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Abstract. Large complex systems tend to develop universal patterns that
often represent their essential characteristics. For example, the cumulative
effects of independent or weakly dependent random variables often yield the
Gaussian universality class via the central limit theorem. For non-commuta-
tive random variables, e.g. matrices, the Gaussian behavior is often replaced
by another universality class, commonly called random matrix statistics.
Nearby eigenvalues are strongly correlated, and, remarkably, their correla-
tion structure is universal, depending only on the symmetry type of the ma-
trix. Even more surprisingly, this feature is not restricted to matrices; in
fact Eugene Wigner, the pioneer of the field, discovered in the 1950s that
distributions of the gaps between energy levels of complicated quantum sys-

tems universally follow the same random matrix statistics. This claim has
never been rigorously proved for any realistic physical system but experimen-
tal data and extensive numerics leave no doubt as to its correctness. Since
then random matrices have proved to be extremely useful phenomenological
models in a wide range of applications beyond quantum physics that include
number theory, statistics, neuroscience, population dynamics, wireless com-
munication and mathematical finance. The ubiquity of random matrices in
natural sciences is still a mystery, but recent years have witnessed a break-
through in the mathematical description of the statistical structure of their
spectrum. Random matrices and closely related areas such as log-gases have
become an extremely active research area in probability theory.

This workshop brought together outstanding researchers from a variety
of mathematical backgrounds whose areas of research are linked to random
matrices. While there are strong links between their motivations, the tech-
niques used by these researchers span a large swath of mathematics, ranging
from purely algebraic techniques to stochastic analysis, classical probability
theory, operator algebra, supersymmetry, orthogonal polynomials, etc.
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Introduction by the Organizers

The workshop focused on the latest progresses in random matrix theory.
A large part of the conference was devoted to the study of universality. In

recent years, many models of random matrices were shown to belong to the same
universality class than Gaussian ensembles. Yet, general sparse or structured
random matrices still resist this analysis. The workshop started with an overview
of the recent advances concerning the emblematic model of the adjacency matrix of
d-regular graphs: Bauerschmidt recalled that even though universality is expected
for all d ≥ 3, recent results could “only” show flatness of the eigenvectors in the
bulk for sufficiently large d and universal Tracy-Widom fluctuations of the extreme
eigenvalues for d going to infinity fast enough with the dimension. This contrasts
with the behavior of the spectrum of the adjacency matrix of Erdős-Rényi graphs
whose largest eigenvalue fluctuates like a Gaussian variable. Knowles described
recent progress on the later model in the critical regime where the average degree
goes to infinity fast enough with the dimension and in particular gave a precise
description of its eigenvectors both in the bulk and at the edge. Another long-
standing open problem is to understand the universality class of band matrices
while the width of the band varies. In a breakthrough series of papers, M. and
T. Shcherbina proved that these matrices belong to the universality class of the
Gaussian ensembles up to the critical width of the square root of the dimension.
T. Shcherbina discussed the uses of supersymmetric methods to prove this result.
Aggarwal discussed yet another model where the entries are alpha-stable laws:
even though it is not in the universality class of the Gaussian ensembles in the
sense that the eigenvectors have a different limiting law, he showed that for alpha
big enough or the eigenvalues small enough, local fluctuations of the eigenvalues
also follow the sine kernel. Moreover, in the middle of the bulk, the fluctuations
of the eigenvectors converge in distribution.

Another important subject which was discussed in the conference concerns non-
normal matrices. On the first day, Fyodorov introduced such models and discussed
their condition number, which measures the Euclidean norms of their left and right
eigenvectors. He showed that it is typically of order N and, once properly rescaled,
converges in distribution for the so-called Elliptic model. Akemann put forward
the universality of the eigenvalues and eigenvectors statistics in the quaternionic
Ginibre ensemble. On the other hand, Zeitouni and Capitaine discussed the out-
liers of two different models of non-normal random matrices. Capitaine studied
the outliers of general polynomials in deterministic and Ginibre matrices. On the
other hand, Zeitouni considered Toeplitz matrices and described the outliers in
terms of the zeroes of random analytic functions. More traditional universality
questions for non-Hermitian matrices were presented by Cipolloni (edge universal-
ity at the boundary of the circular law) and Schröder (CLT for linear statistics of
iid. random matrices). Optimal local law and accurate spectral radius estimates
for non-Hermitian matrices with independent but non identical distributions were
given by Alt, and similar questions for products of random matrices were presented
by Jalowy. Renfrew studied general analytic functions of i.i.d. matrices with a
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concrete biological application in mind: large systems of randomly coupled ODE’s
are standard tools both in theoretical neuroscience and in mathematical ecology.
Tuning the coupling parameter to its critical value yields a polynomial decay of
the solution with exponent that is sensitive to the symmetry class of the random
matrix. While Renfrew’s model was dynamical, Najim considered the equilibrium
vector of a similar biological model and identified a sharp threshold for the cou-
pling parameter to guarantee the positivity of the solution which is a basic criteria
for feasibility of the model.

One of the central tools in random matrix theory is concentration inequalities.
Youssef discussed concentration inequalities for the largest eigenvalue of matrix
valued functions.

During the first day, Virág discussed the connection between random matrices
and random geometries. This subject was also tackled by Najnudel who showed
the close connection between Gaussian multiplicative chaos and random matrix
theory.

The topics of Wednesday went beyond the standard universality questions and
interesting new models were discussed. Benigni presented a random matrix model
motivated by machine learning where the randomness enters in the matrix in a
nonlinearly correlated way. The sophisticated and well developed resolvent meth-
ods immediately fail and only a technically quite challenging version of Wigner’s
original moment method can be used to find the analogue of the global Wigner
semicircle law. This direction carries a lot of potential, partly its strong tie to
machine learning, and is a completely uncharted territory.

Nemish considered random matrices with very different type of correlation:
polynomials and even rational functions of i.i.d. matrices, and he proved local
laws. An interesting physics application is to compute the density of transmission
eigenvalues for a quantum dot coupled to a reservoir, extending Beenakker’s pre-
diction to much more general ensembles. Norms of polynomials in random matrices
were also estimated in Parraud’s talk who gave a new, strengthened concentra-
tion estimate for the deviation away from the result predicted by free probability
theory. Schnelli talked about local versions and optimal speed of convergence
in Voiculescu’s fundamental theorem connecting addition of large matrices (with
random relative bases) to the additive free convolution of two measures. Mai and
Speicher presented yet another perspective of free probability theory: instead of
trying to solve the Dyson equation that may be complicated for structured matri-
ces, he was aiming at certain qualitative results like the absolute continuity of the
density of states under very general structural conditions.

Finally, yet another physically motivated aspect of random matrices was dis-
cussed in several talks: connections to random Schrödinger operators. It is well
known that random matrices can be viewed as quantum Hamiltonians with disor-
der. Most currently tractable models in random matrix theory concern mean field
models, while random Schrödinger operators essentially depend on the nontrivial
spatial structure of the underlying physical configuration space. Band matrices
mentioned above are the most obvious bridges between these two communities,
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but other aspects have also been presented. Rider explained the connection be-
tween universality of hard and soft edge laws for general β-ensembles and the
stochastic Airy operator that is technically a one-dimensional Schrödinger oper-
ator with a white noise. Shamis gave a very general estimate on the sensitivity
of the density of states of a random Schrödinger operator on the distribution of
the random potential. She found that the Kantorovich-Rubinstein metric is the
right concept that allows for a robust result with a simple proof that could be
presented in its entirety in her talk. The very last talk of the meeting by Diser-
tori was exploring very intriguing connections between lattice random Schrödinger
operators, random walks with special history dependent jump rates and nonlin-
ear sigma-models whose non-rigorous analysis relies on supersymmetric methods.
These very striking relations between apparently more distant areas of probabil-
ity theory and mathematical physics were the closing messages that everybody
took home and hopefully some progress could be presented in the forthcoming
Oberwolfach meeting on random matrices.

The role of the organizers was to keep the number of long talks to a fairly low
number in order to leave as much time as possible for informal sessions and dis-
cussions between participants, but allow for additional short talks to learn about
the work of young participants. In this way, the overwhelming majority of partic-
ipants could present their work and everyone could be given an opportunity who
wished to talk. We also looked at the weather forecast to advance the traditional
mid-week hike (this time to Brandenkopf) to Tuesday afternoon instead of the
indeed very rainy Wednesday.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
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Rational functions of Wigner matrices and scattering in quantum dots . 3500

Félix Parraud (joint with Benôıt Collins, Alice Guionnet)
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Fluctuations in the Circular Law: Central Limit Theorem for the Linear
Statistics of non-Hermitian Random Matrices . . . . . . . . . . . . . . . . . . . . . . . 3507

Mira Shamis
Some applications of the Ky Fan inequality to random
(and almost periodic) operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3509



Random Matrices 3465

Tatyana Shcherbina (joint with Mariya Shcherbina)
Universality for random band matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3511

Roland Speicher (joint with Tobias Mai, Sheng Yin)
Regularity of non-commutative distributions and random matrices . . . . . 3513

Alexander Tikhomirov (joint with Friedrich Götze and Dmitry Timushev)
Local Laws for Sample Covariance Sparse Matrices . . . . . . . . . . . . . . . . . . 3515

Martin Venker (joint with Tom Claeys, Thorsten Neuschel)
Critical Behavior of Non-Intersecting Brownian Motions . . . . . . . . . . . . . 3517

Balint Virág
Random planar geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3519

Martin Vogel
On an almost sure Weyl law for quantized tori . . . . . . . . . . . . . . . . . . . . . . 3519

Pierre Youssef (joint with R. Aoun, M. Banna)
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Abstracts

Spectral Statistics for Lévy Matrices

Amol Aggarwal

(joint work with Patrick Lopatto, Jake Marcinek, Horng-Tzer Yau)

Fix α ∈ (0, 2). A random variable Z is a centered α-stable law if

E
[

exp(itZ)
]

= exp(−σ|t|α), for any t ∈ R, where σ = σα =
π

2 sin
(

α
2

)

Γ(α)
.

Introduced by Cizeau–Bouchaud [7] in 1994, a Lévy matrix is an N × N real
symmetric random matrix H = {hij} whose upper triangular entries {hij}i≤j

are mutually independent and each have law N−1/αZ. The N−1/α-scaling here
is different from the typical N−1/2-scaling for Wigner matrices and ensures that
row sums (and therefore eigenvalues) of H are typically of order 1. Denote the
eigenvalues of H by λ1 ≥ λ2 ≥ · · · ≥ λN and the corresponding unit eigenvectors
by u1,u2, . . . ,uN . Set ui =

(

ui(1), ui(2), . . . , ui(N)
)

∈ RN for each i ∈ [1, N ].
If H were from the Gaussian Orthogonal Ensemble (GOE), then the ui would

be uniformly distributed on the (N − 1)-sphere, and so N1/2ui(j) would converge
to a Gaussian random variable. In [6], Bourgade–Yau showed that the same would
be true if H were Wigner.

In [2] we show that the eigenvector entry fluctuations of the Lévy matrix H are
not Gaussian. The following is an example of this result for the median eigenvector.

Theorem 1 ([2]). Set i = ⌊N
2 ⌋. For almost all α ∈ (0, 2) and each index j ∈ [1, N ],

N1/2ui(j) converges in moments to the random variable NΘ−1, where N is a
centered Gaussian random variable of variance 1, and Θ > 0 is an independent
positive α

2 -stable law, characterized by its Laplace transform

E
[

exp(−tΘ)
]

= exp

(

− Γ
(

1 +
2

α

)α/2

tα/2
)

, for any t ∈ R>0.

This theorem comprises one of many features of Lévy matrices that is not
present in the Wigner setting. In [2] we also analyze non-median eigenvector entry
statistics, as well as correlations between different entries and eigenvectors.

The above results on exact limiting statistics for eigenvector entries do not seem
to have been predicted previously. Instead, [7] primarily posed predictions about
the eigenvalue behavior of H and (de)localization of its eigenvectors. For instance,
it predicted that the (global) empirical spectral distribution of H should converge
to a deterministic measure µα, as N tends to ∞. This measure is not explicit
but can be characterized through certain fixed point equations for its Stieltjes
transform. In particular, it can be shown to exhibit a continuous density that
exhibits an α-heavy tail (so, unlike the semicircle law, is not compactly supported).
This prediction was later proven by Ben Arous and Guionnet in 2008 [3].

The main predictions of [7] were certain transitions in the eigenvector behav-
ior and local spectral statistics of Lévy matrices. Their predictions are not fully
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consistent with the more recent ones of Tarquini–Biroli–Tarzia [8], which can be
summarized as follows. Below, a random unit vector u ∈ RN is completely delo-
calized if ‖u‖∞ < N δ−1/2 with high probability, for any δ > 0.

Prediction 2 ([8]). Fix real numbers α ∈ (0, 2) and E ∈ R, and an index i ∈ [1, N ]
such that limN→∞ λi = E.

(1) If α ∈ [1, 2), then ui is completely delocalized and the local statistics of
H around E converge to those of the GOE.

(2) If α ∈ (0, 1), then there exists a mobility edge Eα > 0 such that the
following holds.
(a) If |E| < Eα, then ui is completely delocalized and the local statistics

of H around E converge to those of the GOE.
(b) If |E| > Eα, ui is completely localized and the local statistics of H

around E converge to those of a Poisson point process.

The mobility edge Eα is also called a Mott (or Anderson) transition, a funda-
mental concept in Anderson localization that has remained with little mathemat-
ical understanding for decades. Lévy matrices provide one of the few examples
of a random matrix ensemble for which such a transition is believed to appear.
Previous results towards the above predictions were established by Bordenave–
Guionnet [5, 4], who showed partial forms of eigenvector (de)localization in the
regimes listed above.

Our main results from [1] constitute complete eigenvector delocalization and
convergence to GOE local statistics at nonzero E when α ∈ (1, 2) and at sufficiently
small E for almost all α ∈ (0, 2).

Theorem 3 ([1, Theorem 2.4 and Theorem 2.5]). Fix real numbers α ∈ (0, 2) and
E ∈ R, and an index i ∈ [1, N ] such that limN→∞ λi = E.

(1) If α ∈ (1, 2) and E 6= 0, then ui is completely delocalized and the local
statistics of H around E converge to those of the GOE.

(2) For almost all α ∈ (0, 2), there exists a constant c = cα > 0 such that the
same holds if |E| < cα.
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Universality of bulk eigenvalues and eigenvectors of non-Hermitian
random matrices: the quaternionic Ginibre ensemble

Gernot Akemann

(joint work with Y.-P. Förster, M. Kieburg, A. Mielke and T. Prosen)

The question of universality have been much less studied in the three ensembles
of non-Hermitian random matrices introduced by Ginibre [6]. They are defined
choosing i.i.d. Gaussian matrix elements Jij from R, C or H. We abbreviate these
ensembles by GinOE, GinUE and GinSE, respectively. A Schur decomposition
yields determinantal or Pfaffian point processes for the joint densities of complex
eigenvalues of J of size N ×N . These read for the GinUE and GinSE [6]

PGinUE
N (z1, . . . , zN) = CN

N
∏

i<j

|zj − zi|2 e−
∑N

l=1 |zl|2 ,

PGinSE
N (z1, . . . , zN) = C′

N

N
∏

i<j

|zj − zi|2|zj − z∗i |2
N
∏

n=1

|zn − z∗n|2e−2
∑N

l=1 |zl|2 .

We report new results on eigenvalue [2] and eigenvectors statistics [1] in the
GinSE. The k-point eigenvalue correlation functions are defined as follows

Rk,N (z1, . . . , zk) :=
N !

(N − k)!

∫

CN−k

d2zk+1 · · · d2zNPN (z1, . . . , zN) .

The global limiting spectral density approaches the circular law for all three Gini-
bre ensembles. For the local statistics one has to distinguish three regions of the
spectrum: the real line, the bulk and the edge of the unit disc. Along the real
line the limiting Rk,N are known and differ in all three ensembles. In contrast,
their local edge statistics was shown to agree [8, 5]. This raises the question about
the bulk region, defined by the interior of the unit disc, at distance more than
O(1/

√
N) away from the unit circle and from [−1, 1], where the following holds.

Theorem 1. (Universal local bulk eigenvalue statistics) For any bulk point parame-
trised by z0 ∈ C \ R, with 0 < |z0| < 1, it holds for ξ1, . . . , ξk ∈ C for fixed k

lim
N→∞

Rk,N (
√
Nz0 + ξ1, . . . ,

√
Nz0 + ξk) = det

1≤i,j≤k

[

exp

[

ξiξ
∗
j − 1

2
|ξi|2 −

1

2
|ξj |2

]]

.

The respective proofs for the GinUE (at the origin), GinOE and GinSE can be
found in [6, 5, 2], and extend beyond the Gaussian ensembles [9]. This agreement
among the three Ginibre ensembles is in stark contrast to the corresponding local
statistics of the Hermitian Wigner-Dyson ensembles.

We turn to the eigenvector statistics, to partly answer the question if the agree-
ment found above extends to these as well. In [7] the matrix of overlaps

Oij := L†
i · Lj R

†
j · Ri , i, j = 1, . . . , N ,

was defined, combining scalar products among the left and right eigenvectors,

JRi = ziRi , L†
iJ = ziL

†
i , i, j = 1, . . . , N.
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In the GinSE the 2N -dimensional complex representation of matrix J has further
N complex conjugated eigenvalues z∗1 , . . . , z

∗
N and corresponding eigenvectors, for

which similar results can be derived [1]. It was shown in [7] for the GinUE that
the conditional expectation of the off-diagonal overlap

ON (x1, x2) :=
1

N2
E

N
∑

k 6=l

δ(x1 − zk)δ(x2 − zl) Okl ,

can be expressed as an expectation over complex eigenvalues only,

ON (z1, z2) =

∫

CN−2

d2z3 · · · d2zN
−PN (z1, . . . , zN )

|z1 − z2|2
N
∏

l=3

[

1 +
1

(z1 − zl)(z∗2 − z∗l )

]

.

The same holds for the GinSE [1]. The heuristic arguments [7] for the global bulk
asymptotic in the GinUE were made rigorous using probabilistic methods in [4]:

Theorem 2. (Universal global bulk eigenvector statistics) For bulk points x1, x2
of distance much larger than O(1/

√
N) the following limit holds

lim
N→∞

ON (x1, x2) = − 1− x1x
∗
2

π2|x1 − x2|4
.

The same limit was shown heuristically for the GinSE [1] and is conjectured to
hold for the GinOE. Further local limits were derived for the GinUE including the
diagonal overlap Oii [4, 3], and we expect these to equally agree among the three
Ginibre ensembles in the bulk and at the edge.
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Spectral radius of random matrices with independent entries

Johannes Alt

(joint work with László Erdős and Torben Krüger)

We consider random matrices X ∈ C
n×n with independent and centered entries.

When n tends to infinity the eigenvalue density of X is well approximated by a
deterministic probability measure [1, 3]. We denote this measure by µ. It has a
rotationally symmetric, smooth density with respect to the Lebesgue measure on
C. The support of µ is a disk around the origin whose radius is the square root of
the spectral radius ̺(S) of the variance matrix S = (E|xij |2)ni,j=1 ofX = (xij)

n
i,j=1.

In [2], we show that the spectral radius ̺(X) of X converges to the square root
of the spectral radius of S. More precisely, we prove the following theorem.

Theorem 1. For any ε > 0, we have that, with very high probability,

(1)
∣

∣̺(X)−
√

̺(S)
∣

∣ ≤ nεn−1/2.

Such estimate is new even for matrices with i.i.d. entries apart from the explic-
itly solvable Gaussian case, i.e. there was no result on the speed of convergence of
the spectral radius prior to [2]. The convergence rate in (1) is optimal up to the
factor nε.

We now briefly list our assumptions for Theorem 1. The variances E|xij |2 are
required to be of order n−1 with uniform upper and lower bounds. We suppose
that the random variables

√
nxij have bounded moments of all orders and a density

whose Lq-norm is at most of polynomial order in n for some q ∈ [1,∞]. The latter
condition is solely used to control the smallest singular value of X .

The main ingredient in [2] is the local inhomogeneous circular law in the edge

regime, the vicinity of the circle of radius
√

̺(S) centered at the origin. This is
the boundary of the support of µ. The complementary bulk regime was treated
in our previous work [1]. The local inhomogeneous circular law states that the
eigenvalue density of X is well approximated by µ on all mesoscopic scales. These
are all scales slightly larger than the typical distance of neighbouring eigenvalues.

As a consequence of the local inhomogeneous circular law we also obtain com-
plete delocalization of all eigenvectors of X , a result first proved in [4].

References
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Large deviations for traces of Wigner matrices

Fanny Augeri

Understanding the large deviation behavior of the spectrum of Wigner matrices
is particularly difficult. Except for integrable models, the large deviations of the
empirical measure of the eigenvalues are unknown for Wigner matrices with sub-
Gaussian coefficients. A more accessible question is the one of the large deviations
of the traces of powers of Wigner matrices. It turns out that this question is
closely connected to the emerging theory of nonlinear large deviations, introduced
by Chatterjee and Dembo [2]. Using a different approach, we could improve the
quantitative estimates of [2], and obtain as a consequence a large deviations prin-
ciple for the traces of a certain class of Wigner matrices, which includes the case
where the coefficients are Rademacher variables. More precisely, let X be a Wigner
matrix, that is a random Hermitian matrix such that (Xi,j)1≤i<j≤n and (Xi,i)i≤n

are independent families of independent and identically distributed random vari-
ables which satisfy the following conditions:

EX1,1 = EX1,2 = 0, E|X1,2|2 = 1.

Denote by H(β)
n the set of symmetric matrices if β = 1 and Hermitian matrices if

β = 2, of size n. We assume that X is with sharp sub-Gaussian tails, that is, for

any H ∈ H(β)
n ,

E(etr(XH)) ≤ E(etr(XΓ)),

where Γ is a GOE matrix if β = 1 and GUE matrix if β = 2. In [1] we prove that
for any d ≥ 3, (n−1tr(X/

√
n)d)n∈N satisfies a large deviations principle with speed

n1+ 2
d and rate function Jd. If d is even, Jd is given by,

∀x ∈ R, Jd(x) =

{

β
4

(

x− Cd/2

)
2
d if x ≥ Cd/2,

+∞ otherwise,

where Cd/2 denote the (d2 )
th Catalan’s number, and if d is odd,

∀x ∈ R, Jd(x) =
β

4
|x| 2d .

This result complements the large deviation universal behavior of the top eigen-
value of these Wigner matrices with sharp sub-Gaussian tails shown by Guionnet
and Husson [3].
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Unitary, symplectic, and orthogonal moments of moments

Emma Bailey

(joint work with T. Assiotis, J. P. Keating)

For a matrix A ∈ G(N), where G(N) ∈ {U(N), Sp(2N), SO(2N)} is one of the
classical compact groups, we write PN (A, θ) = det(I −A exp(−iθ)) for its charac-
teristic polynomial. The study of moments of PN (A, θ), averaging over the matrix
group, has connections to number theory, see for example work of Montgomery
and Dyson, Katz and Sarnak [4], and Keating and Snaith [5]. In particular, for
A ∈ U(N), Keating and Snaith computed the 2βth moment of |PN (A, θ)| for finite
N , with ℜ(β) > −1/2.

Of interest is the log-correlated behaviour of |PN (A, θ)|. In the theory of log-
correlated Gaussian processes, the following ‘moments of moments’ play a vital
role,

MoMG(N)(k, β) = EA∈G(N)

[

(

1

2π

∫ 2π

0

|PN (A, θ)|2βdθ
)k
]

.

Such averages were used by Fyodorov and Keating [3] to make precise conjec-
tures about the asymptotic growth of MoMU(N)(k, β) as N → ∞. Further, strong
information about the moments of moments for general β would lead to results for
the maximum of log |PN (A, θ)|.

The results presented are as follows.

Theorem 1 (B.-Keating [2]). Let k, β ∈ N. Then MoMU(N)(k, β) is a polynomial

in N , and MoMU(N)(k, β) = cU (k, β)N
k2β2−k+1

(

1 +O(N−1)
)

, where a general
formula for the coefficient cU (k, β) is given.

Theorem 2 (Assiotis-B.-Keating [1]). Let k, β ∈ N. Both MoMSp(2N) (k, β) and
MoMSO(2N)(k, β) are polynomials in N . Further, the asymptotic growth of both
moments of moments is calculated and differs from the unitary case. The leading
order coefficient in both cases is shown to be strictly positive and is given as a
volume of a convex region.
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Overview of results on random regular graphs

Roland Bauerschmidt

(joint work with Jiaoyang Huang, Antti Knowles, Horng-Tzer Yau)

The random regular graph ensemble can be seen as the uniform measure on sym-
metric N × N adjacency matrices A = (Aij) with entries in {0, 1} satisfying the
constraints Aii = 0 and

∑

k Aik = d for all i, j. From the random matrix point
of view, the random regular graph ensemble poses two main challenges: the hard
constraint on the degree and sparsity when d becomes small compared to N . How-
ever, a particularly interesting aspect is that these two difficulties effectively cancel
to a certain extent: the hard constraint provides a geometric stability when the
degree becomes small which in turn are responsible for spectral stability. In my
talk, I reported on results obtained over the last few years in which we observe this
phenomenon in the sense that the analogous statements are false for Erdős–Rényi
graphs of the same average degree.

First, for fixed degree d ≥ 3, it is well known that a random regular graph has
a local tree structure near most vertices and few cycles in large neighbourhoods of
all vertices. This deterministic condition already implies (i) that the asymptotic
spectral density is given by the Kesten–McKay Law with support in [−2, 2] when
appropriately normalised; (ii) that eigenfunctions cannot localise; and (iii) that,
together with a spectral gap assumption, averages of eigenfunctions equidistribute
(quantum ergodicity). On the other hand, it is also known that such deterministic
assumptions do not imply that eigenfunctions are completely flat. However, for
random regular graphs of degree d ≥ 1040 fixed, we proved in [3] that all bulk eigen-
functions are completely flat in the sense that the ℓ∞-norm of any ℓ2-normalised
eigenfunction is at most N−1/2(logN)C which is the optimal scale. For Erdős–
Rényi graphs of fixed average degree, on the other hand, it is well known and easy
to see that localised eigenfunctions exist. Our results also include a local version
of the Kesten–McKay Law down to spectral scale N−1(logN)C and other conse-
quences. The conjecture that the local eigenvalue statistics are given by those of
the GOE remains open for random regular graphs of fixed degree. (Earlier results
prove such a statement when the degree grows with N , see [2].)

Second, I reported on results on the non-trivial extremal eigenvalues for the
intermediate regime of degrees N ǫ ≤ d ≤ N2/3−ǫ obtained recently in [1]. In this
regime, we proved the bound 2 + o(1) on the non-trivial extremal eigenvalues,
which is optimal on the macroscopic scale and improves on results results which
obtained the bound O(1) up to d ≤ N/2 (see discussion and references in [1]).
Our error o(1) is in fact quantitative and gives the mesoscopically optimal bound
O(N−2/3+ǫ) when N2/9+ǫ ≤ d ≤ N2/3−ǫ. In this regime, we also show that the
microscopic fluctuations of the non-trivial eigenvalues are given by the Tracy–
Widom1 Law. This result is to be contrasted with [4], in which it was shown that
the extremal eigenvalues have Gaussian fluctuations in the same regime of average
degree.
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Eigenvalues of nonlinear models of random matrices

Lucas Benigni

(joint work with Sandrine Péché)

Machine learning has entered many, if not most, scientific fields in recent years [3].
However, the theoretical understanding of some of the tools used in such algorithms
is not complete. In this talk, we aim to obtain theoretical result on a model of
artificial feed-forward neural network. ConsiderW ∈ Rn1×n0 and X ∈ Rn0×m two
matrices. The matrix W can be understood as a matrix of weights from a layer
of the network while X would be the input data. We will also suppose that n0,
n1 and m grow together to infinity. A nonlinearity will be introduced through an
activation function f which will always be applied entrywise. The matrix model
considered is the following

M =
1

m
f

(

WX√
n0

)

f

(

WX√
n0

)

.

It consists of the data covariance matrix after the first layer of the network. Spec-
tral properties of this matrix measure the performance of the learning procedure
for this neural network. A possible idea to understand better such large complex
systems, as all the dimensions tend to be very large, is to approximate the ele-
ments of the system by random variables as it is done in statistical physics and
thermodynamics.

From a mathematical standpoint, a first result was given in [5] where the case of
a deterministic data and independent Gaussian weights was studied. They showed
that the empirical spectral distribution converges to a deterministic measure given
by a quadratic equation of its Stieltjes transform. The same equation arises for
sample covariance matrix with general population of the form TXX∗T ∗.

In [2], we study the above model in the case where both the weights and data
are random. This was first considered in the case of Gaussian entries in [7] where
the authors showed nonrigorously that the asymptotic eigenvalue distribution was
given in terms of a quartic self-consistent equation of the Stieltjes transform of
the empirical spectral distribution. We obtain this result for independent sub-
exponential entries and for an analytic activation function f proving that this
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asymptotic deterministic measure is universal. The asymptotic measure only de-
pends on f through two explicit parameters:

θ1 = E
[

f(N (0, 1))2
]

and θ2 = E [f ′(N (0, 1))]
2
.

There are two extremal cases for the equation. Firstly, if θ1 = θ2, the equation
becomes a cubic equation which corresponds to the linear case where f = x. This
has been widely studied, see [1] for instance. Also, if θ2 = 0, the equation collapses
to a quadratic equation and we recover the usual Marchenko–Pastur distribution
[6]. Thus for a class of functions, the asymptotic eigenvalue distribution of M is
the same as the one of 1

mZZ
∗ for some i.i.d matrix Z ∈ Rn1×m. In general, the

eigenvalue distribution is actually the same as the one of the matrix

1

m
(
√

θ2WX +
√

θ1 − θ2Z)(
√

θ2WX +
√

θ1 − θ2Z)
∗

and thus corresponds to the squared singular values of the additive convolution of
a Ginibre and a product of two Ginibre. This linearization of the problem can be
compared to the result of [4] on kernel matrices.

Our proof relies on the method of moments by expanding traces of powers of the
matrixM and performing a careful counting of graphs. This method also allows us
to obtain a result on the behavior of the largest eigenvalue. If we suppose that f is
chosen so that E [f(N (0, 1))] = 0, we are able to prove that the largest eigenvalue
converges to the edge of the support of the asymptotic deterministic distribution.

In [7], the authors conjectured that the eigenvalue distribution would keep con-
verging to the Marchenko–Pastur distribution after several layers if the activation
function is such that θ2 = 0. This invariance of the spectral measure was also
empirically seen as a benefit to the performance of the training of the network.
We also showed this result for a finite number of layers L. First consider a family
(W (i))1≤i≤L of independent random matrices such that W (i) ∈ Rni+1×ni . If one
defines

Y (i+1) = f

(

W (i)Y (i)

√

niθ1(f)

)

with Y (1) = f

(

WX√
n0

)

and M (i) =
1

m
Y (i)Y (i)∗,

and if f is such that θ2 = 0 then the asymptotic eigenvalue distribution of M (L)

is again given by the Marchenko-Pastur distribution.
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Outlier eigenvalues for non-Hermitian polynomials in independent
i.i.d. matrices and deterministic matrices

Mireille Capitaine

(joint work with S. Belinschi, C. Bordenave, G. Cébron)

Here are the matricial models we deal with. Let t and u be fixed nonzero integer
numbers independent from N .

(A1) (A
(1)
N , . . . , A

(t)
N ) is a t−tuple of N ×N deterministic matrices such that

(1) for any i = 1, . . . , t,

sup
N

‖A(i)
N ‖ <∞,

where ‖ · ‖ denotes the spectral norm,

(2) (A
(1)
N , . . . , A

(t)
N ) converges in ∗-distribution towards a t-tuple a =

(a(1), . . . , a(t)) in some C∗-probability space (A, φ) where φ is faithful
and tracial.

(X1) We consider u independent N × N random matrices X
(v)
N = [X

(v)
ij ]Ni,j=1,

v = 1, . . . , u, where, for each v, [X
(v)
ij ]i≥1,j≥1 is an infinite array of random

variables such that {
√
2ℜ(X(v)

ij ),
√
2ℑ(X(v)

ij ), i ≥ 1, j ≥ 1} are independent
identically distributed centred random variables with variance 1 and finite
fourth moment.

Let P be a polynomial in t+ u noncommutative indeterminates and define

MN = P

(

X
(1)
N√
N
, . . . ,

X
(u)
N√
N
,A

(1)
N , . . . , A

(t)
N

)

,

and

M
(0)
N = P (0N , . . . , 0N , A

(1)
N , . . . , A

(t)
N ),

where 0N denotes the N × N null matrix. Let c = (c(1), . . . , c(u)) be a free non-
commutative circular system in (A, φ) which is free from a = (a(1), . . . , a(t)). We
are now interested by describing the individual eigenvalues of MN outside a small
neighborhood of the spectrum of P (c, a) (denoted by spect(P (c, a))), that we call
outliers. In the lineage of [2], our main result in [1] gives a sufficient condition to
guarantee that outliers are stable in the sense that outliers ofMN coincide asymp-

totically with the eigenvalues of M
(0)
N which are located outside the spectrum of

P (c, a).
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Theorem 1. Assume that hypotheses (A1), (X1) hold. Let Γ be a compact subset
in the complement of the spectrum of P (c, a). Assume moreover that

(A2) for k = 1, . . . , t, A
(k)
N = (A

(k)
N )

′
+ (A

(k)
N )

′′
,

where (A
(k)
N )

′′
has a bounded rank rk(N) = O(1) and

(

(A
(1)
N )

′
, . . . , (A

(t)
N )

′
)

satisfies

• for any z in Γ, there exists ηz > 0 such that for all N large enough, there
is no singular value of

P (0N , . . . , 0N , (A
(1)
N )′, . . . , (A(t)

N )′)− zIN

in [0, ηz].
• for any k = 1, . . . , t,

sup
N

‖(A(k)
N )

′‖ < +∞.

If for some ǫ > 0, for all large N ,

min
z∈∂Γ

∣

∣

∣

∣

∣

det(zIN − P (0N , . . . , 0N , A
(1)
N , . . . , A

(t)
N )

det(zIN − P (0N , . . . , 0N , (A
(1)
N )′ , . . . , (A

(t)
N )′)

∣

∣

∣

∣

∣

≥ ǫ

then almost surely for all large N , the numbers of eigenvalues of M
(0)
N and MN in

Γ are equal.

The next statement is an easy consequence of Theorem 1.

Corollary 1. Assume that (X1) holds and that, for k = 1, . . . , t, A
(k)
N are deter-

ministic matrices with rank O(1) and operator norm O(1). Let ǫ > 0, and suppose

that for all sufficiently large N , there are no eigenvalues of M
(0)
N in {z ∈ C, ǫ <

d(z, spect(P (c, 0))) < 3ǫ}, and there are j eigenvalues λ1(M
(0)
N ), . . . , λj(M

(0)
N ) for

some j = O(1) in the region {z ∈ C, d(z, spect(P (c, 0))) ≥ 3ǫ}. Then, a.s , for all
large N , there are precisely j eigenvalues of MN in {z ∈ C, d(z, spect(P (c, 0))) ≥
2ǫ} and after labeling these eigenvalues properly,

max
j∈J

|λj(MN )− λj(M
(0)
N )| →N→+∞ 0.

To prove Theorem 1, we make use of a linearization procedure which brings the
study of the polynomial back to that of the sum of matrices in a higher dimensional
space. Then, this allows us to follow the approach of [2]. But for this purpose, we
need to establish substantial operator-valued free probability results.
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polynomials in independent i.i.d. matrices and deterministic matrices, arXiv 1906.10674
(2019).

[2] C. Bordenave and M. Capitaine, Outlier eigenvalues for deformed i.i.d. matrices, Comm.
Pure Appl. Math. 69 Issue 11 (2016), 2131– 2194.



Random Matrices 3479

Aspects of Coulomb gases

Djalil Chafäı

(joint work with many co-authors)

This talk gives an overview around various contributions to the asymptotic analysis
of Coulomb gases (list of works below). Coulomb gases are exchangeable Gibbs
measures on (Rd)n modelling confinement as well as singular pair repulsion:

dP (x1, . . . , xn) = e−βn(
∑n

i=1 V (xi)+
1
2

∑
i6=j g(xi−xj))dx1 · · · dxn

where the interaction is given by the Coulomb kernel

g =

{

1
(d−2)|·|d−2 if d 6= 2

log 1
|·| if d = 2

.

They appear at various places in mathematical physics, in particular in random
matrix theory for d = 2. They were extensively studied in the past decade, notably
by Sylvia Serfaty and co-authors. After recalling the notion of electrostatic energy
and equilibrium measure, we consider the notion of Coulomb gas, the associated
large deviation principle, the law of large numbers, and the central limit theorem.
We also discuss the quantitative version of this last statement, via concentration
of measure inequalities. We then consider Langevin type stochastic dynamics
associated to Coulomb gases, that can be used to simulate and to compute. The
trend to the equilibrium of such dynamics is related to functional inequalities,
which are in general of quite difficult access beyond convex cases. We also discuss
the problem of conditioning Coulomb gases with respect to a linear statistics.
Finally we discuss the connection between Coulomb gases and Wigner jelliums,
and focus more specifically on a two-dimensional model for which a transition
phenomenon occurs for the edge fluctuation, from Gumbel to heavy-tailed.
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Edge Universality for non-Hermitian Random Matrices

Giorgio Cipolloni

(joint work with László Erdős, Dominik Schröder)

We consider non-Hermitian matrices X with i.i.d. entries xab = n−1/2χ such
that Eχ = 0, E|χ|2 = 1. It is well known [6] that the empirical measure of the
eigenvalues σ1, . . . , σn of X converges weakly to the circular law :

(1) lim
n→∞

1

n

n
∑

i=1

f(σi) =
1

π

∫

|z|≤1

f(z) d2z.

The convergence in (1) has been extended to mesoscopic scales, i.e. for test func-
tions f(z) = n2aϕ(na(z − z0)) for any 0 ≤ a < 1/2, |z0| ≤ 1.

The law of large number type limit (1) does not hold for a = 1/2 since the
eigenvalues of X fluctuate on a scale n−1/2. On this scale it is conjectured that
the local spectral statistics

∑

i f(σi) converges to a universal distribution. In a
recent work [3] we proved that the universality conjecture holds at the edge of the
spectrum of X .

Theorem 1. Let X be a matrix with centred i.i.d. entries of variance n−1, and

denote by p
(n)
k the k-point correlation function of the eigenvalues of X. Then,

there exits a universal correlation function p
(∞,Gin(F))
z , with F = R,C, such that

for any fixed k ≥ 1, and z1, . . . , zk so that |1−|zj|2| ≤ n−1/2, j = 1, . . . , k, it holds

(2)

∫

Ck

F (w)

[

p
(n)
k

(

z+
w√
n

)

− p(∞,Gin(F))
z

(w)

]

dw = O(n−c),

for any compactly supported smooth function F : Ck → C.

The correlation kernel p
(∞,Gin(F))
z is the scaling limit of the Ginibre (Gaussian)

correlation function and it is explicitly known for complex [5] and real [2] matrices
X . This result is the non-Hermitian analogue of the Tracy-Widom Hermitian edge
universality. The only known previous result is due to Tao and Vu [9] which proved
that the non-Hermitian universality conjecture holds in the bulk and at the edge
of the spectrum of X under the additional assumption that the first four moments
of the entries of X (almost) match the respective Gaussian moments.

Investigating spectral statistics of non-Hermitian random matrices is consider-
ably more challenging than Hermitian ones. There are two fundamental reasons
for this: (i) the resolvent (X − z)−1 of a non-normal matrix, unlike in the Hermit-
ian case, is not effective to study eigenvalues near z; (ii) lack of a good analogue
of the Dyson Brownian motion (DBM). The only useful expression to grasp non-
Hermitian eigenvalues is Girko’s celebrated formula

(3)
∑

i

ϕ(
√
n(σi − z0)) = − 1

4π

∫

C

∆ϕ(
√
n(z − z0))

∫ ∞

0

ℑTrGz(iη)dηdz,
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with

(4) Hz :=

(

0 X − z
X∗ − z 0

)

,

and Gz(iη) := (Hz − iη)−1. The key difficulty with Girko’s formula is that it
requires a good lower bound on the smallest singular value of X − z.

Our proof of the edge universality circumvents DBM and it has two key ingre-
dients. The first main input is an optimal local law for the resolvent of Hz [1] that
allows for a comparison of the joint distribution of several resolvents of Hz with
their Gaussian counterparts by following their evolution for long time under the
natural Ornstein-Uhlenbeck (OU) flow for η ≥ n−3/4−ǫ.

Our second key input is a lower tail estimate on the lowest singular value ofX−z
when |z| ≈ 1, or equivalently on the lowest eigenvalue λ1 of (X−z)(X−z)∗. In the
bulk (|z| < 1) classical smoothing inequalities [8], which implies no eigenvalues in
[0, n−2], are optimal. On the other hand for |z| > 1 the smallest eigenvalue of (X−
z)(X − z)∗ is bounded away from zero. In Theorem 2 we consider the transitional
regime |z| ≈ 1. With supersymmetric methods in [4], using superbosonization
formula [7], we recently proved the following theorem.

Theorem 2. Let X be a real or complex Ginibre matrix, and denote δ := 1− |z|2
for any fixed z ∈ C, then
(5)

P
(

λ1

(

(X − z)(X − z)∗
)

≤ xmin

{

1

n3/2
,

1

n2δ

}

)

≤
{

x+
√
xe−n(ℑz)2 , X ∼ Gin(R)

x, X ∼ Gin(C).

The bound (5) for |z| = 1 + O(n−1/2) controls λ1 on the optimal n−3/2 scale
and thus excludes singular values in the regime [n−2, n−3/2−ǫ] that was inaccessible
with other methods.
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Pseudospectra of structured random matrices

Nicholas Cook

(joint work with Alice Guionnet and Jonathan Husson)

In recent years, methods from high-dimensional geometry have been used to obtain
quantitative bounds on the norm of the inverse of random matrices; see [8] for an
overview. We describe two new results obtained by geometric methods: (1) spec-
tral anti-concentration estimates for structured Hermitian random matrices, and
(2) control on the pseudospectrum of quadratic polynomials in Ginibre matrices.

For our first result, consider H an N × N Hermitian random matrix with
{Hij}i≤j independent, centered and sub-Gaussian with variances σ2

ij ∈ [0, 1]. De-

note by Σ = (σij)
N
i,j=1 the standard deviation profile. For an arbitrary fixed cutoff

parameter σ0 ∈ (0, 1], denote spt(Σ) = {(i, j) ∈ [N ]2 : σij ≥ σ0}. We say Σ is

• δ-broadly connected if ∀I, J ⊂ [N ] with |I|+ |J | ≥ N , |spt(Σ) ∩ (I ×
J)| ≥ δ|I||J | (this notion was introduced in [10]);

• δ-robustly irreducible if ∀J ⊂ [N ], |spt(Σ) ∩ (J × Jc)| ≥ δ|J ||Jc|.
The robust irreducibility condition can be interpreted as an expansion condition
on the naturally associated graph that contains an edge {i, j} whenever σij ≥ σ0.
Note that it permits the ESD of H to have an atom of size & 1 at zero.

Theorem 1 ([3]). (1) Fix δ > 0 and suppose Σ is δ-broadly connected. Then
with probability 1 − O(N−100), for any interval I ⊂ R with length(I) ≥
C logN

N we have µ 1√
N

H(I) .δ,σ0 length(I).
(2) Fix δ, κ > 0 and suppose Σ is δ-robustly irreducible. Then with probability

1 − O(N−100), for any I ⊂ R \ (−κ, κ) with length(I) ≥ C logN
N we have

µ 1√
N

H(I) .δ,κ,σ0 length(I).

Under more restrictive hypotheses on Σ, such estimates controlling the ESDs by
Lebesgue measure down to the optimal “mesoscopic” scale No(1)−1 follow imme-
diately from a local law established by Ajanki, Erdős and Krüger in [1] by careful
analysis of an associated vector Dyson equation; see also the notes [5].

For the proof, the key technical step is to show that the eigenvectors of H
are delocalized in the “no gaps” sense (cf. [9]). The proof is flexible and can be
adapted to other settings where the analysis of the Dyson equations is challenging.
For instance, together with some ideas for the proof of Theorem 2 we can obtain
analogous bounds for polynomials in independent Wigner matrices. This will be
the subject of a forthcoming work. Local laws for certain classes of polynomials
were obtained through analysis of the (matrix) Dyson equations in [2, 6].

For our next result, recall that the ε-pseudospectrum Λε(M) of a square matrix
M is the set Λ(M) of eigenvalues together with all z ∈ C for which ‖(M−z)−1‖op ≥
1/ε. If M is normal then Λε(M) is simply the ε-neighborhood of Λ, whereas for
non-normal matrices it can be considerably larger. The following gives control on
the size of the pseudospectrum for certain polynomials in random matrices. Recall
that a (complex) N ×N Ginibre matrix X has iid entries Xij ∼ NC(0, 1/N).
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Theorem 2 ([4]). Let m ≥ 1 and let p be a quadratic polynomial in non-commuta-
tive variables x1, . . . , xm. Let N ≥ 2 and X1, . . . , Xm be iid N × N Ginibre
matrices. Set P = p(X1, . . . , Xm). For any z ∈ C and any ε > 0,

P{z ∈ Λε(P )} ≤ NCεc + e−cN

for constants C, c > 0 depending only on p.

Via the linearization trick used in [7] the proof reduces to studying the condition
number of randommatrices inMN (Md(C)), where the d×d entries are independent
random matrices of bounded dimension with correlated entries. Even when d = 2
the proof requires significant new ideas over the well-studied scalar-entry case.

Theorem 2 is key for the proof of the following result on the limiting ESDs:

Theorem 3 ([4]). Fix m ≥ 1 and a quadratic polynomial p in non-commutative

variables x1, . . . , xm. For each N let X
(N)
1 , . . . , X

(N)
m be iid N ×N Ginibre matri-

ces. Set P (N) = p(X
(N)
1 , . . . , X

(N)
m ). Almost surely,

µP (N) → νp weakly,

where νp is the Brown measure for p(c1, . . . , cm) with c1, . . . , cm free circular ele-
ments of a non-commutative probability space.

The proof of Theorem 3 follows the standard Hermitization strategy, combining
Theorem 2 with quantitative control on singular value distributions of P (N) − z
that can be deduced from results in [7].
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Random matrices and history dependent stochastic processes

Margherita Disertori

We consider here the connection between a lattice random Schrödinger operator
and certain stochastic processes with memory (cf. [4, 5, 6]). These processes
have been under intensive study in the last ten years, due to their connection
with a supersymmetric nonlinear sigma model (the so-called H2|2) introduced by
Zirnbauer in [1] as a toy model for random matrices in quantum diffusion.

A lattice random Schrödinger operator (RS). Let Λ ⊂ Z
d be a cube and

consider the random matrix HΛ ∈ RΛ×Λ of the form HΛ = −∆Λ + λV̂ , where
∆Λ is the lattice Laplacian, V̂ = diag({Vx}x∈Λ) is a random diagonal matrix, and
λ > 0 is a parameter encoding the strength of the disorder. Physical information
can be inferred from the spectral properties of this operator as Λ → Z

d.

For a large class of random potentials V localization of the eigenfunctions has
been proved in d = 1 for arbitrary disorder and in d ≥ 2 for large disorder or at
the band edge. A localization - delocalization transition has been proved on tree
graphs, and is conjectured to hold on Zd, for d ≥ 3. A detailed up-to-date review
on the model, known results and tools can be found in the book by Aizenman and
Warzel [7].

Here we consider the matrix HW := 2β̂ −WP, where Pij = 1|i−j|=1 is the off-

diagonal lattice Laplacian, W > 0 is a parameter and β̂ = diag({βx}x∈Λ) is a
random diagonal matrix, with distribution

(1) dP(β) :=
(

2
π

)|Λ|/2
e
∑

|i−j|=1 W1HW>0
e−

∑
j∈Λ βj

detHW

∏

j∈Λ

dβj .

Some features:
• βx > 0 almost surely for all x ∈ Λ and the random variables βi, βj are indepen-
dent for all |i− j| ≥ 2.
• HW can be written as a random Schrödinger operator as follows:
HW =W (−∆+ 1

W V̂ ) with Vx := 2βx − 2dW
(neglecting eventual boundary terms). Note that E[Vx] = 1 is independent of W.

This is not true for higher order correlations. For example Var(Vx) =
√

2(1 + dW ).

A history dependent stochastic process (VRJP). Let Λ ⊂ Zd be again a
cube and consider the continuous time jump process (Yt)t≥0 on Λ with transition
probability

P(Yt+dt = j |Yt = i, (Ys)s≤t) = 1|i−j|=1wij(t)dt+ o(dt)

where wij(t) > 0 is the jump rate. If wij = cij is independent of t this is a Markov
jump process (no memory). Here we consider the so-called vertex-reinforced jump
process, introduced by Werner in 2000, with jump rate wij(t) := W (1 + Lj(t)),

where Lj(t) :=
∫ t

0
1Ys=jds is the total time spent at j up to time t, and W > 0

is a parameter encoding the strength of the reinforcement. For this process a



Random Matrices 3485

recurrence/transience phase transition has been proved in d ≥ 3 [2, 3]. The model
is recurrent at d = 2 ∀W [10].

Connection between RS and VRJP. Consider the time-changed process

(Zs)s≥0 whose jump rate is given by wij(s) := W
2

√
1+Tj(s)√
1+Ti(s)

, where Tj(s) it the

local time at j. In finite volume, this new process is a mixture of Markov jump

processes [4]: PZ(·) = E[P
w(u)
Λ (·)], where wij(u) := euj−uiW/2 and u ∈ RΛ is a

random field.

In particular, the generator of the Markov jump process is
Lu,W f(x) :=

∑

|y−x|=1(fx − fy)Weuy−ux .

This can be written as Lu,W = eûHW e−û, where HW = 2β̂ −WP and 2βx(u) :=
∑

|y−x|=1Weuy−ux .

Performing a change of coordinate we obtain dP(u) = dP(β)dρ(ui0 ), where i0 is
the starting point of the process and dP(β) is the probability measure given in (1)
above.

This connection was explored by Zeng, Sabot and Tarres [8, 9]. In particular a
connection was found between the ground state of HW in infinite volume and
recurrence/transience properties.
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Random Bipartite Biregular Graphs, Regular Hypergraphs, and
Applications

Ioana Dumitriu

(joint work with Gerandy Brito, Kameron Decker Harris, Yizhe Zhu)

Spectra of random graphs and hypergraphs have recently been the focus of much
attention in connection to network science and machine learning, where they have
been used to study problems from community detection to matrix completion, and
from pattern recognition to bioinformatics. One of their main properties to study,
with wide applicability in the fields mentioned, is expansion; the key feature of
expansion is fast random walk mixing on the graph in question.

The classical example of a very good expander is the random regular graph, for
which all vertices have the same degree d. For connected, simple graphs, expansion
has been known for a long time to be related to the spectral gap of the Laplacian
matrix; if the graph is regular, the Laplacian matrix is only a shifted and scaled
version of the adjacency matrix. The Alon conjecture, which held that the uni-
formly random regular graph was asymptotically almost surely a good expander,
was proved in the early aughts by Joel Friedman, and recently (in 2015) reproved
by Charles Bordenave. The latter’s techniques include a sophisticated version of
the method of moments applied not to the (symmetric) adjacency matrix, but to
the Hashimoto (non-backtracking) operator, which can be related to the former
via the Ihara-Bass formula.

The author, in collaboration with students and postdocs, has adapted Bor-
denave’s proof to quasi-regular graphs (bipartite biregular and the more general
k-frame models), and recently has discovered that these results translate well to
regular k-uniform hypergraphs via a simple well-known bijection. The key here
is proving spectral gap for biregular bipartite graphs, which can again be done
by implicitly using the fact that the Laplacian matrix, just as was the case with
regular graphs, is related to the adjacency matrix through a scale and shift. The
spectrum of the adjacency matrix is once again related to the spectrum of the
Hashimoto operator via the Ihara-Bass formula, and thus showing the spectral
gap of the latter implies expansion of the former [1].

An elegant paper by Marina Meila and Yali Wan from 2015 introduced the
idea of preference frame graph model, which covers a variety of random graphs,
among them the regular ones, bipartite regular, and k-frames or equitable graphs
as studied by Mark Newman et al. Meila and Wan showed that equitable graphs
are expanders (specifically, that they have significant spectral gap) if and only
if the component bipartite biregular graphs have spectral gap. By showing that
almost all bipartite biregular random graphs have spectral gap, we have completed
the proof [1]. Along the way, we also explored some other applications (e.g., matrix
completion and Tanner codes).

Finally, the spectra of regular k-uniform hypergraphs has been defined in terms
both of tensors (in the style of Joel Friedman and Avi Wigderson) and of associated
families of adjacency matrices (Winnie Li et al.) We found that the later approach,
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through its very simple bijection connection to bipartite biregular graphs, can be
used to show directly that spectral expansion, rapid random walk mixing, and both
vertex and edge expansion are properties which the regular uniform hypergraphs
satisfied asymptotically almost surely [2].
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On eigenvector statistics in non-normal random matrices

Yan V. Fyodorov

(joint work with Woiciech Tarnowski)

Generically, non-selfadjoint square N×N random matrices X are non-normal, i.e.
do not commute with their adjoint X∗, and diagonalizable. To each eigenvalue
λi, real or complex, correspond two sets of eigenvectors: left li and right ri. The
corresponding eigenproblems are Xri = λiri and X∗li = λili. The two sets can
always be chosen bi-orthogonal: (l∗i rj) = δij . The eigenvalue condition numbers

κi =
√

(l∗i li)(r
∗
i ri) ≥ 1 can be arbitrary big, the large values signalling of the non-

orthogonality of set of left li and right ri eigenvectors and enhanced sensitivity
of the associated eigenvalues against additive perturbations of the matrix entries:
X → X + ǫP . Note that κ = 1 only when X is normal. It is natural to ask how
well-conditioned are eigenvalues of a ‘ typical’ N×N non-normal matrix randomly
chosen according to a probability measure or “ensemble”. The simplest choice is to
choose all entries to be i.i.d. normals Xj,k ∼ N−1/2N (0, 1) (defining the so-called

real Ginibre ensemble) or ℜXj,k ∼ ℑXj,k ∼ N−1/2N (0, 1/2) for the complex Gini-
bre ensemble. The study of the eigenvalue condition numbers has been initiated
two decades ago by Chalker and Mehlig [1] who introduced the matrix of inner
products Oij = (l∗i lj)(r

∗
jri), which they called “ eigenvector overlaps”. The diago-

nal ‘overlaps’ are simply the squared eigenvalue condition numbers. They showed
that for a typical eigenvalue of the complex Ginibre matrix the overlaps are of
order of N bigger than for normal matrices, and also put forward a conjecture on
the tail for the corresponding probability density: P (Oii) ∼ O−3

ii . This conjecture
has been settled recently by two different methods in [2] and [3] where P (Oii) has
been explicitly found in a closed form for N → ∞. In [3] also an explicit density
of condition numbers for real eigenvalues of real Ginibre ensemble has been deter-
mined, as summarized in the following Theorem 1, see [2] and [3]:
Consider the (conditional) probability density PN (z, t) of the (scaled) ‘diagonal
overlap’ factor t = (Oii− 1)/N for the right and left eigenvectors corresponding to
eigenvalues in the vicinity of a point z = x+ iy in the complex plane. Then
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(1) lim
N→∞

PN(z, t) =
〈ρ(z)〉
t

e−
O

(β)
1 (z)

t〈ρ(z)〉

(

O
(β)
1 (z)

t〈ρ(z)〉

)β

, |z| < 1.

where parameter β = 1 corresponds to the real eigenvalues of the real Ginibre ma-
trices (in which case z ∈ R) and β = 2 to the complex Ginibre case. Correspond-
ingly, the limiting spectral density of real eigenvalues for β = 1 is 〈ρ(z)〉 = 1√

2π
for

the interval |z| < 1, whereas the density of complex eigenvalues is 〈ρ(z)〉 = π−1

inside the unit circle |z| < 1, with O
(β=2)
1 (z) = π−1(1 − |z|2) providing ’typical

scale’ value for the diagonal overlap, whereas O
(β=1)
1 (z) = 1

2
√
2π

(1− |z|2).

More generally, one can consider the entries Xj,k and Xk,j of the matrix X
to be correlated: e.g. in the real case E(XijXji) = τ/N for i 6= j, where the
parameter τ ∈ [0, 1] tunes the degree of correlation interpolating between real
Ginibre for τ = 0 and real symmetric GOE matrices for τ = 1. This defines the
Elliptic (Gaussian) Ensembles, the name coming from the shape of the support
for the eigenvalue density as N ≫ 1, an ellipse with the vertical semiaxis 1 − τ
and the horizontal semiaxis 1 + τ . For such an ensemble one finds the following
generalization:

Theorem 2 (Bulk scaling), see [4].
The (conditional) probability density function of the (scaled) ‘diagonal overlap’
factor t = (Oii − 1)/N for the eigenvectors of the real Elliptic Ensemble corre-
sponding to real eigenvalues in the interval |z| < 1+ τ has asymptotically the form

(2) lim
N→∞

PN (z, t) =
〈ρτ (z)〉

t
e−

O
(1)
τ (z)

t〈ρτ (z)〉

(

O
(1)
τ (z)

t〈ρτ (z)〉

)

,

where 〈ρτ (z)〉 = 1√
2π(1−τ2)

provides the asymptotic density of real eigenvalues and

the typical scale value of the overlap is given by O
(1)
τ (z) =

√
1−τ2

2
√
2π

(

1− |z|2
(1+τ)2

)

.

When approaching the boundary |z| = 1+τ of the eigenvalue support the typical

diagonal overlap O
(1)
τ (z) tends to zero. A more detailed investigation then shows

that in the appropriate scaling vicinity of the boundary non-orthogonality becomes
parametrically weaker, as the ’typical scale’ value of the diagonal overlap Oii

becomes of the order
√
N . The expression for PN(z, t) in this range of parameters

can also be found after appropriate rescaling.
Yet another scaling regime occurs for N → ∞ when τ approaches unity with

the rate O(N−1), so that the parameter 2N(1− τ) = a2 is fixed. Such parameter
therefore controls the deviation from the fully symmetric GOE matrices. In this
regime of “ almost symmetric” matrices already a finite fraction of order of N
eigenvalues turn out to be typically real. Such regime turns out to be not only
“ weakly asymmetric”, but also “ weakly non-normal” as the typical value of the
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diagonal overlap t = Oii − 1 turns out to be of the order of unity, see [4] for more
detail.
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Bulk eigenvalue fluctuations of sparse Erdős-Rényi graphs

Yukun He

Let us consider the Erdős-Rényi graph G(N, p). After rescaling and centering, its
adjacency matrix H is an N×N real symmetric random matrix with independent
upper triangular entries, and satisfies

EHij = 0 , EH2
ij =

1

N
and E|Hij |k ≍ 1

Nk/2p(k−2)/2

for all i, j ∈ {1, 2, ..., N}. For a dense graph p ≍ 1, one has ‖Hij‖2 ≍ ‖Hij‖k, and
H is a standard Wigner matrix. In practice, people are more interested in spare
graphs p≪ 1, where in this case we have

‖Hij‖2 ≪ ‖Hij‖k ,
i.e. the entries of H are no longer light-tailed.

There has been many works studying the spectral statistics of H . In the famous
works [3, 9], it was shown that the k-point correlation function and distribution of
eigenvalue gaps of a Wigner matrix H coincide with those of the Gaussian Orthog-
onal Ensemble (GOE). In terms of Erdős-Rényi graphs G(N, p), this corresponds
to the regime p ≍ 1. Later in [2] the results were extended to the sparse regime
p ≥ N−1/3+ε and finally in [8] to the almost optimal regime p ≥ N−1+ε.

In addition to the k-point correlation function and distribution of eigenvalue
gaps, another very natural quantity to study is the distribution of individual eigen-
values. This problem was first studied in [4] for Gaussian Unitary Ensembles
(GUE), where it was proved that the bulk eigenvalue distributions are asymp-
totically Gaussian, and the fluctuations are on the scale logN/N . Later in [7],
a similar result was proved for GOE. Recently in [6, 1], it was shown that the
fluctuation is universal among all Wigner matrices.

In this talk, we present a result in [5], where we study the bulk eigenvalue
fluctuations for sparse Erdős-Rényi graph G(N, p), p ∈ [N−1+ε, N−ε]. Our result
indicates that unlike Wigner matrices, the eigenvalues of sparse matrices fluctuate
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on a much bigger scale 1/(N
√
p). In addition, the eigenvalues fluctuate simulta-

neously: the correlation of two eigenvalues of the same/different sign is asymptot-
ically 1/-1. In other words, we showed that the bulk eigenvalue fluctuations are
Non-universal for sparse matrices.
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Large deviations for the largest eigenvalue of some sub-Gaussian
matrices

Jonathan Husson

(joint work with Alice Guionnet, Fanny Augeri)

In random matrix theory, using the explicit formula for the joint distribution of
the eigenvalues of the Gaussian ensembles, Ben Arous and Guionnet proved a large
deviation principle for the empirical measure of GOE and GUE matrices [4] and
Ben Arous, Dembo and Guionnet proved a similar result for the largest eigenvalue
[3]. Outside of the case of Gaussian matrices, few proper large deviation principles
are known for the empirical measure or for the largest eigenvalue (see for example
the results of Augeri, Bordenave and Caputo for heavier than Gaussian tails [5, 1]).

This talk exposes a new large deviation principle for the largest eigenvalue of
Wigner matrices whose entries satisfy a sharp sub-Gaussian bound [6] using a
spherical integral studied by Guionnet and Mäıda [7].

Remarkably, this large deviation principle exhibits the same rate function as in
the Gaussian case. This result can also be extended for matrices with variance
profiles [8] where this large deviation result is new even in the Gaussian case.
Lastly, we look at the case where the sharpness of our sub-Gaussian hypothesis is
relaxed in the real case [2]. In this last case instead of a complete LDP, we have
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upper and lower local large deviation bounds that coincide for large values of the
largest eigenvalue. In other words :

lim
δ→0

lim sup
N→∞

N−1 lnP[|λmax−x| ≤ δ] = lim
δ→0

lim inf
N→∞

N−1 lnP[|λmax−x| ≤ δ] = −I(x)

for some function I and x large enough. In this case however we can show that
I(x) < IGOE(x).
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Rate of Convergence for non-Hermitian random matrices and their
products

Jonas Jalowy

(joint work with Friedrich Götze)

Similar to the Circular Law, the empirical spectral distribution (ESD) of products
of m ∈ N independent non-Hermitian random matrices X(1), . . . , X(m) with inde-
pendent entries will converge to a deterministic limiting distribution µm

∞ as the size
n of the matrix tends to infinity, see [1]. We investigate the rate of convergence
of the ESD µm

n = 1
n

∑n
j=1 δλj(n−m/2X) of the product X = X(1) · · ·X(m) to the

power of the Circular Law in terms of a uniform Kolmogorov-like distance.
The optimal rate of convergence is determined by products of Ginibre matrices.

We derive explicit sharp bounds for the distance of µm
∞ to the mean spectral dis-

tribution µ̄m
n = Eµm

n . By saddle-point approximation of a double contour integral
representation, we obtain that the optimal rate is given by

sup
R>0

|µ̄m
n (BR(0))− µm

∞(BR(0))| ≍ 1/
√
n.(1)

Inside the bulk, this rate of convergence is even faster, interestingly we even
have an exponential rate in the case of the Circular Law, i.e. m = 1, see [2].
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Secondly, we consider products of matrices with independent entries satisfying

maxi,j,q,n E
∣

∣X
(q)
ij

∣

∣

4+δ
< ∞. We exploit techniques from local laws in order to

show that for every τ,Q > 0 we have nearly optimal rate of convergence

P

(

sup
BR(z0)

|(µm
n − µm

∞)(B)| . log2 n/
√
n
)

≥ 1− n−Q,(2)

where the supremum runs over all balls that avoid the edge and the origin. The
proof relies on a smoothing, a random grid approximation and a pointwise con-
centration for the log-potentials, which can be extracted from the local law [4].

Moreover, a similar approach applies to other models, where logarithmic poten-
tials can be controlled. We prove a smoothing inequality for complex measures that
quantitatively relates the uniform Kolmogorov-like distance to the concentration
of logarithmic potentials. From this we deduce the same rate of convergence for the
empirical measure of the roots of Weyl random polynomials and we show nearly
optimal rate of convergence to the Circular Law in the classical 2-dimensional
Kolmogorov distance.
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Eigenvalues and eigenvectors of critical Erdős-Reńyi graphs

Antti Knowles

(joint work with Johannes Alt, Raphaël Ducatez)

An (undirected simple) graph on N vertices can be characterized by its adjacency
matrix A = A∗ = (Axy)

N
x,y=1 ∈ {0, 1}N×N , where Axy is 1 if x and y are adjacent

and 0 otherwise. The eigenvalues and eigenvectors of A play a central role in
spectral graph theory. By making A random, we obtain a natural construction
of sparse random matrices. Such a random operator can also be interpreted as a
random Hamiltonian, describing a particle whose hopping is restricted to edges of
a sparse graph.

Arguably the simplest model of a random graph is the Erdős-Rényi graph
G(N, p), where each edge {x, y} of the complete graph is kept with probabil-
ity p independently of the others. This means that the upper-triangular entries
(Axy : x ≤ y) are independent Bernoulli(p) random variables. Here the parameter
p ≡ pN can depend on N , and the graph is sparse if pN → 0 as N → ∞. Despite
its simple definition, the eigenvalues and eigenvectors of the adjacency matrix of
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G(N, p) exhibit very complex behaviour, depending on the scale of the parameter
p. To discuss this behaviour in more detail, we parametrize p = d/N .

Let λ1 ≥ λ2 ≥ · · · ≥ λN denote the eigenvalues of the (conveniently normalized)
adjacency matrix d−1/2A. The most basic question about the distribution of the

eigenvalues is the convergence of the empirical eigenvalue measure 1
N

∑N
i=1 δλi(x),

which, with high probability, converges in distribution to Wigner’s semicircle law
̺(x)x with ̺(x) = 1

2π

√

(4− x2)+ if and only if d → ∞ as N → ∞. Note that
this statement says nothing about the fluctuations or even locations of individual
eigenvalues.

The expected behaviour of the eigenvalues and eigenvectors changes dramati-
cally around the critical scale d ≍ logN . Informally, the critical scale corresponds
to the threshold below which the concentration of the degree sequence D1, . . . , DN

fails, where Dx =
∑

y Axy is the degree of vertex x. Thus, for1 d ≫ logN all de-
grees are with high probability close to d, while for d ≪ logN the degrees differ
wildly. A famous manifestation of this phenomenon is the connectivity threshold
for G(N, d/N): for d/ logN > 1 the graph is with high probability connected, and
for d/ logN the graph has with high probability isolated vertices. It is well known
that as long as d > 1, the graph has a unique giant component (of size of order
N), while all other components are of order O(logN). Throughout the following,
we only consider the giant component, discarding the smaller components.

In the recent works [1, 2], we analyse the eigenvalues and eigenvectors of
G(N, d/N) on the critical scale. We uncover a phase diagram consisting of localized
and delocalized phases, which is analogous to the well-known conjectured phase
diagram of the three-dimensional Anderson model at weak disorder [3]. For its
statement, we introduce the function Λ : [2,∞) → [2,∞) defined by Λ(α) = α√

α−1
.

Theorem 1. Suppose that
√
logN ≪ d ≤ N/2. Denote by αx = Dx/d the

normalized degree of x. Then for any ν > 0 the following statements hold with
probability at least 1−Oν(N

−ν).

(1) Eigenvalue locations. Let σ ∈ SN satisfy ασ(1) ≥ ασ(2) ≥ · · · ≥ ασ(N).
Let L = max{l ≥ 1 : ασ(l) ≥ 2 + o(1)} denote the expected number of
eigenvalues larger than 2 + o(1). Then for 1 ≤ l ≤ L we have |λl+1 −
Λ(ασ(l)) ≤ o(1) and |λL+2 − 2| = o(1).

(2) Eigenvector delocalization. The eigenvector ui is completely delocal-
ized (i.e. ‖ui‖2∞ ≤ N−1+o(1)) if d ≥ C logN for some constant C or if the
associated eigenvalue λi satisfies o(1) ≤ |λi| ≤ 2− o(1).

(3) Eigenvector localization. Let λ ≥ 2+ o(1) be an eigenvalue with eigen-
vector u ∈ S

N−1. Define the set of vertices in resonance with λ,

W(λ) =
{

x : αx ≥ 2, |Λ(αx)− λ| = o(1)
}

.

For r ≥ 1 define the set of resonant balls Br(λ) =
⋃

x∈W(λ)Br(x). Then

for r ≫ 1 we have
∑

x/∈Br(λ)
u(x)2 = o(1).

(All factors o(1) are in fact quantitative functions of d.)

1Here a ≪ b or b ≫ a means that a = o(b).
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This result indicates that at criticality G(N, d/N) provides a model of a random
operator that exhibits analogous characteristics to the Anderson model in three
dimensions. However, it seems to be more amenable to a rigorous analysis, infor-
mally because it tends to be more delocalized. This means not only that we can
rigorously establish the existence of a delocalized phase, but also that in the local-
ized phase the eigenvectors are localized around not one localization centre (as in
Anderson localization), but around many (the resonant vertices W(λ)). Heuristi-
cally, this difference may be understood by noting that G(N, d/N) is much better
connected than Z

3/NZ
d, with a diameter logarithmic in N instead of polynomial.

References

[1] J. Alt, R. Ducatez, and A. Knowles, Extremal eigenvalues of critical Erdős-Rényi graphs,
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Harmonic Means of Wishart Random Matrices

Asad Lodhia

(joint work with Keith Levin and Elizaveta Levina)

Let Wi = n−1XiX
∗
i be a sequence of independent complex Wishart random ma-

trices where i = 1, . . . , N and Xi are p × n dimensional. In this talk we present
properties of the following matrix average

H = N
(

W−1
1 + · · ·+W−1

N

)−1
,

in the limit that p/n converges to γ ∈ (0, 1). In particular, we focus on its effec-
tiveness in estimating the population covariance E[Wi] = Σ in Frobenius norm,
operator norm and leading eigenvector recovery compared to

A =
1

N

N
∑

i=1

Wi.

We proved [1] there is an integer N∗(γ) for which N ≤ N∗(γ) implies asymptot-
ically almost surely ‖H − Σ‖op < ‖A − Σ‖op for Σ with small condition num-
ber. We reinterpreted this phenomenon in [2] showing the above result implies if
A = T−1XX∗ (where T is now Nn and T ≥ 2p), subdividing X arbitrarily into
two matrices X1 and X2 with asymptotically equal aspect ratios and computing
H yields a matrix asymptotically almost surely closer to Σ in operator norm when
Σ has a small condition number. Counter intuitively, the limit of the normalized
Frobenius norm error p−1‖H − Σ‖2F is the same as the error for A when Σ = I.
Further, when Σ = I+ θv⊗ v, in spite of H having a better operator norm error,
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the leading eigenvector of H is never a better estimator for v than the leading
eigenvector of A. Finally, for the case of real Gaussian entries for Xi with N = 2,
we computed

E[H|A] =
n(2n− p)

(2n− 1)(n+ 1)
A,

which by Rao-Blackwell Theorem implies a scalar multiple of A improves on H in
both operator and Frobenius norm error. This suggests that the above properties
are related to those arising in well-known shrinkage estimators of Σ.

Acknowledgments: A. Lodhia and K. Levin were supported by NSF RTG 1646108.
E. Levina was supported by NSF DMS grants 1521551 and 1916222.
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Limit laws of random matrices beyond the Dyson equation

Tobias Mai

(joint work with Sheng Yin)

Operator-valued free probability has proved to provide a powerful machinery for
the study of limit laws of various random matrix models. An instructive exam-

ple is the following basic model: let (X
(N)
1 , . . . , X

(N)
n ) be n-tuples of independent

GUE matrices of size N × N , fix n hermitian matrices b1, . . . , bn ∈ Mk(C), and

consider X(N) := b1 ⊗X
(N)
1 + · · ·+ bn ⊗X

(N)
n ; we are interested in the asymptotic

eigenvalue distribution of X(N) as N → ∞. Since (X
(N)
1 , . . . , X

(N)
n ) converges in

distribution to a tuple (X1, . . . , Xn) of freely independent semicircular operators,
say in some tracialW ∗-probability space (M, τ), the asymptotic eigenvalue distri-
bution of X(N) is given as the spectral distribution µX of the selfadjoint operator
X := b1 ⊗X1 + · · ·+ bn ⊗Xn in (Mk(C) ⊗M, trk ⊗τ). In fact, X is an operator-
valued semicircular element with the covariance map L : Mk(C) → Mk(C) given
by L(b) = b1bb1 + · · · + bnbbn; in particular, its matrix-valued Cauchy transform
GX : H+(Mk(C)) → H−(Mk(C)) is uniquely determined by the Dyson equation
GX(b)

−1 = b − L(GX(b)) for all b ∈ H+(Mk(C)). While there are efficient al-
gorithms to numerically compute GX and hence µX, qualitative statements are
harder to achieve. The regularity properties of µX obviously depend on the choice
of matrices b1, . . . , bn and thus on the corresponding map L. For L which are
flat, i.e., if there is c > 0 so that c−1 trk(b)1k ≥ L(b) ≥ c trk(b)1k holds for every
positive semi-definite matrix b ∈Mk(C), a detailed analysis of the Dyson equation
has led to a deep understanding of µX; see [1, 2]. In fact, [1] goes beyond the
matricial case and addresses solutions G : H+(B) → H−(B) of the Dyson equation
for positive maps L : B → B, where the von Neumann algebra B takes over the
role of Mk(C). Recently, by utilizing Voiculescu’s L2-theory of free differential



3496 Oberwolfach Report 56/2019

operators [4], we established absolute continuity of µX and Hölder continuity of
its cumulative distribution function – the former even under the less restrictive
assumption that L is nowhere rank decreasing, meaning that there is no positive
semi-definite b ∈Mk(C) such that rank(L(b)) < rank(b). Since this approach does

not rely on the Dyson equation, it works for (X
(N)
1 , . . . , X

(N)
n ) with more general

limit laws, but is limited so far to the matricial setup. It is work in progress to
close this gap with the aid of Shlyakhtenko’s operator-valued extension [3] of [4].
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Positive solutions for large random linear systems

Jamal Najim

(joint work with Pierre Bizeul)

Consider a large linear system where An is a n× n matrix with independent real
standard Gaussian entries, 1n is a n × 1 vector of ones and with unknown the
vector xn = (xk)k∈[n] satisfying

(1) xn = 1n +
1

αn
√
n
Anxn .

We investigate the (componentwise) positivity of the solution xn depending on
the scaling factor αn as the dimension n goes to ∞. We prove the following:

Theorem. Let αn −−−−→
n→∞

∞ and denote by α∗
n =

√
2 logn. Let xn = (xk)k∈[n] be

the solution of (1).

(1) If there exists ε > 0 such that eventually αn ≤ (1− ε)α∗
n then

P

{

min
k∈[n]

xk > 0

}

−−−−→
n→∞

0 .

(2) If there exists ε > 0 such that eventually αn ≥ (1 + ε)α∗
n then

P

{

min
k∈[n]

xk > 0

}

−−−−→
n→∞

1 .

Such linear systems arise as solutions at equilibrium of large Lotka-Volterra sys-
tems of differential equations, widely used to describe large biological communities
with interactions such as foodwebs for instance.
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Consider for instance a given foodweb and denote by xn(t) = (xk(t))k∈[n] the
vector of abundances of the various species within the foodweb at time t. A
standard way to connect the various abundances is via a Lotka-Volterra system of
equations

(2)
dxk(t)

dt
= xk(t)



1− xk(t) +
1

αn
√
n

∑

ℓ∈[n]

Akℓxℓ(t)



 for k ∈ [n] ,

where the interactions (Akℓ) can be modeled as random in the absence of any
prior information. Here, the Akℓ’s are assumed to be i.i.d. N (0, 1). At the

equilibrium dxn

dt = 0, the abundance vector xn is a solution of (1) and a key issue
is the existence of a feasible solution, that is a solution xn where all the xk’s are
positive.

In the domain of positivity of the solution xn, we establish that the Lotka-
Volterra system of differential equations whose solution at equilibrium is precisely
xn is stable in the sense that its Jacobian

J (xn) = diag(xn)

(

−In +
1

αn
√
n
Anxn

)

has all its eigenvalues with negative real part with probability tending to one. We
prove the following:

Corollary. Let xn = (xk)k∈[n] be the solution of (1). Denote by ℓ
+ =

lim supn→∞
√
2 log n
αn

and assume that ℓ
+ < 1. Denote by Sn the spectrum of

J (xn) and let λ ∈ Sn. Then

max
λ∈Sn

Re(λ) ≤ −(1− ℓ
+) + oP (1) .

Our results shed a new light and complement the understanding of feasibility
and stability issues for large biological communities with interaction.

A preprint arXiv:1904.04559 corresponding to this presentation is available.
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[2] C. W. Anderson, S. G. Coles, and J. Hüsler. Maxima of poisson-like variables and related
triangular arrays. The Annals of Applied Probability, pages 953–971, 1997.

[3] Z. D. Bai and J. W. Silverstein. Spectral analysis of large dimensional random matrices.
Springer Series in Statistics. Springer, New York, second edition, 2010.

[4] A. Borodin, I. Corwin, and A. Guionnet. Random Matrices, volume 26. American Mathe-

matical Soc., 2019.
[5] S. Boucheron, G. Lugosi, and P. Massart. Concentration Inequalities: A Nonasymptotic

Theory of Independence. Oxford University Press, 2013.
[6] M. Dougoud, L. Vinckenbosch, R. P. Rohr, L.-F. Bersier, and C. Mazza. The feasibility of

equilibria in large ecosystems: A primary but neglected concept in the complexity-stability
debate. PLoS computational biology, 14(2):e1005988, 2018.

[7] M. R. Gardner and W. R. Ashby. Connectance of large dynamic (cybernetic) systems: crit-
ical values for stability. Nature, 228(5273):784, 1970.



3498 Oberwolfach Report 56/2019

[8] S. Geman. The spectral radius of large random matrices. Ann. Probab., 14(4):1318–1328,
1986.

[9] S. Geman and C.-R. Hwang. A chaos hypothesis for some large systems of random equations.
Z. Wahrsch. Verw. Gebiete, 60(3):291–314, 1982.

[10] T. Gibbs, J. Grilli, T. Rogers, and S. Allesina. Effect of population abundances on the
stability of large random ecosystems. Physical Review E, 98(2):022410, 2018.

[11] R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge University Press, Cambridge,
second edition, 2013.

[12] T. Kato. Perturbation theory for linear operators, volume 132. Springer Science & Business
Media, 2013.

[13] M. R. Leadbetter, G. Lindgren, and H. Rootzén. Extremes and related properties of random
sequences and processes. Springer Science & Business Media, 2012.

[14] R. May. Will a large complex system be stable? Nature, 238(5364):413, 1972.
[15] L. Stone. The feasibility and stability of large complex biological networks: a random matrix

approach. Scientific reports, 8(1):8246, 2018.
[16] P. Vivo. Large deviations of the maximum of independent and identically distributed random

variables. European Journal of Physics, 36(5):055037, 2015.
[17] M. J. Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, volume 48.

Cambridge University Press, 2019.

Gaussian Multiplicative Chaos and random matrix theory

Joseph Najnudel

(joint work with Reda Chhaibi)

In our joint paper with Chhaibi [2], we identify an equality between two objects
arising from different contexts of mathematical physics: Kahane’s Gaussian Mul-
tiplicative Chaos (GMCγ) on the circle, and the Circular Beta Ensemble (CβE)
from Random Matrix Theory.

The Gaussian Multiplicative Chaos has been introduced by Kahane [4] and
studied in more detail by a number of authors, in particular Rhodes and Vargas
[7]. This object has connection with theoretical physics, in particular turbulence
and Liouville quantum gravity. It can be defined as follows: we start with a
centered Gaussian field G on the unit disc, whose covariance structure is given by

E[G(w)G(z)] = −2 log |1− wz̄|
Then, for γ > 0, r ∈ [0, 1), we consider the random measure GMCγ

r on the unit
circle U, such that

dGMCγ
r

dµ0
(z) :=

eγG(rz)

E[eγG(rz)]
,

where µ0 is the uniform probability measure on U. Then, in the so-called subcritical
phase γ < 1, there exists a random measure GMCγ , which defines the Gaussian
Multiplicative Chaos, such that for all smooth test functions f on the unit circle,

∫

U

f dGMCγ
r −→

r→1

∫

U

f dGMCγ

in L1. In the critical phase γ = 1, letting r → 1 gives an almost sure convergence to
zero, and then another normalization is needed to define GMCγ as a non-trivial
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object. Aru, Powell and Sepúlveda [1] have proven the existence of a non-zero
measure GMC1 on U, such that for a smooth test function f ,

1

1− γ

∫

U

f dGMCγ −→
r→1

∫

U

f dGMC1.

in probability. This defines the critical Gaussian Multiplicative Chaos, for which
other constructions have been described, all giving random measures with the
same law. In the supercritical phase γ > 1, some constructions have been made,
which do not all agree with each other.

The random measure GMCγ can be written as its total mass GMCγ(U), mul-
tiplied by a random probability measure µγ . We can then consider the random
sequence (Φk)k≥0 of Orthogonal Polynomials on the Unit Circle (OPUC) with
respect to this random probability measure: see [8] for a general introduction to
the theory of OPUC. The Verblunsky coefficients associated to (Φk)k≥0 forms a
random sequence (αk)k≥0 of complex numbers of modulus strictly smaller than 1.
A question one can ask concerns the joint distribution of these Verblunsky coef-
ficients. In the case where γ ≤ 1, i.e. the subcritical and the critical phase, we
answer to this question in our paper with Chhaibi [2]: (αk)k≥0 are independent,
their arguments are uniform on [0, 2π) and |αk|2 is Beta-distributed with param-
eters 1 and (k+1)/γ2. For n ≥ 1, the measure µγ can be naturally approximated
by a random measure µγ

n supported by n points: we take the measure whose finite
sequence of Verblunsky coefficients is (α0, α1, . . . , αn−2, αn−1/|αn−1|). Now, Killip
and Nenciu [5] have proven that the law of the support of the measure µγ

n corre-
sponds to the Circular β Ensemble in random matrix theory: i.e. n random points
on the unit circle whose joint probability distribution has density proportional to

∏

1≤i<j≤n

|zi − zj |β

with respect to the uniform measure on Un. Here, the parameter β is given by
β = 2/γ2, or equivalently γ =

√

2/β: note that β > 2 in the subcritical phase and
β = 2 in the critical phase. In the critical phase γ = 1, β = 2, the support of µγ

n

is then distributed like the Circular Unitary Ensemble, i.e. the eigenvalues of a
Haar-distributed unitary matrix of order n.

The construction described just above gives a way to recover the Circular Beta
Ensemble of all orders n from the Gaussian Multiplicative Chaos. Moreover, the
total measure GMCγ(U) has an explicit expression in terms of the Verblunsky
coefficients (αk)k≥0, which implies that it is distributed like the negative power
−γ2 of an exponential random variable. This solves a conjecture by Fyodorov
and Bouchaud [3], proven in another way by Remy [6]. Our main result also
provides an explicit description of the distribution of the Fourier coefficients of
the Gaussian Multiplicative Chaos, via their general expression in terms of the
Verblunsky coefficients.
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Rational functions of Wigner matrices and scattering in quantum dots

Yuriy Nemish

(joint work with László Erdős and Torben Krüger)

We consider a random matrix model for scattering in quantum dots in the regime
when the number of coupling channels is much smaller or comparable to the size
of the quantum dot. The model was introduced by Beenakker [1] and defines the
scattering matrix of a quantum dot of size M coupled to electron reservoirs via
2N channels as

S(E) := I − 2πiW ∗(E · I −H + iπWW ∗)−1W ∈ C
2N×2N ,

where H is an M ×M Wigner matrix, W is an M × 2N matrix with i.i.d. entries
and E ∈ R is the energy parameter. We split the scattering matrix into reflection

and transmission components, S(E) =

(

R T ′

T R′

)

with T ∈ CN×N , and we study

the distribution of the transmission eigenvalues of the model, i.e., the eigenvalues
of TT ∗, in the limit M,N → ∞.

The question was previously investigated in [1, 2] in the regime φ := N/M → 0
for the model with Gaussian entries relying heavily on phenomenological and non-
rigorous arguments. We revisited this problem [3] in the setting when φ→ 0 or
N ∼M , allowing general distributions for the matrix elements of the Hamiltonian
of the quantum dot and the coupling matrix.

To access this level of generality we developed the theory of global and local laws
on the spectral density of a large class of noncommutative rational expressions in
large random matrices with i.i.d. entries. We provided the characterization of the
limiting density of states for the transmission eigenvalues in terms of the solution
to the Dyson equation in the most general setting. For arbitrary parameters of
the model, we obtained the explicit formulas for the density of states in the regime
φ→ 0, as well as the asymptotic behavior at the singularities for general φ ∈ (0, 1].
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In particular, the rigorous proof of the limiting transmission eigenvalue density
from [1, 2] can be obtained from our result by making the special choice of model
parameters. The comprehensive study of the (approximated) Dyson equations
related to the above model made use of the analysis conducted in the previous
works [4, 5].
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On the operator norm of non-commutative polynomials in
deterministic matrices and iid GUE matrices

Félix Parraud

(joint work with Benôıt Collins, Alice Guionnet)

Let XN = (XN
1 , . . . , X

N
d ) be a d-tuple of N ×N independent GUE random ma-

trices and ZNM be any family of deterministic matrices in MN (C) ⊗ MM (C).
Let P be a self-adjoint non-commutative polynomial, seminal work of Voiculescu
[1] shows that the empirical measure converges towards a deterministic measure
defined thanks to the free probability theory. Let now f be a smooth function,
the main technical result that we present in this talk is a precise bound of the
difference between the expectation of

1

MN
TrMN (C) ⊗ TrMM (C)

(

f(P (XN ⊗ IM , ZNM ))
)

,

and its limit when N goes to infinity. If f is six times differentiable, we show
that it is bounded by M2 ‖f‖C6 N−2 uniformly in M,N and f . As a corollary
we obtain a new proof of a result of Haagerup and Thorbjørnsen in [2] later
developed by Male in [3] which stated sufficient conditions for the operator norm

of a polynomial evaluated in (XN , ZNM , ZNM∗
) to converge almost surely towards

its free limit. Restricting ourselves to polynomials in independent GUE matrices,
we give concentration estimates on the largest eigenvalue of those polynomials
around their free limit. A direct consequence of those inequalities is that there
exists some β > 0, that we will define in the paper, such that for any ε1 < (3+β)−1

and ε2 < 1/4, almost surely for N large enough,
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− 1

Nε1
≤ ‖P (XN)‖ − ‖P (x)‖ ≤ 1

Nε2
.

Finally if XN and YMN are independent and MN = o(N1/3), then almost surely,
the norm of any polynomial in (XN ⊗ IMN , IN ⊗ YMN ) converges almost surely
towards its free limit. This result is an improvement of a Theorem of Pisier in
[4], who was himself using estimates from Haagerup and Thorbjørnsen, whereMN

had size o(N1/4).
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Eigenvalues of random non-Hermitian matrices and randomly coupled
differential equations

David Renfrew

(joint work with Torben Krüger, Laszlo Erdős)

We consider the randomly coupled linear differential equation

(1) ∂tut = −ut + gXut

with ut an N dimensional vector, X a random matrix, and g a positive coupling
constant. We compute properties of the solution, ut, by studying the trace of
functions of X multiplied by functions of its adjoint. Our main result shows that
when the differential equation is critically coupled, the solution decays polynomi-
ally, at a slower rate than in the analogous Hermitian case. Equation (1) has been
used for modeling in theoretical neuroscience and mathematical ecology, see for
instance [1, 2, 6, 7, 8]. However, in these works the often unrealistic assumption
that the entries have identical distributions is made. Such an assumption can not
incorporate spatial information or different species/cells types.

In [3, 4], we incorporate relevant features into mathematical models by allowing
the entries of X to have different variances, as well as non-trivial correlations. In
particular, large blocks of the matrix can be zero. We give particular attention to
the case where the ij and ji entry are correlated, and the entries are otherwise in-
dependent. In such a model, the correlation coefficient corresponds to suppression
or promotion of reciprocal connections.

The first step in understanding the behavior of ut is determine the location
of the spectrum of X , then the parameter g can be tuned to balance the two
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terms on the right side of (1). We accomplish this by consider the Hermitized

resolvent R(z, ζ) =

(

−z X − ζ
X∗ − ζ −z

)

, and show that for large N the spectrum of

X concentrates on a deterministic set, which we call the self-consistent spectrum.
The complement of the self-consistent spectrum is determined by the ζ for which
the diagonal entries of R(z, ζ) vanish as z is taken to zero.

Our main tool in understanding the resolvent, R(z, ζ), is its associated ma-
trix Dyson equation (MDE). The optimal local law in [5] states that: given
a centered self-adjoint random matrix Z and a deterministic matrix A, satisfy-
ing certain conditions, the matrix (Z − A)−1 approximately solves the equation
−M−1 = Σ(M) + A, where Σ(M) = E[ZMZ].

Having a good understanding of the location of the spectrum we then consider
quantitative features of the solution to (1). When starting with a random ini-
tial condition uniformly distributed on the unit sphere the solution, after taking
expectation with respect to the initial conditions, is given by

(2) Eu0‖ut‖2 = trN (e(gX−I)te(gX
∗−I)t).

For a large class of covariances between the entries of X , we show the following
universal decay rate:

Eu0‖ut‖2 ∼ e2t[gζ
∗−1]

√
t

,

where ζ∗ is the rightmost point of the self-consistent spectrum of X . In particular,
when g is chosen to be 1/ζ∗, the solution decays like t−1/2. The analogous solution
when X is taken to be a random Hermitian matrix, decays like t−3/2.

In order compute the quantity in (2), we consider the more general problem
computing trN (f(X)g(X∗)), for analytic test functions f and g and show that
with high probability

(3) trNf(X)g(X∗) ∼
(

1

2πi

)2 ∮

γ

dz1

∮

γ

dz2 f(z1)g(z2)×K(z1, z2)

Where the kernel, K(z1, z2), is computed from just the covariance structure of
the entries of X .

This theorem follows by Cauchy’s integral formula and proving the convergence
of the trace of the product of the resolvents, trN ((X − ζ1)

−1(X∗ − ζ2)
−1) to the

corresponding kernel. In order to compute this product, we introduce the following
novel linearization scheme which allows the products of resolvents to be computed
from the knowledge of the individual resolvents (X − ζ1)

−1 and (X∗ − ζ2)
−1.
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A general beta crossover ensemble

Brian Rider

(joint work with Jose A. Ramı́rez)

The general β soft and hard edge laws are known to be described by the Stochastic
Airy and Bessel Operators. These read:

(1) SAOβ = − d2

dx2
+ x+

2√
β
b
′(x),

and

(2) SBOβ,a = − e
(a+1)x+ 2√

β
b(x) d

dx
e
−ax− 2√

β
b(x) d

dx
.

In both cases x 7→ b(x) is a standard Brownian motion, and both operators act
on R+ with a Dirichlet boundary condition at the origin. See [3] and [4]. These
operator limits were first established via the well known random Jacobi β-Hermite
and β-Laguerre ensembles. Extending the picture to more general log-gases, [2] and
[5] established universality for SAOβ and SBOβ,a when the underlying potential
is a convex polynomial.

Moving away for convex potentials one can find “irregular” behavior. No such
model has been analyzed outside of β = 2. Here we consider a general β version of a
Laguerre type ensemble introduced by Claeys-Kuijlaars which exhibits a crossover
behavior at its lower edge [1]. There they find a limiting correlation kernel built
out of the ψ-functions for Painlevé II, which interpolates between the usual Airy
and Bessel kernels that describe the β = 2 soft and hard edges.

The model can be defined by prescribing a joint density for (λ1, . . . , λn) ∈ Rn
+

proportional to

(3) exp



−βN
4

n
∑

j=1

(λj − 2)2





n
∏

j=1

λ
β
2 (a+1)−1
j

∏

j<k

|λj − λk|β .

Here β > 0, a > −1, and N is defined by the double scaling relation N
n =

1 + sn−2/3. There is again a random Jacobi matrix Tn with (3) as its eigenvalue
density. Importantly though its Gibbsian prescription possesses a non-convex
Hamiltonian. Still, we establish the convergence
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lim
n→∞

n2/3Tn ⇒ τβ,a,s,

to a differential operator that interpolates between SAOβ and SBOβ,a.
To explain, first introduce a version of the “soft-edge” diffusion t 7→ zt = zt;β,s:

with β > 0 and s ∈ R,

(4) dzt =
2√
β
dbt + (s+ t− z2t )dt, z0 = 0,

and killed at the explosion time τ−∞ = inf{t > 0 : zt = −∞}. Note that (4) is the
Riccati transform of SAOβ (with s playing the role of the spectral parameter).
Introduce as well t 7→ z̄t, the process absolutely continuous to zt over all short
fields via,

dP̄

dP

∣

∣

∣

F[0,T ]

= eα
∫

T
0

ztdt1{T<τ−∞}, α = (
β

2
(a+ 1)− 1).

With these ingredients we can state:

Theorem. The “hard-meets-soft-edge” operator has the form

τβ,a,s = − d2

dt2
+ Z2

t − Z ′
t, acting on L2(R+).

Here Zt is characterized to the following extent:

Zt is Markovian, Z0 = 0 and Zt → +∞ a.s. as t→ +∞,(5)

Zt has the same bridge measures as z̄t.

There remains an important uniqueness question - there is no shortage of dif-
fusions with the same bridges as z̄. Certainly any h-transform,

(6) dZt =
2√
β
dbt +

(

s+ t− Z2
t +

4

β

h′(t+ s, Zt)

h(t+ s, Zt)

)

dt,

with h a (non-negative) space-time harmonic function for the z̄ process,

(7) 0 =
∂h

∂t
+

2

β

∂2h

∂z2
+
(

t− z2
) ∂h

∂z
+ αzh,

is a candidate. We claim that the boundary condition “at infinity” in line one of
(5) pins everything down.

Conjecture. The space-time Martin boundary of z̄t has a unique point at infinity,
and Zt is defined by (6) where h = hβ,a is the corresponding solution to (7).

When there is no creation of mass (α = 0) things take a particularly nice form:

Corollary. Granted the conjecture, when α = 0 it holds that hβ(z, t) = Pz,t(τ−∞(z)
= +∞). That is, in this case Zt is simply (4) conditioned never to explode.
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Local law and CLT for linear eigenvalue statistics of free addition of
matrices

Kevin Schnelli

(joint work with Zhigang Bao, László Erdős, Yuanyuan Xu)

Consider the sum of two large Hermitian matrices with a Haar unitary conjugation
bringing them into a general relative position: Let AN and BN be N by N de-
terministic symmetric matrices. Let UN be a unitary random matrix distributed
according to Haar measure on U(N). We are then interested in the random matrix

HN = AN + UNBNU
∗
N .(1)

The matrix HN is the simplest version of a unitary multi-matrix model and is
often referred to as the free sum of AN and BN . If the empirical eigenvalue
distributions of AN and BN are asymptotically, as N tends to infinity, given by
probability measures µα and µβ , then the empirical eigenvalue distribution of HN

is asymptotically given by the free additive convolution of µα and µβ . This result
was first established in a seminal work of Voiculescu [4].

Given this result it is natural to ask for the smallest possible scale so that the
local eigenvalue distribution on that scale converges as N tends to infinity. Put
differently, what is the smallest scale on which the Green function or resolvent
of HN is determined by the free additive convolution and a local law holds.

In the first part of the talk, we reported on joint work with Bao and Erdős [1, 2]
where we established an optimal local law for the Green function in the regular
bulk, the part of the spectrum where the free convolution measure admits a contin-
uous and bounded density. We established the convergence of the Green function
to the Stieltjes transform of the free additive convolution measure down to local
scales just above the typical eigenvalue spacing at a speed order N−1.

In the second part of the talk, we reported on on-going work with Bao and
Xu [3] on fluctuations of the linear eigenvalue statistics for the ensemble (1). We
establish a CLT for the linear eigenvalue statistics on mesoscopic scales within
the regular bulk and show that the limiting variance agrees with the (universal)
variance from the Gaussian unitary ensemble.
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Fluctuations in the Circular Law: Central Limit Theorem for the
Linear Statistics of non-Hermitian Random Matrices

Dominik Schröder

(joint work with Giorgio Cipolloni, László Erdős)

We consider n×n non-Hermitian random matrices X with complex, independent,
identically distributed centred entries, and eigenvalues σ1, . . . , σn, and denote their
linear statistics by Ln(f) :=

∑n
k=1 f(σk). Girko’s circular law [5] states that Ln

converges, in probability, to the uniform distribution on the unit disk, i.e.

Ln(f) →
1

π

∫

D

f(z) d2z, D := {z : |z| < 1}.

Our main result is the following central limit theorem for Ln(f).

Theorem 1. Assume that the entries xab are independent and distributed as
xab

d
= n−1/2χ with Eχ = 0 = Eχ2, E|χ|2 = 1 and fourth cumulant κ4 := E|χ|4−2,

such that high moments of χ exist. Then for test functions f ∈ H2+ǫ(C) the cen-
tred linear statistics converge Ln(f) − ELn(f) ⇒ L(f) to a centred Gaussian
with

E|L(f)|2 =
1

4π
‖∇f‖2L2(D) +

1

2
‖f‖2Ḣ1/2(∂D) + κ4

∣

∣

∣

∣

1

π

∫

D

f(z) d2
z − 1

2π

∫ 2π

0

f(eiθ) dθ

∣

∣

∣

∣

.

Previously the analogue of Theorem 1 was known for analytic test functions [7],
or entry distributions χ which are either Gaussian [8], or at least match the Gauss-
ian up to the first four moments [9]. In particular, the dependence on the fourth
cumulant κ4 escaped all previous works since its coefficient vanishes in the case of
analytic functions.

Our proof relies on Girko’s Hermitisation formula

(1) Ln(f) = − 1

4π

∫

C

∆f(z)

∫ ∞

0

ℑTrGz(iη) dη d2z,

which relates the spectrum of the non-Hermitian matrix X to the resolvent

Gz(iη) := (Hz − iη)−1, Hz :=

(

0 X − z
(X − z)∗ 0

)

of the Hermitian matrix Hz. The regime η ≤ n−1−ǫ in (1) can be controlled
via smoothing estimates [10] which, in high probability, allow to exclude singular
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values |λzi | ≤ n−1−ǫ ofX−z. For the regime η ≥ n−1+ǫ in (1) so called local laws [3,
1] for the resolvent Gz are applicable which provide a deterministic approximation
mz(iη) of the resolvent,

(2)

∣

∣

∣

∣

1

n
Tr
[

Gz(iη)−mz(iη)
]

∣

∣

∣

∣

≤ nǫ

nη
,

that can be obtained by solving the cubic Dyson equation

− 1

mz(iη)
= mz(iη) + iη +

|z|2
mz(iη) + iη

, ℑmz(iη) > 0, η > 0.

The local law (2) allows to explicitly obtain a Wick-type theorem for resolvents.

Proposition 2. Assume that η1, . . . , ηk ≥ n−1+ǫ, and that z1, . . . , zk ∈ C are
such that |zk − zl| ≥ n−δ. Then the resolvents Gz1(iη1), . . . , G

zk(iηk) satisfy

E
∏

i

Tr
[

Gzi(iηi)−EGzi(iηi)
]

≈
∑

P∈Pairings([k])

∏

{i,j}∈P

∏

{i,j}∈P

Vi,j + κ4UiUj

2

for some explicit Vi,j = V (mzi ,mzj ) and Ui = U(mzi).

For the intermediate regime η ∈ [n−1−ǫ, n−1+ǫ] in (1) we establish the following
asymptotic independence of resolvents.

Proposition 3. Assume that η1, . . . , ηk ∈ [n−1−ǫ, n−1+ǫ], and that z1, . . . , zk ∈ C
are such that |zk − zl| ≥ n−δ. Then the resolvents are asymptotically independent,

E

k
∏

i=1

TrGzl(iηl) ≈
k
∏

i=1

ETrGzl(iηl).

The main technical input for both propositions is a local law Gz1Gz2 ≈Mz1,z2

for products of resolvents with mesoscopically separated |z1 − z2| ≥ n−δ. This
local law allows to bound the singular vector overlaps which in turn allows to
show that along the stochastic flow generated by adding a small time-dependent
Gaussian component to the original matrix, the small singular values λz1i , λ

z2
j

become asymptotically independent. This step relies on the analysis of the Dyson
Brownian motion developed in the recent years [2, 4, 6].
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Some applications of the Ky Fan inequality to random
(and almost periodic) operators

Mira Shamis

The talk is based on the recent preprint [4].

In the recent works [2, 3] Hislop and Marx studied the dependence of the inte-
grated density of states of random Schrödinger operators on the distribution of
the potential. The first work, [2], is devoted to the discrete case: H = −∆ + V
acts on ℓ2(Zd) via

(Hψ)(n) =
∑

m is adjacent ton

(ψ(n) − ψ(m)) + V (n)ψ(n),

where {V (n)}n∈Zd are independent identically distributed random variables sam-
pled from a probability distribution µ. Let ρµ be the density of states measure
corresponding to the operatorH . Hislop and Marx showed that if suppµ, supp µ̃ ⊂
[−A,A], then

dKR(ρµ, ρµ̃) ≤ CAdKR(µ, µ̃)
1

1+2d ,

where dKR is the Kantorovich-Rubinstein metric, and CA > 0 is a constant that
depends only on A. In the same setting we prove the following.

Theorem 1. For arbitrary probability measures µ, µ̃

dKR(ρµ, ρµ̃) ≤ dKR(µ, µ̃).

Note that the power 1 as well as the prefactor 1 are optimal in general.

The work [3] is devoted to the continual setting: H = −∆ + V is a random
Schrödinger operator on L2(Rd), where

V (x) =
∑

n∈Zd

vnu(x− n),

where {vn}n∈Zd are independent identically distributed random variables sampled
from a probability distribution µ; u ∈ Cc(R

d) is real-valued continuous compactly
supported function. Let ρµ be the density of states measure corresponding to the
operator H . Hislop and Marx prove the following. Assume that 0 ≤ u(x) ≤ 1, u ∈
Ck

c (R
d) with compact support in a neighborhood of the origin, where the degree

of the regularity k > max
{

d− 2; 4+2d
3

}

depends on the dimension. Assume that
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suppµ, supp µ̃ ⊂ [−A,A]. Then, there exists δ = δ(d) > 0 and M(d) = M ∈ N

such that for any dKR(µ, µ̃) < δ and all f ∈ CM
c (R), supp f ∈ [−r, r], r ≥ 1

∣

∣

∣

∣

∫

fdρµ −
∫

fdρµ̃

∣

∣

∣

∣

≤ Ck,r,MdKR(µ, µ̃)
1

1+d ,

where Ck,r,M > 0 is a constant that depends on k, r, and M .
In this setting we prove the following.

Theorem 2. Suppose that suppµ, supp µ̃ ⊂ R+ and u ≥ 0. If α > d
2 − 1, then

(1)

∣

∣

∣

∣

∫

f

(

1

(1 + E)α

)

(dρµ(E)− dρµ̃(E))

∣

∣

∣

∣

≤ C(d, u, α)dKR(µ, µ̃),

for any 1-Lipschitz function f for which
∫

f
(

1
(1+E)α

)

dρµ(E) converges.

In general, the condition α > d
2 − 1 can not be relaxed.

The proofs of Theorem 1 and Theorem 2 are based on the Ky Fan inequality.

We also present an application of the Ky Fan inequality to quasiperiodic operators,
which is part of an ongoing work in progress, joint with A. Avila, Y. Last, and
Q. Zhou.

Let Hα,θ = −∆+ Vα,θ on ℓ2(Z), where

Vα,θ(n) = φ(2παn+ θ), θ ∈ [0, 2π),

φ : R → R is a Lipschitz function. Denote

‖φ‖Lip = max
|φ(x) − φ(y)|

|x− y| .

Denote by ρα the θ-averaged density of states measure corresponding to Hα,θ.

Theorem 3. For any α, α̃ ∈ R

dKR(ρα, ρα̃) ≤
√

4π‖φ‖Lip|α− α̃|.

For comparison, Avron, van Mouche and Simon [1] showed that

dH(supp ρα, supp ρα̃) ≤ 6
√

‖φ‖Lip|α− α̃| ,
where dH is the Hausdorff metric.
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Annales Henri Poincaré, pp. 1–32, Springer International Publishing (2019)

[4] M. Shamis, On the continuity of the integrated density of states in the disorder, to appear
in International Mathematics Research Notices



Random Matrices 3511

Universality for random band matrices

Tatyana Shcherbina

(joint work with Mariya Shcherbina)

Random band matrices (RBM) are natural intermediate models to study eigen-
value statistics and quantum propagation in disordered systems, since they inter-
polate between mean-field Wigner matrices (Hermitian or real symmetric matrices
with i.i.d. random entries) and random Schrödinger operators, which have only
a random diagonal potential in addition to the deterministic Laplacian on a box
in Zd. RBM can be defined as Hermitian (or real symmetric) N ×N matrices H
whose entries Hij are independent random variables with mean zero such that

(1) E
{

HijHlk

}

= δikδjlJij ,

where Jij is a function which is zero or decrease sufficiently fast for |i− j| ≥W .
The key physical parameter of RBM is the localization length, which describes

the length scale of the eigenvectors. The system is called delocalized if in the bulk
of spectrum the localization length is comparable with the system size, and it is
called localized otherwise.

The questions of the localization length are closely related to the universality
conjecture of the random matrix theory. According to the Wigner – Dyson uni-
versality conjecture, the local behaviour of the eigenvalues does not depend on
the matrix probability law (ensemble) and is determined only by the symmetry
type of matrices. For example, the conjecture states that for Hermitian random
matrices in the bulk of the spectrum
(2)

1

(Nρ(E))k
Rk

(

E +
ξ1

ρ(E)N
, . . . , E +

ξk
ρ(E)N

)

w−→ det
{ sinπ(ξi − ξj)

π(ξi − ξj)

}k

i,j=1
,

as N → ∞, where Rk is a k-point correlation function (k is fixed) and ρ(E) is a
density of states. This means that the limit coincides with that for GUE.

One of the main long standing problem in the field is to prove a fundamental
physical conjecture [4] formulated in late 80th. It states that the eigenvectors of
N ×N RBM are completely delocalized and the local spectral statistics governed
by the Wigner-Dyson statistics (2) for large bandwidth W ≫

√
N , and by Poisson

statistics for a small W ≪
√
N (with exponentially localized eigenvectors).

Despite numerous attempts, so far there were only a few partial results about the
local spectral statistics of RBM on the mathematical level of rigour. Localization
of eigenvectors in the bulk of the spectrum was first shown for W ≪ N1/8 [5].
On the other side, by a development of the classical Erdős-Schlein-Yau approach
to Wigner matrices, there were obtained some results where the weaker form of
delocalization was proved: W ≫ N6/7 [2] ,W ≫ N4/5 [3]. The combination of this
approach with the new ideas based on quantum unique ergodicity were developed
in [1] to obtain bulk universality and delocalization in the range W ≫ N3/4.

A completely different approach to the problem is based on the supersymmetric
(SUSY) techniques. SUSY allows to obtain a representation for the main spectral
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characteristics (such as density of states, correlation functions, etc) as an integrals
containing both complex and Grassmann variables. The rigorous analysis of such
integral representation usually is very complicated, but the specific form of the
covariance J in (1) allows to combine SUSY techniques with a transfer matrix
approach. This allows to prove universality (2) for the second correlation function

of some specific types of Gaussian 1d RBM up to the optimal scale W ≫
√
N ,

which is the main result of the presentation (see [9]).
The supersymmetric transfer matrix formalism in this context was first sug-

gested by Efetov, but its rigorous application to RBM is quite difficult due to the
complicated structure of the corresponding transfer operator. So during the last
years the techniques which led to the main result were developed step by step.
First we applied it in [6] to obtain the precise estimate for the density of state.

Then in [7] to prove the transition around W ∼
√
N on the level of characteristic

polynomials (see also [10]). The next crucial step was done in [8], where we applied
the techniques to the so-called sigma-model approximation, which is often used
by physicists to study complicated statistical mechanics systems. The mechanism
of the crossover for the sigma-model is essentially the same as for the correlation
functions of characteristic polynomials, but the structure of the transfer operator
is much more complicated: it is a 6×6 matrix whose entries are kernels depending
on two unitary 2× 2 and two hyperbolic 2× 2 matrices. In the case of the second
correlation function the size of the transfer operator K becomes 70 × 70, and so
the spectral analysis of K provides serious structural problems. The key idea is to
prove that the main part of K is still 6× 6 matrix kernel appeared in the transfer
operator corresponding to the sigma-model approximation.
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Regularity of non-commutative distributions and random matrices

Roland Speicher

(joint work with Tobias Mai, Sheng Yin)

In free probability theory we like to go to the limit. For n selfadjoint (random)

N × N -matrices X
(N)
1 , . . . , X

(N)
n and n operators X1, . . . , Xn, living in some C∗-

or von Neumann algebra, equipped with a trace τ , we say that (X
(N)
1 , . . . , X

(N)
n )

converges in distribution to (X1, . . . , Xn) if we have the convergence of all moments
(where tr denotes the normalized trace of matrices)

lim
N→∞

tr[X
(N)
i1

· · ·X(N)
ik

] = τ(Xi1 · · ·Xik).

A basic example for this is the convergence in distribution of independent GUE
to free semicircular variables.

The collection {τ(Xi1 · · ·Xik) | k ∈ N, 1 ≤ i1, . . . , ik ≤ n} of all moments con-
stitutes the non-commutative distribution of (X1, . . . , Xn) and we are interested in
getting a better analytic understanding of this (in particular, in regard of regular-
ity questions), for large classes of operators. As there is no direct analytic object
encoding this non-commutative distribution (in particular, the non-commutative
moments cannot be identified with the moments of a probability measure in Rn),
we try to understand the non-commutative distribution of (X1, . . . , Xn) via the
understanding of the ordinary distributions of sufficiently many “test functions”
f(X1, . . . , Xn). This touches of course upon the question: what are functions in
non-commuting variables? At the moment there are three classes of functions of
which one can make sense and where we have some results on the regularity of
their distributions, namely: polynomials, matrices of polynomials, and rational
functions. If such a function f is selfadjoint then we have on the side of matrices

the eigenvalue distribution of f(X
(N)
1 , . . . , X

(N)
n ) and on the side of the limit op-

erators the distribution of f(X1, . . . , Xn) and one expects that the former should
converge to the latter, in the weak topology for probability measures.

In the cases of polynomials and of matrices of polynomials it is quite clear that
the convergence of the non-commutative distribution implies indeed this weak
convergence. This means in particular that results which we derive on the distri-
bution of the limit operators are indeed results about the asymptotic eigenvalue
distribution of the corresponding random matrices.

In the case of rational functions one has to address the problem that our matrices
or operators might not belong to the domain of the considered rational function.
For nice ensembles of random matrices (like independent GUE) one expects that
any rational function of them should almost surely make sense, and on the side
of the limit operators one of our main results is that indeed any rational function
in free semicirculars makes always sense as an unbounded operator. (Actually,
we have this for much larger classes of limit operators.) Whether, for a rational

function r, one also has that the eigenvalue distribution of r(X
(N)
1 , . . . , X

(N)
n )

converges to the distribution of r(X1, . . . , Xn) is an open question.
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Here is our main result on the regularity properties of the limit operators. The
free skew field denotes there the universal field of fractions of the non-commutative
polynomials, which had been extensively developed in the work of Cohn,
see, e.g., [1].

Theorem [4]: Let (M, τ) be a tracial W ∗-probability space (i.e., M is a von
Neumann algebra, and τ a faithful normal trace). Denote by A the ∗-algebra of
unbounded closed and densely defined operators affiliated to M . Consider a tuple
X = (X1, . . . , Xn) ∈Mn of operators in M . Then the following are equivalent.

• The division closure of X1, . . . , Xn in A is the free skew field, i.e.,

C〈x1, . . . , xn〉 → A, xi 7→ Xi, 1 7→ 1,

extends to a an injective homomorphism on the free skew field.
• Matrices over polynomials in X1, . . . , Xn are invertible as matrices in un-
bounded operators if and only if those matrices are invertible over the free
skew field (which is the case if the matrix cannot be decomposed as a
product of strictly rectangular matrices over the polynomials).

• ∆(X1, . . . , Xn) = n; ∆ is here a quantity introduced by Connes and
Shlyakhtenko in [2] and the above requirement on ∆ being maximal means
concretely the following: the only finite rank operators T1, . . . , Tn in
L2(M, τ) which satisfy the commutator relation

∑n
k=1[Tk, Xk] = 0 are

the trivial ones T1 = · · · = Tn = 0.

This yields as a corollary that for operators X1, . . . , Xn with maximal ∆ any
rational function r(X1, . . . , Xn) makes sense as an unbounded operator and, for
r 6= 0, has no zero-divisors; for non-constant and selfadjoint r this means that
r(X1, . . . , Xn) has no atoms in its distribution. Since the maximality of ∆ is
implied by the same kind of maximality for free entropy dimension or by the
existence of dual systems, free probability has a lot of tools to decide on the
maximality of ∆. In particular, our results also include the result of Linnell [3] that
the division algebra of the generators of the free group (i.e., free Haar unitaries)
is the free skew field.
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Local Laws for Sample Covariance Sparse Matrices

Alexander Tikhomirov

(joint work with Friedrich Götze and Dmitry Timushev)

We explain some recent results on local laws for sample covariance sparse ma-
trices. We consider a random m × n matrix X = [Xjkξjk] where Xjk are i.i.d.
random variables with mean zero and unit variance and ξjk are i.i.d. Bernoulli
random variables with Eξjk = pn, 1 ≤ j ≤ m, 1 ≤ k ≤ n. We addition-
ally suppose that E|X11|4+δ =: µ4+δ < ∞ for some δ > 0. Assuming that

npn >> log
2
κ n with κ = δ

2(4+δ) , we show that with high probability the typi-

cal distance between the Stieltjes transform of the empirical spectral distribution
(ESD) of the matrix W = (npn)

−1XX∗ (A∗ denotes the complex conjugate of
matrix A) and Marchenko – Pastur law with parameter y = n/m is of order
((nv)−1 + (npn)

−1) logn, where v denotes the distance to the real line in the
complex plane. We apply this result to the estimation of the rate of the ESD con-
vergence to the Marchenko – Pastur distribution as well as to the rigidity of the
eigenvalues and the eigenvector delocalization. Let s21 ≥ . . . ≥ s2n be eigenvalues
of matrix W. We shall consider the symmetrized empirical spectral distribution
function

Fn(x) =
1

2n

n
∑

j=1

(

I{sj ≤ x}+ I{−sj ≤ x}
)

.

Define as well the symmetrized Marchenko-Pastur distribution Gy with density

gy(x) =
1

πyx

√

[(x2 − a2)(b2 − x2)]+,

where a = 1 − √
y, b = 1 +

√
y and [d]+ = max{d, 0}. The main results are the

following.

Theorem 1. Let EXjk = 0 and E |Xjk|2 = 1. Assume that for any j, k ≥ 1 and
for some δ > 0

E |Xjk|4+δ ≤ C <∞,

and there exists a positive constant B, s.t.

npn ≥ B log
2
κ n,

where κ = δ
2(4+δ) . Then for any z = u + iv and γ > 0 s.t. v ≥ v0 := c log4 n and

min{u− (1 −√
y), 1 +

√
y − u} ≥ γ there exists a constant C depending on c and

γ s.t. with high probability

|mn(z)− Sy(z)| ≤ C logn
( 1

nv
+

1

npn

)

.

Here mn(z) denotes symmetrized Stieltjes transform of ESD of matrix W and
Sy(z) denotes the Stieltjes transform of symmetrized Marchenko-Pastur distribu-
tion with parameter y.
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Theorem 2. Assuming additionally to the condition of Theorem 1 that

|Xjk| ≤ C(npn)
1
2−κ,

we get for z = u+ iv with (1−√
y− v)+ ≤ |u| ≤ 1+

√
y+ v and v ≥ v0 with high

probability

|mn(z)− Sy(z)| ≤ C logn

(

1

nv
+min

{ 1

npn
√
γ + v

,
1√
npn

}

)

,

where γ = min{|1−√
y− |u||, |1+√

y− |u||}. Moreover, for any u0 there exists a
constant C depending on u0 s.t. for z = u+ iv with |u| ≤ u0

|Immn(z)− ImSy(z)| ≤ C logn

(

1

nv
+min

{ 1

npn
√
γ + v

,
1√
npn

}

)

From Theorem 1 it follows that

Corollary 1. Under conditions of Theorem 1 there exists a constant C depending
on δ and µ4+δ such that with high probability

sup
x

|Fn(x) −Gy(x)| ≤ C logn/(npn).

Let γj be the quantile of distribution function Gy(x) of order j/n and let uj =
(uj1, . . . , ujn) be the eigenvector of matrix W.

Corollary 2. Under conditions of Theorem 1 for j ∈ [Cp−1
n logn, n − Cp−1

n ] the
following inequality holds with high probability

|sj − γj | ≤ C logn/(npn).

From Theorem 2 it follows

Corollary 3. Under conditions of Theorem 2 there exists a constant C such that
with high probability

max
1≤j,k≤n

{|ujk|} ≤ C log2 n/
√
n.

The similar and stronger results for Wigner sparse matrices where obtained in
several papers of Erdös, Knowles, Yau and co-authors, see [1], [2].
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Critical Behavior of Non-Intersecting Brownian Motions

Martin Venker

(joint work with Tom Claeys, Thorsten Neuschel)

Non-intersecting Brownian motions (NIBM) constitute one of the most important
dynamical models of random eigenvalues. They may be obtained either by condi-
tioning n independent Brownian motions on no intersection for all times or as pro-
cess (X(t))t≥0, X1(t) ≤ · · · ≤ Xn(t), of eigenvalues of n

−1/2M(t), where (M(t))t≥0

is an n×n Hermitian matrix-valued Brownian motion. We consider special deter-
ministic initial configurations X(0) mimicking a measure whose density vanishes
at an isolated point. More precisely, we assume that µn := n−1

∑n
j=1 δXj(0) con-

verges for n → ∞ weakly to a probability measure µ which admits a continuous
density ψ that vanishes at some point x∗ as ψ(x) ∼ |x − x∗|κ, x → x∗. For a
vanishing order κ larger than 1, this setting naturally leads to the initial points
X(0) being split into two bulks of particles which merge at a certain critical time.
In fact, defining the evolution of the initial critical point x∗ as

x∗(t) := x∗ + t

∫

ψ(s)ds

x∗ − s
,

and denoting by ψt the evolved density (the density of the additive free convolution
of µ with a certain semicircle distribution), we have ψt(x

∗(t)) = 0 for 0 ≤ t ≤ tcr
and ψt(x

∗(t)) > 0 for t > tcr not too large, where the critical time tcr is defined as

tcr :=

(∫

ψ(s)ds

(x∗ − s)2

)−1

with the convention of it being 0 in case of divergence of the integral. Of special
interest are the correlations of particles around the merging point x∗(tcr) at the
critical time. In [4], the case of a weak vanishing 0 ≤ κ < 1 was studied, in which
case the critical time is 0. We found under some rigidity assumptions typical

limiting bulk correlations given by the sine kernel, as long as t ≫ ( (log n)1+ρ

n )
1−κ
1+κ

for some ρ > 0. We also saw in [4] that correlations are trivial for times well before
that threshold. The talk mainly reported about the findings of [5] which studies
the strong vanishing case κ > 1 where the critical time is positive. The behavior of
the evolved density at the critical time and around the critical point, has already
been studied for integers κ ≥ 4 in [3]. There it was proven that if the integral

(1)

∫

ψ(s)ds

(x∗ − s)3

is non-zero, then ψtcr vanishes as a square-root if x∗(tcr) is approached from one
side and has a higher order vanishing from the other side. If the integral (1) is
0, then ψtcr has a cusp singularity at x∗(tcr) with cubic-root vanishing from both
sides.

In [5], we studied the local statistics at criticality. We found that, under appro-
priate rescaling, two different limiting point processes arise at the critical point
and the critical time. If κ > 2 and the integral (1) is non-zero, say positive, then
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the limiting space-time correlations around (x∗(tcr), tcr) are (under a few technical
conditions) given by the Airy line ensemble, provided the KPZ like 1-2-3 rescaling
tcr → tn(τ) := tcr +

τ
n−1/3 , x

∗(tcr) → x∗(tn(τ)) +
u

n−2/3 is performed. To be more
precise, recall that the NIBM form a determinantal ensemble in the sense that its
space-time correlation functions can be written as determinants of a matrix (whose
dimension depends on the dimension of the correlation function) which has entries
given by a kernel Kn,s,t(u, v). Here s, t and u, v are time and space variables,
respectively. Then we show for some explicit constants ǫ, c2 > 0, uniformly for
u, v, τ1, τ2 in compacts

1

c2n2/3
Kn,tn(τ1),tn(τ2)

(

x∗(tn(τ1)) +
u

c2n2/3
, x∗(tn(τ2)) +

v

c2n2/3

)

= K
Ai
τ1,τ2(u, v) +O

(

n−ǫ
)

,

where K
Ai denotes the extended Airy kernel.

If κ > 3 and the integral (1) is zero, then the limiting correlations are given by
the Pearcey process if a rescaling tcr → tn(τ) := tcr+

τ
n−1/2 , x

∗(tcr) → x∗(tn(τ))+
u

n−3/4 is applied. This complements results in [1] and [6, 2] on Pearcey universality.
While the Pearcey process is expected to appear at the merging, the appearance

of the Airy line ensemble is surprising. We explain this occurrence by showing that
in the case of the integral (1) being non-zero, at one side of the evolved critical
point x∗(tcr) and at the critical time, a mesoscopic gap is present that is larger
than the typical edge spacings n−2/3, implying that particles separated by this
gap are effectively uncorrelated and therefore the typical edge limits appear. We
also identified a particle just below or above the gap having limiting space-time
fluctuations given by the Airy2 process.
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Random planar geometry

Balint Virág

Non-critical random versions of Euclidean geometry seem to share many common
properties. A similar metric structure is present in directed last an first passage
percolation in two dimensions. Many growth models and particle systems share
a hidden planar metric structure. I will talk about the recently constructed (in
many cases conjectured) common scaling limit, the directed landscape.

On an almost sure Weyl law for quantized tori

Martin Vogel

The Toeplitz quantization (also known as the Berezin-Toeplitz quantization) of
a complex-valued function on the 2d-dimensional torus T2d = R2d/Z2d maps a
smooth function to an Nd ×Nd matrix

(1) C∞(T2d) ∋ p 7→ pN ∈ L(CNd

,CNd

).

In the case of T2 = S1
x×S1

ξ , the operators pN are also referred to as twisted Toeplitz

matrices [3], and

f = f(x) 7→ fN = diag(f(l/N); l = 0, . . . , N − 1),

g = g(ξ) 7→ gN = F∗
N diag(g(l/N); l = 0, . . . , N − 1)FN ,

where F∗
N = N−1/2(exp(2πikℓ/N))0≤k,ℓ≤N−1 is the discrete Fourier transform.

In [2] Christiansen and Zworski proved that the expected number of eigenvalues
in some compact set Ω ⊂ C with smooth boundary, of small complex Gaussian
random perturbations N−γQN of pN satisfies a Weyl law,

E
(

|Spec(pN +N−γQN ) ∩ Ω|
)

∼ NdvolT2d(p−1(Ω)), γ > d+ 1/2.

provided that there exists a κ ∈]1/2, 1] such that

(2) Vz(t) = Vol{ρ ∈ T
2d; |p(ρ)− z|2 ≤ t} = O(tκ), 0 ≤ t≪ 1,

uniformly for z in a neighbourhood of ∂Ω. In [2] it was conjectured that the em-
pirical measure of eigenvalues µN of such random perturbations converges almost
surely to the push-forward of the measure induced by symplectic volume form
σn/n! on T2d under the symbol p, i.e.

(3) µN = N−d
∑

λ∈Spec(pN+N−γQN )

δλ ⇀ p∗(σ
n/n!), N → ∞,

In this talk we present a recent result [6] showing that for an open relatively
compact simply connected set Ω ⊂ C satisfying (2) for some κ ∈]0, 1], the following
holds : Let Qω be a random Nd×Nd-matrix whose entries are independent copies
of a random variable q with mean 0, variance 1 and bounded fourth moment. Let
δ0 > 0, and let C > 0 be sufficiently large, then for every τ > 0

∣

∣

∣

∣

#(Spec(pN + C−1N−d/2−δ0Qω) ∩ Ω)−Nd

∫

p−1(Ω)

dρ

∣

∣

∣

∣

≤ o(Nd)
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with probability ≥ 1−O(N−(1−τ)δ0). This result can be used in particular to show
the conjectured convergence (3), see [6]. Related results can be found in [1, 4, 5].
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Matrix Poincaré inequalities and concentration

Pierre Youssef

(joint work with R. Aoun, M. Banna)

Matrix concentration inequalities are noncommutative extensions of their scalar
counterpart and have been extensively developed in the last decade. In this direc-
tion, many papers were devoted to extending scalar methods for deriving concen-
tration inequalities in the matrix setting [2]. In this talk, we focus on Poincaré
inequalities and aim to implement a general procedure turning a matrix Poincaré
inequality into a concentration inequality. In the scalar case, such a procedure is
by now standard.

Given a probability measure µ on some polish space Ω and f : Ω → H, the
variance of f is given by

Varµ(f) = Eµ[f
2]− (Eµf)

2.

We will say that µ satisfies a matrix Poincaré inequality with constant α and
matrix Markov generator L if for any f : Ω → H we have

Varµ(f) � αE(f),
where E(f) = −E [fLf ] is the matrix Dirichlet form associated with L and � refers
to the positive semi-definite ordering.

We show that any probability measure satisfying a Matrix Poincaré inequality
with respect to some reversible Markov generator satisfies an exponential matrix
concentration inequality depending on the associated matrix carré du champ op-
erator.

Theorem([1]) Let µ be a probability measure on some polish space Ω. Suppose
that µ satisfies a matrix Poincaré inequality with constant α and matrix Markov
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generator L reversible with respect to µ. Then, for any f : Ω → H and any t ≥ 0,
we have

µ
(

λmax

(

f − Ef
)

≥ t
)

≤ d exp

(

− t2

2
(

2αvf + t
√
αvf

)

)

,

where vf =
∥

∥‖Γ(f)‖
∥

∥

L∞
with Γ being the matrix carré du champ operator associ-

ated with L and ‖ · ‖ the operator norm.

The proof of this theorem hides many challenging obstacles caused by non-
commutativity, and gives rise to new matrix trace inequalities relating the matrix
Dirichlet form and the Laplace transform.

We illustrate the strength of this general machinery on several examples. To
this aim, we derive matrix Poincaré inequalities for the Gaussian measure in Rn,
for general product measures, and for probability measures on {0, 1}n satisfying a
form of weak dependence known as the Stochastic Covering Property, and deduce
corresponding matrix concentration inequalities.
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Small perturbations of Toeplitz matrices: convergence and outliers

Ofer Zeitouni

(joint work with Anirban Basak, Elliot Paquette)

Consider an N × N Toeplitz matrix TN with symbol a(λ) :=
∑d1

ℓ=−d2
aℓλ

ℓ, per-

turbed by an additive noise matrix N−γEN , where the entries of EN are centered
i.i.d. complex random variables of unit variance and γ > 1/2. Several groups
[1, 2, 5, 6, 7] have shown that, under appropriate assumptions, the empirical mea-
sure of eigenvalues of the perturbed matrix converges weakly, as N → ∞, to the
law of a(U), where U is distributed uniformly on S1. The talk reviews this, and
then turns to the study of outliers, i.e. eigenvalues that are at a positive (N -
independent) distance from a(S1). We describe the results of [3], which assume
i.i.d. entries of EN possessing a density in the complex plane. First, we show that
there are no outliers outside specT (a), the spectrum of the limiting Toeplitz op-
erator, with probability approaching one, as N → ∞. (This could also be deduced
from the results of [6].) We then describe the outliers field in different subsets of
specT (a)\a(S1). It turns out that the process of outliers converges to a point pro-
cess described by the zero set of certain random analytic functions. The limiting
random analytic functions can be expressed as linear combinations of the deter-
minants of finite sub-matrices of an infinite dimensional matrix, whose entries are
i.i.d. having the same law as that of EN . The coefficients in the linear combi-
nation depend on the roots of the polynomial Pz,a(λ) := (a(λ) − z)λd2 = 0 and
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semi-standard Young Tableaux with shapes determined by the number of roots of
Pz,a(λ) = 0 that are greater than one in moduli.

While the description of the limiting random analytic function (appearing in
[3]) is complicated (and not universal!), the different regions where transition from
one analytic function to the other occur admit a simple description, as follows. Set
Pz,a(λ) := λd2(a(λ) − z). Writing d := d1 + d2, let {−λℓ(z)}dℓ=1 be the roots of
the equation Pz,a(λ) = 0 arranged in an non-increasing order of their moduli. For
d an integer such that −d2 ≤ d ≤ d1, set

Sd :={z ∈ C \ a(S1) : d0(z) = d1 − d,

where d0(z) such that |λd0(z)(z)| > 1 > |λd0(z)+1(z)|},
where for convenience we set λd+1(z) = 0 and λ0(z) = ∞ for all z ∈ C. The

region S0 coincides with
(

specT (a)
)c
. Each of the other regions carries a limiting

random analytic function whose zeroes describe the limiting field of outliers.
In the special case of the “maximal nilpotent matrix” TN (i, j) = 1j=i+1, we have

that d = 1 and S1 = {z ∈ C : |z| = 1}. In that case, the outlier field in S1 converges
to the zero field of the random analytic function F (z) =

∑∞
k=0 z

kgk
√
k + 1. where

gk are iid variables of the same law as the entries of EN . In the complex Gaussian
case, this is the hyperbolic Gaussian analytic function,and the first intensity of its
zeroes is

ρ1(dz) :=
2

π(1 − |z|2)21{|z|<1}dz.

In this particular case, the intensity (but not the limiting law) was computed
earlier in [8], and also appeared as limit of an outlier field in a different context
[4].
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Université Paris-Dauphine
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École Normale Supérieure de Lyon
46, allée d’Italie
69364 Lyon Cedex 07
FRANCE



Random Matrices 3525

Dr. Yukun He

Institut für Mathematik
Universität Zürich
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