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Abstract. Combinatorics is a fundamental mathematical discipline that fo-
cuses on the study of discrete objects and their properties. The present
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and a summary of the problem session.
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Introduction by the Organizers

The workshop Combinatorics, organized by Jeff Kahn (Piscataway), Angelika Ste-
ger (Zürich) and Benny Sudakov (Zürich), was held the first week of January, 2020.
Despite the early point in the year the meeting was well attended, with roughly
50 participants from the US, Canada, UK, Israel, and various European countries.
The program consisted of 11 plenary lectures and 17 shorter contributions, includ-
ing the presentations by Oberwolfach Leibniz graduate students. There was also
a lively problem session led by Nati Linial. The plenary lectures were chosen to
provide both overviews of the state of the art in various areas and in-depth treat-
ments of major new results. The short talks ranged over a broad range of topics,
including, for example (far from an exhaustive list), graph theory, coding theory,
probabilistic combinatorics, discrete geometry, extremal combinatorics and Ram-
sey theory, additive combinatorics, and theoretical computer science. As in the
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past, particular stress was placed on providing a platform for younger researchers
to present themselves and their results.

This report contains extended abstracts of the talks and some discussion of the
problems that were posed at the problem session. This was a particularly successful
edition of the meeting Combinatorics, in large part because of the exceptional
strength and range of both the participants and the results presented. While it
is hard to do justice to a meeting at such a level in this short summary, we here
highlight just three of the more spectacular developments.

The first highlight is the work discussed by Jinyoung Park (joint with Keith
Frankston, Jeff Kahn, and Bhargav Narayanan), proving a fractional version of
the “expectation-threshold” conjecture of Kahn and Kalai.

For any increasing family F , the “expectation threshold” q(F) is a trivial lower
bound on the threshold pc(F). Kahn and Kalai conjectured that this bound is
never far from the truth. Talagrand proposed a sort of LP relaxation of the
Kahn-Kalai conjecture with q(F) replaced by qf (F), the “fractional expectation
threshold,” and then a strengthening with |X | replaced by ℓ(F), the maximum
size of a minimal element of F . The main result of the work under discussion is a
proof of the latter conjecture.

This easily implies several heretofore difficult results and conjectures in prob-
abilistic combinatorics, including thresholds for perfect hypergraph matchings
(Johansson–Kahn–Vu), bounded degree spanning trees (Montgomery), and bound-
ed degree graphs (new). The key idea of the proof can also be applied to re-
solve (and vastly extend) the “axial” version of the random multi-dimensional
assignment problem, which was earlier considered by Martin–Mézard–Rivoire and
Frieze–Sorkin.

The second highlight is the proof of Ringel’s Conjecture for sufficiently large trees,
presented by Alexey Pokrovskiy (joint work with Richard Montgomery and Benny
Sudakov). Decomposition problems have a very long and illustrious history dating
back to Euler’s work on Latin squares from 18th century all the way to the recent
proof of existence of designs by Keevash. Ringel’s conjecture is one of the oldest
and best known conjectures on graph decompositions. It states that for any tree
T of size n the edges of the complete graph K2n+1 can be partitioned into edge-
disjoint subgraphs isomorphic to T .

Before this breakthrough Ringel’s conjecture has only been established for some
very special classes of trees and certain asymptotic results were known. The proof,
which is inspired by randomized decompositions and the absorption technique,
manages to surpass a major obstruction of working with trees of possibly un-
bounded degree, which could be helpful for approaching a number of related long
standing conjectures on graph decompositions and graceful labellings.

The third higlight is a new breakthrough concerning the chromatic number of
random graphs by Annika Heckel and Oliver Riordan, which was presented by
Heckel. Studying the chromatic number of random graphs is one of the oldest
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and most studied topics in random graph theory, dating back to seminal papers
of Erdős and Rényi.

In a breakthrough paper from 1978, Bollobás established the asymptotic value
of the chromatic number of a random graph Gn, 12

: w.h.p. χ(Gn, 12
) ∼ n

2 log2 n . As

a follow-up question, various researchers have asked and studied how sharp is the
concentration of χ(Gn,p).

On a slightly different note, in 1992 Erdős asked how accurately can we deter-
mine χ(Gn, 12

)—could it be that it is not concentrated on a series of intervals of

constant length? Recently, Heckel gave a positive answer towards this question,
namely that χ(Gn, 12

) is not w.h.p. concentrated on fewer than n
1
4−ε consecutive

values.
In this work, Heckel and Riordan extend this result to an almost optimal one.

They show that for any ε > 0, there is no sequence of intervals of length n
1
2−ε

which contain χ(Gn, 12
) with high probability. This lower bound is tight up to the

constant ε > 0.

As always, and on behalf of all participants, the organizers would like to thank
the staff and the director of the Mathematisches Forschungsinstitut Oberwolfach
for providing such a stimulating and inspiring atmosphere.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Ron Aharoni in the “Simons Visiting Professors” pro-
gram at the MFO.
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Erdős-Szekeres theorem for multidimensional arrays . . . . . . . . . . . . . . . . . 17

Boris Bukh (joint with Christopher Cox)
Periodic words, common subsequences and frogs . . . . . . . . . . . . . . . . . . . . . 20

Maria Chudnovsky (joint with Tara Abrishami and Marcin Pilipczuk)
Containers for the Maximum Weight Stable Set Problem . . . . . . . . . . . . . 23

Jacob Fox (joint with David Conlon)
Euclidean Ramsey theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Lior Gishboliner (joint with David Conlon, Yevgeny Levanzov, Asaf Shapira)
A New Bound for the Brown–Erdős–Sós Problem . . . . . . . . . . . . . . . . . . . . 28

Annika Heckel (joint with Oliver Riordan)
Non-concentration of the chromatic number . . . . . . . . . . . . . . . . . . . . . . . . . 30

Matthew Jenssen (joint with Peter Keevash)
Homomorphisms from the torus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Peter Keevash (joint with Noam Lifshitz, Eoin Long, Dor Minzer)
Forbidden intersections for codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Dan Král’ (joint with Timothy F. N. Chan, Jacob W. Cooper, Martin
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Abstracts

Intersection theory in combinatorics and discrete geometry

Karim Adiprasito

I surveyed some applications of Hodge and intersection theory to combinatorics
and discrete geometry. I started with an application of the Hodge-Riemann rela-
tions to polytope theory, answering a question of Gromov:

Theorem 1. An infinitesimal deformation of a polytope that does not decrease
dihedral angles is a combination of normal equivalence and isometry.

On a more sophisticated level, I then presented an application of Hodge theory
to matroid theory

Theorem 2 (Adiprasito-Huh-Katz ’18). The characteristic polynomial of a ma-
troid has log-concave coefficients.

Finally, I presented a solution to the g-conjecture for simplicial spheres, and its
relation to the Hall Marriage Theorem

Theorem 3 (A, arxiv:1812.10454). Consider a PL (d − 1)-sphere Σ, or more
generally a PL rational homology sphere of that dimension, and the associated
graded commutative face ring R[Σ] (see Stanley, Birkhäuser Prog. in Math. 1996).
Then there exists an open dense subset of the Artinian reductions R of R[Σ] and
an open dense subset L ⊂ A1(Σ), where A(Σ) ∈ R, such that for every k ≤ d

2 , we
have:

(1) Generic Lefschetz theorem: For every A(Σ) ∈ R and every ℓ ∈ L, we have
an isomorphism

Ak(Σ)
·ℓd−2k

−−−−−→ Ad−k(Σ).

(2) Hall-Laman relations: The Hodge-Riemann bilinear form

Qℓ,k : Ak(Σ) × Ak(Σ) −→ Ad(Σ) ∼= R

a b 7−→ deg(abℓd−2k)

is nondegenerate when restricted to any squarefree monomial ideal in A(Σ),
as well as the annihilator of any squarefree monomial ideal.
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The colorful world of rainbow sets

Ron Aharoni

(joint work with Joseph Briggs, Ron Holzman, Zilin Jiang, Jinha Kim and
Minki Kim)

1. Introduction - the intersection of a matroid and a filter

Given a family S = (S1, . . . , Sm) of not necessarily distinct sets, an S-choice
function is a partial function f such that Dom(f) ⊆ S, and f(Si) ∈ Si for all
Si ∈ Dom(f). The image of f is then called a rainbow set. The term originates
in viewing the sets Si as “colors”. We keep track of the “color” of each element
of the rainbow set. So, when we speak of the rainbow set we keep in mind the
function defining it. If Dom(f) = S we say that the rainbow set is full.

Rainbow sets can be viewed in the wider context of matroids. By duplicating
vertices we can assume that the sets Si are disjoint, and then a rainbow set is an
independent set in the partition matroid whose parts are the sets Si. This point of
view enables formulating rainbow sets problems in a familiar framework - asking
for the existence of a set that is small in one sense, and large in another. This
means belonging to the intersection of a complex (closed down hypergraph) and
a filter (closed up hypergraph). To obtain meaningful results, either the complex
or the complement of the filter (which is of course another complex) should carry
more structure, and a suitable structure is that of a matroid.

Let C be a complex and M a matroid on the same vertex set V . The script
above means asking for two possible types of sets, one that is large in M and small
in C, or small in M and large in C. “Small” in M or in C simply means belonging
to them, while “large in M” has, besides the meaning of not belonging to the
matroid, also the meaning of spanning. So, we can look for a set A satisfying:

(1) A spans M and belongs to C, or
(2) A ∈ M \ C.

In fact, the two are one and the same problem. Let D(C) = {S ⊆ V | Sc 6∈ C}
(this is called the “combinatorial Alexander dual” of C). Then it is easily seen
that A ∈ M \ C if and only if Ac is spanning in M∗ (the matroidal dual of M)
and belongs to A(C).

A main tool for tackling this type of problems is provided by topology: connec-
tivity of simplicial complexes. Given a simplicial complex C, the topological connec-
tivity η(C), is the smallest dimension of a hole in C. This has a homotopic version
- the smallest d for which there exists a continuous function f : Sd−1 → ||C||
(the geometric realization of C) that cannot be extended to a continuous function

f̃ : Bd → ||C||. It also has a homological version - the smallest d such that the ho-

mology group H̃d−1 is non-trivial. There is also a dual notion - λ′(C) is the largest

d such that H̃d−1 is non-trivial (here the “sphere” version is not applicable. It is

possible that H̃d−1 6= 0, and there is no empty sphere of dimension larger than
d + 1). Also let λ(C) = max{λ′(C[S]) | S ⊆ V (C)}. Since the Alexander dual of
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C is a “mirror image” of C, it is not entirely surprising (though in no way trivial)
that the homology groups of D(C) are mirror images of the homology groups of
C. A folklore theorem (if names are to be attached, they are those of Stanley and
Kalai), is that

H̃i(D(C)) = H̃n−i−3(C)

where n = |V (C)|. In particular,

(1) λ′(C) ≤ n− η(D(C)) − 1.

Two theorems were proved around the same time, on the two types of problems.
Regarding (1), the following was proved:

Theorem 1. [1] If η(C[S]) ≥ rank(M.S) for every S ⊆ V then there exists a
spanning set of M that belongs to C.

Here M.S is the contraction of M to S. As to (2), the corresponding theorem
is:

Theorem 2. [10] If λ(C) ≤ rank(M[Sc]) for every S ∈ C then M\ C 6= ∅.
As mentioned above, the two theorems are in fact the same (a fact that was not

recognized at the time of their inception). To prove Theorem 2 from Theorem 1,
we use (1), and the easy identity

D(K)[S] = D(lkK(Sc))

whenever Sc ∈ K (the link lkK(σ) of a face σ is the complex consisting of the sets
complementing σ to a face of K). We also use another theorem of Kalai-Meshulam:

Theorem 3. [11] If λ(K) ≤ d then λ(lkK(σ)) ≤ d for every σ ∈ K.

Theorem 2 yields also:

Theorem 4. Let N be a matroid and K a complex on the same ground set V .
Suppose that λ(K) ≤ d. If for every S ∈ D(K) we have rankN (S) ≤ |S| − d then
there exists a set belonging to N \K.

2. Partition matroids

In most known applications of the above two theorems the matroid considered is
a partition matroid. In this case Theorem 1 is the so called “Topological Hall”
theorem:

Theorem 5. If C is a complex, V (C) is partitioned into sets V1, . . . , Vm, and
η(C[

⋃

i∈I ]) ≥ |I| for every I ⊆ [m] then there exists a full rainbow set belonging to
C.

(The grain of the theorem appears in [4], the formulation above appears in [13],
ascribed to the speaker).

Theorem 4 becomes:

Theorem 6. If λ(C) ≤ d and S = (S1, . . . , Sd+1) is a family of sets such that
Si 6∈ C for all i ≤ m, then there exists an S-rainbow set not belonging to C.
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2.1. Colorful Caratheodory. A famous result of type (2) is the Bárány–Lovász
colorful version of Caratheodory’s theorem. For a set V = {~vi, i ∈ I} of vectors
in Rd let

cone(V ) = {
∑

i∈I

αi~vi | ∀i αi ≥ 0}

and
conv(V ) = {

∑

i∈I

αi~vi | ∀i αi ≥ 0 and
∑

i

αi = 1}

Theorem 7 (Bárány [6]).

(1) If S1, . . . , Sd are sets of vectors in Rd satisfying ~v ∈ cone(Si) for all i ≤ d
then there exists a rainbow set S such that ~v ∈ (S).

(2) If S1, . . . , Sd+1 are sets of vectors in Rd satisfying ~v ∈ conv(Si) for all
i ≤ d + 1 then there exists a rainbow set S such that ~v ∈ conv(S).

This follows from Theorem 6, and the facts that the complex NONCONE(v) =
{S ∈ Rd | v 6∈ cone(S)} satisfies λ(NONCONE(v)) = d − 1, and the complex
NONCONV (v) = {S ∈ Rd | v 6∈ conv(S)} satisfies λ(NONCONE(v)) = d.
(These facts are proved using LP duality and the Nerve Theorem, see e.g [14].)

2.2. Rainbow matchings. The following theorem was proved by Drisko [9] in a
special case, formulated in terms of Latin rectangles, and in [1] in its generality.

Theorem 8 ([1,9]). 2n−1 matchings of size n in a bipartite graph have a rainbow
matching of size n.

The case in which all matchings live in Kn,n follows from Theorem 7, since a set

F of edges in Kn,n contains a matching of size n if and only if ~1, the all 1’s vector,
belongs to cone({χf | f ∈ F}). Here, and below, χA denotes the characteristic
function of the set A. In this case the vectors χf belong to a 2n− 1-dimensional
vector space, since they live in R2n, and all satisfy a linear equality - the sum over
the first side of the bipartite graph is equal to the sum on the other side. The
general case follows from Theorem 4 and the following result:

Theorem 9. [5] Given any bipartite graph G and a natural number n, the complex
{F ⊆ E(G) | ν(F ) < n has λ ≤ 2n− 2.

As to general graphs, Seunghun Lee proved, using discrete Morse theory:

Theorem 10. [12] Given any bipartite graph G and a natural number n, the
complex {F ⊆ E(G) | ν(F ) < n has λ ≤ 3n− 3.

By Theorem 2 This implies that 3n− 2 matchings of size n in any graph have
a rainbow matching of size n. This was first proved, combinatorially, in [2]. Lee’s
bound on λ is sharp, so the bound 3n− 2 cannot be improved using this method.
Using combinatorial methods, it was proved in [3] that 3n− 3 matchings of size n
suffice. The conjecture is that 2n matchings suffice. This would follow, by a trick
of doubling the matchings, from the following conjecture of the speaker and Eli
Berger:
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Conjecture 11. n matchings of size n in any graph have a rainbow matching of
size n− 1.

In [5] the following was proved:

Theorem 12. 2n matchings of size n in any graph have a rainbow set F with
ν∗(F ) = n.

2.3. Reachability in networks. A network is a triple N = (D,S, T ), where D
is a directed graph, S (“sources”) and T (”targets”) are two subsets of V = V (D),
that in this paper are assumed to be disjoint. We write V ◦ for V \ (S ∪ T ). It is
assumed that no edge goes into S or leaves T . By E(N ) we denote the edge set
of D. Let NR(N ) be the set of subsets of E(N ) not containing an S − T path.

Theorem 13.
λ(NR(N )) ≤ |V ◦|.

Together with Theorem 2 this implies:

Theorem 14. Any family of |V ◦| + 1 S − T paths has a rainbow S − T path.

This has an easy combinatorial proof: take a maximal rainbow directed forest
F starting in S. If it does not reach T , then it uses at most |V ◦| paths from the
family, so there exists a path P from the family that is not represented. On its way
to T , P leaves F , and the edge leaving F can be used to extend F , contradicting
the maximality of F .

We conclude with two more rainbow results. The first is a common generaliza-
tion of Theorems 8 and 14. The known proof for it is topological, but needs more
tools than just Theorem 2:

Theorem 15. Let N be a network with |V ◦(N )| = q, and let p be an integer. Let
F = (F1, . . . , F2p−1+q) be a family of sets of edges, satisfying νP (Fi) ≥ p for all
i ≤ 2p− 1 + q. Then there exists an F-rainbow set R with νP (R) ≥ p.

The case q = 0 is Theorem 8, and the case p = 1 is Theorem 14.
And a last result, from [5], again proved by both topological (see [8]) and

combinatorial methods:

Theorem 16. Any family A = (A1, . . . , An) of edge sets of odd cycles on a set of
size n has a rainbow odd cycle. If n is even then n− 1 odd cycles suffice.
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The hat guessing number of a graph

Noga Alon

(joint work with Omri Ben-Eliezer, Chong Shangguan, Itzhak Tamo)

Consider the following hat guessing game: n players are placed on n vertices of a
graph, each wearing a hat whose color is arbitrarily chosen from a set of q possible
colors. Each player can see the hat colors of his neighbors, but not his own hat
color. All of the players are asked to guess their own hat colors simultaneously,
according to a predetermined guessing strategy and the hat colors they see, where
no communication between them is allowed. Given a graph G, its hat guessing
number HG(G) is the largest integer q such that there exists a guessing strategy
guaranteeing at least one correct guess for any hat assignment of q possible colors.

In 2008, Butler et al. [2] asked whether the hat guessing number of the complete
bipartite graph Kn,n is at least some fixed positive (fractional) power of n. We
answer this question affirmatively, showing that for sufficiently large n, the com-

plete r-partite graph Kn,...,n satisfies HG(Kn,...,n) = Ω(n
r−1
r

−o(1)). Our guessing
strategy is based on a probabilistic construction and other combinatorial ideas,

and can be extended to show that HG(~Cn,...,n) = Ω(n
1
r
−o(1)), where ~Cn,...,n is the

blow-up of a directed r-cycle, and where for directed graphs each player sees only
the hat colors of his outneighbors.

Additionally, we consider related problems like the relation between the hat
guessing number and other graph parameters, and the linear hat guessing number,
where the players are only allowed to use affine linear guessing strategies. Several
nonexistence results are obtained by using well-known combinatorial tools, includ-
ing the Lovász Local Lemma and the Combinatorial Nullstellensatz [1]. Among
other results, it is shown that with linear guessing functions, the hat guessing

number of Kn,n is smaller than 4, exhibiting a huge gap from the Ω(n
1
2−o(1))

(nonlinear) hat guessing number of this graph.
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Erdős-Szekeres theorem for multidimensional arrays

Matija Bucić

(joint work with Benny Sudakov and T. Tran)

A classical paper of Erdős and Szekeres [3] from 1935 is one of the starting points
of a very rich discipline within combinatorics: Ramsey theory. A main result of
the paper, which has become known as the Erdős-Szekeres theorem, says that any
sequence of (n − 1)2 + 1 distinct real numbers contains either an increasing or
decreasing subsequence of length n, and this is tight. Among simple results in
combinatorics, only few can compete with this one in terms of beauty and utility.
See, for example, Steele [11] for a collection of six proofs and some applications.

A very natural question which arises is how does one generalise the Erdős-
Szekeres theorem to higher dimensions? The main concept which does not have
an obvious generalisation is that of the monotonicity of a subsequence. Several
candidates have been proposed [2,6–10,12] but perhaps the most natural one was
introduced more than 25 years ago by Fishburn and Graham [4]. A multidimen-
sional array is said to be monotone if for each dimension all the 1-dimensional
subarrays along the direction of this dimension are increasing or are all decreas-
ing. To be more formal, a d-dimensional array f is an injective function from
A1 × . . . × Ad to R where A1, . . . , Ad are non-empty subsets of Z; we say f has
size |A1| × . . .× |Ad|.
Definition (Monotone array). A d-dimensional array f : A1 × . . . × Ad → R is
monotone if for each i ∈ [d] one of the following alternatives occurs:

(i) f(a1, . . . , ai−1, x, ai+1, . . . , ad) is increasing in x for all choices of aj’s.
(ii) f(a1, . . . , ai−1, x, ai+1, . . . , ad) is decreasing in x for all choices of aj’s.

For example, of the following 2-dimensional arrays first and second are mono-
tone, while the third is not (since some rows contain increasing and some rows
decreasing sequences).

7 8 9 1 3 6 7 8 9
4 5 6 2 5 7 6 5 4
1 2 3 4 8 9 1 2 3

The higher dimensional version of the Erdős-Szekeres problem introduced by
Fishburn and Graham [4] now becomes: given positive integers d and n, determine
the smallest N such that any d-dimensional array of size N × . . .×N contains a
monotone d-dimensional subarray of size n× . . .× n, we denote this N by Md(n).
The Erdős-Szekeres theorem can now be rephrased as M1(n) = (n − 1)2 + 1.
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Fishburn and Graham [4, Section 3] showed that M2(n) ≤ towr5(O(n))1, that
M3(n) is bounded by a tower of height at least a tower in n and that Md(n) is
bounded from above by an Ackermann-type2 function of order at least d for d ≥ 4.
We significantly improve upon these results.

Theorem 1.

(i) M2(n) ≤ 22
(2+o(1))n

,

(ii) M3(n) ≤ 22
(2+o(1))n2

,

(iii) Md(n) ≤ 22
2(1+o(1))nd−1

for d ≥ 4,

where the terms o(1) tend to 0 as n → ∞.

Fishburn and Graham introduced another very natural generalisation of the
notion of monotonicity of a sequence to higher dimensional arrays. A multidimen-
sional array is said to be lexicographic if for any two entries the one which has the
larger position in the first coordinate in which they differ is larger. For example,
the following array is lexicographic:

3 6 9
2 5 8
1 4 7

An array is said to be lex-monotone if it is possible to permute the coordinates
and reflect the array along some dimensions to obtain a lexicographic array. To
be more formal, for two vectors u = (u1, . . . , ud) and v = (v1, . . . , vd) in Rd, we
write u <lex v if ui < vi, where i is the smallest index such that ui 6= vi.

Definition (Lex-monotone array). A d-dimensional array f is said to be lex-
monotone if there exist a permutation σ : [d] → [d] and a sign vector s ∈ {−1, 1}d
such that

f(x) < f(y) ⇔ (sσ(1)xσ(1), . . . , sσ(d)xσ(d)) <lex (sσ(1)yσ(1), . . . , sσ(d)yσ(d)).

Note that a 1-dimensional array is lex-monotone if and only if it is a monotone
sequence. The following 2-dimensional arrays are lex-monotone since for the first
one the above matrix is obtained by swapping the coordinates, for the second one
by reflecting along the first dimension and for the third by performing both of
these operations.

7 8 9 9 6 3 9 8 7
4 5 6 8 5 2 6 5 4
1 2 3 7 4 1 3 2 1

Given positive integers d and n, let Ld(n) denote the minimum N such that for
any d-dimensional array of size N× . . .×N , one can find a lex-monotone subarray

1We define the tower function towrk(x) by towr1(x) = x and towrk(x) = 2towrk−1(x) for
k ≥ 2.

2The Ackermann function Ak of order k is defined recursively by Ak(1) = 2, A1(n) = 2n and
Ak(n) = Ak−1(Ak(n − 1)). It is an incredibly fast growing function, for example A2(n) = 2n,

A3(n) = towrn(2) and A4(n) is a tower of height tower of height tower, iterated n times, of 2.
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of size n× . . .×n. Fishburn and Graham [4, Theorem 1] showed that Ld(n) exists.
This result has been used to prove interesting results in poset dimension theory
[5] and computational complexity theory [1].

Note that any lex-monotone array is monotone, so a very natural strategy to
bound Ld(n) is to first find a monotone subarray and then within this subarray
find a lex-monotone subarray. This motivates the following problem which is of
independent interest. For positive integers d and n, we define Fd(n) to be the
minimum N such that any d-dimensional monotone array of size N × . . . × N ,
contains a lex-monotone subarray of size n × . . . × n. It is easy to see by the
above reasoning that Ld(n) ≤ Md(Fd(n)). Fishburn and Graham [4, Lemma 1]
showed F2(n) ≤ 2n2−5n+4 and F3(n) ≤ 22n+o(n), while for d ≥ 4 their argument
gives Fd(n) ≤ towrd−1(Od(n)). We determine F2(n) completely and significantly
improve the bound for all d ≥ 3.

Theorem 2.

(i) F2(n) = 2n2 − 5n + 4,

(ii) Fd(n) ≤ 2(cd+o(1))nd−2

for d ≥ 3, where cd = 1
2 (d − 1)! and the term o(1)

tends to 0 as n → ∞.

Part (i) of Theorem 2 answers a question of Fishburn and Graham asking
whether F2(n) = (1 + o(1))n2, in negative. Combining Theorems 1 and 2 with the
inequality Ld(n) ≤ Md(Fd(n)) gives the following upper bounds on Ld(n).

Theorem 3.

(i) L2(n) ≤ 22
(4+o(1))n2

,

(ii) L3(n) ≤ 22
2(2+o(1))n

,
(iii) Ld(n) ≤ towr5

(

Od(nd−2)
)

for d ≥ 4,

where the terms o(1) tend to 0 as n → ∞.
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Periodic words, common subsequences and frogs

Boris Bukh

(joint work with Christopher Cox)

The longest common subsequence problem. A word is a finite sequence of symbols
from some alphabet. We denote by lenW the length of the word W . A subsequence
of a word W is a word obtained from W by deleting some symbols from W ; the
symbols in a subsequence are not required to appear contiguously in W . A common
subsequence between words W and W ′ is a subsequence of both W and W ′. We
denote by LCS(W,W ′) the length of the longest common subsequence between W
and W ′. We write Wi for the i’th symbol of W , with indexing starting from 0.

Throughout the paper, we use Σ to denote the alphabet, and we write R ∼ Σn to
indicate that R is a word chosen uniformly at random from Σn. A long-standing
problem is to understand LCS(R,R′) for a pair of independently chosen words
R,R′ ∼ Σn. Whereas it is known that

(1) ELCS(R,R′) = γn + o(n)

for some constant γ depending on |Σ|, little else is known. We mention three open
problems.

(1) The rate of convergence in (1) is unknown. The original proof of (1)
by Chvátal and Sankoff [2] did not supply any bound on the o(n) term.
Alexander [1] showed that ELCS(R,R′) = γn + O(

√
n logn).

(2) The value of γ, which is often called the Chvátal–Sankoff constant, is
unknown. The best rigorous bounds for the binary alphabet are due to
Lueker [4], whereas Kiwi, Loebl and Matoušek [3] gave an asymptotic for
γ as |Σ| → ∞.

(3) It is believed that LCS(R,R′) is approximately normal, and that its vari-
ance is linear in n. Yet it is not even known that Var LCS(R,R′) tends to
infinity with n.

Periodic words. A word W is k-periodic if Wi+k = Wi holds for all values of i, for
which both sides are defined (that is for i = 0, 1, . . . , lenW −k−1). For a word W
of length k, write W (n) for the k-periodic word of length n which is obtained by
repeating W the appropriate number of times (which might be fractional if k does
not divide n). For example, if W = aba, then W (8) = abaabaab. Additionally,
write W (∞) to denote the k-periodic word obtained by repeating W ad infinitum.

In attempt to solve the problems enumerated above, in this paper we tackle a
simpler random variable LCS(R,W (n)) where W is a fixed word. We give answers
to the analogues of all three problems. These answers are summarized in the
following theorem. For a visualization of the following theorem, see Figure 1.
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Theorem 1. Let ρ be a positive real number. Fix W ∈ Σk and let R ∼ Σn be an
n-letter random word. Then

ELCS(R,W (ρn)) = γWn− τW
√
n + O(1),

where

(i) γW = γW (ρ) is a non-negative piecewise linear function of ρ.
(ii) The slope of γW (ρ) is a non-increasing function of ρ.
(iii) τW = τW (ρ) is nonzero only at the points where the slope of γW (ρ)

changes, and τW is strictly positive at those points.
(iv) The random variable LCS(R,W (ρn)) is asymptotically normal with linear

variance if and only if ρ > 1/|Σ|, τW (ρ) = 0 and either
(a) the slope of γW (ρ) is positive, or
(b) there is some symbol in Σ which does not appear in W .

(v) There exists an algoritheorem that computes γW and τW from W .

γW (ρ)

ρs1 s2 s3 s4

1/4
3/8

7/12

1

Figure 1. The plot of γW (ρ) for Σ = [4] and W = 1234.
Here, s1 = 1/4, s2 = 5/12, s3 = 5/6 and s4 = 5/2. Further-

more, τW (s1) =
√

3
512π , τW (s2) =

√

145
13824π , τW (s3) =

√

79
3456π ,

τW (s4) =
√

5
128π and τW (ρ) = 0 otherwise.

From item (iii), it is clear that τW 6= 0 happens rarely. However, it does happen
for infinitely many W even in the case ρ = 1.

Item (iv) extends a result of Matzinger–Lember–Durringer [5], who showed that
Var LCS(R,W (n)) is linear in n when |Σ| = 2.
Frog dynamics. The key to Theorem 1 is the analysis of the following dynamical
system. Let W be a fixed word, and set k = lenW . Imagine a circle of k lily pads,
each of which is occupied by a frog. The k frogs vary from a large nasty frog to
a little harmless froggie. They all face in the same (circular) direction. At each
time step t = 0, 1, . . . , the following happens:
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(1) The monster living below pokes some of the frogs with its tentacles. Each
poked frog gets agitated, and wants to jump away.

(2) In the order of descending nastiness, starting from the nastiest frog, each
of the agitated frogs will leap to the next ‘available’ lily pad, that is either
empty or occupied by a less menacing frog. Doing so causes the current
occupant become agitated, and the frog that just hopped calms down.

This process repeats until all frogs are content once more.

Below, in Figure 2, is an example of one round of this process, where here and
thereafter we denote the frogs 1, 2, . . . , k in the order of nastiness, with 1

being the nastiest.

1

∗
2

∗
3

4

∗
5

1

∗
5

∗
3

2∗
4

1

2∗
4

3∗
5

1

2

4
3∗
5

1

2

4 3

5

Figure 2. The sequence of frog hops resulting from poking frogs

2, 3 and 5. Here, frogs move in the anti-clockwise direction,
and a ∗ indicates that the frog is agitated.
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Containers for the Maximum Weight Stable Set Problem

Maria Chudnovsky

(joint work with Tara Abrishami and Marcin Pilipczuk)

1. Introduction

An independent set (or stable set) in a simple graph G is a set I ⊆ V (G) such
that no edge in E(G) has both endpoints in I. Given a graph G with non-negative
vertex weights, the Maximum Weight Independent Set problem (MWIS) asks
for an independent set of G with the greatest total weight. The MWIS problem
is NP-hard in general.

For a graph G and a set F of non-adjacent vertex pairs of G, we denote by
G+F the graph with vertex set V (G) and edge set E(G)∪F . A hole in a graph is
an induced cycle of length at least four. A graph is chordal if it has no holes. A set

F ⊆
(

V (G)
2

)

\E(G) is a fill-in or a chordal completion (of G) if G+ F is a chordal
graph. A fill-in F is minimal if it is inclusion-wise minimal. Let X ⊆ V (G). We
say that X is a potential maximal clique of G if there exists a minimal chordal
completion F of G such that X is a maximal clique of G + F .

The following theorem is the starting point of our inquiry.

Theorem 1 ([1]). Given a graph G with a weight function on its vertex set and
a family P that contains all potential maximal cliques of G, one can solve MWIS
in G in time polynomial in |V (G)| and |P|.

Let G be a graph and X ⊆ V (G). For s, t ∈ V (G) \ X , we say that X is
an s, t-separator if s and t lie in different connected components of G − X . An
s, t-separator is a minimal s, t-separator if it is an inclusion-wise minimal s, t-
separator. X is said to be a minimal separator if there exist s, t ∈ V (G) such that
X is a minimal s, t-separator in G. We say that a component D of G \X is a full
component for X if every vertex of X has a neighbor in D. It is easy to see that:

Theorem 2. Let G be a graph. X ⊆ V (G) is a minimal separator if and only if
at least two components of G \X are full for X.

It turns out that Theorem 1 has an analogue that can be expressed using min-
imal separators, which is somewhat more natural from the graph-theoretic view
point.

Theorem 3 ([1]). Given a graph G with a weight function on its vertex set and
a family S that contains all minimal separators of G, one can solve MWIS in G
in time polynomial in |V (G)| and |S|.

Let C be a class of graphs. We say that C has the polynomial separator property
if there exists d > 0 such that every graph G ∈ C has at most |V (G)|d minimal
separators. Thus Theorem 3 immediately implies that MWIS can be solved in
polynomial time on any graph class with the polynomial separator property (as-
suming the list of separators can be produced in polynomial time). This fact was
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used in [3] and [4] to show that MWIS can be solved in polynomial time on certain
subclasses of graphs with no long hole, and graphs with no even hole. Moreover,
in [4] a conjecture is made characterizing the polynomial separator property by
forbidden induced subgraphs.

Given a graph G and a set I ⊆ V (G), we say that a chordal completion F
is I-good if F is minimal, and each vertex pair in F is disjoint from I. In their
milestone paper Lokshtanov, Vatshelle, and Villanger [5] were able to significantly
strengthen Theorem 1, as follows (we rephrase the statement to fit our exposition).

Theorem 4. Given a graph G with a weight function on its vertex set, and a
family Π of subsets V (G) with the property that

• for every maximal independent set I of G there there exists an I-good
chordal completion F of G such that every maximal clique of G+F belongs
to Π,

one can compute the maximum weight of an independent set in G it time polyno-
mial in |V (G)| and |Π|.

Our first result is the following significant strengthening of Theorem 4. We first
introduce the notion of “safe containers”. These are somewhat similar in spirit to
[2] and [6]. Let G be a graph, let I ⊆ V (G), and let p > 0 be an integer. For a set
X ⊂ V (G), we say that C ⊆ V (G) is an (I, p)-safe container for X if X ⊆ C and
|C ∩ I| ≤ p. We prove:

Theorem 5. Let p > 0 be an integer. Given a graph G with a weight function on
its vertex set, and a family Π of subsets V (G) with the property that

• for every maximal independent set I of G there there exists an I-good
chordal completion F of G such that for every maximal clique X of G+F ,
Π contains an (I, p)-safe container for X,

one can compute the maximum weight of an independent set in G it time polyno-
mial in |V (G)| and |Π|.

We then prove:

Theorem 6. Let G be a graph with no hole of length at least five. Then we can
construct in time polynomial in |V (G)| a family Π of subsets of V (G) such that

• for every maximal independent set I of G there there exists an I-good
chordal completion F of G such that for every maximal clique X of G+F ,
Π contains an (I, 1)-safe container for X, and

• |Π| ≤ |V (G)|35.
Together Theorem 5 and Theorem 6 imply:

Theorem 7. The MWIS Problem can be solved in polynomial time on the class
of graphs with no hole of length at least five.

One should note that Theorem 1 is not strong enough to use for the class of
graphs with no hole of length at least five, because of the family of “prisms” (a
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prism is a graph obtained from two disjoint cliques by adding a matching between
them).

To prove Theorem 6 we first observe that if I is a maximal independent set
of G, F is an I-good chordal completion of G, and X is a clique of G + F , then
|X ∩ I| ≤ 1; and by a result of [5] it is enough to handle such X that are disjoint
from I. To do so we use the approach of considering minimal separators instead
of maximal cliques of chordal completions. We first show:

Theorem 8. Let G be a graph with no hole of length at least five. Then we can
construct in time polynomial in |V (G)| a family Σ of subsets of V (G) such that

• for every maximal independent set I of G, and every minimal separator S
of G such that S ∩ I = ∅, Σ contains an (I, 0)-safe container for X, and

• |Σ| ≤ |V (G)|10.
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Euclidean Ramsey theory

Jacob Fox

(joint work with David Conlon)

Let En denote n-dimensional Euclidean space, that is, Rn equipped with the Eu-
clidean distance. Following Erdős, Graham, Montgomery, Rothschild, Spencer
and Straus [5], we study the following question.

Question 1. For which subsets K ⊂ En does every red/blue-coloring of En contain
a red pair of points of distance one or a blue isometric copy of K?

In what follows, we will write ℓm for a sequence of m points on a line with
consecutive points of distance one and En −→ (ℓ2,K) if every red/blue-coloring
of En contains either a red copy of ℓ2 or a blue copy of K, where a copy of a set
will always mean an isometric copy. Conversely, En 6−→ (ℓ2,K) expresses the fact
that there is some red/blue-coloring of En which contains neither a red copy of ℓ2
nor a blue copy of K.
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The problem of determining which n and K satisfy the relation En −→ (ℓ2,K)
has received considerable attention, with a particular focus on small values of n.
For example, Erdős et al. [5] showed that E2 −→ (ℓ2, ℓ4) and E2 −→ (ℓ2,K)
for any three-point set K. Juhász [9] later improved the latter result to cover
all four-point planar sets, while just recently Tsaturian [17] improved the former
result by showing that E2 −→ (ℓ2, ℓ5). In three dimensions, Iván [8] showed
that E3 −→ (ℓ2,K) for any five-point set K ⊂ E3. The particular case where
K = ℓ5 was recently improved by Arman and Tsaturian [1], who showed that
E3 −→ (ℓ2, ℓ6).

On the other hand, Csizmadia and Tóth [3] identified a set K of 8 points in the
plane, namely, a regular heptagon with its center, such that E2 6−→ (ℓ2,K). This
improved a result of Juhász [9], who had previously identified a set K of 12 points
with the same property. Our chief concern in this paper will be with extending
these results to higher dimensions by studying the smallest possible size of a set
K ⊂ En such that En 6−→ (ℓ2,K).

In general, |K| can be unbounded in terms of n and still satisfy En −→ (ℓ2,K).
For example, any subset K of the unit sphere in En satisfies En −→ (ℓ2,K).
Indeed, in a red/blue-coloring of En, if there is no red point, then we clearly get a
copy of K, while if there is a red point, then the sphere of radius one around that
point must be blue, so we again get a blue copy of K.

However, our main result shows that under some mild conditions a set K ⊂ En

such that En −→ (ℓ2,K) can have size at most exponential in n. To state the
result, we say that a point set S ⊂ En is t-separated if any two points in S have
distance at least t. Here and throughout, we use log to denote log base 2.

Theorem 2. If R > 2 and K is a 1-separated set of points in En with diameter
at most R− 1 and |K| > 104n logR, then En 6−→ (ℓ2,K).

In particular, for m = 105n, we see that En 6−→ (ℓ2, ℓm). This simple corollary
is already enough to answer a problem raised by Erdős et al. [5], namely, whether,
for every natural number d, there is a natural number n depending only on d such
that En → (ℓ2,K) for every K ⊂ Ed. Erdős et al. state that they expect the
answer to this question to be negative and our result confirms this already for
d = 1, a special case stressed in [5], showing that n must grow logaritheoremically
in the size of |K|.

The exponential dependence in Theorem 2, and hence the logaritheoremic de-
pendence above, is also necessary. In fact, Szlam [15] proved the stronger result
that every red/blue-coloring of En contains either a red copy of ℓ2 or a blue trans-

late of any set K of size at most 2c
′n. For the sake of completeness, we include his

short proof here. We will need the seminal result of Frankl and Wilson [6] that

there exists a positive constant c′ such that any coloring of En with at most 2c
′n

colors contains a pair of points of distance one with the same color (see [14] for
the current best estimate on c′).

Suppose now that K = {k1, . . . , kt} ⊂ En is a set of size at most 2c
′n and there

is a red/blue-coloring of En with no blue copy of K. Then, for each p ∈ En, there
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is at least one i such that p + ki is red, since otherwise the set p + K would be a
blue translate of K. We may therefore color the points of En in t ≤ 2c

′n colors,
giving the point p the color i for some i such that p + ki is red, always choosing
the minimum such i. By the result of Frankl and Wilson, there must then exist
two points p and p′ of distance one which receive the same color, say j. But then
p + kj and p′ + kj are two points of distance one both of which are colored red.
This gives the required result. In particular, we have the following counterpart to
Theorem 2, which we again stress is due to Szlam [15].

Theorem 3. There exists a positive constant c′ such that En −→ (ℓ2,K) for any

set K ⊂ En of size at most 2c
′n.

The full version appeared in [2].
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A New Bound for the Brown–Erdős–Sós Problem

Lior Gishboliner

(joint work with David Conlon, Yevgeny Levanzov, Asaf Shapira)

Extremal combinatorics, and extremal graph theory in particular, asks which
global properties of a graph force the appearance of certain local substructures.
Perhaps the most well-studied problems of this type are Turán-type questions,
which ask for the minimum number of edges that force the appearance of a fixed
subgraph F . Recall that an r-uniform hypergraph (r-graph for short) is composed
of a ground set V of size n (the vertices) and a collection E of subsets of V (the
edges), where each edge is of size exactly r. A (v, e)-configuration is a hypergraph
with e edges and at most v vertices. Denote by fr(n, v, e) the largest number of
edges in an r-graph on n vertices that contains no (v, e)-configuration. Estimating
the asymptotic growth of this function for fixed integers r, e, v and large n is
one of the most well-studied and influential problems in extremal graph theory.
For example, when e =

(

v
r

)

we get the well-known Turán problem of determining
the maximum possible number of edges in an r-graph that contains no complete
r-graph on v vertices. As another example, the case r = 2, v = 2t and e = t2 is
essentially equivalent to the Zarankiewicz–Kővári–Sós–Turán problem, which asks
for the maximum number of edges in a graph without a complete bipartite graph
Kt,t.

Our focus in this paper is on a notorious question of this type, which emerged
from work of Brown, Erdős and Sós [2, 3] in the early 70’s and came to be named
after them. A special case of this so-called Brown–Erdős–Sós conjecture (see [5,6])
states the following:

Conjecture 1 (Brown–Erdős–Sós Conjecture). For every e ≥ 3,

f3(n, e + 3, e) = o(n2).

Despite much effort by many researchers, Conjecture 1 is wide open, having
only been settled for e = 3 by Ruzsa and Szemerédi [12] in what is known as the
(6, 3)-theorem. To get some perspective on the significance of this special case of
Conjecture 1, suffice it to say that the famous triangle removal lemma (see [4] for
a survey) was devised in order to prove the (6, 3)-theorem; that [12] was one of the
first applications of Szemerédi’s regularity lemma [16]; and that the (6, 3)-theorem
implies Roth’s theorem [11] on 3-term aritheoremetic progressions in dense sets
of integers. As another indication of the importance of this problem, we note
that one of the main driving forces for proving the celebrated hypergraph removal
lemma, obtained by Gowers [7] and Rödl et al. [8–10] was the hope that it would
lead to a proof of Conjecture 1.

Since we seem to be quite far1 from proving Conjecture 1, it is natural to look
for approximate versions. Namely, given e ≥ 3, find the smallest d = d(e) such

1As an indication of the difficulty of Conjecture 1, let us mention that the case e = 4 (i.e.,
the statement f3(n, 7, 4) = o(n2)) implies the notoriously difficult Szemerédi theorem [17,18] for
4-term aritheoremetic progressions, see [6].
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that f3(n, e+d, e) = o(n2). The best result of this type was obtained 15 years ago
by Sárközy and Selkow [13], who proved that

(1) f3 (n, e + 2 + ⌊log2 e⌋, e) = o(n2).

Since the result of [13], the only advance was obtained by Solymosi and Soly-
mosi [15], who improved the bound f3(n, 15, 10) = o(n2) that follows from (1) to
f3(n, 14, 10) = o(n2).

The main result of this paper, Theorem 2, gives the first general improvement
over (1). Moreover, it shows that one can replace the ⌊log2 e⌋ “error term” in (1)
by a much smaller, sub-logaritheoremic, term.

Theorem 2. For every e ≥ 3,

f3 (n, e + 18 log e/ log log e, e) = o(n2).

By using asymptotic estimates for the factorial (in place of cruder bounds), one
can replace the multiplicative constant 18 in the above theorem by 4 + o(1).

Although Theorem 2 deals with 3-graphs, its proof relies on an application of
the r-graph removal lemma (see [7–10]) for all values of r. Employing the removal
lemma for arbitrary r allows us to overcome a natural barrier which stood in the
way of improving the result of [13].

As we mentioned above, Conjecture 1 has a more general form (see [1, 14]),
which states that for every 2 ≤ k < r and e ≥ 3 we have fr(n, (r−k)e+k+1, e) =
o(nk). However, it is a folklore observation that this more general version is in
fact equivalent to the special case stated as Conjecture 1 (corresponding to k = 2
and r = 3). More precisely, it is known that

(2) fr(n, (r − k)e + k + d, e) ≤
(

r

3

)

enk−2 · f3(n, e + 2 + d, e).

for every 2 ≤ k < r, e ≥ 3 and d ≥ 1. Setting d = 1 in (2) readily implies
that Conjecture 1 is indeed equivalent to the general form of the Brown–Erdős–
Sós conjecture stated above. By combining Theorem 2 with (2), we immediately
obtain the following corollary.

Corollary 3. For every 2 ≤ k < r and e ≥ 3,

fr (n, (r − k)e + k − 2 + 18 log e/ log log e, e) = o(nk).
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[12] I. Z. Ruzsa and E. Szemerédi, Triple systems with no six points carrying three triangles,

in Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. II, pp. 939–945,
Colloq. Math. Soc. János Bolyai, 18, North-Holland, Amsterdam-New York, 1978.
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Non-concentration of the chromatic number

Annika Heckel

(joint work with Oliver Riordan)

1. Introduction

The study of the chromatic number of random graphs goes back to the foundational
papers by Erdős and Rényi [9,10] and includes some of the most celebrated results
in random graph theory.

A lot of the past work on this topic has been focussed on finding the likely
value of the chromatic number. Grimmett and McDiarmid [12] first established
the order of magnitude of χ(Gn, 12

) in 1975, and in a breakthrough paper in 1987,

Bollobás [4] found the asymptotic value.

Theorem 1 ([4]). With high probability, χ(Gn, 12
) ∼ n

2 log2 n .
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Several improvements to these bounds were made by McDiarmid [16], Panagiotou
and Steger [17] and Fountoulakis, Kang and McDiarmid [11]. The currently best
known bounds for χ(Gn, 12

) were obtained in [13].

Theorem 2. Whp,

(1) χ(Gn, 12
) =

n

2 log2 n− 2 log2 log2 n− 2 + o(1)
.

A separate direction of research asked: how sharp is the concentration of

χ(Gn,p)? While the bounds above give an explicit interval of length o
(

n
log2 n

)

which contains χ(Gn, 12
) whp, much narrower concentration is known to hold. A

remarkable result of Shamir and Spencer [19] states that for any sequence p = p(n),
χ(Gn,p) is whp contained in a (non-explicit) sequence of intervals of length about√
n. For p = 1

2 , Alon improved this slightly to about
√
n

logn (see [18]).

For sparse random graphs, much more is known: Shamir and Spencer [19] also

showed that for p < n− 5
6−ε, χ(Gn,p) is whp concentrated on only five consecutive

values;  Luczak [15] improved this to two consecutive values and finally Alon and

Krivelevich [2] showed that two point concentration holds for p < n− 1
2−ε. In a

landmark contribution, Achlioptas and Naor [1] found two explicit such values
for p = d/n where d is constant, and Coja-Oghlan, Panagiotou and Steger [8]

extended this to three explicit values for p < n− 3
4−ǫ.

However, while there is a wealth of results asserting sharp concentration of the
chromatic number, until recently there were no non-trivial cases where χ(Gn,p)
was known not to be extremely narrowly concentrated.

In 1992, Erdős [3] asked the following question: How accurately can χ(Gn, 12
)

be estimated? Can it be shown not to be concentrated on a series of intervals
of constant length? Bollobás [6] highlighted the question in 2004 and asked for
any non-trivial examples of non-concentration of the chromatic number of random
graphs, noting that “even the weakest results claiming lack of concentration would
be of interest.”

Recently [14], the author showed that χ(Gn, 12
) is not whp concentrated on fewer

than n
1
4−ε consecutive values. We have now extended this to an almost optimal

result.

Theorem 3. For any constant ε > 0, there is no sequence of intervals of length
n

1
2−ε which contain χ(Gn, 12

) with high probability.

Up to the arbitrary constant ε > 0 in the exponent, this lower bound matches
the upper bound from the classical result of Shamir and Spencer [19].
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2. Proof sketch

The proof of Theorem 3 is based on the close relationship between the chromatic

number χ
(

Gn, 12

)

and the independence number α
(

Gn, 12

)

. The latter graph

invariant is very well understood (see [7]): let

α0 = α0(n) = 2 log2 n− 2 log2 log2 n + 2 log2 (e/2) + 1 and a = a(n) = ⌊α0⌋ ,
then whp α(Gn, 12

) = ⌊α0 + o(1)⌋, pinning down α(Gn, 12
) to at most two consec-

utive values. In fact, for most n, whp α(Gn, 12
) = a. Furthermore, if we let Xa

denote the number of independent sets of size a in Gn, 12
, then the distribution of

Xa is known to be approximately Poisson. In particular, Xa is not whp contained
in any sequence of intervals shorter than

√
µa, where µa = E[Xa]. It is not hard

to show that there are some values n where µa is at least n1−ε.
It is plausible that an optimal colouring of Gn, 12

contains all or almost all

independent a-sets, because such colourings maximise the expectation for a fixed
number of colours. This intuition indicates that χ(Gn, 12

) should vary at least as

much as Xa (up to a log-factor). We show that this is indeed the case for some
values n, where n is chosen so that µa is at least n1−ε.

Starting with such an n, the main ingredient of the proof is a coupling of two
random graphs G ∼ Gn, 12

and G′ ∼ Gn′, 12
, where n′ is slightly larger than n, so

that G is an induced subgraph of G′ and the vertex difference of G′ and G can be
partitioned into independent sets of size a. A key observation in the construction
is the following: as long as r = o(

√
µa), we can “plant” r random copies of an

independent a-set in Gn′, 12
without changing the distribution of Gn′, 12

significantly.

The coupling then allows us to compare the chromatic numbers of Gn, 12
and

Gn′, 12
, showing that the “typical intervals” which contain χ(Gn, 12

) and χ(Gn′, 12
)

whp cannot be too far apart. Comparing this with the growth rate of the known
estimate (1) for χ(Gn, 12

), and taking averages for a sequence of values n, yields

that at least some of the “typical intervals” have to be long.
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Homomorphisms from the torus

Matthew Jenssen

(joint work with Peter Keevash)

A central notion at the intersection of combinatorics and statistical physics is that
of a graph homomorphism. From a combinatorial perspective, graph homomor-
phisms provide a unifying framework for a number of important graph theory
notions. For the statistical physicist, homomorphisms arise in the analysis of spin
models and their critical phenomena. Given graphs G and H we write Hom(G,H)
for the set of homomorphisms from G into H . By considering different weight
functions λ : V (H) → R>0 we furnish ourselves with a rich set of probability
distributions on the space Hom(G,H). Indeed, for each such λ we may define a
probability measure µH,λ on Hom(G,H) given by

µH,λ(f) =

∏

v∈V (G) λ(f(v))

ZH
G (λ)

,

for f ∈ Hom(G,H) where

ZH
G (λ) =

∑

f∈Hom(G,H)

∏

v∈V (G)

λ(f(v)) .

We call this type of probability distribution a spin model with hard constraints
and the normalising factor ZH

G (λ) is the partition function of the model.
Two of our main motivating examples will be the following:
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Example 1. The hard-core model : H is an edge {vin, vout}, with a loop at vertex
vout. We assign weights λ(vout) = 1, λ(vin) = x for some fixed x > 0, known as
the fugacity of the model. Here ZH

G (λ) is the hard-core model partition function
(also known as the independence polynomial).

Example 2. The zero-temperature q-state Potts model: H = Kq, λ ≡ 1. In this
case µH,λ is the uniform measure over proper q-colourings of G and ZH

G (λ) is the
number of such colourings.

In the physics literature, spin models are traditionally studied on the integer
lattice Zn. This is a setting where the phenomena of phase coexistence and phase
transition can be rigorously studied. Two landmark results in this field are due to
Galvin and Kahn [4] and Peled and Spinka [6]. Galvin and Kahn establish phase
coexistence for the hard-core model (Example 1) on Zn at fugacity x where x =
x(n) → 0. Peled and Spinka exhibit phase coexistence for the zero-temperature
q-state Potts model (Example 2) on Zn. Informally, these theorems show that
both typical independent sets and typical proper q-colourings of Zn exhibit large
scale order by ‘correlating’ with some ‘dominant phase’.

Here we present a detailed analysis for an arbitrary spin measure µH,λ on the
discrete torus Zn

m, where m is even and n is large. The case m = 2 returns
the n-dimensional discrete hypercube which we denote by Qn. Our main result
establishes the phase coexistence phenomenon in a strong form: it shows that µH,λ

is close to a distribution defined constructively as a certain random perturbation
of some dominant phase. This has several consequences:

(1) For any fixed (H,λ), we obtain a detailed structural decomposition of the
set Hom(Zn

m, H) and obtain sharp asymptotics for the partition function
ZH
G (λ) where G = Zn

m. Special cases include asymptotics for the num-
ber of independent sets and the number of proper q-colourings of Zn

m (so
in particular, the discrete hypercube). We thereby resolve (in a strong
form) conjectures of Engbers and Galvin [2, Conjectures 6.1 and 6.3] and
a conjecture of Kahn and Park [5]Conjecture 5.1.

(2) We obtain central limit theorems which precisely describe the typical struc-
ture of a sample from µH,λ.

(3) We obtain a slow mixing result for a natural class of Markov chain algo-
ritheorems with stationary distribution µH,λ.

(4) We describe in detail the behaviour of a typical height function on Zn
m

(that is, a homomorphism f : Zn
m → Z) and extend results of Benjamini,

Häggström and Mossel [1] and Galvin [3].

Formally we show that the measure µH,λ can be well-approximated by a mixture
of polymer models with convergent cluster expansion (we refer the reader to Scott
and Sokal [7] for an excellent treatment of these notions and much more). Via
the cluster expansion, we are able to gain an essentially complete probabilistic
description of the measure µH,λ and hence a precise structural description of the
set Hom(Zn

m, H).
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Establishing convergence of the cluster expansion is a non-trivial task and requires
a careful combination of entropy tools, the container method and algebraic and
isoperimetric properties of the torus.

Rigorously stating our main result would require a detour into the theory of
polymer models. Here we present some of the enumerative consequences of our
main theorem which require less introduction.

Given a weighted graph (H,λ) and A,B ⊆ V (H), we write A ∼ B if {a, b} ∈
E(H) for all a ∈ A and b ∈ B. We call such a pair (A,B) a phase. Letting
λX :=

∑

v∈X λv for X ⊆ V (H) we define

ηλ(H) := max{λAλB : A,B ⊆ V (H), A ∼ B} .
We call a phase (A,B) dominant if λAλB = ηλ(H), and we let Dλ(H) denote the
collection of all dominant phases. In Example 2, the dominant phases are all pairs
(A,B) where V (Kq) = A ∪B and {|A|, |B|} = {⌊q/2⌋, ⌈q/2⌉}.

Theorem 1. Let m be an even integer, and (H,λ) a weighted graph. Let G = Zn
m.

For each (A,B) ∈ Dλ(H), there exists a sequence (LA,B(j))j∈N such that for any
fixed k ∈ N,

ZH
G (λ) = ηλ(H)

m
n

2

∑

(A,B)∈Dλ(H)

exp







k
∑

j=1

LA,B(j) + ǫk







and ǫk = O(mnn2(k−1)δnk) for some 0 < δ < 1 depending only on (H,λ). In
particular there exists a constant K depending only on (H,λ) such that ǫK = o(1).
Moreover each term LA,B(j) can be computed in time eO(j ln j).

The terms LA,B(j) are the terms of the cluster expansion (a type of multivariate
Taylor series) mentioned above. We emphasise that since each term LA,B(j) can

be computed in eO(j ln j) time and ǫK = o(1) for some constant K (with ǫK as
in the above theorem), computing an explicit asymptotic expression for ZH

G (λ) is
a finite task for any fixed (H,λ). As a consequence Theorem 1 yields a plethora
of asymptotic formulae for combinatorial quantities such as the number of proper
q-colourings and the number of independent sets in Zn

m. We list some examples
that can easily be obtained by hand. For a graph G, we let i(G) and cq(G) denote
the number of independent sets and proper q-colourings of G respectively.

Corollary 2.

c5(Qn) ∼ 20 3
√
e · 62

n−1

exp

{(

4

3

)n}

c6(Qn) ∼ 20 · 32
n

exp

{(

4

3

)n}

c7(Qn) ∼ 70 · en/2122
n−1

exp

{

(

3

2

)n−1

+
1

2

(

4

3

)n−1

+
n2 − n− 54

108

(

9

8

)n−1
}

c8(Qn) ∼ 70 · 42
n

exp

{(

3

2

)n

+
n2 + 41n− 54

108

(

9

8

)n}
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i(Zn
m) ∼ 2m

n/2+1 exp

{

1

2

(m

4

)n
}

for m = 4, 6, 8, 10, 12, 14

i(Zn
m) ∼ 2m

n/2+1 exp

{

1

2

(m

4

)n

+ 2n(2n− 1)
(m

16

)n
}

for m = 16, 18, . . . , 62 .

We find it rather remarkable how well the two tools from statistical physics,
polymer models and the cluster expansion, work with the graph container method,
and we expect many further applications of this combination of methods.
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Forbidden intersections for codes

Peter Keevash

(joint work with Noam Lifshitz, Eoin Long, Dor Minzer)

Many intersection problems for finite sets have natural generalisations to a setting
variously described as codes, vectors or integer sequences. For example, any in-
tersecting family of subsets of [n] has size at most 2n−1, and more generally any
intersecting code in [m]n has size at most mn−1, where we say a code F ⊆ [m]n is
intersecting if for any x, y in F there is some i with xi = yi. However, these set-
tings are quite different, in that there are many maximum intersecting families of
sets, including very symmetric examples such as the family of all sets of size > n/2,
whereas in [m]n for m > 2 the only example is obtained by fixing one coordinate
to have a fixed value. A more substantial difference was recently demonstrated by
Eberhard, Kahn, Narayanan and Spirkl [4], who showed that adding a symmetry
assumption reduces the maximum size to o(mn).

A longstanding open problem of Frankl and Füredi [7] posed the corresponding
question for codes F ⊆ [m]n that are t-intersecting, in that any x, y in F have
agreement agr(x, y) = |{i : xi = yi}| ≥ t. From the perspective of coding theory,
one may think of such F as an ‘anti-code’, in that we are imposing an upper bound
on the Hamming distance between any two of its vectors. From a combinatorial
perspective, the natural analogy is with t-intersecting k-graphs (k-uniform hyper-
graphs), for which the extremal question was also a longstanding open problem,
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posed by Erdős, Ko and Rado [6] and finally resolved by the Complete Intersec-
tion Theorem of Ahlswede and Khachatrian [1]. The analogous result for codes,
resolving the problem of Frankl and Füredi, was also obtained by Ahlswede and
Khachatrian [2], and independently by Frankl and Tokushige [8]. They showed
that the maximum size of a t-intersecting code in [m]n is achieved by one of the
following natural examples, which can thought of as Hamming balls on a subset
of the co-ordinates, and which we simply call ‘balls’: let

St,r[m]n = {x ∈ [m]n : |{j ∈ [1, t + 2r] : xj = 1}| ≥ t + r}.
We show for any m > 2 and n large compared with t (but not necessarily m)

that the same conclusion holds under the weaker assumption that F is (t − 1)-
avoiding, i.e. no x, y in F have agreement t− 1.

Theorem 1. For all t ∈ N there is n0 ∈ N such that if F ⊆ [m]n is a (t − 1)-
avoiding code with m ≥ 3 and n ≥ n0 then |F| ≤ maxr≥0 |St,r[m]n| with equality
only when F is a ball.

Theorem 1 can be viewed as an analogue for codes of the classical forbidden
intersection problem for set systems, which has a substantial literature. Our proof
(discussed in the next subsection) proceeds via a junta approximation result of
independent interest, showing that any (t − 1)-avoiding code is approximately
contained in a t-intersecting junta (a code where membership is determined by
a constant number of co-ordinates). In particular, when t = 1 this gives an al-
ternative proof of the result of [4], as a family that essentially depends on few
co-ordinates is very far from being symmetric.

The proof of Theorem 1 has three steps, each of which has elements of inde-
pendent interest.

(1) Junta approximation: any (t−1)-avoiding code is approximately contained
in a t-intersecting junta.

(2) Anticode Stability: a stability version of the Ahlswede-Khachatrian theo-
rem on anticodes determines the structure of the junta from (1) – it must
be a certain ball F .

(3) Bootstrapping: given that the code of maximum size is close to F , it must
in fact be equal to F .

The methods required to implement these three steps depend considerably on
the size of m, and we need a variety of ideas in Combinatorics and Analysis,
some of which are new. The most significant new idea in this paper is a random
gluing operation, under which the alphabet size is reduced with the effect of either
exhibiting junta-like structure in a code or significantly boosting its measure, and
the analysis of this gluing operation via noise stability and a new hypercontractive
inequality in general product spaces, which further extends our recent theory of
global hypercontractivity introduced in [9]. This part of the argument can be
viewed as a development of the Junta Method (see [3, 10, 11].)

The following is a precise statement of our junta approximation theorem, which
is a stability theorem of independent interest, describing the approximate structure
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of any (t − 1)-avoiding code with size that is within a constant factor of the
maximum possible.

Theorem 2. For every t ∈ N and η > 0 there are n0 and J in N such that
if F ⊆ [m]n is a (t − 1)-avoiding code with m ≥ 3 and n ≥ n0 then there is a
t-intersecting J-junta J ⊆ [m]n such that |F \ J | ≤ η|J |.

As mentioned above, Theorem 2 implies the result of [4], as a junta is far
from being symmetric. The assumption m ≥ 3 is necessary, as when m = 2 we
have symmetric examples as mentioned above. When m > m0(t) is large we in
fact obtain a more precise statement (J is a subcube of codimension t) and give
effective estimates for the approximation parameter η.

Our first ingredient in the proof of Theorem 2 is a regularity lemma, showing
that any code can be approximately decomposed into a constant number of pieces,
each of which is pseudorandom, in a certain sense that depends on the size of m.
When m < m0(t) is fixed and n > n0(t,m) is large, each piece is such that
constant size restrictions cannot significantly affect the measure. This is a strong
pseudorandomness condition, from which the proof can be completed fairly easily
using a result of Mossel on Markov chains hitting pseudorandom sets. The idea is
that, if two restrictions defining the regularity decomposition agree in fewer than t
coordinates, then we can impose a further restriction to make them agree in exactly
t− 1 coordinates, with no significant loss in measure by pseudorandomness. If our
code is (t− 1)-avoiding these restrictions must be cross intersecting, but Mossel’s
result implies that this is impossible for pseudorandom codes of non-negligible
measure.

When m is large, one cannot obtain such a strong pseudorandomness condition
in a regularity lemma, so we settle for the weaker property of uncapturability:
each piece is such that constant size restrictions cannot make the measure negligi-
ble. This makes it significantly harder to establish the t-intersection property as
outlined above in the case that m is fixed, as uncapturability may not be preserved
by further restrictions. Furthermore, if m is ‘huge’ (by which we mean exponential
in n) then the cross-agreement statement used for fixed m is false. To see this,
consider the codes E having all vectors with all coordinates even, and O having
all vectors with all coordinates odd. There is no non-zero agreement between E
and O, yet they are both highly uncapturable, and have measure 2−n (which is
non-negligible when m is huge).

The above example naturally suggests a further case: we say m is ‘moderate’
if it is large but not huge. In this case, the high-level proof strategy is the same
as for fixed m, although the required cross-agreement statement for uncapturable
codes is difficult to prove, and this is where we need the most significant new ideas
of the paper (gluing and global hypercontractivity). On the other hand, when m
is huge, the above example shows that we need a different proof strategy. Here we
draw inspiration from more combinatorial arguments of Keller and Lifshitz [11]
which we adapt to the setting of codes by thinking of F ⊆ [m]n as an n-partite n-
graph (n-uniform hypergraph) with parts of size m. While the high-level strategy
is similar to that in [11], the implementation is quite different; for example, the
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key to bootstrapping in this case turns out to be a subtle application of Shearer’s
entropy inequality.

We write Sn,m,t for a largest family among {St,r[m]n : r ≥ 0}. From Theorem 2,
we see that if a (t− 1)-avoiding code F ⊆ [m]n is at least as large as Sn,m,t then it
is close to a t-intersecting junta. This raises the stability question for t-intersecting
codes, which is the second ingredient in our proof of Theorem 1: must this junta
be close to an extremal result? When m is large compared with t, it is not hard
to show that such a junta must be close to a subcube of co-dimension t, i.e. the
ball St,0[m]n. For fixed m, the picture is more complex, and the full range of balls
can occur; nevertheless, we are able to establish the required stability version of
the Ahlswede-Khachatrian anticode theorem.

Theorem 3. For every t ∈ N and ε > 0 there is δ > 0 such that if F ⊆ [m]n is
t-intersecting with m ≥ 3 and |F| ≥ (1 − δ)|Sn,m,t| then |F \ S| ≤ ε|S| for some
copy S of Sn,m,t = St,r[m]n, where 0 ≤ r ≤ t, and r = 0 if m > t + 1.

The proof of Theorem 3 uses a local stability analysis of the compression oper-
ator of Ahlswede and Khachatrian [2], and also the corresponding stability result
for t-intersecting families in the p-biased hypercube obtained by Ellis, Keller and
Lifshitz [5].
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Matroid branch-depth and integer programming

Dan Král’

(joint work with Timothy F. N. Chan, Jacob W. Cooper, Martin Koutecký,
Kristýna Pekárková)

Integer programming is a fundamental problem of importance in both theory and
practice. It is well-known that integer programming in fixed dimension, i.e., with
a bounded number of variables, is polynomially solvable since the work of Lenstra
and Kannan [1,2] from the 1980’s. Much subsequent research has focused on study-
ing extensions and speed-ups of the results of Kannan and Lenstra. However, on
the side of integer programs with many variables, research has been sparser. Until
relatively recently, the most prominent tractable case is that of totally unimodular
constraint matrices, i.e., matrices with all subdeterminants equal to 0 and ±1; in
this case, all vertices of the feasible region are integral and algoritheorems for linear
programming can be applied. Besides total unimodularity, many recent results on
algoritheorems for integer programming exploited various structural properties of
the constraint matrix yielding efficient algoritheorems for n-fold IPs, tree-fold IPs,
multi-stage stochastic IPs, and IPs with bounded fracture number and bounded
tree-width. This research culminated with an algoritheorem by Koutecký, Levin
and Onn [3] who constructed a fixed parameter algoritheorem for integer programs
with bounded (primal or dual) tree-depth and bounded coefficients.

The tree-depth of a constraint matrix depends on the position of its non-zero
entries and thus does not properly reflect the true geometric structure of the
integer program. In particular, a matrix with a large (dual) tree-depth may be
row-equivalent to another matrix with small (dual) tree-depth that is susceptible to
efficient algoritheorems. We will overcome this drawback with tools from matroid
theory. To do so, we consider the branch-depth of the matroid defined by the
columns of the constraint matrix and refer to this parameter as to the branch-
depth of the matrix. Since this matroid is invariant under row operations, the
branch-depth of a matrix is row-invariant, i.e., preserved by row operations.

We next give necessary definitions to state our results. To avoid our presentation
becoming cumbersome through adding or subtracting one at various places, we the
depth of a rooted tree to be the maximum number of edges on a path from the
root to a leaf, and define the height of a rooted tree to be the maximum number
of vertices on a path from the root to a leaf, i.e., the height of a rooted tree is
always equal to its depth increased by one. The height of a rooted forest F is the
maximum height of a rooted tree in F . The closure cl(F ) of a rooted forest is the
graph obtained by adding edges from each vertex to all its descendants. Finally,
the tree-depth td(G) of a graph G is the minimum height of a rooted forest F such
that the closure cl(F ) of the rooted forest F contains G as a subgraph. It can be
shown that the path-width of a graph G is at most its tree-depth td(G) decreased
by one, and in particular, the tree-width of G is at most its tree-depth decreased
by one.
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A depth-decomposition of a matroid M = (X, I) is a pair (T, f), where T is a
rooted tree and f is a mapping from X to the leaves of T such that the number
of edges of T is the rank of M and the following holds for every subset X ′ ⊆ X :
the rank of X ′ is at most the number of edges contained in paths from the root
to the vertices f(x), x ∈ X ′. The branch-depth bd(M) of a matroid M is the
smallest depth of a tree T that forms a depth-decomposition of M . For example,
if M = (X, I) is a matroid of rank r, T is a path with r edges rooted at one of
its end vertices, and f is a mapping such that f(x) is equal to the non-root end
vertex of T for all x ∈ X , then the pair (T, f) is a depth-decomposition of M . In
particular, the branch-depth of any matroid M is well-defined and is at most the
rank of M .

The primal graph of an m × n matrix A is the graph GP (A) with vertices
{1, . . . , n}, i.e., its vertices correspond to the columns of A, where vertices i and
j are connected if the matrix A contains a row whose i-th and j-th entries are
non-zero. Analogously, the dual graph of A is the graph GD(A) with vertices
{1, . . . ,m}, i.e., its vertices correspond to the rows of A, where vertices i and j
are connected if A contains a column whose i-th and j-th entries are non-zero,
i.e., the dual graph GD(A) is isomorphic to the primal graph of the matrix AT .
The primal tree-depth tdP (A) of a matrix A is the tree-depth of its primal graph,
the dual tree-depth tdD(A) is the tree-depth of its dual graph, and the branch-
depth bd(A) of a matrix A is the branch-depth of the vector matroid formed by
the columns of A; we also write ec(A) for the entry complexity of A. Since the
vector matroid formed by the columns of A and the vector matroid formed by the
columns of any matrix row-equivalent to A are the same, the branch-depth of A
is invariant under row operations.

Our main results are the following.

Theorem 1. Let A be a matrix over a field F. The branch-depth of A is equal to
the minimum dual tree-depth of a matrix A′ that is row-equivalent to A, i.e., that
can be obtained from A by row operations.

Theorem 2. For the parameterization by a positive integer d and a prime power
q, there exists a fixed parameter algoritheorem that for a vector matroid M over
the q-element field either outputs that bd(M) is larger than d, or outputs a depth-
decomposition of M with depth d.

Theorem 3. For the parameterization by positive integers d and K, there exists
a fixed parameter algoritheorem that for a vector matroid M over Q such that the
entries of all vectors in M have complexity at most K either outputs that bd(M)
is larger than d, or computes bd(M) and outputs a depth-decomposition of M with
depth bd(M).

Theorem 3 yields the following corollary, which generalize the fixed parameter
algoritheorem of Koutecký, Levin and Onn [3] for the parameterization by the
dual tree-depth.

Corollary 4. There exists a computable function g′ : N2 → N such that inte-
ger programs with n variables and a constraint matrix A can be solved in time
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polynomial in g′(bd(A), ec(A)) and n, i.e., integer programming is fixed parameter
tractable when parameterized by branch-depth and entry complexity.
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Universality of random permutations

Matthew Kwan

(joint work with Xiaoyu He)

A mathematical structure is said to be universal if it contains all possible sub-
structures, in some specified sense. This notion may have been first considered
in a 1964 paper by Rado [9], in which he found examples of graphs, simplicial
complexes and functions which are universal in various ways. Another famous
universal structure is a de Bruijn sequence (with parameters k and q, say), which
is a string over a size-q alphabet in which every possible length-k string appears
exactly once as a substring.

One topic that has received particular attention over the years is the case of
universality for finite graphs. We say that a graph is k-universal (or k-induced-
universal) if it contains every graph on k vertices as an induced subgraph. The
problems that have received the most interest in this area are (1) to find a k-
universal graph with as few vertices as possible, and (2) to understand for which
n a “typical” n-vertex graph is k-universal. These problems are related to the
problem of finding optimal adjacency labeling schemes in theoretical computer
science; for more details we refer the reader to [3] and the references therein.

In an exciting recent paper by Alon [2], both of these problems were effectively
resolved. He showed with a probabilistic proof that there exists a k-universal
graph with (1+o(1))2(k−1)/2 vertices, asymptotically matching a lower bound due
to Moon [8]. Alon also showed that as soon as n is large enough that a random
n-vertex graph typically contains a k-vertex clique and a k-vertex independent
set, then such a random graph is typically also k-universal. His proofs involved
a classification of graphs according to their numbers of automorphisms, taking
advantage of the fact that graphs with few automorphisms are easier to embed
into random graphs.

Alon’s work essentially closes the book on the study of k-universal graphs, but
substantial challenges remain in many other settings. One important example is
the case of permutations, where there is no natural notion of an automorphism,
and no natural scheme to embed sub-permutations using “quasirandomness” con-
ditions. Let §n be the set of all permutations of the n-element set [n] := {1, . . . , n}.
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Say that a permutation σ ∈ §n contains a pattern π ∈ §k if there are indices
1 ≤ x1 < · · · < xk ≤ n such that for 1 ≤ i, j ≤ k we have σ (xi) < σ (xj) if and
only if π (i) < π (j). Say that σ is k-universal or a k-superpattern if it contains
every π ∈ §k. As before, there are two main directions to consider: (1) finding
the shortest possible k-universal permutation and (2) understanding for which n
a typical length n permutation is k-universal.

As a simple lower bound for both problems, note that if σ ∈ §n is k-universal,
then we must have

(

n
k

)

≥ k!, since σ contains k! distinct patterns. Using Stirling’s

approximation and the fact
(

n
k

)

≤ nk/k!, we deduce the lower bound

n ≥
(

1

e2
− o(1)

)

k2.

For the first problem (of finding short k-universal permutations), this lower bound
is not too far from best-possible: Miller [7] constructed a k-universal permutation
with length n ≤ (1/2 + o(1))k2, and the o (1)-term was recently improved by
Engen and Vatter [5]. This constant 1/2 was conjectured to be tight by Eriksson,
Eriksson, Linusson and Wästlund [6], while the constant 1/e2 from the lower bound
was conjectured to be tight by Arratia [4].

Regarding universality of random permutations, much less is known. Note
that containing the identity permutation 1k ∈ §k is equivalent to containing an
increasing sequence of length k, and the longest increasing subsequence of a typical
σ ∈ §n is known to be of length (2 + o(1))

√
n. It follows that we cannot hope for

a typical σ ∈ §n to be k-universal unless n ≥ (1/4 + o(1))k2. In 1999, Alon made
the following striking conjecture (see [1, 4]).

Conjecture 1. For a fixed ε > 0, a random permutation of length (1 + ε)k2/4 is
w.h.p.1 k-universal.

Intuitively, Conjecture 1 can be justified by comparison to universality in graphs:
in much the same way that cliques and independent sets are the “hardest” sub-
graphs to find in a random graph, it is believed that monotonically increasing and
decreasing patterns are the hardest patterns to find in a random permutation.
We also remark that Conjecture 1 contradicts the aforementioned conjecture by
Eriksson, Eriksson, Linusson and Wästlund.

In the “ordered” setting of random permutations, most of the standard tools
used in the unordered setting of graphs are not applicable, and Conjecture 1 seems
rather challenging to prove. Indeed, in a recent discussion of the problem, Alon [1]
highlighted the more modest problem of simply showing that for n = 1000k2 a
typical σ ∈ §k is k-universal. He also observed a simple upper bound of the form
n = O(k2 log k). Our main result is the following substantial improvement.

Theorem 2. A random permutation of length 2000k2 log log k is w.h.p. k-universal.

1We say that an event holds “with high probability”, or “w.h.p.” for short if it holds with
probability 1 − o (1). Here and for the rest of the paper, asymptotics are as k → ∞ and/or
n → ∞.
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Since there is no natural notion of symmetry for permutations, we were not able
to take quite the same approach as Alon took for the graph case. However, the
proof of Theorem 2 still proceeds via a “structure-vs-randomness” dichotomy (see
[10] for a discussion of this phenomenon in general). In our proof of Theorem 2
we show that every π ∈ Sk can be decomposed into a “structured part” and a
“quasirandom part”. The “structured part” of π is likely to appear in σ for one
reason, and the “quasirandom part” is likely to appear for a different reason. It is
worth mentioning here that because most permutations are entirely quasirandom
in our sense, the following theorem also follows from our proof approach.

Theorem 3. For any k ≥ 1, there is a set Qk ⊆ Sk of (1 − o (1)) k! length-
k permutations such that w.h.p. a random permutation of length 20k2 contains
every π ∈ Qk.
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What do we know about the large-scale geometry of graphs?

Nati Linial

In my talk I have briefly addressed three topics concerning the global geometry of
graphs, and its relationship with differential geometry on manifolds.
I: Whereas we know quite a bit about eigenvalues of graphs, much less is known
about graphs’ eigenfunctions. There is a considerable body of work concerning the
nodal domains of Laplacians of smooth manifolds. This notion has a very natural
graph theoretic counterpart. Let G = (V,E) be a graphs and f : V → R a real
function. We denote by Cf ⊆ E the set of those edges xy ∈ E on which f crosses
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zero i.e., f(x)f(y) < 0. The nodal domains of f are the connected components of
G \ Cf . We proved [1]:

Theorem 1. For every 1 > p > 0 and asymptotically almost every G ∈ G(n, p),
every eigenfunction of G’s adjacency matrix has at most K nodal domains.

The original proof gave K ≈ 40 and combined with later work of Van Vu we
know that the theorem holds with K = 2. I called attention to intriguing numerical
results in [1] concerning these problems for random regular graphs, for which we
presently have no theoretical explanation.
II: What is the right notion of geodetic paths in graphs? A consistent path system
in a graph G has, for every two vertices x, y ∈ V (G) a path Pxy between x and y
so that the following condition holds: Whenever vertices u, v belong to the path
Pxy, the subpath of Pxy between u and v coincides with Puv. If every edge e ∈ E
has weight we > 0 and every Pxy is a w-shortest path between x and y, this clearly
yields a consistent path system in G. A path system which cannot be derived from
any set of weights w is called non-additive. In ongoing work with Daniel Cizma
we proved:

Theorem 2. Asymptotically almost every graph has a non-additive path system.

III: The trade-off between girth and diameter in graphs is fascinating and mys-
terious. I recall the following old problem of mine:

Problem 3. What is

lim sup
girth(G)

diam(G)

over all graphs in which every vertex has degree ≥ 3. To the best of my knowledge
we only know at present that this number is in [1, 2].

Even more remarkably, we do not even know

Problem 4. Can

girth(G) − diam(G)

be arbitrarily large for a graph G in which every vertex has degree ≥ 3? I know of
(specific) graphs in the literature for which this difference is 6, but nothing larger.

I have mentioned very recent work with Michael Simkin [2] where we give a
randomized construction of d-regular n-vertex graphs G with girth(G) > c logd−1 n
for any 1 > c > 0.

References

[1] Y. Dekel, J. R. Lee, and N. Linial, Eigenvectors of random graphs: nodal domains, Random
Structures Algoritheorems 39 (2011), no. 1, 39–58,.

[2] N. Linial and M. Simkin, A randomized construction of high girth regular graphs,
arXiv:1911.09640



46 Oberwolfach Report 1/2020

A loose short talk on loose short paths

Tomasz  Luczak

(joint work with Joanna Polcyn and Christian Reiher)

Let P 4
2 denote the 4-uniform hypergraph which consists of two edges sharing

exactly one vertex. We shall study the asymptotic behaviour of the function
f4
2 (n,m), defined as the minimum of the maximum degrees of all P 4

2 -free 4-uniform
hypergraphs with n vertices and m edges. Moreover, we shall investigate the struc-
ture of extremal hypergraphs F4

2 (n,m), i.e. the P 4
2 -free 4-uniform hypergraphs

with n vertices, m edges, and maximum degree f4
2 (n,m).

Let us recall that the well-known result of Frank and Füredi [1] (see also
Keevash, Mubayi, and Wilson [3]) implies that, for n large enough, each P 4

2 -free
4-uniform hypergraph on n vertices has at most

(

n−2
2

)

edges, and this maximum is
achieved only for (complete) 2-stars, i.e. hypergraphs whose edges are 4-element
sets containing a given 2-element set of vertices. Thus, when m is close to its largest
possible value, say when m = Ω(n2), it is natural to expect that all hypergraphs
from F4

2 (n,m) consist, basically, of a number of almost vertex-disjoint 2-stars, i.e.
that for m = Ω(n2) we have f4

2 (n,m) = Θ(n2). However, after a moment of re-
flection, one realizes that 2-star forests are not the only P 4

2 -free hypergraphs with
Ω(n2) edges. Another examples are provided by 4-uniform hypergraphs which are
‘2-blow-ups’ of graphs in the following sense. Given a graph G, the 4-uniform
hypergraph B2[G] is obtained by replacing each vertex of a graph G by a pair of
vertices, called twins, so each edge of G becomes a hyperedge of B2[G]. Note that

the ‘thick clique’ B2[K⌊n/2⌋] has
(⌊n/2⌋

2

)

edges but its maximum degree grows only

linearly. It turns out that B2[K⌊n/2⌋] is indeed the densest P 4
2 -free hypergraph

with linear maximum degree.

Theorem 1 ( Luczak and Polcyn [4]). There exists n̄1 such that, for every n ≥ n̄1

and
(⌊n/2⌋

2

)

− n

5
≤ m ≤

(⌊n/2⌋
2

)

,

we have f4
2 (n,m) = ⌊n/2⌋ − 1 and each hypergraph from F4

2 (n,m) is a subhyper-
graph of B2[K⌊n/2⌋].

Moreover, there exists ñ1 such that, for every n ≥ ñ1 and all m ≥
(⌊n/2⌋

2

)

+ 1,

each hypergraph from F4
2 (n,m) has maximum degree at least n2/32 − n/8, and

one can delete from it at most 128 edges to obtain a union of at most four vertex-
disjoint 2-stars and some number of isolated vertices.

Thus, if we rescale the function f4
2 (n,m) setting for x ∈ (0, 1)

f̂4
2 (x) = lim

n→∞
f4
2 (n, x

(

n−2
2

)

)
(

n−2
2

) ,

then f̂4
2 (x) is discontinuous at the point x = 1/4.

The key ingredient of the proof of Theorem 1 is the following, rather surprising,
structural result, which states that each P 4

2 -free 4-hypergraph, no matter how
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dense it is, consists of a blow-up B2[G] of some graph G, a family of 2-stars
centered at pairs corresponding to the vertices of G, and at most 4n other edges.

Theorem 2 ( Luczak and Polcyn [4]). For any P 4
2 -free 4-uniform hypergraph H =

(V,E) there exists a partition of its set of vertices V = R ∪ S ∪ T , such that
subhypergraphs of H defined as HR = {h ∈ H : h ∩ R 6= ∅}, HS = H [S] and
HT = H \ (HR ∪HS) satisfy the following conditions:

(i) |HR| ≤ 4|R|,
(ii) HS is a subgraph of a thick clique,
(iii) HT is a family of vertex-disjoint 2-stars such that their centers are twins

of HS, whereas all other vertices are in T .

Note that some small P 4
2 -free hypergraphs, such as the one which consists of the

faces of a cube, are neither 2-stars no subsets of a thick clique, and so in the above
statement one cannot get rid of the ‘unrestrained’ edges from HR. Nonetheless, in
each P 4

2 -free hypergraph H there exists a subset of vertices R which is intersected
only by at most 4|R| edges, such that the hypergraph obtained from H by removing
all vertices from R consists only of the 2-blow-up of a graph and 2-stars centered
on its twins.

Similar results can be proved also for 3-uniform graphs not containing a loose
path P 3

3 , which is the only connected linear 3-uniform hypergraph on seven vertices
of maximum degree two. In this case the P 3

3 -free 3-uniform hypergraph which

maximizes the number of edges is a star with
(

n−1
2

)

edges, provided n ≥ 8 (see
Jackowska, Polcyn, Ruciński [2]). On the other hand, for each bipartite graph
G with bipartition V1 ∪ V2, the 3-uniform graph B3/2[G], obtained from G by

replacing vertices of V1 by twins, contains no copy of P 3
3 . Note that B3/2[Kn/4,n/2]

has n2/8 edges and maximum degree n/2. In [4] we proved theorem which is an
exact analogue of Theorem 1 and states, in particular, that each P 3

3 -free 3-uniform
hypergraph with more than n2/8 edges has maximum degree Ω(n2). Furthermore,
Theorem 2 has its counterpart also in this case, since each P 3

3 -free 3-uniform
hypergraph consists of B3/2[G] for some bipartite graph G, some number of disjoint
stars centered on ‘singleton’ vertices of B3/2[G], and at most 4n other edges.

In the paper of  Luczak, Polcyn, and Reiher [5] Theorems 1 and 2 were general-
ized to certain class of k-uniform hypergraphs in which some intersections of edges
are prohibited. Since the statements of these results are quite technical, we only
illustrate them by two examples, both concerning 16-uniform hypergraphs. Con-
sider first the family H of 16-uniform hypergraphs, where for each pair of edges e
and f

|e ∩ f | 6= 1, 3, 5, 7.

Then there are two natural families of graphs of Θ(n8) edges in H. One consists of
8-stars, i.e. hypergraphs in which each edge contains a given subset of 8 vertices.
The other contains naturally defined ‘2-blow-ups’ of 8-uniform hypergraphs. It
turns out that these two types of 16-uniform hypergraphs are the main building
blocks of every dense hypergraph from the family H.
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For the second example let us define H′ as the family of all 16-uniform hypergraphs
such that for each pair of edges e and f we have

|e ∩ f | 6= 1, 2, 3, 5, 6, 7, 9, 10, 11.

Our structural result states that every dense hypergraph from H′ consists of the 4-
blow-up B4[F ] of a 4-uniform hypergraph F , some 12-stars centered at the vertices
of B4[F ], and a small number of unrestrained edges.

Finally, we remark that we do not know which prohibited families of subhyper-
graphs G force a nice structure in G-free hypergraphs, similar to that described in
Theorem 2. For instance, if we consider the family H′′ of all 16-uniform hyper-
graphs in which for every pair of edges e and f we have

|e ∩ f | 6= 5, 6, 7, 9, 10, 11,

then 12-stars and 4-blow-ups of 4-uniform hypergraphs are not the only types of
members of H′′ with density Θ(n4). We can also take any (4, i, n) Steiner system Si

with i = 16, 17, 18, 19, 20, and consider the hypergraph whose edges are 16-element
subsets of blocks of Si. Thus, since there are at least seven essentially different
kinds of dense hypergraphs from H′′, it is hard to expect a simple structural
characterization of all hypergraphs from this family.

References
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Symmetric intersecting families of vectors

Bhargav Narayanan

(joint work with Sean Eberhard, Jeff Kahn and Sophie Spirkl)

A family A ⊂ [k]n is said to be intersecting if any two of its elements agree on at
least one coordinate. Consideration of the orbits of the natural Z/kZ action on
[k]n, i.e., the orbits of the map that shifts each coordinate cyclically by one, shows
that any intersecting subfamily of [k]n has size at most kn−1; furthermore, this
bound is tight for the trivial family obtained by specifying the value of some fixed
coordinate. These observations go back to Berge and Livingtson in the 1970’s,
and many (more substantial) generalisations are now known.

What changes when we forbid such extremal examples that are highly asym-
metric, membership in which is determined by a single coordinate of outsized
influence? This general line of questioning was introduced by Babai in the late
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1970’s, and we provide an answer in this particular instance: for fixed k ≥ 3,
if A ⊂ [k]n is intersecting and admits a transitive automorphism group, then
|A| = o(kn). The requirement that k ≥ 3 is necessary: in the Boolean hypercube
[2]n with n odd, the family of vectors with more 1’s than 2’s is intersecting, of the
maximum possible size 2n−1, and invariant under the whole symmetric group.

Perhaps surprisingly, this simple and natural theorem seems resistant to ele-
mentary proof, and it may be that the more important point is the contribution
to methodology. Ellis and I, in resolving an old conjecture of Frankl on symmetric
3-wise intersecting families, introduced the use of spectral machinery for tackling
problems in extremal set theory involving symmetry; this framework has since
been successfully adapted to resolve a few other rather old problems. However,
this approach depends crucially on the interplay between up-sets, biased product
measures, and ‘sharp threshold’ behaviour, all features absent from the problem
under consideration here; for example, all of the previous work starts with the
elementary observation that the p-biased measure of an up-set in [2]n is monotone
increasing in p, but even this fact that has no useful analogue in [k]n for k ≥ 3.
One could, for example, try working in [k]n with the natural product order, but
one is then confronted with the following: compressing an intersecting family ‘up-
wards’ preserves the intersection condition but not symmetries, while replacing a
family by its ‘up-closure’ preserves symmetries but not the intersection condition.

Our way around these obstacles is to embed [k]n in a larger ‘covering space’,
a suitable product of posets, in which up-closure avoids the above difficulties and
appropriate analogues of biased product measures still provide the leverage we
need. Having transferred our problem to this larger space, we deduce our result
from a suitable variant of the sharp threshold theorem tailored to this covering
space.

Singularity and universality of random integral matrices

Hoi H. Nguyen

(joint work with Melanie M. Wood)

The singularity problem in combinatorial random matrix theory states that if a
square matrix Mn×n of size n is “sufficiently random”, then Mn×n is non-singular
asymptotically almost surely as n tends to infinity. In other words p(Mn×n), the
probability of Mn×n being singular, tends to 0.

This problem has a rich history. In the early 60s Komlós [8] showed that if
the entries of Mn×n take values {0, 1} independently with probability 1/2 then
p = O(n−1/2) 1. This bound was significantly improved to (1− ε)n (for an explicit
0 < ε < 1/2) by Kahn, Komlós and Szemerédi [7] in the 90’s, and subsequently by
Tao and Vu [15], by Rudelson and Vershynin [12], and by Bourgain, Vu and Wood
[1] in the last decade. More recently Tikhomirov [16] showed that p(Mn×n) =
(12 + o(1))n, which is asymptotically optimal.

1Most of the results here hold for far more general matrix models.
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As Mn×n has integral entries, these results imply that with very high probability
the linear map Mn×n : Zn → Zn is injective. Another important property of
interest is surjectivity, it seems natural to wonder if with high probability Mn×n :
Zn → Zn is surjective. However, it is not very hard to show that the surjectivity
probability for Mn×n goes to 0 with n. The main result of this report shows that
when the matrix has more columns than rows, e.g. Mn×(n+1) : Zn+1 → Zn, we
have surjectivity with positive probability strictly smaller than one.

We make the following definition to restrict the types of entries our random
matrices will have. We say a random integer ξn is αn-balanced if for every prime
p we have

(1) max
r∈Z/pZ

P(ξn ≡ r (mod p)) ≤ 1 − αn.

Our main result below is not only about whether Mn×(n+u) is surjective, but also
about the cokernel group Cok(Mn×(n+u)), which is the quotient group

Zn/Mn×(n+u)(Z
n+u).

Theorem 1. For integers n, u ≥ 0, let Mn×(n+u) be an integral n× (n+u) matrix

with entries i.i.d copies of an αn-balanced random integer ξn, with αn ≥ n−1+ε

and |ξn| ≤ nT for any fixed parameters 0 < ε < 1 and T > 0 not depending on n.
For any fixed finite abelian group B and u ≥ 0,

lim
n→∞

P
(

Cok(Mn×(n+u)) ≃ B
)

=
1

|B|u|Aut(B)|

∞
∏

k=u+1

ζ(k)−1

and

lim
n→∞

P
(

Cok(Mn×(n+u)) is cyclic
)

=
∏

p prime

(1 + p−(u+1)(p− 1)−1)

∞
∏

k=u+2

ζ(k)−1.

Here ζ(s) is the Riemann zeta function. In particular, as n → ∞, the map
Mn×(n+1) : Zn+1 → Zn is surjective with probability approaching

∏∞
k=2 ζ(k)−1 ≈

0.4358. By this result, the one extra dimension mapping to Zn brought the sur-
jectivity probability from 0 to ≈ 0.4358.

For u = 0, the cyclicity probability has been seen in several papers studying
the probability that a random lattice in Zn is co-cyclic (gives cyclic quotient), in
cases when these lattices are drawn from the nicest, most uniform distributions,
e.g. uniform on lattices up to index X with X → ∞ [2, 10, 11], or with basis
with uniform entries in [−X,X ] with X → ∞ [14]. Stanley and Wang have asked
whether the probability of having cyclic cokernel is universal (see [14, Remark
4.11 (2)] and [13, Section 4]). Theorem 1 proves this universality, showing that
the same probability of cocylicity occurs when the lattice is given by n random
generators from a rather large class of distributions, including ones that are rather
distorted mod p for each prime p.

To give a heuristic for why inverse zeta values arise in these probabilities, note
that Mn×(n+1) is surjective if and only if its reduction to modulo p is surjective
for all primes p. We then make two idealized heuristic assumptions on Mn×(n+1).
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(i) (uniformity assumption) Assume that for each prime p the entries of Mn×(n+1)

are uniformly distributed modulo p. In this case, a simple calculation gives the
probability for Mn×(n+1) being surjective modulo p is

∏n
j=2(1 − p−j)(1 − p−n−1).

(ii) (independence assumption) We next assume that the statistics of Mn×(n+1)

reduced to modulo p are asymptotically mutually independent for all primes p.
Under these assumptions, as n → ∞, the probability that Mn×(n+1) is surjective
would be asymptotically the product of all of the surjectivity probability modulo
p, which leads to the number

∏∞
k=2 ζ(k)−1 as seen.

The matrices in this report do not have to satisfy either assumption, and indeed
they can violate them dramatically. Also, our main results work for αn ≥ n−1+ε,
which is asymptotically best possible, in terms of the exponent of n.

Moreover, we show the same results hold if we replace Cok(Mn×(n+1)) with
the total sandpile group of an Erdős-Rényi simple random digraph, proving a
conjecture of Koplewitz [9, Conjecture 1]. Let M = Mn×n = (xij)1≤i,j≤n be a
random matrix where xii = 0 and its off-diagonal entries are i.i.d. copies of an
integral random variable ξn satisfying (1). Let LM = (Lij) be the Laplacian of
M , that is Lij = −xij if i 6= j and Lii =

∑n
k=1 xki. We then denote SM to be the

cokernel of L with respect to the group Zn
0 of integral vectors of zero entry-sum

SM = Zn
0 /LMZn. When M is the adjacency matrix of a directed graph, this group

has been called the sandpile group without sink [5] and the total sandpile group [9]
of the graph.

Theorem 2. Let 0 < ε < 1 and T > 0 be given. Let Mn×n be a integral n × n
matrix with entries i.i.d copies of an αn-balanced random integer ξn, with αn ≥
n−1+ε and |ξn| ≤ nT . Then for any finite abelian group B,

lim
n→∞

P
(

SMn×n
≃ B

)

=
1

|B||Aut(B)|

∞
∏

k=2

ζ(k)−1

and

lim
n→∞

P
(

SMn×n
is cyclic

)

=
∏

p prime

(1 + (p2(p− 1))−1)

∞
∏

k=3

ζ(k)−1.

Applied to the Erdős-Rényi random directed graph model where each directed
edge is chosen independently with probability q satisfying αn ≤ q ≤ 1 − αn, via
[6, Theorem 5] our result shows that with probability approximately .4358 the
graph has the property that any legal chip configuration σ (that is |σ| ≤ |E|− |V |)
stabilizes after a finite number of legal firings.
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Intersection patterns of curves

János Pach

(joint work with István Tomon)

Given a family of sets, C, the intersection graph of C is the graph, whose vertices
correspond to the elements of C, and two vertices are joined by an edge if the
corresponding sets have a nonempty intersection. Also, the disjointness graph of
C is the complement of the intersection graph of C, that is, two vertices are joined
by an edge if the corresponding sets are disjoint. As usual, we denote the clique
number, the independence number, and the chromatic number of a graph G by
ω(G), α(G) and χ(G), respectively.
Clique number vs. chromatic number. There are many interesting results connect-
ing the clique number and the chromatic number of geometric intersection graphs,
starting with a beautiful theorem of Asplund and Grünbaum [1], which states
that every intersection graph G of axis-parallel rectangles in the plane satisfies
χ(G) ≤ 4(ω(G))2.



Combinatorics 53

A family G of graphs is χ-bounded if there exists a function f : Z+ → Z+ such
that every G ∈ G satisfies χ(G) ≤ f(ω(G)). In this case, say that the func-
tion f is χ-bounding for G. Using this terminology, the result of Asplund and
Grünbaum [1] mentioned above can be rephrased as follows: The family of inter-
section graphs of axis-parallel rectangles in the plane is χ-bounded with bounding
function f(k) = 4k2. (It is conjectured that the same is true with bounding func-
tion f(k) = O(k).) However, an ingenious construction of Burling [3] shows that
the family of intersection graphs of axis-parallel boxes in R3 is not χ-bounded.
The χ-boundedness of intersection graphs of chords of a circle was established by
Gyárfás [5], and Kostochka et al. [6, 7] proved that the best χ-bounding function
f(k) is between Ω(k log k) and 2O(k). Recently, the upper bound was improved to
O(k2) by Davies and McCarty [4].
Families of curves. A curve or string in R2 is the image of a continuous function
φ : [0, 1] → Rd. A curve C ⊂ R2 is called x-monotone if every vertical line
intersects C in at most one point. We say that C is grounded at the curve L if
one of the endpoints of C is in L, and this is the only intersection point of C and
L. A grounded x-monotone curve is an x-monotone curve that is contained in the
half-plane {x ≥ 0}, and whose left endpoint lies on the vertical line {x = 0}.

It was first suggested by Erdős in the 1970s, and remained the prevailing con-
jecture for 40 years, that the family of intersection graphs of curves (the family
of so-called “string graphs”) is χ-bounded [2, 8]. There were many promising
facts pointing in this direction. Extending earlier results of McGuinness [10] and
Suk [15], Rok and Walczak [14] proved the conjecture for grounded families of
curves. Nevertheless, in 2014, Pawlik et al. [13] disproved Erdős’s conjecture.
They managed to modify Burling’s above mentioned construction to obtain a se-
quence of finite families of segments in the plane whose intersection graphs, Gn,
are triangle-free (that is, ω(Gn) = 2), but their chromatic numbers tend to infinity,
as n → ∞.

Recently, Pach, Tardos and Tóth [11] proved that the family of disjointness
graphs of curves in the plane is not χ-bounded either. However, the situation is
different if we restrict our attention to x-monotone curves. It was shown in [9] that
the family of disjointness graphs of x-monotone curves in the plane is χ-bounded
with a bounding function f(k) = k4. For grounded x-monotone curves, the same
proof provides a better bounding function: f(k) = k2. These results proved 25
years ago were not likely to be tight. However, in spite of many efforts, no-one
has managed to improve them or to show that they are optimal.
Our results. We proved, much to our surprise, that the order of magnitude of
the last two bounds cannot be improved. In fact, in the case of grounded x-
monotone curves, we determined the exact value of the best bounding function
for every k ≥ 2. To the best of our knowledge, this is the first large family of
non-perfect geometric disjointness graphs, for which one can precisely determine
the best bounding function.

Theorem 1. Let G be the disjointness graph of a family of grounded x-monotone
curves. If ω(G) = k, then χ(G) ≤

(

k+1
2

)

.
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Moreover, for every positive integer k ≥ 2, there exists a family C of grounded
x-monotone curves such that if G is the disjointness graph of C, then ω(G) = k

and χ(G) =
(

k+1
2

)

.

It turns out that disjointness graphs of grounded x-monotone curves can be
completely characterized by graphs with two total orders defined on their ver-
tex sets that satisfy some special properties. We call such graphs magical, and
we prove Theorem 1 by studying combinatorial properties of these graphs. This
novel characterization may also be useful for the solution of some other problems
concerning x-monotone curves.

The disjointness graph of any collection of x-monotone curves, each of which in-
tersects a given vertical line (the y-axis, say), is the intersection of two disjointness
graphs of grounded x-monotone curves. The methods used for proving Theorem 1
can be extended to such disjointness graphs and yield sharp bounds.

Theorem 2. Let G be the disjointness graph of a family C of x-monotone curves
such that all elements of C have nonempty intersection with a vertical line l. If
ω(G) = k, then χ(G) ≤ k+1

2

(

k+2
3

)

.
Moreover, for every positive integer k ≥ 2, there exists a family C of x-monotone

curves such that all elements of C have nonempty intersection with a vertical line
l, the disjointness graph G of C satisfies ω(G) = k, and χ(G) = k+1

2

(

k+2
3

)

.

As we have mentioned before, according to [9,12], k4 is a bounding function for
disjointness graphs of any family of x-monotone curves. Theorem 2 implies that
the order of magnitude of this bounding function is best possible. Actually, we
can prove a little more.

Theorem 3. For any positive integer k, let f(k) denote the smallest m such that
any Kk+1-free disjointness graph of x-monotone curves can be properly colored
with m colors. Then we have

k + 1

2

(

k + 2

3

)

≤ f(k) ≤ k2
(

k + 1

2

)

.

Here the lower and upper bounds differ by a factor of less than 6, and there
is some hope that one can determine the exact value of f(k). The lower bound
follows directly from Theorem 2.
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Phase transition for the number random contingency tables with
non-uniform margins

Igor Pak

(joint work with Sam Dittmer and Hanbaek Lyu)

1. Introductions

Contingency tables are fundamental objects in statistics for studying dependence
structure between two or more variables. They also correspond to bipartite multi-
graphs with given degrees and play an important role in combinatorics and graph
theory. Random contingency tables have been intensely studied in a variety of
regimes, yet remain largely out of reach in many interesting special cases. In this
paper we extend our previous paper [2] to show phase transition for the number
of contingency tables.

Let r = (r1, . . . , rm) ∈ Nm, c = (c1, . . . , cn) ∈ Nn be two nonnegative integer
vectors with the same sum of entries. Denote by M(r, c) the set of all (n × m)
contingency tables with row sums ri and column sums cj , i.e.

M(r, c) :=

{

(

aij

)

∈ N
mn

∣

∣

∣

∣

n
∑

k=1

aik = ri,

m
∑

k=1

akj = cj for all 1 ≤ i ≤ n, 1 ≤ j ≤ m

}

.

(1)

Let X = (Xij) be the contingency table chosen uniformly at random from
M(r, c). The asymptotic properties of the entries of X as m,n → ∞ is the
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subject of this paper. When the margins are uniform, i.e. r1 = . . . = rm and
c1 = . . . = cn, the exact asymptotics for

∣

∣M(r, c)
∣

∣ are known, see [1].
In this paper we analyze the number of square contingency table with the first

⌊nδ⌋ row and column margins ⌊BCn⌋, and the last n row and column margins
⌊Cn⌋. Viewing such X as block matrices, see Figure 1, it is natural to assume that
the entries are again nearly independent and identically distributed within each
block. However, there is still one degree of freedom remaining: the distribution
of mass of each block. We establish a sharp phase transition for this distribution
in our previous paper [2], where we also discuss the history of the problem, give
references, details, etc.

Figure 1. Contingency table with parameters n, δ, B and C.
First ⌊nδ⌋ rows and columns have margins ⌊Cn⌋, the last n rows
and columns have margins ⌊BCn⌋.

This paper is not intended for publication. Due to its followup nature, we are
including these results in the appendix of the arXiv version of [2].

2. Main results

For parameters n ≥ 1, 0 ≤ δ ≤ 1, and B,C ≥ 0, let Mn,δ(B,C) = M(r, c), where

r = c :=
(

⌊BCn⌋, . . . , ⌊BCn⌋, ⌊Cn⌋, . . . , ⌊Cn⌋
)

∈ N⌊nδ⌋+n.(2)

In other words, Mn,δ(B,C) is the set of contingency tables whose first ⌊nδ⌋ rows
and columns have margin ⌊BCn⌋ and the other n rows and columns have margin
⌊Cn⌋, see Figure 1. Let X = (Xij) be the random contingency table sampled
uniformly from Mn,δ(B,C). We are interested in the asymptotic behavior of
∣

∣Mn,δ(B,C)
∣

∣ as n → ∞ for various choice of parameters δ, B and C.
Formally, we derive a phase transition for the number |Mn,δ(B,C)| of contin-

gency tables as B increases for large but fixed n.

Theorem 1. Let Mn,δ(B,C) be as above, where 0 ≤ δ < 1. Let Bc = 1 +
√

1 + 1/C. Let f(x) = (x + 1) log(1 + x) − x log(x). Define

Fn,δ(B,C) := log |Mn,δ(B,C)| −
[

n2f(C) + BcC log(1 + 2C−1)n1+δ
]

.(3)
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Then there exists constants α, β > 0 independent of B such that the followings
hold:

(i): If B < Bc, then for all n ≥ 1,
[

2n1+δf(BC) +
α

Bc −B
n(2δ)∨(3δ−1)

]

− βn logBn(4)

≤ Fn,δ(B,C) ≤
[

2n1+δf(BC) +
α

Bc −B
n(2δ)∨(3δ−1)

]

.(5)

(ii): If B > Bc, then for all n ≥ 1,
[

(1 − δ)n2δ log(C(B −Bc)n) +
α

B −Bc
n2δ

]

− βn logBn(6)

≤ Fn,δ(B,C) ≤
[

(1 − δ)n2δ log(C(B −Bc)n) +
α

B −Bc
n2δ

]

.(7)

Remark. The most interesting implication of the above result is the upper bound
when B > Bc. There, if we fix large n ≥ 1 and increase B past Bc, the growth
rate of log |Mn,δ(B,C)| in B is only in the order of n2δ logBn. On the contrary,
the lower bound when B < Bc says that log |Mn,δ(B,C)| should increase at least
in the order of n1+δf(BC). In the special case of δ = 0, the theorem implies that
|Mn,0(B,C)| grows exponentially in n as we increase B toward Bc, but it grows
only polynomially in n once B > Bc.
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Thresholds versus fractional expectation-thresholds

Jinyoung Park

(joint work with K. Frankston, J. Kahn and B. Narayanan)

Our most important contribution here is the proof of a conjecture of Talagrand [8]
that is a fractional version of the “expectation-threshold” conjecture of Kahn and
Kalai [4]. For an increasing family F on a finite set X , we write (with definitions
below) pc(F), qf (F) and ℓ(F) for the threshold, fractional expectation-threshold,
and size of a largest minimal element of F . In this language, our main result is
the following.

Theorem 1. There is a universal K such that for every finite X and increasing
F ⊆ 2X,

pc(F) ≤ Kqf(F) log ℓ(F).
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As observed below, qf (F) is a more or less trivial lower bound on pc(F), and
Theorem 1 says this bound is never far from the truth. (Apart from the constant
K, the upper bound is tight in many of the most interesting cases.)

Thresholds. For a given X and p ∈ [0, 1], µp is the product measure on 2X given

by µp(S) = p|S|(1 − p)|X\S|. An F ⊆ 2X is increasing if B ⊇ A ∈ F ⇒ B ∈ F .
If this is true (and F 6= 2X , ∅), then µp(F)(:=

∑{µp(S) : S ∈ F}) is strictly
increasing in p, and the threshold, pc(F), is the unique p for which µp(F) = 1/2.
This is finer than the original Erdős–Rényi notion, according to which p∗ = p∗(n)
is a threshold for F = Fn if µp(F) → 0 when p ≪ p∗ and µp(F) → 1 when
p ≫ p∗. (That pc(F) is always an Erdős–Rényi threshold follows from [2].)

Following [6–8], we say F is p-small if there is a G ⊆ 2X such that F ⊆ 〈G〉 :=
{T : ∃S ∈ G, S ⊆ T } and

(1)
∑

S∈G p|S| ≤ 1/2.

Then q(F) := max{p : F is p-small}, which we call the expectation-threshold of F
(note the term is used slightly differently in [4]), is a trivial lower bound on pc(F),
since for G as above and T drawn from µp,

(2) µp(F) ≤ µp(〈G〉) ≤ ∑

S∈G µp(T ⊇ S) =
∑

S∈G p|S| (= E[|{S ∈ G : S ⊆ T }|]).
The following statement, the main conjecture (Conjecture 1) of [4], says that for
any F , this trivial lower bound on pc(F) is close to the truth.

Conjecture 2. There is a universal K such that for every finite X and increasing
F ⊆ 2X,

pc(F) ≤ Kq(F) log |X |.
We should emphasize how strong this is (from [4]: “It would probably be more

sensible to conjecture that it is not true”). For example, it easily implies—and was
largely motivated by—Erdős–Rényi thresholds for (a) perfect matchings in random
r-uniform hypergraphs, and (b) appearance of a given bounded degree spanning
tree in a random graph. These have since been resolved: the first—Shamir’s
Problem, circa 1980—in [3], and the second—a mid-90’s suggestion of the second
author—in [5]. Both arguments are difficult and specific to the problems they
address (e.g. they are utterly unrelated either to each other or to what we do
here).

Talagrand [6,8] suggests relaxing “p-small” by replacing the set system G above
by what we may think of as a fractional set system, g: say F is weakly p-small if
there is a g : 2X → R+ such that

∑

S⊆T g(S) ≥ 1 ∀T ∈ F and
∑

S⊆X g(S)p|S| ≤ 1/2.

Then qf (F) := max{p : F is weakly p-small}, the fractional expectation-threshold
of F , satisfies

(3) q(F) ≤ qf (F) ≤ pc(F)

(the first inequality is trivial and the second is similar to (2)), and Talagrand [8,
Conjectures 8.3 and 8.5] proposes a sort of LP relaxation of Conjecture 2, and
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then a strengthening thereof. The first of these, the following, replaces q by qf in
Conjecture 2; the second, which adds replacement of |X | by the smaller ℓ(F), is
our Theorem 1.

Conjecture 3. There is a universal K such that for every finite X and increasing
F ⊆ 2X,

pc(F) ≤ Kqf (F) log |X |.
Talagrand further suggests the following “very nice problem of combinatorics,”

which implies equivalence of Conjectures 2 and 3, as well as of Theorem 1 and the
corresponding strengthening of Conjecture 2.

Conjecture 4. There is a universal K such that, for any increasing F on a finite
set X, q(F)≥qf (F)/K.

(That is, weakly p-small implies (p/K)-small.)
Note the interest here is in Conjecture 4 for its own sake and as the most likely

route to Conjecture 2; all applications of the latter that we’re aware of follow just
as easily from Theorem 1.

Spread hypergraphs and spread measures. We say a hypergraph on the
(vertex ) set X is a collection H of subsets of X (edges of H), with repeats allowed.
For S ⊆ X , we use 〈S〉 for {T ⊆ X : T ⊇ S}, and for a hypergraph H on X , we
write 〈H〉 for ∪S∈H〈S〉. We say H is ℓ-bounded (resp. ℓ-uniform or an ℓ-graph) if
each of its members has size at most (resp. exactly) ℓ, and κ-spread if

(4) |H ∩ 〈S〉| ≤ κ−|S||H| ∀S ⊆ X.

(Note that edges are counted with multiplicities on both sides of (4).)
A major advantage of the fractional versions (Conjecture 3 and Theorem 1)

over Conjecture 2—and the source of the present relevance of [1]—is that they
admit, via linear programming duality, reformulations in which the specification
of qf (F) gives a usable starting point. Following [8], we say a probability measure
ν on 2X is q-spread if

ν(〈S〉) ≤ q|S| ∀S ⊆ X.

Thus a hypergraph H is κ-spread iff uniform measure on H is q-spread with q =
κ−1.

As observed by Talagrand [8], the following is an easy consequence of duality.

Proposition 5. For an increasing family F on X, if qf (F) ≤ q, then there is a
(2q)-spread probability measure on 2X supported on F . �

This allows us to reduce Theorem 1 to the following alternate (actually, equivalent)
statement.

Theorem 6. There is a universal K such that for any ℓ-bounded, κ-spread hyper-
graph H on X, a uniformly random ((Kκ−1 log ℓ)|X |)-element subset of X belongs
to 〈H〉 w.h.p. as ℓ → ∞.
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Efficiently sampling colorings with less than 11∆/6 colours

Guillem Perarnau

(joint work with Michelle Delcourt, Luke Postle)

Counting the number of proper k-colorings of a graph is a computationally hard
problem [8]. Jerrum, Valiant, and Vazirani [5] showed that one can approximate
this number using an almost uniform sampler, motivating the question of finding
an efficient algoritheorem to generate uniformly random colorings of a graph. This
question is a central topic in computer science and statistical physics.

To this end, we study the following Markov chain Monte Carlo algoritheorem
known as Glauber dynamics (e.g. see [3]). The Glauber dynamics for k-colorings is
a Markov chain with state space the set of proper k-colorings of G and transitions
given by recoloring one vertex at a time.

It is easy to check that the chain is ergodic provided that k ≥ ∆ + 2. A well-
known conjecture in the area is that Glauber dynamics mixes in polynomial time
(rapid mixing) for every k ≥ ∆ + 2 (and hence that there exists a polynomial-time
approximation scheme for k-colorings for every k ≥ ∆+2). Jerrum [4] showed that
for k ≥ 2∆+1 the mixing time is O(n logn). Salas and Sokal [7] used Dobrushin’s
uniqueness criterion to obtain similar results. In 2000, Vigoda [9] obtained an
important breakthrough in the area by showing that flip dynamics with certain
flip parameters has mixing time O(n logn) for k > 11

6 ∆, implying that Glauber

dynamics has mixing time O(n2) in the same regime. In the last 20 years there
have been numerous improvements for particular classes of graphs, but as to the
original conjecture, no improvement over Vigoda’s bound had appeared. In this
talk we present the first result in this direction.

Theorem 1. The Glauber dynamics for k-colorings on a graph on n vertices
with maximum degree ∆ and k ≥ (11/6 − η)∆ with η = 1

84000 has mixing time

O
(

log k · n2
)

.
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A similar result has been obtained independently by Chen and Moitra with a
different proof technique. See [1] for a joint extended abstract including both
proofs of the result.

As in [9], Theorem 1 will follow as a corollary of a similar result for the flip
dynamics. The flip dynamics for k-colorings with flip parameters p = (p1, p2, . . . )
is a Markov chain with space state the set of proper k-colornings and transitions
between states given by swapping the colors of a maximum bicolored connected set
of vertices S with probability proportional to p|S|. Using the comparison theorem
of Diaconis and Saloff-Coste [2] and provided that no large flips are allowed, one
can bound the mixing time of Glauber dynamics using the mixing time of the flip
dynamics.

In addition, we also study the problem of sampling list colorings. Frieze and
Vigoda [3] asked if the results obtained for sampling colorings could be transferred
to list coloring. Jerrum’s proof for k ≥ 2∆ + 1 [4] carries over immediately for
list coloring; however, rapid mixing of Glauber dynamics for list coloring was not
previously known for k ≤ 2∆.

Theorem 2. The Glauber dynamics for k-list-colorings on a graph on n vertices
with maximum degree ∆ and k ≥

(

11
6 − η

)

∆ has mixing time O(log k · n2).

To prove Theorems 1 and 2, we introduce two main ingredients in Vigoda’s
analysis of the flip dynamics. Firstly, we use a novel metric for path coupling.
While most of the previous approaches to the study of the mixing time of Glauber
dynamics use the Hamming metric, alternative metrics have been introduced to
deal with particular instances. For example, Luby and Vigoda [6] used a metric
for independent sets that modifies the Hamming distance, decreasing it for “good”
pairs of independent sets. Following the same spirit, we define a new metric d for
colorings that consists of the Hamming metric dH minus a small factor dB counting
the number of “non-extremal configurations” around a vertex. We show that in a
single transition of the chain, either dH decreases in expectation or dB increases in
expectation. In both cases, this leads to an expected decrease in the metric d. In
this way, it suffices to study a single-step coupling with the new metric, avoiding to
do a multi-step coupling argument. Secondly, we use linear programming to obtain
a set of flip parameters p minimizing the number of extremal configurations. The
existence of a small number of extremal configurations makes it possible to analyze
the expected change of the metric.
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A proof of Ringel’s Conjecture

Alexey Pokrovskiy

(joint work with Richard Montgomery, Benny Sudakov)

Ringel’s Conjecture is a problem about graph decompositions. We say that a graph
G has a decomposition into copies of a graph H if the edges of G can be partitioned
into edge-disjoint subgraphs isomorphic to H . Many well known graph theoretic
problems can be phrased in these terms. For example, in 1847, Kirkman studied
decompositions of complete graphs Kn and showed that they can be decomposed
into copies of a triangle if, and only if, n ≡ 1 or 3 (mod 6). Ringel’s conjecture
is about decompositions of complete graphs into large trees, (where a tree is a
connected graph with no cycles).

Conjecture 1 (Ringel, [8]). The complete graph K2n+1 can be decomposed into
copies of any tree with n edges.

Ringel’s conjecture is one of the oldest and best known open conjectures on
graph decompositions. It has been established for many very special classes of
trees such as caterpillars, trees with ≤ 4 leaves, firecrackers, diameter ≤ 5 trees,
symmetrical trees, trees with ≤ 35 vertices, and olive trees (see Chapter 2 of [5]
and the references therein). There have also been some partial general results in
the direction of Ringel’s conjecture. Typically, for these results, an extensive tech-
nical method is developed which is capable of almost-packing any appropriately-
sized collection of certain sparse graphs, see, e.g., [1–4, 6]. Despite the variety of
techniques, these latter papers all have the same limitation, requiring that the
maximum degree of the tree should be much smaller than n.

At Oberwolfach, a proof of Ringel’s conjecture for sufficiently large trees was
presented.

Theorem 2 ([7]). For every sufficiently large n the complete graph K2n+1 can be
decomposed into copies of any tree with n edges.

The proof of this theorem is based on showing that a rainbow copy of every
n-edge tree exists in every near-distance-coloured K2n+1. Using a standard trans-
formation, this implies that K2n+1 contains a cyclic decomposition by copies of
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any n-edge tree (a decomposition is cyclic if it is invariant under some cyclic per-
mutation of the vertices of K2n+1). The existence of such a cyclic decomposition
was separately conjectured by Kotzig (see [9]).

Our approach builds on ideas from the previous research on graph decompo-
sitions and graceful labellings. From the work on graph decompositions, our ap-
proach is inspired by randomized decompositions and the absorption technique.
The rough idea of absorption is as follows. Before the embedding of T we prepare
a template which has some useful properties. Next we find a partial embedding of
the tree T with some vertices removed such that we did not use the edges of the
template. Finally we use the template to embed the remaining vertices. This idea
was introduced as a general method by Rödl, Ruciński and Szemerédi and has
been used extensively since then. For example, the proof of Ringel’s Conjecture
for bounded degree trees is based on this technique [6].
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Girth in Ramsey theory

Christian Reiher and Vojtěch Rödl

1. Introduction – Colouring vertices

We commence with an unusual formulation of the well known fact that there exist
graphs whose girth and chromatic number are simultaneously arbitrarily large [2,
6, 8, 13, 16]. Recall that the chromatic number of a graph H is the least natural
number χ(H) such that there exists a colouring of the vertices of H using χ(H)
colours with the property that no edge of H is monochromatic. This is a Ramsey
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theoretic invariant of H , for a lower bound estimate of the form χ(H) > r can
equivalently be expressed by the partition relation

(1) H −→ (e)vr ,

where the superscripted v on the right side means that the objects receiving colours
are vertices and the letter e enclosed in parentheses indicates that the object we
want to find monochromatically is an edge. Describing the absence of cycles in
terms of forests one can formulate the aforementioned result as follows.

Theorem 1. Given r, n ∈ N there exists a graph H with H −→ (e)vr having the
property that any set consisting of at most n edges of H forms a forest.

From a Ramsey theoretic perspective, it is equally natural to investigate the prob-
lem that instead of a monochromatic edge one wishes to enforce a monochromatic
copy of a given graph F . For any two graphs F and H we write

(

H
F

)

for the set of

all induced subgraphs of H isomorphic to F . For H ⊆
(

H
F

)

and r ∈ N the partition
relation

(2) H −→ (F )vr

is defined to hold if for every colouring of the vertices of H with r colours there
exists a monochromatic copy F⋆ ∈ H. The existence of a system H having this
property for given F and r is easily established by starting with a linear v(F )-
uniform hypergraph whose chromatic number is larger than r, and inserting copies
of F into its edges. Pursuing this argument further one arrives at the following
result (see also [14, 22, 23]).

Theorem 2. For every graph F and all r, n ∈ N there exists a graph H together
with a system of copies H ⊆

(

H
F

)

such that

(I) H −→ (F )vr and
(II) every N ⊆ H with |N | ≤ n admits an enumeration N = {F1, . . . , F|N |}

with the property that for every j ∈ [2, |N |] the sets
⋃

i<j V (Fi) and V (Fj)
have at most one vertex in common.

2. Colouring edges – Results

An entirely new level of difficulty emerges when edges rather than vertices are the
entities subject to colouration. Henson asked more than forty years ago whether
for every graph F and every number of colours r there exists a graph H with

H −→ (F )r ,

where now we are colouring edges1 and the desired monochromatic occurrence
of F is supposed to be induced. This problem was first solved in the 2-uniform
case [5,9,19,20] and later for more general structures, such as hypergraphs [1,15].
As a matter of fact, these articles show much stronger results, asserting that one
can demand H to have certain additional properties, provided that F has these

1Henceforth all colourings are colourings of edges and attempting to keep the notation simple
we refrain from adding a superscripted “e” on the right side of our partition relations.
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properties as well. For instance, these results allow to preserve the clique number,
but not the girth (length of the shortest induced cycle). We may now state the
simplest form of the girth Ramsey theorem, which is among the main results of
this talk.

Theorem 3. Given an integer g ≥ 2, a graph F with girth(F ) > g and a natural
number r, there exists a graph H with girth(H) > g and

(3) H −→ (F )r .

What can we say about longer cycles in H? Clearly, if F contains a Cm, then H
needs to contain Cm as well. Moreover, as soon as both r and e(F ) are at least 2,
there must be overlapping copies of F in H , which give rise to plenty of cycles
in H that pass through several copies of F . One can insist, however, that up to
some fixed length all induced cycles in H are inherited from the copies of F that
guarantee the Ramsey property. This is made precise by the following version of
the girth Ramsey theorem.

Theorem 4. Given a graph F and positive integers r and n, there exists a graph H
with H −→ (F )r such that for m ∈ [2, n] every induced m-cycle of H is contained
in an induced subgraph of H which is isomorphic to F .

For a result in the spirit of Theorem 2 we need to define forests of copies.

Definition 5. Suppose that F and H are graphs and that N ⊆
(

H
F

)

. We say that

N is a forest of copies if there exists an enumeration N =
{

F1, . . . , F|N |
}

such

that for every j ∈ [2, |N |] the set zj =
(
⋃

i<j V (Fi)
)

∩ V (Fj) satisfies

(I) either |zj | ≤ 1
(II) or zj ∈

(
⋃

i<j E(Fi)
)

∩ E(Fj).

We would like to draw attention to a bizarre difference between this notion
and the standard edge forests considered in Section 1. It is well known that
if a set of edges forms a standard forest, then so does each of its subsets. As
the following counterexample demonstrates, the analogous statement for forests
of copies fails. Let F be a graph containing a triangle x0x1x2. For every index
i ∈ Z/3Z let Fi be a graph isomorphic to F having with F the edge xi+1xi+2

but nothing else in common. Suppose that except for these intersections the
copies in N = {F, F0, F1, F2} are mutually disjoint. This enumeration exemplifies
that N is a forest of copies. However its subset N− = N r {F} fails to be
such a forest. For instance, for the enumeration N− = {F0, F1, F2} the set z2 =
(

V (F0) ∪ V (F1)
)

∩ V (F2) = {x0, x1} is certainly not in case (I) and, as it fails
to be an edge of F0 or F1, it does not satisfy (II) either. By symmetry a similar
problem arises when one enumerates N− in any other way.

Summarising this discussion, we have seen that being a forest of copies is not
preserved under taking subsets. This phenomenon explains the rôle of X in the
third version of the girth Ramsey theorem that follows.

Theorem 6. Given a graph F and r, n ∈ N there exists a graph H together with
a system of copies H ⊆

(

H
F

)

satisfying not only H −→ (F )r but also the following
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statement: For every N ⊆ H with |N | ∈ [2, n] there exists a set X ⊆ H such that
|X | ≤ |N | − 2 and N ∪ X is a forest of copies.

If F contains triangles the upper bound on |X | is optimal and relates to the
fact that when triangulating an |N |-gon by means of diagonals one creates |N |−2
triangles. If girth(F ) > g is known to hold for some g ≥ 2, the upper bound on |X |
can be improved to |X | ≤ (|N | − 2)/(g − 1).

Finally, we also proved generalisations of these theorems to linear hypergraphs.
All of our results are proved by means of explicit constructions.

3. Discussion of earlier results

We conclude by discussing some partial results towards the girth Ramsey theorem
that have been obtained over the years. First, for general k-uniform hypergraphs
Theorem 6 has been proved by Nešetřil and Rödl [18] for n = 2 and their approach
yields Theorem 3 for g = 3 as well.

Most other partial results deal with the case of graphs. The main result of [18]
asserts that Theorem 3 holds for g = 4 and, as Nešetřil and Rödl point out, by
means of a more elaborate version of their argument one can treat every g ≤ 7.
However, the new difficulties arising for g = 8 are fairly overwhelming. In general,
it seems that even cycles cause more difficulties than odd cycles and, in fact, an
odd-girth version of Theorem 3 was obtained in [17].

Rödl and Ruciński [21] proved probabilistically that Theorem 3 holds for F =
Cg+1, thus answering a question of Erdős [7]. The smallest number of edges
that a Ramsey graph for Cg+1 can have was subsequently investigated by Hax-
ell, Kohayakawa, and  Luczak [12]. The study of Ramsey properties of sparse
random graphs and hypergraphs culminated in contributions by Friedgut, Rödl,
and Schacht [10], and by Conlon and Gowers [4]. Recently Hàn, Rödl, Retter,
and Schacht [11] studied numerical aspects associated with the case F = Cg+1 of
Theorem 3 utilising the container method [3, 24].
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The upper tail for triangles in sparse random graphs

Wojciech Samotij

(joint work with Matan Harel, Frank Mousset)

Given an integer n and a real p ∈ [0, 1], let X = Xn,p denote the number of
triangles in the binomial random graph Gn,p. It is natural to ask for quantitative
estimates of the tail probabilities Pr(X ≤ (1 − δ)E[X ]) and Pr(X ≥ (1 + δ)E[X ]).
The main motivation for studying this particular random variable is that the
classical theory of large deviations applies only to linear functions of independent
random variables, whereas X , defined above, is naturally expressed as a degree-
three polynomial. As it turns out, these two tail probabilities are governed by
very different phenomena. On the one hand, using a combination of Harris’s
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inequality [9] and Janson’s inequality [10], one can show that

(1) − log Pr
(

X ≤ (1 − δ)E[X ]
)

= Θδ(min {n2p, n3p3}),

as long as p ≤ 1−Ω(1). On the other hand, there are no comparably simple tools
that allow one to easily obtain similar estimates on the logaritheorem of the upper
tail probability.

An important reason for this difficulty is that, unlike the lower tail, the up-
per tail is influenced by ‘local events’ – the appearance of small subgraphs that
increases the value X atypically. For example, there are graphs with n vertices
and merely Oδ(n2p2) edges that contain (1 + δ)E[X ] triangles (consider a com-
plete graph with Cδnp vertices, for a sufficiently large constant Cδ); the upper tail
probability is thus at least the probability that Gn,p contains such a graph:

(2) − log Pr
(

X ≥ (1 + δ)E[X ]
)

≤ Oδ(n2p2 log(1/p)).

Establishing an upper bound on the upper tail probability that would match (2)
proved to be a difficult challenge. This was achieved only less than ten years ago,
following a sequence of papers [11–13,15], by Chatterjee [2] and DeMarco–Kahn [6],
who proved that

− log Pr
(

X ≥ (1 + δ)E[X ]
)

= Θδ(min {E[X ], n2p2 log(1/p)}),

which matches the upper bound (2) in the range p ≥ n−1 logn.
This still leaves open the problem of determining the dependence of the upper

tail probability on the constant δ, which would be the first step towards obtain-
ing a meaningful description of the upper tail event. In order to quantify this
dependence, define

(3) ΨX(δ) = min
{

eG : G ⊆ Kn and E[X | G ⊆ Gn,p] ≥ (1 + δ)E[X ]
}

.

It is not difficult to show that, if ΨX(δ) → ∞,

(4) − log Pr
(

X ≥ (1 + δ)E[X ]
)

≤ (1 + o(1)) · ΨX(δ) log(1/p).

In the last several years, a powerful theory of large deviations for nonlinear
functions of independent random variables has been developed in [1, 3–5, 7]. This
theory allows to express the logaritheorem of the upper tail probability for X ,
for a certain range of p, in terms of the solution to a variational problem that
generalises the definition (3). In particular, it was shown in [1, 5, 14] that the
upper bound (4) is asymptotically optimal when n−1/2(log n)O(1) ≪ p ≪ 1. Our
main results extends this to the optimal range of densities.

Theorem 1. Let X denote the number of triangles in Gn,p. Then, for every fixed
positive constant δ and all p = p(n) satisfying n−1 logn ≪ p ≪ 1,

− log Pr
(

X ≥ (1 + δ)E[X ]
)

= (1 ± o(1)) · ΨX(δ) log(1/p).

In the complementary range of densities, we show that the upper tail of X
resembles that of a Poisson random variable (with the same expectation).
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Theorem 2. Let X denote the number of triangles in Gn,p. Then, for every fixed
positive constant δ and all p = p(n) satisfying n−1 ≪ p ≪ n−1 logn,

lim
n→∞

− log Pr
(

X ≥ (1 + δ)E[X ]
)

E[X ]
= (1 + δ) log(1 + δ) − δ.

Together, these theorems resolve the upper tail problem for X nearly com-
pletely. At the heart of the proof of Theorem 1 lies a general method for proving
bounds on the upper tail probability of random variables that may be expressed
as low-degree polynomials in i.i.d. Bernoulli variables. The proof uses an adapta-
tion of the classical moment argument of Janson, Oleszkiewicz, and Ruciński [11];
this argument is used to formalise the intuition that the upper tail event is dom-
inated by the appearance of near-minimisers of the combinatorial optimisation
problem (3).

In the particular context of triangles in Gn,p, we say that a graph G ⊆ Kn is
a core if it is a feasible set for the above optimisation problem, it has at most
O
(

ΨX(δ) log(1/p)
)

edges, and it satisfies a certain natural rigidity condition. Our
general method implies that the upper tail probability is approximately equal to
the probability of the appearance of a core. In particular, when the number of
cores of size m is (1/p)o(m), a property we term entropic stability, then a naive
union bound implies that − log Pr

(

X ≥ (1 + δ)E[X ]
)

≈ ΨX(δ) log(1/p); fairly
simple combinatorial arguments can be used to show that this is the case precisely
when n−1 logn ≪ p ≪ 1. The proof of Theorem 2 involves a change of measure
and factorial moment estimates.

The asymptotics of ΨX(δ) are given by the following theorem, which extends
an earlier result due to Lubetzky–Zhao [14]. For positive reals δ and c, we define

ϕ(δ, c) = min

{

δ2/3

2
,
⌊δc/3⌋ + {δc/3}1/2

c
,
⌊δc/3⌋

c
+

(r{δc/3}/c)2/r
2

}

.

Theorem 3. Let X denote the number of triangles in Gn,p. Then, for every fixed
positive constant δ and all p = p(n) satisfying n−1 ≪ p ≪ 1,

lim
n→∞

ΨX(δ)

n2p2
=











δ2/3/2 if np2 → 0,

ϕ(δ, c) if np2 → c ∈ (0,∞),

min
{

δ2/3/2, δ/3
}

if np2 → ∞.

The different possible values for this limit correspond to different types of sub-
graphs achieving the minimum in the definition of ΨX(δ). Our methods also allow
us to show that if one conditions Gn,p on the upper tail event, then with high
probability, Gn,p contains a graph closely resembling one of these minimisers. The
results mentioned above extend to the case where one replaces triangles by larger
cliques and, to some extent, by regular graphs.
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On counting algebraically defined graphs

Lisa Sauermann

1. Introduction

Many natural classes of graphs arising in discrete and computational geometry
have been studied intensively both because of their structural properties and due to
their relevance in practical applications. In this talk, we discuss an essentially tight
lower bound on the number of graphs with vertex set {1, . . . , n} in various graph
classes obtained from discrete geometry. In fact, the graphs in these classes can be
defined algebraically by polynomial conditions. Therefore, following an approach
of Alon and Scheinerman [1], Warren’s theorem [7] implies an upper bound on
the number of graphs with vertex set {1, . . . , n} in these graph classes (Warren’s
theorem is a variant of a theorem of Milnor [4] and Thom [6]). We show that this
upper bound is essentially tight for any such class of algebraically defined graphs,
assuming that the corresponding polynomials satisfy some reasonable conditions.
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Intersection graphs are particularly natural classes of graphs obtained from discrete
geometry. Given n geometric objects from some family F (for example the family
of all segments in the plane) numbered from 1 to n, their intersection graph is the
graph on the vertex set {1, . . . , n} where two vertices are joined by an edge if and
only if the corresponding objects intersect.

As mentioned above, for many families F of geometric objects, Warren’s theo-
rem [7] can be used to bound the number of graphs occuring as intersection graphs
of a collection of n numbered objects in F (see for example [5] for segments in
the plane and [3] for disks in the plane). In contrast, all known lower bounds for
the number of intersection graphs of n numbered objects in a given family F were
obtained by (sometimes fairly involved) ad hoc constructions for some specific
families F . Specifically, McDiarmid and Müller [3] proved lower bounds for disks
and unit disks (in the plane), and Fox [2] provided a lower bound construction for
segments (in the plane). All of these lower bounds essentially match the upper
bounds that Warren’s theorem [7] gives in the respective cases. However, these
lower bound constructions are specific to the particular family F and do not easily
generalize to other families F of geometric objects.

In this talk, we discuss a result giving an essentially tight lower bound for the
number of graphs whose edges are defined using the signs of a given finite list
of polynomials, assuming these polynomials satisfy some reasonable conditions.
Our theorem in particular implies essentially tight lower bounds for the number
of intersection graphs of segments, disks and many other geometric objects in the
plane (or in higher dimension). It also implies an essentially tight lower bound for
the number of graphs obtained by considering the pairwise linking or non-linking
relations of n numbered disjoint circles in R3.

From discrete geometry, one can not only obtain graphs of interest, but also par-
tial orders, so-called containment orders. A collection of n geometric objects from
some family F numbered from 1 to n defines a partial order on the set {1, . . . , n}
obtained from the containment relations between the objects. Alon and Schein-
erman [1] gave an upper bound for the number of containment orders obtained
from a collection of n numbered objects in some family F using Warren’s theo-
rem [7]. For many geometric families F , our general result implies an essentially
matching lower bound for this number of containment orders. In particular, this
essentially determines the number of circle orders, angle orders and containment
orders obtained from polygons with a fixed number of vertices in the plane.

2. Statement of the result

In order for our result to apply straightforwardly not only to algebraically defined
graphs, but also to partial orders, we work in the framework of algebraically defined
edge-labelings of complete graphs. Given a finite set Λ of labels, a list of polynomi-
als P1, . . . , Pk ∈ R[x1, . . . , xd, y1, . . . , yd], a function φ : {+,−, 0}k → Λ and points
a1, . . . , an in some open subset U ⊆ Rd, one can define an edge-labeling of the com-
plete graph on the vertex set {1, . . . , n} as follows: For any 1 ≤ i < j ≤ n the label
of the edge ij is defined to be φ

(

sgnP1(ai, aj), . . . , sgnPk(ai, aj)
)

∈ Λ. Fixing Λ,
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the polynomials P1, . . . , Pk, the function φ and the subset U ⊆ Rd, we are then
concerned with the number of edge-labelings which can be obtained in this way for
some points a1, . . . , an ∈ U . We call all such edge-labelings (P1, . . . , Pk, φ, U,Λ)-
representable

Taking the set of labels to be Λ = {“edge”, “non-edge”}, edge-labelings of the
complete graph on the vertex set {1, . . . , n} correspond precisely to ordinary graphs
on the vertex set {1, . . . , n}.

To motivate the set-up of (P1, . . . , Pk, φ, U,Λ)-representable edge-labelings, let
us check that intersection graphs of open disks in the plane can be interpreted in
this way: Each disk in the plane is given by specifying its center (x, y) and its
radius r > 0. Thus, the family of open disks in the plane corresponds to the open
set U of points (x, y, r) ∈ R3 with r > 0. Two disks corresponding to the points
(x, y, r), (x′, y′, r′) ∈ U intersect if and only if (x−x′)2+(y−y′)2 < (r+r′)2. Thus,
a graph on the vertex set {1, . . . , n} is an intersection graph of n numbered open
disks in the plane if and only if there are points (x1, y1, r1), . . . , (xn, yn, rn) ∈ U
such for all 1 ≤ i < j ≤ n we have (xi−xj)

2+(yi−yj)
2−(ri+rj)

2 < 0 if and only if
ij is an edge of the graph. Consider the set of labels Λ = {“edge”, “non-edge”}, the
polynomial P (x, y, r, x′, y′, r′) = (x−x′)2 + (y− y′)2− (r+ r′)2 and the function φ
given by φ(−) = “edge” and φ(+) = φ(0) = “non-edge”. Then intersection graphs
of n numbered open disks in the plane then correspond to (P, φ, U,Λ)-representable
edge-labelings of the complete graph on the vertex {1, . . . , n} with labels in Λ.

For any fixed P1, . . . , Pk, φ, U and Λ, the following theorem gives an upper
bound for the number of (P1, . . . , Pk, φ, U,Λ)-representable edge-labelings . It
follows from a theorem of Warren [7] with exactly the same method as in [1, 3, 5].

Theorem 1. Let us fix a finite set Λ, an integer d ≥ 1, polynomials P1, . . . , Pk ∈
R[x1, . . . , xd, y1, . . . , yd], a function φ : {+,−, 0}k → Λ, and a non-empty open sub-
set U ⊆ Rd. Then the number of (P1, . . . , Pk, φ, U,Λ)-representable edge-labelings
of the complete graph on the vertex set {1, . . . , n} is at most n(1+o(1))dn.

Our main result, Theorem 3 below, states that under some reasonable assump-
tions, the upper bound in Theorem 1 is tight. In particular, we need an assumption
that the open set U is reasonable shaped. This will be made precise by the fol-
lowing definition.

Definition 2. Let us call a subset U ⊆ Rd definable by polynomials if there exists
a finite list of real polynomials Q1, . . . , Qℓ and a subset S ⊆ {+,−, 0}ℓ such that

U = {x ∈ Rd | (sgnQ1(x), . . . , sgnQℓ(x)) ∈ S}.
Our main result is the following theorem.

Theorem 3. Let us fix a finite set Λ, an integer d ≥ 1, polynomials P1, . . . , Pk ∈
R[x1, . . . , xd, y1, . . . , yd], a function φ : {+,−, 0}k → Λ, and a non-empty open
subset U ⊆ Rd which is definable by polynomials. Suppose that for any two distinct
points a, a′ ∈ U there exists a point b ∈ U with Ps(a, b) 6= 0 and Ps(a

′, b) 6= 0 for
all 1 ≤ s ≤ k and such that

φ
(

sgnP1(a, b), . . . , sgnPk(a, b)
)

6= φ
(

sgnP1(a′, b), . . . , sgnPk(a′, b)
)

.
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Then there are at least n(1−o(1))dn different (P1, . . . , Pk, φ, U,Λ)-representable edge-
labelings of the complete graph on the vertex set {1, . . . , n}.

Let us comment on the assumption in Theorem 3 concerning the existence of
the desired point b ∈ U for any two distinct points a, a′ ∈ U . Roughly speaking,
this assumption is saying that for any two distinct points a, a′ ∈ U there exists
a point b ∈ U such that for i < j the pairs (ai, aj) = (a, b) and (ai, aj) = (a′, b)
would lead to different outcomes for the label of the edge ij. An assumption of
such a form is necessary in Theorem 3. In applications, this assumption is usually
very easy to check.

In our proof proof of Theorem 3 we use some tools from algebraic geometry and
differential topology.
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Topology, pages 255–265, Princeton Univ. Press, 1965.
[7] H. E. Warren, Lower bounds for approximation by nonlinear manifolds, Trans. Amer. Math.

Soc. 133 (1968), 167–178.

Fast uniform generation of regular graphs and contingency tables

Nick Wormald

(joint work with Andrii Arman and Pu Gao)

1. Introduction

Sampling discrete objects from a specified probability distribution is a classical
problem in computer science, both in theory and for practical applications. Uni-
form generation of random graphs with a specified degree sequence is one such
problem that has frequently been studied. When considering the adjacency ma-
trices of graphs, this can be seen to be related to sampling of contingency tables
with given marginals, as these are equivalent to bipartite multigraphs with speci-
fied vertex degrees.

Many results have been obtained on sampling such objects from an approxi-
mately uniform distribution; see for example [10], [9], [1], [5] and [6]. Most of
these use a Monte Carlo Markov Chain approach, in which case the main results
show that some appropriate Markov chain has polynomially bounded mixing time.
The bounds proved are often too large to give practical algoritheorems, though
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in many cases it is believed that the true mixing time is much smaller than the
theoretical results can demonstrate.

On the other hand, a simple rejection-based uniform generation algoritheorem
is implicit in the asymptotic enumeration of graphs by degree sequence presented
by Békéssy, Békéssy and Komlós [2], Bender and Canfield [3] and Bollobás [4].
The run time of this algoritheorem is linear in n but exponential in the square
of the average degree. Hence it only works in practice when degrees are small.
McKay and Wormald [11] used the model of random graphs given explicitly in [4]
to generate a random multigraph with a given degree sequence. These multigraphs
are uniform conditional upon the numbers of loops and multiple edges. Instead
of repeatedly rejecting until finding a simple graph, McKay and Wormald used
a switching operation to switch away the loops and multiple edges, producing
(hopefully) a simple graph in the end. The graphs produced occur uniformly at
random, with the given degree sequence. The algoritheorem is rather efficient
when the degrees are not too large. In particular, for d-regular graphs it runs in
expected time O(d3n) when d = O(n1/3). (Here and in the following we assume n is
the number of vertices.) More switching-based algoritheorems for exactly uniform
generation were given which deal with new degree sequences permitting vertices of
higher degrees. The regular case was treated by Gao and Wormald [7], again using
switchings, for d = o(

√
n) with time complexity again O(d3n). Very non-regular

but still quite sparse degree sequences (such as power law) were considered by the
same authors [8], still using switchings.

We present a new technique for use in switching-based random generation of
graphs with given degrees, which we call incremental relaxation. For graphs with
m edges and maximum degree ∆ = O(m4), the “best” existing uniform sampler, by
McKay and Wormald, runs in time O(m2∆2). Our new one runs in expected time
O(m), which is effectively optimal. (We ignore logaritheoremic factors that are
essentially negligible for practical purposes.) For d-regular graphs with d2 = o(n),
the best existing ones run in time O(nd3). This is now improved to O(nd + d4),
which is of course optimal for d3 = O(n). For random graphs with power-law
degree sequences, with parameter γ > 2.88, the best known uniform algoritheorems
run in time n4.081. The new one runs in time O(n).

Making use of incremental relaxation, as well as other ideas, we have a new
algoritheorem for uniformly generating random contingency tables with given
marginals (equivalently, bipartite multigraphs with given degree sequence) in the
sparse case. If the maximum marginal is at most (5m)1/4, where m is the sum of
the margials, the expected running time is O(m). Essentially, no uniform gener-
ator was previously known for this problem, and the algoritheorem covers some
cases of parameters for which even no FPAUS (a commonly sought after type of
approximately uniform generator) was previously known.

The basic idea of incremental relaxation can be described as follows. Let H be
a (small) graph with each edge designated as positive or negative. We say that
an H-anchoring of a graph G is an injection Q : V (H) → V (G) that maps every
positive edge of H to an edge of G, and every negative edge to a non-edge of G.
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(This is a generalisation of rooting at a subgraph, which usually corresponds to
the case that H has positive edges only.)

Suppose the aim is to generate a graph G uniformly at random in some set
O of graphs. However, assume that we are given an H-anchored graph (G,Q)
uniformly at random. That is, each such ordered pair with G ∈ O, and with Q
being an H-anchoring of G, is equally likely to be presented. We can convert this
to a random graph G ∈ O by finding the number b(G) of H-anchorings of G,
and accepting G with probability b(O)/b(G) where b(O) is a lower bound on the
number of H-anchorings of any element G′ ∈ O. If not accepted, it is rejected.

However, computing b(G) can be time-consuming. Our key new idea is to
incrementally relax the constraints imposed on G by Q, so that the rejection step
is replaced by a sequence of “smaller” rejection steps. Set ∅ = V0 ⊆ V1 ⊆ · · · ⊆
Vk = V (H) and let Qi denote the restriction of Q to Vi. With this definition, for
each i, Qi is an H [Vi]-anchoring of G. Thus Qi determines some subset (increasing
with i) of the constraints on G corresponding to the edges of H . Given that (G,Qi)
is uniformly random, we can obtain a uniformly random anchored graph (G,Qi−1)
by applying a rejection strategy similar to that described above, but using only the
number b(G,Qi−1) of ways that Qi−1 can be extended to an H [Vi]-anchoring of G.
This procedure of incremental relaxation of constraints can be highly advantageous
if for each i, b(G,Qi−1) can be computed much faster than b(G). In this way, a
sequence of uniformly random objects is obtained, involving anchorings at ever-
smaller subgraphs of H , until the empty subgraph is reached, corresponding to
obtaining G u.a.r.

This general scheme applies to algoritheorems such as the one in [11] for the
following reason. The slowness of that algoritheorem is determined by a repeated
step which essentially computes the number of choices of two 2-paths u1u2u3 and
v1v2v3 in a graph, for which all six vertices are distinct and none of the edges
uivi are present (i = 1, 2, 3). This is the quantity b(G) described above, where
H is the graph with six vertices, having two 2-paths of positive edges and three
negative edges corresponding to the constraints on u1u2u3 and v1v2v3. Upon
further examination of the algoritheorem, it is easy to see that a uniformly random
(G,Q) has been obtained, where O is a set of d-regular multigraphs with a specified
number of double edges, and what is desired is a uniformly random G ∈ O.

To apply incremental relaxation, we let V1 = {u1, u2, u3} and first relax the
anchoring to this set of vertices. Thus, in the first incremental step, it is required
to compute the number of ways to select the second 2-path, v1v2v3, to satisfy the
constraints. This can be achieved very quickly by inclusion-exclusion, since the
number of “bad” 2-paths can be found by searching G only locally, looking at
the vertices of distance at most 2 from V1. On the other hand, the algoritheorem
in [11] fundamentally requires global properties of G. The second incremental step
is even easier.
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Equiangular lines with a fixed angle

Yufei Zhao

(joint work with Zilin Jiang, Jonathan Tidor, Yuan Yao, and Shengtong Zhang)

We say that a set of lines all passing through the origin in Rd is equiangular if
their pairwise angles are all equal. It is known that the maximum number of
equiangular lines in Rd is Θ(d2) [3, 5], although determining the optimal leading
constant is an open problem and the exact maximum number is known in only
finitely many dimensions. An interesting feature of all known constructions of
Θ(d2) equiangular lines in Rd is that the pairwise angles approach 90◦ as d → ∞.

What happens if we fix the angle in a configuration of equiangular lines? Let
Nα(d) denote the maximum number of lines in Rd all passing through the origin
with pairwise angles arccosα. We are interested in determining Nα(d) for fixed α
and large d. This problem was posed by Lemmens and Seidel [5] in 1973. They
completely determined the values of N1/3(d) for all d, and in particular proved
that N1/3(d) = 2(d−1) for all d ≥ 15. Neumann (see [5]) showed that Nα(d) ≤ 2d
unless 1/α is an odd integer. It was conjectured by Lemmens and Seidel [5] and
subsequently proved by Neumaier [6] that N1/5(d) = ⌊3(d−1)/2⌋ for all sufficiently
large d. Neumaier [6] writes that “the next interesting case [α = 1/7] will require
substantially stronger techniques.”

Progress was stalled on this problem until recently, when Bukh [2] showed that
Nα(d) ≤ Cαd for some constant Cα, in contrast to the quadratic growth when
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the angle is not fixed. Then came a surprising breakthrough of Balla, Dräxler,
Keevash, and Sudakov [1], who showed that lim supd→∞ Nα(d)/d, as a function of
α ∈ (0, 1), is maximized at α = 1/3, and in fact this limit is at most 1.93 unless
α = 1/3, in which case the limit is 2.

Our main result determines the exact value of N1/(2k−1)(d) for all sufficiently
large d, thereby confirming conjectures suggested by [5,6] and stated explicitly in
[2]. We also determine Nα(d) for almost all other values of α. To state our result
in full generality, we require the following definition.

Definition 1 (Spectral radius order). Define the spectral radius order, denoted
k(λ), of a real λ > 0 to be the smallest integer k so that there exists a k-vertex
graph G whose adjacency matrix has spectral radius exactly λ. Set k(λ) = ∞ if no
such graph exists.

Theorem 2 (Main theorem). Fix α ∈ (0, 1). Let λ = (1 − α)/(2α) and k = k(λ)
be its spectral radius order. The maximum number Nα(d) of equiangular lines in
Rd with common angle arccosα satisfies

(a) Nα(d) = ⌊k(d− 1)/(k − 1)⌋ for all sufficiently large d > d0(α) if k < ∞.
(b) Nα(d) = d + o(d) as d → ∞ if k = ∞.

The form of the answer was conjectured by Jiang and Polyanskii [4] (building
on [1]). They were the first to observe the role of k(λ) in this problem.

If k ≥ 2 is an integer and α = 1/(2k − 1), then λ = k − 1 and k(λ) = k (the
complete graph Kk is the graph on fewest vertices with spectral radius k − 1), so
the following corollary extends the only two previously known cases of k = 2 [5]
and k = 3 [6] to all values of k.

Corollary 3. For every fixed integer k ≥ 2, one has N1/(2k−1)(d) = ⌊k(d−1)/(k−
1)⌋ for all sufficiently large d > d0(k).

The equiangular lines problem can be recast in graph theory terms. A set
of N equiangular lines can be represented by unit vectors v1, . . . , vN ∈ Rd with
〈vi, vj〉 = ±α for all i 6= j. Construct the graph G on N vertices with edge relations
i ∼ j if and only if 〈vi, vj〉 = −α. The Gram matrix of pairwise inner products
of these vectors is equal to (〈vi, vj〉)1≤i,j≤N = (1 − α)I + α(J − 2AG). The Gram
matrix is positive semidefinite, which implies that the following two statements
are equivalent, where λ = (1 − α)/(2α) as earlier:

• There exists a family of N equiangular lines in Rd with common angle
arccosα.

• There exists an N -vertex graph G such that the matrix λI −AG + 1
2J is

positive semidefinite and has rank at most d (AG is the adjacency matrix
of Gand J is the all-ones matrix).

Using rank-nullity relations, we can bound N in terms of the multiplicity of λ
as an eigenvalue of AG. Note that λ must be one of the two largest eigenvalues of
AG due to the positive semidefiniteness of the Gram matrix.

The top eigenvalue of AG for a connected graph G has multiplicity one, due to
the Perron–Frobenius theorem. While some graphs have high second eigenvalue
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multiplicity, not all graphs can arise from an equiangular lines configuration. An
important step towards the solution is the following result from [1], showing that
one only needs to consider graphs of bounded degree.

Theorem 4 ([1]). For every α ∈ (0, 1), there exists some ∆ = ∆(α) so that for
every set of equiangular lines in Rd with common angle arccosα, one can choose
a set S of unit vectors, with one unit vector in the direction of each line in the
equiangular set, so that each unit vector in S has inner product −α with at most
∆ other vectors in S.

We prove a new result in spectral graph theory showing that the second eigen-
value multiplicity of a connected bounded degree graph is sublinear, which is
enough to deduce the main theorem concerning equiangular lines.

Theorem 5. For every ∆ there is a constant C = C(∆) so that the multiplicity
of the second largest eigenvalue of the adjacency matrix of a connected n-vertex
graph with maximum degree at most ∆ is at most Cn/ log logn.

To further illustrate Theorem 5, let us give some near-miss examples:

• A disjoint union of triangles has linear multiplicity of all eigenvalues, but
it is not connected.

• A strongly regular graph can have linear second eigenvalue multiplicity,
but it does not have bounded degree.

• The n-vertex graph obtained from a cycle of length n/3 by attaching two
pendent edges to every vertex of the cycle has the eigenvalue 0 with linear
multiplicity, but 0 is not one of the top eigenvalues.
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Problem Session

Nathan Linial (chair)

Noga Alon

Induced subgraphs of Cayley graphs of Zn
2

For a subset S of the elementary abelian 2-group Zn
2 let G = G(Zn

2 , S) denote the
Cayley graph of Zn

2 with respect to S. Is it true that for every such S and G and
for every subset A of at least 2n−1 + 1 vertices of G, the maximum degree of the
induced subgraph of G on A is at least

√

|S| ?

The fact that this is true for the set S of the n vectors of Hamming weight 1
was proved by Huang in [1]. Together with Kai Zheng we proved that this is also
true for every set obtained from the above S by adding to it another vector, and
in several other cases (sometimes with a lot of room to spare). The proof for
some cases applies the technique of Huang but is based on complex signing of the
adjacency matrix of the graph, and it can be shown that in several cases no real
signing exhibiting the result exists.

Note added in proof: We have recently proved that the answer to the question
is “yes”. A proof appears in: N. Alon and K. Zheng, Unitary signings and induced
subgraphs of Cayley graphs of Zn

2 , manuscript, 2020.
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József Balogh

Maximum number of independent sets in uniform hypergraphs

The question that we would like to draw attention concerns the hypergraph ana-
logue of an old (and now resolved) graph-theoretic problem of Granville (see [1]).
Granville raised the following problem: which d-regular graphs on n vertices have
the maximum number of independent sets? This problem was also considered by
Kahn [4] in the context of the hard-core model, and a complete answer is now
available owing to the work of Kahn [4] and Zhao [5]: the extremal graphs are
precisely those consisting of disjoint copies of the complete bipartite graph Kd,d.

Here, we shall focus on the analogous problem for r-uniform hypergraphs (or
r-graphs, for short). While this is a natural problem, we emphasise that it is
not even apparent what the correct conjectural analogue of the complete bipartite
graph is; our aim is to remedy this situation. Of course, there are multiple notions
of ‘independent sets’ and ‘degrees’ in hypergraphs, but we shall restrict ourselves
to the most common ones: a subset of the vertex set of an r-graph is independent
if it induces no edges, the degree of a vertex is the number of edges containing it,
and an r-graph is d-regular if each of its vertices has degree d.
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For r ≥ 2 and d ∈ N, let Hr
d be the d-regular r-graph on rd vertices whose d2 edges

are as follows: we mark a subset of the vertex set of order d, fix an (r−1)-uniform
matching of size d on the remaining (r − 1)d unmarked vertices, and then include
in the edge set of Hr

d each r-set consisting of a marked vertex and a matching
edge. For example, H2

d is the complete bipartite graph Kd,d, and H3
d is the set of

triangles in the graph on 3d vertices where d vertices are each joined to both ends
of all the edges of a matching covering the other 2d vertices.

Writing ind(G) for the number of independent sets in an r-graph G, an easy
computation reveals that

ind(Hr
d) = (2d − 1)(2r−1 − 1)d + 2(r−1)d.

Our main conjecture is the following.

Conjecture 1. For all r ≥ 2 and d ∈ N, if G is a d-regular r-graph on n vertices,
then

ind(G) ≤ ind(Hr
d)n/rd.

By way of orientation, let us mention that when r ≥ 3, a disjoint union of
copies of Hr

d has strictly more independent sets than a comparable disjoint union
of copies of the complete r-partite r-graph (when the numerics allow it, i.e., when
d = tr−1 for some m ∈ N). Conjecture 1 for r = 2 is the aforementioned Kahn–
Zhao theorem, but we are unable to verify it even when r = 3. Nevertheless, in
the spirit of Kahn [4], we can verify our conjecture for some class of r-graphs, see
[2], this class appears to capture the extent of the entropic approach of Kahn [4],
reduces to the class of bipartite graphs when r = 2.

There has been some recent (independent) interest around finding a statement
in the spirit of Conjecture 1; for example, Cohen, Perkins, Sarantis and Tetali [3]
study an analogue of the problem treated here for regular linear r-graphs, and
raise the question of what one can say about regular r-graphs in general.
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Maria Chudnovsky

Poly-time algoritheorem for stable sets in perfect graphs

Let G be a perfect graph and assume that Gc contains no induced cycle of length
at least six. Let K1, . . . ,Kt be a list of cliques of G such that

• |Ki| = ω(G) for every i , and

• ⋃t
i=1 Ki = V (G).

Design a combinatorial polynomial time algoritheorem that finds a stable set S of
G such that Ki ∩ S 6= ∅ for every i.

Gil Kalai

Avi’s 1-2-3 conjecture

Find an explicit construction of a bipartite graph G = (A ∪ B,E) with colour
classes A and B such that |A| = n3, |B| = n2, and the vertices in A have a
bounded degree, where the following holds: for every S ⊆ A of size n, there is a
perfect matching in the subgraph G[S,B].

Super-linear Gaussian elimination

Let M be an n× n matrix and let gc(M) be defined as

gc(M) := min
S

{M = E1, . . . , ES},

where each Ei is an elementary matrix. In other words, gc(M) is the minimum
number of Gaussian elimination operations needed to make M diagonal.

Find an explicit M such that gc(M) is super-liear.

Dan Král’

Cycles of length divisible by four in tournaments

Let d(ℓ, n) be the ratio of the maximum number of cycles of length ℓ that can be
contained in an n-vertex tournament and the expected number of cycles of length
ℓ in the random n-vertex tournament (note that d(ℓ, n) ≥ 1 for trivial reasons).
Show that the following holds for every ℓ that is divisible by four.

lim
n→∞

= 1 + 2 ·
∞
∑

i=0

(

2

(2i + 1)π

)ℓ

.

Day [2]Conjecture 45 provided a construction giving this bound and conjectured
the construction to be optimal (though he did not compute the limit), i.e., the limit
is at least the right hand side. A classical result of Beineke and Harary [1] yields
the conjecture ℓ = 4 when the limit value is 4/3. Grzesik, Lovász Jr., Volec [3] and
I have recently proved the conjecture for ℓ = 8 when the limit value is 332/315.
We were also able to give the following asymptotic result: for every ε > 0, there
exists ℓ0 such that the limit is at most

1 +

(

2

π
+ ε

)ℓ
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for every ℓ ≥ ℓ0 that divisible by four. Finally, we remark that if ℓ is not divisible
by four, then the limit is equal to one [3].
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Nati Linial

Internal partitions of graphs

An external partition of a graph G = (V,E) is a partition of V into two sets in
which every vertex has more neighbours in the other part than in its own. It is
trivial to see that every graph has such a partition—namely, just take the max
cut.

On the other hand, not much is known about an internal partition which is a
partition of V into two (non-empty!) sets such that every vertex has at least as
many neighbours in its own part as in the other. Not all graphs have an internal
partition, for example if d ≥ 3 is odd then Kd,d has no such partition.

It has been conjectured (see [1,2]) that for every d, there is n0(d) such that for
all n ≥ n0 every n-vertex d-regular graph has an internal partition. Even more

Conjecture 2. For every d there are only finitely many d-regular graphs with no
internal partition.

This is known for d ∈ {3, 4, 6} [1]. The first unknown example is d = 5. On the
other hand, it is known that asymptotically almost every 2d-regular graph has an
internal partition [2].
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Bhargav Narayanan

Existence of geometric thresholds

Let M be a compact metric space (think unit 2-sphere) and let G(n, r) denote
the random graph on n vertices generated by independently sampling n points
from some fixed probability distribution on M (usually, uniform), and joining any
pair of points at distance at most r from each other. We say that r∗ = r∗(n) is
a geometric threshold for an up-set F of graphs on [n] if τr(F ) tends to either 1
or 0 depending on whether r ≫ r∗ or r ≪ r∗; here, we write τr for the law of
the random geometric graph G(n, r). For what metric spaces M do all up-sets of
graphs admit geometric thresholds? There are compact examples where thresholds
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are not guaranteed, but these examples are not ‘well-behaved’. In particular, one
expects a positive answer for the 2-sphere or the unit square, but very little seems
to be known.

Alexey Pokrovskiy

Rainbow trees in k-factorised complete graphs

We say a colouring of a graph G is a k-factorisation if every colour class is k-regular.
A coloured graph is said to be rainbow if all its edges have distinct colours.

Conjecture. Given k ≥ 2 in any k-factorisation of the complete graph Knk+1

one can find a rainbow copy of any tree with n edges.

The conjecture is not true for k = 1.

Tibor Szabó

3-coloring 6-regular 6-uniform hypergraphs

Problem 1. Is it true that every 6-regular 6-uniform hypergraph has a 3-coloring
of its vertices such that no hyperedge has four vertices of the same color?
More generally: for what values of k does it hold that every (2k)-regular (2k)-
uniform hypergraph has a 3-coloring of its vertices, such that no hyperedge contains
more than k vertices of the same color?

For k = 1 the appropriate 3-coloring always exists (of course), while for k = 2
there is a counterexample. For large enough constant k, the appropriate 3-coloring
always exists by the Local Lemma.

The motivation for this problem comes from the concept of majority coloring
of digraphs. A majority coloring of a digraph D with k colors is an assignment
c : V (D) → {1, . . . , k} such that for every v ∈ V (D), we have c(w) = c(v)
for at most half of all out-neighbors w ∈ N+(v). This notion of coloring was
first introduced and studied by Kreutzer, Oum, Seymour, van der Zypen, and
Wood [2], who showed that every digraph has a majority 4-coloring. Odd directed
cycles provide examples of digraphs that are not majority 2-colorable. However, so
far no example of a digraph is known that requires the use of four colors. Kreutzer
et al. conjectured that there are none.

Conjecture 2 ([2]). Every digraph is majority 3-colorable.

A natural benchmark for the study of this conjecture are r-regular digraphs.
It is easy to check the validity of the conjecture for 1- and 2-regular digraphs.
The Local Lemma implies that the uniform random 3-coloring works for r-regular
digraphs when r is a large enough constant (Kreutzer et al [2] mention r ≥ 144).
Digraphs with small minimum out-degree seem to be outside the realm of proba-
bilistic methods. Together with Michael Anastos, Ander Lamaison, and Raphael
Steiner [1] we show that the conjecture also holds for r = 3 and 4. The meth-
ods used in our paper are unlikely to resolve Conjecture 2 for the open cases of
5- and 6-regular digraphs. One possible approach could be via an extension to
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hypergraphs: Given a 5-regular digraph D, consider the hypergraph H(D) with
vertex set V (D) and whose edges are {v} ∪ N+(v), v ∈ V (D). This hypergraph
is 6-regular and 6-uniform. If we could now find a vertex-3-coloring of H(D) such
that no hyperedge contains four vertices of the same color, this coloring would
certainly be a majority coloring of D.

For more intriguing open probelms on majority colorings, see [1, 2].
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