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Abstract. Seshadri constants were defined by Demailly around 30 years ago
using the ampleness criterion of Seshadri. Demailly was interested in studying
problems related to separation of jets of line bundles on projective varieties,
specifically in the context of the well-known Fujita Conjecture. However,
Seshadri constants turned out to be objects of fundamental importance in the
study of positivity of linear series and many other areas. Consequently, in the
past three decades, they have become a central object of study in numerous
directions in algebraic geometry and commutative algebra. In this mini-
workshop, we studied some of the most interesting current research problems
concerning Seshadri constants. We expect that this exploration will help
focus research on some of the most important questions in this area in the
years to come.
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Introduction by the Organizers

The mini-workshop Seshadri constants, organized by Thomas Bauer (Marburg),
 Lucja Farnik (Kraków), Krishna Hanumanthu (Kelambakkam) and Jack Huizenga,
(University Park) was attended by 17 participants from Europe, North America,
and Asia. The participants came from a wide variety of levels, ranging from early
postdocs to fully established professors with international stature. Additionally,
four of the researchers were women. Through this diversity we made substantial
progress on questions in this area, forged new collaborations which will continue
for years to come, and provided excellent training opportunities for early career
researchers.
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Workshop activities consisted of fifteen half hour talks in the mornings, with every
participant being given the opportunity to speak if they desired. On the first day
there were additionally two problem sessions where suggestions of problems for
groups to work on were made. We divided ourselves into three groups which
worked together on research problems in the afternoon sessions. We now discuss
the problems studied and progress made by each of these working groups.

Line arrangements and Seshadri constants. Let (X,L) be a smooth polar-
ized surface. The multi-point Seshadri constant of L at x1, . . . , xr is defined to
be

ε := ε(L;x1, . . . , xr) = inf
C

L · C∑
i multxi

(C)
,

where the infimum is taken over reduced and irreducible curves C which pass
through at least one of the points xi.

The study of multi-point Seshadri constants is already interesting for points
in the projective plane P2. A famous conjecture of Nagata [10] asserts that if
r ≥ 10 and x1, . . . , xr ∈ P2 are sufficiently general, then ε = 1/

√
r. On the other

hand, when the points x1, . . . , xr lie in special position, the constant ε is frequently
rational, and it is a very interesting problem to compute it. This problem often
requires a great deal of understanding of the position of the points.

In this group we focused on the case where the collection of points is the set
of singular points in a line configuration in the plane P2. In this case there is a
natural guess as to what the Seshadri constant ε should be: one of the lines in
the configuration should compute the constant. This was recently conjectured by
Pokora.

Conjecture ([11]). Let x1, . . . , xr ⊂ P2 be the set of singular points in a con-
figuration of lines. If k is the maximum number of points which lie on a line,
then

ε(L;x1, . . . , xr) =
1

k
.

We discovered a method to study this conjecture via a linear programming
problem; this allowed us to solve the conjecture so long as the number of lines in
the configuration is at most 12. However, in the case of 12 lines, the very special
line configuration known as the dual Hesse configuration requires an essentially
different method to solve. Work on this problem continues.

Global generation and nef divisors on self-products of curves. This group
started by thinking about the following problem:

Problem. Does there exist a smooth complex projective surface S and a sequence
of ample line bundles (Ln) on S such that setting

ν(Ln) = min
{
m

∣∣ L⊗m
n is globally generated

}
,

we have ν(Ln) → ∞ as n → ∞?
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The corresponding problem for “globally generated” replaced by “very ample”
was answered in the affirmative by Kollár [5, Ex. 3.7]. After Bauer’s talk, we also
realized that the problem has conditionally been answered affirmatively under the
additional assumption that the SHGH conjecture, a generalization of Nagata’s
conjecture, holds [1, Prop. 4].

During the workshop, most of our time was spent studying the self-product
C × C of a very general smooth complex projective curve, towards answering
the problem unconditionally. The reasoning was that a sequence (Ln) as in the
statement of Problem is more likely to exist on a surface with a non-polyhedral
nef cone. Recall that if X is a projective variety, then the nef cone is the convex
cone

Nef(X) =
{
ξ ∈ N1(X)R

∣∣ (ξ · C) ≥ 0 for all curves C ⊆ X
}

in the Néron–Severi space N1(X)R of X . The non-polyhedrality of the nef cone
of C × C was proved by Rabindranath [12, Thm. 1].

In order to start thinking about the problem, we decided we should first un-
derstand the nef cone of C × C. Kouvidakis [9, Thm. 2] showed a certain class
symmetric in permuting the factors of C × C is nef. Following ideas of Vojta [13,
Prop. 1.5], Rabindranath showed there is an infinite family of nef classes that force
the non-polyhedrality of the nef cone [12, Prop. 3.2]. Using different techniques,
Fulger and Murayama [6, Thm. 4.7(ii)] showed the existence of more nef classes.

While checking if some of these known classes could be used to give an answer
to problem, we realized that there is room for improvement in the approach of
Vojta and Rabindranath. We spent the rest of the time attempting to work out
the largest subset of the conjectured nef cone which can be proved to be nef by
their approach.

Symbolic defect. This project focuses on the explicit determination of the sym-
bolic defect of ideals. The particular case of interest is the ideal of a number of
points in the projective space. Let X = {P1, . . . , Ps} be a finite set of points in
the projective space Pd with defining ideal I =

⋂s
i=1 IPi

⊆ R = k[x0, . . . , xd].
Aside from the usual powers In, there is also a more geometric set of powers

of I to consider: the span of the forms that vanish with order at least n at every
point of X . At least in characteristic zero, this is the n-th symbolic power I(n) of
I. It is also given by I(n) =

⋂s
i=1 I

n
Pi
, and it is the saturation of In with respect

to the irrelevant ideal.
In the following we denote by µ(−) the minimal number of generators of a

graded R-module and by m the irrelevant maximal ideal of R. The symbolic
defect of I, introduced by Galetto, Geramita, Shin and Van Tuyl in [7], is the
numerical function

sdefI : N → N, sdefI(n) = µ

(
I(n)

In

)
= dimk

(
I(n)

In + mI(n)

)
.

It is a measure of the algebraic complexity of the difference between the usual
powers and the symbolic powers of I. Our project focuses on determining the
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order of growth of the symbolic defect function, defined by

ord(sdefI) = min
{
t ∈ N | sdefI(n) = O(nt)

}

= min

{
t ∈ N | lim sup

n→∞

sdefI(n)

nt
< ∞

}
.

The literature on the topic of the symbolic defect is quite limited so far, with
the notable exceptions of [7] and [4], which presents the opportunity to tackle the
following open questions:

(1) Which (homogeneous) ideals I of R have finite ord(sdefI)?
(2) Compute ord(sdefI) or find upper bounds on it for ideals I satisfying the

property in (1).

(3) For an ideal I with ord(sdefI) = t determine the value of lim sup
n→∞

sdefI (n)
nt

and decide whether lim
n→∞

sdefI (n)
nt exists.

In regards to question (1) we can provide an affirmative answer for ideals of
points in Pd. In this same case, question (2) can be answered with the inequality
ord(sdefI) ≤ dim(R) = d + 1. This is based on the existence of the asymptotic

regularity lim
n→∞

reg(I(n))
n according to [2, Theorem 3.2], [8, Corollary 2.5]. We note

that the asymptotic regularity is the reciprocal of a Seshadri constant as explained
in [2, Remark 1.3].

Turning to question (3), we were able to make progress in the case of defining
ideals for sets of s ∈ {5, 6, 7, 8} general points in P2, as well as for the defining
ideals of start configurations of planar points, i.e. the pairwise intersection points
of an arrangement of ℓ general lines in P2. These ideals enjoy remarkable properties
regarding the structure of their blow up algebras. In particular, we note that the
symbolic Rees algebra Rs(I) =

⊕
n∈N

I(n) is Noetherian, which implies in view of
[3, Proposition 2.3] that ord(sdefI) ≤ 1. In fact, in all the above mentioned cases
we show that ord(sdefI) = 1 and we can compute the exact value for the limit

of a certain subsequence of the sequence
{

sdefI(n)
n

}
n∈N

. Computational evidence

suggests that in all these cases lim
n→∞

sdefI (n)
n exists.
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Measures of local positivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3279
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Abstracts

Measures of local positivity

Alex Küronya

(joint work with Catriona Maclean and Joaquim Roé)

Our purpose is to study local positivity of line bundles on projective varieties.
Let X be a projective variety of dimension n over the complex numbers, x ∈ X a
smooth point, L a big line bundle on X . We say that L is ample at x if there exists
a Zariski open neighbourhood x ∈ U ⊆ X such that the Kodaira map φmL|U is
an embedding for all m ≫ 0. It was proven by Boucksom–Cacciola–Lopez [3] that
L is ample at x if and only if x 6∈ B+(L). In what follows we will primarily care
about the above situation, and we will assume that we deal with L and x such
that L is ample at x.

Once L is ample at x we can try to measure the extent of its positivity there,
two well-studied examples of such measures are the Seshadri constant

ε(L;x) = sup{t > 0 | π∗L− tE is nef },
and the pseudo-effective threshold

µ(L;x) = sup{t > 0 | π∗L− tE is pseudo-effective}.
In both cases π : Y → X denotes the blowing-up of X at x, and E is the exceptional
divisor of π.

Both invariants have good formal properties: they are left unchanged under
numerical equivalence of line bundles, they are super-additive, homogeneous, and
can only increase upon restriction to a subvariety containing x.

Most of the above facts are explained by the nature of the respective definitions
of ε(L;x) and µ(L;x) in that they are defined in terms of the convex geometric
structure of the Néron–Severi space.

For this talk the guiding question regarding these invariants is the question
whether ε(L;x) or µ(L;x) are rational numbers. This is wide open even in dimen-
sion two. Note that there is some evidence in both directions: for one, all Seshadri
constants that have been computed so far are rational, at the same time by [6]
the rationality of Seshadri constants on blow-ups of the projective plane would
disprove the Segre–Harbourne–Gimigliano–Hirschowitz (SHGH) conjecture.

We proceed by presenting a dual convex geometric interpretation of ε(L;x) and
µ(L;x) via Newton–Okounkov theory. For definitions and the basic theory we
refer the reader to [2, 5, 8, 13, 14, 15].

In addition to X ,L, and x as defined above, we choose an admissible flag Y•
on or over X (the distinction is not too relevant since one ends up using the
corresponding flag valuation of the function field of X). The choice of Y• leads to
a compact convex body ∆Y•

(L) ⊆ Rn.
Let again π : Y → X be the blow-up of X at x, and for simplicity let us assume

that X is a smooth surface. Then the Newton–Okounkov body ∆(C,x)(L) is in
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fact a polygon [12], and its combinatorics is determined by the Zariski chamber
structure (cf. [1]) of the surface X .

In this language it was shown in [9, 11] (cf. [10] that the following three state-
ments are equivalent:

(1) the line bundle L is ample at x;
(2) for every y ∈ E there exists δ > 0 such that ∆−1

δ ⊆ ∆(E,y)(π
∗L);

(3) there exists y ∈ E and δ > 0 such that ∆−1
δ ⊆ ∆(E,y)(π

∗L).

Here ∆−1
δ ⊆ R2 is the simple spanned by the points (0, 0),(δ, 0), and (δ, δ).

As local positivity of L at x can be read off from infinitesimal Newton–Okounkov
bodies, we can try the same with ε(L;x) and µ(L;x). We showed in [9, 11] that
this can indeed be done:

(1) µ(L;x) is the width of an arbitrary Newton–Okounkov body ∆(E,y)(L;x);

(2) ε(L;x) = sup{t > 0 | ∆−1
t ⊆ ∆(E,y)(L)}.

This state of affairs is satisfactory, but it turns out that we can obtain new mea-
sures of local positivity by considering interesting functions on Newton–Okounkov
bodies. Building on ideas from complex analysis it was observed by Boucksom
and Chen that multiplicative filtrations on the section ring

R(X,L) =
∞⊕

m=0

H0(X,mL)

yield concave functions on Newton–Okounkov bodies. We point out that the shape
of a Newton–Okounkov body ∆Y•

(L) changes by changing the flag, nevertheless,
certain invariants remain constant. Not unexpectedly, the same holds for functions
on Newton–Okounkov bodies.

Keeping our previous notation, we will focus on the decreasing multiplicative
filtration on the section ring R(X,L) induced by order of vanishing at a smooth
point p ∈ X (the same results hold for order of vanishing along a smooth subvariety
Z ⊆ X). We write ordp : ∆Y•

(L) → R≥0 for the induced concave function.
It was shown in [7] that

max
∆Y• (L)

ordp = µ(L; p),

hence the left-hand side is independent of the choice of Y•. Perhaps more impor-
tantly, Boucksom–Chen [4] verified that

β(L;x)
def
=

1

volX(L)
·
∫

∆Y•

ordp

is also independent of the choice of the flag Y•. The invariant β(L;x) plays a crucial
role in the diophantine arguments of [16], and in recent results on K-stability in
Kähler geometry.

It turns out the β(L;x) contributes to our understanding of Seshadri constants
as well, because it provides a bridge between ε(L;x), and volumes of line bundles,
whose arithmetic properties are somewhat better understood. Our results in this
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direction go as follows [14]. With notation as above, let us assume that X is a
surface. then

(1) if β(L;x) is rational then so is ε(L;x);

(2) there exists a three-dimensional projective variety X̂ and a big line bundle

L̂ on X̂ such that

β(L;x) = volX̂(L̂).

This relates the study of ε(L;x) to the study of the birational geometry of the

threefold X̂ .
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[2] S. Boucksom, Corps D’Okounkov, Séminaire Bourbaki 65 (2012), no. 1059, 1–38.

[3] S. Boucksom, S. Cacciola, A. F. Lopez, Augmented base loci and restricted volumes on
normal varieties, Math. Z. 278 (2014). no. 3–4, 979–985.

[4] S. Boucksom, H. Chen, Okounkov bodies of filtered linear series, Compos. Math. 147 (2011),
no. 4, 1205–1229.
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Newton–Okounkov polygons

Joaquim Roé

(joint work with Julio Moyano-Fernández, Matthias Nickel,
and Tomasz Szemberg)

Newton polygons. In a famous letter1 written in October 1676, Isaac Newton
described his method to obtain fractional power series solutions y =

∑
cix

i/n to
polynomial equations in two variables 0 = p(x, y) =

∑
aijx

iyj . The first step in
Newton’s algorithm is to draw the convex hull ∆(p) in R2 of the set of pairs (j, i)
such that aij 6= 0. Then for each lower side Γ of ∆(p), from the slope of Γ and
the polynomial

∑
(j,i)∈Γ aijx

iyj , the initial term of one of the series above can be

determined. A suitable change of variables allows then to iterate the process and,
asymptotically, parametrize the branches of the curve p(x, y) = 0 near the origin
of coordinates.

To appropriately interpret the information contained in the upper sides of ∆(p),
one applies coordinate changes (x, y) 7→ (1/x, y/x) or (x, y) 7→ (x/y, 1/y) to con-
clude that they correspond to branches of the curve at infinity.

The lower sides of the Newton polygon ∆(p) describe the curve
p(x, y) = 0 locally near 0. The upper sides of the Newton polygon
∆(p) describe the curve p(x, y) = 0 at infinity.

(1)

Polygons vs. valuations. As long as one is interested in the local behavior near
p only, the same method can be used for polynomials p(y) whose coefficients are
series in x (in this case, only the lower part of the Newton polygon is meaningful,
because the exponents of x can go to infinity), allowing to study curves on arbitrary
smooth surfaces, locally near an arbitrary point. Ostrowski [8] was the first to use

Newton polygons over valued fields K∗ v→ R (motivated mainly by the p-adic
case) generalising the construction from the case of power series K = C((x)) and
assigning the point (j, v(aj)) to the monomial ajy

j. The connection of Newton’s
original construction with the theory of valuations becomes even nicer by observing
that the map

∑
aijx

iyj 7−→ min
lex

{(j, i) | aij 6= 0}

is a rank 2 valuation C[[x, y]] \ {0} → Z2
lex, and for every smooth point 0 on a

surface S, with local coordinates x, y, the isomorphism ÔS,0
∼= C[[x, y]] allows to

carry this valuation to the field of rational functions on S.

1The so-called epistola posterior is part of an exchange of letters between Newton and Leibniz
through Henry Oldenburg, secretary of the Royal Society, relevant in the controversy over the
invention of calculus, and including the description of the ‘Newton method’ for finding zeros of
differentiable functions. The letter is preserved in the Cambridge University Library, see [7].
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Toric surfaces. Considering the linear family of all polynomials with the same
Newton polygon ∆, one sees that general members are equisingular at the coordi-
nate points of P2 and Enriques [1] described their embedded resolution in terms
of the polygon. The corresponding blowups lead to a toric surface X∆ where the
pullback of the linear family is a complete linear system |D∆|. The correspon-
dence between polygons ∆ and divisors D∆ is nowadays a standard topic in toric
geometry (see [2]). The shape of ∆ nicely reflects properties of D∆:

The area of ∆ equals half of the volume of D∆

(which equals the selfintersection if and only if D∆ is nef).
(2)

Each side Γi of ∆ corresponds to a torus-invariant curve Ci in X∆

(the correspondence is bijective if and only if D∆ is ample).
(3)

The (lattice) length of each side Γi equals the intersection number
D∆ · Ci.

(4)

The angles between sides (equivalently, the slope of each side) are de-
termined by the selfintersections of the torus-invariant curves.

(5)

Until the advent of Newton–Okounkov bodies, the local picture (1) for curve sin-
gularities provided by the lower part of Newton polygons could be carried over to
curves on arbitrary surfaces via valuation of power series, but properties (2)—(5)
only made sense over toric surfaces.

Newton–Okounkov bodies. If S is a surface, 0 is a smooth point on S and
x, y are local coordinates determining a rank 2 valuation v as above, then the
Newton–Okounkov body of any big divisor D with respect to v is defined (see
Lazarsfeld–Mustaţă [6], Kaveh–Khovanskii [3]) as the convex body

∆v(D) =

{
v(s)

k

∣∣∣∣ s ∈ L(kD)

}
.

It is known by the work of Küronya–Lozovanu–Maclean [5, 4] (based on the de-
scription of [6]) that ∆v(D) is a polygon. If S is a toric surface and the local
coordinates are chosen so that both y = 0 and x = 0 are torus-invariant curves,
then ∆v(D) is (up to the action of GLn(Z)) just the Newton polygon associated to
D in toric geometry, so it satisfies properties (1)–(5) above, and (2) is well-known
to hold in all generality in the following form:

The area of ∆v(D) equals half the volume of D for every v. (2’)

However, the meaning of the shape of Newton–Okounkov polygons in general,
and more precisely the existence of generalizations of (1), (3)–(5), and their de-
pendence on v, is still an intriguing subject. In joint work with Tomasz Szemberg
[9] we pursue an in-depth analysis of the construction in [6] and [5], to the con-
clusion that the shape of Newton–Okounkov polygons does reflect the geometry
of the pair (D, v) much like Newton polygons do in the toric case.
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Associated to each pair (D, v), there is a configuration N of irreducible
curves on the surface S such that each side of ∆v(D) corresponds to
one or more of these irreducible curves.

(3’)

The lengths of the sides of ∆v are determined by the intersection num-
bers of D with the curves in N .

(4’)

Their slopes are rational and determined by the intersection matrix of
N .

(5’)

And there is even some analogy to property (1) of Newton’s classical polygons:

The lower sides of ∆v(D) correspond to connected components of N
passing through 0 whereas the upper sides are related to connected
components of N intersecting y = 0 at other points.

(1’)

The number of sides. It was observed in [4] that the number of sides of ∆v(D)
is bounded above by 2ρ(S) + 2, where ρ(S) denotes the Picard number. We show
that the slightly stronger bound 2ρ(S) + 1 holds and is sharp on some surfaces.
We also determine, in terms of configurations of negative curves on the surface S,
the numbers k for which there is a k-gon ∆v(D); somewhat surprisingly, these do
not depend on the ample divisor D.

In a further work in progress with Julio Moyano-Fernández and Matthias Nickel
we generalize the study to rank 2 valuations coming from local coordinates in
birational models of S, to conclude that a similar description holds, with the
bound on the number of sides being in fact dependent only on the Picard number
of the image surface of S in projective space under the map |kD| for k ≫ 0.
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Seshadri constants and Fujita’s conjecture

Takumi Murayama

Throughout, all varieties will be over an algebraically closed field k.
If L is an ample line bundle on a projective variety X , then by definition, the

ℓth tensor power L⊗ℓ of L is globally generated or even very ample for ℓ sufficiently
large. This prompts the following:

Question 1. Let L be an ample line bundle on a projective variety X. What
tensor power L⊗ℓ of L is very ample or globally generated?

The ideal situation is when this power ℓ depends solely on geometric invariants
of X . For curves, L⊗ℓ is globally generated for all ℓ ≥ 2g, and is very ample for
all ℓ ≥ 2g + 1. An example due to Kollár [5, Ex. 3.7], however, shows that there
is not such a simple answer for surfaces: different ample line bundles on the same
surface may need to be raised to different powers to become very ample.

Instead, a suggestion of Mukai was to consider line bundles of the form ωX⊗L⊗ℓ,
where ωX = det ΩX is the canonical bundle of a smooth variety X . In this
direction, Fujita formulated the following:

Conjecture 2 (Fujita [7]). Let L be an ample line bundle on a smooth projective
variety X of dimension n. Then, the line bundle ωX ⊗ L⊗ℓ is globally generated
for all ℓ ≥ n + 1, and is very ample for all ℓ ≥ n + 2.

In characteristic zero, Fujita’s conjecture for global generation is known in di-
mensions at most five and Fujita’s conjecture for very ampleness is known in
dimensions at most two (see [12] and the references therein). In positive character-
istic, Fujita’s conjecture is known for curves, and for surfaces, Fujita’s conjecture
for global generation is known for surfaces not of general type (see [2] and the
references therein), with some weaker results known in the general type case [3].

To study Fujita’s conjecture, Demailly introduced the following notion.

Definition 3 (Demailly [4]). Let x ∈ X be a closed point on a projective variety

X , and let L be a nef line bundle on X . Denote by µ : X̃ → X the blowup of X
at x with exceptional divisor E. The Seshadri constant of L at x is

ε(L;x) := sup
{
t ∈ R≥0

∣∣ µ∗L(−tE) is nef
}
.

The name comes from Seshadri’s ampleness criterion, which states that L is am-
ple if and only if infx∈X ε(L;x) > 0. The relationship between Fujita’s conjecture
and Seshadri constants is given by the following:

Theorem 4 (— [11, Thm. 7.3.1]). Suppose L is a big and nef line bundle on a
projective variety X of dimension n, and let s be a non-negative integer. Suppose
ε(L;x) > n+s for a closed point x ∈ X with singularities of dense F -injective type
in characteristic zero, or with F -injective singularities in positive characteristic.
Then, the following restriction homomorphism is surjective:

H0(X,ωX ⊗ L) −→ H0(X,ωX ⊗ L⊗OX/ms+1
x ).
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The s = 0 case gives a criterion for when ωX ⊗ L is globally generated at x, and
the s = 1 case gives a criterion for when ωX ⊗ L separates tangent directions at
x. When X is smooth of characteristic zero, Theorem 4 is due to Demailly [4]. In
positive characteristic, the case s = 0 for smooth varieties is due to Mustaţă and
Schwede [9]. The general case is due to the author [10, 11].

By Theorem 4, to prove Fujita’s conjecture for global generation, it would suffice
to show that for ample line bundles, the lower bound ε(L;x) ≥ 1 always holds.
There is no hope that this approach alone can prove Fujita’s conjecture, since
there are examples of surfaces with arbitrarily small Seshadri constants:

Example 5 (Miranda [5, Ex. 3.1]). Let Γ ⊆ P2 be a curve of degree d and
multiplicity m at a point ξ. Let Γ′ ⊆ P2 be another curve of degree d meeting
Γ transversely. Taking d ≫ 0 and Γ′ sufficiently general, Γ and Γ′ span a pencil
whose members are all irreducible. Blowing up the base locus of this pencil, we
obtain a surface X which maps to P1.

On this surface, the divisor L = aC + S is ample for a ≥ 2, where C ≃ Γ is a
fiber and S is a section, but denoting by x the preimage of ξ in X , we have

ε(L;x) ≤ (L · C)

multx C
=

1

m
.

Despite Miranda’s example, our main results show that one can still use Seshadri
constants to prove results toward Fujita’s conjecture. The first result gives global
generation of adjoint-type line bundles, assuming a weaker lower bound on the
Seshadri constant as in Theorem 4.

Theorem 6 (— [11, Thms. C and 8.1.1]). Suppose X is normal projective variety
over k of characteristic zero. Let ∆ be an effective Q-Weil divisor such that KX+∆
is Q-Cartier. Consider a closed point x ∈ X such that (X,∆) is log canonical at
x. Suppose that D is a Cartier divisor on X such that H = D−(KX +∆) satisfies

ε
(
‖H‖;x

)
> lctx

(
(X,∆);mx

)
.

Then, OX(D) is globally generated at x.

Here, lctx((X,∆);mx) is the log canonical threshold of the pair (X,∆) with
respect to the ideal sheaf mx, and ε(‖H‖;x) is the moving Seshadri constant of H
at x as in [6] or [11, Ch. 7]. Theorem 6 holds in positive characteristic as well, if
one replaces “log canonical” with “F -pure” throughout.

Theorem 6 implies the following local version of the Angehrn–Siu theorem [1],
and gives effective bounds for global generation towards Fujita’s conjecture.

Theorem 7 (— [11, Thm. D]). Let X be a normal projective variety of dimension
n over k of characteristic zero. Let ∆ be an effective Q-Weil divisor such that
KX + ∆ is Q-Cartier. Consider a closed point x ∈ X such that (X,∆) is klt at x.
Suppose that D is a Cartier divisor on X such that H = D − (KX + ∆) satisfies

volX|Z(H) >

(
n + 1

2

)dimZ
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for every positive-dimensional subvariety Z ⊆ X containing x. Then, OX(D) has
a global section not vanishing at x.

In particular, if X as above has at worst klt singularities, and if D is a Cartier
divisor such that D ∼Q KX + ℓL for an ample Cartier divisor L and some ℓ >(
n+1
2

)
, then OX(D) is globally generated.

Here, volX|Z(H) is the restricted volume of H along Z [6]. A version of Theorem
7 for smooth varieties is due to Ein, Lazarsfeld, Mustaţă, Nakamaye, and Popa
[6, Thm. 2.20]. The non-local statement is due to Angehrn and Siu for smooth
varieties [1], and to Kollár for varieties with klt singularities [8].
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[6] L. Ein, R. Lazarsfeld, M. Musaţă, M. Nakamaye, M. Popa, Restricted volumes and base loci

of linear series, Amer. J. Math. 131 (2009), no. 3, 607–651. MR 2530849
[7] T. Fujita, Problems, Birational geometry of algebraic varieties: Open problems (Katata,

1988), Taniguchi Foundation Division of Mathematics, 1988, pp. 42–45.
[8] J. Kollár, Singularities of pairs, Algebraic geometry (Santa Cruz, 1995), Proc. Sympos. Pure

Math., Vol. 62, Part 1, Amer. Math. Soc., Providence, RI, 1997, pp. 221–287. MR 1492525
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Seshadri constants for vector bundles

Mihai Fulger

(joint work with Takumi Murayama)

Let X be a projective variety over an algebraically closed field, and let x ∈ X .
Given L a nef line bundle on X , or just a nef class in the real Néron–Severi space
N1(X), the Seshadri constant ε(L;x) is a classical measure of the positivity of L
at x. Among its applications we mention the following:
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(1) (Seshadri ampleness criterion) L is ample iff infx∈X ε(L;x) > 0.
(2) (Asymptotic jet separation) If L is an ample line bundle, then ε(L;x) =

limm→∞
s(L⊗m;x)

m , where s(L;x) is the largest s such that the evaluation

map H0(X,L) → H0
(
X,L⊗OX/ms+1

x

)
is surjective.

(3) (Characterization of the augmented base locus) If L is a nef class in N1(X),
we have {x ∈ X | ε(L;x) = 0} = B+(L), where B+(L) =

⋂
E SuppE, as

E ranges through the effective Q-Cartier Q-divisors such that L − E has
ample class in N1(X).

(4) (Bounds on jet separation) If X is smooth projective over C and L is a
big and nef line bundle such that ε(L;x) > n+s

p , then ωX ⊗L⊗p separates

s-jets at x in the sense of the surjectivity of the evaluation map mentioned
above.

See [4, Chapter 5] for details. In our work we extend these results to bundles of
arbitrary rank. If ρ : Y → X is a morphism of projective varieties and if ξ is a
ρ-ample class in N1(Y ), we consider

ε(ξ;x) := inf
C

ξ · C
multxρ∗C

,

the infimum ranging over irreducible curves C ⊂ Y that meet the fiber Yx without
being contained in it. These are precisely the curves on Y such that multxρ∗C > 0,
where ρ∗C = (deg ρ|C) · (ρ(C)) as cycles, with the convention that deg(ρ|C) = 0
when ρ contracts C.

If V is a coherent sheaf on X , put Y = P(V) = ProjOX
Sym•V , let ρ be the

natural map to X , and let ξ be the class of the line bundle OP(V)(1). The class ξ
is ρ-ample. Set

ε(V ;x) := ε(ξ;x).

The definitions also make sense when ξ and V are not globally positive, in which
case ε(ξ;x) could be negative. For ample vector bundles, the notion was also
studied by Hacon in [3].

As a trivial example, we note that when V is locally free of rank 1, then ρ = idX

and OP(V)(1) = V , hence the new definition of Seshadri constant for the line bundle
V agrees with the classical definition.

A new example is the case of vector bundles on curves. If C is a smooth
projective curve over C, and V is a vector bundle on C, then ε(V ;x) is the smallest

slope in the Harder–Narasimhan filtration of V . It is the smallest slope degQ
rkQ of

any positive rank quotient Q of V . This was also observed by Hacon in [3]. The
result can be extended in positive characteristic at the expense of involving the
Frobenius morphism.

Our main results from [2] are the extension of the known results for line bundles.
Recall that a coherent sheaf V is nef/ample if OP(V)(1) is nef/ample.

(1) The verbatim analogue of the Seshadri ampleness criterion holds for ρ-
ample classes ξ on projective Y with a morphism ρ : Y → X .

(2) Asymptotic jet separation holds after replacing L⊗m with SymmV .
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(3) If V is a nef vector bundle, then the vanishing locus of Seshadri constants
on X is B+(V) := ρ(B+(OP(V)(1))).

(4) If X is a complex projective manifolds, and V is ample of rank r such that
ε(V ;x) > n+s

p+r , then ωX ⊗ SympV ⊗ detV separates s-jets at x.

As a consequence, in any characteristic, we deduce that the ampleness of co-
herent sheaves is preserved under tensor products.

We conjecture that Pn is the only n-dimensional projective manifold X such
that ε(TX ;x0) > 0 for some x0 ∈ X . This is in the spirit of Mori’s characterization
of Pn via the ampleness of its tangent bundle, and of characterizations of Pn via
bounds of form ε(−KX ;x0) ≥ n+1 as initiated by [1], and continued more recently
by Y. Liu, Z. Zhuang, and T. Murayama. We have proved our conjecture in the
cases when n ≤ 2; when X is homogeneous; when it is Fano; or when ε(TX ;x) > 0
for not just one point, or for a very general point, but for Zariski general x ∈ X .

References

[1] T. Bauer, T. Szemberg, Seshadri constants and the generation of jets, J. Pure Appl. Algebra
213 (2009), no. 11, 2134–2140.

[2] M. Fulger, T. Murayama, Seshadri constants for vector bundles, arXiv:1903.00610
[math.AG] (2019).

[3] C. D. Hacon, Remarks on Seshadri constants of vector bundles. Ann. Inst. Fourier (Greno-
ble) 50 (2000), no. 3, 767–780.

[4] R. Lazarsfeld, Positivity in algebraic geometry. I. Classical setting: line bundles and linear
series, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, A Series of Modern
Surveys in Mathematics [Results in Mathematics and Related Areas, 3rd Series, A Series of
Modern Surveys in Mathematics], 48, Springer-Verlag, Berlin, 2004.

Surfaces with close to irrational Seshadri constants

Sönke Rollenske

(joint work with Alex Küronya)

Let X be a smooth complex projective surface and L an ample line bundle on X .
Classically it is known that for any point x ∈ X the Seshadri constant satisfies

1 ≤ ε(L;x) ≤
√
L2,

but it is a longstanding open problem if the upper bound can be attained if L2 is
not a perfect square (compare [1] for some context).

We study this problem on simple cyclic multiple planes, defined in the following
way: fix integers d ≥ 2 and m ≥ 3 and let f ∈ C[x, yz] be a homogenous polynomial
of degree dm ≥ 6. Then we consider

π : X = Xd,m → P2

the simple cyclic cover branched over B = V (f); alternatively we can define X as
a hypersurface in weighted projective space,

X = V (wd − f(x, y, z)) ⊂ P(1, 1, 1,m) 99K P2,

where the additional variable w has degree m.
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We then prove

Theorem. Let f be very general, x a very general point on X = Xd,m and
L = π∗OP2(1). Then

(1) X is a smooth surface with Picard number ρ(X) = 1;
(2) the Seshadri constant satisfies

√
d− d

m
≤ ε(L;x) ≤

√
d =

√
L2.

In particular, for large m the Seshadri constant is arbitrarily close to
√
d, which

is irrational if d is not a perfect square.
The proof of the first part follows the proof of Cox [3] for the full family of

hypersurfaces.
The second part is obtained by first observing that all curves of low degree are

pullback of curves from P2, which can never be submaximal at a general point.
On the other hand, T. Bauer proved in [2, Thm. 4.1], that curves resulting in a
relatively low Seshadri constant have bounded degree. The result follows from
these inequalities after observing that for every curve C on X we have dC ∈ |kL|
for some k.
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Seshadri Constants on hyperelliptic Surfaces and on Surfaces of

general type

Praveen Kumar Roy

(joint work with Krishna Hanumanthu)

Seshadri constants quantify the positivity of an ample line bundle on a smooth
projective variety. Computing and bounding them is an active area of research. In
this talk, we talk about some new results obtained on hyperelliptic surfaces and on
surfaces of general type. The primary motivation for the results on hyperelliptic
surfaces is [3].

1. Hyperelliptic Surfaces

Hyperelliptic surfaces are minimal smooth surface X of Kodaira dimension kX = 0
satisfying h0(OX) = 1 and h2(OX) = 0.

Hyperelliptic surfaces are also know as bielliptic surfaces (cf. [7]). More details
can be found in [7]. There is an alternate characterization of hyperelliptic surfaces.
A smooth surface X is Hyperelliptic if and only if X ∼= (A×B)/G, where A and
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B are elliptic curves and G is a finite group of translation of A acting on B in such
a way that B/G ∼= P1. We have the following two projections.

X ∼= (A×B)/G

Ψ

��

Φ
// A/G

B/G ∼= P1

Every hyperelliptic surface has Picard rank 2. Serrano described a basis for the
free group Num(X) of divisors modulo numerical equivalence for each of the seven
types of hyperelliptic surfaces. For each type, Serrano also lists the multiplicities
m1, . . . ,ms of the singular fibres of Ψ, where s is the number of singular fibres.

Theorem 1.1. [7, Theorem 1.4]. Let X ∼= (A ×B)/G be a hyperelliptic surface.
A basis for the group Num(X) of divisors modulo numerical equivalence and the
multiplicities of the singular fibres of Ψ : X → B/G in each type are given in the
following table.

Type of X G m1,m2, . . . ,ms Basis of Num(X)
1 Z2 2, 2, 2, 2 A/2, B
2 Z2 × Z2 2, 2, 2, 2 A/2, B/2
3 Z4 2, 4, 4 A/4, B
4 Z4 × Z2 2, 4, 4 A/4,B/2
5 Z3 3, 3, 3 A/3, B
6 Z3 × Z3 3, 3, 3 A/3, B/3
7 Z6 2, 3, 6 A/6, B

Let X be a hyperelliptic surface. Let µ = lcm(m1,m2, . . . ,ms) and let γ = |G|.
By Serrano’s theorem, a basis of Num(X)is given by A/µ, (µ/γ)B.

Notation: We say that L is a line bundle of type (a, b) on X if L is numerically
equivalent to a.A/µ + b.(µ/γ)B. If L is of type (a, b), we write L ≡ (a, b).

We note the following properties of line bundles on X .

(1) A2 = 0, B2 = 0, A · B = γ.
(2) A divisor b.(µ/γ)B ≡ (0, b) is effective if and only if b(µ/γ) ∈ N ([1,

Proposition 5.2]).
(3) A line bundle of type (a, b) is ample if and only if a > 0 and b > 0 ([7,

Lemma 1.3]).
(4) If C is an irreducible and reduced curve on X and x ∈ C is a point of

multiplicity m, then C2 ≥ m2 −m.

1.1. Results about ε(L). We define ε(L) as the minimum of ε(L, x) as x varies
over X and ε(L, 1) to be the maximum of ε(L, x).

Theorem 1.2. [4, Theorem 3.1] Let X be a hyperelliptic surface of odd type (i.e.,
of type 1, 3, 5, or 7). Let L ≡ (a, b) be an ample line bundle on X. Then
ε(L) = min{a, b}.
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Theorem 1.3. [4, Theorem 3.3] Let X be a hyperelliptic surface of type different
from 6 and let L be an ample line bundle on X. Then ε(L) is rational.

1.2. Results about ε(L, 1).

Theorem 1.4. [4, Theorem 3.11] Let X be a hyperelliptic surface and let L be an

ample line bundle on X. If ε(L, 1) < (0.93)
√
L2, then ε(L, 1) = min(L ·A,L · B).

2. Surface of general type

A smooth complex algebraic surface X is said to be of general type if the Kodaira
dimension κ(X) = 2 (see [5]).

Motivated by [2, Theorem 1], we prove the following:

Theorem 2.1. [6, Theorem 2.4] Let X be a surface of general type and KX be
the canonical line bundle on X. If KX is big and nef and x1, x2, . . . , xr ∈ X are
r ≥ 2 points, then we have the following.

(1) ε(X,KX , x1, x2, . . . , xr) = 0 ⇔ at least one of xi lies on one of the finitely
many (-2)-curves on X.

(2) If 0 < ε(X,KX , x1, x2, . . . , xr) < 1
r , then

ε(X,KX , x1, x2, . . . , xr) =





1
r+1 or 2

5 if r = 2,
1

r+1 or 1
r+2 if 3 ≤ r < 10,

1
r+1 or 1

r+2 or 1
r+3 if r ≥ 10.

Let C be a smooth complex projective curve of genus g ≥ 2 and consider a
surface X = C ×C. Let F1 and F2 be fibres corresponding to the two projections
from C ×C −→ C and let δ be the diagonal. Assume that C is a general member
of the moduli of smooth curves of genus g, where g ≥ 2. Then, it is known that
the Néron-Severi group NS(X) is spanned by F1, F2 and δ [5, 1.5B].

Now we partially answer the question about the rationality of ε(X,L) [8, Question
1.6]. In other words, under some conditions on a1, a2 and a3 we address the
question of rationality in affirmative. Following is our main theorem.

Theorem 2.2. [6, Theorem 3.1] Let X = C × C, where C is a general member
of moduli of smooth curves of genus g ≥ 2. Let L ≡num a1F1 + a2F2 + a3δ be an
ample line bundle satisfying any of the following conditions on a1, a2 and a3.

(1) a3 = 0,
(2) a3 > 0, a1 ≤ a2 and a21 + a23 < 2a1a2,
(3) a3 > 0, a2 ≤ a1 and a22 + a23 < 2a1a2,

(4) a3 < 0 and a2 ≥
(

2gk2+2k+1
2(k+1)

)
· a1, where k = ⌈ |a3|/a1

1−|a3|/a1
⌉ or

(5) a3 < 0 and a1 ≥
(

2gl2+2l+1
2(l+1)

)
· a2, where l = ⌈ |a3|/a2

1−|a3|/a2
⌉.

Then ε(X,L) ∈ Q.
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Seshadri constants on surfaces with Picard number 1

Justyna Szpond

Seshadri constants constitute an area of intense study since the ground-breaking
work of Demailly [2]. They are interesting invariants considered to measure local
positivity of a line bundle. In the simplest form, Seshadri constant is defined as
follows.

Definition 1 (Seshadri constant). Let X be a smooth projective variety, L an
ample line bundle on X and p ∈ X a point. The real number number

ε(X,L; p) = inf
C∋p

L.C

multpC

is the Seshadri constant of L at the point p. If the point p is very general, then
we write simply ε(X,L; 1).

It is well known that there is an upper bound ε(X,L; p) ≤ n
√
Ln, where n =

dimX . It is also well known, due to examples of Miranda and Viehweg, that for
any ε > 0 there exists a triple consisting of a smooth variety X , an ample line
bundle L and a point p ∈ X such that ε(X,L; p) < ε. It is however not known
if such a phenomena can happen for an arbitrary positive ε on a fixed variety X
(letting L and p vary). It is therefor desirable to look for lower bounds on Seshadri
constants under additional assumption on X . Here we focus on varieties X with
Picard number ̺(X) = 1 and very general points on X . An interesting theorem
along these lines has been proved by Ein, Küchle and Lazarsfeld in [3].

Theorem 2 (Ein, Küchle, Lazarsfeld). Let X be a smooth projective variety of
dimension n and let L be an ample line bundle on X , then

ε(X,L; 1) ≥ 1

n
.
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It is expected, but not known in general, that the actual bound in Theorem 2 is
1 rather than 1/n. It is known on surfaces, due to an earlier work of Ein and
Lazarsfeld.

Theorem 3 (Ein, Lazarsfeld). Let X be a smooth projective surface and let L
be an ample line bundle on X . Then

ε(X,L; 1) ≥ 1.

Assuming additionally that the Picard number of X is 1 we can do considerably
better. The first result in this setting has been obtained by Steffens [7].

Theorem 4 (Steffens). Let X be a smooth projective surface with Picard number
1 and let L be the ample generator. Then

ε(X,L; 1) ≥ ⌊
√
L2⌋.

Thus is L2 is a perfect square, we obtain the precise value of Seshadri constant
in a very general point. If L2 is not a perfect square, this result has been improved
by Szemberg in [8].

Theorem 5 (Szemberg). Let X be a smooth projective surface with Picard num-
ber 1 and let L be the ample generator whose self-intersection d = L2 is not a
perfect square. Let β =

√
d−⌊

√
d⌋. For p0 = ⌈ 1

2β ⌉ and m0 = p0⌊
√
d⌋+ 1 we have

(1) ε(X,L; 1) ≥ p0
m0

d.

The bound in 1 is just the first step in the development of d into a continued
fraction. Motivated by results by Bauer and himself in [1], Szemberg conjectured
that one can improve the bound in 1 considerably.

Conjecture 6 (Szemberg). Let X be a smooth projective surface with ̺(X) = 1
and let L be the ample generator of the Picard group with d = L2 not a perfect
square. Let (p0, q0) be the primitive solution of Pell’s equation

(2) q2 − dp2 = 1.

Then

ε(X,L; 1) ≥ p0
q0

d.

Building upon results of Küronya and Lozovanu on Okounkov bodies of po-
larized surfaces obtained in [6], in the joint paper with Farnik, Szemberg and
Tutaj-Gasińska [5] we obtained the following result valid on arbitrary surfaces.

Theorem 7 (Farnik, Szemberg, Szpond, Tutaj-Gasińska). Let X be a smooth
projective surface and L an ample line bundle with d = L2 not a perfect square
and (p, q) satisfy (2). Then

ε(X,L; 1) ≥ p

q
d or ε(X,L; 1) ∈ Exc(d; p, q),
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where

Exc(d; p, q) ={1, 2, 3, . . . , ⌊
√
d⌋}∪

{
a

b
such that 1 ≤ a

b
≤ p

q
· d and 2 ≤ b ≤ q2

}
.

Assuming additionally that the Picard number of X is 1 and that L is the ample
generator, Theorem 7 provides some new evidence towards Conjecture 6, and in
fact proves it in certain cases, for example when p0 = 1 or p0 = 2.
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Multi-point Seshadri constants and special configurations of points

Tomasz Szemberg

1. The containment problem

Huneke and Harbourne raised a series of important questions about the contain-
ment between symbolic and ordinary powers of homogeneous ideals. In the most
elementary version, it asks if the third symbolic power of a radical ideal of points in
the complex projective plane is always contained in the second ordinary power of
the ideal. It has been answered to the negative by Dumnicki, Tutaj-Gasińska and
myself in [6]. The non-containment example is provided by the ideal of singular
points of the dual Hesse arrangement of lines.

Soon after finding the first non-containment example, a plethora of additional
non-containment examples has been discovered. Notably all of them are directly
or indirectly related to arrangements of lines and their singular points. The best
known non-containment examples are those provided by Klein and Wiman ar-
rangements, Fermat arrangements (see [12]) and Böröczky examples (see [4] and
[13]). Recently Grifo proposed in [8] an asymptotic approach to the package of
containment problems raised by Harbourne and Huneke in [10]. This has been
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further deepened in her joint work with Huneke and Mukundan [9]. A number of
significant new results in this circle of problems can be expected soon.

2. Unexpected hypersurfaces

Building upon an example due to Di Gennaro, Illardi and Vallès [5], Cook II,
Harbourne, Migliore and Nadel introduced in [3] the notion of unexpected curves,
which in the subsequent article by the last three authors joined by Teitler [11] has
been extended to hypersurfaces of arbitrary dimension. Roughly speaking, a set
Z in a projective space admits an unexpected hypersurface of degree d if the naive
count of conditions imposed by a fat point of multiplicity m ≥ 2 on the linear
system of hypersurfaces of degree d fails, i.e., if there are more such hypersurfaces
than expected (see [15] for a version with multiple fat points). It is worth to point
out that it never happens if Z is an empty set or if Z consists of general points.
It was in fact quite surprising to realize that there are indeed sets Z admitting
unexpected hypersurfaces.

Interestingly, in the aforementioned example of Di Gennaro, Illardi and Vallès
the set Z is taken as the dual points of what is known as the B3 line arrangement
(or directly, as the B3 root system in P2). Fermat arrangements of lines in P2,
resp. planes in P3 have been shown to give rise to unexpected curves, resp. surfaces
in [2]. Also Klein and Wiman arrangements of lines are reported to give rise to
unexpected curves. As of writing of this abstract, this is known only to computer
experiments (verified independently by various groups of researchers).

3. Asymptotic invariants

As hyperplane arrangements have appeared, rather unexpectedly, in the two con-
texts mentioned above, it is natural to wonder which of them lead to interesting
phenomena (non-containment, unexpected hypersurface) and which fail to do so
and why. One way to distinguish among various classes of arrangements and also
to seek for what interesting classes have in common is to study their asymptotic
invariants. In the context of the containment problem, Bocci and Harbourne in-
troduced the real number ρ(I) called the resurgence of I and defined as follows

ρ(I) = sup
{m

r
: I(m) 6⊂ Ir

}
.

This is an invariant, quite interesting in its own, which has been computed for
several classes of arrangements, e.g., in [7] and [1]. Another invariant, a lot more
classical, at least in the realms of complex analysis is the Waldschmidt constant
of a set of points. This invariant is quite more delicate and its exact value for
some arrangements, e.g., the Klein arrangement is not known. It is subject to a
conjecture in [1]. In the present workshop, yet another invariants, the Seshadri
constants and their multi-point cousins have been of the main interest. For singular
points of all arrangements mentioned above they have been computed recently
by Pokora [14]. Rather than repeating his results in detail, I conclude with an
interesting question raised by Pokora, which attracted a lot of attention during
the workshop.
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Conjecture 1 (Pokora). Let Z be the set of all singular points of an arrangement
of lines. Then for the multi-point Seshadri constant

ε(P2,O(1);Z) =
1

mpl(Z)
,

where mpl(Z) is the maximal number of collinear points in Z.
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Rationality of Seshadri constants on general blow ups of P2

Krishna Hanumanthu

(joint work with  Lucja Farnik, Jack Huizenga, David Schmitz, Tomasz Szemberg)

Let X be a smooth complex projective surface and let L be a nef line bundle on
X . The Seshadri constant of L at x ∈ X is defined as the real number

ε(X,L, x) := inf
x∈C

L · C
multxC

,
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where the infimum is taken over all irreducible and reduced curves C passing
through x. It is interesting to study the behaviour of ε(X,L, x) as the point
x ∈ X varies.

With this in mind, one has the following definition:

ε(X,L) := inf
x∈X

ε(X,L, x).

It is well-known that 0 < ε(X,L) ≤
√
L2. We can ask if ε(X,L) is always a

rational number for every pair (X,L) of a surface X and an ample line bundle L
on X ; see [5, Question 1.6]. This question has an affirmative answer for several
classes of surfaces, such as abelian surfaces [1], Enriques surfaces [4], and most
hyperelliptic surfaces [3].

In this talk, we consider the case of blow ups X of P2 at r ≥ 0 very general
points. We show in [2] that ε(L) = ε(X,L) can in fact be irrational, provided a
strengthening of SHGH Conjecture is true. Let H denote the pull-back of OP2(1)
and let E1, . . . , Er denote the exceptional divisors. Set E = E1 + . . . + Er.

We are interested in ample line bundles L on X of the form dH −mE. After
normalizing, we consider R-divisors of the form L = µH − E. Since L is ample,
we have µ2 > r. If the Nagata Conjecture is true, then the converse also holds. A
curve C satisfying

L · C
multxC

≤
√
L2

is called a weakly submaximal curve for L with respect to x (note that if equality

holds, then
√
L2 is rational). If L is ample then we have ε(L) ∈ Q if and only if

either
√
L2 ∈ Q or there is a weakly submaximal curve.

Let L(µ) := µH −E. Then a real number µ0 ≥ √
r is called the submaximality

threshold for r if

(1) L(µ) does not admit a weakly submaximal curve for µ < µ0, and
(2) L(µ) does admit a weakly submaximal curve for µ ≥ µ0.

Let r ≤ 9. Suppose that µ ∈ Q and L(µ) is ample. Then it is well-known that
ε(L(µ)) ∈ Q. So the submaximality threshold for r ≤ 9 is given by

√
r. Our first

theorem gives an upper bound for the submaximality threshold µ0 for an arbitrary
r.

Theorem. Let r ≥ 1 and let µ ∈ R. Then we have the following.

(1) For any r, L(µ) admits a weakly submaximal curve for all µ ≥
√
r + 1. In

particular, we have µ0 ≤
√
r + 1.

(2) If r = 10, then L(µ) admits a weakly submaximal curve for all µ ≥ 77/24 ≈
3.208.

(3) If r = 11, then L(µ) admits a weakly submaximal curve for all µ ≥ 4−
√
3
3 ≈

3.422.
(4) If r = 13, then L(µ) admits a weakly submaximal curve for all µ ≥ 1

6 (26−√
13) ≈ 3.732.

The famous SHGH Conjecture classifies special linear systems on general blow
ups X of P2. Suppose that we have integers d ≥ 0 and m1, . . . ,mr ≥ 0. Consider
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the linear series L = |dH −m1E1 − · · · −mrEr| on X . Recall that L is said to be

special if dimL > max
{(

d+2
2

)
−∑

i

(
mi+1

2

)
− 1,−1

}
. Then SHGH Conjecture is

the following statement.

SHGH Conjecture. If L is special, then every divisor in L is nonreduced.
We state a strengthening of the SHGH Conjecture and assuming this is true,

we give precise value of the submaximality threshold for r ≥ 10.

Conjecture. Let X be a blow up of P2 at r ≥ 0 very general points. Suppose
d ≥ 1, t ≥ 1, and m1, . . . ,mr ≥ 0 are integers such that

(
d + 2

2

)
−

r∑

i=1

(
mi + 1

2

)
≤ max

{(
t + 1

2

)
− 2, 0

}
.

Then any curve C ∈ |dH −m1E1 − · · · −mrEr| which has a point of multiplicity
t is non-reduced.

The following is our main theorem.

Theorem. Suppose that the above conjecture is true and let r ≥ 10. Then the
submaximality threshold µ0 for r exists, and

µ0 =





77
24 if r = 10

4 −
√
3
3 if r = 11

1
6 (26 −

√
13) if r = 13√

r + 1 if r = 12 or r ≥ 14.
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Seshadri constants on fake projective planes

Halszka Tutaj-Gasińska

(joint work with Piotr Pokora)

This is a report on a joint work with Piotr Pokora, [4]. We study the existence of
certain submaximal curves in the context of the Seshadri constants for ample line
bundles on fake projective planes. Let us recall that by a fake projective plane
we understand a smooth complex projective surface of general type having the
same Betti numbers as the complex projective plane. The existence of such fake
projective planes was proved by Mumford [3], and now we know that there are
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exactly 50 pairs of fake projective planes. We would like to focus on the case of
multipoint Seshadri constants for fake projective planes. In the case of the single
point Seshadri constants, L. Di Cerbo [1] proved that these constants coincide
with the single point Seshadri constants of the complex projective plane, namely
ε(X,L1;P ) = 1, for any point P in fake projective plane and for L1, any ample
generator of PicX . The key advantage of this results is that it provides probably
the first sharp result on single point Seshadri constants for surfaces of general type.
Here we want to follow this path and look at the multipoint Seshadri constants
for ample line bundles on fake projective planes.

Roé in [5] proved a bound on multipoint Seshadri constants on a surface, namely
if X is a surface (e.g. fake projective plane with ample line bundle L1), p ∈ X any
point, and r ≥ 1, then we have

ε(X,L1; r) ≥ ε(X,L1; p) · ε(P2,OP2(1), r).

By the result of L. Di Cerbo [1] we know that ε(X,L1; p) = 1, so we obtain the
following inequality

ε(X,L1; r) ≥ ε(P2,OP2(1), r).

The main result of the paper, gives us bounds for Seshadri constants on fake
projective planes. It tells us, for instance, that for r ∈ {2, 3, 5, 6, 7} we have strict
inequality above. This stands to the opposite to the case of single point Seshadri
constants where ε(X, kL1; p) = ε(P2,OP2(k); p′). Our strategy to show the strict
inequality is based on the fact that we are able to exclude the existence of certain
submaximal curves. In the proof we use Xu-type lemma from [2] and also a result
of M. Roth, [6].

The theorem is as follows:
Let X be a fake projective plane and denote by L1 an ample generator of the

Néron-Severi group and assume that r is not a square. Then

ε(X,L1; r) ≥ 1√
r + δ(r)

,

where

δ(2) = 0.031, δ(3) = 0.018, δ(5) = 0.014,

δ(6) = 0.022, δ(7) = 0.011, δ(8) = 0.012,

and

δ(r) = 0.013 for r ≥ 10.

Moreover, if r = s2 for s ∈ Z>0, then

ε(X,L1; r) =
1

s
.
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Bounded volume denominators and bounded primitive negativity

Thomas Bauer

(joint work with Brian Harbourne, Alex Küronya, Matthias Nickel)

Boundedness conditions of various kinds have generated vivid interest in algebraic
geometry. One such that has received recent attention is the Bounded Negativity
Problem: Does every smooth projective surface X have bounded negativity, in the
sense that there is a constant that bounds the self-intersections C2 of irreducible
curves C ⊂ X from below? In previous work with Pokora and Schmitz [3] we
established that bounded negativity is equivalent to the boundedness of Zariski
denominators. Here we report on recent joint work with Harbourne, Küronya and
Nickel, where we relate these conditions to another natural boundedness question:
Are the denominators that appear in the volumes volX(L) of big line bundles L
on a smooth surface X bounded by a constant that depends only on X?

Turning to a more detailed description, we start by recalling the Bounded Neg-
ativity Conjecture:

Bounded Negativity Conjecture. (see [1]) For every smooth projective surface
X over C there is a constant b(X) ∈ N such that

C2 ≥ −b(X)

for every reduced irreducible curve C ⊂ X.

This intriguing conjecture has a quite long history in Algebraic Geometry. The
conjectured boundedness becomes wrong in positive characteristic – but even there
the counter-examples are very special (see [1] and [6, Exercise V.1.10]). We say
that a smooth projective surface X has bounded negativity, if the boundedness
statement expressed in the conjecture holds for X . In work with Pokora and
Schmitz [3] we showed that this condition is equivalent to a statement about
Zariski decompositions:

Theorem. ([3]) For a smooth projective surface X over an algebraically closed
field the following are equivalent:

(i) X has bounded negativity.
(ii) X has bounded Zariski denominators.

Here the condition of bounded Zariski denominators means by definition that
there exists an integer d(X) ≥ 1 such that for every pseudo-effective integral divi-
sor D the denominators appearing in the Zariski decomposition of D are bounded
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from above by d(X). If such a bound d(X) exists, then by taking the factorial
d(X)! one obtains a uniform number that clears denominators in all Zariski de-
compositions on X .

The purpose of the work reported here is to consider another geometric concept
in which denominators occur: volumes of big line bundles. Recall that for a big
line bundle L on a smooth projective surface X , the volume is by definition the
number

vol(L) = lim sup
k

h0(X, kL)

k2/2
.

One clearly has

vol(L) ∈ Q ,

since, using the Zariski decomposition L = P + N with Q-divisors P and N , the
volume can be computed as

vol(L) = P 2 ∈ Q .

(Note that rationality of volumes is a feature that is specific to surfaces. In higher
dimensions, irrational volumes occur, see [7, 5].) So the theorem above tells us that
volumes on a surface X have bounded denominators, if X has bounded negativity.
It is natural so ask whether or to what extent the converse of this might hold.
Our first result shows that boundedness of volume denominators is equivalent to
a variant of bounded negativity that we call bounded primitive negativity:

Theorem 1. (see [2]) For a smooth projective surface X, the following conditions
are equivalent:

(i) X has bounded volume denominators, i.e., there exists an integer dvol(X)
such that for every (integral) big line bundle L, the volume vol(L) is a
rational number with denominator at most dvol(X).

(ii) X has bounded primitive negativity, i.e., there exists an integer bprim(X)
such that for every primitive class F ∈ NS(X), whose ray R+ ·F contains
a reduced irreducible curve, one has

F 2 ≥ −bprim(X) .

Clearly, bounded negativity implies bounded primitive negativity. The other
implication, however, is not clear at all: It is conceivable that on some surface one
might have a sequence of primitive classes (Fn), whose self-intersections F 2

n are
bounded, and irreducible curves Cn ≡ knFn, whose self-intersections C2 are not
bounded – this would happen if their “primitivity coefficients” kn were unbounded.
We do not know whether such a situation can arise on any smooth surface – in
fact it even seems to be unknown if a prime divisor of negative self-intersection is
ever numerically equivalent to kF for a primitive class F with k > 2. (Examples
with k = 2 have long been known.)

Even dropping the assumption F 2 < 0 leaves an open question: On a smooth
projective surface X consider a primitive class F such that some positive multiple
kF is numerically equivalent to an effective divisor. We call the least such integer k
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the semi-effective order of F . Is there a surface X that carries a sequence of
primitive classes Fn with semi-effective orders kn → ∞? Work by Ciliberto et
al. [4] shows that the answer is yes, if the SHGH Conjecture is true. The effective
divisors Dn ≡ knFn appearing (conjecturally) in this way, are however reducible.
The corresponding question about irreducible curves is open even when assuming
the SHGH Conjecture.

Our best result in this direction is given by the following theorem. It shows
that arbitrarily high semi-effective orders occur with negative definite divisors –
without assuming the SHGH Conjecture – on a sequence of surfaces:

Theorem 2. (see [2]) Over any algebraically closed field K, there exists a sequence
of smooth projective surfaces Xn and primitive classes Fn of semi-effective orders
kn with

lim
n→∞

kn = ∞

such that knFn is numerically equivalent to an effective divisor Dn on Xn having
a negative definite intersection matrix.
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Asymptotic Hilbert Polynomial and a bound for Waldschmidt constant

Marcin Dumnicki

(joint work with  Lucja Farnik, Justyna Szpond, Halszka Tutaj-Gasińska)

The talk is based on results published in [1, 2].

Let I = I(Z) be the homogeneous ideal of a set Z in projective space Pn over the
field of complex numbers. By an m-th symbolic power we define

I(m) = {F : F vanish at least to order m at every point of Z}.
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Let α(I) denote the least degree of a non-zero form in I. The Waldschmidt con-
stant of I may be defined as

α̃(I) = lim
m→∞

α(I(m))

m
.

As an example, for Z equal to three points in P2, α̃(I) = 3/2 when points are not
collinear and α̃ = 1 otherwise.

A famous Nagata Conjecture states that if Z is a set of s general points in P2,
s ≥ 9 then

α̃(I) =
√
s.

The conjecture is still open, but the upper bound

α̃(I) ≤
√
s

is known.

Similarly, for any set of s points in Pn, the following upper bound is valid:

α̃(I) ≤ n
√
s.

As another example, for the set Z of s skew lines in Pn, the Waldschmidt constant
is bounded from above by the largest real root of

tn − nst + (n− 1)s.

More generally, for the set Z of s pairwise non-intersecting r-dimensional linear
subspaces of Pn, the Waldschmidt constant is bounded from above by the largest
real root of

tn − s




r∑

j=1

(
n

j

)
(t− 1)j


 .

To generalize the above for any homogeneous ideals I, we define the asymptotic
Hilbert Polynomial

aHPI(t) = lim
m→∞

HPI(m)(mt)

mn
,

where HP is the usual Hilbert polynomial of a module C[x0, . . . , xn]/I.

It can be shown that the limit exists provided that the Castelnuovo-Mumford
regularity of a sequence I(m) is linearly bounded with respect to m.

An example that aHP is a subtle invariant can be made. Consider two sets in P3.
Let Z1 consists of two intersecting lines and a point, let Z2 consists of two skew
lines. Then

HPI1(t) = HPI2(t) = 2t + 2,

while

aHPI1(t) = t− 5

6
, aHPI2(t) = t− 2

3
.

Define

ΛI(t) =
tn

n!
− aHPI(t).
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It is not true that α̃(I) would be bounded by a largest real root of ΛI . The coun-
terexample is for the set Z of a star configuration of lines given by s hypersurfaces
in P4. In this case ΛI(t) has no real roots for s ≥ 4.

The main theorem can be stated as follows. Let I be the radical homogeneous
ideal with linearly bounded regularity of symbolic powers. Assume that in the
sequence {depth(I(m))} there exists a constant subsequence of value n− c. Then

Λ
(c)
I (α̃(I)) ≤ 0,

where by (c) we mean taking a derivative of Λ c times.

Going back to the example with a star configuration of lines, in this case the first
derivative of ΛI(t) has a root, approximately equal to s

3√6
, while α̃(I) = s

3 .

We show that an approach by ΛI may be better that computer experiments. For
a set Z consisting of 5 crosses (i.e. pairs of intersecting lines) in P3, we get

ΛI(t) =
t3

6
− 5(t− 1),

which gives
α̃(I) ≤ 4.88448,

while computer experiments suggest that α(I(m)) = 5m (this holds for m =
1, . . . , 10).
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The role of line arrangements in some open problems in algebraic

geometry

Brian Harbourne

We discuss a number of topics where line arrangements have played a significant
role recently and state some open questions for each.

Topic 1: Computability and rationality of multipoint Seshadri Constants.
Let Z ⊂ P2 be a finite set of points. Let πZ : XZ → P2 be the blow up of Z,

with EZ the exceptional locus. Let L′ = π∗
ZL for a general line L ⊂ P2. Then the

Seshadri constant for Z is

ε(Z) = sup{t : L′ − tEZ is nef}.

Question (see [8]): Let C ⊂ P2 be a reduced curve, Z = ZC = Sing(C), and
DC ⊂ X the proper transform of C. If D2

C < −1, must ε(Z) be rational? Can we
compute it? (As a test case, take CL to be the union of the lines of a supersolvable
line arrangement L. Recall that a modular point of a line arrangement C is a
singular point of C which can see all other singular points by looking down lines
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of the arrangement. A supersolvable line arrangement is a line arrangement with
at least one modular point.)

Given a line arrangement L, let ℓL be the number of singular points on the
line of L with the largest number of singular points. Clearly ε(ZCL

) ≤ 1/ℓL.
Pokora [8] observes that equality often holds and asks if it holds for all complex
line arrangements.

Topic 2: Computability and rationality of Waldschmidt constants.
Let Z be a finite set of points in P2. Recall that the Waldschmidt constant for

Z is

α̂(Z) = inf{t/m : tL′ −mEZ is effective}
and we have α̂(Z) ≥ |Z|ε(Z).

Question: Let C ⊂ P2 be a reduced curve, Z = ZC = Sing(C). Must α̂(Z)
be rational? Can we compute it? (As a sample open case, take C to be Klein’s
arrangement of 21 lines [2].)

Topic 3: Bounded Negativity.

Question: Let C be a reduced singular plane curve. How negative can H(C) =
D2

C/|ZC | be? We have the following facts [3]:

(a) infC H(C) ≤ −2 (the inf is taken over all reduced, irreducible C; the
characteristic is arbitrary);

(b) infC H(C) = −3 (the inf is taken over all real line arrangements C);
(c) infC H(C) ≥ −4 (the inf is taken over all complex line arrangements C).

Question: If C is irreducible (for arbitrary characteristic) must we have H(C) >
−2? Taking C to be a general image of P1 in P2 of degree d gives

H(C) = −2 +
6d− 4

(d− 1)(d− 2)
.

Question: If C is a complex line arrangement must we have H(C) ≥ H(CW ) =
− 225

67 ≈ −3.36, where CW is Wiman’s arrangement of 45 lines? Note CW has 120
triple, 45 quadruple and 36 quintuple points (see [2]).

Question: What is infC H(C) for rational line arrangements C? There is a
rational line arrangement C having 37 lines with H(C) = −503

181 ≈ −2.779.

Topic 4: A Containment Problem.

Let Z ⊂ P2 be a finite set, and let I
(m)
Z = ∩p∈ZI

m
p . This is called the mth

symbolic power of IZ .

Question: Is it possible to characterize those Z with I
(3)
Z 6⊆ I2Z? All known

complex examples have been found by taking Z ⊂ Sing(C) for certain line ar-
rangements C. The first case found was for the lines to be the components of the
curve defined by (x3 − y3)(x3 − y3)(y3 − z3) = 0 [5].

Other questions related to symbolic powers arise for line arrangements. For
example, can we compute the resurgence ρ(IZCL

) for any line arrangement L (or

at least for supersolvable line arrangements)? Here ρ(IZ) = sup{m/r : I
(m)
Z 6⊆ IrZ}.
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At least for some supersolvable line arrangements L it is the case that

I
(mℓL)
ZCL

= (I
(ℓL)
ZCL

)m

holds for all m > 0. We can ask if this holds for all supersolvable line arrangements
L or perhaps even for all line arrangements. This behavior would be a consequence

of the symbolic Rees algebra ⊕I
(m)
ZCL

of ZCL
being Noetherian, so another question

is whether ⊕I
(m)
ZCL

is always Noetherian, or at least if L is supersolvable.

Topic 5: Unexpected curves.
Let Z ⊂ P2 be a finite set, p ∈ P2 a general point, Z ′ = Z ∪ {p}.

Question: Can we classify all (Z,m) with

h0(XZ′ , (m + 1)L′ −mEp − EZ) >

max
(

0, h0(XZ′ , (m + 1)L′ − EZ) −
(
m + 1

2

))
?

The main technique currently uses properties of the line arrangement dual to Z.

Example: The least m for which there is a Z is m = 3, and this Z is unique (up
to projective equivalence), coming from the B3 arrangement of 9 lines dual to the
roots of the B3 root system [6].

There is a nice criterion for unexpectedness when Z is dual to a supersolvable
line arrangement.

Theorem ([4]): Let L = {L1, . . . , Lr} be supersolvable, mL the maximum mul-
tiplicity among the singular points, and dL = r the number of lines. Then the
following are equivalent:

(a) PL has an unexpected curve of degree d = m + 1 for some m;
(b) PL has an unexpected curve of degree d for d = mL; and
(c) 2mL < dL.

Question: Which supersolvable L have 2mL < dL? Can we classify supersolvable
L?

Topic 6: Classifying complex supersolvable L.

Definition: Let L be supersolvable. We say L is homogeneous if every modular
point has the same multiplicity.

The results of [7] give a complete classification of complex supersolvable nonho-
mogeneous L. The paper [7] also shows that a complex supersolvable homogeneous
L has at most 4 modular points and completely classifies the case of 3 and 4 mod-
ular points. Then [1] classifies (up to incidence structure) complex supersolvable
homogeneous L with 2 modular points.

Question: Can supersolvable complex line arrangements with only one modular
point be classified?
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Negative curves on special rational surfaces

 Lucja Farnik

(joint work with Marcin Dumnicki, Krishna Hanumanthu, Grzegorz Malara,
Tomasz Szemberg, Justyna Szpond, Halszka Tutaj-Gasińska)

Negative curves on algebraic surfaces are a classical object of interest. One of the
central and open problems concerning negative curves is the Bounded Negativity
Conjecture which asks whether on a fixed surface negativity is bounded. This is
not the case in positive characteristic. In characteristic zero, it is easy to bound
negativity in some cases but the problem is open in general.

I report on the results from [2]. We study negative curves on surfaces obtained
by blowing up special configurations of points in P2. Our results concern the
following configurations: very general points on a cubic, 3–torsion points on an
elliptic curve and nine Fermat points. As a consequence, we also show that the
Bounded Negativity Conjecture holds for these surfaces.

Turning into details, we say that a reduced and irreducible curve C on a smooth
projective surface is negative, if its self-intersection number C2 is less than zero.

The famous Bounded Negativity Conjecture (BNC for short) may be stated as
follows.

Bounded Negativity Conjecture. Let X be a smooth projective surface. Then
there exists a number τ such that C2 ≥ τ for any reduced and irreducible curve
C ⊂ X .

If the BNC holds on a surface X , then we denote by b(X) the largest number
τ such that the Conjecture holds. See [1] for an extended introduction to this
problem.

Now we state the first result, see also [3, Remark III.13].
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Theorem (Very general points on a cubic). Let D be an irreducible and reduced
plane cubic and let P1, . . . , Ps be very general points on D. Let f : X −→ P2 be
the blow up at P1, . . . , Ps. If C ⊂ X is any reduced and irreducible curve such
that C2 < 0, then

(a) C is the proper transform of D, or
(b) C is a (−1)-curve.

As a consequence we have the following.

Corollary. Let X be a surface as in the theorem above with s > 0. Then the
BNC holds for X and we have

b(X) = min {−1, 9 − s} .

Now let us consider blow ups of P2 at 3-torsion points of an elliptic curve as
well as the points of intersection of the Fermat arrangement. In order to study
these two cases, we first state the following numerical lemma which seems to be
quite interesting in its own right.

Lemma. Let m1, . . . ,m9 be nonnegative real numbers satisfying the following 12
inequalities:

m1 + m2 + m3 ≤ 1,

m4 + m5 + m6 ≤ 1,

m7 + m8 + m9 ≤ 1,

m1 + m4 + m7 ≤ 1,

m2 + m5 + m8 ≤ 1,

m3 + m6 + m9 ≤ 1,

m1 + m5 + m9 ≤ 1,

m2 + m6 + m7 ≤ 1,

m3 + m4 + m8 ≤ 1,

m1 + m6 + m8 ≤ 1,

m2 + m4 + m9 ≤ 1,

m3 + m5 + m7 ≤ 1.

Then

m2
1 + · · · + m2

9 ≤ 1.

The inequalities are obtained from suitable triples of mi’s from the matrix




m1 m2 m3

m4 m5 m6

m7 m8 m9



 .

Using the lemma above we can prove the following theorem.

Theorem (3–torsion points on an elliptic curve). Let D be a smooth plane cubic
and let P1, . . . , P9 be the flexes of D. Let f : X → P2 be the blow up of P2 at
P1, . . . , P9. If C is a negative curve on X , then

(a) C is the proper transform of a line passing through two (hence three) of
the points P1, . . . , P9, or

(b) C is an exceptional divisor of f .

Corollary. Let X be a surface as in the theorem above. Then the BNC holds for
X and we have

b(X) = −2.

For the configuration of nine Fermat points the result is as follows.
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Theorem (Fermat points). Let f : X → P2 be the blow up of P2 at Q1, . . . , Q9,
where

Q1 = (ε : ε : 1), Q2 = (1 : ε : 1), Q3 = (ε2 : ε : 1),
Q4 = (ε : 1 : 1), Q5 = (1 : 1 : 1), Q6 = (ε2 : 1 : 1),
Q7 = (ε : ε2 : 1), Q8 = (1 : ε2 : 1), Q9 = (ε2 : ε2 : 1).

If C is a negative curve on X , then

(a) C is the proper transform of a line passing through two or three of the
points Q1, . . . , Q9, or

(b) C is a (−1)-curve.

We finish this note with an interesting problem.

Problem. For a positive integer m, let Z(m) be the set of all points of the form
(1 : εα : εβ), where ε is a primitive root of unity of order m and 1 ≤ α, β ≤ m. Let
fm : X(m) → P2 be the blow up of P at all the points of Z(m). Is the negativity
bounded on X(m)? If yes, what is the value of b(X(m))?
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Brill-Noether theory for vector bundles and higher

rank SHGH conjectures

Jack Huizenga

(joint work with Izzet Coskun)

The SHGH conjecture describes the expected cohomology of line bundles on gen-
eral blowups of the projective plane. When there is unexpected cohomology, there
is a (−1)-curve on the surface contributing to the cohomology. The problem of
computing the cohomology of a general vector bundle is a natural higher-rank
generalization of this problem.

In joint work with Izzet Coskun [1], we determined the cohomology of the
general sheaf in a moduli space of sheaves on a Hirzebruch surface. On the other
hand, the problem is more challenging on del Pezzo surfaces, largely because the
Picard rank is higher. I will discuss the following theorem of Daniel Levine and
Shizhuo Zhang, which solves the problem for del Pezzo surfaces which are the
blowup of the projective plane at up to 5 points. Recall that a sheaf is nonspecial
if it only has nonzero cohomology in at most one degree.
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Theorem ([2]). Let X be a del Pezzo surface of degree at least 4, and let H be
the pullback of a line under the blowdown map X → P2. Suppose V is a general
(−KX)-semistable sheaf of numerical invariants (r, c1, χ), and let ν = c1/r. If
r ≥ 2, χ ≥ 0, and ν ·H ≥ −2, then V is nonspecial if and only if ν · C ≥ −1 for
every (−1)-curve C on X .
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