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Introduction by the Organizers

The workshop Groups, Dynamics, and Approximation organized by Emmanuel
Breuillard, Alex Furman, Nicolas Monod and Andreas Thom, brought together
leading mathematicians working at the interface between geometric group theory,
ergodic theory and operator algebras. Meant as a continuation of the workshops
Group Theory, Measure, and Asymptotic Invariants (2013) and Measured Group
Theory (2016) this “transversal workshop” covered a wide range of topics, this
time putting more emphasis on Geometric Group Theory, Ergodic Theory and
links with Functional Analysis on the one hand and Mathematical Logic on the
other. The goal of the workshop was to bring together experts working in vari-
ous fields, to foster interaction between them and to present some of the recent
breakthroughs. The topics of the talks included: sofic groups and approxima-
tion properties of infinite groups (Lubotzky, Kun, Glebsky), word maps on finite
or compact groups (Puder, Schneider), lattices and approximate lattices in Lie
groups (Avni, Boutonnet, Hartnick, Machado), Benjamini-Schramm convergence,
invariant random subgroups and orbit equivalence (Abert, Gaboriau, Hutchcroft),



3410 Oberwolfach Report 55/2019

ergodic theory of group actions (Tsankov, Bjorklund, Hochman), von Neumann al-
gebras and measure equivalence (Popa, Peterson), representation theory of infinite
groups (Rosendal, Gerasimova, Ozawa, de la Salle).

Kazhdan’s property (T) for countable groups was featured in several talks.
Narutaka Ozawa’s characterization of property (T) in terms of the solution to a
set of quadratic inequalities in the group algebra over the reals has opened the way
to a new method for establishing property (T) using semi-definite programming
and computer help. His talk presented the recent advances that have culminated
with the discovery that the automorphism groups of the free groups in 5 or more
letters have property (T). Mikael de la Salle discussed how to extend this char-
acterization to generalizations of property (T) for ℓp spaces and other Banach
spaces in particular in the setting of groups acting on 2-dimensional simplicial
complexes. Tom Hutchcroft described his recent work with Gabor Pete estab-
lishing Gaboriau’s cost conjecture for property (T) groups using new ideas from
percolation theory. Jesse Peterson discussed recent work in which a new notion,
that of von Neumann equivalence, is introduced for discrete groups, generalizing
Gromov’s measure equivalence relation and for which property (T) is an invariant.

The word approximation in the title refers to the powerful interplay between
the finite and the infinite in group theory and in dynamics. Highlighting analogies
between 3-manifold groups and Galois groups of function fields, Mark Shusterman
talked about the profinite structure of the étale fundamental group of a curve
over a finite field and his proof that they are topologically finitely presented. The
idea of approximation in infinite group theory is featured in particular in the
recent body of works around the notion of soficity and its extensions to more
general approximation schemes. A wide open problem is to determine whether or
not every finitely generated group is sofic. Alex Lubotzky in his lecture described
some (residually-finite-by-finite) counter-examples to the analogue of this question
for certain other approximation schemes (defined in terms of the Schatten norms).
Lev Glebsky presented recent work in which he establishes that, on the contrary,
extensions of residually finite groups are always weakly sofic. Gabor Kun discussed
the sofic approximations of certain non-amenable groups.

Several talks were devoted to recent advances on classical questions about the
ergodic theory of group actions. Michael Hochman discussed linear actions on
the torus and higher dimensional generalizations of Rudolph’s theorem regarding
Furstenberg’s celebrated ×2×3-conjecture for actions on the circle. Michael Bjork-
lund described joint work with Vaes and Koslov regarding systems of independent
by not identically distributed random variables indexed by a discrete group and
the relation between the positivity of the first Betti number and the existence of
an ergodic Maharam extension. Todor Tsankov presented his work with Glas-
ner, Weiss and Zucker about Bernoulli disjointness for discrete groups and their
solution to the “Ellis problem”.

They were also several talks with a more operator algebraic flavor. Sorin Popa
discussed two old problems in Von Neumann algebras, the free group factor prob-
lem and the single generation problem. Rémi Boutonnet described joint work with
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Cyril Houdayer in which a vast generalization of Margulis’ normal subgroup theo-
rem is established for higher rank lattices in the form of a theorem asserting that
every weakly mixing unitary representation of such a group weakly contains the
regular representation. Maria Gerasimova discussed the unitarizability problem
for discrete groups and its relation with the Littlewood exponent of a discrete
group.

The notion of Invariant Random Subgroup (IRS) introduced a decade ago by
Abert, Glasner and Virag, was also a theme appearing in several talks. Gaboriau
discussed IRS of surface groups and fundamental groups of higher dimensional
manifolds in relation to the cost of measure preserving actions. Abert described
work on the Berry conjecture and its relation with Benjamini-Schramm conver-
gence. Anna Erschler discussed the traveling salesman problem for groups and
related problems.

An interesting feature of the workshop was the appearance in several talks of
ideas from Mathematical Logic and Model Theory. Christian Rosendal presented a
solution to an old problem on the automatic continuity of homomorphisms between
Polish groups and its significance in Logic with respect to the axiom of Choice.
Nir Avni explained how the first order theory of certain lattices in semisimple Lie
groups can determine them entirely up to isomorphism and stressed the impor-
tance of the model-theoretic notion of bi-interpretability for this problem. Simon
Machado described a classification of infinite approximate subgroups of solvable
Lie groups based on the notion of good model and a variation of Hrushovski’s
stabilizer theorem for approximate groups. His talked was preceded by a presen-
tation by Tobias Hartnick surveying the recent progress made about approximate
lattices in Lie groups. These are non-commutative analogues of quasi-crystals, a
notion he recently introduced with Michael Bjorklund.

The workshop included two excellent talks given by Ph.D. students (J. Schneider
and S. Machado) and a problem session (moderated by E. Breuillard) in which
many participants presented open questions and new research directions.

Acknowledgment: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
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Abstracts

Continuity of universally measurable homomorphisms

Christian Rosendal

The question of whether a measurable homomorphism between topological groups
is continuous has a long and illustrious history. For example, in the very first issue
of Fundamenta Matematicae, no less than three papers by S. Banach, W. Sierpiński
and H. Steinhaus are dedicated to the question of continuity of Lebesgue measur-
able functions f : R → R satisfying Cauchy’s functional equation

f(x + y) = f(x) + f(y).

Banach [1] and Sierpiński [12] each show that such f must be continuous, which is
also established by M. Fréchet [5], while Steinhaus [14] expands on the methods of
Sierpinski [11, 12] to show that, if A ⊆ R is a Lebesgue measurable set of positive
measure, then A − A contains 0 in its interior. Steinhaus’ result is subsequently
generalized to arbitrary locally compact groups by A. Weil [15], i.e., if A is a
Haar measurable set of positive Haar measure in a locally compact group, then
AA−1 is an identity neighborhood. In turn, this implies by a simple argument that
every Haar measurable homomorphism between locally compact Polish groups is
continuous.

Of course, as shown by Weil [15], in non-locally compact groups there is no no-
tion of translation invariant σ-finite measure and, in particular, no notion of Haar
measurable set. Instead, in a Polish group G, one may consider the universally
measurable sets, i.e., sets A that are measurable with respect to every Borel prob-
ability measure µ on G. One particular reason for their interest is the construction
by G. Mokobodzki [8, 7] and J. P. R. Christensen [4] of medial limits under CH.

In connection with this, Christensen [2] studies the question of whether every
universally measurable homomorphism between Polish groups is continuous. He
shows the following Steinhaus type principle, which turns out to be central to our
study.

Theorem. Suppose G =
⋃∞

i=1 Ai is a covering of a Polish group G by universally
measurable sets Ai and U is an identity neighborhood. Then there are a finite set
F ⊆ U and some i so that ⋃

g∈F

gAiA
−1
i g−1

is an identity neighborhood.

From this he immediately deduces that every universally measurable homo-

morphism G
π−→ H between Polish groups is continuous provided H is SIN, i.e.,

admits a bi-invariant compatible metric. In particular, this applies if either G or
H is abelian and also provides an alternative proof of A. Douady’s result [10] that
every universally measurable linear operator between Banach spaces is continuous.
However, the general problem has remained open thus far.
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Is every universally measurable homomorphism G
π−→ H between

Polish groups continuous?

Partially motivated by this and by applications to differentiability of Lipschitz
mappings, Christensen [3, 4] and other authors have developed a theory of Haar
null sets and related notions of smallness in Polish groups. One of the principal
aims of this theory is to find robust notions of smallness satisfying a variant of
Steinhaus’ theorem. For example, in [13], S. Solecki studies left Haar null sets
and isolates a class of Polish groups G said to be amenable at 1 for which every

universally measurable homomorphism G
π−→ H into an arbitrary Polish group H

is continuous. In another direction, in [9] we show that the above problem has a
positive answer when H is locally compact or non-Archimedean. In this talk, we
present the general solution to the problem.

Theorem. Let G
π−→ H be a universally measurable homomorphism from a Polish

group G to a separable topological group H. Then π is continuous.

Somewhat surprisingly, the proof proceeds by showing that the conclusion of
Christensen’s theorem above is already enough for the general solution and thus
entirely circumvents any further considerations of universal measurability.

Theorem. Let G
π−→ H be a homomorphism from a Polish group G to a separable

topological group H. Assume also that, for all identity neighborhoods U ⊆ G and
V ⊆ H, there is a finite set F ⊆ U so that

⋃

f∈F

f · π−1(V ) · f−1

is a identity neighborhood in G. Then π is continuous.

For this reason, our proof also allows us to address a different but related
question of logic, namely the strength of the existence of a discontinuous homo-
morphism between Polish groups. Therefore, the discussion that follows is relative
to ZF+DC, i.e., Zermelo–Fraenkel–Skolem set theory without the full axiom of
choice, but only with the principle of dependent choice. This latter principle is
sufficient to establish the Baire category theorem and treat basic concepts of anal-
ysis.

Various results of the literature indicate that some amount of AC is needed
to construct discontinuous homomorphisms between Polish groups. For example,
P. Larson and J. Zapletal [6] show that, if there is a discontinuous additive homo-
morphism between two separable Banach spaces, then there is a Vitali set, i.e., a
set T ⊆ R intersecting every translate of Q in a single point. However, without a
linear structure on the groups, little is known.

In the following, for k ≥ 2, consider the profinite group
∏∞

n=1 Z/kZ. The
Hamming graph on

∏∞
n=1 Z/kZ is then the graph with vertex set

∏∞
n=1 Z/kZ and

so that two elements α, β ∈ ∏∞
n=1 Z/kZ form an edge if they differ in exactly one

coordinate n ∈ N. Also, by χ(k) we denote the chromatic number of the Hamming
graph on

∏∞
n=1 Z/kZ, that is the smallest cardinality κ so that there is a graph

coloring c :
∏∞

n=1 Z/kZ → κ, that is, so that neighboring vertices get different
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colors under c. Since the Hamming graph on
∏∞

n=1 Z/kZ has cliques of size k,
we always have χ(k) ≥ k. Conversely, if there is a Vitali set, then the Hamming
graph has chromatic number χ(k) = k for all k ≥ 2. Also, if χ(k) = k for some k,
then χ(kn) = kn for all n ≥ 1. Similarly, if just some χ(k) is finite, then all the
chromatic numbers χ(k) are finite.

If G
π−→ H is a homomorphism between Polish groups, we define a closed

subgroup of H by

N =
⋂

V

π[V ],

where V ranges over identity neighborhoods in G. Then N gauges the discontinuity
of π. Indeed, assuming that π[G] is dense in H , then N is normal in H and the
induced homomorphism

G
π̃−→ H/N

has closed graph and thus is continuous.

Theorem. In every model of ZF+DC, one of the following conditions hold.

(1) Every homomorphism between Polish groups is continuous,

(2) the chromatic number χ(k) is finite for all k ≥ 2 and, if G
π−→ H is a

homomorphism between Polish groups, then N is compact and connected,

(3) for infinitely many k ≥ 2, we have χ(k) = k and, if G
π−→ H is a homo-

morphism between Polish groups, then N is compact,
(4) there is a Vitali set.

In the above theorem, we see that the conclusions about continuity of homo-
morphisms weaken as we go from (1) to (4), while, on the other hand, the graph
theoretical conclusions strengthen. For example, if (2) holds and H is a Polish
group without proper compact connected subgroups, say H is non-Archimedean,
then every homomorphism from a Polish group into H must have N = {1} and
thus is continuous. Similarly, if (3) holds, then every linear operator between two
Banach spaces is continuous.
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On IRSs of surface groups and higher dimensional manifolds groups

Damien Gaboriau

(joint work with Alessandro Carderi, Pierre Fima, and François Le Mâıtre)

The first goal of my talk is to explain that surface groups have plenty of IRSs.
This is joint work with A. Carderi, P. Fima and F. Le Mâıtre [3].

The fundamental group Γ of an aspherical compact surface of genus g is known
to have cost(Γ) = 2g − 1 (resp. cost(Γ) = g − 1 when non-orientable) and fixed
price: all its free probability measure preserving (p.m.p.) actions have the same
cost [5]. Our first result is that, for non-amenable Γ, the cost of any p.m.p. non-free
action of Γ is strictly less than cost(Γ).

Let R is an ergodic p.m.p. standard equivalence relation (on the atomless stan-
dard probability space). This is just the ”orbit equivalence relation” of some
ergodic p.m.p. action of some countable (uninteresting) group G. We show: If
cost(R) < cost(Γ) , then there exist uncountably many highly faithful actions of Γ
that define R, and such that Γ is dense in the full group [R] and thus are totally
non-free and highly transitive on the orbits. The natural map (given by conju-
gation action) from ergodic atomless IRSs of Γ to the ergodic p.m.p. equivalence
relations of cost strictly less than cost(Γ) is thus onto with uncountable fibers.
This extends to surface groups certain results about the IRSs of the free groups
from [2, 4, 7].

In the second part of my talk, I introduce a family of invariants of ℓ2 type for IRSs:
the relative-L2-Betti numbers. More precisely, for each free-cocompact simplicial

Γ-complex L, every IRS ν of Γ gets an ℓ2-Betti number in every degree d: β
(2)
d (ν, L).
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If for instance, assume the IRS ν is given by a p.m.p. action of Γ on the stan-
dard probability space (X,µ) as the distribution of stabilizers via the map x 7→
StabΓ(x). Then β

(2)
d (ν, L) coincides with the L2-Betti numbers of the laminated

space β
(2)
d (Γ\(X × L)) (see [6, 1]).

This family of invariants permits to distinguish uncountably many different IRSs
for certain free products by making use of a joint theorem with N. Bergeron [1,
Theorem 4.1]. For instance if Γ is a residually finite group which is the fundamental
group of a closed orientable d-manifold decomposable as a connected sum M#N
of two manifolds of infinite fundamental groups. This works more generally, if Γ is
any residually finite free product Γ = G ∗H of infinite groups where G is finitely
presented and H finitely generated.
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[5] D. Gaboriau, Coût des relations d’équivalence et des groupes, Inventiones Mathematicae
139(1) (2000), 41–98.

[6] D. Gaboriau, Invariants l2 de relations d’équivalence et de groupes, Publications
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Matrix group integrals, surfaces, and mapping class groups

Doron Puder

(joint work with Michael Magee)

Since the 1970s, physicists and mathematicians who study random matrices in the
standard models of GUE or GOE, are aware of intriguing connections between
integrals of such random matrices and enumeration of graphs on surfaces. We
establish a new aspect of this theory: For random matrices sampled from classical
matrix groups such as Un or On. The group structure of these matrices allows us
to go further and find surprising algebraic quantities hidden in the values of these
integrals.
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A class of nonamenable groups admitting no sofic approximation by
expander graphs

Gábor Kun

(joint work with Andreas Thom)

A sequence of finite labeled graphs is locally convergent if for every r the isomor-
phism class of a rooted r-ball centered at a vertex chosen uniformly at random
converges in distribution. A finitely generated group is called sofic if any of its la-
beled Cayley graphs admits a sofic approximation, this is, a local approximation by
finite labeled graphs. Sofic groups were introduced by Gromov [4], see also Weiss
[12]. Quite a number of classical conjectures about groups and group rings not
known in general are known to hold for the class of sofic groups: Gottschalk’s Con-
jecture [4], Kaplansky’s Direct Finiteness Conjecture [1, 3], Connes’ Embedding
Conjecture [2], and the Kervaire–Laudenbach Conjecture [9] and its generaliza-
tions [6, 8]. For more on sofic groups see [9, 11]. It is a major open problem if
every group is sofic, though it is widely believed that non-sofic groups exist. In
general, we do not know much about sofic approximations. Schramm proved that
the sofic approximation of an amenable group is hyperfinite [10]. On the other
end of the spectrum, the first author proved Bowen’s conjecture that the sofic
approximation of a Kazhdan’s property (T) group is essentially a vertex disjoint
union of expander graphs [7]. We will build on this work in order to understand al-
most automorphisms of sofic approximations of Kazhdan groups: This allows us to
prove inapproximability results about the direct product of a Kazhdan group and
another group which is not LEF. Every finitely presented LEF group is residually
finite. The first main result of this paper is the following.

Theorem 1. Let Γ be a countable Kazhdan group and ∆ a finitely generated
group. Let SΓ and S∆ be finite generating sets of Γ and ∆. Consider a sofic
approximation of Γ × ∆ with respect to the generating set SΓ ∪ S∆. If the edges
with labels in SΓ induce an expander sequence, then ∆ is LEF. In particular, if ∆
is finitely presented then it is residually finite.

Remark. Note that for every sofic approximation of Γ the edges with labels in SΓ

induce a graph that is essentially a vertex disjoint union of expander graphs. The
theorem requires somewhat more, i.e., that it is (essentially) an expander graph.

As a consequence of Theorem 1, we show that certain group actions are not
approximable by finite labeled graphs in the local-global sense [5]. Moreover, these
actions do not weakly contain any ultra-product of a finite sequence of graphs, i.e.,
this half of the local-global convergence already fails.

Theorem 2. Let Γ be a countable Kazhdan group and ∆ a finitely generated group,
which is not LEF. Consider an almost free, probability measure preserving action
of Γ×∆ on a probability measure space such that the restriction of the action to Γ
is ergodic. Then this action does not weakly contain any sequence of finite graphs.
In particular, it is not a local-global limit of finite graphs.
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The simplest example of such an action is the Bernoulli shift of Γ×∆, this satisfies
the conditions of the theorem.

Proof of Theorem 2. : Consider a sofic approximation of Γ × ∆. We may assume
that its edges are labeled by SΓ ∪S∆. Restricting labels to SΓ and using the main
result of [7], we obtain a vertex disjoint union of expander graphs after making
irrelevant changes to the labels, since it is a sofic approximation of Γ. Theorem 1
implies that it can not be an expander graph sequence. On the other hand, the
action of Γ is strongly ergodic, since it is ergodic and Γ is a Kazhdan group.
However, if the graph sequence was weakly contained by a strongly ergodic action
there would be only one large component. This is a contradiction. �

Theorem 3. Let Γ be a countable Kazhdan group and ∆ a finitely generated
amenable group. Assume that the group Γ × ∆ admits a sofic approximation by
a sequence of expander graphs. Then ∆ is LEF. In particular, if ∆ is finitely
presented then it is residually finite.
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Kazhdan’s property (T) and semidefinite programming

Narutaka Ozawa

(joint work with Marek Kaluba and Piotr W. Nowak)

1. Introduction

Amenability and Kazhdan’s property (T) are the most important properties in
analytic group theory. They are generalized notions of being finite (but into the
opposite directions). Groups with property (T) have a number of applications in
pure and applied mathematics. It has long been thought that groups with property
(T) are rare among the “naturally-occurring” groups, but it may not be so and
it may even be possible to observe this by extensive computer calculations. I will
present a computer-assisted (but mathematically rigorous) method of confirming
property (T) which is based on semidefinite programming with some operator alge-
braic input. I will report the progress recently made by M. Kaluba, P. W. Nowak,
and myself [5] and by M. Kaluba, D. Kielak, and P. W. Nowak [4]. It confirms
property (T) of Aut(Fn) for n = 5 in [5] and n ≥ 6 in [4], leaving the case n = 4
unsettled. This solves a well-known problem ([6, 10.3], [7], [1, 7.1]) in geometric
group theory.

2. Kazhdan’s property (T)

A (discrete) group Γ is said to have Kazhdan’s property (T) if for any orthogonal
representation (π,H), any almost Γ-invariant vector is close to a Γ-invariant vector:
∃S ⊆ Γ finite and ∃κ = κ(S) > 0 which satisfy

∀(π,H) ∀v ∈ H one has dist(v,HΓ) ≤ κ−1 maxs∈S ‖v − π(s)v‖.
If Γ has property (T), then S as above has to be a generating subset of Γ and
so Γ is finitely generated; Moreover, for any finite generating subset S, there is
a Kazhdan constant κ = κ(S) that satisfies the above condition. Property (T)
inherits to quotient groups and finite-index subgroups. Property (T) is similarly
defined for a locally compact groups and a lattice Γ in a locally compact group G
has property (T) if and only if G has it.

A group Γ is amenable if there are almost invariant vectors in ℓ2Γ: ∃vn ∈ ℓ2Γ
such that ‖vn‖ = 1 and ‖vn − svn‖ → 0 for every s ∈ Γ. Abelian groups (or more
generally groups with subexponential growth) are amenable. Since (ℓ2Γ)Γ 6= 0 only
if Γ is finite, any group that satisfy both amenability and property (T) is finite.
D. Kazhdan (1967) defined property (T) and proved that every simple connected
Lie group with real rank ≥ 2 (e.g., SL(d ≥ 3,R)) has property (T) and so every
lattice of it is finitely generated and has finite abelianization.

3. Algebraic characterization of property (T)

Noncommutative real algebraic geometry is a subject that deals with equations
and inequalities in noncommutative algebras (over real or complex). Recall Artin’s
theorem (Hilbert’s 17th problem) from the classical real algebraic geometry: If a
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polynomial f in R[x1, . . . , xd] satisfies f ≥ 0 on Rd, then there are rational poly-
nomials g1, . . . , gn in R(x1, . . . , xd) such that f =

∑
i g

2
i . This theorem becomes

trivial if one passes to the completion of the polynomial algebra, which is the con-
tinuous function algebra. Likewise in noncommutative real algebraic geometry, we
solve inequalities in the completion (which is a C∗-algebra) and bring down the
solution to the original algebra.

Let a group Γ be given. We consider the real group algebra R[Γ] with the
involution (

∑
t αtt)

∗ =
∑

t αtt
−1, where αt ∈ R are all zero but finitely many.

The positive cone of Hermitian squares is given by

Σ2R[Γ] := {
∑

i g
∗
i gi | gi ∈ R[Γ]} = {

∑
x,y Px,yx

−1y |P ∈ M+
Γ (R)}.

Here M+
Γ (R) denotes the set of finitely supported positive definite matrices indexed

by Γ. We will write a ≥ b if a− b ∈ Σ2R[Γ]. The full group C∗-algebra C∗Γ is the
universal enveloping completion of R[Γ] with respect to orthogonal representations
of Γ (= ∗-representations of R[Γ] on Hilbert spaces). We assume Γ is generated
by a finite symmetric subset S and consider the non-normalized Laplacian

∆ := 1
2

∑
s∈S(1 − s)∗(1 − s) = |S| −∑

s∈S s ∈ Σ2R[Γ].

For any orthogonal representation (π,H) and v ∈ H , one has π(∆)v = 0 iff v is
Γ-invariant, and π(∆)v ≈ 0 iff v is almost Γ-invariant.Hence it follows from the
spectral theory that Γ has property (T) iff ∆ has a spectral gap: ∃ε > 0 such
that Sp(∆) ⊆ {0} ∪ [ε,∞) in C∗Γ. On the other hand, by the spectral mapping
theorem, one has Sp(∆) ⊆ {0} ∪ [ε,∞) iff ∆2 − ε∆ ≥ 0 in C∗Γ.

Theorem ([9]). A finitely generated group Γ = 〈S〉 has property (T) iff ∃ε > 0
such that ∆2 − ε∆ ≥ 0 in R[Γ]. If this is the case, one has κ(S)2 ≥ 2|S|−1ε.

This theorem tells that property (T) is semidecidable (an observation made
earlier by a different method by L. Silberman), i.e., there is an algorithm which
stops iff Γ has property (T). However, property (T) is not decidable, i.e., there is
no a priori estimate of the stopping time.

4. Semidefinite programming

The following algorithm was first implemented by T. Netzer and A. Thom in [8].
For the computer verification of property (T) of a given group Γ, we fix a finite
subset E ⊆ Γ and restrict the search area from M+

Γ (R) to M+
E(R). This results in

the semidefinite programming (SDP):

maximize ε
subj. to ∃P ∈ M+

E(R) such that ∆2 − ε∆ =
∑

x,y∈E

Px,yx
−1y in R[Γ]

If ε > 0, then we conclude that Γ has property (T), but since we have restricted
the search area, the converse need not hold. By the way, we will ignore in this
text the word problem of identifying elements in Γ.

Suppose that a hypothetical solution (ε0, P0) to the above SDP is given. We
describe here how to ensure existence of a rigorous solution to the inequality
∆2 − ε∆ ∈ Σ2R[Γ] out of it. We factorize P0 as P0 ≈ QTQ for some Q with
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Q1 = 0. We utilize the fact that ‖f‖∆ − f ∈ Σ2R[Γ] for every f ∈ R[Γ], f = f∗

and
∑

x f(x) = 0. Here ‖f‖ is a weighted ℓ1-norm which is explicitly calculable.
Thus property (T) of Γ is guaranteed if one sees

‖∆2 − ε0∆ −
∑

x,y(QTQ)x,yx
−1y‖ < ε0

by a computer calculation with guaranteed accuracy (rational arithmetic or in-
terval arithmetic). We remark that finding a solution is practically difficult but
verifying a given solution is relatively easy.

5. The size of SDP

Due to computer capacity limitation, we almost always take E to be the ball
Ball(2) of radius 2. So the dimension of SDP is dimME = |Ball(2)|2 ≈ |S|4
and the number of constraints is |E−1E| = |Ball(4)| ≈ |S|4. The ball of radius
2 may appear too small, but property (T) has been be confirmed on Ball(2) in
many cases, by Netzer–Thom [8], Fujiwara–Kabaya [2], and Kaluba–Nowak [3].
We were a lot encouraged by these success. People often complain that we do not
learn anything (besides it is true) from a computer-assisted proof, and indeed we
do not learn why it is true, but in fact we can learn how the truth can be verified.

The group SAut(Fn) is an index-two subgroup of Aut(Fn) and is generated by
left and right transvections S = {L±

i,j, R
±
i,j} with |S| = 4n(n−1). It was too large

for currently existing computers to run the above algorithm. So, we exploited
the Σ := {α ∈ Aut(Γ) |α(S) = S} symmetry of the problem and carried out the
invariant SDP. Fortunately, since Σ = (

⊕n
i=1 Z/2) ⋊Sn is quite large in the case

of SAut(Fn), this greatly facilitates the SDP.

6. Results in [5]

We were able to verify property (T) of SAut(Fn) for n = 5. One can certify our
solution with a reasonably good desktop computer. It is known SAut(Fn) does
not have (T) for n ≤ 3. For n = 4, we did not find a solution in Ball(2). I think
we can have a definitive result/conjecture (depending on the outcome) if we are
able to run the algorithm on Ball(3). We were not able to run the algorithm for
n = 6 because the symmetrization process was beyond the computer’s capacity.

7. Infinitely many cases ([4])

The above algorithm can check (T) only for one group at each time. We want to
see all Γn := SAut(Fn) have (T). Put Sn := {R±

i,j , L
±
i,j | i 6= j} with Γn = 〈Sn〉. It

suffices to show ∆n =
∑

s∈Sn
1 − s satisfies ∆n − εn∆2

n ≥ 0 in R[Γn]. Consider

En := {{i, j} | i 6= j} and observe
∆n =

∑
e∈En

∆e,

∆2
n =

∑
e ∆2

e +
∑

e∼f ∆e∆f +
∑

e⊥f ∆e∆f

=: Sqn + Adjn + Opn.

Here Sqn and Opn are positive (because ∆e and ∆f commutes when e = f or
e ⊥ f), but Adjn may not (and so it causes quite a bit of problem). For n > m,
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∑
σ∈Sn

σ(∆m) = m(m− 1) · (n− 2)! · ∆n,∑
σ∈Sn

σ(Adjm) = m(m− 1)(m− 2) · (n− 3)! · Adjn,∑
σ∈Sn

σ(Opm) = m(m− 1)(m− 2)(m− 3) · (n− 4)! · Opn.

A computer has confirmed

Adj5 + αOp5 − ε∆5 ≥ 0

with α = 2 and ε = 0.13. It follows that

0 ≤ 60(n− 3)!
(
Adjn + 2α

n−3Opn − n−2
3 ε∆n

)
≤ 60(n− 3)!

(
∆2

n − n−2
3 ε∆n

)
,

provided 2α
n−3 ≤ 1. This confirms (T) for SAut(Fn), n > 6.
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Group approximation and stability

Alexander Lubotzky

Let G = (Gn, dn)n∈N be a family of groups Gn with bi-invariant metrics dn, and
let Γ be any group. An almost homomorphism from Γ to G is a family of (set
theoretic) maps ϕn : Γ → Gn satisfying the following:

(i) For every a, b ∈ Γ, we have

lim
n→∞

dn(ϕn(ab), ϕn(a)ϕn(b)) = 0.

We say that Γ is G-approximated if there exists an almost homomorphism
(ϕn)n∈N from Γ to G which satisfies:

(ii) For every 1 6= a ∈ Γ, we have lim supn→∞ dn(ϕn(a), 1Gn
) > 0, i.e. the almost

homomorphism “separates the points of Γ”.
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The following examples of G’s are of special interest:

(a) G = P = (Sn, dH)n∈N, where the normalized Hamming metric dH on the
symmetric group Sn is given by dH(σ, τ) := |{x ∈ {1, . . . , n} |x.σ 6= x.τ}|/n.
The P-approximated groups are exactly the so-called sofic groups. It is a
seminal problem due to Gromov and Weiss whether every group is sofic.

In all other examples, the groups will be the unitary groups Un, the various
different metrics are all defined by using a norm ‖ • ‖ in the following way:
d(g, h) = ‖g − h‖. To define the various norms, for T ∈ Mn(C) set |T | :=√
T ∗T . We now have:

(b) GHS = (Un, dHS) with ‖T ‖HS =
√

tr(|T |2)/n – the normalized Hilbert–Schmidt

norm. The GHS-approximated groups are usually called in the literature hy-
perlinear groups or Connes embeddable groups. A well known open problem
due to Alan Connes is whether every group has this property.

(c) Let 1 ≤ p < ∞ and let G(p) =
(
Un, d

p
n

)
where ‖T ‖p = (tr(|T |p))1/p, the p-

Schatten norm. Of special interest is p = 2 which is also called the Frobenius
norm.

(d) G∞ = Gop =
(
Un, dop

)
when ‖T ‖op = max{‖Tv‖

∣∣v ∈ Cn, ‖v‖ = 1}. The
Gop-approximated groups are called in the literature MF-groups and it is an
open problem due to Kirchberg whether every group is MF.

In this talk we show:

Theorem 1 ([2]). There exist finitely presented groups Γ which are not G(2)-
approximated (i.e. not Frobenius-approximated).

Theorem 2 ([5]). There exists a finitely presented group Γ which is not G(p)-
approximated for every 1 < p < ∞.

So, while the results solve uncountably many open problems, they leave open
4 cases including the 3 most important ones . . . The method of proof is based on
stability, so we need another definition:

The group Γ is said to be G-stable if for every almost homomorphism (ϕn)n∈N

from Γ to G, there exists a sequence of true homomorphisms Ψn : Γ → Gn such
that for every a ∈ Γ, limn→∞ dn

(
Ψn(a), ϕn

)
= 0.

The following proposition observed in [4] is the initial step for the proofs of the
above Theorems:

Proposition. If Γ,G are as above and Γ is G-stable and G-approximated then Γ
is residually finite.

Thus, to find a non-G-approximated group, it suffices to find a non-residually-
finite G-stable group. A criterion for GFrob = G(2)-stability is given in [2]:

Theorem 3. If Γ is a finitely generated group satisfying H2(Γ, V ) = 0 for every
unitary representation of Γ on any Hilbert space V , then Γ is G(2)-stable.

Garland’s method [3] gives many examples of lattices in p-adic simple Lie groups
satisfying the needed vanishing second cohomology, but all of them are residually
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finite. But one can imitate a construction of Deligne [1] of some non-residually-
finite central extensions of some lattices in real Lie groups, to obtain similar p-adic
examples. This will give Theorem 1. Theorem 2 is proved by a similar method
extending the vanishing cohomology form Hilbert spaces to some Banach spaces.

For more on approximation and stability, see Thom’s ICM 2018 lecture [6].
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Bernoulli disjointness

Todor Tsankov

(joint work with Eli Glasner, Benjamin Weiss, and Andy Zucker)

The concept of disjointness of dynamical systems (both topological and measure-
theoretic) was introduced by Furstenberg [1] in the 60s and has since then become a
fundamental tool in dynamics. Generalizing a theorem of Furstenberg (who proved
the result for the group of integers), we show that for any discrete group G, the
Bernoulli shift 2G is disjoint from any minimal dynamical system. This result,
together with techniques of Furstenberg, some tools from the theory of strongly
irreducible subshifts, and Baire category methods, allows us to answer several
open questions in topological dynamics: we solve the so-called “Ellis problem” for
discrete groups and characterize the underlying topological space for the universal
minimal flow of discrete groups.
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First order rigidity and bi-interpretation

Nir Avni

(joint work with Alexander Lubotzky and Chen Meiri)

A finitely generated group Γ is called first order rigid if every finitely generated
group that is elementarily equivalent to Γ is isomorphic to Γ. We prove that any
non-uniform lattice in a higher rank group is first order rigid and we give many
examples of higher rank uniform lattices which are first order rigid.

Stationary characters on lattices in semi-simple groups

Rémi Boutonnet

In this talk I presented a result about unitary representations of certain semi-
simple lattices by using “non-commutative ergodic theory”. It was based on joint
work with Cyril Houdayer.

As is well known a group is often best understood when it is represented as
a group of transformations. In our case, we are interested in representations by
unitary transformations of a Hilbert space. More precisely, we study the relation-
ship between various such unitary representations. While the space of all unitary
representations of a group, up to unitary conjugacy/containment, is too wild to
be understood in general, things can be said about the space of all unitary rep-
resentations of a group, up to weak equivalence, and also about the partial order
given by weak containment of representations.

For example, recent work on C*-simplicity provides characterizations of groups
whose regular representation is minimal with respect to weak containment, we refer
to [1] for an overview of existing results and recent advances in this direction. We
show that in some cases, the regular representation is actually a smallest element
among all weakly mixing representations (i.e. those not admitting an invariant
finite dimensional subspace).

Our framework is that of strictly higher rank lattices ; meaning irreducible lat-
tices in connected, center-free, semi-simple Lie groups all of whose simple factors
have rank at least 2.

Theorem 1. Let Γ be a strictly higher rank lattice. Then any weakly mixing
unitary representation weakly contains the regular representation on ℓ2(Γ).

The strictly higher rank assumption is crucial in our proof, but we expect our
results to hold for more general higher rank lattices.

Let us point out that this statement implies Margulis normal subgroup theorem
for strictly higher rank lattices [6, Theorem IV.4.10]. Indeed, if Γ is such a lattice
and Λ < Γ is a normal subgroup with infinite quotient Σ, then the quasi-regular
representation Γ → Σ → U(ℓ2(Σ)) is weakly mixing. So it must weakly contain
the regular representation, and in particular, it must be faithful, which implies
that Λ trivial.
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Here is another corollary based on quasi-regular representations, answering a ques-
tion of Glasner and Weiss [4].

Corollary. Consider a minimal action Γ y K of a strictly higher rank lattice
by homeomorphisms of the compact space K. If K is infinite, then the action
is topologically free, i.e. the fixed point set of every non-trivial element of Γ has
empty interior.

In fact our main theorem and its proof are connected with Peterson’s character
rigidity theorem [8]. Recall that a trace on a C∗-algebra A is a positive unital linear
functional τ : A → C which is invariant under unitary conjugacy. A character on a
group Γ is a normalized positive definite function on Γ which is conjugacy invariant.
So, given any unitary representation π of Γ, a trace on C∗(π(Γ)) gives rise to a
character g 7→ τ(π(g)) on Γ. For example, if π is the regular representation λ of Γ,
the C∗-algebra C∗(λ(Γ)) always carries a canonical trace, and the corresponding
character is the Dirac function δe at the trivial element e ∈ Γ.

Peterson’s character rigidity theorem [8] classifies all the characters of strictly
higher rank lattices (and of other groups): they are all convex combinations of the
regular character δe and of characters associated with finite dimensional unitary
representations (and composing with some trace). Thanks to the GNS construc-
tion, this implies that any weakly mixing representation π of Γ such that C∗(π(Γ))
admits a trace must weakly contain the regular representation. So Theorem 1 fol-
lows by combining Peterson’s character rigidity result with the following.

Theorem 2. Let Γ be a strictly higher rank lattice, and let π be any unitary
representation of Γ. Then there exists a trace on C∗(π(Γ)).

Inspired from [5], our strategy to find such a trace is to study a stationary
analogue of traces. This notion involves a group action on a C∗-algebra Γ y A.
Given a probability measure µ on Γ, a µ-stationary state on A will be a unital
positive linear functional φ : A → C such that

∑

g∈Γ

µ(g)φ(g−1a) = φ(a), for all a ∈ A.

While a Γ-invariant state on A needs not exist, there is always a µ-stationary state
for any probability measure µ on Γ.

Note that in the special case of a conjugacy action Γ y C∗(π(Γ)) by the
unitaries π(g), g ∈ Γ, associated with some group representation π, a trace is
exactly an invariant state. So Theorem 2 will follow if we can prove that for such
conjugacy actions any µ-stationary state is Γ-invariant, for a suitable choice of the
probability measure µ.

This is the strategy that we apply. We choose the measure µ as constructed by
Furstenberg in [3]: we require that the Poisson boundary of (Γ, µ) is equal to the
Poisson boundary of (G, µ̃) for some suitable probability measure µ̃ on G. Then
our argument is based on a combination of C∗-algebraic techniques imported from
the recent approach to C∗-simplicity, and of a non-commutative generalization of
a theorem of Nevo and Zimmer [7], which is worth mentioning.
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Theorem 3. Assume that Γ is a strictly higher rank lattice and let µ be a “Fursten-
berg” probability measure on Γ as described above. Consider an action of Γ on a
von Neumann algebra M , whose fixed point algebra is trivial: MΓ = C. Assume
that φ is a weakly continuous state on M , which is µ-stationary. Then we have a
dichotomy:

• either φ is Γ-invariant.
• or there exists a proper parabolic subgroup Q ( G and a Γ-equivariant
normal unital ∗-embedding θ : L∞(G/Q) → M .

Note that we have passed to the von Neumann algebraic setting as opposed
to the C∗-algebraic setting. This transition is made through the so-called GNS
construction. The commutative analogue of this transition is always implicit: given
a Borel probability measure ν on a compact space X , we may forget about the
topological information, and only focus on the measure space (X, ν). This change
of point of view is often used in dynamical systems.

There are two major differences with the initial result of Nevo and Zimmer
[7], both in the statement and in the techniques of proof. Besides the fact that
our version is for actions on non-commutative spaces (and all the difficulties that
this brings), the other main difference is that our result applies to actions of the
lattice and not just to actions of the Lie group. This novelty is based on an
induction procedure for stationary measures, which is both easy and very useful
but surprisingly had remained unnoticed.

To conclude, let us mention that Theorem 3 also implies Peterson’s result on
character rigidity. At first glance, this may seem surprising since we already know
that a character is conjugacy invariant, so there is no point in applying directly
Theorem 3 to the GNS von Neumann algebra generated by a character. Instead,
we apply it to the so-called non-commutative Poisson boundary considered by
Peterson [8] (see also [2]).
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Isoperimetry, Littlewood functions, and unitarizability of groups

Maria Gerasimova

(joint work with Dominik Gruber, Nicolas Monod, and Andreas Thom)

Let us assume that Γ is a discrete group. A representation π : Γ → B(H),
where H is a Hilbert space, is called uniformly bounded, if sup

g∈Γ
‖π(g)‖ < ∞. A

representation π : Γ → B(H) is called unitarizable, if there exists an operator S :
H → H such that S−1π(g)S is a unitary representation for any g ∈ Γ. A group Γ
is called unitarizable if any uniformly bounded representation is unitarizable. The
first question which arises in this context if all groups are unitarizable. The answer
to this is negative and the main non-example is a non-abelian free group Fn with
n generators for n ≥ 2 ([4]). The next classical result says that amenable groups
are unitarizable. It has been open ever since whether this is a characterization of
unitarizability (this question is called the Dixmier’s problem [2]). The question
remains open only for non-amenable groups without free subgroups.

One of the approaches to study unitarizability and amenability is related to
the space of the Littlewood functions T1(Γ).The latter is the space of all functions
f : Γ → C admitting a decomposition

f(x−1y) = f1(x, y) + f2(x, y) ∀x, y ∈ Γ

with fi : Γ × Γ → C such that both of the following are finite:

sup
x

∑

y

|f1(x, y)| and sup
y

∑

x

|f2(x, y)|.

The connection is as follows. First, Γ is amenable if and only if T1(Γ) ⊆ ℓ1(Γ)
[5]. Secondly, if Γ is unitarizable, then T1(Γ) ⊆ ℓ2(Γ) [1]. Thirdly, if Γ contains a
non-abelian free subgroup, then T1(Γ) * ℓp(Γ) for all p < ∞.
It turned out that we can say something more about non-amenable groups.

Theorem 1 (GGMT,[3]). For any non-amenable group Γ there exists p > 1 such
that

T1(Γ) * ℓp(Γ).

This result inspired us to define the Littlewood exponent Lit(Γ) ∈ [0,∞] of a
group Γ as follows:

Lit(Γ) = inf
{
p : T1(Γ) ⊆ ℓp(Γ)

}
.

The main results about the Littlewood exponent are listed in the theorem below.
Theorem 2 (GGMT,[3]).

(1) Lit(Γ) = 0 if and only if Γ is finite.
(2) Lit(Γ) = 1 if and only if Γ is infinite amenable.
(3) Lit(Γ) ≤ 2 if Γ is unitarizable.
(4) Lit(Γ) is outside the interval (1, 2) if Γ has the rapid decay property.
(5) Lit(Γ) = ∞ if Γ contains a non-abelian free subgroup.

Unfortunately, the last statement is not a characterization of the existence of a
free non-abelian subgroup.
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Theorem 3 (GGMT,[3]). There exists a torsion group Λ with Lit(Λ) = ∞.

There is also a connection between Lit(Γ) and the geometry of a group Γ, more
precisely, between Lit(Γ) and the asymptotics of isopermetric quantities attached
to Γ as follows. Given a finite symmetric subset S ⊆ Γ, consider the (possibly
disconnected) Cayley graph Cay(Γ, S). Recall that the Cheeger constant h(Γ, S)
is defined by

h(Γ, S) = inf
F

|∂S(F )|
|F | ,

where the infimum runs over all non-empty finite subsets F ⊆ Γ. Define the
relative maximal average degree e(Γ, S) by

e(Γ, S) = 1 − h(Γ, S)

|S| .

Finally, our asymptotic invariant is

η(Γ) = − lim inf
S

ln e(Γ, S)

ln |S| ,

where the limes inferior is taken over all symmetric finite subsets S of Γ.
Then we can prove the following result.

Theorem 4 (GGMT,[3]). For any group Γ we have η(Γ) = 1 − 1
Lit(Γ) .

This result allows us to prove that the invariant Lit(Γ) is not trivial (that is
Lit(Γ) /∈ {0, 1,∞}) and construct a group Γ with 1 < Lit(Γ) < ∞. It also allows
us to estimate this invariant for some complicated groups (i.e. for Burnside groups
of the large exponent) and find some geometric applications.
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[1] M. Bożejko and G. Fendler, Herz-Schur multipliers and uniformly bounded representations
of discrete groups, Archiv der Mathematik 57(3) (1991), 290–298.

[2] J. Dixmier, Les moyennes invariantes dans les semi-groupes et leurs applications, Acta
Universitatis Szegediensis, Acta Scientiarum Mathematicarum 12 (1950), 213–227.

[3] M. Gerasimova, D. Gruber, N. Monod, and A. Thom, Asymptotics of Cheeger constants
and unitarisability of groups, Preprint arXiv:1801.09600 (2018).

[4] L. Ehrenpreis and F. I. Mautner, Uniformly bounded representations of groups, Proceedings
of the National Academy of Sciences of the United States of America 41(4) (1955), 231–233.
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Ordering ratio function, gap problem for orders and traveling
salesman girth of groups

Anna Erschler

(joint work with Ivan Mitrofanov)

We define and study asymptotic invariants of metric spaces and infinite groups
related to the universal traveling salesman problem.

We prove that spaces with doubling property, in particular all virtually nilpotent
groups, admit a gap for ordering ratio functions: any order on these spaces satisfies
either OR(k) = k−1, for all k (in other words traveling salesman girth is infinite),
or OR(k) ≤ C ln(k) (where C depends only on the traveling salesman girth g, the
value (g − 1) − OR(g) and the doubling constant of the space). We characterize
groups with traveling salesman girth ≤ 4 as virtually free ones.

We show that the ordering ratio function is constant (which is the best possible
function) for all hyperbolic groups, and more generally, for all uniformly discrete
bounded geometry δ-hyperbolic spaces. We prove that the ordering ratio function
of any group, containing weakly a sequence of arbitrarily large cubes (for example,
any group admitting a uniform embedding of Zd, for all d) has infinite traveling
salesman girth; this means that any order on such spaces satisfies OR(s) = s− 1
for all s. This is the worst possible case for ordering ratio functions. We show that
any metric space of finite Assouad–Nagata dimension admits an order satisfying
OR(s) ≤ C ln(s).

Equidistribution for toral endomorphisms

Michael Hochman

Host’s theorem [3] is a pointwise strengthening of Rudolph’s measure rigidity result
[7, 5]. It states that if a, b ∈ N are relatively prime (or, more generally, multiplica-
tively independent) integers, and a, b ≥ 2, then for every measure µ on R/Z that
is invariant, ergodic and has positive entropy under the endomorphism ×a, almost
every point x (w.r.t. µ) equidistributes for Lebesgue measure under ×b.

In the late 1990s and early 2000s, some extensions were proved in higher dimen-
sions, by D. Meiri [6] and in greater generality by B. Host [4], but these results have
restrictions due to which they do not apply to groups of automorphisms (making
it weaker than the analogous measure rigidity results on Td), and requiring more
arithmetic independence than what is expected. Other recent work by Algom [1]
has dealt with some cases involving diagonal matrices.

In my talk I presented recent work which extends Host’s results to (almost)
their natural generality. Similarly to Host’s results, our work applies in both the
commuting and non-commuting case:

Theorem. Let A,B be non-singular integer matrices. Let µ be an A-invariant
and ergodic probability measure on Td with positive entropy. Suppose that

(1) The characteristic polynomial of Bn is irreducible over Q for all n ≥ 1.
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(2) No power of B is conjugate to a power of A.

Then µ is B-normal in the sense that 1
N

∑N
n=1 B

nµ → Lebesgue.
If, in addition, any one of the following holds:

(3a) No expanded eigenvector of A is in the central subspace of B.
(3b) Q(ΛA) ∩ Q(ΛB) = Q, where ΛA,ΛB are the sets of eigenvalues of A,B

respectively.
(3c) B is hyperbolic.
(3d) A is expanding.

Then µ-a.e. point equidistributes for Lebesgue measure under B.
If A,B commute, we can weaken assumption (1) to total irreducibility of the

joint action of A,B, and (2) to the condition that Am 6= Bn for all m,n ∈ N.

It remains open whether conditions like (3a)–(3c) are needed for the pointwise
result (as indicated, they are not needed for mean equidistribution). These condi-
tions are there to ensure that B does not act in an isometric way on the leafwise
measures of µ on the A-expanded foliation. One should note that the additional
conditions are quite mild: For general pairs of matrices A,B, the eigenspaces are
in general position with respect to each other, so (3a) holds.

The idea of the proof is an outgrowth of my work with Shmerkin [2] on Host’s
theorem on R/Z, but that argument was too specialized to work in other contexts.
The proof differs from the standard proofs of measure rigidity in the following
way: Usually in measure rigidity proofs, one acts on the measure µ by BnA−cn

where c > 0 is chosen so that the action is isometric in some direction (one must
extend the action from an Z2 action to an R2 to make sense of this), and then
one uses recurrence of leafwise measure to themselves under this isometric action
to derive translation invariance. In contrast we consider compositions BnA−[cn],
which no longer act isometrically; in fact, the point is that these compositions act
in a rich way on the leafwise measures, for example, their expansion constants may
be dense in an interval. We utilize the smoothing that arises from this rich family
of maps to deduce equidistribution.
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Banach space actions and L2-spectral gap

Mikael de la Salle

(joint work with Tim de Laat and Amine Marrakchi)

Let Γ = 〈S〉 be a countable group with a finite generating set S. If X is a Banach
space, Bader, Furman, Gelander, and Monod [1] defined the fixed point property
on X as follows: Γ has (FX) if every action by affine isometries on X has a fixed
point. When X is a Hilbert space, we recover Kazhdan’s property (T), and it
is widely felt that the less close to a Hilbert space X is, the stronger (FX) is.
Of course, this statement has to be taken with care, as a typical Banach space
has essentially no isometry and therefore any group with trivial abelianization has
(FX) for such X . The situation for an Lp space illustrates this feeling quite well.
If one defines the fixed point spectrum F(Γ) (respectively proper spectrum P(Γ))
of Γ as the set of values p ∈ [1,∞] such that Γ has FLp

(respectively Γ has a
metrically proper action on an Lp space), then it was shown in [1] that F(Γ) is
open, and is non-empty if and only if Γ has (T), in which case it contains [1, 2]. On
the other hand, Guioliang Yu proved that if Γ is hyperbolic, then P(Γ) contains a
neighborhood of ∞. Answering a conjecture of Druţu [2], Amine Marrakchi and I
recently proved (work in progress) that F(Γ) and P(Γ) are moreover intervals.

Theorem (Marrakchi-dlS). For an infinite group Γ, there are critical parameters
1 ≤ pF (Γ) ≤ pP(Γ) ≤ ∞ such that F(Γ) = [1, pF(Γ)) and P(Γ) = (pP(Γ),∞] or
P(Γ) = [pP(Γ),∞].

According to a recent result by Druţu and Minasyan, pP−pF can be arbitrarily
large for property (T) groups.

But all the preceding relies very heavily on the explicit description of the isome-
try group of Lp(Ω, µ) as L0(Ω;T)⋊Aut(X, [µ]) (the Banach-Lamperti theorem). A
very interesting question is to study how the geometry/algebra of the group inter-
acts with the geometry of the Banach space, without having an explicit knowledge
of its isometry group. An intriguing conjecture [1] is for example that lattices in
connected simple Lie groups of rank at least two have (FX) for every uniformly
convex X . This conjecture is known for many specific Banach spaces (for exam-
ple Lp spaces [1]) as well as for groups over non-Archimedean local fields [5], but
remains open in general despite a lot of efforts [3, 7]. A stronger form of it is
probably also true, when one replaces uniformly convex by non-trivial type.

With Tim de Laat, we proved the following generalization to uniformly curved
spaces of Żuk’s celebrated criterion [8], which asserts that a group, acting geo-
metrically on a two dimensional simplicial complex whose links have spectral gap
> 1

2 , has property (T). Uniform curvedness is an intriguing property of a Banach
space which refines uniform convexity. It was defined and studied by Pisier in
[6]. Another Banach space extension of Żuk’s criterion has also been previously
obtained by Bourdon for Lp spaces, but in terms of p-Laplacian.

Theorem ([4]). Let X be a uniformly curved Banach space. Then there exists an
ε > 0 (depending on X) such that the following holds: If Γ is a group that admits
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a proper cocompact action by simplicial automorphisms on a simplicial 2-complex
M such that the spectra of all its links are contained in [−ε, ε] ∪ {1}, then Γ has
(FX).
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Session for presentation of open problems

Collected by Jakob Schneider

During the workshop at this point we had one evening session for the presentation
of open problems and questions. We list here the problems and questions which
were presented during this slot together with the initiator.

• Let G be a group acting on the Cantor set X . The topological full group
of the action is the group of all homeomorphisms f : X → X such that for
every x ∈ X there exists a neighborhood U of x such that f |U is equal
to g|U for some g ∈ G. If U1, U2, U3 are three pairwise disjoint clopen
subsets of X , and g1, g2 are such that g1(U1) = U2 and g2(U2) = U3, then
the homeomorphism equal to g1 on U1, to g2 on U2, to g−1

1 g−1
2 on U2, and

identity on the complement of U1∪U2∪U3, is an element of the topological
full group. Define the alternating full group as the group generated by all
such elements. There are no known examples of minimal actions for which
the alternating full group is different from the derived subgroup of the
topological full group (it is easy to see that the alternating full group is a
subgroup of the derived subgroup). The question is to find some examples,
or to prove that they do not exist. V. Nekrashevych

• Let (X,µ) be a standard probability space and denote by Aut(X,µ) its
automorphism group, the group of measure preserving and measurable bi-
jections of X up to null-sets. A homomorphim ρ : Aut(X,µ) → Aut(X,µ)
is called an essentially free quasi-action if for every T ∈ Aut(X,µ) which
is not the identity, the set of points x ∈ X such that ρ(T )x = x is
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a null-set. Observe that there always exists an essentially free quasi-
action. Indeed we can define ρ∞ : Aut(X,µ) → Aut(XN, µN) by declaring
ρ∞(T )(xn)n = (Txn)n. Remark that (XN, µN) is also a standard prob-
ability space and hence isomorphic to (X,µ). How many essentially free
quasi-actions does Aut(X,µ) have up to conjugacy? Are all such quasi-
actions factors of ρ∞? A. Carderi

• “Are Cayley graphs of subgroups of the free group with large girth almost
Ramanujan?”: Is it true that the Cayley graph of a k-generated subgroup
of a free group that has large girth must be almost Ramanujan? In other
words, given an integer k ≥ 2 and some ε > 0 does there exist C > 0
such that for every x1, ..., xk in a non-abelian free group F such that
w(x1, . . . , xk) 6= 1 for every non-trivial reduced word w in k letters, one
has: ∥∥∥∥∥

1

2k

k∑

i=1

λxi
+ λx−1

i

∥∥∥∥∥ <

√
2k − 1

k
+ ε,

where the norm is the operator norm on ℓ2(F ) and λg the regular repre-
sentation of F on ℓ2(F ). E. Breuillard

Extension of a residually finite group by a residually finite group is
weakly sofic

Lev Glebsky

Sofic groups have been defined in relation with Gottschalk’s surjunctivity conjec-
ture, see [1, 2]. It is an open question if all groups are sofic. There is a hope that a
non-sofic group may be constructed as an extension of a residually finite group by
a finite one, [3, 4]. (It is known, however, that an extension of an amenable group
by a sofic (resp. a hyperlinear or a weakly sofic) group is sofic (resp. hyperlinear or
weakly sofic), [5, 6]. The main result of [7] is an example of a non-approximable
by (Un, ‖ • ‖2) group. This example is a residually-finite-by-finite extension. It
is a kind of a subtle support to the above mentioned hope as sofic groups may
be defined through metric approximation by symmetric groups [8]. I show that
residually-finite-by-finite extensions are weakly sofic:

• Let H be a normal subgroup of a group K. If H and G = K/H are
residually finite, then K is weakly sofic.

W.l.o.g. we may consider finitely generated H and G. Then, as any extension of
G by H is contained in the wreath product H ≀ G, it suffices to show that H ≀ G
is weakly sofic. (Recall that a wreath product H ≀ G is a semidirect product of
HG and G with an action (g.f)(x) = f(xg), for g ∈ G and f ∈ HG. Particularly,
(f, g)(f ′, g′) = (f(g.f ′), gg′).) Third, a homomorphism H1 → H2 naturally defines
a homomorphism H1 ≀ G → H2 ≀ G. Moreover, a residually weakly sofic group is
weakly sofic. So, it suffices to show that H ≀ G is weakly sofic for finite H and
residually finite G. To this end we use the following characterization of weakly
sofic groups, see [9]:
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• A group K is weakly sofic if and only if every system of equations solvable
in all finite groups is solvable over K.

Let me describe in more details the systems of equations considered here. For
a set X we use the notation X∗ =

⋃
n∈N

Xn. Let y = (y1, y2, . . . , yj , . . .) and
x = (x1, x2, . . . , xj , . . . ) be countable sets of symbols for constants and variables,
respectively. Let F = F (y, x) be the free group freely generated by the variables y
and x. Let w ∈ F ∗. Notice that w ∈ F r(y1, . . . , yk, x1, . . . , xn) for some k, n, r ∈ N.
By substitution, w defines a map Gk×Gn → Gr. Consider the system of equations
w = 1. We say that w is solvable in a group G if the sentence

∀y ∃x w(y, x) = 1

is valid in G. We say that a system w is solvable over group G if for some overgroup
H of G the sentence

∀y ∈ G∗ ∃x ∈ H∗ w(y, x) = 1

is valid.
Let Sys(Fin) be the set of systems of equations solvable in all finite groups. The
consideration from above shows that it suffices to prove the following statement:

• Let H be a finite and G a finitely generated residually finite group. Let
w ∈ Sys(Fin). Then w is solvable over H ≀G.

Let Ĝ be a profinite completion of G and (f, a) ∈ (H ≀G)k. We find a solution of

w((f, a), x) = 1 in H ≀ Ĝ, where H ≀ Ĝ is an abstract wreath product (we consider
as well discontinuous functions.) More precisely, we find a solution in H ≀Γ where

Γ < Ĝ is a finitely generated group. Our proof is somehow topological and uses
different topologies. We need the following definition:

• Let a ∈ Ĝk and w ∈ Sys(Fin). A solution u ∈ Ĝn of w(a, u) is called

(H, a)-universal if for every finite continuous quotient of Ĝ, GN = Ĝ/N ,
the following statement is true

∀f ∈ (HGN )k ∃φ ∈ (HGN )n w((f, aN ), (φ, uN )) = 1

Here we denote by xN the image of x ∈ Ĝ in the quotient group GN .

First, we show the existence of an (H, a)-universal solution for w. It uses the

profinite structure of Ĝ. Then Γ is generated by G and an (H, a)-universal solution
u = (u1, . . . , un). To show the existence of a solution in H ≀Γ, we use the Tychonoff
(direct product) topology on HΓ. Precisely, we equipped HΓ with the Tychonoff
topology, Γ with the discrete topology and use the fact that H ≀ Γ is a topological
group with respect to the product topology of these topologies.
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Berry’s conjecture and limits of eigenfunctions

Miklós Abért

(joint work with Nicolas Bergeron and Etienne Le Masson)

We investigate the asymptotic behavior of eigenfunctions of the Laplacian on com-
pact Riemannian manifolds. We show that Benjamini–Schramm convergence pro-
vides a unified language for the level and eigenvalue aspects of the theory. As a
result, we present a mathematically precise formulation of Berry’s conjecture for
a compact negatively curved manifold and formulate a Berry-type conjecture for
sequences of locally symmetric spaces. This allows us to ask the simplest case,
which is to show that the sine wave is not a limit of eigenfunctions for a compact
negatively curved manifold. We prove some weak versions of these conjectures.
Using ergodic theory, we also show that the Berry conjecture implies Quantum
Unique Ergodicity.

Balanced presentations of étale fundamental groups of curves over
finite fields

Mark Shusterman

1. Complex Geometry, Fundamental groups, Representation
Varieties

Let X = Σg be a compact orientable surface of genus g ≥ 1. It can be viewed as
a complex curve, and a geometer is interested in local systems of rank n ≥ 1 on
X over C. These are in bijection with representations (homomorphisms)

ρ : π1(X) → GLn(C).

We know that

π1(X) ∼= 〈x1, y1, . . . , xg, yg | [x1, y1] . . . [xg , yg] = 1〉, [x, y] = xyx−1y−1

which means that our representations are just collections of 2g matrices n × n
satisfying one specific algebraic relation. This gives rise to the representation
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variety, and to a fruitful study of deformations of representations. The situation
is similar for more general X , as long as π1(X) is finitely presented.

2. Algebraic Geometry, Number Theory, Fundamental groups

Let X be a smooth projective curve over a finite field k of characteristic p. Al-
gebraic geometers and number theorists are interested in local systems on X .
Indeed, the Langlands program studies continuous representations of the étale (or
algebraic) fundamental group πét

1 (X). As in the previous section, it would be
desirable to have a description of πét

1 (X) in terms of generators and relations.

3. The étale Fundamental group

Subgroups of the usual fundamental group correspond to covers of the topological
space. Similarly, open subgroups of the étale fundamental group (which is a profi-
nite group) correspond to étale covers of the variety. Moreover, for an algebraic
variety X over C, the profinite completion of π1(X(C)) is topologically isomorphic
to πét

1 (X). See [3, Exposé XII, Section 5].
The above suggests that étale fundamental groups over algebraically closed

fields are more manageable, so for a smooth projective curve X over a finite field
k of characteristic p, it is desirable to consider the short exact sequence

1 → πét
1 (Xk̄) → πét

1 (X) → Gal(k̄/k) → 1

where k̄ is an algebraic closure of k, and Xk̄ is the base change of X to k̄.
In some sense, this reduces the study of the étale fundamental group to the

geometric situation (over the algebraic closure), and to the action of Gal(k̄/k)
(topologically generated by Frob|k|) on the geometric étale fundamental group.
The latter action encodes the answer to arithmetic questions about the curve such
as the Weil conjectures on the number of points on X over finite extensions of k.

By lifting to characteristic zero, Grothendieck has shown in [3, Exposé XIII]
that πét

1 (Xk̄), and thus also πét
1 (X), is topologically finitely generated. Moreover,

he shows that for every prime ℓ 6= p, the maximal pro-ℓ quotient of πét
1 (Xk̄) admits

the pro-ℓ presentation

〈x1, y1, . . . , xg, yg | [x1, y1] . . . [xg , yg] = 1〉
where g is the genus of X . This result is complemented by the work [10] of
Shafarevich, showing that the maximal pro-p quotient of πét

1 (Xk̄) is free pro-p.
In case g = 1 we have

πét
1 (X) ∼= Zα

p ×
∏

ℓ 6=p

Z2
ℓ ⋊ Ẑ

where α = 1 if X is regular and α = 0 if X is supersingular. The possible actions

of Ẑ ∼= Gal(k/k) are implicit already in the Hasse bound.
In a sharp contrast, once g ≥ 2, the group πét

1 (X) encompasses the structure of
X in a non-trivial way. One evidence for this is the work [11] of Tamagawa which
shows that there are only finitely many smooth projective curves Y over k̄ with
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π1(Y ) ∼= π1(Xk̄). Another result in this vein, obtained by Mochizuki in [6], says
(roughly speaking) that X can be (functorially) reconstructed from π1(X).

4. Balanced Presentations – Results

Our main result is the following.

Theorem 1. The étale fundamental group of a smooth projective curve over a
finite field is topologically finitely presented. Moreover, the number of relations is
at most the number of generators (in some presentation).

In fact, we show that for every topological presentation

1 → N → F → πét
1 (X) → 1

of our étale fundamental group, the number of generators of N as a closed nor-
mal subgroup of the free profinite group F equals the rank of F . Moreover, our
arguments apply not only to πét

1 (X) itself, but to any closed topologically finitely
generated subgroup of it.

Corollary 1. The group πét
1 (X) is topologically coherent.

Coherence means that all the closed topologically finitely generated subgroups
of π1(X) are topologically finitely presented.

Theorem 1 brings the algebraic situation discussed in Section 2 closer to the
geometric situation of Section 1. However, as opposed to the situation in Section
1, from the proof of Theorem 1 we gain very little insight into the nature of the
relations (beyond their number).

5. étale fundamental group as a Galois Group

Recall that if K is the function field of X , then πét
1 (X) can be identified with

Gal(Kur/K), where Kur is the maximal unramified extension of K. As a result,
the group πét

1 (X) is also studied as a function field analog of the generalized class
group Gal(Lur/L) of a number field L. Examples include the works [1, 12] by
Boston and Wood. These works suggest, vaguely speaking, that for a randomly
chosen X , the group π1(X) is given by a random balanced presentation (that is, a
presentation where the number of generators is at least the number of relations).
Motivated by this, Liu and Wood in [4] study random balanced presentations and
their variants. Theorem 1 may thus be viewed as a deterministic counterpart of
these works.

6. Arithmetic Topology

Arithmetic topology, as studied for instance in [7], postulates that the group
Gal(Lur/L) should exhibit properties similar to those of the fundamental group
of a 3-manifold. Indeed, balanced presentations are attributes of some 3-manifold
groups (see [2]), and Pardon asks in [8] whether an analog of this can be established
for Gal(Lur/L). This serves as an additional motivation for Theorem 1. What’s
more, Corollary 1 is analogous to Scott’s coherence results from [9].
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7. Tools from Proof

Our proof of Theorem 1 starts from a formula proved by Lubotzky in [5]. The lat-
ter, once combined with Grothendieck’s finite generation result mentioned above,
reduces our task to an estimation of the dimensions of several cohomology groups.
We perform these estimations using the Lyndon–Hochschild–Serre spectral se-
quence. An important input is duality in cohomology, deduced from the afore-
mentioned results on maximal pro-ℓ and pro-p quotients by Grothendieck and
Shafarevich. Those cohomology groups which we do not know how to compute,
can be shown to cancel the contribution of one another.
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Infinite approximate groups

Tobias Hartnick

Given a group G and a positive integer k, a subset Λ ⊆ G is called a k-approximate
subgroup of G if it is symmetric (i.e. Λ = Λ−1) and contains the identity eG, and
if moreover

Λ · Λ ⊆ Λ · F
for a finite subset F ⊆ G of cardinality k [12]. We then call the group Λ∞ generated
by Λ the enveloping group of Λ and the pair (Λ,Λ∞) a k-approximate group. A
global morphism (Λ,Λ∞) → (Ξ,Ξ∞) between k-approximate groups is a map of
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pairs which is also a homomorphisms of the enveloping groups. If G is a group,
then a global morphism into (G,G) is also called a representation.

Note that subgroups are precisely the 1-approximate subgroups and that every
finite set Λ is a |Λ|-approximate subgroup. However, if one fixes k and considers
large but finite k-approximate subgroup, then there is a rich structure theory of
such finite approximate subgroups [5], with many deep applications, in particular
to additive combinatorics. On the contrary, relatively little is known about the
structure of countably infinite approximate subgroups so far. The goal of this
note is to survey some recent developments towards a general structure theory of
infinite approximate groups.

One of the early empirical discoveries in the study of infinite approximate groups
was that there exist “tame” examples which admit nice representations into locally
compact groups, and “wild” examples which do not admit any such representa-
tions. A prototypical example of a tame approximate group is given by the vertex
set ΛA of a symmetric Penrose tiling, which comes equipped with a natural rep-
resentation into R2. As an example of a wild approximate group, consider the
function f : F2 → Z from the free group on two generators a and b, which with
every reduced word associates the number of subwords of the form ab minus the
number of subwords of the form b−1a−1. The set

ΛB := {g ∈ F2 | f(g) ∈ {−1, 0, 1}}

is a 6-approximate subgroup of F2 which does not admit any nice representation
in a sense made precise below.

Model sets in the sense of Meyer [11] are a vast generalization of example ΛA.
If Γ is an irreducible lattice in a product G×H and W ⊆ H is a compact identity
neighborhood, then the associated model set is defined by the cut-and-project
construction

Λ := Λ(G,H,Γ,W ) := prG(Γ ∩ (G×W )) ⊆ G.

Any model set Λ is an approximate subgroup of G as well as a Delone subset with
respect to some (hence any) proper continuous left-invariant metric on G; we refer
to such Delone approximate subgroups as uniform approximate lattices [1]. If G
is abelian and compactly-generated, then thee uniform approximate lattices are
precisely the syndetic subsets of model sets by a classical theorem of Meyer [11].
Recently, this result was extended to general amenable groups by Machado (see
his contribution in the present volume).

Uniform approximate lattices are tame in the sense that they admit embeddings
into locally compact groups with Delone image. Slightly more general one can try
to construct representations into locally compact groups with Delone image such
that the kernel intersects each of the sets Λk (equivalently, the set Λ2) in a finite
set. Since locally compact groups are essentially isometry groups of proper metric
spaces, constructing such representations is equivalent to constructing geometric
actions of approximate groups on proper metric spaces.

One can try to construct such actions by a version of geometric group theory,
but this runs into several problems. Every countable approximate group gives rise
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to a canonical coarse equivalence class of metric spaces, but there are two different
ways to single out a quasi-isometry type within this coarse equivalence class: Ex-
trinsically, by assuming that Λ∞ is finitely-generated and restricting word metrics
on Λ∞ to Λ (as in [1]) or intrinsically, by assuming that the coarse class admits
a large-scale geodesic representative (which is then unique up to quasi-isometry),
and considering its quasi-isometry type (as in [7]). If both constructions apply,
then they may still yield different results, in which case we call the approximate
group distorted. Uniform approximate lattices are always undistorted [7], hence
distortion is an obstruction to admitting nice representations. Quasi-kernels of
quasimorphisms on hyperbolic groups, such as Example ΛB above, are always
distorted (by unpublished work of Heuer and Kielak), hence they do not admit
nice representations. Even for undistorted approximate groups one obtains in gen-
eral only a quasi-isometric quasi-action on a suitable model space (rather than an
isometric action), and additional assumptions are required to obtain a nice rep-
resentation. We refer the reader to Machado’s contribution in this volume for a
different approach to constructing nice representations (in the amenable context),
which avoids geometry altogether and instead uses tools from additive combina-
torics, such as variants of Sanders’ lemma.

The geometric approach to infinite approximate groups has some merits in its
own rights though. In particular, it allows to associate asymptotic invariants -
such as growth, Dehn functions or asymptotic dimension - to approximate groups
which suitable finiteness properties. Some sample results in this direction are:

• Every undistorted approximate group of polynomial growth is essentially
nilpotent. (This is an application of the Breuillard–Green–Tao theorem to
a suitable sequence of balls in such groups.)

• The asymptotic dimension of a hyperbolic approximate group is given by
the topological dimension of its Gromov boundary +1. (More generally,
this holds for visual, quasi-cobounded, Morse-hyperbolic spaces, [7].)

• An approximate subgroup which is quasi-isometric to a higher rank build-
ing or symmetric space is essentially a uniform approximate lattice in
its isometry group. (This is an extension of the QI rigidity theorem of
Kleiner–Leeb [9] from [1].)

For tame infinite approximate subgroups, a far-reaching theory can be devel-
oped by dynamical methods. Namely, if Λ is a uniform approximate lattice in a
locally compact group G, then the orbit closure of Λ in the Chabauty space of
G is an interesting dynamical system for G, called the hull system. This system
is particularly useful, if it admits a G-invariant measure (as is the case in the
amenable case, but also for general model sets [3]), in which case Λ is called a
strong uniform approximate lattice. By a variant of this construction, one can also
define non-uniform strong approximate lattices [1]. This is important to be able
to conclude model sets arising from arithmetic and S-arithmetic lattices, which
are typically non-uniform. Some sample results are the following:

• Envelopes of strong or uniform approximate lattices are unimodular [1, 4].
• Approximate lattices in nilpotent Lie groups are uniform [1].
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• In the context of algebraic groups, the density theorems of Borel and
Dani–Shalom generalize in the obvious way [4].

• Analytic properties such as property (T) and the Haagerup property pass
between strong uniform approximate lattices and their envelopes [2].

While the theory of strong approximate lattices is developing rapidly, our un-
derstanding of general discrete approximate subgroups of locally compact groups is
still rather poor. However, there are also some interesting first results concerning
smaller discrete approximate subgroups. For instance:

• Approximate subgroups of certain amenable groups are compactly-close
to actual subgroups [8, 10].

• If Λ is an approximate subgroup of Is(Hn), whose limit set LΛ ⊆ ∂Hn

has at least two points and consists entirely of conical limit points, then
either Λ is commensurable to a convex-cocompact subgroup, or LΛ is the
boundary of a totally geodesic copy of some Hk and Λ acts on the latter
as a uniform approximate lattice in Is(Hk) [6].
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Word images in symmetric and classical groups of Lie type are dense

Jakob Schneider

(joint work with Andreas Thom)

Let w ∈ Fk = 〈x1, . . . , xk〉 be a non-trivial word and denote by w(G) ⊆ G the
image of the associated word map w : Gk → G. Let G be one of the finite groups
Sn, GLn(q), Sp2m(q), GO±

2m(q), GO2m+1(q), GUn(q) (q a prime power, n ≥ 2,
m ≥ 1), or the unitary group Un over C. Let dG be the normalized Hamming
metric dH(σ, τ) := |{x ∈ {1, . . . , n}|x.σ 6= x.τ}|/n resp. the normalized rank metric
drk(g, h) := rk(g − h)/n on G when G is a symmetric group Sn resp. one of the
other classical linear groups and write n(G) for the degree of G.

For ε > 0 arbitrary, we prove that there exists an integer N(ε, w) such that
w(G) is ε-dense in G with respect to the metric dG if n(G) ≥ N(ε, w), i.e.
dG(g, w(G)) ≤ ε for all g ∈ G. This confirms metric versions of conjectures
by Shalev [2, Conjecture 8.3] and Larsen at the 2008 meeting of the AMS in
Bloomington. Equivalently, we prove that any non-trivial word map is surjective
on a metric ultraproduct of groups G from above such that n(G) → ∞ along the
ultrafilter.

The method of the proof is cohomological. We consider the Cayley complex
X of the one-relator group K := 〈x1, . . . , xk|w〉 and the corresponding quotient
complex X(π) under a given surjective homomorphism π : K ։ G to a finite
group of order n. Then we draw a connection between the above density question
and the second cohomology group H2(X(π), A), where A is a suitable abelian
group which is chosen according to the type of G. Roughly speaking, we study
the set w(A ≀ G) (where G y G by left-multiplication) by plugging in the tuple
(a1.g1, . . . , ak.gk) ∈ (A ≀G)k into w, where ai ∈ AG and gi = π(xi) for i = 1, . . . , k.
Let us sketch the proof in the case G = Un In this case we use the group A = T and
that T ≀G ⊆ Un as monomial matrices, so that w(T ≀G) ⊆ w(Un) (here T = R/Z
is the circle). Then w(a1.g1, . . . , ak.gk) = b.1G ∈ TG ⊆ T ≀ G ⊆ Un is a diagonal
matrix. One can then show that one can approximate a given diagonal matrix
c ∈ Un by a word value w(a1.g1, . . . , ak.gk) up to dimH2(X(π),T) diagonal entries
(for suitable a1, . . . , ak ∈ TG). The remaining task is then to construct “good”
homomorphism π such that dimH2(X(π),T)/n is “small”.

As a consequence of our methods, we also obtain an alternative proof of the
result of Hui, Larsen, and Shalev [3, Theorem 2.3] that w1(SUn)w2(SUn) = SUn

for non-trivial words w1, w2 ∈ Fk and n sufficiently large.
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Good Models for Infinite Approximate Subgroups

Simon Machado

We study infinite approximate subgroups with a particular focus on Approximate
lattices. Approximate lattices were first defined by Michael Björklund and Tobias
Hartnick in [2]. They were inspired by the work of Yves Meyer about a type
of approximate subgroups that later came to be known as mathematical quasi-
crystals ([6]). Approximate lattices also generalize lattices of locally compact
groups (i.e. discrete subgroups of locally compact groups with finite co-volume).

When G is a locally compact group, we say that X is uniformly discrete if
there is a neighborhood of the identity U such that (xU)x∈X is a family of disjoint
sets. We say that X is relatively dense if there exists a compact subset K ⊆ G
such that ΛK = G. An approximate subgroup Λ of a locally compact group G
is a uniform approximate lattice if Λ is uniformly discrete and relatively dense.
The approximate subgroup condition arises naturally from the combination of
discreteness and co-compactness. Indeed, any symmetric subset Λ ⊆ G, such that
Λ is relatively dense and Λ6 is discrete (with respect to the induced topology), is
an approximate subgroup, and hence a uniform approximate lattice.

Examples of uniform approximate lattices are given by cut-and-project schemes.
A cut-and-project scheme (G,H,Γ) is the datum of two locally compact groups G
and H , and a uniform lattice Γ in G×H such that Γ∩({eG} ×H) = {eG×H} and Γ
projects densely to H . Given a cut-and-project scheme (G,H,Γ) and a symmetric
relatively compact neighborhood W0 of eH in H , one gets a uniform approximate
lattice when considering the projection Λ of (G ×W0) ∩ Γ to G. Any such set is
called a model set and any approximate subgroup of G which is commensurable
to and contained in a model set is called a Meyer set of G. This construction was
first introduced by Yves Meyer in the abelian case [6] and extended by Michael
Björklund and Tobias Hartnick [2].

In [6] Yves Meyer proved a structure theorem for mathematical quasi-crystals.
Quasi-crystals correspond to uniform approximate lattices in locally compact abe-
lian groups. Rephrased in our terminology he proved that all approximate lattices
of locally compact abelian groups are Meyer sets ([6, Theorem 3.2]). Motivated
by this result the authors of [2] asked whether similar results would hold for other
classes of locally compact groups. This question, and more generally the structure
theory of Approximate lattices, is the main motivation of this talk.

Using methods from algebraic group theory we can prove a first generalization
of Meyer’s theorem. Namely, all approximate lattices of soluble Lie groups are
Meyer sets. To further extend Meyer’s theorem we introduce good models for
approximate subgroups. The definition of good models and the following results
come from an article in preparation ([4]). A good model for an approximate
subgroup Λ of a group G is a group homomorphism f : Λ∞ → H , with H a locally
compact group, such that: (i) The set f(Λ) is relatively compact and (ii) there is
U ⊆ H a neighborhood of the identity such that f−1(U) ⊆ Λ.

The definition of good models is closely related to [1, Definition 3.5], [3, Theo-
rem 4.2] and [2, Definition 2.12]. However, each of these prior definitions asks for
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stronger hypotheses whereas we try to keep the definition of good models as simple
as possible. This allows for a simple and handy characterization of approximate
subgroups that have a good model. Indeed, an approximate subgroup  L of a group
G has a good model if and only if there exists a decreasing sequence (Λn)n∈N

of

approximate subgroups commensurable to Λ with  L0 =  L and Λ2
n+1 ⊆ Λn. This

criterion is inspired by the construction from [1, Section 6]. It is a handy criterion
that finds applications in a variety of situations. Some approximate subgroups
however do not have a good model.

Coming back to approximate lattices, one can see that good models generalize
cut-and-project schemes. In particular an approximate lattice has a good model if
and only if it is a model set. Building up on the criterion mentioned above and an
argument due to Tom Sanders and Wagner–Massicot we give a new generalization
to Meyer’s theorem; we prove that if Λ an approximate lattice of an amenable
locally compact group G, then Λ4 is a model set. The method used actually
yields a much stronger result about all uniformly discrete approximate subgroups
of amenable locally compact groups.

We mention yet another result: a generalization of theorems of Auslander and
Mostow about lattices and radicals of Lie groups. In particular, this result asserts
that the theory of approximate lattices of Lie groups reduces to two simpler bits:
the theory of approximate lattices of amenable Lie groups and the theory of lattices
of semi-simple groups.
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On the “free group factor” and the “single generation” problem

Sorin Popa

A well known open problem in operator algebras, originating in Murray’s and von
Neumann’s “Rings af operators IV” paper from 1943, asks whether the group II1
factors L(Fn) of the free groups on n generators (2 ≤ n ≤ ∞) are isomorphic or
not. Another open problem going back to a paper by Chevalley ??? from 1954
asks whether any II1 factor is simply generated (or generated by two hermitians).
I will explain an approach to solving these two problems, based on the idea of
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constructing “tight pairs” of embeddings of the amenable II1 factor R (the so-
called hyperfinite II1 factor) into any II1 factor that is stably single generated.

Fun with i.(ni).d. random variables

Michael Björklund

(joint work with Zemer Kosloff and Stefaan Vaes)

Let G be a countable group and consider the G-action on X := {0, 1}G defined by

(g.x)h = xg−1h, for h, g ∈ G.

Given a map g 7→ µg ∈ Prob({0, 1}), we define

µ =
∏

g∈G

µg ∈ Prob(X).

If we assume that there exists 0 < δ < 1/2 such that µg(0) ∈ [δ, 1−δ] for all g ∈ G,
then µ is quasi-invariant if and only if

∑

h∈G

(
µg−1h(0) − µh(0)

)2
< ∞, for all g ∈ G,

or equivalently, if g 7→ cg, where cg(h) = µg−1h(0)−µh(0) is an ℓ2(G)-cocycle (for
the left-regular G-representation). We note that if c is cohomologically trivial,
then µ is equivalent to a G-invariant probability measure.

During this talk, we discussed the following question: Suppose that G admits a
non-trivial ℓ2-cocyle. Can we then construct a map g 7→ µg as above, so that the
resulting measure µ is quasi-invariant, but “very far from being G-invariant”? By
this we mean: Consider the Maharam extension of the G-action on (X,µ), that is
to say, the G-action on X × R, given by

g.(x, t) = (g.x, t− log
dg−1µ

dµ
(x)), for (x, t) ∈ X × R,

endowed with the G-invariant (non-finite) measure µ ⊗ e−t dt. We note that if
(X,µ) is equivalent to a σ-finite G-invariant measure, then the Maharam exten-
sion admits a G-invariant Borel function. Hence, to exclude the possibility of a
coordinate change to a G-invariant measure, we ask when the Maharam extension
is ergodic (or even weakly mixing) – in this case we say that (X,µ) is type III1.
We prove in [1] that every group which admits a non-trivial ℓ2(G)-cocycle, has
measures µ with type III1.
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Kazhdan groups have cost 1

Thomas Hutchcroft

(joint work with Gábor Pete)

The cost of a free, probability measure preserving (p.m.p.) action of a group is
an orbit-equivalence invariant that was introduced by Levitt [10] and studied ex-
tensively by Gaboriau [4, 5, 6]. Gaboriau used the notion of cost to prove several
remarkable theorems, including that free groups of different ranks cannot have
orbit equivalent actions. This result is in stark contrast with the amenable case,
in which Ornstein and Weiss [11] proved that any two free p.m.p. actions are orbit
equivalent.

The cost of a group is defined to be the infimal cost of all free, ergodic p.m.p. ac-
tions of the group. We will employ here the following probabilistic definition, which
is shown to be equivalent to the classical definition in [9, Proposition 29.5]. Let

Γ be a countable group. We define S(Γ) ⊆ {0, 1}Γ2

to be the set of (undirected)
connected graphs with vertex set Γ. For each ω ∈ S(Γ) and γ ∈ Γ we define γω
by setting γω(u, v) = ω(γu, γv). We say that a probability measure on S(Γ) is Γ-
invariant if µ(A ) = µ(γ−1A ) for every Borel set A ⊆ S(Γ), and write M(Γ,S(Γ))
for the set of Γ-invariant probability measures on S(Γ). The cost of the group Γ
can be defined to be

(1) cost(Γ) =
1

2
inf

{∫

ω∈S(Γ)

degω(o)dµ(ω) : µ ∈ M(Γ,S(Γ))

}
,

where o is the identity element of Γ and degω(o) is the degree of o in the graph
ω ∈ S(Γ).

Many properties of the cost remain poorly understood. One of the most impor-
tant questions is as follows: Gaboriau proved that for any finitely generated group
Γ, the cost of Γ satisfies cost(Γ) ≥ 1 + β1(Γ), where β1(Γ) is the first ℓ2-Betti
number of Γ. It is conjectured that this inequality is in fact an equality for every
finitely generated group Γ.

For groups with Kazhdan’s property (T), it was proven in 1997 by Bekka and
Valette [1] that β1 = 0. However, the cost of Kazhdan groups has remained
elusive [6, Question 6.4], and has thus become a notable test example for the
above question. In this talk, I will sketch a proof that Kazhdan groups do indeed
have cost 1, following our work [8].

Our proof uses probabilistic techniques from percolation theory and the prob-
abilistic characterization of property (T) due to Glasner and Weiss [7]. (This
proof fact obtained in Oberwolfach at the meeting ”Scaling Limits in Models of
Statistical Mechanics” in September 2018.)
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Von Neumann Equivalence

Jesse Peterson

(joint work with Ishan Ishan, Lauren Ruth)

Two countable groups Γ and Λ are measure equivalent if they have commuting
measure-preserving actions on a σ-finite measure space (Ω,m) such that the actions
of Γ and Λ individually admit a finite-measure fundamental domain. This notion
was introduced by Gromov in [4, 0.5.E] as an analogy to the topological notion of
being quasi-isometric for finitely generated groups. The basic example of measure
equivalent groups is when Γ and Λ are lattices in the same locally compact group
G. In this case, Γ and Λ act on the left and right of G respectively, and these
actions preserve the Haar measure on G.

Two groups Γ and Λ are W ∗-equivalent if they have isomorphic group von
Neumann algebras LΓ ∼= LΛ. This is somewhat analogous to measure equivalence
(although a closer analogy is made between measure equivalence and virtual W ∗-
equivalence, which for ICC groups asks for LΓ and LΛ to be virtually isomorphic
in the sense that each factor is stably isomorphic to a finite index subfactor in the
other factor [5, Section 1.4]) and both equivalence relations preserve many of the
same “approximation type” properties. These similarities led Shlyakhtenko to ask
whether measure equivalence implied W ∗-equivalence in the setting of ICC groups.
It was shown in [2] that this is not the case, although the converse implication of
whether W ∗-equivalence implies measure equivalence is still open.

Returning to measure equivalence, if Γ and Λ have commuting actions on (Ω, µ)
and if F ⊂ Ω is a Borel fundamental domain for the action of Γ, then on the level
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of function spaces, the characteristic function 1F gives a projection in L∞(Ω,m)
such that the collection {1γF}γ∈Γ forms a partition of unity, i.e.,

∑
γ∈Γ 1γF = 1.

This notion generalizes quite nicely to the non-commutative setting where we will
say that a fundamental domain for an action on a von Neumann algebra Γ yσ M
consists of a projection p ∈ M such that

∑
γ∈Γ σγ(p) = 1, where the convergence

is in the strong operator topology.
Using this perspective for a fundamental domain we may then generalize the

notion of measure equivalence by simply considering actions on non-commutative
spaces.

Definition 1. Two groups Γ and Λ are von Neumann equivalent, written Γ ∼vNE

Λ, if there exists a von Neumann algebra M with a semi-finite normal faithful
trace Tr and commuting, trace-preserving, actions of Γ and Λ on M such that the
Γ and Λ-actions individually admit a finite-trace fundamental domain.

The proof of transitivity for measure equivalence is adapted to show that von
Neumann equivalence is a transitive relation. It is also clearly reflexive and sym-
metric, so that von Neumann equivalence is indeed an equivalence relation.

Von Neumann equivalence is clearly implied by measure equivalence, and, in
fact, von Neumann equivalence is also implied by W ∗-equivalence. Indeed, if
θ : LΓ → LΛ is a von Neumann algebra isomorphism then we may consider
M = B(ℓ2Λ) where we have a trace-preserving action σ : Γ × Λ → Aut(M)
given by σ(s,t)(T ) = θ(λs)ρtTρ

∗
t θ(λ∗

s), where ρ : Λ → U(ℓ2Λ) is the right regular
representation, which commutes with operators in LΛ. It’s then not difficult to see
that the rank one projection p onto the subspace Cδe is a common fundamental
domain for the actions of both Γ and Λ. In fact, we’ll show below that virtual
W ∗-equivalence also implies von Neumann equivalence.

Using a general induction procedure for inducing representations via von Neu-
mann equivalence we obtain the following theorem.

Theorem. Amenability, property (T), and the Haagerup property are all von Neu-
mann equivalence invariants.

A group Γ is properly proximal if there does not exist a left-invariant state on
the C∗-algebra (ℓ∞Γ/c0Γ)Γr consisting of elements in ℓ∞Γ/c0Γ that are invariant
under the right action of the group. Properly proximal groups were introduced
in [1], where a number of classes of groups were shown to be properly proximal,
including non-elementary hyperbolic groups, convergence groups, bi-exact groups,
groups admitting proper 1-cocycles into non-amenable representations, and lattices
in non-compact semi-simple Lie groups of arbitrary rank. It is also shown that
the class of properly proximal groups is stable under commensurability up to
finite kernels, and it was then asked if this class was also stable under measure
equivalence [1, Question 1(b)].

Proper proximality also has a dynamical formulation [1, Theorem 4.3], and using
this, together with our induction technique applied to isometric representations on
dual Banach spaces, we show that the class of properly proximal groups is not only
closed under measure equivalence but also under von Neumann equivalence.
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Theorem. If Γ ∼vNE Λ then Γ is properly proximal if and only if Λ is properly
proximal.

An example of Caprace, which appears in Section 5.C of [3], shows that the class
of inner amenable groups is not closed under measure equivalence. Specifically,
if p is a prime and Fp denotes the finite field with p elements, then the group
SL3(Fp[t−1]) ⋉ Fp[t, t−1]3 is not inner amenable, although is measure equivalent
to the inner amenable group SL3(Fp[t−1])⋉Fp[t−1]3)×Fp[t]3. Using the previous
theorem we then answer another question from [1] by providing with SL3(Fp[t−1])⋉
Fp[t, t−1]3 an example of a non-inner amenable group that is also not properly
proximal.
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Département de Mathématiques et
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