(k) = X(k).

We have the easy implications (IV) =⇒ (III) =⇒ (II) =⇒ (I). If k is a perfect
field and G is smooth, Borel and Tits have shown in 1965 the implication (I) =⇒
(IV) so that all conditions agree [1, th. 8.2]. Furthermore in the case of the real
numbers (and for p-adic fields), this is equivalent to say that the group G(k) of
points is compact (ibid, 9.3). For unipotent subgroups over imperfect fields, the
equivalence (I) ⇐⇒ (III) is due to J. Tits, see [3, Appendice B.2].

For k imperfect and G reductive, we have that (I) =⇒ (II) according to a result
of Bruhat-Tits-Rousseau, we refer to Prasad’s elementary proof [7]; actually (IV)
holds as well by using nice compactifications of G starting with the wonderful
compactification in the adjoint case.
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The next step is Gabber’s talk [6] in Oberwolfach in 2012. Using the theory
of pseudo-reductive groups, Gabber proved (among other things) that the four
conditions are equivalent in the general case. The main result of today generalizes
(partly) Gabber’s statement over rings in a quite elementary manner.

Theorem 1 ([5]). Let A be a ring (commutative, unital) and let G be a closed
A–subgroup scheme of SLN,A for some N . Then the following are equivalent:

(I) HomA−gp(Ga, G) = 1 and HomA−gp(Gm, G) = 1;

(III) G
(

A[[t]]
)

= G
(

A((t))
)

where A((t)) = A[[t]][ 1t ].

We call that property wound (ployé in French). The proof goes by associating
to an element g ∈ G

(

A((t))
)

\ G
(

A[[t]]
)

its residue res(g) : Ga → G or Gm → G
which is a non-trivial group homomorphism. The techniques involved apply also
to G-torsors. The second main result is the following.

Theorem 2 ([5]). Let G be an affine algebraic k–group over a field k. Let X be
a G–torsor. If X

(

k((t))
)

6= ∅, then X(k) 6= ∅.
For reductive groups, this statement is due to Bruhat-Tits. The generalization

of that statement over a ring is known for GLn and for tori according to recent
results by Bouthier-Česnavičius [2, 2.1.17, 3.1.7]; we generalize it as well for wound
closed subgroup schemes of SLN and forG commutative under further assumptions
[5, 4.2,4.3]. It is an open question beyond those cases.

Already over a field it is an open question whether the statement does generalize
to homogeneous spaces; this is the case in characteristic 0 according to results by
M. Florence [4].

Finally, if G is split reductive, the coset G(k((t)))/G(k[[t]]) is described by the
k–points of the affine grassmannian QG [8]. This permits to show that an element
g ∈ G(k((t))) \ G(k[[t]]) is of rank zero iff g is of the shape g = g1µ(t)g2 for
g1, g2 ∈ G(k[[t]]) and µ : Gm → G a homomorphism.
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Tits webs

Hendrik Van Maldeghem

Let M = (X, (Ux)x′inX) be a Moufang set with nonabelian root groups. Suppose
moreover that M is constructed from an algebraic group of relative rank 1, or
from a Frobenius twist of a group of mixed type B2, G2, F

∗
4,2, where the latter

corresponds to the class of exceptional Moufang quadrangles of type F4. Then,
for each x ∈ X , Ux has nilpotency class 2 or 3. Set Vx ∈ {U ′

x, Z(Ux)} (so Vx is
either the derived group or the center of Ux). We define a point-line geometry
Γ = (X,L), with point set X and line set L as follows. For x, y ∈ X , let yVx

denote the orbit of y under the acton of Vx. Then we define

L =
{

yVx ∪ {x} | x, y ∈ X, x 6= y
}

.

The members of L are also called threads and the geometry Γ a Tits web. This
definition is due to Jacques Tits (unpublished).

A linear space is a point-line geometry with the properties that each line contains
at least two points and every pair of distinct points is contained in exactly one
line.

Observation. The Tits webs associated to algebraic groups of relative rank 1 are
linear spaces.

Conjecture. The automorphism group of a Tits web is precisely the automor-
phism group of the corresponding Moufang set.

A slightly weaker form of this conjecture is the following.

Conjecture′. Two Tits webs are isomorphic if and only if the corresponding
Moufang sets are isomorphic.

For several classes of Moufang sets, the conjecture is already proved. These

include algebraic groups of type 2
A
(1)
2,1 (by Jacques Tits [5]), F

21
4,1 (by Tom De

Medts and the author [1]) and one of the two relative rank 1 forms of type E8 (by
Jacques Tits, unpublished). Furthermore, all cases of Frobenius twists are done
by combined work of the author, Fabienne Haot and Koen Struyve [3, 4, 6].

Example. We now present an example of how the conjecture can be approached

by providing a new proof for the case 2
A
(1)
2,1, i.e., the case of a unitary Moufang set

in dimension 4 (a so-called unital in a pappian projective plane). It is based on
ideas from [2].

Let Γ = (X,L) be the Tits web. Fix a point x ∈ X and set Lx = {L ∈ L | x ∈
L}. Let L,M ∈ Lx, L 6=M , and define

〈L,M〉 =
{

K ∈ Lx

∣

∣

∣

∣

K,L,M never meet the

same line not containing x

}

∪ {L,M}.

Then one shows that 〈L,M〉 = 〈L′,M ′〉, for all L′,M ′ ∈ 〈L,M〉, L′ 6=M ′. More-
over, if we set

Tx = {〈L,M〉 | L,M ∈ Lx, L 6=M},
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then the point-line geometry Ωx = (Lx,Tx) is an affine plane, defined over some
field k (the same field over which the Moufang set is defined).

Now the lines through x meeting a fixed line not through x turns out to be a conic
in Ωx. Also, all the conics thus obtained have the same two points at infinity over
the algebraic closure of k. Therefore, the quadratic extension of k related to the

group of type 2
A
(1)
2,1 is determined and Conjecture′ is proved. But one also sees

that the automorphism group of the affine plane stabilizing the said set of conics is
precisely the point stabilizer in the Moufang set. Hence the full conjecture follows.

In this example, the threads can be identified with the traces of the projective
lines when viewing the set X as a Hermitian curve in a projective plane. This is
a general phenomenon: the threads are always some geometric objects occurring
in “nature”, despite their group-theoretic definition.

Remark for the Suzuki groups. In the case of a Frobenius twist of type 2
B2,

the Tits webs occurring are so-called inversive planes, except when the ambient
group is not defined over a field, but only over a vector space. In that case, the
threads are still plane section of the set X in some 3-dimensional projective space,
just like what happens in the field case, but not all section occur. This is precisely
the hard case in the proof of the conjecture for these Moufang sets. The conjecture
can also be proved if we enrich the family of threads with all possible nontrivial
plane sections, see [6].
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