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Introduction by the Organizers

The workshop Modular Forms, organized by Jan Hendrik Bruinier (Darmstadt),

Atsushi Ichino (Kyoto), Tamotsu Ikeda (Kyoto) and Özlem Imamoglu (Zürich)
consisted of 14 one-hour long lectures and 8 half-hour long lectures. It covered
various recent developments in the theory of modular and automorphic forms and
related fields.

A particular focus was on the connection of modular forms to periods, since
there have been important developments in that direction in recent years. In this
context, the topics that the workshop addressed include the global Gross-Prasad
conjecture and its analogs, the theory of liftings and their applications to period
relations, as well special cycles on Shimura varieties and singular moduli with a
view towards the Kudla program.

A period is a complex number which is usually transcendental but has important
arithmetic properties, and its rigorous definition was given by Kontsevich and
Zagier. For example, π = 3.14159265 . . . is a period and appears in many formulas
and conjectures in number theory, for instance in Euler’s celebrated formula for
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special values of the Riemann zeta function. A slightly more sophisticated example
is a CM period, which was extensively studied by Shimura and is defined as an
integral over a 1-cycle of a holomorphic differential 1-form of an abelian variety
with complex multiplication.

These periods play a central role in number theory, especially in connection
with L-functions. Namely, according to the conjectures of Deligne, Beilinson-
Bloch, and Bloch-Kato, special values of motivic L-functions at integral arguments
should have periods as their transcendental parts and encode important arithmetic
information such as ranks of Chow groups. A prototype of these conjectures is the
Birch and Swinnerton-Dyer conjecture relating arithmetic invariants of an elliptic
curve over Q to the leading term of its Hasse-Weil L-function at the central critical
point. Also, periods and their connection with L-functions have incarnations in
the context of modular forms, which have been developed significantly in recent
years and give further insights in number theory.

Many of the lectures discussed periods associated with automorphic forms
and their relations to L-functions, in particular the lectures by Claudia Alfes-
Neumann, Raphaël Beuzart-Plessis, Yuanqing Cai, Tomoyoshi Ibukiyama, Hide-
nori Katsurada, Chao Li, Don Zagier. Special cycles on Shimura varieties and
connections to periods were addressed in the talks by Kathrin Bringmann, Henri
Darmon, Stephan Ehlen, Stephen Kudla, Yingkun Li, Michalis Neururer, Siddarth
Sankaran. The lectures of Fabrizio Andreatta and Shunsuke Yamana dealt with
p-adic L-functions and periods. Aspects of the analytic theory of automorphic
forms and L-functions (mainly for higher rank groups) played an important role
in the talks by Valentin Blomer, Gaëtan Chenevier, Gerard van der Geer, Paul
Nelson, Aaron Pollack, and Ren-He Su.

In total, 55 researchers participated in the workshop. Out of these, 41 came from
15 countries different from Germany. Beyond the talks, the participants enjoyed
ample time for discussions and collaborative research activities. The traditional
hike onWednesday afternoon led us to the Ochsenwirtshof in Schapbach. A further
highlight was a piano recital on Thursday evening by Valentin Blomer.

The organizers and participants of the workshop thank the Mathematisches
Forschungsinstitut Oberwolfach for hosting the workshop and providing such an
ideal working environment.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Young Ju Choie and Tonghai Yang in the “Simons
Visiting Professors” program at the MFO.



Modular Forms 3531

Workshop: Modular Forms

Table of Contents
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Raphaël Beuzart-Plessis (joint with Yifeng Liu, Wei Zhang, Xinwen Zhu)
Isolation of the cuspidal spectrum and application to the
Gan-Gross-Prasad conjecture for unitary groups . . . . . . . . . . . . . . . . . . . . . 3586

Gerard van der Geer (joint with Fabien Cléry and Carel Faber)
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Abstracts

On the dimension of spaces of Siegel modular forms for Sp2g(Z)

Gaëtan Chenevier

(joint work with O. Täıbi)

Let g ≥ 1 be an integer and let k = (k1, . . . , kg) be in Zg with k1 ≥ k2 ≥ · · · ≥
kg. In this work, we give a new and arguably “effortless” method leading to an
exact formula for the dimension of the space Sk(Sp2g(Z)) of vector-valued Siegel
modular cuspforms of weight k for the full Siegel modular group Sp2g(Z), under
the assumptions kg > g and g ≤ 8. This formula generalizes several classical
results of Igusa, Tsushima (g = 2), Tsuyumine (g = 3, scalar valued case), and
recover in particular the recent results of Taibi’s thesis (g ≤ 7) [Tai17].

As in [Tai17], our proof amounts to explicitly compute the geometric side
Tgeom(G; k) of the version of Arthur’s trace formula given in [Art89], in the case

G = Sp2g and for the trivial Hecke operator (the characteristic function of G(Ẑ))
in weight k. By induction on g, the main unknown part of this geometric side is the
elliptic part Tell(G; k). The expression of the latter involves a number of delicate
volumes (local densities), as well as the local orbital integrals of the characteristic
functions of the G(Zp) at each finite order element in G(Q). The computation of
these orbital integrals is quite difficult, and is mostly done case by case in [Tai17]
up to g = 7, using a number of specific algorithms. In this work we proceed
differently and ignore these difficulties by simply writing

(1) Tell(G; k) =
∑

c∈C(G)

mc Trace(c |Vk).

Here C(G) is the set of G(C)-conjugacy classes of finite order elements in G(Q),
and Vk is the finite dimensional algebraic representation of G(C) with highest
weight λ1 ≥ λ2 ≥ · · · ≥ λg with λi = ki − (g + 1) (we assume kg > g). The set
C(G) is finite, any class c ∈ C(G) being uniquely determined by its characteristic
polynomial (a product of cyclotomic polynomials of total degree 2g). The unknown
quantity mc is a rational number that we call the mass of c.

In practice, we evaluate the terms Trace(c |Vk) using classical formulas of Weyl
and of Koike-Terrada. Also, the full geometric side Tgeom(G; k) is the sum of
Tell(G; k) and of the Tell(L; k

′), where L runs over the proper and standard Levi

subgroups of G of the form Sp2g′ ×GLa1 ×GLb2, with suitable k′: see [Tai17] for
the precise recipe. By induction on g, the main unknowns in Tgeom(G; k) are thus
the masses of G. One way to state our main theorem is as follows.

Theorem: [CT19a] Assume G is Sp2g with 1 ≤ g ≤ 8 or the split SOn over Z
with 1 ≤ n ≤ 17, then the masses mc for c ∈ C(G) are those given in [CT19b].

Our strategy to compute the masses mc is as follows. Arthur’s trace formula writes

(2) Tspec(G; k) = Tgeom(G; k).
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The spectral (left-hand) side is difficult to understand: it is the sum, over all

discrete automorphic representations π of Sp2g over Q with π
Sp2g(Zp)
p 6= 0 for each

prime p, of the Euler-Poincaré characteristic of the (g,K)-cohomology of π∞⊗V∨k :

EP(π∞) =
∑

i≥0
(−1)iHi(g,K;π∞ ⊗V∨k ) ∈ Z.

In order to study Tspec(G; k) we use in a crucial way the endoscopic classification
of the discrete automorphic representations of G proved by Arthur in [Art13] (see
also [MW16]), as well as the description of the archimedean Arthur packets con-
taining representations with nonzero (g,K)-cohomology, by Arancibia-Moeglin-
Renard [AMR18] and Adams-Johnson [AJ87]. We refer to [CR15, Chap. 3 & 9],
[CL19, Chap. 8] and [Tai17, Sect. 4] for the concrete form of Arthur’s multiplicity
formula in this context (classification of all level 1 endoscopic lifts).

Define N(k) as the number of selfdual cuspidal automorphic representations ̟ of
GL2g+1 over Q such that ̟p is unramified for each prime p, and such that the
eigenvalues of the infinitesimal character of ̟∞ (viewed as a semisimple conjugacy
class in M2g+1(C)) are the distinct integers 0 and ±(ki − i) for i = 1, . . . , g. The
aforementioned endoscopic classification allows us to write:

(3) Tspec(Sp2g; k) = 2g(−1)
g(g+1)

2 N(k) + Tendo(Sp2g; k),

(4) dimSk(Sp2g(Z)) = N(k) + dimSk(Sp2g(Z))endo,

where both terms Tendo(Sp2g; k) and dimSk(Sp2g(Z))endo are known1 by induc-
tion, provided we work in the induction not only with all the Sp2g′ with g

′ < g but
also with all split special orthogonal groups SOn over Q with n ≤ 2g. So in this big
induction, and for a given k, it is equivalent to know Tspec(G; k), dimSk(Sp2g(Z))
and N(k). The last key ingredient of this work is the following lemma.

Key Lemma: For the several thousands of pairs (g, k) with k ∈ Zg given in
[CT19b], we have N(k) = 0.

Assuming this lemma we argue as follows. For a given g, each k with N(k) =
0 given by the lemma allows us to compute Tspec(Sp2g; k) by (3) and the big
induction. For such a k we thus know Tgeom(Sp2g; k) = Tspec(Sp2g; k) by (2)
hence Tell(Sp2g; k), as non elliptic geometric terms are known by induction. So for
every k such that N(k) = 0 we obtain by (1) an explicit linear relation among the
masses mc for c ∈ C(G). It is rather easy to determine the set C(G). If ∼ denotes
the equivalence relation on C(G) generated by c 7→ −c (we have mc = m−c), the
cardinality of C(G)/ ∼ for g = 1, 2, . . . , 9 is respectively

3, 12, 32, 92, 219, 530, 1158, 2521, 5149.

1Morally speaking, the terms with a subscript “endo” correspond to the automorphic rep-
resentations (in the case Tendo(Sp2g; k)), or to the Siegel cuspidal eigenforms (in the case

Sk(Sp2g(Z))), whose associated 2g + 1 dimensional ℓ-adic Galois representations should be

reducible.
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Miraculously, for each g ≤ 7 the lemma gives us enough linear relations between the
masses mc with c ∈ C(Sp2g) so as to invert the linear system. Of course, once the
masses are known, we can then compute Tgeom(Sp2g; k), N(k) and dimSk(Sp2g(Z))
for each k with kg > g, using (1), (2), (3) and (4). The limit of the method is
the case g = 8, for which we do not obtain enough linear relations but can still
conclude by explicitly computing some mc with the algorithms of [Tai17]. Tables
for the values N(k) and dimSk(Sp2g(Z)) for g ≤ 8 are given in [CT19b]. We deal
with the case G = SOn similarly (note we have to do it for the induction).

The last step is to explain the proof of the lemma. We use for this a method based
on the Riemann-Weil explicit formula, pursuing ideas of Stark, Serre, Odlyzko,
Mestre, Duke-Immamoglu, Miller and Chenevier-Lannes. The basic idea is to
show that certain cuspidal automorphic representations of GLm do not exist by
showing that the explicit formula for their Rankin-Selberg L-function cannot be
satisfied for well-chosen test functions: see [CT19a, Sect. 2 & 3] for the details
and for new developments of this method, improving [CL19, Sect. 9.3].

An important part of the talk consisted in working out the details of this strategy
in the much simpler —but illuminating— case G = PGL2, recovering the classical
formula for dimSk(SL2(Z)).
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On the Kudla–Rapoport conjecture

Chao Li

(joint work with Wei Zhang)

The classical Siegel–Weil formula relates certain Siegel Eisenstein series with the
arithmetic of quadratic forms, namely expressing special values of these series
as theta functions — generating series of representation numbers of quadratic
forms. Kudla initiated an influential program to establish the arithmetic Siegel–
Weil formula relating certain Siegel Eisenstein series with objects in arithmetic
geometry, which among others, aims to express the central derivative of these series
as the arithmetic analogue of theta functions — generating series of arithmetic
intersection numbers of n special divisors on Shimura varieties associated to SO(n−
1, 2) or U(n − 1, 1). These special divisors include Heegner points on modular or
Shimura curves appearing in the Gross–Zagier formula (n = 2), Hirzebruch–Zagier
cycles on Hilbert modular surfaces and modular correspondence on the product of
two modular curves in Gross–Keating and Gross–Kudla–Zagier (n = 3).

Kudla–Rapoport made the nonarchimedean part of the conjectural arithmetic
Siegel–Weil formula more precise by defining arithmetic models of the special cy-
cles (for any n in the unitary case), now known as Kudla–Rapoport (KR) cycles.
They formulated the global KR conjecture ([2, Conjecture 11.10]) for the nonsin-
gular part of the formula. KR also explained how it would follow (at least at
an unramified place) from the local KR conjecture ([1, Conjecture 1.3]) (see be-
low). They further proved the conjectures in the special case when the arithmetic
intersection is non-degenerate (i.e., of the expected dimension 0). Outside the
non-degenerate case, the only known result was due to Terstiege, who proved the
KR conjectures for n = 3. Analogous results were known in the orthogonal case
by the work of KR, Bruinier–Yang (non-degenerate case) and Terstiege (n = 3).

The main result of our recent work [3] is the following theorem.

Theorem (L.-Zhang). The Kudla–Rapoport conjectures hold for any n.

Combining with the archimedean formulas of Liu, Garcia–Sankaran, Bruinier–
Yang, we deduce cases of the arithmetic Siegel–Weil formula for unitary Shimura
varieties in any dimension ([3, Theorem 1.3.2]).

The arithmetic Siegel–Weil formula (together with the doubling method) has
important application to the arithmetic inner product formula, relating the central
derivative of the standard L-function of cuspidal automorphic representations on
orthogonal or unitary groups to the height pairing of certain cycles on Shimura
varieties constructed from arithmetic theta liftings. It can be viewed as a higher di-
mensional generalization of the Gross–Zagier formula, and an arithmetic analogue
of the Rallis inner product formula. Consequently, our theorem also has appli-
cations to the Beilinson–Bloch–Kato conjectures (which generalize the celebrated
Birch and Swinnerton-Dyer conjecture) for Shimura varieties of any dimension.

To discuss our proof strategy, let us formulate the local KR conjecture more
precisely. Let p be a prime. Let F0 be a finite extension of Qp with residue field
k = Fq and a uniformizer ̟. Let F be an unramified quadratic extension of F0.
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Let F̆ be the completion of the maximal unramified extension of F . For any integer
n ≥ 1, the unitary Rapoport–Zink space N = Nn is the formal scheme over S =
SpfOF̆ parameterizing hermitian formal OF -modules of signature (1, n−1) within
the supersingular quasi-isogeny class. Let E and X be the framing hermitian OF -
module of signature (1, 0) and (1, n−1) over k̄. The space of quasi-homomorphisms
V = Vn := Hom◦OF

(E,X) carries a natural F/F0-hermitian form, which makes V
the unique (up to isomorphism) nondegenerate non-split F/F0-hermitian space
of dimension n. For any subset L ⊆ V, the local KR cycle Z(L) is a closed
formal subscheme of N , over which each quasi-homomorphism x ∈ L deforms to
homomorphisms.

Let L ⊆ V be an OF -lattice. We now associate to L two integers: the arithmetic
intersection number Int(L) and the derivative of the local density ∂Den(L).

Let x1, . . . , xn be an OF -basis of L. Define the arithmetic intersection number

(1) Int(L) := χ(N ,OZ(x1) ⊗L · · · ⊗L OZ(xn)),

where OZ(xi) denotes the structure sheaf of the KR divisor Z(xi), ⊗L denotes the
derived tensor product of coherent sheaves onN , and χ denotes the Euler–Poincaré
characteristic.

For M another hermitian OF -lattice (of arbitrary rank), define Rep = RepM,L

to be the scheme of integral representations ofM by L, anOF0 -scheme such that for
any OF0 -algebra R, Rep(R) = Herm(L ⊗OF0

R,M ⊗OF0
R), where Herm denotes

the group of hermitian module homomorphisms. The local density of integral
representations of M by L is defined to be

Den(M,L) := lim
N→+∞

#Rep(OF0/̟
N )

qN ·dimRepF0

.

Let 〈1〉k be the self-dual hermitian OF -lattice of rank k with hermitian form given
by the identity matrix 1k. Then Den(〈1〉k, L) is a polynomial in (−q)−k with Q-
coefficients. Define the (normalized) local Siegel series of L to be the polynomial
Den(X,L) ∈ Z[X ] such that

Den((−q)−k, L) = Den(〈1〉n+k, L)
Den(〈1〉n+k, 〈1〉n) .

It satisfies a functional equation relating X ↔ 1
X and we define the derivative of

the local density

∂Den(L) := − d

dX

∣∣∣∣
X=1

Den(X,L).

The local conjecture asserts an exact identity between the two integers just defined.

Theorem (Local KR). Let L ⊆ V be an OF -lattice of full rank n. Then

Int(L) = ∂Den(L).
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The previously known special cases of the local KR conjecture are proved via ex-
plicit computation of both the geometric and analytic sides. Explicit computation
seems infeasible for the general case. Our proof instead proceeds via induction on
n using the uncertainty principle, a standard tool from local harmonic analysis.
Even for n = 2, 3, our proof is different from the previous proofs.

More precisely, for a fixed OF -lattice L
♭ ⊆ V = Vn of rank n − 1, consider

functions on x ∈ V \ L♭F ,

IntL♭(x) := Int(L♭ + 〈x〉), ∂DenL♭(x) := ∂Den(L♭ + 〈x〉).
Then it remains to show the equality of the two functions IntL♭ = ∂DenL♭ . Both
functions vanish when x is non-integral, i.e., val(x) < 0. Here val(x) denotes the
valuation of the norm of x. By utilizing the inductive structure of the Rapoport–
Zink spaces and local densities, it is not hard to see that if x ⊥ L♭ with val(x) = 0,
then

IntL♭(x) = Int(L♭), ∂DenL♭(x) = ∂Den(L♭)

for the lattice L♭ ⊆ Vn−1 ∼= 〈x〉⊥F of full rank n − 1. By induction on n, the

difference function φ = IntL♭ − ∂DenL♭ vanishes on {x ∈ V : x ⊥ L♭, val(x) ≤ 0}.
We would like to deduce that φ indeed vanishes identically.

The uncertainty principle asserts that if φ ∈ C∞c (V) satisfies that both φ and

its Fourier transform φ̂ vanish on {x ∈ V : val(x) ≤ 0}, the φ = 0. In other words,

φ, φ̂ cannot simultaneously have “small support” unless φ = 0. We can then finish
the proof by applying the uncertainty principle to φ = IntL♭ − ∂DenL♭ , if we can
control the support of both terms. However, both functions have singularities
along the hyperplane L♭F ⊆ V, which cause trouble in computing their Fourier
transforms or even in showing that φ ∈ C∞c (V).

To overcome this difficulty, we isolate the singularities by decomposing

IntL♭ = IntL♭,H + IntL♭,V, ∂DenL♭ = ∂DenL♭,H + ∂DenL♭,V

into “horizontal” and “vertical” parts. Here on the geometric side IntL♭,H is the
contribution from the horizontal part of the KR cycles. On the analytic side
we define ∂DenL♭,H to match with IntL♭,H. We show the horizontal parts have

logarithmic singularity along L♭F , and vertical parts are indeed in C∞c (V). We
then finish the proof by determining the Fourier transforms as

ÎntL♭,V = −IntL♭,V, ∂̂DenL♭,V = −∂DenL♭,V.

Some key ingredients of the proof include:

(1) Understand the horizontal part of KR cycles in terms of Gross’s quasi-
canonical liftings (using the work of Tate, Grothendieck–Messing, Breuil).

(2) Prove the Tate conjecture for certain Deligne–Lusztig varieties (using the
work of Lusztig), and reduce IntL♭,V(x) to the intersection of Deligne–
Lusztig curves and Z(x).

(3) Local density formula in terms of lattice theory (using the work of Cho–
Yamauchi).
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Density theorems for GL(n)

Valentin Blomer

The concept of a density theorem is a familiar one from the theory of zeta functions.
If N(σ, T,Q) denotes the number of zeros with real part ≥ σ and height ≤ T of
Dirichlet L-functions L(s, χ) for primitive Dirichlet characters χ with conductor
q ≤ Q, we have a bound

N(σ, T,Q) ≪ (Q2T )c(σ)+ε

for any ε > 0 and some continuous, non-increasing function c(σ) with c(1/2) =
1, c(1) = 0, see [5, Section 10]. Of course, the Riemann hypothesis states
N(σ, T,Q) = 0 for σ > 1/2, but the above bound can often serve as a good sub-
stitute for the Riemann hypothesis. Its arithmetic reformulation is the Bombieri-
Vinogradov theorem which roughly states that primes ≤ x are equidistributed in
“almost all” residue classes modulo q ≤ x1/2+o(1).

Here we want to consider an automorphic analogue. Let us fix a place v of Q,
and for an automorphic form π on GL(n) let us denote by µπ(v) = (µπ(v, 1), . . . ,
µπ(v, n)) its local spectral parameter (each entry viewed modulo 2πi

log pZ if v = p is

a prime). Write
σπ(v) = max

j
|ℜµπ(v, j)|.

The representation π is tempered at v if σπ(v) = 0, and the size of σπ(v) measures
how far π is from being tempered at v. An example of a non-tempered represen-
tation is the trivial representation which satisfies σtriv(v) = (n − 1)/2 for every
v. For a finite family F of automorphic representations for GL(n) and σ ≥ 0 we
define

Nv(σ,F) = |{π ∈ F | σπ(v) ≥ σ}|.
We have trivially Nv(0,F) = |F|, and if the trivial representation is contained in
F , we have Nv((n− 1)/2,F) ≥ 1. One may hope to be able to interpolate linearly
between these two extreme cases:

(1) Nv(σ,F) ≪v,ε |F|1− σ
a+ε, a =

n− 1

2
,

for arbitrarily small ε > 0. This is precisely Sarnak’s density hypothesis [9, p. 465]
stated there in the context of groups G of real rank 1, the principal congruence
subgroup Γ(q) = {γ ∈ G(Z) | γ ≡ id (mod q)} and v = ∞. For families of large
level, Sarnak’s density hypothesis has recently attracted interest in the context of
lifting matrices modulo q [10] and the almost diameter of Ramanujan complexes,
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and for families with growing infinitesimal character in the context of Golden Gates
and quantum computing [8]. In each of these cases it is not a spectral gap that is
needed, but a certain kind of density result.

For the group GL(2) there exist strong density results for many automorphic
families, also in number field versions and for general real rank 1 groups, e.g.
[4, 2, 11]. Various results are also available for GL(3), see e.g. [2]. For higher rank
groups, a very deep analysis of the Arthur-Selberg trace formular [7, 3] provides as
by-products some density results for the family of Maaß forms of Laplace eigenvalue
up to height T and fixed level. The value of a is however much larger than (1) for
n > 2 (at least quadratic in n).

Here we consider the family FI(q) of cuspidal automorphic representations gen-
erated by Maaß forms for the group Γ0(q) ⊆ SLn(Z) of matrices whose lowest row
is congruent to (0, . . . , 0, ∗) modulo q for a large prime q and Laplace eigenvalue
λ in a fixed interval I. If I is not too small, we have |FI(q)| ≍I qn−1. For this
family and any place v 6= q of Q, we go beyond the density hypothesis (1) and
obtain a value of a = (n− 1)/4 for this family. The Arthur-Selberg trace formula
is usually not sensitive to whether the trivial representation is counted or not, but
the Kuznetsov formula can be a versatile tool if no residual spectrum is involved.
The following theorems are proved in [1].

Theorem 1. Let n ≥ 3, q a prime, v be a place of Q different from q, I ⊆ [0,∞)
a fixed interval, ε > 0, and σ ≥ 0. Then

Nv(σ,FI(q)) ≪I,v,n,ε q
n−1−4σ+ε.

Of course, by [6] we know that Nv(σ,FI(q)) = 0 for σ ≥ 1/2− 1/(n2 + 1), but
for 0 < σ < 1/2 − 1/(n2 + 1) we obtain a substantial power saving. For n > 3,
Theorem 1 is completely new and it appears to be the limit of what is available
by any trace formula approach, even in the case n = 2 nothing better is known.

The proof is based on a careful analysis of the arithmetic side of the Kuznetsov
formula with a test function on the spectral side that blows up on exceptional
Langlands parameters at v (and therefore increases the complexity on the arith-
metic side). The key input is a detailed investigation of level q Kloosterman sums
Sq,w(M,N, c) = 0 for GL(n) associated to Weyl elements w ∈ W with entries
M,N ∈ Zn−1 and moduli c = (c1, . . . , cn−1).

Theorem 2. Let q be a prime and let M,N ∈ Zn−1 with entries coprime to q.
Let n ≥ 3 and let w ∈W . Then Sq,w(M,N, (q, . . . , q)) = 0 unless

w =
(

1
In−2

1

)

in which case Sq,w(M,N, (q, . . . , q)) = qn−2.

As an application of the theory developed in [1] we mention a large sieve in-
equality.
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Theorem 3. Let q be prime and (α(m)) any sequence of complex numbers. Then
∑

π∈FI(q)

∣∣∣
∑

m≤x
(m,q)=1

α(m)λπ(m)
∣∣∣
2

≪I,n,ε q
n−1+ε

∑

m≤x
(m,q)=1

|α(m)|2

uniformly in x≪ q for a sufficiently small implied constant (in terms of I and n).

For comparison, Venkatesh [12, Theorem 1] obtained this with x ≤ q1/(2n−2).
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Some old and new results on singular moduli

Yingkun Li

Let j(τ) be the Klein j-variant, which has the following Fourier expansion

j(τ) = q−1 + 744 + 196884q+ . . .

Here q = e2πiτ and τ is in the upper half plane H. It induces an isomorphism from
the modular curve Y := Γ\H to C, where Γ = SL2(Z) acts on H via fractional
linear transformation. Let z ∈ Y be a CM point of discriminant d < 0, i.e. it is
the image of a point in H satisfying a quadratic equation with integral coefficients
and discriminant d. Note there are only finitely many CM points on Y with a
fixed discriminant. The value j(z) is called a singular modulus. For example,

(1) j

(
1 +

√
−3

2

)
= 0, j

(
1 +

√
−163

2

)
= −2183353233293.
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The classical theory of complex multiplication tells us that a singular modulus
j(z) is always an algebraic integer. In fact, the number field K(j(z)) is the ring

class field of the imaginary quadratic field K := Q(
√
d) corresponding to the order

Od := Z+Zd+
√
d

2 . In particular, if d is fundamental, i.e. Od is the ring of integers
in K, then K(j(z)) is the Hilbert class field of K.

Motivated by effective results of André-Oort type, D. Masser asked the following
question:

Question 1. Can a singular modulus be a unit?

Since 0 is also a singular modulus, a more general question would be

Question 2. Can the difference of two singular moduli be a unit?

In [1], Bilu-Habegger-Kühne gave “no” as the answer to Question 1, and raised
Question 2 as a natural generalization. Recently in [7], we gave a short proof of
the main result in [1] and was able to answer Question 2 as well.

One of the keys to our approach lies in the nice factorization that appears in
(1), which is not a coincidence, and was studied in the seminal work of Gross and
Zagier on singular moduli [3] as a prelude to the Gross-Zagier formula.

Theorem 3 ([3]). Let z1, z2 ∈ Y be CM points of discriminants d1, d2 respectively.
Suppose d1, d2 are co-prime and fundamental. Then

(2)
4

w1w2
log |Nm(j(z1)− j(z2))|2 = −

∑

t∈S1

a(t),

where wi is the number of roots of unity in Q(
√
di), F := Q(

√
d1d2) is a real

quadratic field with different dF , S1 := {t ∈ F : t≫ 0,Tr(t) = 1} and

a(t) :=
∑

b|(t)dF integral ideal

χ(b) logNmb

with χ the genus character of F corresponding to the CM extension Q(
√
d1,

√
d2)/F .

Remark 4. From the explicit formula of a(t), one can show that −a(t) ≥ 0, with
equality for all but finitely many t ∈ S1.

Now, consider the function

(3) G1(τ1, τ2) := log |j(τ1)− j(τ2)|2

on Y ×Y with logarithmic singularity along the diagonal Y ∆. It is harmonic with
respect to the Laplacian in τi for both i = 1, 2. The factorization formula of Gross
and Zagier can be rephrased as

(4) G1(Z(z1, z2)) +
∑

t∈S1

a(t) = 0,

where Z(z1, z2) is the weighted sum of the “Galois conjugates” of the CM point
(z1, z2) ∈ Y × Y . This can be viewed as an equation expressing the arithmetic
intersection of Y ∆ and Z(z1, z2), which is 0, as the sum of local contributions,
which are explicitly calculated.
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The other key to answer Question 2 above is a result by Gross, Kohnen and Zagier,
which is analogous to Theorem 3 for certain “higher Green functions” defined by

(5) Gs(τ1, τ2) := −
∑

γ∈Γ
Qs−1

(
1 +

|τ1 − γτ2|
Im(τ1)Im(γτ2)

)
, Re(s) > 1.

Here Qs−1(t) :=
∫∞
0

(
t+

√
t2 − 1 cosh v

)−s
dv is the Legendre function of the sec-

ond kind. The function Gs(τ1, τ2) on Y × Y \Y ∆ is an eigenfunction of the Lapla-
cians of τ1 and τ2 with eigenvalue s(1 − s). Furthermore, it is clear from the
definition that

Gs(τ1, τ2) < 0

for any (τ1, τ2) ∈ Y × Y \Y ∆ and real s > 1. One consequence of the result of
Gross-Kohnen-Zagier in [4] is as follows.

Theorem 5. Let z1, z2 ∈ Y be CM points of discriminants d1, d2 respectively.
Suppose d1, d2 are co-prime and fundamental. Then for k = 3, 5, 7,

(6) Gk(Z(z1, z2)) = −
∑

t∈S1

ck(t)a(t),

where ck(t) := Pk−1(t − t′) with Pk−1 is the (k − 1)st Legendre polynomial, and
S1, a(t) are the same as in Theorem 3

Remark 6. (1) For arbitrary odd k, similar statement still holds with Gk
replaced by TfGk for suitable Hecke operator Tf associated to a cusp form
f of weight 2k.

(2) With the definition of G1 in equation (3), Theorem 5 also holds for k = 1,
which then is just Theorem 3.

Now, using the “CM value formulas” in [8] and [2], we can remove the conditions
on the discriminants d1, d2 in Theorems 3 and 5 to obtain a slightly weaker result.

Proposition 7. Let z1, z2 ∈ Y be distinct CM points of discriminants d1, d2.
Then for k = 1, 3, 5, 7

(7) Gk(Z(z1, z2)) = −
∑

t∈S1

ck(t)a(t; z1, z2),

where −a(t; z1, z2) are certain non-negative real numbers, and S1, ck(t) are the
same as in Theorem 5.

Remark 8. When k = 1, Lauter and Viray have used the algebraic approach in [3]
to obtain a similar result with more precise information concerning the coefficients
a(t; z1, z2) (see [6]). If k = 1 and d1 = d2 with milder restriction than being
fundamental, then similar result can be deduced from the thesis of Hayashi [5].

Remark 9. The numbers −a(t; z1, z2) can be computed for any given z1, z2 using
the calculations in the appendix of [9], but the formula would be complicated in
general. Fortunately, one can still see that −a(t; z1, z2) ≥ 0 by inspecting the
formulas.
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Theorem 10 (L. 2019). The difference of two singular moduli is never an algebraic
unit.

Proof. Assume that j(z1) and j(z2) are singular moduli, whose difference is a unit.
Then G1(Z(z1, z2)) = log 1 = 0. By proposition 7, a(t; z1, z2) = 0 for all t ∈ S1.
Then G3(Z(z1, z2)) = 0 by the same proposition, which is a contradiction since
G3(τ1, τ2) < 0 for any (τ1, τ2) ∈ Y × Y \Y ∆. This finishes the proof. �

Now, it is natural to ask the following question:

Question 11. Let S be a subset of the primes. Are there finitely many differences
of singular moduli that are S-units?
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Explicit pullback formulas and a half-integral version of Harder
conjecture on congruences for Siegel modular forms

Tomoyoshi Ibukiyama

Harder conjectured congruences between eigenvalues of vector valued Siegel mod-
ular forms of degree two and elliptic modular forms. On the other hand, we have
given a conjecture before on bijective Shimura type correspondence between vector
valued Siegel modular forms of integral weight and half-integral weight of degree
two in [2] and [3]. So we can consider a half-integral version of Harder’s conjecture,
or equivalently Jacobi forms version. An advantage of the new versions is that it
becomes a congruence between modular forms in the same space. To compare
modular forms in the same space, it is often useful to use the pullback formula
(Katsurada’s idea). Here we give a pullback formula for Jacobi forms to describe
the restriction of the image of certain vector valued automorphic differential op-
erators on Jacobi Eisenstein series of degree 4 to diagonal blocks. Then under
several conditions, we can show Harder’s conjecture for the Jacobi version.
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Original Harder’s conjecture on congruences. Let k, j be integers such that
j ≥ 0 is even and k ≥ 3. Let f be a Hecke eigen elliptic cusp form of weight
2k + j − 2. Then there should exist a prime ideal l dividing the algebraic part of
Lalg(k + j, f) and a vector valued Siegel cusp form F ∈ SdetkSym(j)(Γ2) of degree
two such that for any prime p, the Euler p factor of ζ(s − k + 2)ζ(2 − k − j +
1)L(s, f) and that of the spinor L function L(s, F, Sp) are congruence modulo l.
Here Sym(j) means the symmetric tensor representation of degree j.

Conjecture on Shimura type correspondence([2], [3]) For even integers j ≥
0 and odd k ≥ 3, we should have the following isomorphisms as Hecke modules.

S+
det(j+5)/2Sym(k−3)(Γ

(2)
0 (4), ψ) ∼= SdetkSym(j)(Γ2),

S+
det(j+5)/2Sym(k−3)(Γ

(2)
0 (4)) ∼= S+

det(j+5)/2Sym(k−3)(Γ
(2)
0 (4), ψ)

+ S2k+j−2(Γ1)× Sj+2(Γ1).

Here ψ means the character of Γ
(2)
0 (4) defined by ψ

(
a b
c d

)
=

(
−4

det(d)

)
and

S+ means a kind of new cusp forms called plus subspace originally defined for
degree one by Kohnen. Here the second isomorphism also means that LHS should
have injective lifts from S2k+j−2(Γ1) × Sj+2(Γ1). Note that if k is even, the first
isomorphism above is false since LHS is zero in that case. So for even k, there is
no half-integral interpretation at moment.

The plus subspace of half-integral weight is bijectively interpreted as the space
of Jacobi forms which are holomorphic if j ≡ 2 mod 4 and skew holomorphic if
j ≡ 0 mod 4. If we assume the above Shimura type conjectural correspondence,
the Harder conjecture for j ≡ 2 mod 4 is equivalent to the following conjecture.
(We state it only for holomorphic Jacobi forms here, though skew holomorphic
case can be similarly given.)

Holomorphic Jacobi forms version of Harder conjecture. Assume k ≥ 3,
j ≥ 0 and j ≡ 2 mod 4. For a Hecke eigen cusp form f ∈ S2k+j−2(Γ1), take a
Jacobi form φ0 of degree 1 of weight k + j/2 of index 1 corresponding to f . Let
E(φ0) be a Klingen lift to Jacobi forms of weight det(j+6)/2Sym(k− 3) of index 1
of degree 2. Then there should exist a holomorphic Jacobi form Φ of degree two of
weight det(j+6)/2Sym(k−3) not coming from the lift such that for a certain prime
ideal l dividing Lalg(k + j, f) and for any integral Hecke operator T , we have

λ(T,Φ) ≡ λ(T,E(φ0)) ≡ modl.

where λ(T, ∗) is an eigenvalue of T at ∗.
To state a pullback formula, we define automorphic differential operators. For

complex domains D, ∆ with ∆ ⊂ D, assume that a group H acts on ∆ as biholo-
morphic automorphisms and that we can prolong H to the action on D equivari-
antly. Assume also that we have two automorphy factors JD and J∆ on D and
∆ for H . We assume that JD is scalar-valued and J∆ is W -valued where W is a
finite dimensional vector space over C. We consider W -valued holomorphic par-
tial differential operators D with constant coefficients on D such that the following
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equality holds for any holomorphic function F on D and h ∈ H .

Res∆(D(F |JD [h])) = (Res∆DF )|J∆ [h],

where Res∆ is the restriction to ∆. We call such operators D as automorphic
differential operators. These operators can be regarded as intertwining operators
between holomorphic discrete series. There are several standard choices of pairs
(D,∆). In our case, typically they are pairs (H2n, Hn × Hn) for Siegel modular
forms and (H2n × C2n, (Hn × Cn) × (Hn × Cn)) for Jacobi forms. Also we take
JD to weight k and J∆ to detkρ×detkρ for some irreducible representation (ρ, Vρ)
of GLn(C) (in both Siegel and Jacobi). When d ≥ 2n, such operator D exists
uniquely for any ρ for the pair (H2n, Hn ×Hn). In this case, by the assumption
that D has constant coefficients, we have a certain Vρ⊗Vρ valued polynomial P (T )
in components of T where T is a 2n× 2n symmetric matrix of variables such that

D = P

(
∂

∂τ

)
,

∂

∂τ
=

(
1 + δij

2

∂

∂τij

)

1≤i,j≤2n
, τ = (τij) ∈ H2n.

We write elements of H2n × C2n as (τ, z) and τ = (τij), z = (zi).

Lemma. For an automorphic differential operator D = P ( ∂∂τ ) on Siegel modular

forms from weight k − 1/2 to detk−1/2ρ⊗ detk−1/2ρ, we put

DJ = P

((
1

2πi

∂

∂τij
− 1

4(2πi)2
∂2

∂zi∂zj

)

1≤i,j≤2n

)
.

Then DJ is an automorphic differential operators on Jacobi forms from weight k
to detkρ⊗ detkρ.

Now we denote by Ek4,1 the scalar valued Jacobi Eisenstein series on H4 × C4

of degree 4 of even weight k of index 1.

Theorem For ρ = Sym(j), (τ, z), (ζ, w) ∈ H2 × C2, we have

DJE
k
4,1

(
(τ, z) 0
0 (ζ, w)

)
= c1

∑

φ∈N(Jcusp
k+j,1(Γ

J
1 ))

Z1(k, φ)[φ]
2
1(τ, z)[φ]

2
1(ζ, w)

+ c2
∑

Φ∈N(Jcusp

detkSym(j)
(ΓJ

2 ))

Z2(k,Φ)Φ(τ, z)Φ(ζ, w)

Here N(Jcusp∗,1 ) denotes an orthonormal basis of the space of Jacobi cusp forms

of degree 1 and 2, [φ]21 is the Klingen lift of Jacobi forms from degree 1 to 2, and

c1 = 22−k−j(−1)(k+j)/2
π(2k − 3)j(k − 1/2)j
(2k + 2j − 3)j!(2πi)j

,

c2 = 26−(2k+j)(−1)k+j/2
π3(−1)j(2k − 3)j(k − 1/2)j

(2k + 2j − 3)(2k + j − 4)(2k − 5)j!(2πi)j
,
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where (x)j denotes the ascending Pochhammer symbol, and

Z1(k, φ) = L(2k + j − 3, f)/ζ(2k − 2)

Z2(k,Φ) = L2(k − 5/2,Φ)/ζ(2k − 2)ζ(2k − 4).

Here L2 is the standard L function of a Jacobi form defined by Murase and Sugano.
The case j = 0 (i.e. without the differential operator) is nothing but Arakawa’s

pullback formula in [1]. Of course the same sort of explicit formulas are written
also for general degrees and DJ . Such pullback formulas have several by-products,
such as algebraicity of critical values of L functions as usual, but omitted here.

Now let φ0 be a Jacobi cusp form of degree one with algebraic coefficients
corresponding to a cusp form f ∈ S2k+2j−2(Γ1). Then the holomorphic Jacobi
forms version of the Harder conjecture is proved under the following assumptions
(1) to (4), denoting by a(N, r, ∗) the Fourier coefficients.

(1) For a certain positive definite half integral matrix N and r ∈ Z2, we have
ordl(a(N, r, [φ]

2
1)) < 0. (2) Lalg(2k+ j − 3)a(N, r, [φ0]

2
1) is l unit. (3) l is prime to

denominators of Fourier coefficients of Ek4,1 and elementary coefficients of [φ0]
2
1 ⊗

[φ0]
2
1 in the pullback formula. (All these factors can be explicitly calculated.)

(4) There is no congruence between L(s, f) and L(s, g) modulo l for any g ∈
A2k+2j−2(Γ1) with g 6= f . (This (4) is a condition to exclude endoscopic Φ.)

The above (1) and (2) means that l is a divisor of Lalg(2k + j − 3, f). For
integral weight detkSym(j), this means l divides Lalg(k + j, f) as in the original
Harder conjecture. This explains the reason why such critical value appears.
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Quantum modular forms and plumbing graphs of 3-manifolds

Kathrin Bringmann

(joint work with Karl Mahlburg, Antun Milas, and Caner Nazaroglu)

I will report about modularity properties of certain q-series which arise from con-
tour integration in work of Gukov, Pei, Putrov, and Vafa [5].

Consider a graphG = (V,E) withN ∈ N vertices,M = (mjk)1≤j,k≤N a positive
definite symmetric integral matrix associated to G such that mjk = −1 if vertex j
is connected to vertex k, and zero otherwise. Once we fix a graph G, M depends
only on the labeling of vertices. To each edge j − k in G we associate a rational
function

f(wj , wk) :=
1(

wj − w−1j
)(
wk − w−1k

)
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and to each vertex a Laurent polynomial

g(wj) :=
(
wj − w−1j

)2
.

Slightly modifying the setup of Gukov, Pei, Putrov, and Vafa [5], define

Z(q) :=
q

−3N+tr(M)
2

(2πi)N
PV

∫

|wj |=1

N∏

j=1

g(wj)
∏

(k,ℓ)∈G
f(wk, wℓ)ΘM (q;w)

dwj
wj

,

where PV means the Cauchy principal value,
∫
|wj|=1

indicates the integration∫
|w1|=1

· · ·
∫
|wN |=1

, and the theta function is defined by

ΘM (q;w) :=
∑

m∈MZN

q
1
2m

TM−1
m

N∏

j=1

w
mj

j .

Throughout, we write w = (w1, . . . , wN ).

Conjecture 1 (Gukov). The function Z(q) is a quantum modular form.

To describe the meaning of this conjecture, let me first recall modular forms.
In the simplest case, a modular form f of weight k ∈ Z is a holomorphic function
on the complex upper half-plane H := {τ = u + iv ∈ C : v > 0} that is bounded
as v → ∞ and satisfies

(1) f
(
aτ+b
cτ+d

)
= (cτ + d)

k
f(τ) ∀

(
a b
c d

)
∈ SL2(Z).

For general functions, the difference between the left-hand and right-hand side of
(1) is called the obstruction to modularity.

If one includes a multiplier, then k may also be a half-integer. An example of
a modular form of weight 1

2 is the classical theta function (q := e2πiτ throughout)

Θ(τ) :=
∑

n∈Z
qn

2

.

There are also important cases in which the obstruction to modularity is not
zero but explicit and “nice”. The most famous examples are probably Ramanujan’s
mock theta functions, a list of q-series which are reminiscent of modular forms
and which were introduced by Ramanujan in his last letter to Hardy. The letter
contained a list of 17 examples, including the following q-hypergeometric series

f(q) := 1 +
∑

n≥1

qn
2

(−q; q)2n
, where (a; q)n :=

n−1∏

j=0

(
1− aqj

)
for n ∈ N0 ∪ {∞}.

Zwegers, in his PhD thesis, viewed the mock theta functions as pieces of har-
monic Maass forms, which transform like modular forms but instead of being mero-

morphic they are annihilated by the weight k Laplace operator ∆k := −v2( ∂2

∂u2 +
∂2

∂v2 )+ ikv(
∂
∂u + i

∂
∂v ). To be more precise, adding non-holomorphic integrals of the
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shape (θ a weight 3
2 (modular) theta function)

(2)

∫ i∞

−τ

θ(w)√
−i(w + τ)

dw

to the mock theta functions yields harmonic Maass forms.
Another class of functions which we require are quantum modular forms. Follow-

ing Zagier [6] these are functions on the rationals whose obstruction to modularity
is “nice”. Typical examples are given by false theta functions which, compared
to the modular theta functions, are weighted by a wrong sign. For example, for
a ∈ Q, such a false theta function is given by

∑

n∈Z+a
sgn(n)qn

2

as deleting the sgn(n) gives a (modular) theta function. It can be shown that
(many) false theta functions are quantum modular forms. Note that Zwegers
(in unpublished work) observed that false theta functions and non-holomorphic
integrals like (2) asymptotically agree, when moving from the upper to the lower
half-plane.

To state our first result, we restrict to manifolds coming from n-leg star graphs.
An n-leg star graph consists of n legs joined to a central vertex. By explicitly
writing Z(q) in the terms of false theta functions we proved the following in [1] 1.

Theorem 2 (B.–Mahlburg–Milas). The conjecture of Gukov is true for 3-leg star
graphs.

Let me next turn to modularity properties of Z(q) on H. This is part of a more
general framework built in [3]. Consider the false theta functions (z = x+ iy ∈ C)

ψ(z; τ) :=
∑

n∈Z+ 1
2

sgn(n)e2πin(z+
1
2 )q

n2

2 .

Now define for w ∈ H (erf denotes the error function)

ψ̂(z; τ, w) :=
∑

n∈Z+ 1
2

erf
(√

πi(τ − w)
(
n+ y

v

))
e2πin(z+

1
2 )q

n2

2 .

Since for − v
2 < y < v

2 , ψ(z; τ) = limw→i∞ ψ̂(z; τ, w), ψ̂ may be viewed as the

completion of ψ. Jointly with Nazaroglu, I showed in [3] that ψ̂ satisfies the
following transformations which look like those of Jacobiforms.

Theorem 3 (B.–Nazaroglu). We have, with χ some multiplier

ψ̂(z; τ, w) = −ψ̂(z + 1; τ, w) = −e2πizq 1
2 ψ̂(z + τ ; τ, w)

= e−
πi
4 ψ̂(z; τ + 1, w + 1) = χτ−

1
2 e−

πiz2

τ ψ̂(z; τ, w).

1Note that in a paper [4] that appeared as a preliminary version of [1] was ready, Cheng, Chun,
Ferrari, Gukov, and Harrison independently calculated Z(q) for a large number of additional
examples of 3-spider graphs, as well as an example of a 4-spider graph.
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Corollary 4 (B.–Nazaroglu). The function Z(q) has modular properties on H.

We next turn to to higher depth quantum modular forms. The basic idea here
is that the obstruction to modularity is one depth lower than the original function.
To obtain depth two objects, we consider Z(q) for a family of non-Seifert plumbed
3-manifolds. The simplest plumbing graph of this kind is obtained by splicing two
3-star graphs. This yields a so-called H-graph with six vertices. In [2], we showed
the following modularity properties of Z(q) by explicitly evaluating to integral
defining Z(q) to obtain higher-dimensional false theta-functions.

Theorem 5 (B.–Mahlburg–Milas). For any positive definite unimodular plumbing
matrix, Z(q) is a quantum modular form of depth two, weight one, and quantum
set Q.

Let me end with some open questions:

• Theorem 5 shows that the conjecture of Gukov needs to be modified to include
examples where higher depth quantum modular form occur.

• As mentioned above in the evaluations of Z(q) higher-dimensional false theta
functions occur in some cases. However, there are no known modularity prop-
erties of these functions on the upper half-plane. Thus it would be interesting
to complete higher-dimensional false theta functions.

• Finally there are hints that the false theta functions allow a picture that parallels
that of mock theta functions. Thus a goal is to develop a theory of completed
false theta functions analogous to the one of mock theta functions and in par-
ticular find more examples which lie in that space including Poincaré series.
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Generating series for special cycles on Shimura varieties of orthogonal
type over totally real fields

Stephen S. Kudla

We reported on results of [5]. Let F be a totally real number field of degree d and
let V be a quadratic space over F with signature

((m, 2)d+ , (m+ 2, 0)d−d+), d+ > 0.
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To avoid issues about compactifications, we assume that V is anisotropic. Let
G = RF/Q(GSpin(V )) and let

D =

d+∏

j=1

Dj, Dj = { z ∈ Gro2(Vj) | ( , ) |z< 0 }

where Gro2(Vj) is the space of oriented negative 2-planes in Vj = V ⊗F,σj R. For a
neat compact open subgroup K ⊂ G(Af ), the associated Shimura variety

SK = Sh(G,D)K = G(Q)\D ×G(Af )/K

is a smooth projective variety of dimension md+.
The construction of weighted special cycles given in [4] in the case d+ = 1

carries over immediately here. Thus, for a symmetric matrix T ∈ Symn(F ) with
σj(T ) > 0 for all j and for a weight function ϕ ∈ S(V (Af )n)K , we obtain an
algebraic cycle Z(T, ϕ)K of codimension nd+ in SK . The cycles are compatible
with pullback: if K ′ ⊂ K, then

pr : SK′ −→ SK , pr∗(Z(T, ϕ)K) = Z(T, ϕ)K′ ,

and hence we obtain classes

[Z(T, ϕ)] ∈ CHnd+(S) := lim−→
K

CHnd+(SK).

For semi-definite T , the classes Z(T, ϕ) are defined by shifting the natural cycle

of codimension rank(T )d+ by a power of the top Chern class cS ∈ CHd+(SK)
of a cotautological vector bundle CS of rank d+. The key new feature here is
the the special cycles occur in codimensions nd+ that are multiples of d+. In
particular, for d+ > 1, there are no special divisors and there is no evident way to
produce relations among special cycle of codimension nd+ by using special cycles
of codimension (n− 1)d+.

We obtain three main results about special cycles.
The first if the following product formula.

Theorem 1. For Ti ∈ Symni
(F ) and ϕi ∈ S(V (Af )ni), i = 1, 2.

[Z(T1, ϕ1)] · [Z(T2, ϕ2)] =
∑

T∈Symn1+n2
(F )≥0

T=



T1 ∗
t∗ T2





[Z(T, ϕ1 ⊗ ϕ2)] ∈ CH(n1+n2)d+(S).

In the case d+ = 1, the analogous product formula for cohomology classes was
proved in [4] and for classes in the Chow group in [11]. For d+ > 1, the proof
involves a more serious analysis of degenerate intersections using the machinery
of [2]. The product formula implies the the special cycles form a subring of the
Chow ring CH•(S).

The second results concerns the modularity of the generating series for special
cycles of codimension nd+. Recall that a conjecture of Bloch and Beilinson asserts
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that for a smooth projective variety SK defined over a number field, the Abel-
Jacobi map

AJr : CH
r(SK)0 −→ Jr(SK)

on the space

CHr(SK)0 := Ker(clr : CH
r(SK) −→ H2r(SK)),

is injective, up to torsion. Here Jr(SK) is the intermediate Jacobian.

Theorem 2. Assume the Bloch-Beilinson conjecture. Then, for all n, 1 ≤ n ≤ m,
the formal q-series

φn(τ, ϕ, S) =
∑

T∈Symn(F )≥0

[Z(T, ϕ)] qT ∈ CHnd+(S)[[q]],

where τ = (τ1, . . . , τd) ∈ Hdn, ϕ ∈ S(V (Af )n), and qT = e(
∑d
j=1 tr(σj(T )τj)), is

a Hilbert-Siegel modular form of weight 1
2m + 1. Here Hn is the Siegel space of

genus n.
Modularity means that if λ : CHnd+(S) → C is any linear functional, then the

series

φn(τ, ϕ, S;λ) =
∑

T∈Symn(F )≥0

λ([Z(T, ϕ)]) qT ∈ C[[q]],

is the q-expansion of a Hilbert-Siegel modular form of weight 1
2m+ 1.

A key point point here is that the image of the generating series under the cycle
class map is a Hilbert-Siegel modular form as a consequence of the results of [6],
[7], and [8]. This was also recently remarked in [10]. Maeda [9] shows that the
modularity of the generating series φn(τ, ϕ, S) also follows from a combination of
the Bloch-Beilinson conjecture for cld+ and Wei Zhang’s inductive argument [12]
under the assumption that the image of the generating series under any linear
functional is absolutely convergent.

The third result is a pullback formula. Let U be a totally positive definite
quadratic space over F of dimension 4ℓ and let Ṽ = U ⊕ V be the orthogonal
direct sum. Let G̃ = RF/QGSpin(Ṽ ), so that there is a natural homomorphism

G → G̃. If K̃ is a neat compact open subgroup of G̃(Af ) and K = K̃ ∩ G(Af ),
there is a morphism of Shimura varieties

ρK̃ : SK −→ S̃K̃

and a ring homomorphism

ρ∗
K̃

: CH•(S̃K̃) −→ CH•(SK).

Passing to the limit over K̃, we have

ρ∗ : CH•(S̃) −→ CH•(S).

Theorem 3. For ϕ ∈ S(V (Af )n) and ϕ0 ∈ S(U(Af )n),

ρ∗
(
φn(τ ;ϕ

0 ⊗ ϕ, S̃)
)
= θ(τ, ϕ0) · φn(τ, ϕ, S),
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where

θ(τ, ϕ0) =
∑

x∈U(F )n

ϕ0(x) q
Q(x)

is the Hilbert-Siegel theta function of weight 2ℓ.
This result, combined with a strong vanishing result for odd Betti numbers of

S̃K̃ and results about formal Fourier series [1], [3], is the basis for the proof of
Theorem 2. Full details can be found in [5].
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On central derivatives of p-adic triple product L-functions

Shunsuke Yamana

(joint work with Ming-Lun Hsieh)

We will construct a triple product p-adic L-function and discuss its trivial or non-
trivial zeros at the center of the functional equation. In the split and +1 sign case
we will determine the trivial zeros of cyclotomic p-adic L-functions associated to
three ordinary elliptic curves and identify the double or triple derivatives of the
p-adic L-function with the product of the algebraic part of central L-values and
suitable L -invariants. We will also formulate the p-adic Gross-Zagier formula in
the −1 sign case.
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0.1. Cyclotomic p-adic L-functions associated to three elliptic curves.
Let E1, E2, E3 be rational elliptic curves of conductor Ni. We write L(E, s) for
the degree eight motivic L-function for the triple product

VE
p = H1

ét(E1/Q,Qp)⊗H1
ét(E2/Q,Qp)⊗H1

ét(E3/Q,Qp)

realized in the middle cohomology of the abelian variety E = E1×E2 ×E3 by the
Künneth formula. Hence

L(H3
ét(E/Q,Qp), s) = L(E, s)

3∏

i=1

L(Ei, s− 1)2.

Let GQ ⊃ GQℓ
⊃ Iℓ be the absolute Galois group, its decomposition group at

ℓ and its inertia subgroup at ℓ. We consider the central critical twist

V E
p := VE

p (2) : GQ → GL8(Zp).

Observe that (V E
p )∗(1) ≃ V E

p . Fix an embedding ι∞ : Q →֒ C. Let Q∞ be the
Zp-extension of Q. The twisted triple product L-series is defined by the Euler
product

L(E⊗ χ̂, s+ 2) =
∏

ℓ

Lℓ(V
E
p ⊗ χ, s)

for p-adic characters χ of Gal(Q∞/Q) of finite order, where χ̂ is the Dirichlet
character associated to ι∞ ◦ χ. If ℓ 6= p, then

Lℓ(V
E
p ⊗ χ, s) = det(18 − ℓ−sι∞(χ(ℓ)−1Frobℓ|(V E

p )Iℓ))−1.

The complete twisted triple product L-series

Λ(E⊗ χ̂, s) = ΓC(s)ΓC(s− 1)3L(E⊗ χ̂, s)

proved to be an entire function which satisfies a simple functional equation

Λ(E⊗ χ̂, s) = ε(E, s)Λ(E⊗ χ̂, 4− s)

by the theorem of Wiles and the integral representation discovered by Garrett [2],
which was studied extensively in [8]. The global sign is given by the product of
local signs ε = ε(E, 2) = −∏

ℓ εℓ(E).
Fix an odd prime number p at which E1, E2, E3 are ordinary. We denote by

Tp(Ei) = lim
←−n

Ei[p
n] the Tate module of Ei. The GQp -invariant subspace

Fil0Tp(Ei) := Tp(Ei)
Ip = Ker(Tp(Ei) → Tp(Ei/Fp)

fixed by Ip is one-dimensional, where Ei/Fp denotes the mod p reduction of the
Neron model of Ei.

The Galois representation V E
p := Tp(E1) ⊗ Tp(E2) ⊗ Tp(E3)(−1) satisfies the

Panchishkin condition, i.e., we define the rank four GQp -invariant subspace of V
E
p

by

Fil+V E
p :=Fil0Tp(E1)⊗ Fil0Tp(E2)⊗ Tp(E3)(−1)

+ Tp(E1)⊗ Fil0Tp(E2)⊗ Fil0Tp(E3)(−1)

+ Fil0Tp(E1)⊗ Tp(E2)⊗ Fil0Tp(E3)(−1).
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The Hodge-Tate numbers of Fil+V E
p are all positive, while none of the Hodge-Tate

numbers of V E
p /Fil

+V E
p is positive.

Let Λ(s, Ei, ad) be the complete adjoint L-function of Ei. Define our period

by ΩE =
∏3
i=1 Λ(1, Ei, ad). When N1, N2, N3 are square-free, the author and

Ming-Lun Hsieh have constructed a four-variable p-adic L-function, which yields
a cyclotomic p-adic L-function

Lp(E) ∈ Zp[[Gal(Q∞/Q)]]⊗Qp

with the following interpolation property

Lp(E, χ̂) =
Λ(E⊗ χ̂, 2)

ΩE

(
√
−1)3Ep(Fil+V E

p ⊗ χ)

for all finite-order characters χ̂ of Gal(Q∞/Q) in Corollary 7.9 of [6], where the
modified factor at ∞ is (

√
−1)3 and the modified p-Euler factor is defined by

Ep(Fil+V E
p ⊗ χ) =

L(Fil+V E
p ⊗ χ, 0)

ε(Fil+V E
p ⊗ χ) · L((Fil+V E

p ⊗ χ)∨, 1)
· 1

Lp(V E
p ⊗ χ, 0)

.

Define an analytic function Lp(E, s) := εs−2cyc (Lp(E)) for s ∈ Zp, where εcyc :
Gal(Q∞/Q) → 1 + pZp denotes the cyclotomic character.

0.2. Trivial zeros. The Euler-like factor Ep(Fil+VE(2)) can possibly vanish. In
this case the interpolation formula forces Lp(E, 2) to be zero. Such a zero is called
a trivial zero.

We consider the case where Lp(E, s) has a trivial zero at the critical value s = 2.
We essentially only need to consider the following two cases:

(i) all E1, E2 and E3 have split multiplicative reduction at p.
(ii) E1 has split multiplicative reduction at p; E2 and E3 have good ordinary

reduction at p such that α2 = α3, where αi is the p-adic unit Hecke
eigenvalue of Ei.

Let Lp(Ei) =
logp qEi

ordp qEi

be the L -invariant of Ei with Tate’s p-adic period qEi

attached to Ei.

Theorem 1. (1) In Case (i), ords=2 Lp(E, s) ≥ 3, and

Lp(E, s)

(s− 2)3

∣∣∣
s=2

= Lp(E1)Lp(E2)Lp(E3) ·
L(E, 2)

24π5Ω(E)
.

(2) In Case (ii), ords=2 Lp(E, s) ≥ 2 and

Lp(E, s)

(s− 2)2

∣∣∣
s=2

= Lp(E1)
2(−pα−22 )(1 − α−22 )2 · L(E, 2)

24π5Ω(E)
.

In the case of a p-adic L-function Lp(E, s) of an elliptic curve E over Q the
trivial zero arises if and only if E is split multiplicative at p. An analogus formula
for L′p(E, 1) was proved in [4]. Our result proves the first cases of the trivial zero
conjecture where multiple trivial zeros are present and the Galois representation
is not of GL(2)-type.
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0.3. Ichino’s formula. Though πDi is self-dual, we write πD∨i for its dual with
future generalizations in view. Let X = {XU}U denote the projective system of

rational curves associated to D indexed by open compact subgroups U of D̂×.
For every place v ofQ we define the local trilinear form Iv :

⊗3
i=1

(
πDi,v⊗πD∨i,v

)
→

C by

The global trilinear form I :
⊗3

i=1

(
πDi ⊗ πD∨i

)
→ C is defined to be the tensor

product of the local trilinear forms Iv. This definition depends on the choice of the
local invariant pairings Bv :

⊗3
i=1

(
πDi,v ⊗ πD∨i,v

)
→ C. Normalize the local pairings

by the compatibility

⊗3
i=1〈 , 〉i = ⊗vBv.

Here the Petersson pairing 〈 , 〉i : πDi ⊗ πD∨i → C is defined by

〈hi, h′i〉i =
∫

A×D×\(D⊗A)×
hi(g)h

′
i(g) dg.

Define the period integral PD :
⊗3

i=1 π
D
i → C by

P
D(h1 ⊗ h2 ⊗ h3) =

∫

A×D×\(D⊗A)×
h1(g)h2(g)h3(g) dg.

For a local reason PD′

vanishes on
⊗3

i=1 π
D′

i unless D ≃ D′. Ichino proved the
following formula for the central critical value in [7]:

P
D(h)PD(h′) = 2−3ζQ(2)2

Λ(E, 2)∏3
i=1 Λ(1, πi, ad)

I(h⊗ h′),

where Λ(s, πi, ad) is the complete adjoint L-series of πi.

0.4. The non-trivial derivative. From now on we assume that ε = −1 and
(p,N1N2N3) = 1. Then L(E, 2) is automatically 0. The main object of study
in this case is the central derivative L′(E, 2) of L(E, s). Let D be the indefinite
quaternion algebra over Q such that Dℓ 6≃ M2(Qℓ) if and only if εℓ(E) = −1.

Here we put Dℓ = D ⊗ Qℓ and D̂ = D ⊗ Q̂. Let XU be the (compactified)

Shimura curve associated to a compact open subgroup of D̂×. We regard XU

as the codimensioin 2 cycle embedded diagonally in the threefold X3
U . One can

modify it to obtain a homologically trivial cycle, following [5]. Gross and Kudla
conjectured an analogous expression for L′(E, 2) in terms of a height pairing of
the (f1, f2, f3)-isotypic component of the modified diagonal cycle.

The theorem of Wiles gives a primitive form

fi =
∞∑

n=1

a(n, fi)q
n ∈ S2(Γ0(Ni))

such that all the Fourier coefficients a(n, fi) are rational integers and such that
Ei is isogeneous to the elliptic curve obtained from fi via the Eichler–Shimura
construction, i.e., the Dirichlet series

∑∞
n=1 a(n, fi)n

−s coincides with the Hasse-
Weil L-series L(s, Ei). Let πi be the automorphic representation of PGL2(A)
generated by fi. The eigenform fi determines an automorphic representation
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πDi ≃ ⊗′vπDi,v of (D ⊗ A)× via the global correspondence of Jacquet, Langlands
and Shimizu.

The projective limit X of {XU} is endowed with the action of D̂×. The curve
XU has a Hodge class LU , which is the line bundle whose global sections are
holomorphic modular forms of weight two. Normalize the Hodge class by ξU :=
LU

vol(XU ) |Ẑ×/NDQ(U)|, where

vol(XU ) :=

∫

XU (C)

dxdy

2πy2
.

It is known that degLU = vol(XU ) and that the induced action of D̂× on the
set of geometrically connected components of XU factors through the norm map

NDQ : D̂× → Q̂×. Hence the restriction of ξU to each geometrically connected
component of XU has degree 1.

For any abelian variety A over Q the space Hom0
ξU (XU , A) consists of mor-

phisms in HomQ(XU , A) ⊗Q which map the Hodge class ξU to zero in A. Since
any morphism from XU to an abelian variety factors through the Jacobian va-
riety JU of XU , we also have Hom0

ξU (XU , A) = Hom0
Q(JU , A). We consider the

Q-vector spaces

σi := lim
−→U

Hom0
ξU (XU , Ei), σ∨i := lim

−→U
Hom0

ξU (XU , E
∨
i ).

The space σi admits a natural action by D̂×. Actually, σi ⊗Q C ≃ ⊗′qπDi,q from

which πDi,q gains the structure of a Q-vector space.

Let hi,U : JU → Ei and h′i,U : JU → E∨i be Q-morphisms. The morphism

h′∨i,U : Ei → JU represents the homomorphism h′∗i,U : Ei ≃ Pic0(Ei) → Pic0(JU )

composed with the canonical isomorphism Pic0(JU ) ≃ JU given by the Abel-Jacobi

theorem. Define a perfect D̂×-invariant pairing σi ⊗ σ∨i → Q.

B♮i (hi ⊗ h′i) = vol(XU )
−1hi,U ◦ h′∨i,U ∈ End0Q(Ei) = Q.

Let B♮ := ⊗3
i=1B

♮
i and define the trilinear form

I♮ = ⊗qI♮q ∈ HomD̂××D̂×

( 3⊗

i=1

(
σi ⊗ σ∨i

)
,Q

)

by

I♮q(hq ⊗ h′q)

=

∏3
i=1 L(1, πi,q, ad)

ζq(2)2L
(
1
2 , π1,q × π2,q × π3,q

)
∫

Q
×
q \D×

q

B♮q((σ1,q⊗σ2,q⊗σ3,q)(gq)hq⊗h′q) dgq.

For each U we let ∆U be the diagonal cycle of X3
U as an element in the Chow

group CH2(X3
U ) of codimension 2 cycles. We obtain a homologically trivial cy-

cle ∆U,ξU on X3
U by some modification with respect to ξU as constructed in
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[5]. The classes ∆†U,ξU =
∆U,ξU

vol(XU ) form a projective system and define a class

∆†ξ ∈ lim
←−

CH2(X3
U )

0.

Given hi ∈ σi for i = 1, 2, 3, we get a homologically trivial class

h∗∆
†
ξ ∈ CH2(E)0, h = h1 × h2 × h3.

The theory of the p-adic height pairing was developed by Néron, Zarhin, Schnei-
der, Mazur-Tate, Perrin-Riou, Nekovář. The p-adic height pairing depends on a
choice of the p-adic logarithm on the idéle class group A×/Q× and a choice of a
splitting as Qp-vector spaces of the Hodge filtration of the de Rham cohomology
of E over Qp. We take the Iwasawa logarithm lQ : A×/Q× → Qp. Since V E

p

satisfies the Panchishkin condition, we have a natural choice of the splitting ob-
tained from Fil+V E

p . We may therefore say that there is a canonical p-adic height
pairing 〈 , 〉Nek on homologically trivial cycles on E. The following conjecture is
a p-adic analgoue of the conjecture first formulated by Gross-Kudla [3] and later
refined by Yuan, S. W. Zhang and W. Zhang [9].

Conjecture 2.

〈h∗∆†ξ, h′∗∆
†
ξ〉Nek(

√
−1)3Ep(Fil+V E

p ) = L′p(E, 1)I
♮(h⊗ h′)

(
ζ(2)

π2

)2

· (power of 2)

for all h ∈ ⊗3
i=1 (σi ⊗ σ∨i ), where ζ(s) =

∑∞
n=1 n

−s.
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Rigid Meromorphic Cocycles

Henri Darmon

(joint work with Alice Pozzi, Jan Vonk)

A rigid meromorphic cocycle is a class in H1(Γ,M×), where Γ := SL2(Z[1/p]) is
Ihara’s group and M× is the multiplicative group of non-zero rigid meromorphic
functions on the Drinfeld p-adic upper half-plane Hp := P1(Cp)−P1(Qp), endowed
with its natural action of Γ by Möbius transformations.

It is a prototypical example of more general objects arising in a tentative “p-adic
Borcherds theory” which was briefly alluded to at the end of the lecture.

The main motivation (so far) for studying rigid meromorphic cocycles lies in their
eventual connection with explicit class field theory for real quadratic fields. More
precisely, a point τ ∈ Hp is called a real multiplication (RM) point if it satisfies
the following equivalent properties:

(1) The field Q(τ) is a real quadratic field;
(2) The stabiliser of τ in Γ is infinite.

When τ is an RM point, its stabiliser Γτ has rank one, and is generated up
to torsion by an automorph γτ ∈ Γ, which can be chosen consistently by fixing
appropriate orientations. The value of the rigid meromorphic cocycle J at τ is
defined to be

J [τ ] := J(γτ )(τ) ∈ C×p ∪ {0,∞}.
Although the rigid meromorphic function J(γτ ) depends on the choice of a rep-
resentative one-cocycle, the value of this function at τ depends only on the class
of J in cohomology. The value J [τ ] also depends only on the Γ-orbit of τ , i.e.,
J [γτ ] = J [τ ] for all γ ∈ Γ.

The stabiliser of the RM point τ in the matrix ring M2(Z[1/p]) is isomorphic to a
Z[1/p]-order, denoted O, in the real quadratic field F = Q(τ). Global class field
theory gives a canonical identification

Pic+(O) = Gal(Hτ/F ),

where Pic+(O) denotes the class group in the narrow sense of O — i.e., the Picard
group of projective O-modules equipped with an orientation at ∞. The abelian
extension Hτ of F is called the narrow ring class field attached to τ . Together
with cyclotomic fields, the narrow ring class fields generate almost the full maximal
abelian extension of F .

The following conjecture was proposed in [8]:

Conjecture 1. If J is a rigid meromorphic cocycle, then there is a finite exten-
sion HJ of Q — the “field of definition” of J — for which J [τ ] belongs to the
compositum HJ and Hτ , for all RM points τ of Hp.

Until recently, almost all of the evidence for Conjecture 1 has been numerical
and experimental, but recent progress based on the theory of p-adic deformations
of modular forms and their associated Galois representations has led to strong
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theoretical evidence as well, so that Conjecture 1 now appears to lie within the
scope of available techniques.

The lecture focussed first on a few simple examples of rigid meromorphic cocy-
cles and related objects:

(1) the Dedekind-Rademacher cocycle, an avatar of Siegel units;
(2) elliptic modular cocycles attached to elliptic curves of conductor p;
(3) genuine rigid meromorphic cocycles, which play the role of meromorphic

modular functions like the j-function.

It concluded by attempting to place the theory of rigid meromorphic cocycles in
the more general framework of automorphic forms on orthogonal groups.

Let A× ⊂ M× be the multiplicative group of rigid analytic functions on Hp. It
turns out that there are no interesting genuine rigid analytic cocycles: the group
H1(Γ,A×) is generated by the class Jtriv given by

Jtriv

(
a b
c d

)
(z) := (cz + d),

whose value at an RM point is the fundamental unit of the associated order. A
richer class of examples is obtained by relaxing the definition and considering one-
cochains that satisfy the cocycle relation up to certain multiplicative periods. The
simplest example of such a “cocycle modulo periods” is the Dedekind-Rademacher
cocycle.

To define this cocycle, we begin by noting the canonical identification

H2(Γ,Q) = H1(Γ0(p),Q)

arising from the fact that Γ is an amalgamated product of two copies of SL2(Z)
intersecting in a subgroup that is conjugate to Γ0(p). (This in turn follows from the
transitive action of Γ on the edges of the Bruhat-Tits tree, in which the vertex and
edge stabilisers are conjugate to SL2(Z) and Γ0(p) respectively.) The Dedekind-
Rademacher two-cocycle is the class αDR ∈ H2(Γ,Z) that corresponds, under this
identification, to the Dedekind-Rademacher homomorphism ϕDR ∈ H1(Γ0(p),Z)
given by

ϕDR(γ) :=
1

2πi

∫ γz0

z0

E
(p)
2 (z), E

(p)
2 := dlog

(
∆(pz)

∆(z)

)
.

The one-cocycle ϕDR and the two-cocycle αDR thus encode the periods of the

Eisenstein series E
(p)
2 arising from the logarithmic derivative of the Siegel unit

∆(pz)/∆(z) on the open modular curve Y0(p).
The key fact underlying the construction of the Dedekind-Rademacher cocycle

is that pαDR ∈ H2(Γ,C×p ) is trivialised in the group H2(Γ,A×). The following
theorem from [7] refines an earlier construction from [3]:

Theorem 2. There is a one-cochain JDR ∈ C1(Γ,A×) satisfying
γ1JDR(γ2)÷ JDR(γ1γ2)× JDR(γ1) = pαDR(γ1,γ2), for all γ1, γ2 ∈ Γ.
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The essential triviality ofH1(Γ,A×) ensures that the one co-chain JDR of Theorem
2 is well defined, up to powers of Jtriv and one-coboundaries. Furthermore, it
satisfies the one-cocycle relation up to powers of p. Its image in H1(Γ,A×/pZ) is
therefore well-defined up to powers of Jtriv. This image is called the Dedekind-
Rademacher cocycle, and is also denoted by JDR, by a slight abuse of notation.

Theorem 3. Let τ be an RM point in Hp. Up to torsion in Qp(τ)
×, the value

JDR[τ ] belongs to OHτ [1/p]
×.

This proof of this theorem emerged from a gradual series of developments over
almost two decades:

1. Relation with the Gross-Stark conjecture. The relation

logp(Norm
Q2

p

Qp
(JDR[τ ])) = L′p(Cτ , 0),

where Lp(Cτ , s) is the partial p-adic L-function attached to the narrow ideal class
Cτ := [1, τ ] was obtained in [3]. This result shows the algebraicity properties
of JDR[τ ] asserted in Theorem 3 are satisfied by its norm from (F ⊗ Qp)× to
Q×p , assuming Gross’s p-adic analogue of the Stark conjecture on leading terms of
abelian L-series at s = 0 [12].

2. Proof of the Gross-Stark conjecture in rank one. It was then shown in [4] that
the Gross-Stark conjecture is true for the first derivatives of these abelian L-series,
hence that JDR[τ ] satisfies the predicted algebraicity properties, up to torsion and
elements of (F ⊗ Qp)× of norm one. What makes Gross’s p-adic analogue of the
Stark conjecture more approachable than the original archimedean conjectures,
which are still completely open, is the availability of the theory of p-adic deforma-
tions of modular forms and their associated p-adic Galois representations, along
with the reciprocity law of global class field theory. In a sense, these ingredients
are used to parlay class field theory for abelian extensions of F into explicit class
field theory for F .

3. The work of Dasgupta and Kakde. The ambiguity by elements of norm one
in Q×p2 is a serious limitation of the results following from [4]. It is addressed in

a remarkable series of recent works by Samit Dasgupta and Mahesh Kakde, who
show that the full Theorem 3 (up to torsion) would follow from Gross’s “tame
refinement” of the p-adic Gross-Stark conjecture [13] and the Brumer–Stark con-
jecture. They are then able to prove these conjectures, by significantly refining
and extending the techniques of [4] to the tame setting.

4. Modular generating series. An ongoing project with Alice Pozzi and Jan Vonk
[7] aims to give an alternate, more “genuinely p-adic” proof of Theorem 3 by real-
ising the RM values of the Dedekind-Rademacher cocycle as the fourier coefficients
of a modular generating series. This approach is suggested by [6] which studies the
fourier coefficients of the ordinary projection of the first derivative, with respect
to the weight, of the diagonal restriction of a p-adic family of Hilbert modular
Eisenstein series attached to totally odd characters of F .
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The methods used to understand the RM values of JDR are somewhat roundabout,
relying crucially on p-adic deformations of modular forms and their associated
Galois representations. These techniques do not dispel the mystery surrounding
the deeper arithmetic meaning of rigid meromorphic cocycles. To underscore this
point, the lecture then turned to a discussion of elliptic cocycles.

An elliptic rigid analytic cocycle can be attached to an elliptic curve E of conductor
p, or rather to its normalised newform f of weight two, whose real and imaginary
periods are encoded by two one-cocycles ϕ+

f and ϕ−f in H1(Γ0(p),Z). Let α
+
f and

α−f be the corresponding two-cocycles in H2(Γ,Z). The following trivialisation

result, in which αDR is replaced by α±f , and the prime p by the Tate period

qE ∈ Q×p attached to E over Qp, was shown in [2] to follow from the “exceptional
zero conjecture” of Mazur, Tate and Teitelbaum [17] proved by Greenberg and
Stevens [14].

Theorem 4. There are one-cochains J+
f , J

−
f ∈ C1(Γ,A×) satisfying

γ1J
±
f (γ2)÷ J±f (γ1γ2)× J±f (γ1) = q

α±
f (γ1,γ2)

E , for all γ1, γ2 ∈ Γ,

up to torsion in (F ⊗Qp)×.

In particular, the one-cochains J+
f and J−f satisfy the cocycle relation up to

powers of qE and up to torsion. After raising them to a suitable integer power
to remove the torsion ambiguity, their images in H1(Γ,A×/qZE) are called the
even and odd elliptic modular cocycles attached to f , and denoted J±f by abuse of
notation.

The RM values J±f [τ ] are then canonical elements of C×p /q
Z
E = E(Cp). The fol-

lowing conjecture, an elliptic analogue of Theorem 3, was proposed in [2].

Conjecture 5. The RM values J+
f [τ ] and J−f [τ ] belong to E(Hτ ).

The evidence for this conjecture so far is largely experimental [5], [11], and the
speaker can discern no proof on the horizon: the tools used to handle the Dedekind-
Rademacher cocycle are not available in this setting, and would perhaps need to be
supplemented with a more geometric perspective on the theory of rigid cocycles.

The lecture concluded by returning to rigid meromorphic cocycles. In contrast
with the fact that H1(Γ,A×) is essentially trivial, the following theorem from [8]
shows that rigid meromorphic cocycles exist in abundance:

Theorem 6. Assume that p − 1 divides 12, i.e, p = 2, 3, 5, 7, or 13. For all
RM points τ , there is a unique Jτ ∈ H1(Γ,M×) for which the rigid meromorphic
functions Jτ (γ) have divisor supported in the Γ-orbit of τ .

In [8], it is conjectured that the quantity

Jp(τ1, τ2) := Jτ1 [τ2],

for pairs (τ1, τ2) of RM points (with co-prime discriminants, say) behave “in es-
sentially all respects” like the differences j(τ1) − j(τ2) of singular moduli studied
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in the work of Gross and Zagier (with τ1 and τ2 CM points in the Poincaré upper
half-plane). The p-adic logarithm of Jp(τ1, τ2) can thus be envisaged as a kind of
p-adic Green’s function evaluated on the pair of RM cycles attached to τ1 and τ2.

For example, let τ1 = ϕ := (1 +
√
5)/2 be the golden ratio, and τ2 = 2

√
2, which

are roots of primitive binary quadratic forms of discriminants D1 = 5 and D2 = 32
respectively. The associated ring class fields are H1 = Q(

√
5) and H2 = Q(

√
2, i).

The pair (τ1, τ2) belongs to Hp × Hp when p = 3 or p = 13, and a computer
calculation reveals that

J3(ϕ, 2
√
2) ≡ (33 + 56i)/(5 · 13) (mod 3600),

J13(ϕ, 2
√
2) ≡ (1 + 2

√
−2)/3 (mod 13100).

The table below lists the prime factorisations of the quantities (D1D2−t2)/4 when
t ranges over the even integers between 0 and 12:

t (160− t2)/4 a3(t) a13(t)
0 23 · 5 1 1
2 3 · 13 13 3
4 2232 1 1
6 31 1 1
8 23 · 3 1 1
10 3 · 5 5 1
12 22 1 1

The two rightmost columns are obtained by picking out the terms in the second
column that are divisible by 3 and 13 respectively, and taking the remaining fac-
tors. These are exactly the primes that appear in the experimentally observed
factorisations of J3(τ1, τ2) and J13(τ1, τ2). Such patterns are reminiscent of the
recipes for the factorisation of singular moduli in the theorem of Gross and Zagier
[15].

The restriction on p in Theorem 6 is made to ensure that the modular curve X0(p)
has genus zero, i.e., that there are no weight two cusp forms of level p. For general
primes p, there is an obstruction to producing a rigid meromorphic cocycle with a
prescribed rational RM divisor, which lies in the space of weight two cusp forms on
Γ0(p) – or equivalently, by the Shimura correspondence, in (the Kohnen subspace
of) the spaceM3/2(4p) of modular forms of weight 3/2 and level 4p. LetM !!

1/2(4p)

be the space of weakly holomorphic modular forms of weight 1/2 and level 4p
which are regular at all the cusps except ∞ and have integer fourier coefficients
at that cusp. The following theorem, which produces a systematic supply of rigid
meromorphic cocycles for all primes p, is part of a work in progress [9]:
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Theorem 7. There is an injective homomorphism

BL× :M !!
1/2(4p) → H1(Γ,M×)

satisfying all the formal properties of Borcherds’ multiplicative “singular theta-
lift”. (Notably, the RM divisor of BL×(g) is encoded in the principal part of g.)

This result suggests the following immediate generalisation, placing the theory of
rigid meromorphic cocycles in the broader setting of p-arithmetic subgroups of
orthogonal groups. Let V be a quadratic space over Q of real signature (r, s), and
let d := r + s be its dimension. Let L ⊂ V be a Z[1/p]-lattice in V , and assume
for simplicity that it is equal to its dual. The orthogonal group Γ := O(L) of this
lattice is a p-arithmetic group which acts on the real symmetric space

X∞ := O(V )/(O(r) ×O(s))

of dimension rs, as well as on the p-adic symmetric space

Xp := X̃p/C
×
p , X̃p := {x ∈ V ⊗ Cp with 〈x, x〉 = 0} −

⋃

〈v,v〉=1

(Qpv)
⊥,

the union being taken over all vectors v ∈ V ⊗Qp of norm 1. The domain Xp can
be identified with the Cp-points of a rigid analytic space over Qp. Let M× be the
multiplicative group of non zero rigid meromorphic functions on Xp. Theorem 7
is generalised in [10] to give an injective homomorphism

BL× :M !!
2−d/2(4p) → Hs(Γ,M×)

with the requisite properties, most importantly, that the divisor of BL×(g) is
related to a collection of “rational quadratic divisors” on Xp which can be read off

from the principal part of g. The construction of BL× rests crucially on the Kudla-
Millson theta kernels [16] with coefficients in the homology of the real manifold
X∞/O(V,Z), and on the variation of these theta-kernels in p-adic families.

In the case of signature (3, 0), taking V to be the space of trace zero elements on a
definite quaternion algebra B over Q equipped with the norm form, the image of
the p-adic Borcherds lift consists of Γ-invariant meromorphic functions on Hp with
divisor supported on CM points. The rigid analytic quotient Γ\Hp is identified
with the Cp-points of a Shimura curve attached to B, thanks to the uniformisation
theory of Cerednik Drinfeld. The p-adic Borcherds lift in this case leads to a new,
“purely p-adic” proof of the theorem of Gross-Kohnen-Zagier asserting that a
generating series made from Heegner divisors of varying discriminants is a modular
form of weight 3/2.

In the case of signature (2, 1), taking V to be the space of trace zero elements in
the matrix ringM2(Q) and L :=M2(Z[1/p])∩V , the image of the p-adic Borcherds
lift is the “original” space of rigid meromorphic cocycles for Γ := SL2(Z[1/p]) that
provided the starting point for this lecture.

The case of signature (3, 1) is noteworthy in light of the “accidental” isomor-
phisms relating the orthogonal group of this signature and the Bianchi group
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SL2(OK) where K is an imaginary quadratic field. That the resulting rigid mero-
morphic cocycles should have arithmetic significance is suggested by the work of
Mak Trifkovic [19] and of Daniel Barrera and Chris Williams [1] on analytic co-
cycles in the Bianchi setting. Peter Scholze has proposed [Sch] that (additive,
weight one) rigid analytic cocycles on the Bianchi modular group might also be
relevant for understanding the conjectural correspondence between Maass forms
with Laplace eigenvalue 1/4 and even two-dimensional Artin representations.
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On some theta lifts and their applications

Claudia Alfes-Neumann

(joint work with Kathrin Bringmann and Markus Schwagenscheidt)

We present recent results on extensions of the Shintani [6] and Kudla-Millson [5]
theta lift to meromorphic cusp forms as well as some applications of this theory.
In particular, we present finite rational formulas for the traces of cycle integrals
of certain meromorphic modular forms. Moreover, we show the modularity of a
completion of the generating series of the traces of reciprocal singular moduli.

Historically, theta lifts of this kind have first been considered by Shimura, Shin-
tani, and Niwa [14, 15, 13]. They considered the generating series of traces of cycle
integrals of integral weight cusp forms and showed that it is a half-integral weight
modular form.

In his seminal paper [17] Zagier showed that the generating series of the (twisted)
traces of singular moduli, values of the modular j-invariant at quadratic irrational-
ities, is a weakly holomorphic modular form of weight 1/2 resp. 3/2. Bruinier and
Funke [10] generalized this result to arbitrary weakly holomorphic modular forms
of weight 0 using a theta lift whose kernel is given by a certain theta function first
considered by Kudla and Millson (accounting for the name Kudla-Millson lift).
They obtained a generating series of the CM traces of the input function of weight
3/2. Their result was generalized to the twisted case by the author and Ehlen in
[1]. This lift was extended by Bruinier and Ono [9] and the author [2] to general
negative even weight. A similar lift, using the Millson kernel, was considered by
the author and Schwagenscheidt [3]. In particular, their work generalizes Zagier’s
results for weight 1/2.

In later work, the author and Schwagenscheidt [4] as well as Bringmann, Guerz-
hoy and Kane [7, 8] considered extensions of the Shintani theta lift to modular
forms with poles at infinity (resp. harmonic weak Maass forms). In [11], the
authors consider the Shintani theta lift of differentials of the third kind making a
first step towards considering meromorphic modular forms as inputs for such theta
lifts.

In the following, we let Qd denote the set of all integral binary quadratic forms
Q = [a, b, c] of discriminant d = b2− 4ac. Note that the group Γ = SL2(Z) acts on
Qd with finitely many orbits if d 6= 0.

For d < 0 one is led to study CM points zQ, i.e. the zeros of Q(zQ, 1) which lie
in the upper half-plane. For d > 0 we obtain a geodesic

CQ :=
{
z ∈ H : a|z|2 + bx+ c = 0

}
(z = x+ iy).

By cQ := ΓQ\CQ we denote the image in Γ\H of the geodesic CQ.
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1. Shintani theta lifts of meromorphic cusp forms

In [6] we extend the Shintani lift to meromorphic cusp forms. We obtain the
following modularity result.

Theorem 1. For a meromorphic cusp form f of positive weight 2k the (twisted)
Shintani theta lift of f is a real-analytic function on H that transforms like a mod-
ular form of weight k+ 1

2 for Γ0(4) and satisfies the Kohnen plus space condition.

Let ∆ ∈ Z be a fundamental discriminant satisfying (−1)k∆ > 0 and let D > 0
be a discriminant. It turns out that the Shintani lift yields a completion of the
generating function of twisted traces of regularized cycle integrals

trf,∆(D) :=
∑

Q∈Q|∆|D/Γ

χ∆(Q)

∫ reg

cQ

f(z)Q(z, 1)k−1dz,

where χ∆ is the usual genus character, and the cycle integrals have to be regular-
ized if poles of f lie on the geodesic cQ (for detail see Section 2.3 of [6]).

We have the following theorem.

Theorem 2. Let f be a meromorphic cusp form of positive weight 2k. Then the
“holomorphic part” of the Fourier expansion of the Shintani theta lift of f is given
by

√
|∆|
2

∑

D>0

trf,∆(D)e2πiDτ .

The “real-analytic part” is given by a certain linear combination of “singular”
theta series.

Let k > 0 be even. Using the results on the Shintani lift we can then obtain
rationality results for the traces of cycle integrals of the functions

fk,A(z) :=
|d| k+1

2

π

∑

Q∈A
Q(z, 1)−k,(1)

where A ∈ Qd/Γ is a fixed equivalence class of quadratic forms of discriminant
d < 0. The poles of fk,A lie at the CM points zQ ∈ H for Q ∈ A. Such functions
were first considered by Zagier in [16]. Kohnen and Zagier [12] showed that certain
simple linear combinations of the cycle integrals of such functions are rational.

Complementing these results, we obtain rational formulas for the traces

trfk,A(D) :=
∑

Q∈QD/Γ

∫

cQ

fk,A(z)Q(z, 1)k−1dz.

We assume that the poles of fk,A do not lie on any of the geodesics CQ for
Q ∈ QD. Let zA := xA + iyA ∈ H denote a fixed CM point zQ for some Q ∈ A.

Theorem 3. Let F be a weakly holomorphic modular form of weight 3
2−k for Γ0(4)

satisfying the Kohnen plus space condition. Suppose that the Fourier coefficients
aF (−D) vanish for all D > 0 which are squares and that aF (−D) is rational for
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D > 0. Moreover, assume that zA does not lie on any of the geodesics CQ for
Q ∈ QD for any D > 0 for which aF (−D) 6= 0. Then the linear combinations

∑

D>0

aF (−D)trfk,A(D)

are rational.

2. Traces of reciprocal singular moduli

Complementing the results of Zagier on the modularity of the generating series
of the traces of singular moduli in [17] we show the modularity of the generating
series of the traces of reciprocal singular moduli

tr1/j(D) =
∑

Q∈Q+
D/Γ

1/j(zQ)

|ΓQ|
,

where we now consider the set of positive definite quadratic forms Q+
D of discrimi-

nant D < 0. Notice that 1/j has a third order pole at ρ = eπi/3, so the (CM) value
of 1/j at this point is not defined. However, if we replace 1/j(ρ) by the constant
term in the elliptic expansion of 1/j around ρ, then tr1/j(D) is defined for every
D < 0.

We obtain the following modularity statement.

Theorem 4. The generating series
∑

D≤0
tr1/j(D)q−D = − 1

165888
+

23

331776
q3 +

1

3456
q4 − 1

3375
q7 +

1

8000
q8 + . . .

of traces of reciprocal singular moduli is a mixed mock modular form of weight 3/2
for Γ0(4) (of higher depth). Its shadow is a non-zero multiple of

∑

h (mod 3)

θ7/2,h(τ) · v4θ4,h(τ).

Here, we let

θ7/2,h(τ) = v−3/2
∑

a∈Z
a≡h (mod 3)

H3

(
2
√
πv

a√
3

)
qa

2/3,

θ4,h(τ) =
∑

b,c∈Z
b≡c (mod 2)
b≡h (mod 3)

(
b− i

√
3c
)3

qb
2/3+c2 ,

with τ = u + iv ∈ H and the Hermite polynomial H3(x) = 8x3 − 12x. Moreover,
we define

tr1/j(0) = − 1

4π

∫ reg

Γ\H
1/j(z)

dxdy

y2
= − 1

211 · 34 = − 1

165888
.

In [5] we show that a result of this kind holds for arbitrary meromorphic cusp
forms of weight 0 (replacing j) using the Kudla-Millson theta lift.
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On the Kohnen plus space for Jacobi forms of half-integral weight

Ren-He Su

Let F be a totally real number field, o = dF being its ring of integers. Let k ≥ 0,
n ≥ 1 and r ≥ 0 be integers, where k is odd. Also, for any positive integer m, we
set L∗,>0

m to be the set of half-integral positive semi-definite matrices of size m×m
with entrices in F . Then we set M to a matrix be in L∗,>0

r+1 which has the form

M =

(
M1 L/2
tL/2 1

)

where M1 ∈ L∗,>0
r and

M = 4M1 − LtL.

Note that we have M > 0. Put J
(n)
k+1/2,M and J

(n)
k+1,M to be the spaces of Jacob

cusp forms of weight k + 1/2 and k + 1, matrix index M and M, respectively.
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Note that any Jacobi form in J
(n)
k+1/2,M (J

(n)
k+1,M ) is a holomorphic function on

(hn×Cn×r)[F :Q] ((hn×Cn×(r+1))[F :Q]). We want to define the Kohnen plus space

of Jacobi forms of weight k+1/2 and indexM, which is a subspace of J
(n)
k+1/2,M, and

give the main result that it is isomorphic to J
(n)
k+1,M. Now for any φ ∈ J

(n)
k+1/2,M,

we write its Fourier expansion as

φ(τ, z) =
∑

M∈L∗,>0
n ,S∈Mn,r(o)

C(M,S)e(Mτ + Stz).

Then we have the following definition of Kohnen plus space.

Definition 1. The Kohnen plus space J
(n),+
k+1/2,M of Jacob cusp forms of weight

k + 1/2 and index M is a subspace of J
(n)
k+1/2,M which consists the forms φ(τ, z)

whose Fourier coefficients C(M,S) vanish unless
(
M S/2
tS/2 M

)
≡ −

(
λ
L

)(
tλ tL

)
(mod4L∗n+r)

for some λ ∈ on.

For z′ ∈ (Cn×(r+1))[F :Q], we write z′ = (z1 z2), where z1 ∈ (Cn×r)[F :Q] and

z2 ∈ (Cn×1)[F :Q] . Now for any ψ(τ, z′) ∈ J
(n)
k+1,M, the theta decomposition of ψ

is given by

ψ(τ, z′) =
∑

λ∈on

ψλ(τ, z1)θλ(τ,
1

2
z1L+ z2).

Then if we put

ι(ψ)(τ, z) =
∑

λ∈on

ψλ(4τ, 4z),

this is a Jacobi cusp form in J
(n),+
k+1/2,M. The main result is as following.

Theorem 2. The mapping ι : J
(n)
k+1,M → J

(n),+
k+1/2,M is an isomorphism.

This result is an analogue of several previous results. For the classical case, that
is, the case F = Q, n = 1 and r = 0, the result was shown by Eichler and Zagier
in [1]. For the case F = Q, n ≥ 2 and r = 0, the result was shown by Ibukiyama
in [4]. For the case F general, n = 1 and r = 0, the result was shown by Hiraga
and Ikeda in [3]. For the case F = Q, n ≥ 1 and r ≥ 1, the result was shown by
Hayashida in [2].

In the previous results above, the corresponding isomorphism in each case was
shown to be a Hecke isomorphism. The author of this abstract is also looking
forward to show that the ismorphismmentioned above is also a Hecke isomorphism.
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Doubling integrals for Brylinski-Deligne extensions of classical groups

Yuanqing Cai

In the 1980s, Piatetski-Shapiro and Rallis [8] discovered a family of Rankin-Selberg
integrals for the classical groups that did not rely on Whittaker models. This is
the so-called doubling method. Recently, a family of global integrals that repre-
sent the tensor product L-functions for classical groups [5] and the tensor product
L-functions for covers of symplectic groups [7] was discovered. These integrals
are called twisted doubling integrals and can be viewed as generalizations of the
doubling method. In this note, we explain how to develop the twisted doubling in-
tegrals for all classical groups and their non-linear extensions in a more conceptual
manner (see [2, 3]).

For simplicity, we will focus on the symplectic and orthogonal groups. We
will describe the global integral in the linear case, and discuss some necessary
modifications in the covering group case.

1. The global integral in the linear case

We start by describing the global integral in the linear case. Let F be a number
field and A be its ring of adeles. Let (W, 〈 , 〉) be a quadratic space over F of
dimension m. Let G be either Sp(W ) or SO(W ).

We first construct a doubled quadratic space (W�, 〈 , 〉�), where W� =W+ ⊕
W− and

〈(x+, x−), (y+, y−)〉� = 〈x+, y+〉 − 〈x−, y−〉.
We include the subscripts ± when it is necessary to distinguish the two copies of
W . Define

W∆ = {(x, x) ∈W� | x ∈W}, W∇ = {(x,−x) ∈ W� | x ∈ W}.
Both are maximal totally isotropic subspaces of W�.

Fix a positive integer k. We now define a large quadratic space (W�,k, 〈 , 〉�,k)
where

(W�,k, 〈 , 〉�,k) = (W�

1 , 〈 , 〉�1 )⊕ · · · ⊕ (W�

k , 〈 , 〉�k ).
The subscripts here are included to distinguish different copies. Then

W∆,k :=W∆
1 ⊕ · · · ⊕W∆

k , W∇,k :=W∇1 ⊕ · · · ⊕W∇k

are maximal totally isotropic subspaces of W�,k. Let G�,k be the connected
component of the isometry group of (W�,k, 〈 , 〉�,k).

We choose the following flag of totally isotropic subspaces:

0 ⊂W∇k ⊂W∇k−1 ⊕W∇k ⊂ · · · ⊂W∇2 ⊕ · · · ⊕W∇k .
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Let NW be the unipotent radical of the parabolic subgroup stabilizing this flag.
Then

NW/[NW , NW ] ≃ Hom(W∇k−1,W
∇
k )× · · · ×Hom(W∇2 ,W

∇
3 )×Hom(W�

1 ,W
∇
2 ).

We also write this map as
u 7→ (uk−1, · · · , u1).

Let ψ : F\A → C× be a nontrivial additive character. Let em be the embedding

em :W1,+ →W�

1 , x1,+ 7→ (x1,+, 0).

We now define
ψW : NW(F )\NW(A) → C×,

by
ψW (u) = ψ (tr(uk−1 + · · ·+ u2) + tr(u1 ◦ em)) .

Given (g1, g2) ∈ G×G, we define its action on W�,k by the following formula

(g1, g2) · (x1,+, x1,−, x2,+, x2,−, · · · , xk,+, xk,−)
=(g1x1,+, g2x1,−, g1x2,+, g1x2,−, · · · , g1xk,+, g1xk,−).

This defines a homomorphism ι : G×G→ G�,k. It is easy to check that the image
ι(G×G) lies in the stabilizer of (NW , ψW).

Let τ be an irreducible cuspidal automorphic representation of GLk(A). Let
θ(m, τ) be the generalized Speh representation of GLkm(A), constructed using
residues of Eisenstein series. A key property of θ(m, τ) is that the maximal nilpo-
tent orbit that supports a non-zero Fourier coefficient for θ(m, τ) is (km). At every
local place v, the corresponding local model for θ(m, τ)v is unique.

Remark 1. Here we describe two extreme cases of θ(m, τ). When k = 1, then
θ(m, τ) = τ ◦ det. When m = 1, then θ(m, τ) = τ .

Let P = P (W∆,k). We now consider the induced representation

I(s, τ) = Ind
G�,k(A)
P (A) (θ · δsP ).

For any holomorphic section φ(s) of I(s, τ), we form the associated Eisenstein series
E(φ(s)) on G�,k(F )\G�,k(A) by

E(φ(s))(g) =
∑

γ∈P (F )\G�,k(F )

φ(s)(γg).

The Eisenstein series converges for ℜs ≫ 0. By the theory of Eisenstein series, it
can be continued to a meromorphic function in s on all of C satisfying a functional
equation.

Let π be an irreducible cuspidal automorphic representation ofG(A). Let ξ1 ∈ π
and ξ2 ∈ π∨. We now define the following global zeta integral:

Z(ξ1 ⊠ ξ2, φ
(s))

=

∫

G(F )\G(A)×G(F )\G(A)

ξ1(g1)ξ2(g2)

∫

NW (F )\NW (A)

E(φ(s))(u · ι(g1, g2))ψW(u) du dg1 dg2.
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Remark 2. When k = 1, this recovers the doubling method of Piatetski-Shapiro
and Rallis.

Let N◦W = N(W∇,k) ∩ P and

f (s)(g) =

∫

(P∩NW)(F )\(P∩NW)(A)

φ(s)(ug)ψW(u) du.

Now we can state the following global identity.

Theorem 3. When ℜs≫ 0,

Z(ξ1 ⊠ ξ2, φ
(s)) =

∫

G(A)

P(π(g)ξ1 ⊠ ξ2)

∫

N◦
W (F )\N◦

W(A)

f (s)(u · ι(g, e))ψW (u) du dg,

where

P(ξ1 ⊠ ξ2) =

∫

G(F )\G(A)

ξ1(g)ξ2(g) dg

is the Petersson inner product. If all the data is decomposable, then Z(ξ1⊠ξ2, φ
(s))

is an Euler product.

In the symplectic case, this is proved in [5]. A proof in the conceptual setup is
given in [2]. For an unramified place v, when all the data is unramified, the local
version of the global integral is equal to L(s, πv × τv).

2. The covering group case

The twisted doubling integrals can also be developed conceptually for Brylinski-
Deligne extensions of classical groups [3]. We now describe some basics of the
Brylinski-Deligne covering groups [1] and discuss some necessary modifications of
the twisted doubling integrals in the covering group case.

2.1. Multiplicative K2-torsors. Let G be a connected reductive group over a
number field F . In [1], Brylinski and Deligne considered the category of multi-
plicative K2-torsors on G; these are extensions of G by the sheaf K2 of Quillen’s
K2 group in the category of sheaves of groups over the big Zariski site of Spec(F ):

1 → K2 → G→ G→ 1.

Brylinski and Deligne gave an elegant and functorial classification of this category
in terms of enhanced root-theoretic data (or BD data), similar to the classification
of split connected reductive groups by their root data.

2.2. Topological extensions. We now assume that the base field F contains a
full set of n-th roots of unity. Then at every local place v, there is a functor from
the category of multiplicative K2-torsors G on G to the category of topological
central extensions:

1 → µn → Gv → Gv = G(Fv) → 1,
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which glues to a central extension of the adelic group

1 → µn → G(A) → G(A) → 1.

The global extension is equipped with a natural splitting G(F ) → G(A). This
naturally leads to the notion of automorphic forms on this class of groups. These
topological central extensions may be considered of “algebraic origin” and can be
constructed using cocycles which are essentially algebraic in nature.

In the linear case, the theory of Rankin-Selberg integrals relies heavily on the
uniqueness of certain models, in particular the Whittaker model. This is no longer
true for covering groups and therefore it is fundamentally difficult to find integral
representations for L-functions for covering groups.

2.3. Twisted doubling integrals. From now on, G is either Sp(W ) or SO(W ).
Here we briefly discuss several non-trivial issues when developing the twisted dou-
bling integrals in the covering group setup. For covers of symplectic groups, the
unfolding argument and unramified calculation were carried out in [7] using explicit
2-cocycles (see also [4] for a brief description of the method).

The first is to find suitable multiplicative K2-torsor on G
�,k such that its pull-

back to G via ι : G×G→ G�,k gives the desired multiplicative K2-torsor G. This
is done in terms of the BD data. It is not difficult to construct a good candidate
of BD data but it is a non-trivial job to verify that this candidate is a BD data
for G�,k.

Another key ingredient is the construction of analogues of the generalized Speh
representations in the covering group case. This is unknown in general. The usual
construction of residues of Eisenstein series will not work nicely in the covering
group setup. We refer the reader to relevant sections in [3] for more details on this
matter.

Remark 4. Another method to obtain L-functions is the constant terms of Eisen-
stein series on Brylinski-Deligne covering groups [6]. A consequence of this cal-
culation is the meromorphic continuation of many interesting L-functions. It is
an interesting question to compare these L-functions with those obtained from the
twisted doubling integrals.
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Katz type p-adic L-functions and applications

Fabrizio Andreatta

(joint work with Adrian Iovita)

In previious work I and Adrian Iovita have constructed p-adic L-functions, for
p ≥ 5, associated to a quadratic imaginary field K in which p does not split and
an eigenform f , of weight k ≥ 2, level Γ1(N) and nebentypus ǫ. We further
assume that N ≥ 4 is prime to p and that there exists an ideal N ⊂ OK such that
OK/N ∼= Z/NZ (Heegner hyp.).

Such p-adic L-function interplates the algebraic part Lalg(f, χ
−1) of the special

L-values L
(
f, χ−1, 0

)
for χ ∈ Σ, where Σ is the set of central critical (for f)

algebraic Hecke characters. The case p split has been treated by Katz [4], for f
an Eisenstein form, and by Bertolini, Darmon and Prasanna in [2], for f a cusp
newform. The starting point is the following expression, for χ of∞-type (k+j,−j):

Lalg

(
f, χ−1

)
:=

∑

A∈Pic(OK)

χ−1j (A)δjk(f)
(
A ∗ (A, tA, ωA)

)

where

• χj = χ ·Normj

• A is an elliptic curve with CM by OK ,
• tA is a generator of A[N],
• ωA is a non-zero Néron differential,
• A∗A is the quotient elliptic curve A/A[A], A∗tA is the image of tA (taking
A prime to N), A ∗ ωA is the differential on A ∗A whose pull back to A is
ωA.

• δk(f) =
1

2πi

(∂(f)
∂τ + kf

τ−τ
)
is the Shimura-Maas operator.

Notice that δjk(f) is a C∞-section of the k + 2j-power of the Hodge bundle
on X1(N). Using the trivialization of the Hodge bundle at the point (A, tA) of

X1(N) provided by A∗ωA we get that δjk(f)|A∗(A,tA) is a scalar, namely δjk(f)
(
A∗

(A, tA, ωA)
)
, times

(
A ∗ ωA

)k+2j
. One then proves the following result, extending

to the case that p is inert or ramified in K work of Katz and Bertolini-Darmon-
Prasanna,

Theorem ([1]) Assume that K has odd discriminant. Then, there exists a locally

analytic function Lp
(
f, χ−1

)
on the p-adic completion Σ̂ of the set Σ of central

critical Hecke characters whose values at χ ∈ Σ is Lalg

(
f, χ−1

)
(up to certain Euler

factors at p).

In the case that f is associated to an Eisenstein series for the finite character
of χ we omit f and we write Lp

(
χ−1

)
for the p-adic L-function of the theorem.
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We now consider an elliptic curve E, with CM by OK , defined over Q (so that
K has class number 1). A classical result d Deuring states that the Hasse-Weil
L-function L(E, s+1) is the L-function L(νE , s) associated to an algebraic Hecke
character of ∞-type (1, 0). Let ν∗E = νE ◦ c the complex conjugate character. We
then have the following formula, generalizing a result of Rubin [5] fo p split in K:

Theorem Assume that L(E, 1) = 0 and L′(E, 1) 6= 0 and that p is inert in K.
Then, there exists Q ∈ E(Q) of infinite order such that

Lp
(
(ν∗E)

−1) ≡ (logωE
Q)2

p-adic period
mod K∗.

Here logωE
is the formal p-adic logarithm on E at p defined by a Néron differ-

ential ωE .

The proof follows closely the strategy of [3] in the case p split in K. The elliptic
curve E is defined by a weight two cuspform f = ϑνE , the theta series associated
to νE . We have two ingredients.

The first, that provides the right hand side of the equality, is a p-adic Gross-
Zagier kind of formula, proven in [1] in the case tht p is not split. It relates the

values of Lp
(
ϑνE , χ

−1), for χ ∈ Σ̂ classical of∞-type (1, 1), to the p-adic logarithm
of Heegner points.

The second ingredient, that provides the left hand side of the equality, uses that
Lp

(
ϑνE , χ

−1) splits as the product of the p-adic L-functions associated to the two
Hecke characters νE and ν∗E (and χ). This is proven for classical Hecke characters
using such a decomposition for classical complex L-values and then arguing by

density of Σ ⊂ Σ̂.
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Eisenstein series and the cubic moment for PGL2

Paul D. Nelson

Motohashi [1] established a summation formula relating the fourth moment of the
Riemann zeta function on the critical line to the cubic moment of central L-values
of modular forms:

(1)

∫

t∈R
|ζ(1/2 + it)|4h(t) dt =

∑

ϕ

L(ϕ, 1/2)3

L∗(ϕ× ϕ, 1)
h̃(rϕ) + (· · · ).

Here

• h is a test function,
• ϕ traverses the Hecke–Maass cusp forms on SL2(Z),
• 1/4 + r2ϕ is the eigenvalue of ϕ,

• h̃ is an explicit integral transform of h,
• (· · · ) denotes analogous contributions from holomorphic forms and Eisen-
stein series, together with some “main terms.”

Michel–Venkatesh [2] suggested a strikingly simple proof sketch of Motohashi’s
formula. Write E∗s : SL2(Z)\H → C for the normalized Eisenstein series, whose
Fourier expansion has the shape E∗s (x+iy) =

∑
± ξ(1±2s)y1/2±s+(· · · ). Working

formally for now, we may evaluate the (divergent) integral

(2)

∫ ∞

0

(E∗0 )
2(iy) d×y

in two ways. On the one hand, by Mellin–Parseval expansion and the theory of
Hecke integrals, we obtain

(3)

∫

t∈R
(

∫ ∞

0

E∗0 (iy)y
it dy

y︸ ︷︷ ︸
∼ζ(1/2+it)2

)(

∫ ∞

0

E∗0 (iy)y
−it dy

y︸ ︷︷ ︸
∼ζ(1/2−it)2

)
dt

2π

where ∼ denotes equality up to a suitable Γ-factor. On the other hand, by spectral
expansion over L2(SL2(Z)\H) and the theory of Hecke/Rankin–Selberg integrals,
we obtain

(4)
∑

ϕ

(

∫

SL2(Z)\H
ϕE∗0E

∗
0

︸ ︷︷ ︸
∼L(ϕ,1/2)2

)

∫ ∞

0

ϕ(iy)
dy

y︸ ︷︷ ︸
∼L(ϕ,1/2)

+(· · · ).

This proof sketch may be implemented rigorously. The basic ideas for doing
so were suggested by Michel–Venkatesh [3, §4.5.3], using ideas of Zagier [6, 5]; we
refer to [4, §11] for details. Take s ∈ C3 small and generic; eventually, let it tend
to zero. On the one hand, the regularized integral

(5)

∫ reg

E∗s1(iy)E
∗
s2(iy)|y|s3 d×y
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may be defined as in, for instance, the integral representation

ζ(s) ∼
∫ reg

θ(iy)|y|s/2 d×y

for the Riemann zeta function in terms of the Jacobi theta function. Such regular-
ized integrals enjoy a modified form of Parseval’s identity featuring some additional
degenerate terms (see [4, §11.2]). On the other hand, for a suitable linear com-
bination E of the Eisenstein series E∗1/2±s1±s2 , the difference E∗s1E

∗
s2 − E lies in

L2(Γ\H), and thus admits a spectral expansion. Carefully “commuting” this spec-
tral expansion with the regularized y-integral leads to a formula like Motohashi’s,
but for some specific choices of weight functions h and h̃ (given by Γ-factors).

We obtain more general weights h, h̃ by working with more general Eisenstein
series defined on the group quotient Γ\G := PGL2(Z)\PGL2(R). For f belonging
to a suitable induced representation I(s) ⊆ C∞(G), we define Eis∗(f, s) : Γ\G→
C by the formula g 7→ ξ(1+2s)

∑
γ∈Γ∞\Γ f(γg) and then evaluate in two ways the

regularized diagonal integral

(6)

∫

y∈R×/Z×

Eis∗(f1, s1)(a(y)) Eis
∗(f2, s2)(a(y))|y|s3 d×y, a(y) :=

(
y

1

)
,

on the one hand via Mellin–Parseval, and on the other hand via spectral expansion
over L2(Γ\G). The latter involves generic automorphic forms ϕ with Fourier
expansions of the shape

(7) ϕ(g) =
∑

n∈Z 6=0

Wϕ(a(n)g)
λϕ(n)

|n|1/2 + (· · · ),

where

• Wϕ denotes the Whittaker function,
• λϕ(n) denotes the normalized Hecke eigenvalue, and
• (· · · ) denotes the constant term (if any).

Taking the limit as s tends to 0, we obtain a general formula of the shape: for all
f1 ⊗ f2 ∈ I(0)⊗ I(0),

(8)
∑

σ⊆L2
cusp(Γ\G)

L(σ, 1/2)3

L∗(σ × σ, 1)
hf1⊗f2(σ) =

∫

t

h̃f1⊗f2(t)|ζ(1/2 + it)|4 dt
2π

+ (· · · ),

where hf1⊗f2 , h̃f1⊗f2 are given in terms of local Hecke and Rankin–Selberg integrals
by the formulas

(9) hf1⊗f2(σ) :=
∑

ϕ∈B(σ)
(

∫

N\G
WϕWf1f2

∫

diag(R×,1)

Wϕ

(10) h̃f1⊗f2(t) :=

∫

y∈R×

Wf1(a(y)) d
×y

∫

y∈R×

Wf2 (a(y)) d
×y,

and (· · · ) denotes the contribution of Eisenstein σ as well as several degenerate
terms. We refer to [4, §11.3] for details.
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Addressing a problem raised by Michel–Venkatesh [3, §4.5.4], we show in [4, Thm
2.10] that a large class of weights h(σ) arise as hf (σ) for some f ∈ I(0)⊗I(0). By
“large class” we mean more precisely any h(σ) as in the “pre–Kuznetsov formula,”
i.e., given for some φ ∈ C∞c (G) by

(11) h(σ) =
∑

ϕ∈B(σ)
(

∫

G

Wϕφ)Wϕ(1).

Moreover, we describe h̃ explicitly. We obtain in this way a general “inverse” to
Motohashi’s formula, in the spirit of work of Ivic [7].

The above arguments are soft enough to go through adelically, over general
number fields. By exploiting the nonnegativity of L(σ, 1/2) and estimating cer-
tain weighted fourth moments, we obtain strong upper bounds for L(σ, 1/2). For
instance, [4, Thm 1.1] says that for any fixed number field F , any fixed cuspi-
dal automorphic representation σ of PGL2(A) and any quadratic character χ of
A×/F×,

(12) L(σ ⊗ χ, 1/2) ≪ C(χ)1/3+ε, L(χ, 1/2) ≪ C(χ)1/6+ε.

These estimates generalize and refine the results of many authors, most directly
those of Conrey–Iwaniec [8], who obtained similar estimates when F = Q. We
mention also the recent work of Petrow–Young [9, 10]. As a consequence, we
deduce improved estimates over general number fields for

• Fourier coefficients of half-integral weight automorphic forms,
• representation numbers of ternary quadratic forms, and
• prime geodesics on PSL2(Z[i])\H3.
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[3] Philippe Michel and Akshay Venkatesh. The subconvexity problem for GL2. Publ. Math.

Inst. Hautes Études Sci., (111):171–271, 2010.
[4] Paul D. Nelson. Eisenstein series and the cubic moment for PGL2. arxiv preprint, 2019.
[5] Don Zagier. The Rankin-Selberg method for automorphic functions which are not of rapid

decay. J. Fac. Sci. Univ. Tokyo Sect. IA Math., 28(3):415–437 (1982), 1981.
[6] Don Zagier. The mellin transform and other useful analytic techniques. http://people.mpim-

bonn.mpg.de/zagier/files/tex/MellinTransform/fulltext.pdf, 2006.
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The Manin constant and the modular degree

Michalis Neururer

(joint work with Abhishek Saha, Kęstutis Česnavičius)

Let E be an elliptic curve over Q of conductor N and φ : (XΓ0(N))Q ։ E be
a modular parametrisation. The pullback of the Néron differential ωE under φ
equals cφ · ωf , where ωf is the differential associated to the normalised newform
f ∈ S2(Γ0(N)) that has the same L-function as E and cφ is a non-zero rational
number, the Manin constant of φ. We call φ optimal if it has minimal degree
among the parametrisations of the isogeny class of E.

Conjecture 1 (Manin). For an optimal parametrisation cφ equals 1.

For optimal parametrisations it is known [7, 1.2] that if p | cφ, then p2 | N
(for earlier cases, see [6], [1], and [2]) and from [4, Thm. 3] that E has additive
potentially ordinary reduction of Kodaira type II, III, or IV at any prime p ≥ 11
with p | cφ.
For any congruence subgroup Γ between Γ1(N) and Γ0(N) let XΓ be the coarse
moduli space over Z associated to Γ and extend the definition of the Manin con-
stant to parametrisations φ by (XΓ)Q. We complement previous results on the
Manin constant with the following.

Theorem 2 (Theorems 1.1 and 1.2 in [8]). For an elliptic curve E over Q of
conductor N , and for a congruence group Γ with Γ1(N) ⊂ Γ ⊂ Γ0(N), every
surjection

φ : (XΓ)Q ։ E satisfies cφ | 6 · deg(φ),

and if N is cube-free (that is, if 8 ∤ N and 27 ∤ N) or if Γ = Γ1(N), then even

cφ | deg(φ);

more precisely, for every prime p, we have valp(cφ) ≤ valp(deg(φ))+ǫ(p,N), where

ǫ(p,N) =





1 if p = 2 with val2(N) ≥ 3 and there is no p′ | N with p′ ≡ 3(4),

1 if p = 3 with val3(N) ≥ 3 and there is no p′ | N with p′ ≡ 2(3),

0 otherwise,

and, if for some Γ ⊆ Γ′ ⊆ Γ0(N) the singularities of (XΓ′)Z(p)
are rational (the

definition is given below), then ǫ(p,N) = 0.

For the proof of this theorem, let P ∈ (XΓ)Q be a point with φ(P ) = 0 and ιP be
the associated embedding of (XΓ)Q into its Jacobian JΓ. By Jacobian functoriality
φ factors through the Jacobian and we denote the resulting map from JΓ to E by
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π. We obtain a commutative diagram

(XΓ)Q

E JΓ E.

ιP
φ

π∨

· degφ

π

Let JΓ be the Néron model of JΓ. Suppose ωf is a differential form in the lattice of
Néron differentials H0(JΓ,Ω

1) ⊆ H0(JΓ,Ω
1). Then also the pullback (π∨)∗(ωf )

would be a Néron differential in H0(E ,Ω1) ∼= ZωE and from deg φ · ωE = (π ◦
π∨)∗ωE = cφ(π

∨)∗(ωf ) we would be be able to conclude

cφ | degφ.
Thus we are led to the study of the lattice H0(JΓ,Ω

1). A closely related lat-
tice is H0(XΓ,Ω), the global sections of the relative dualising sheaf of XΓ. The
map ιP induces via pullback an isomorphism H0((XΓ)Q,Ω

1) ∼= H0(JΓ,Ω
1) by

Grothendieck–Serre duality. However the corresponding map at the integral level,

H0(JΓ,Ω
1) →֒ H0(XΓ,Ω)(⋆)

is not a priori an equality in H0((XΓ)Q,Ω
1) ∼= H0(JΓ,Ω

1) and we say that XΓ

has rational singularities, if it is. In Proposition 4 we obtain an explicit descrip-
tion of H0(XΓ0(N),Ω), so for the above argument, the following question becomes
important:

Question 3. For which Γ does XΓ have rational singularities? More generally,
for which p and Γ does (XΓ)Z(p)

have rational singularities?

We show that for the conclusion valp(φ) ≤ valp(deg(φ)) in Theorem 2 it is enough
that Γ ⊆ Γ′ and XΓ′ has rational singularities. So for the rest of this abstract we
set Γ = Γ0(N), noting that the conclusions in Theorem 2 can be deduced from
the results for Γ0(N). A theorem of Raynaud [9, Thm. 2] answers the question
positively for valp(N) ≤ 1 or p ≥ 5 and Γ = Γ0(N). Using known cases of Manin’s
conjecture we add several new cases whereXΓ0(N) has rational singularities, among
them the case valp(N) ≤ 2.
We now turn to the study of H0(XΓ0(N),Ω). Let f ∈ Sk(Γ0(N)) be a cusp form.
The Fourier expansion of f at a cusp c = γ∞ with γ ∈ SL2(Z) has the form

f |kγ(z) =
∑

n≥1
af (n; γ)e

2πinz
w(c)

and we define valp(f |c) = infn≥1(valp(af (n; γ))). Using an integral version of the
Kodaira–Spencer isomorphism together with the structure of the formal comple-
tion of XΓ0(N) along the cusps, we obtain

Proposition 4 (Proposition 5.14 in [8]). For f ∈ S2(Γ0(N)) with rational Fourier
coefficients, the differential form ωf lies in H0(XΓ0(N),Ω) if and only if for all
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primes p and all cusps c = A/L with gcd(A,N) = 1 and L|N

valp(f |c) ≥
{
−valp(

N
L ) if valp(L) ∈ {0, valp(N)},

−valp(
N
L ) +

1
p−1 if 0 < valp(L) < valp(N).

If f ∈ Sk(Γ0(N)) is a newform, we can associate to it an irreducible cuspidal
automorphic representation πf of GL2(AQ) which factorises as a tensor product
of GL2(Qp)-representations πf,p. These local representations have a Whittaker
model and the Fourier coefficients of f at cusps can be expressed in terms of
evaluations of a special function in this model, the Whittaker newform Wπf,p,ψ :
GL2(Qp) → C. These can in turn be studied with a method developed by Saha
and his collaborators based on his ‘basic identity’ [3]. Our analysis depends heavily
on the type of the representation πf,p and so I will only treat a very specific case
for illustration purposes: If p is odd, valp(N) = 2, and πf,p is supercuspidal, then

valp(f |1/p) ≥ valp(Wπf,p,ψ(
(

0 p−2

−1 −p−1

)
))

and

Wπf,p,ψ(
(

0 p−2

−1 −p−1

)
) = ± 1

p−1 + p1/2

p−1
∑

χ, cond(χ)=1 ǫ(1/2, χ)ǫ(1/2, χ
−1π),

where the sum is over all characters of Z×p of conductor 1, and ǫ are the epsilon
factors of the corresponding GL1(Qp) or GL2(Qp)-representations. Viewing χ as a
character of Z×p /(1+ pZp) ∼= Fp, we can relate both epsilon factors to Gauss sums
of characters over finite fields. Using classical results on the p-adic valuations of
Gauss sums we are able to show valp(f |1/p) ≥ − 1

2 + 1
p−1 . We carefully treat all

possible cases for πf,p and derive general lower bounds for valp(f |c) for any cusp
c (Theorem 1.3 of [8]). The proof of Theorem 2 now follows from combining our
bounds with Proposition 4.
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Congruence for the Klingen-Eisenstein series and Harder’s conjecture

Hidenori Katsurada

For a non-increasing sequence k = (k1, . . . , kn) of non-negative integers we denote
by Mk(Spn(Z)) and Sk(Spn(Z)) the spaces of modular forms and cusp forms of

weight k (or, weight k, if k = (

n︷ ︸︸ ︷
k, . . . , k)) for Spn(Z), respectively. For a Hecke

eigenform F ∈Mk(Spn(Z)), we denote by Q(F ) the Hecke field of F . Let f(z) be
a primitive form in S2k+j−2(SL2(Z)), and let L(s, f) be Hecke’s L-function of f .
Suppose that a ‘big prime’ p of Q(f) divides the algebraic part Lalg(k + j, f) of
L(k + j, f). Then, Harder [3] conjectured that there exists a Hecke eigenform F
in S(k+j,k)(Sp2(Z)) such that

λF (T (p)) ≡ λf (T (p)) + pk−2 + pj+k−1 mod p′(Hk,j,p)

for any prime number p, where for a Hecke eigenform G and a Hecke operator
T , let λG(T ) denote the eigenvalue of the Hecke operator T on G, and p′ is a
prime ideal of Q(f) ·Q(F ) lying above p. We call the above congruence Harder’s
congruence. One of main difficulties in treating this congruence arises from the
fact that this is not concerning the congruence between Hecke eigenvalues of two
Hecke eigenforms of the same weight. Indeed, the right-hand side of the above is
not the Hecke eigenvalue of a Hecke eigenform if j > 0. Several attempts have been
made to overcome this obstacle (cf. [4], [1]). However, as far as we know, Harder’s
congruence (Hk,j,p) holds for all primes p only in the case (k, j) = (10, 4) (cf.
[2]). In this talk we consider a conjecture concerning the congruence between two
liftings of Hecke eigenforms (of integral weight) of degree two. More precisely, let
k, j and n be positive even integers such that k ≥ 4, and for the f above, let In(f)
be the Duke-Imamoglu-Ikeda lift of f to S j

2+k+
n
2−1

(Spn(Z)) with n even. For a

sequence k =
(

n︷ ︸︸ ︷
j

2
+ k +

n

2
− 1, . . . ,

j

2
+ k +

n

2
− 1,

n︷ ︸︸ ︷
j

2
+

3n

2
+ 1, . . . ,

j

2
+

3n

2
+ 1

)
,

let [In(f)]
k be the Klingen-Eisenstein lift of In(f) toMk(Sp2n(Z)). Moreover, for a

Hecke eigenform F in S(k+j,k)(Sp2(Z)), let A
(I)
2n (F ) be the lift of F to Sk(Sp2n(Z))

whose standard L-function L(s, A
(I)
2n (F ), St) is given in terms of the spin L-function

L(s, F, Sp) of F as L(s, A
(I)
2n (F ), St) = ζ(s)

∏n
i=1 L(s+n/2+ j/2+k−1− i, F, Sp).

The existence of this lift can be proved by Arthur’s multiplicity formula (cf. [2]).
Fix a Z-module Mo of Mk(Spn(Z)) such that Mo ⊗Z C = Mk(Spn(Z)). Let Ln
be the Hecke ring associated to the Hecke pair (Γ (n), GSp+n (Q)), and Lk

n be its
subring consisting of all elements T such that Mo|T ⊂Mo. Then, we propose the
following conjecture:

Conjecture K. Under the above notation and the assumption, there exists a Hecke
eigenform F in S(k+j,k)(Sp2(Z)) such that

λ[In(f)]k(T ) ≡ λ
A

(I)
2n (F )

(T ) mod p′ for any T ∈ Lk
n.



3584 Oberwolfach Report 57/2019

This conjecture derives Harder’s conjecture. That is,

Theorem 1. Let the notation and the assumption be as in Conjecture K.

(1) Harder’s congruence (Hk,j,p) holds for all prime p in the case j ≡ 0 mod 4
if Conjecture K holds for n = 2.

(2) Harder’s congruence (Hk,j,p) holds for all primes p in the case j ≡ 2 mod 4
if Conjecture K holds for n = 4.

The advantage of this formulation is that one can compare the Hecke eigenvalues
of two Hecke eigenforms. Indeed, by using the same argument as in Katsurada-
Mizumoto [6] combined with [5], under the above assumption, we can prove that
there exists a Hecke eigenform of weight G ∈ Mk(Sp2n(Z)) such that G is not a
constant multiple of [In(f)]

k and

λG(T ) ≡ λ[In(f)]k(T ) mod p′ for any T ∈ Lk
n.

Therefore, to prove the above conjecture, it suffices to show that G is a lift of type
A(I). To state a main result of this talk, for a prime number p, let ζp be the p-th
root of unity, and let Cp be the p-Sylow subgroup of the ideal group of Q(ζp). For
a character η : Gal(Q(ζp)/Q) −→ C×, let Cηp denote the η-isotypical part of Cp.
Moreover for the p-adic cyclotomic character χ, we denote by ω the Teichmüller
character of Gal(Q(ζp)/Q) corresponding to χ. Let f be a primitive form in
S2k+j−2(SL2(Z)). For two positive integers l1, l2 ≤ 2k + j − 3 such that l1 − l2 is

odd, the value L(l1, l2; f) :=
L(l1, f)L(l2, f)

πl1+l2(f, f)
belongs to Q(f). Let f1, . . . , fd be a

basis of S2k+j−2(SL2(Z)) consisting of primitive forms with f1 = f and let Df be

the ideal of Q(f) generated by all
∏d
i=2(λfi (T (m))− λf (T (m))’s (m ∈ Z>0).

We denote by Hr(Z)>0 the set of positive definite half-integral symmetric ma-
trices over Z of size r, and for a modular form H for Spr(Z) and A ∈ Hr(Z)>0,
let a(A,H) denote the A-th Fourier coefficient of H . For a Hecke eigenform
F ∈ Sk+j/2(Sp2(Z)) and a positive even integer m ≤ k + j/2− 2, put

Lalg(m,F, St) =
L(m,F, St)

π2(k+j/2+m)+m−3(F, F )
.

We note that for any A,B ∈ H2(Z)>0 a(A,F )a(B,F )Lalg(m,F, St) belongs to
Q(F ).

Theorem 2. Let k and j be positive integers such that k ≡ 0 mod 2, j ≡ 0 mod 4,
k ≥ 4, and put k = (k + j/2, k + j/2, j/2 + 4, j/2 + 4). Let f be a primitive
form in S2k+j−2(SL2(Z)) and p be a prime ideal of Q(f) and let p be the prime
number divisible by p. Moreover let ρf : Gal(Q̄/Q) −→ GL(Vf ) ∼= GL2(Kp̃) be the
Galois representation attached to L(s, f), where K is a sufficiently large number
field containing Q(f), and p̃ be a prime ideal of K lying above p. Suppose the
following:

(C.1) p > 2k + 2j.
(C.2) p divides Lalg(k + j, f)/Lalg(k + j/2, f).
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(C.3) p does not divide

ζ(−1− j/2)ζ(1− j/2)a(A1, I2(f))a(A, [I2(f)]
k)Lalg(j/2 + 2, I2(f), St)

for some A1 ∈ H2(Z)>0 such that p does not divide det(2A1) and A ∈
H4(Z)>0.

(C.4) p does not divide Df .
(C.5) ρ̄f is absolutely irreducible.
(C.6) ρf (Gal(Q̄/Q(ζp∞)) contains SL2(Zp) (with a suitable choice of a lattice

of Vf )
(C.7) f is p-ordinary.

(C.8) #Cω−j

p = #Cω−j−2

p = #Cω−j/2

p = 1.
(C.9) p does note divide ζ(−1− j)ζ(1 − j)ζ(1 − j/2)ζ(−1− j/2).

(C.10) p divides neither L(k + j/2, k + j + 1; f) nor L(k + j − 2, k + j − 1; f).

Then there is a Hecke eigenform F0 in S(k+j,k)(Sp2(Z)) such that

λ[In(f)]k(T ) ≡ λ
A

(I)
4 (F0)

(T ) mod p′ for any T ∈ Lk
n.

Remark. The condition (C.3) can be checked though it is rather elaborate. The
conditions (C.4)–(C.10) can easily be checked.

Corollary 3. Under the same assumption as Theorem 2, Harder’s congruence
(Hk,j,p) holds for all primes p.

Theorem 4. Harder’s congruence (Hk,j,p) holds for all primes p in the case
(k, j) = (10, 4), (14, 4), (12, 8), (10, 12), (8, 16), (6, 20), (4, 24).

References

[1] J. Bergström and N. Dummigan, Eisenstein congruences for split reductive groups, Sel.
Math. 22 (2016), 1073-1115

[2] G. Chenevier and J. Lannes Automorphic forms and even unimodular lattices, Springer
(2019)

[3] G. Harder A congruence between a Siegel and an elliptic modular form, manuscript, 2003,
reproduced in: J.H. Brunier, et al. (Eds), The 1-2-3 of Modular Forms, Springer Verlag,
Berlin, Heidelberg, 2008, 247–162.

[4] T. Ibukiyama Conjectures of Shimura type and Harder type revisited, Comment. Math.
Sancti Pauli 63 (2015), 79-103.

[5] T. Ibukiyama, Automorphic differential operators of depth 2 weights and pullback formula,
preprint 2019.

[6] H. Katsurada and S. Mizumoto Congruences for Hecke eigenvalues of Siegel modular
forms Abh. Math. Semin. Univ. Hamburg 82 (2012), 129-152



3586 Oberwolfach Report 57/2019

Isolation of the cuspidal spectrum and application to the
Gan-Gross-Prasad conjecture for unitary groups

Raphaël Beuzart-Plessis

(joint work with Yifeng Liu, Wei Zhang, Xinwen Zhu)

In a work of 2005 [7], Venkatesh and Lindenstrauss have introduced a new method
to show the existence of many (spherical) cusp forms on arithmetic locally sym-
metric spaces. Their strategy is to take advantage of the fact that the infinitesimal
character and Hecke-eigenvalues of Eisenstein series satisfy simple relations e.g. for
the standard Eisenstein series E1/2+λ on the arithmetic quotient PGL2(Z)\H of
the upper half-plane, we have

∆E1/2+λ = (
1

4
− λ2)E1/2+λ, TpE1/2+λ = (pλ + p−λ)E1/2+λ

where ∆ and Tp stand for the hyperbolic Laplacian and the Hecke operator at p
respectively. Using these relations, they were able to write down explicit linear
combinations of Hecke operators and Archimedean convolution operators that kill
the continuous and residual spectrum. Combined with some simple (pre-)trace
formula, they show that these operators are not all identically zero thus deducing
the existence of cusp forms (in the example above, this gives a short proof of the
existence of even Maass cusp forms). Moreover, making the argument quantitative,
they were able to deduce from this construction the Weyl’s law for cusp forms on
congruence quotients of symmetric spaces associated to split adjoint groups over
Q. For more general applications, the Lindentrauss-Venkatesh’s construction has
however two flaws that we would like to get rid of:

• The operators so constructed always kill some interesting cusp forms like
symmetric square lifts of Maass forms (However, these special forms are
very sparse and so don’t affect the Weyl’s law);

• The construction only works for cusp forms which are spherical at the
Archimedean place.

In the recent preprint [1], Y. Liu, W. Zhang, X. Zhu and I were able to go
beyond the work of [7] by introducing a new way to isolate the cuspidal spectrum
that doesn’t have the two flaws described above. To be more specific, let G be a
connected reductive group defined overQ. A crucial ingredient for our construction
is to work systematically with convolution operators which are not necessarily
compactly supported at the Archimedean place but nevertheless (very) rapidly
decreasing. More precisely, introduce the Schwartz space S(G(R)) of G(R) as the
space of C∞ function f : G(R) → C such that for every polynomial differential
operator D on G(R), the function Df is bounded. This space is stable under
convolution and admits a natural topology making it into a Fréchet algebra. We
fix a compact-open subgroup K =

∏
pKp (i.e. a level) of G(Af ) =

∏′G(Qp)
(where

∏′
stands for the restricted product) and S be a finite set of primes such

that for p /∈ S, Kp is a hyperspecial maximal compact subgroup of G(Qp). We
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consider the global space of functions given by the restricted tensor product

S(G(A))K = S(G(R)) ⊗
′⊗

p

Cc(Kp\G(Qp)/Kp)

i.e. the space of linear combinations of functions on G(A) of the form f∞
∏
p fp

where f∞ ∈ S(G(R)), fp ∈ Cc(Kp\G(Qp)/Kp) and fp = 1Kp for almost all p.
Then, S(G(A))K will be our space of convolution operators acting on the right
of L2(G(Q)\G(A)/K). For f ∈ S(G(A))K , we denote by R(f) the associated
convolution operator.

To construct the quasi-cuspidal operators we are looking for, we will use the
action of certain multipliers. More precisely, the Archimedean multiplier space
M∞(G) is defined as the space of continuous S(G(R))-bimodule endomorphisms of
S(G(R)). This can be alternatively described as the space of invariant distributions
on G(R) which are “rapidly decreasing” in a suitable sense (more precisely: which
extend by continuity to some space of “uniform moderate growth” test functions)
acting on S(G(R)) by convolution. For p /∈ S, and since Cc(Kp\G(Qp)/Kp)
is unital and commutative by the Satake isomorphism, the analog of M∞(G)
is the spherical Hecke algebra Mp(G) = Cc(Kp\G(Qp)/Kp) acting on itself by
convolution. Then, we introduce the space of S-multipliers as the restricted tensor
product

MS(G) = M∞(G) ⊗
′⊗

p/∈S
Mp(G)

which acts on S(G(A)) by convolution.
Before stating the main result, we need to introduce a definition. Let π =

π∞ ⊗⊗′
p πp be an irreducible admissible representation of G(A) with nontrivial

K-invariant vectors (i.e. πK 6= 0). We say that π is S-CAP if there exists an
Eisenstein series E on G(Q)\G(A)/K induced from a proper parabolic subgroup
with the same system of Hecke-eigenvalues as π at every prime p /∈ S. These
CAP representations are the one we basically cannot isolate from the continuous
(and residual) spectrum. This is partially explained by Arthur-Langlands conjec-
ture according to which the cuspidal CAP representations are the one that should
belong to the same L-packet as a representation in the residual spectrum. Inci-
dentally, these are also the cuspidal representations that are expected to violate
the Generalized Ramanujan Conjecture. We can now state (a weak form of) the
main result of [1].

Theorem 1. Assume that π is not S-CAP. Then, there exists a S-multiplier
µπ ∈ MS(G) such that for every f ∈ S(G(A))K , we have:

• R(µπ ⋆ f) acts by zero on the orthogonal complement of the cuspidal sub-
space L2

cusp(G(Q)\G(A)) ⊆ L2(G(Q)\G(A));
• π(µπ ⋆ f) = π(f).

The proof of the theorem roughly goes as follows. Assume for simplicity that
G is split. Let B ⊂ G be a Borel subgroup, A ⊂ B be a maximal torus and
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W be the Weyl group of A in G. Let Â = Hom(A,Gm) ⊗ C× be Langlands
dual torus. Then, by the Satake isomorphism, for p /∈ S the system of Hecke-

eigenvalues of π at p can be identified with an element λp(π) ∈ Â/W . Similarly, by
Harish-Chandra’s isomorphism, the infinitesimal character of π∞ can be identified

with an element λ∞(π) ∈ Lie(Â)/W . Set XS = Lie(Â)/W × ∏
p/∈S Â/W and

λS(π) = (λ∞(π), (λp(π))p/∈S) ∈ XS . We define similarly λS(E) ∈ XS when E is

an Eisenstein series on G(Q)\G(A)/K. Let XS
Eis ⊂ XS be the subset consisting

of λS(E) for every Eisenstein series on G(Q)\G(A)/K induced from a proper
parabolic. The space of multipliers MS(G) can be seen as a space of functions on
XS and the theorem is essentially saying that XS

Eis can be written as the common
zero set of a family of multipliers µi ∈ MS(G), i ∈ I. To show this, we need to
construct enough Archimedean multipliers (as the natural relations describing XS

Eis

are obtained by comparing each non-Archimedean component to the Archimedean
one). The construction of a suitable space of Archimedean multipliers for the
Schwartz space takes a significant part of [1] but we will not discuss it here (we
note through that for the usual space of test functions C∞c (G(R)), the algebra of
multipliers is rather small see [2, Final remark]).

Finally, we apply this construction to the Gan-Gross-Prasad conjecture for uni-
tary groups. More precisely, let E/F be a quadratic extension of number fields,
V be a Hermitian space of dimension n over E and V ′ = V ⊕⊥ 〈e〉 where e has
norm (e, e) = 1. Let π and π′ be cuspidal automorphic representations of U(V )
and U(V ′) respectively. Consider the following linear form on π ⊗ π′ (an example
of an automorphic period):

PU(V ) : ϕ⊗ ϕ′ ∈ π ⊗ π′ 7→
∫

U(V )(F )\U(V )(AF )

ϕ(h)ϕ′(h)dh.

Let πE , π
′
E be the base-change of π, π′ with respect to the extension E/F (these are

automorphic representations of GLn,E and GLn+1,E respectively) and L(s, πE ×
π′E) be the associated Rankin-Selberg L-function (normalized so that the center
of symmetry is at 1/2). In [1], we prove the following result which is the “stable
case” of a conjecture of Gan-Gross-Prasad [3].

Theorem 2. Assume that πE and π′E are cuspidal. Then, the following assertions
are equivalent:

(1) L(1/2, πE × π′E) 6= 0;
(2) There exist a Hermitian space W of dimension n over E and two cuspidal

automorphic representations σ, σ′ of U(W ), U(W ′) such that σE = πE,
σ′E = π′E (in other words σ, π on one hand and σ′, π′ on the other hand
“belongs to the same L-packet”) and PU(W ) |σ⊗σ′ 6= 0.

We actually also establish at the same time a refined version of the Gan-Gross-
Prasad conjecture originally due to Ichino-Ikeda [5] (see [4] for the case of unitary
groups) giving a precise relation between L(1/2, πE × π′E) and (the square of the
module of) the period PU(V )(ϕ ⊗ ϕ′) for ϕ ∈ π and ϕ′ ∈ π′. This formula is a
higher rank generalization of a famous result of Waldspurger on toric periods for
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GL(2) [8]. These results were already obtained by W. Zhang [9], [10] under more
stringent local assumptions on π, π′ using a comparison of relative trace formulas
proposed by Jacquet and Rallis [6]. These local assumptions originate from the
use of simple versions of the aforementioned trace formulas: by imposing some
local conditions on the test functions, the continuous and residual spectrum are
automatically killed and the spectral side of the trace formulas become analytically
harmless. Theorem 1 allows for such a drastic simplification without imposing local
conditions on the test functions and this is essentially the main new input that
allows us to establish Theorem 2.
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[4] R. Neal Harris, A refined Gross-Prasad conjecture for unitary groups, Int. Math. Res. Not.
IMRN 2014, no. 2, 303–389.

[5] A. Ichino, T. Ikeda, On the periods of automorphic forms on special orthogonal groups and
the Gross-Prasad conjecture, Geom. Funct. Anal. 19 (2010), no. 5, 1378–1425.

[6] H. Jacquet, S. Rallis, On the Gross-Prasad conjecture for unitary groups, in “On certain
L-functions”, 205–264, Clay Math. Proc., 13, Amer. Math. Soc., Providence, RI, 2011.

[7] E. Lindenstrauss, A. Venkatesh, Existence and Weyl’s law for spherical cusp forms, Geom.
Funct. Anal. 17 (2007), no. 1, 220–251.

[8] J.-L. Waldspurger, Sur les valeurs de certaines fonctions L automorphes en leur centre de
symétrie, Compositio Math. 54 (1985), no. 2, 173–242.

[9] W. Zhang, Fourier transform and the global Gan-Gross-Prasad conjecture for unitary
groups, Ann. of Math. (2) 180 (2014), no. 3, 971–1049.

[10] W. Zhang, Automorphic period and the central value of Rankin-Selberg L-function, J. Amer.
Math. Soc. 27 (2014), no. 2, 541–612.

Modular Forms and Invariant Theory

Gerard van der Geer

(joint work with Fabien Cléry and Carel Faber)

LetAg be the moduli space of principally polarized abelian varieties of dimension g.
This is an algebraic stack over Z and it comes with a vector bundle E of rank g. For
every irreducible representation ρ of GL(g) there is a corresponding vector bundle

Eρ that extends to a Faltings-Chai compactification Ãg. Sections of Eρ over Ãg

are Siegel modular forms of weight ρ. Over C these correspond to holomorphic
functions f : Hg → W (with W the representation space of ρ) such that f(γ(τ)) =
ρ(cτ + d)f(τ) for all γ ∈ Γg := Sp(2g,Z).
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We use invariant theory to describe in principle all (vector-valued) modular forms
on Γg for g = 2 and g = 3. The idea is that via the Torelli map t : Mg → Ag the
moduli space of curves Mg is close to Ag for g = 2 and 3.

First we do g = 2. A curve C of genus 2 over a field of characteristic 6= 2 admits
a description y2 = f(x) with f of degree 6 with discriminant 6= 0. Let V be the

vector space 〈x1, x2〉 and write f in homogeneous form f =
∑6

i=0 x
6−i
1 xi2, a binary

sextic. The group GL(V ) acts and M2 can be written as a stack quotient

M2 ∼ [X 0/GL(V )]

with X = Sym6(V )⊗det(V )−2 and X 0 ⊂ X the open set corresponding to binary
sextics with non-vanishing discriminant. A curve y2 = f comes with a basis of
H0(C,Ω1

C), namely dx/y, x dx/y.
The pullback to of the Hodge bundle E under the Torelli morphism t : M2 → A2

is the Hodge bundle on M2 and its pullback under the morphism X 0 → M2 is
the equivariant bundle V . The pullback of det(E) to Sym6(V ) is det(V )3. An
immediate consequence is that the pullback of a scalar-valued modular form is an
invariant, that is, a polynomial in the coefficients ai of f invariant under SL(V ).
The ring I of invariants is known by work of Clebsch and Bolza in the 19th century
and generated by invariants A,B,C,D,E of degrees 2, 4, 6, 10, 15 in the ai.

If R2 = R2(C) is the ring of scalar-valued Siegel modular forms of degree 2 we
thus get a map R2 → I. Such a map was already used by Igusa in the 1960s, who
determined the structure of R2 in [7, 8], but he used theta functions and Thomae’s
formulae to relate these to cross-ratios of the zeros of binary sextics. Not every
invariant corresponds to a holomorphic modular form since t(M2) 6= A2 and the
complement is the zero locus of the modular form χ10. We thus get maps

R2 −→ I −→ R2[1/χ10] .

We extended this in [2] to vector-valued Siegel modular forms by using covari-
ants, that is, invariants for the action of GL(V ) on V ⊕ Sym6(V ). A covariant
can be seen as a form in the ai and in x1, x2. The most basic covariant is f , the
universal binary sextic. The ring of covariants C was studied by Grace and Young
in the early 20th century and has 26 generators.

Let M = ⊕j,kMj,k(Γ2) be the module of vector-valued modular forms over R2.
(It is actually a ring.) We now get by pullback maps

M → C ν−→Mχ10

and we see that covariants map to meromorphic modular forms that become holo-
morphic after multiplication by a power of χ10. If we apply ν to f , the most basic
covariant, we get a meromorphic modular form χ6,−2 of weight (6,−2). We can
calculate this form χ6,−2 very explicitly and can write it as

χ6,−2 =
6∑

i=0

αiX
6−i
1 X i

2

with αi meromorphic on H2 such that the coordinates χ5αi of χ5χ6,−2 with χ2
5 =

χ10 are holomorphic. Here the dummy variables X1, X2 are used to indicate the
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seven coordinates of χ6,−2. The main point is that the map ν is simply given by
substituting αi for ai.

This leads to a very efficient way for calculating the Fourier series of Siegel mod-
ular forms. For example, the website [1] gives Fourier series obtained in this way,
for all cases where dimSj,k(Γ2) = 1. Using ν we showed in [5] that dimSj,2 = 0
for j ≤ 52, a case where the usual ways to determine dimensions did not work (un-
til recent work of Chenevier-Täıbi, see this volume). We also determined without
great effort the structure of a number of modules of modular forms with character,
see [3]. As a final example, this method works also in positive characteristic and
allows for example the determination of the ring R2(F3), see [6].

The case g = 3 is analogous and treated in [4]. The Torelli map M3 → A3

is a double cover (in the sense of stacks) ramified along the hyperelliptic locus.
The role of χ10 for g = 2 is played here by χ18, a cusp form of weight 18 that
vanishes on the hyperelliptic locus. We can now look at Tρ = H0(M3,Eρ), the
space of Teichmüller modular forms. The involution defined by the double cover
M3 → A3 acts and Tρ splits as T+

ρ ⊕ T−ρ , the ±-eigenspaces. Then T+
ρ can be

identified with a space of Siegel modular forms of weight ρ. The square root χ9 of
χ18, introduced by Ichikawa, defines an odd Teichmüller modular form and χ9 T

−
ρ

lands in the even part.
The invariant theory of ternary quartics here plays the role that the invariant

theory of binary sextics plays for g = 2. In fact, a non-hyperelliptic curve of
genus 3 has as canonical image a plane quartic and the moduli space of these Mnh

3

is a quotient stack [X 0/GL(V )], where now V = 〈x1, x2, x3〉 and X 0 is an open
part of X = Sym4(V ) ⊗ det(V )−1. The role of covariants is played by so-called
concomitants. The most basic example is the universal ternary quartic f .

We now get maps

M → C ν−→Mχ9 ,

where M = ⊕ρTρ is the module of vector-valued Teichmüller modular forms over
the ring T3 of scalar-valued Teichmüller modular forms and C now denotes the
module of concomitants over the ring of invariants of ternary quartics. The im-
age of a concomitant is a meromorphic Teichmüller modular form that becomes
holomorphic after multiplication by an appropriate power of χ9. The universal
ternary quartic f defines a Teichmüller modular form χ4,0,−1 with the property
that χ4,0,8 = χ9χ4,0,−1 is the generator of the space of Siegel cusp forms S4,0,8(Γ3).
We can describe χ4,0,8 very precisely by developing the Schottky form, a Siegel
modular form that generates the space of cusp forms of degree 4 and weight 8,
in the normal bundle of the image of A1 × A3 in A4. The first non-trivial term
is ∆ ⊗ χ4,0,8. This allows the determination of the Fourier series of χ4,0,8 up to
high order. Again, the main point is that the map ν is given by substituting the
coordinates αI of χ4,0,−1 for the coefficients aI of the (universal) ternary quartic
f =

∑
I aIx

I in a concomitant.
The question arises which concomitants give rise to holomorphic modular forms.

We can express the order of the resulting meromorphic modular form ν(c) along
the hyperelliptic locus in terms of the order of the concomitant c along the locus of
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double conics. Again this leads to a very efficient method for calculating Fourier
series of Siegel modular forms of degree 3.
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CM values of higher automorphic Green functions

Stephan Ehlen

(joint work with Jan H. Bruinier and Tonghai Yang)

In my talk, I reported on our recent progress towards a conjecture of Gross and
Zagier on CM values of higher automorphic Green functions. In our preprint [1],
we consider automorphic Green functions on orthogonal Shimura varieties in great
generality and obtain algebraicity results on their CM values at “small” CM points.

In the following, we restrict to the classical situation of the automorphic Green
function on the product of two modular curves. Throughout, let Γ = SL2(Z) and
consider the automorphic Green function Gs defined for ℜ(s) > 1 by

Gs(z1, z2) = −2
∑

γ∈Γ
Qs−1

(
1 +

|z1 − γz2|2
2ℑ(z1)ℑ(γz2)

)
,

where Qs−1(t) =
∫∞
0

(t +
√
t2 − 1 cosh(u))−s du denotes the classical Legendre

function of the second kind and z1, z2 are in the complex upper half-plane H with
z1 /∈ Γz2. The function Gs is invariant under the action of Γ in both variables
and descends to a function on (X ×X) \Z(1), where X = Γ\H and Z(1) denotes
the diagonal, where it has a logarithmic singularity. It is an eigenfunction of
the hyperbolic Laplacian in both variables. Moreover, Gs has a meromorphic
continuation in s to the whole complex plane and satisfies a functional equation
relating the values at s and 1− s.
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Gross and Zagier considered certain linear combinations the Hecke translates

Gms (z1, z2) = Gs(z1, z2) | Tm = −2
∑

γ∈Mat2(Z)
det(γ)=m

Qs−1

(
1 +

|z1 − γz2|2
2ℑ(z1)ℑ(γz2)

)
(1)

of Gs, where Tm denotes the m-th Hecke operator, acting on any of the two
variables. Now we specialize the spectral parameter to s = 1+ j with j ∈ Z>0 and
for a weakly holomorphic modular form f =

∑
m cf (m)qm ∈M !

−2j of weight −2j
for Γ, we let

(2) G1+j,f (z1, z2) =
∑

m>0

cf (−m)mjGmj+1(z1, z2).

Finally, for a discriminant d < 0 we write Od for the order of discriminant d in the
imaginary quadratic field Q(

√
d), and let Hd be the corresponding ring class field.

Conjecture 1 (Gross–Zagier). Assume that cf (−m) ∈ Z for all m > 0. Let z1 be
a CM point of discriminant d1, and let z2 be a CM point of discriminant d2 such
that Gj+1,f (z1, z2) is defined at (z1, z2). Then there is an α ∈ Hd1 ·Hd2 such that

(d1d2)
j/2Gj+1,f (z1, z2) =

wd1wd2
4

· log |α|,(3)

where wdi = #O×di .

Gross, Kohnen, and Zagier provided numerical evidence [5, Chapter V.4], [4,
Chapter V.1] and considered the average of (d1d2)

j/2Gj+1,f (z1, z2) over all CM
points (z1, z2) of discriminants d1 and d2 and proved that it equals log |β| for
some β ∈ Q. Mellit proved the conjecture for z2 = i and j = 1 [7]. In the case
that z1 and z2 lie in the same imaginary quadratic field Zhang [10] obtained that
the conjecture holds if a certain height pairing of Heegner cycles on Kuga-Sato
varieties is non-degenerate. Viazovska showed that (3) holds in this case for α ∈ Q̄
and proved the conjecture assuming that d1 = d2 is prime [8, 9]. Another average
version of the conjecture for odd j was recently shown by Li [6].

We improve these results in our paper [1]. One method we use is to only average
over the CM points z1 of discriminant d1 and to allow z2 to be any CM point of
discriminant d2. To make this precise, let Qd1 denote the set of integral binary
positive definite quadratic forms of discriminant d1 < 0. For Q ∈ Qd1 we write zQ
for the corresponding CM point in H and let wQ be the order of the stabilizer ΓQ.
We then let

C(d1) =
∑

Q∈Qd1
/Γ

2

wQ
· zQ

and prove the following theorem in [1].

Theorem 2. Let j ∈ Z>0. Let d1 < 0 be a fundamental discriminant, and let
d2 < 0 be a discriminant such that d1d2 is not the square of an integer. If j is
odd, let k = Q(

√
d1,

√
d2) and H = Hd2(

√
d1). If j is even, let k = Q(

√
d2) and
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H = Hd2 . If z2 is a CM point of discriminant d2, then there exists an algebraic
number α = α(f, d1, z2) ∈ H and an r ∈ Z>0 such that

(d1d2)
j/2Gj+1,f (C(d1), z

σ
2 ) =

1

r
log |ασ |

for every σ ∈ Gal(H/k).

In fact, we also consider twists of the divisors C(d1) by genus characters, and
corresponding twisted versions of the above theorem. As a corollary we obtain the
following result.

Corollary 3. Let d1 < 0 be a fundamental discriminant and assume that the
class group of Od1 is trivial or has exponent 2. Let z1 be any CM point of of
discriminant d1 and let z2 be any CM point of discriminant d2 < 0 (not necessarily
fundamental), where z1 6= z2 if d1 = d2. Then, there is an α ∈ Hd1 ·Hd2 and an
r ∈ Z>0 such that

(d1d2)
j/2Gj+1,f (z1, z2) =

1

r
log |α|.

As mentioned above, we realize the modular curve X as an orthogonal Shimura
variety and make use of the regularized theta correspondence. A key observation
is that Gs(C(d1), z2) can be obtained as the regularized theta lift of a weak Maass
form of weight 1/2.

Based on this, we prove a formula for the higher Green function at a CM point
in terms of a finite linear combination of the coefficients of the holomorphic part
of a harmonic Maass form of weight one that maps to a weight one theta function
under the ξ-operator (which is naturally associated with the CM point). We
then generalize the results of [2, 3] and show that the Fourier coefficients of the
holomorphic part of such a (suitably normalized) harmonic Maass form are given
by logarithms of algebraic numbers in the corresponding ring class fields.

We also use our approach to prove a Gross-Kohnen-Zagier theorem for higher
Heegner divisors on Kuga-Sato varieties over modular curves.
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Modular forms on exceptional groups

Aaron Pollack

Suppose that G is a reductive group overQ, andK is a maximal compact subgroup
of the real points G(R). In case G(R)/K has the structure of a hermitian sym-
metric space, one can consider those automorphic forms for G that correspond
to holomorphic functions on G(R)/K. This distinguished class of automorphic
functions for these groups G play a principal role in the arithmetic of automor-
phic forms and the application of automorphic forms to classical number-theoretic
problems.

For example, when G = Sp2n, K ≃ U(n), and the symmetric space Sp2n(R)/K
can be identified with Sieglel’s upper half space of degree n:

Sp2n(R)/K ≃ Hn = {Z ∈Mn(C) : Zt = Z, Im(Z) > 0},
the symmetric n × n complex matrices with positive-definite imaginary part. In
this case, if ℓ ≥ 0 is an integer, the classical Siegel modular forms of weight ℓ are
defined to be the holomorphic functions f : Hn → C of moderate growth that
satisfy f(γZ) = j(γ, Z)ℓf(Z) for all γ in some congruence subgroup Γ ≤ Sp2n(Z).

Here, if γ =

(
a b
c d

)
in n× n block form, then γZ = (aZ + b)(cZ + d)−1, and

j(γ, Z) = det(cZ + d). Of course, these Siegel modular forms have a very nice
Fourier expansion:

(1) f(Z) =
∑

T

af (T )e
2πitr(TZ)

where the af (T ) ∈ C are the Fourier coefficients and the sum is over n×n rational,
symmetric matrices T which are positive semi-definite. The ability to assign the
list of Fourier coefficients {af (T )}T to a Siegel modular form f is a crucial link
from the Siegel modular forms to arithmetic, and very much depends on the fact
that f is a holomorphic function on Hn.

For general reductive Q-groups G, when G(R)/K does not have complex struc-
ture, there is no a priori reason to expect any distinguished or especially nice set
of automorphic functions for G. For example, for the Dynkin types G2, F4 and
E8, there is no real form of these groups whose associated symmetric space has
complex structure. Thus one can ask the following question:

Question 1: Suppose that G is reductive Q-group whose associated symmetric
space does not have complex structure. Is there any notion of “modular forms”
for G, which have a Fourier expansion analogous to (1) above?
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Gross and Wallach [4, 5] in fact singled out a class of groups (including split G2 and
split F4) together with special automorphic functions on these groups that appear
to deserve the moniker “modular form”. These modular forms were also studied
by Wallach [9], Gan–Gross–Savin [3] and Weissman [10]. The results discussed in
the talk include

• A Fourier expansion for these modular forms, analogous to (1). This is
the main theorem from [6].

• Some special examples of these modular forms on the exceptional groups
E6, E7, E8 [7].

• A construction of cuspidal modular forms on the exceptional group G2 [8].

The class of groups G studied by Gross and Wallach include split G2, forms
of the exceptional groups F4, E6, E7, E8 whose real rank is four, and the groups
SO(V ) where V is a quadratic space with signature (4, n) with n ≥ 3. They
defined modular forms for these groups in terms of certain infinite-dimensional
unitary representations on the groups G(R), the so-called quaternionic discrete
series [4, 5]. If K∞ ⊆ G(R) is the maximal compact subgroup of the real points
of one of these groups G, then K∞ surjects to the compact group SU(2)/µ2.
Altering slightly the definition of Gross-Wallach, one can define modular forms for
G as follows:

Definition 2 (See [6, 7]) Suppose ℓ ≥ 1 is an integer, and let the notation be
as above. Denote by Vℓ the space Sym2ℓ(C2), considered as a representation of
K through the map K → SU(2)/µ2. A modular form on G of weight ℓ is an
automorphic function

f : G(Q)\G(A) → Vℓ
satisfying the following properties:

(1) f is of moderate growth
(2) f(gk) = k−1 · f(g) for all g ∈ G(A) and k ∈ K∞
(3) Dℓf ≡ 0, for a certain specific linear differential operator Dℓ, called the

Schmid operator.

That these modular forms have nice Fourier expansions is essentially the content
of the following theorem.

Theorem 3 (See [6]) Suppose ℓ ≥ 1 is an integer. For a certain index set {T },
there are completely explicit functions WT : G(R) → Vℓ so that if f is a modular
form on G of weight ℓ, gf ∈ G(Af ) and g∞ ∈ G(R), then

fZ(gfg∞) = f0(gfg∞) +
∑

T

af,T (gf )WT (g∞)

for certain C-valued locally constant functions af,T on G(Af ).

In the theorem, f0 is a certain constant term of the modular form f and fZ is
a certain integral transform of f that determines the function f . The functions
WT should be considered the analogue of the exponential functions e2πitr(T•) on
the Siegel upper half space Hn, and af,T are the Fourier coefficients of f . The
theorem makes explicit and extends a result of Wallach [9].
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Applying Theorem 3, one can assign the Fourier coefficients {af,T }T to a modular
form f on G. With this list of Fourier coefficients, one can then ask questions
about them, such as if all the Fourier coefficients are af,T valued in some small

subring of C, such as Z,Q, or Q. Building on work of Gan [2] and Elkies-Gross
[1], the paper [7] constructs some special modular forms (in the sense of Definition
2) on the groups E6,4, E7,4, E8,4, whose Fourier coefficients are rational numbers
and have other special properties.

The explicit modular forms constructed in prior work [3, 10, 7] do not include
cusp forms. A construction of cusp forms on the groups SO(4, 4) and G2 is given
by the following result. Recall that one has an inclusion G2 ⊆ SO(4, 4).

Theorem 4(See [8]) Suppose ℓ ≥ 16 is an even integer, and f a cuspidal Siegel
modular form on Sp4 of weight ℓ.

(1) There is a cuspidal modular form θ(f) on SO(4, 4) associated to f . If f is
level one on Sp4 and the Fourier coefficients of f are valued in a subring
R ⊆ C, then θ(f) is nonzero and has Fourier coefficients valued in R.

(2) If F is a cuspidal modular form on SO(4, 4) of weight ℓ with Fourier
coefficients valued in a ring R ⊆ C, then the restriction F |G2 is a cuspidal
modular form on G2 of weight ℓ with Fourier coefficients in R.

In particular, if ℓ ≥ 16 is even, then there are nonzero cuspidal modular forms on
G2 of weight ℓ with all Fourier coefficients in Q.

The lift f 7→ θ(f) of Theorem 4 is a higher rank analogue of the Saito-Kurokawa

lift, considered as a lift from certain cuspidal modular forms on S̃L2 to SO(2, 3) =
PGSp4.
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Arithmetic special cycles and Jacobi forms

Siddarth Sankaran

1. Background

Let F be a totally real field and let V be an anisotropic quadratic space over F of
dimension p+2 for some p > 0. Suppose V is of signature ((p, 2), (p+2, 0), . . . , (p+
2, 0));i.e. for one real embedding σ1 : F → R, the space V1 := V ⊗σ1,F R has
signature (p, 2), while Vi > 0 at all other real embeddings.

Let G = ResF/Q(GSpin(V)) viewed as an algebraic group over Q; given a (suf-
ficiently small) arithmetic subgroup Γ ⊂ G(R), we obtain a connected Shimura
variety X = XΓ, which is a projective variety defined over a number field E.

These varieties are particularly interesting because they are equipped with a
family of naturally constructedE-rational “special” cycles {Z(T, ϕ)}, parametrized
by matrices T ∈ Symn(F ) and Schwartz forms ϕ ∈ S(V (Af )n) for 1 ≤ n ≤ p.

In recent years, a substantial body of evidence has emerged to support a conjec-
tural program put forward by Kudla: roughly, the idea is that when these cycles
are viewed as elements of “arithmetic” Chow groups in an appropriate way, they
can be identified with the Fourier coefficients of Siegel modular forms.

Let us briefly recall the theory of arithmetic Chow groups; for our purposes, we

utilize the ‘covariant’ groups ĈHn(X ,Dcur) defined in Burgos-Kramer-Kühn [5],
which generalize the construction of Gillet-Soulé. Fix a ring R with OE ⊂ R ⊂ E
(e.g. R = OE [1/N ] for some N , or R = E) and a sufficiently nice model X/R
of X . Then classes in ĈHn(X ,Dcur) are represented by pairs (Z, g), where Z is
a codimension n cycle on X , and g is a Green object for Z(C), namely a degree
2n− 2 current on the complex points X(C) that is related to Z(C) via a certain
cohomological condition (for the arithmetic Chow groups as defined by Gillet-
Soulé, this condition is precisely Green’s equation).

Kudla’s conjecture can be formulated roughly as follows. First, for each cycle
Z(T, ϕ), choose a model Z(T, ϕ) over R and a Green object g(T, ϕ), and define the

class Ẑ(T, ϕ) = (Z(T, ϕ), g(T, ϕ)) ∈ ĈHn(X ,Dcur). Then, given judicious choices
as above, the expectation is that for each n ≤ p+ 1, the generating series

(1) φ̂n(τ) =
∑

T∈Symn(F )

Ẑ(T, ϕ) qT

should be the q-expansion of a Siegel modular form of genus n. For models over
the full ring of integers OE , results of this form have been established for partic-
ular cases: for example, for full level Shimura curves over Z by Kudla-Rapoport-
Yang [9] and for U(p, 1) Shimura varieties with n = 1 by Bruinier-Howard-Kudla-
Rapoport-Yang [3]. Note that if one replaces the cycles with their images in the
Chow group CHn(X) of the generic fibre, the modularity of the corresponding se-
ries has been proven in [1, 4] for F = Q, and one has conditional results in the case
F 6= Q, see e.g. [7, 10, 11]; upon passing further to cohomology, the modularity is
a special case of the results of Kudla-Millson [8].
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2. Results

The result discussed in the talk focuses on the case R = E and X = X , which
allows us to avoid delicate issues around integral models, and therefore to consider
arbitrary level structure and any value of n while retaining the data of Green
currents. To this end, we use the family g(T, v, ϕ) of Green currents that was
constructed in previous joint work with L. Garcia [6]; these currents depend on an
additional parameter v ∈ Symn(F ⊗Q R)≫0. We obtain classes

Ẑ(T, v, ϕ) = (Z(T, ϕ), g(T, v, ϕ)) ∈ ĈHn(X,Dcur).

Theorem 1. Let T2 ∈ Symn−1(F ). Then the generating series

(2) φ̂T2(τ, ϕ) :=
∑

T=( ∗ ∗∗ T2
)

Ẑ(T, v, ϕ) qT ,

with v = Im(τ), is the q-expansion of a Jacobi modular form of parallel weight κ
and index T2.

In other words, this result asserts that for X = X and these choices of Green

currents, the formal Fourier-Jacobi coefficients of the generating series φ̂(τ) are
indeed Jacobi modular forms.

Some care is required in interpreting the statement of theorem. First, we are
being vague about the level; a slightly more precise formulation is that the map

φ̂T2(τ) : ϕ 7→ φ̂T2(τ, ϕ) transforms as a vector-valued form, valued in the Weil
representation acting on S(V (Af )n)∨.

A more substantial point is that there is no obvious topology on ĈHn(X,Dcur)
with which to make sense of the convergence of a series such as (2). What is being
asserted is the existence of:

(1) finitely many classes Ẑ1, . . . Ẑr ∈ ĈHn(X,Dcur);
(2) finitely many Jacobi modular forms (in the usual sense) f1, . . . , fr;
(3) and a Jacobi form g(τ) valued in the space of currents on X that satisfies

a certain technical “uniformity” condition in τ ;

such that the T ’th coefficient of the Jacobi form∑

i

fi(τ)Ẑi + a(g(τ))

coincides with Ẑ(T, ϕ, v). Here a(g(τ)) ∈ ĈHn(X,Dcur) is an “archimedean class”
associated to the current g(τ). Note that these forms are non-holomorphic in τ .

The first step in the proof is a decomposition Ẑ(T, v, ϕ) = Â(T, v, ϕ)+B̂(T, v, ϕ),

where B̂(T, v, ϕ) is an archimedean class; this yields a corresponding decomposi-

tion of φ̂T2(τ) into two generating series. The first series can be identified as a
sum of products of pushforwards of generating series of divisors with standard
theta functions, and the argument ultimately reduces to a modularity result due
to Bruinier [2] in the case n = 1. The modularity of the second piece follows from
an explicit calculation, with the theta series introduced by Kudla and Millson [8]
playing a key role.
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Interpolated Apéry numbers, the mirror quintic, and quasiperiods of
modular forms

Don Zagier

(joint work with V. Golyshev and with A. Klemm and E. Scheidegger)

The Apéry numbers A0 = 1, A1 = 5, A2 = 73, . . . , defined by the recursion

(n+ 1)3An+1 = (34n3 + 51n2 + 27n+ 5)An − n3An−1 ,

were used by Apéry for his famous proof in 1978 of the irrationality of ζ(3),
but they also have interpretations in terms of modular forms (Beukers) and alge-
braic geometry (Beukers and Peters). It was predicted by V. Golyshev, and then
proved, that the natural interpolation of {An} to n ∈ Q (or even n ∈ C) satisfies
A−1/2 = L(f8, 4), where f8(τ) = η(2τ)4η(4τ)4 is the unique normalized cusp form
of weight 4 on Γ(8). We will explain why this is expected and why it is true. We
also explain the notion of quasiperiods of modular forms and show that also A1/2

(and hence An for all n ∈ Z+ 1
2 ) is a linear combination of periods and quasiperiods

of f8. As another application, the periods and quasiperiods of a Hecke eigenform
f25 ∈ S4(Γ0(25)) show up in the transition matrix between two singularities (the
“MUM point” and the “conifold point”) of the fundamental bases of solutions of

the hypergeometric differential equation with holomorphic solution
∑∞

n=0
(5n)!
n!5 t

n

that played the key role in the discovery of mirror symmetry. Here the question
arises of a possible explicit parametrization by modular or Jacobi forms of the
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Schoen quintic X5
1 + X5

2 +X5
3 + X5

4 + X5
5 = 5X1X2X3X4X5. Partial solutions

of this problem are described that involve the L-series over Q of the elliptic curve
y2 = x3 + 4/5 and a certain Picard modular forms for U(1, 2) over Q(

√
−3).

Reporter: Michalis Neururer
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GERMANY

Prof. Dr. Jens Funke

Department of Mathematical Sciences
Durham University
South Road
Durham DH1 3LE
UNITED KINGDOM

Prof. Dr. Masaaki Furusawa

Department of Mathematics
Graduate School of Science
Osaka City University
3 Chome-3-138 Sugimoto, Sumiyoshi-ku
Osaka 558-8585
JAPAN

Prof. Dr. Wee Teck Gan

Department of Mathematics
National University of Singapore
10 Lower Kent Ridge Road
Singapore 119 076
SINGAPORE

Prof. Dr. Kaoru Hiraga

Department of Mathematics
Kyoto University
Kitashirakawa, Sakyo-ku
Kyoto 606-8502
JAPAN

Prof. Dr. Yumiko Hironaka

Department of Mathematics
School of Education
Waseda University
Shinjuku-ku
Tokyo 169-8050
JAPAN

Prof. Dr. Tomoyoshi Ibukiyama

Department of Mathematics
Graduate School of Science
Osaka University
Machikaneyama 1-1, Toyonaka
Osaka 560-0043
JAPAN

Prof. Dr. Atsushi Ichino

Graduate School of Mathematics
Kyoto University
Kitashirakawa, Oiwake-cho, Sakyo-ku
Kyoto 606-8502
JAPAN



3604 Oberwolfach Report 57/2019

Prof. Dr. Tamotsu Ikeda

Graduate School of Mathematics
Kyoto University
Kitashirakawa, Sakyo-ku
Kyoto 606-8502
JAPAN
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