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Abstract. High-dimensional systems are frequent in mathematics and ap-
plied sciences, and the understanding of high-dimensional phenomena has be-
come increasingly important. The mathematical subdisciplines most strongly
related to such phenomena are functional analysis, convex geometry, and
probability theory. In fact, a new area emerged, called asymptotic geometric
analysis, which is at the very core of these disciplines and bears a number of
deep connections to mathematical physics, numerical analysis, and theoreti-
cal computer science. The last two decades have seen a tremendous growth in
this area. Far reaching results were obtained and various powerful techniques
have been developed, which rather often have a probabilistic flavor. The pur-
pose of this workshop was to explored these new perspectives, to reach out to
other areas concerned with high-dimensional problems, and to bring together

researchers having different angles on high-dimensional phenomena.
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Introduction by the Organizers

This workshop was organised by Aicke Hinrichs (Linz), Joscha Prochno (Graz),
Christoph Thäle (Bochum) and Elisabeth Werner (Cleveland), and was a continu-
ation and expansion of the highly successful mini-workshop 1706c which was held
at Oberwolfach in February 2017.
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The special focus of the New Perspectives and Computational Challenges in High
Dimensions workshop was to establish connections between asymptotic geomet-
ric analysis and information-based complexity (IBC), two young and until now
essentially independent areas dealing with high-dimensional problems. Particular
areas where these sub-fields are synthesised include high-dimensional numerical
integration, discrepancy theory and dispersion of point sets in high-dimensions.
IBC deals with the computational complexity of continuous problems for which
available information is partial or corrupted. Questions of this form are of vital
importance and in the focus of latest research as they naturally arise in physics,
economics, mathematical finance, engineering, medical imaging, and weather and
climate prediction. The problems and questions in these disciplines usually suf-
fer from what is known as the curse of dimensionality and tractability of such
problems lies at the heart of the theory. Very recent results reveal the impact of
methods from asymptotic geometric analysis that is promising, exciting and were
further pursued during this workshop.

The prior mini-workshop of 2017 stimulated a large number of new and fruitful
collaborations leading to a considerable number of results in the interim period,
and brought together two different groups of researchers that have different out-
looks on high-dimensional phenomena, thus creating the opportunity for cross-
fertilization and research synergies. In keeping with the philosophy of its prede-
cessor workshop, and in order to take full advantage of the diversity of the group
as well as of the resources of the research institute at Oberwolfach, in the sched-
uling of the New Perspectives workshop we placed a large amount of emphasis on
interactive work and group discussion. The workshop kicked off on the Monday
with a series of informal survey talks which introduced and explained core ideas to
the non-experts in the respective fields and served as preparation for the research
activities during the week. These talks were distributed across four sub-fields:

• Tractability of high-dimensional problems
• Asymptotic theory of convex bodies
• Discrepancy and dispersion of point sets in high dimensions
• Modern approximation algorithms for multivariate numerical problems

After dinner on the Monday we had an open-problem session, where each par-
ticipant and survey-lecturer was invited to suggest problems for the week. The
following day, the participants of the workshop congregated into three distinct di-
rections of research: focussing in large deviations, information based complexity,
and random polytopes. On the Tuesday, Wednesday and Thursday of the week
we had ‘special focus’ talks that went deeper into particular aspects of the topics
mentioned above and address potential needs and issues of the smaller working
groups.

In the middle of the workshop as well as at its end, that is, on Wednesday and
on Friday, the different groups were asked to present the progress they made, and
to discuss potential outcomes and the (technical) problems they ran into. The
second of these presentations formed the closure of the workshop, though many of
the researchers who attended the workshop have continued to stay in contact and
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to work on the focus problems, and we expect these collaborations should produce
research papers of the first quality in the near future.

Acknowledgement: The workshop organizers would like to thank the team of the
MFO for providing a highly stimulating working atmosphere. The MFO and
the workshop organizers would like to thank the National Science Foundation for
supporting the participation of junior researchers in the workshop by the grant
DMS-1641185, “US Junior Oberwolfach Fellows”.
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Abstracts

Large deviations and high-dimensional geometry

Kavita Ramanan

(joint work with Nina Gantert, Steven Kim, Yin-Ting Liao)

The study of high-dimensional geometric structures and measures are central
themes in geometric functional analysis and asymptotic geometric analysis, and
several results in these fields have shown that the presence of high dimensions often
imposes a certain regularity that has a probabilistic flavor. One prominent theme
is the study of high-dimensional objects by looking at their lower-dimensional pro-
jections. The study of this is often facilitated by an asymptotic analysis, as the
dimension n goes to infinity. Laws of large numbers, central limit theorems and
concentration results for projections of random vectors have now become a part
of the classical canon, with early work by Diaconis, Freedman, Schechtman and
Schmuckenschläger [2, 12, 13] supplemented by more recent results such as [10, 6].
Indeed, informally speaking, the celebrated central limit theorem for convex sets
[10], says that fluctuations of the projections of (the normalized volume measure)
of any isotropic convex body is approximately Gaussian. These results are univer-
sal in the sense that the asymptotic limit is typically insensitive to details of the
distribution of the high-dimensional measures beyond first and second-order mo-
ments. While these universality results are elegant, they have the downside that
they imply that fluctuations of lower-dimensional projections typically cannot be
used to distinguish between different high-dimensional objects.

However, more recent developments have shown that large deviations anal-
ysis of random projections provides a way to capture non-universal features of
high-dimensional structures, which could allow one to distinguish between high-
dimensional measures. Specifically, given an n-dimensional random vector X(n)

with distribution µn, a random direction Θ(n) taking values Sn−1, the unit (n−1)-
dimensional sphere in Rn, and a suitable scaling constant κn > 0, consider the
suitably normalized scalar projection of X(n) onto Θ(n):

W
(n)
Θ := κn〈X(n), θ(n)〉, n ∈ N.

Classical results in probability consider the case when each µn is a product measure
of the form ⊗nµ for some fixed probability measure µ on R, and Θ(n) is concen-

trated on the vector ι(n) := (1, . . . , 1)/
√
n and κn =

√
n
−1

, the classical result of

Cramér from 1938 shows that the corresponding sequence {W (n)
ι }n∈N satisfies a

large deviation principle with rate function Λ∗, where Λ∗ is the Legendre trans-
form of the logarithmic moment generating function of µ. Roughy speaking, this
means that

1

n
logP(W (n)

ι > a) → Λ∗(a), a ∈ R.

From this perspective, it is natural to ask if there is an extension of this classical
result to more general random directions Θ(n) and (possibly non-product) random
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vectors X(n), for example, those uniformly distributed on a convex body. Here,
one can study both quenched large deviations (conditioned on a given sequence of
directions, Θ(n) = θ(n), n ∈ N) and annealed large deviations, which also averages
over the randomness in the direction sequence.

In these lectures, we will provide a brief introduction to large deviation theory,
summarize recent results on large deviations principles and sharp large deviation
estimates for both one-dimensional and multi-dimensional random projections of
high-dimensional measures obtained, for example, in [1, 3, 4, 7, 8, 5], and describe
several potential directions of further inquiry.
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The convex hull of random points on the boundary
of a simple polytope

Carsten Schütt

(joint work with Matthias Reitzner, Elisabeth Werner)

Let P be a polytope in Rn. Choose N random points X1, . . . , XN on the boundary
∂P of P , and denote by PN = [X1, . . . , XN ] the convex hull of these points. We
are interested in the expected number of vertices Ef0(PN ), the expected number of
facets Efn−1(PN ), and the expectation of the volume difference Vn(P )−EVn(PN )
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of P and PN . Since explicit results for fixed N cannot be expected we investigate
the asymptotics as N → ∞.
There is a vast amount of literature on random polytopes with vertices chosen
from the interior of a convex set. Investigations started with two famous articles
by Rényi and Sulanke who obtained in the planar case the asymptotic behaviour of
the expected area EV2(PN ) for a polygon P . In a long and intricate proof Bárány
and Buchta settled the case of polytopes P ⊂ Rn,

Vn(P )− EVn(PN ) =
flag(P )

(n+ 1)n−1(n− 1)!
N−1(lnN)n−1(1 + o(1)),

where flag(P ) is the number of flags of the polytope P . A flag is a sequence of i-
dimensional faces Fi of P , i = 0. . . . , n− 1, such that Fi ⊂ Fi+1. The phenomenon
that the expression should only depend on this combinatorial structure of the
polytope had been discovered in connection with floating bodies by Schütt.
Due to Efron’s identity the results on EVn(PN ) can be used to determine the
expected number of vertices of PN . The general results for the number of ℓ-
dimensional faces fℓ(PN ) for a polytope P is

Efℓ(PN ) = c(n, ℓ) flag(P ) (lnN)n−1(1 + o(1)).

Choosing random points from the interior of a convex body always produces a
simplicial polytope with probability one. Yet often applications of the above men-
tioned results in computational geometry, the analysis of the average complexity
of algorithms and optimization necessarily deal with non simplicial polytopes and
it became crucial to have analogous results for random polytopes without this very
specific combinatorial structure.
In this paper we are discussing the case that the points are chosen from the bound-
ary of a polytope P . This produces random polytopes which are neither simple
nor simplicial and thus our results are a huge step in taking into account the first
point mentioned above. The applications in computational geometry, the analysis
of the average complexity of algorithms and optimization need formulae for the
combinatorial structure of the involved random polytopes and thus the question
on the number of facets and vertices are of interest.
It follows immediately that for random polytopes whose points are chosen from
the boundary of a polytope the expected number of vertices is

Ef0(PN ) = cn,0 flag(P ) (lnN)n−2(1 + o(1)).

Indeed, a chosen point is a vertex of a random polytope if and only if it is a vertex
of the convex hull of all the points chosen in that facet. We get that the number
of vertices equals

cn,0
∑

F

flag(F )(lnN)n−2(1 + o(1)),

where we sum over all facets. It is left to observe that flag(P ) =
∑

F flag(F ).
For our main results we have to restrict our investigations to simple polytopes.
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Theorem 1. Choose N uniform random points on the boundary of a simple poly-
tope P . For the expected number of facets of the random polytope PN , we have

Efn−1(PN ) = cn,n−1f0(P )(lnN)n−2(1 +O((lnN)−1)),

with some cn,n−1 > 0.

Theorem 2. For the expected volume difference between a simple polytope P ⊂ Rn

and the random polytope PN with vertices chosen from the boundary of P , we have

E(Vn(P )− Vn(PN )) = cn,PN
− n

n−1 (1 +O(N− 1
(n−1)(n−2) ))

with some cn,P > 0.

Optimal algorithms for some high dimensional problems

Erich Novak

(joint work with Aicke Hinrichs, David Krieg, Joscha Prochno, Mario Ullrich and
Henryk Woźniakowski)

We consider functions f : Dd → R, where Dd ⊂ Rd, that are unknown to us, it is
assumed that we can compute function values

f(x1), f(x2), . . . , f(xn).

We want to compute something, here we consider

S(f) = INT(f) =

∫

Dd

f(x) dx or S(f) = APP(f) = f.

Algorithms An use n function values of f and Dd is a bounded Lipschitz domain
with volume 1.

Howmany values f(xi) do we need to compute S(f) up to an error ε > 0? Makes
only sense if we know that f ∈ F for a given class F of “possible” functions; the
class F is the input class or problem class for algorithms. Information complexity

n(ε, S, F )

is the smallest n needed to solve the problem up to an error ε. Sometimes more
convenient is the nth minimal error

en(F, S) = inf
An

sup
f∈F

‖S(f)−An(f)‖.

For APP we take (mainly) the L∞-norm.

Known fact: Assume that F = F (Dd) is a unit ball for a norm. Then

en(F (Dd),APP) = inf
x1,...,xn∈Dd

sup
f∈F (Dd), f(xi)=0

‖f‖∞,

and

en(F (Dd), INT) = inf
x1,...,xn∈Dd

sup
f∈F (Dd), f(xi)=0

∫

Dd

f(x) dx.
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Consider a unit ball F in Ck([0, 1]d) or Ck(Dd). Well known, for fixed k and d,

en(F,APP) ≍ en(F, INT) ≍ n−k/d.

Questions:

• How does the complexity n depend on d if we fix ε?
• What about k = ∞? Is the problem easy for large d?
• How do the results depend on Dd?

We present results and open problems (OPs) for the following classes of func-
tions:
Ck(Dd): all partial derivatives, up to order k, are bounded by 1.
C∞(Dd): all partial derivatives are bounded by 1.

C̃k(Dd): all derivatives, up to order k, are bounded by 1.

C̃∞(Dd): all derivatives are bounded by 1.

Example: f : [0, 1]d → R, given by f(x) = x1x2x3 . . . xd. Then all partial deriva-
tives are bounded by 1 but f(x, x, . . . , x) = xd and hence some directional deriva-
tives are huge. Hence the classes with tilde are much smaller.

Theorem: For all k there exist ck and c̃k such that for all n, d ∈ N we have

min(1/2, ckdn
−k/d) ≤ en(C

k([0, 1]d), INT) ≤ min(1, c̃kdn
−k/d).

Hence the complexity is roughly (d/ε)d/k, super-exponential in d.

(1) The lower bound holds for all n and Dd with the same ck.
(2) OP: For which Dd does the upper bound hold?
(3) OP: Does the asymptotic constant lim supn→∞ en(C

k(Dd), INT) ·nk/d de-
pend on Dd? Is it always a lim? For k = 1: limn en(C

1(Dd), INT) ·n1/d =

ζd λ
d(Dd) ·

[
d!λd(Dd)

2d

]1/d
, where ζd → 1.

Theorem: For all k there exist ck and c̃k such that for all n, d ∈ N we have

min(1/2, ckd
1/2n−k/d) ≤ en(C̃

k([0, 1]d), INT) ≤ min(1, c̃kdn
−k/d).

OP: Close the gap. (For k = 1 the lower bound is sharp and it seems that for
k = 2 the upper bound is sharp.)

Consider the integration problem for the class

C̄2(Dd) = {f ∈ C2(Dd) | ‖f‖∞ ≤ 1, Lip(f) ≤ d−1/2, Lip(DΘf) ≤ d−1},
as in several recent papers. We conjecture that there exists a constant C > 0
(independent on d and Dd) such that

en(C̄
2(Dd), INT) ≥ C · n−2/d.

OP: Prove/disprove this. The lower bound is true (and sharp) for Dd = [0, 1]d if
we take a grid.

For C∞([0, 1]d) = {f : [0, 1]d → R | ‖Dαf‖∞ ≤ 1 for all α ∈ Nd
0 } we do not

know much about the complexity. The best lower bound (unpublished) is linear,
i.e., n(ε, d) ≥ c · d for small ε while all known upper bounds are exponential in d.
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For the class C̃∞([0, 1]d) we know that the problem is weakly tractable, where: A
problem is weakly tractable iff

lim
ε−1+d→∞

ln n(ε, d)

ε−1 + d
= 0 .

OP: Improve these bounds.
Now we consider the approximation problem and, in particular, the question:

When is it more difficult than integration?
For C∞([0, 1]d) = {f : [0, 1]d → R | ‖Dαf‖∞ ≤ 1 for all α ∈ Nd

0 } and L∞-
approximation, the order of convergence is excellent. Nevertheless:

Theorem: For L∞-approximation we have

en(C
∞([0, 1]d),APP) = 1 for all n < 2⌊d/2⌋

or

n(ε, d) ≥ 2⌊d/2⌋ for all ε < 1.

OP: It is not known whether the curse holds for L∞-approximation and the smaller

class C̃∞([0, 1]d). Guiqiao Xu (2015) proved that for Lq-approximation and q <∞
the problem is weakly tractable for this class. For the proof he used the Smolyak
algorithm of Barthelmann, N. and Ritter (2000).

Theorem: [Krieg 2019] For all k there exist ck and c̃k and εk such that for all
n, d ∈ N we have

min(εk, ckd
k/2n−k/d) ≤ en(C

k([0, 1]d),APP) ≤ min(1, c̃kd
k/2n−k/d)

if k is even and

min(εk, ckd
k/2n−k/d) ≤ en(C

k([0, 1]d),APP) ≤ min(1, c̃kd
(k+1)/2n−k/d)

if k ≥ 3 is odd.

OP: Close the gap for odd k ≥ 3.
OP: Close the gap for “large” errors or “small” n.

It follows that approximation is essentially harder than integration iff k ≥ 3.

The lower bounds hold for general domains, the upper bounds use the geometry
of the cube.

Theorem: [Krieg 2019] For all k there exist ck and c̃k and εk such that for all
n, d ∈ N we have

min(εk, ckd
k/2n−k/d) ≤ en(C̃

k([0, 1]d),APP) ≤ min(1, c̃kd
k/2n−k/d).

OP: Close the gap for “small” n or “large” errors.

Approximation is essentially harder than integration if k ≥ 3; the case k = 2 is
still open.

The last result, where we consider APP for the classes C̃k([0, 1]d), can be gen-
eralized (the lower and the upper bound) to rather general domains. What we
need for the upper bounds is that Dd is “locally star-shaped” (unpublished).
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Random information and high dimensional geometry

David Krieg

(joint work with Aicke Hinrichs, Erich Novak, Joscha Prochno, Mario Ullrich)

We consider problems that are given by a solution operator S : F → G between
normed spaces F and G. We want to compute S(f) for some f ∈ F , but we only
have incomplete information about f . The information is given by nmeasurements
L1, . . . , Ln : F → R. The radius of information

e(L1, . . . , Ln) = inf
Φ: Rn→G

sup
‖f‖F≤1

∥∥S(f)− Φ(L1(f), . . . , Ln(f))
∥∥
G

is the minimal worst case error that can be achieved with these measurements.
It measures the quality of the given information. In particular, the nth minimal
worst case error

e(n) = inf
L1,...,Ln∈Λ

e(L1, . . . , Ln)

describes the quality of optimal information within a class Λ of allowed mea-
surements. We consider approximation and integration problems where either
S(f) = f or S(f) is the integral of a function f . Our information is given by
function values or other linear measurements. We ask the following questions:

• How good is optimal information? What is the rate of convergence of the
nth minimal error e(n) as n tends to infinity?

• What does optimal information look like?

• How good is random information? How much worse are random measure-
ments in comparison to optimal measurements?

We start with the problem of Lq-Approximation of functions from the Sobolev
space W k

p ([0, 1]
d) with smoothness k > d/2 and integrability p ∈ [1,∞], i.e.,

S :W k
p ([0, 1]

d) → Lq([0, 1]
d), S(f) = f.

The information is given by function values, that is, Li(f) = f(xi) for some
xi ∈ [0, 1]d. It is well known that optimal information satisfies

e(n) ≍ n−k/d+(1/p−1/q)+ .

The information is optimal under the condition that the volume of the largest
empty ball amidst the point set {x1, . . . , xn} is of order n−1. This leads to the
observation that n logn random points (taken independently and uniformly dis-
tributed on the domain) are at least as good as n optimal points, i.e.,

E e(L1, . . . , Ln log n) � e(n).

We refer to [2]. In general, the upper bound cannot be improved. However, we
are optimistic that the logarithmic oversampling is not necessary for integration
and approximation in the case that q < p, i.e.,

E e(L1, . . . , Ln) ≍ e(n).
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This would mean that random information is optimal. Moreover, we believe that
analogous results can be shown for much more general domains than the cube.

For Lq-approximation of functions from Sobolev spaces W k,mix
p ([0, 1]d) with

mixed smoothness k > 1/2 the situation seems to be more difficult. The rate
of convergence of the minimal error e(n) is not known, even for p = q = 2. It
was believed by many that Smolyak’s algorithm is optimal. This algorithm uses
function values on a sparse grid. In [3], we disprove this conjecture and show that
i.i.d. random points are better if the dimension d is larger than 2k + 1.

We also consider the problem of recovering vectors in a convex and symmetric
body F0 ⊂ Rm from n ≪ m coordinates, where the coordinates are computed in
the directions of y1, . . . , yn ∈ Sm−1 and the approximation error is measured in the
Euclidean norm. Note that F0 is the unit ball of a norm in Rm, i.e., we consider
the solution operator

S : Rm → R
m, S(x) = x,

where the input space is equipped with the F0-norm and the target space is
equipped with the Euclidean norm. We compare optimal directions with i.i.d.
random directions that are uniformly distributed on the sphere. In the case of
random directions, the radius of information equals the radius of the intersection
of F0 with a random subspace of codimension n. By famous results of Kashin,
Garnaev and Gluskin from 1977 and 1984, random directions are optimal if F0

is a cross-polytope. In [1] we consider the case that F0 is an ellipsoid. Roughly
speaking, it turns out that random directions are optimal if and only if the lengths
of the semi-axes decay fast enough. If the ellipsoid is too thick, random informa-
tion is almost useless. For other (weighted) ℓp-balls and other error norms, the
question for the quality of random information is an open problem.
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Singularity of sparse Bernoulli matrices

Alexander Litvak

(joint work with Konstantin Tikhomirov)

Invertibility of discrete random matrices attracts considerable attention in the lit-
erature. The problem of estimating the singularity probability of a square random
matrix Bn with i.i.d. ±1 entries was first addressed by Komlós in the 1960-es. An
old folklore conjecture states that

(1) P{Bn is singular} = (1/2 + on(1))
n
= (1/2)

(1+on(1))n ,
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which roughly says that the main reason for singularity is that two rows or columns
are the same (up to a sign). Komlós showed that P{Bn is singular} decays to
zero as the dimension grows to infinity. Then Kahn–Komlós–Szemerédi confirmed
that the singularity probability of Bn is exponentially small in dimension, namely
0.999n. Further improvements on the singularity probability were obtained by
Tao and Vu to (3/4)n and by Bourgain, Vu, and P.M. Wood to 2−n/2. A recent
breakthrough result of K. Tikhomirov [9] provides the affirmative answer to this
conjecture (due to the length constraints we provide references only to recent
papers, for the more detailed history and all other related references see [2, 8, 9]).

A more precise calculation of the probability that two rows or two columns of
the matrix Bn are equal up to a sign leads to a slightly stronger conjecture that

P{Bn is singular} = 2(1 + on(1))n
2 2−n.

This conjecture can be naturally extended to the model with 0/1 Bernoulli ma-
trices. Given n ≥ 1 and p = pn ∈ (0, 1), we say that an n × n matrix Mn is a
p-Bernoulli matrix, if its entries are i.i.d. 0/1 Bernoulli r.v. taking value 1 with
probability pn. A quantity which goes to 0 as n grows is denoted by on(1).

Conjecture. For each n ≥ 1, let pn ∈ (0, 1/2] and Mn be a pn-Bernoulli matrix.
Let Ezero be the event that a row or a column of Mn equals zero and Eequal be the
event that two rows or two columns are equal to each other (up to a sign). Then

P{Mn is singular} = (1 + on(1))P (Ezero ∪ Eequal) .
In particular, if lim supn→∞ pn < 1/2 then

P{Mn is singular} = (1 + on(1))P (Ezero) = 2n(1 + on(1))(1− p)n.

The case of p independent of n was addressed in [9] as well. For p = 1/2,
K. Tikhomirov proved the same bound as in (1), while for every fixed p ∈ (0, 1/2)
(independent of n) and for large enough n (that is, n ≥ Cp, where Cp is a constant
depending only on p), he proved that

P{Mn is singular} ≤ (1− p+ on(1))
n.

This almost solves the Conjecture in the case of constant p. Such a case we call by
the dense regime of sparse matrices. Moreover, K. Tikhomirov obtained a sharp
bound on the smallest singular value sn of Mn, showing that for every ε > 0 and
every large enough n (that is, n ≥ Cp,ε),

P

{
sn(Mn) ≤ t

√
p/n

}
≤ C(p, ε)t+ (1 − p+ ε)n.

In the sparse regime, that is, when p = pn → 0 as n → ∞, the best known
bounds were obtained by Basak and Rudelson who first proved [1] that

P{Mn is singular} ≤ exp(−cnp) for p = p(n) ≥ (C lnn)/n,

which gives the exponential decay in pn as we want, but the constant c > 0 in
the exponent is much less than 1 suggested by the Conjecture. They also proved
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almost sharp bound on the smallest singular value, namely

P

{
sn(Bp) ≤ c t Cp,n

√
p/n

}
≤ t+ exp(−cnp),

where Cp,n = exp(−C ln(1/p)/ ln(np)).We expect that the right bound for sn(Mn)

is c
√
p/n, that is, Cp,n in the above formula is a constant (note that this holds

if p is at least polynomial in n). We would also like to note that the restriction
p = pn ≥ (C lnn)/n is natural, as in the case p ≤ (lnn)/n the matrix Mn has a
zero row with probability at least half.

In the subsequent work [2], Basak and Rudelson solved the Conjecture when
p = pn is around the threshold value (lnn)/n. More precisely, they proved that
the Conjecture holds whenever npn ≤ lnn+ on(ln lnn).

The purpose of this talk is to present the solution for C(lnn)/n ≤ pn ≤ 1/C.

Theorem 1 (Litvak, K. Tikhomirov, [8]). There is an absolute constant C > 1
with the following property. Let n ≥ 1 and C(lnn)/n ≤ p = pn ≤ 1/C. Let Mn be
a p-Bernoulli matrix. Then

P{Mn is singular} = (1 + on(1))P (Ezero) = 2n(1 + on(1))(1− p)n.

Moreover, for every t > 0,

P
{
sn(Mn) ≤ t exp(−2 ln2(2n))

}
≤ t+ 2(1 + on(1))n (1− p)n.

In the case of constant p (independent of n) we have a better estimate.

Theorem 2. There exists an absolute constant c > 0 with the following property.
Let q ∈ (0, c) be a parameter (independent of n). Then there exists Cq and nq ≥ 1
(both depend only on q), such that for every n ≥ nq and every p ∈ (q, c1) a
p-Bernoulli random matrix Mn satisfies for every t > 0,

P
{
sn(Mn) ≤ Cq

√
p n−2.5 t

}
≤ t+ 2(1 + on(1))n (1 − p)n.

We would like to mention that it is natural to compare the model of Bernoulli
0/1 matrices with so-called d-regular matrices. Let 1 ≤ d ≤ n. We say that an n×n
matrix Rn is d-regular if in every row and in every column it has exactly d ones
and n− d zeros. We endow the set of such matrices with the uniform probability.
Note that a p-Bernoulli random matrix is the adjacency matrix of Erdős–Rényi
directed graph, while Rn is the adjacency matrix of a random d-regular directed
graph. Clearly, a p-Bernoulli random matrix Mn has in average pn ones in every
row and every column, therefore, intuitively, one expects that two models behave
similarly when d = pn ≥ C(lnn)/n. The restriction on the lower bound on d = pn
comes from the fact that Mn has a zero row with probability at least half when
pn ≤ lnn, while Rn has no zero rows. A conjecture of Van Vu (repeated in a
paper by Costello–Vu and in ICM talks by Vu and by Frieze), originally stated
for undirected graphs, claims that P{Rn is singular} → 0 as n → ∞ for every

3 ≤ d = dn ≤ n− 3. Vu’s conjecture was confirmed by N.A. Cook [3] for d ≥ ln2 n
and by Litvak, Lytova, Tikhomirov, Tomczak-Jaegermann, and Youssef in [5, 6]
for any d = dn → ∞ as n → ∞. Moreover, in subsequent works the following
bounds on the smallest singular number were obtained.
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Theorem 3 (N.A. Cook, [4]). There is an absolute constant C > 0 such that for
C ln11 n ≤ d ≤ n/2 one has

P
{
sn(Rn) ≤ exp(−C(lnn)2/ ln d)

}
≤ C(lnn)5.5/

√
d.

Theorem 4 (Litvak, Lytova, K. Tikhomirov, Tomczak-Jaegermann, Youssef, [7]).

There is an absolute constant C > 0 such that for C ≤ d ≤ n/ ln2 n one has

P
{
sn(Rn) ≤ n−6

}
≤ C(lnn)2/

√
d.

Recently Vu’s conjecture (in both, directed and undirected cases) was confirmed
in works by J. Huang, by A. Mészaros, and by H.H. Nguyen and M.M.Wood
(however without bounds on the smallest singular number).
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A central limit theorem and large deviation principles for ℓ
n

p
- balls

David Alonso-Gutiérrez

The classical central limit theorem states that given a sequence (Xn)
∞
n=1 of in-

dependent copies of a centered random variables X with EX2 = σ2, and denot-

ing by Sn :=

n∑

i=1

Xi, one has that the sequence of random variables
(
Sn

σ
√
n

)∞
n=1

converges in distribution to a standard Gaussian random variable. Therefore,
P{Sn > tσ

√
n}, for some t ∈ R, shows a universal behavior, which does not

depend on the distribution of the random variables X .
On a different scale, Cramér’s theorem state that if 0 is in the interior of the
effective domain of the cumulant generating function

Λ(u) := logEeuX ,
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then the sequence
(
Sn

n

)∞
n=1

satisfies a large deviation principle with speed n and
rate function Λ∗, providing some information about P{Sn > tσn}, for some t ∈ R,
which depends on the distribution of X .
In the context of convex geometry, the central limit theorem shows that when
Xn is a random vector uniformly distributed on the n-dimensional cube Kn =

[−
√
3,
√
3]n, then the one dimensional marginal 〈X,θ〉, with θ =

(
1√
n
, . . . , 1√

n

)
is

almost Gaussian when the dimension n is large.
The question of whether the same is true when considering a different sequence of
n-dimensional convex bodies Kn and different directions has been widely studied
and Klartag proved that, whenever Kn is a centered convex body such that a
random vector uniformly distributed on Kn has covariance matrix In (i.e., Xn

is isotropic), and 1 ≤ k ≤ nκ for some absolute constant κ, then the subset of
k-dimensional subspaces E ∈ Gn,k for which

dTV (PE(Xn), GE) ≤
1

nκ

has measure greater than 1− e−c
√
n, where c is an absolute constant.

However, the theory of large deviation principles (LDP) had left no traces in the
context of convex geometry until the work of Gantert, Kim, and Ramanan, who

proved LDP’s for the sequence of random variables
(
n

1
p
− 1

2 〈Xn, θn〉
)∞
n=1

, whereXn

is a random vector uniformly distributed on Bnp , the unit ball of ℓ
n
p , and (θn)

∞
n=1 is

a sequence of vectors in Sn−1 which can be fixed (quenched) or random (annealed).
In this talk we will extend the annealed case to higher-dimensional projections.
More precisely, we take Xn, random vectors uniformly distributed on Bnp , En a

random kn-dimensional subspace, with kn
n → λ ∈ [0, 1] and we will study the

behavior of the Euclidean norm of PEn
Xn, showing that

Xn,p := n1/p

√√√√ Γ
(
1
p

)

p2/pΓ
(
3
p

) ‖PEn
Xn‖2 −

√
kn

converges in distribution to a centered Gaussian random variable with variance

σ2 =
λ

4

Γ( 1p )Γ(
5
p )

Γ( 3p )
2

− λ
(3
4
+

1

p

)
+

1

2
,

and that

Yn := n
1
p
− 1

2 ‖PEn
Xn‖2

satisfies an LDP with speed n if p ≥ 2 and with speed n
p
2 if 1 ≤ p < 2 and λ > 0.
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Polytopal approximation in non-Euclidean geometries

Florian Besau

1. Random Polytope Models

The classical random polytope model can be described as follows: Let K ⊂ Rd,
d ≥ 2, be a compact convex subset with non-empty interior. Choose n ∈ N,
n ≥ d+1, random points X1, . . . , Xn from K uniformly and independently. Then
the random polytope Kn is defined as the convex hull of X1, . . . , Xn, i.e.,

Kn := [X1, . . . , Xn].

Here we will focus on the volume of Kn as n→ ∞ and refer to the surveys [1, 15]
for a wider context.

From an even more general point of view, we may consider a Borel probability
measure µ on Rd with convex support and let X1, . . . , Xn be independent random
points distributed on Rd with respect to µ. Then, the random polytope [µ]n is
defined by

[µ]n := [X1, . . . , Xn].

We will further assume that µ is absolutely continuous with respect to the Lebesgue
measure on Rd (full dimensional measures) and such that that the density function
ϕ : suppµ → [0,+∞) is continuous. Following the ideas of C. Borell [14] (see
also [12]), for κ ∈ [−∞,∞] we call such a measure µ κ-concave, if for all Borel
A,B ⊂ Rd and t ∈ (0, 1) we have that

µ(tA+ (1− t)B) ≥ (tµ(A)κ + (1− t)µ(B)κ)
1/κ

.

In the following we briefly attempt to classify the different random polytope models
that can be found in the literature by κ-concavity:

a) Random polytopes inside a convex body (κ = 1/d): In this case
K = suppµ is a convex body. In particular, if ϕ is constant on K, then we
are in the classical model of A. Rényi & R. Sulanke, see e.g. the survey of
Bárány [1]. If ϕ is continuous and uniformly bounded, i.e., there is c > 1
such that 1/c ≤ ϕ(x) ≤ c for all x ∈ K, then Kϕ

n := [µ]n has been studied
as the weighted random polytope inside K, see e.g. [8, 13]. Note that in
this case µ is, up to a constant, κ-concave for κ ≤ 1/d, since

µ(tA+ (1 − t)B) ≥ c−2 (tµ(A)κ + (1− t)µ(B)κ)
1/κ

.

b) Gaussian polytopes (κ = 0): In this case µ = γd is the standard Gauss-
ian measure with density ϕ(x) = (2π)d/2 exp(−‖x‖22/2), where ‖x‖2 =√
x · x is the Euclidean norm of x ∈ Rd, and we set Gn := [γd]n. Note that

γd is log-concave and supp γd = Rd, i.e., suppµ is convex but not bounded.
This model has been studied fairly extensive, see e.g. [6, 7, 16, 17].



396 Oberwolfach Report 6/2020

c) Beta polytopes (0 < κ ≤ 1/d): For β > −1 we consider the measure µβ
on the unit ball Bd2 = {x ∈ Rd : ‖x‖22 ≤ 1} with density

ϕβ(x) =
Γ(d2 + 1 + β)

πd/2Γ(β + 1)
(1− ‖x‖22)β , x ∈ intBd2 .

Then, P βn = [µβ ]n is a random polytope in Bd2 . Note that µβ is κ-concave
with κ ≤ 1

β+d for β ≥ 0 and therefore also log-concave.

Beta distributions were first considered by Miles and random beta and
beta-prime polytopes have very recently become a focus of interest [18,
19, 20].

For β ∈ (−1, 0), µβ is log-convex. For K ⊂ intBd2 , we may also consider
µβ,K for β ≤ −1 as a probability measure restricted to K, i.e, µβ,K has
density ϕβ,K(x) = cβ,K(1 − ‖x‖22)β , where cβ,K > 0 is the normalizing
constant such that

∫
K
ϕβ,K = 1. Then µβ,K is also log-convex on K for

β ≤ −1.

d) Beta-prime polytopes (κ < 0): For β′ > d
2 the beta-prime measure µβ′

has density

ϕβ′(x) =
Γ(β′)

πd/2Γ(β′ − d
2 )

(1 + ‖x‖22)−β
′

, x ∈ R
d.

The beta-prime random polytope is defined by P β
′

n = [µβ′ ]n. Note that

µβ′ is κ-concave where κ ≤ − 1
2β′−d < 0 for β > d

2 .

e) Random polytopes in spherical d-space (κ = −1): Let Sd = {u ∈
Rd+1 : ‖u‖2 = 1} be the Euclidean unit sphere in Rd+1. Let further Sd+ =

{(u1, . . . , ud+1) ∈ Sd : ud+1 > 0} be the open half-sphere. We consider the
random spherical polytope Sn := [σd]n, where σd is the uniform probability
measure on the half-sphere Sd+. Using the gnomonic projection g : Sd+ →
Rd, defined by g(u) = ( u1

ud+1
, . . . , ud

ud+1
), we find that g(Sn) is equal in

distribution to P β
′

n for β′ = d+1
2 , see e.g. [11]. The random polytopes Sn

have been investigated more recently in [3], see also [18, 19].

f) Random polytopes in hyperbolic d-space (log-convex measures):
Let H

d = {u ∈ R
d+1 : u21 + . . . + u2d − u2d+1 = −1, ud+1 > 0} be the

hyperbolid model of hyperbolic d-space in Rd+1. We may fix a bounded
hyperbolic convex domain K in Hd and consider the random polytope
Hn := [νd]n, where νd is the uniform probability measure on K ⊂ Hd.
Then Hn is a hyperbolic convex random polytope and using gnomonic
projection g : Hd → Rd, defined by g(u) = ( u1

ud+1
, . . . , ud

ud+1
), we find that

g(Hn) is equal in distribution to P βn = [µβ,g(K)]n for β = − d+1
2 , see e.g.

[11]. Not much seems to be known in the hyperbolic setting, but see e.g.
[8] for asymptotic results on the expected (hyperbolic) volume of Hn.
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2. Floating Body of a Measure and Random Polytopes

Let µ be a Borel probability measure on Rd with convex support that is absolutely
continuous with respect to the Lebesgue measure. For δ ∈ (0, 12 ) the convex
floating body [µ]δ, see [22, 25], is defined by

[µ]δ =
⋂

{H−(u, t) : u ∈ S
d−1 and t ∈ R such that µ(H+(u, t)) ≤ δ},

where H(u, t) = {x ∈ R
d : x ·u = t} is the affine hyperplane with normal direction

u ∈ Sd−1 and distance t from the origin, H+(u, t) = {x ∈ Rd : x · u ≥ t} is the
closed half-space bounded by H(u, t) and H−(u, t) = H+(−u,−t).

Let us also give an equivalent definition:
we define the half-space density function ηµ : suppµ→ [0,+∞) by

ηµ(x) = min
u∈Sd−1

µ(H+(u, u · x)),

i.e., ηµ(x) is the minimal measure of a half-space that contains x. Then the convex
floating body is the superlevel set of ηµ, that is,

[µ]δ = {x ∈ R
d : ηµ(x) ≥ δ}.

Following the ideas of Bárány & Larman [4], for the random polytope [µ]n =
[X1, . . . , Xn] we have that

Eµ(Rd \ [µ]n) ≥
1

4
µ(Rd \ [µ]δ(n)) for all n ≥ d+ 1,

where δ(n) = 1
n .

V. Vu [26] showed that for γ > 1 there are constants c1, c2 > 0 such that the
random polytope [µ]n contains [µ]c1 lnn

n
with probability n−γ for all n ≥ c2. We

may therefore derive the upper bound

Eµ(Rd \ [µ]n) ≤ µ(Rd \ [µ]c1 lnn
n
) + P([µ]c1 lnn

n
6⊂ [µ]n) ≤ µ(Rd \ [µ]c1 lnn

n
) + n−γ .

Hence, it seems natural to ask the following question.

Question: Let µ be a Borel probability measure on Rd that is absolutely continuous
with respect to the Lebesgue measure and such that suppµ is convex. Do there exist
constants c1, c2 > 0 such that, if µ is κ-concave for κ < 1/d, then

Eµ(Rd \ [µ]n) ≤ c1µ(R
d \ [µ]δ(n)) for all n ≥ c2,

where δ(n) = 1
n?

This is known to be true for the uniform case, i.e., if µ is κ-concave for κ = 1/d
by Bárány & Larman [4].

For the uniformly bounded case we also have more general and precise information
about the limit, that is, if suppµ = K is bounded and convex and ϕ : K → (0,+∞)
is continuous on K and uniformly bounded, then for Kϕ

δ = [µ]δ we have that

µ(Rd \Kϕ
δ ) = c(d)

(∫

bdK

ϕ(x)
d−1
d+1Hd−1(K,x)

1
d+1 Hd−1(dx)

)
δ

2
d+1 (1 + oδ(1)),
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see [8, 25]. Here Hd−1(K, ·) denotes the generalized Gauss–Kronecker curvature,
Hd−1 is the (d−1)-dimensional Hausdorff measure restricted to bdK and c(d) will
denote here and in the following some constant that only depends on the space
dimension d. If K = P is actually a convex polytope, then

µ(Rd \ Pδ) = c(d)|flagP | δ(− ln δ)d−1(1 + oδ(1)),

see [9, 24], where |flagP | is the total number of maximal chains (complete flags)
in the face lattice of P .

3. Expectation, Variance and Central Limit Theorems

In the following we briefly collect results on the expected volume of [µ]n.

a) Random polytopes inside a convex body: We assume that suppµ =
K is a convex body with C2

+ boundary and ϕ : K → (0,+∞) is continuous
and uniformly bounded. We know that

Eµ(K \Kϕ
n ) = c(d)

(∫

bdK

ϕ(x)
d−1
d+1Hd−1(K,x)

1
d+1 Hd−1(dx)

)

× n− 2
d+1 (1 + on(1)),

see [13] and [8]. If ϕ is constant, then asymptotic bounds on the variance of
Vol(Kn) were obtaind by Reitzner [23] and a lower bound for the variance
of µ(Kϕ

n ) was derived in [10], where also a central limit theorem for µ(Kϕ
n )

was derived, which extends the central limit theorem for Vol(Kn) obtained
by Reitzner [23]

If K = P is a polytope and ϕ is constant, Pn = [µ]n, then

EVol(P \ Pn) = c(d)|flagP |n−1(lnn)d−1(1 + on(1)),

see [2]. Bounds on the variance of Vol(Pn) were established in [5].

b) Gaussian polytopes: As mentioned before, the case of Gaussian random
polytopes Gn = [γd]n is fairly well investigated. We know that

EVol(Gn) = c(d)(lnn)
d
2 (1 + on(1)),

and

Eγd(R
d \Gn) = c(d)n−1(lnn)

d−1
2 (1 + o(1)).

Bounds on the variance of Vol(Gn) and a central limit theorem were ob-
tained in [7, 17], see also [6].

c) Beta and beta-prime polytopes: For beta polytopes P βn = [µβ ]n and

beta-prime polytopes P β
′

n = [µβ′ ]n we have that

Eµβ(B
d
2 \ P βn ) = c(d)n−1+ d−1

d+1+2β (1 + on(1)),

and

Eµβ′(Rd \ P β′

n ) = c(d)n−1(1 + on(1)),

where we refer to [18, 20] for more precise results and also some non-
asymptotic formulas.
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Floating bodies and geometry of random polytopes

Olivier Guédon

In this talk, I have presented recent results from [3] and I refer to this paper for
more detailed explanation. Let X be a symmetric random vector in Rn and let
X1, . . . , XN be independent copies of X . Our goal is to study the geometry of
the random polytope absconv(X1, . . . , XN), that is, the convex hull of the points
±X1, . . . ,±XN . We study the following questions:

(1) Is it possible to find a set K that is naturally associated with X and is
contained in absconv(X1, . . . , XN ) with high probability?

(2) If the answer to (1) is yes, when does K contain large (intersections of) ℓp
balls as, classical results in the Gaussian or Rademacher cases ?

The geometric features of X that are significant in this context are reflected by
the natural floating bodies associated with X . For p ≥ 1, we define the associated
floating body

Kp(X) := {t ∈ R
n : P(〈X, t〉 ≥ 1) ≤ exp(−p)} .

The notion of floating bodies plays a crucial role in the study of approximation of
convex bodies by polytopes, see, e.g., [8, 6, 1], where X is distributed according
to the uniform probability measure on the given convex body. It is known how to
identify The description of floating bodies associated to a Gaussian vector is easy
to get while the case of a Rademacher random vector follows from a result of [7].
We give a complete answer to the above question under minimal assumptions on
X that we now describe. Let ‖ · ‖ be a norm on Rn. The random vector X is said
to satisfy a small-ball condition with respect to the norm ‖ · ‖ with constants γ
and δ if for every t ∈ Rn,

P(|〈X, t〉| ≥ γ‖t‖) ≥ δ.

Also, for some r > 0, X is said to satisfy an Lr condition with respect to the norm
‖ · ‖ and with constant L if for every t ∈ R

n,

(E|〈X, t〉|r)1/r ≤ L‖t‖.
Our main result is the following

Theorem 1. Let X be a symmetric random vector. Assume that X satisfies a
small-ball condition with constants γ > 0 and δ > 0, and an Lr condition with
constant L for some r > 0 with respect to the same norm ‖ · ‖.

Let 0 < α < 1 and set p = α log(eN/n) and assume that N ≥ c0n for a
constant c0 = c0(α, δ, r, L/γ). Let X1, . . . , XN be independent copies of X then
with probability at least 1− 2 exp(−c1N1−αnα),

absconv(X1, . . . , XN ) ⊃ 1

2

(
Kp(X)

)◦
,

where c1 is an absolute constant.
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The second part of the question can be answered by identifying those floating
bodies for a variety of choices of X—thus recovering, and at times improving,
previously known results, as well as establishing new estimates in cases that were
out of reach before. For example, if X = G ∼ N (0, Id) then for p = α log(eN/n)

(
Kp(G)

)◦ ⊃ c
√
pBn2

and if X = E = (ε1, . . . , εn) where εi are iid Rademacher entries then
(
Kp(E)

)◦ ⊃ c(Bn∞ ∩ √
pBn2 )

recovering known estimates from [2] and [5]. Using the concept of stochastic
domination, it is not difficult to show that if ξ1, . . . , ξn are independent copies of
a symmetric random variable ξ such that P(|ξ| ≥ γ0) ≥ δ0 and if X = (xi)

n
i=1,

then X stochastically dominates the Rademacher vector E with constants λ1 and
λ2 that depend only on γ0 and δ0. A direct consequence is that

Kp(X) ⊂ λ2Kp′(E),
where p′ = p− log(1/λ1). Thanks to the characterization of Kp(E) and Theorem 1
one immediately recovers the main result from [4]. The result can be pushed much
further and the fact thatX has i.i.d. coordinates can be relaxed to an unconditional
assumption. Thanks to the universality of Theorem 1, one may establish various
new outcomes that were previously completely out of reach like also when X has
iid q-stable random entries for 1 ≤ q < 2 (e.g., a Cauchy random vector).

The second outcome of Theorem 1 is related to a fundamental question in the
area of compressive sensing: can sparse signals be recovered efficiently when the
given data consist of a few measurements that are noisy, but the ‘noise level’ is
not known. We refer to [3] for a more detailed exposition.
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Discrepancy and integration, anpOpen IBC problem

Henryk Woźniakowski

In the three volume book [2] we presented about 150 open IBC (Information-
Based Complexity) problems on tractability of multivariate problems. In this talk
we concentrate on one of them which is related to weighted L2-discrepancy and
multivariate integration.

It is well known that if multivariate integration is defined on the specific Sobolev
space then the nth minimal weighted discrepancy for the d-variate case and mul-
tivariate integration errors coincide. For ε ∈ (0, 1), an arbitrary integer d, let
γ = {γj}j=1,2,...,d denote the so called product weights in (0, 1] introduced in [4].
Let nγ(ε, d) be the minimal number of discrepancy points, or equivalently the
minimal number of function values to approximate the nth minimal weighted dis-
crepancy or multivariate integration to within ε times the initial error. For the
unweighted case, γj = 1 for all integer j, we have the curse of dimensionality.
More precisely, there exists a positive number c such that

c(1.022)d ≤ nγ(ε, d) ≤ (1.1144)d ε−2.

The lower bound is proved in [1], and the upper bound in [3].
To vanquish the curse of dimensionality we must use product weights tending

to zero. It is known that

nγ(ε, d) = O(ε−2) iff

∞∑

j=1

γj <∞,

with the factors in the big O notation independent of d.
These bounds were proved in [4] for quasi-Monte Carlo algorithms, where the

discrepancy or integration coefficients weights are all 1/n, and in full generality in
[1] by the use of the concept of decomposable reproducing kernels.

There are many improvements on the bound of nγ(ε, d) on the expense of more
strict conditions on product weights. Let p = pγ denote the infimum of the
exponent q such that nγ(ε, d) is uniformly (in d) bounded by ε−1. Clearly, p =
pγ ≥ 1 since even for d = 1 nγ(ε, 1) is of order ε

−1. It is known, see [5], that

∞∑

j=1

γ
1/2
j <∞ =⇒ pγ = 1.

It is however not known if this bound is sharp, and this is an open problem which
we want to introduce the the audience of the workshop.

There are many related open problems and we always want to find iff condition
on weights to obtain specific behaviour of nγ(ε, d). Obviously the question should
be studied not only for discrepancy or multivariate integration but for general
multivariate problems.
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Numerical integration and Schur’s product theorem

Jan Vyb́ıral

(joint work with Aicke Hinrichs, David Krieg and Erich Novak)

The aim of this contribution is to resolve the conjecture of E. Novak, which reads
as follows.

Conjecture 1 (E. Novak [2]).The matrix

{ d∏

i=1

1 + cos(xj,i − xk,i)

2
− 1

n

}n
j,k=1

is positive semidefinite for all n, d ≥ 2 and all choices of x1, . . . , xn ∈ Rd.

Erich Novak published this conjecture also in NA Digest in November 1997 and
tested it numerically. It also appeared as Open Problem 3 in [3]. The conjec-
ture was recently proven to be true in [4] with further applications to numerical
integration given in [1].

We start with certain problem from numerical analysis, which was actually the
starting point for Conjecture 1. We study the quadrature formulas

(1) Qn(f) =
n∑

i=1

cif(xi), ci ∈ R, xi ∈ [0, 1]d

and how well are they suited to approximate the integral INTd(f) =
∫
[0,1]d f(x)dx.

Here f belongs to a unit ball of a Hilbert space Fd, which is defined as a d-fold
tensor product of a space F1, which in turn is a three dimensional Hilbert space
with an orthonormal basis given by the functions

e1(x) = 1, e2(x) = cos(2πx), e3(x) = sin(2πx), x ∈ [0, 1].

Hence Fd is a 3d-dimensional Hilbert space. The point evaluation δx : f → f(x)
may be written in the form

f(x) = 〈f, δx〉Fd
with δx(z) =

d∏

j=1

[1 + cos(2π(xj − zj))].
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In this way, Fd becomes a reproducing kernel Hilbert space with the kernel

Kd(x, y) = 〈δx, δy〉Fd
=

d∏

j=1

[1 + cos(2π(xj − yj))], x, y ∈ [0, 1]d.

If all the cj ’s are positive, a simple calculation shows that the worst-case error of
Qn given by (1) can be estimated as

ewor(Qn)
2 ≥ 1− 2

n∑

j=1

cj +
n∑

j=1

c2j2
d

and for the optimal choice cj = 2−d this becomes

(2) ewor(Qn)
2 ≥ max(1 − n2−d, 0).

This estimate shows the intractability of numerical integration on Fd with quadra-
ture formulas with positive weights since for a fixed error the number n of sample
points needs to grow exponentially with the dimension d.

If the signs of cj ’s are not fixed, we can still write

ewor(Qn)
2 = 1− sup

cj ,xj

( n∑

j=1

cj

)2

n∑

j,k=1

cjckKd(xj , xk)

.(3)

Erich Novak conjectured, that the estimate (2) applies also for quadrature for-
mulas (1) with general weights, which is by (3) equivalent to Conjecture 1.

The main tool in the solution of Conjecture 1 is the following property of the
Schur matrix product.

Theorem 1. Let M ∈ Rn×n be a positive semidefinite matrix with Mj,j = 1 for
all j = 1, . . . , n. Then

M ◦M � 1

n
· En,

where En ∈ Rn×n is a matrix with all entries equal to one.

Finally, let us show how this Theorem implies the positive answer to Conjecture
1. We define matrices M1, . . . ,Md by

M i
j,k = cos

(xj,i − xk,i
2

)
, i = 1, . . . , d, j, k = 1, . . . , n.

By Bochner’s theorem, the matrices M i are all positive semidefinite and (by the
classical Schur product theorem) so is their Hadamard productM =M1◦· · ·◦Md.
Obviously, M has all its diagonal elements equal to one. Finally, the Theorem
shows that the matrix M ◦M − 1

nEn with entries
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M2
j,k −

1

n
=

d∏

i=1

cos2
(xj,i − xk,i

2

)
− 1

n
=

d∏

i=1

1 + cos(xj,i − xk,i)

2
− 1

n

is also positive semidefinite.
Hence, the integration problem on Fd is intractable even when we allow negative

weights cj’s in the quadrature formula (1).

Remark: It was noted in a discussion in Oberwolfach by Dmitriy Bilyk (Univer-
sity of Minnesota), that the Theorem also follows from the theory of Gegenbauer
polynomials. We refer to [1], where we give more details about this connection.
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Affine processes in the cone of positive Hilbert-Schmidt operators:
a volatility model

Sonja Cox

(joint work with Sven Karbach, Asma Khedher)

Affine processes, i.e., processes of which the characteristic function is exponentially
affine in the initial value, have gained a lot of attention in the finance literature
in the past two decades due to their good tractability and their ability to cover
a reasonably wide range of relevant processes. In particular, affine processes are
used to model volatility processes. A full characterisation of affine processes tak-
ing values in the cone of positive semidefinite matrices has been obtained in [4].
However, various models, e.g. in the HJM framework, require infinite-dimensional
volatility processes. In this report we explain explain the challenges of identifying
affine processes in the cone of positive Hilbert-Schmidt operators and discuss some
well-posedness results.

Roughly speaking1, an H-valued Markov process (Xt)t∈[0,∞) (where H is a
Hilbert space) is called affine if there exist functions φ : [0,∞) × H → R and
ψ : [0,∞)×H → H such that for every u, h ∈ H it holds that

E

[
ei〈X(t),h〉 |X(0) = u

]
= eφ(t,u)+〈ψ(t,u),h〉H .

1Some additional regularity assumptions are typically neccessary in order to provide a full
characterisation of affine processes.
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Theorem 2.4 in [4] gives a characterisation of affine processes with values in the
space of positive semidefinite matrices S+

d in terms of the generator of the process,
which is of the form

Af(x) = 1
2

∑

i,j,k,l

Ai,j,k,lx
∂2f(x)

∂xi,j∂xk,l
+
∑

i,j

(bi,j +Bi,jx)
∂f(x)
∂xi,j

− (c+ 〈γ, x〉)f(x)

+

∫

S+
d
\{0}

(f(x+ ξ)− f(x))m(dξ)

+

∫

S+
d
\{0}

(f(x+ ξ)− f(x)− 1{‖ξ‖≤1}〈ξ,∇f(x)〉)M(x, dξ),(1)

where A,B ∈ L(S+
d ), b, γ ∈ S+

d , c ∈ [0,∞), m : B(S+
d ) → [0,∞] and M : B(S+

d ) →
S+
d satisfy certain admissability conditions. Via the generator one obtains a system

of Riccati differential equations for the functions φ and ψ. (For details, see [4,
Section 2].)

Our aim is to extend these results to the setting of positive self-adjoint Hilbert-
Schmidt operators S+(H) on a Hilbert space H . In doing so, we encounter the
following difficulties, which are all related to the fact that we are in the infinite-
dimensional setting:

• The cone S+(H) is not locally compact, hence the classical Feller theory
is not applicable.

• Weak convergence of measures on Hilbert spaces is laborious due to a lack
of Lévy’s continuity theorem: one has to prove tightness ‘by hand’.

• The cone S+(H) has empty interior, hence it is unclear whether one can
allow for a diffusion term (i.e., whether when can take A in (1) to be
non-zero).

Indeed, to the best of our knowledge the only known example of an affine process
taking values in the space of positive self-adjoint Hilbert-Schmidt operators is
in [1], where the authors consider the following equation:

dXt = BXtdt+ dLt,

where (Lt)t≥0 is a square-integrable operator valued Lévy process and B ∈
L(S+(H)). This model is relatively easy to treat as it is well-posed in a prob-
abilistic and analytic strong sense.

Using the theory of generalized Feller processes developed in [2], we have ex-
tended [1] and [4] to prove (see [3]) that under certain conditions (comparable
to those in [4]) on b ∈ S+(H), B ∈ L(S+(H)), m : B(S+(H)) → [0,∞] and
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M : B(S+(H)) → S+(H) there exists an S+(H)-valued Markov process with gen-
erator

Af(x) =
∑

i,j

(bi,j +Bi,jx)
∂f(x)
∂xi,j

+

∫

S+(H)\{0}
(f(x+ ξ)− f(x))m(dξ)

+

∫

S+(H)\{0}
(f(x+ ξ)− f(x)− 1{‖ξ‖≤1}〈ξ,∇f(x)〉)M(x, dξ).(2)

We hope to tackle various related open questions, such as:

• Is the affine process a weak solution to an associated stochastic differential
equation?

• Can we allow for a diffusion term (i.e., can we allow for A 6= 0)?
• Are our ‘admissibility conditions’ necessary, i.e., can we provide a full
characterisation of S+(H)-valued affine processes?
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Random polytopes: Report of the group work

Florian Besau, Anna Gusakova, Matthias Reitzner, Carsten Schütt,

Christoph Thäle, Elisabeth Werner

To motivate the problem our group was working on during the workshop, we shall
rephrase some key results in the theory of random polytopes. To construct random
polytopes, one classically starts with a fixed convex body K ⊂ Rd and a sequence
(Xi)i≥1 of independent random points uniformly distributed in K. For n ≥ d+ 1
we denote by

Kn := [X1, . . . , Xn]

the random convex hull of X1, . . . , Xn. It can be thought of as a random polytopal
approximation of the set K, which approachesK, as n→ ∞. There are several in-
teresting random variables connected to the random polytopes Kn, which measure
the degree of approximation of K by Kn as well as its combinatorial complexity.
These are

(i) the volume Vd(Kn) of Kn, and, more generally, the k-th intrinsic volume
Vk(Kn) of Kn, k = {0, 1, . . . , d},
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(ii) the number fd−1(Kn) of facets (i.e. (d− 1)-dimensional faces) of Kn, and,
more generally, the number fk(Kn) of k-dimensional faces of Kn, k =
{0, 1, . . . , d− 1}.

From now on, we concentrate on first-order properties of the combinatorial struc-
ture of Kn, more precisely, on the expected number Efk(Kn) of k-dimensional
faces of Kn.

Since the 1990ies it is well known that the asymptotic behaviour of Efk(Kn), as
n→ ∞, is depending on the geometry of the underlying convex body K. Indeed,
if K is of class C2

+, that is, if K has a boundary that is a C2-submanifold of Rd

with strictly positive Gaussian curvature κ(x) at every point x ∈ ∂K, then

(1) Efk(Kn) = cd,kΩ(K)n
d−1
d+1 (1 + on(1)),

as n → ∞, where cd,k is a constant only depending on d and on k and Ω(K) =∫
∂K κ(x)

1/(d+1) dx is known to be the affine surface area of K. On the other hand,
if K = P is a d-dimensional polytope, then

(2) Efk(Kn) = ĉd,kflag(P )(logn)
d−1(1 + on(1)),

as n → ∞, where ĉd,k is another constant only depending on d and on k, while
flag(P ) is the number of flags of P , that is, the number of chains F0 ⊂ F1 ⊂ . . . ⊂
Fd−1, where for each i ∈ {0, 1, . . . , d− 1}, Fi is an i-dimensional face of P , see e.g.
[3]. On different levels of generality these results can be found in [7] (for d = 2),
[1] (for k ∈ {0, d− 1}) and [6] (for general d and k).

Now, let us consider the following setup, which has been introduced in [2]. We
assume that (Xi)i≥1 is a sequence of independent random points uniformly dis-
tributed on the d-dimensional upper halfsphere Sd+ := Sd ∩ {xd+1 ≥ 0} ⊂ Rd+1.
For n ≥ d + 1 the positive hull of X1, . . . , Xn cuts out a spherical random poly-

tope K
(s)
n ⊂ S

d
+, whose expected number of k-dimensional spherical faces has the

remarkable property that

(3) lim
n→∞

Efk(K
(s)
n ) = c̃d,k

where c̃d,k is another (finite!) constant only depending on d and k, see [2] (for
k ∈ {0, d− 1}) and [5] (for general k). Also see [4] for an analog to (1) on the unit
sphere for k = 0.

After gnomonic projection of Sd+, the spherical random convex hull K
(s)
n might

be interpreted as the convex hull of uniform random points in a d-dimensional
convex ‘polytope with a single facet’. Given these facts the work in our group
concentrated on the following question.

Question: Are there models for random polytopes that interpolate between the
behaviour of (2) and (3)?

To attack this question we focused on the case k = d− 1 and on the following con-
struction, which generalizes the approach in [5]. Given j ∈ {1, . . . , d} hyperplanes
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H1, . . . , Hj passing through the origin of Rd+1 that are in general position, define
the set

S
d
j,+ := S

d ∩H+
1 ∩ . . . ∩H+

j .

Then Sdj,+ is a d-dimensional spherically convex subset of Sd, which contains a
great subsphere of dimension d − j and its shape is determined by the angles
between H1, . . . , Hj . Let further (Xi)i≥1 be independent random points uniformly

distributed on Sdj,+ and for n ≥ d + 1 let K
(s,j)
n be the spherical convex hull of

X1, . . . , Xn. Note that for j = 1, up to a rotation, Sd1,+ can be identified with

S
d
+ and the number of facets of the spherical random polytope K

(s,1)
n has the

same distribution as that of K
(s)
n studied in [5]. On the other hand, if j = d,

after gnomonic projection, one can think of K
(s,d)
n as the convex hull of random

points chosen from a d-dimensional simplex in Rd with a beta prime distribution
of parameter β′ = d+1

2 restricted to the domain of the simplex.

Conjecture: For j ∈ {1, . . . , d} one has that

(4) Efd−1(K
(s,j)
n ) = cd,j(logn)

j−1(1 + on(1)),

where cd,j is a constant that depends on the parameters d and j. In particular,
the first-order asymptotic expansion does not depend on the actual angles between
H1, . . . , Hj (if they are in general position).

Given the above discussion we note that this behaviour would naturally inter-
polate between (2) (corresponding to the choice j = d) and (3) (which arises by
taking j = 1).

During the week we were able to make progress on the special case j = 2
and under the additional randomization that the number n = N(n) of generating
points is Poisson distributed with parameter n. Then, using the multivariate
Mecke formula for Poisson point processes, we have that

Efd−1(K
(s,2)
n ) =

1

d!
E

∑

1≤i1<...<id≤N
1{xi1 , . . . , xid generate a facet}

=
nd

d!

∫

Sd2,+

· · ·
∫

Sd2,+

P(x1, . . . , xd generate a facet) dx1 . . .dxd.

Now, using the Blaschke–Petkantschin formula from spherical integral geometry,
this transforms into

cdn
d

∫

G(d+1,d)

(∫

Sd2,+∩H
· · ·
∫

Sd2,+∩H
∆d(x1, . . . , xd) dx1 . . . dxd

)

× exp(−nσd(Sd2,+ ∩H+)) dH,

where G(d+ 1, d) is the Grassmannian of d-dimensional linear subspaces of Rd+1

and ∆d(x1, . . . , xd) is the volume of the parallelotope spanned by x1, . . . , xd. Here
and in what follows, cd will denote a constant only depending on the dimension
d whose value might change from occasion to occasion. To proceed, the following
two steps are necessary:
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(i) Evaluate the integral in brackets.
(ii) Derive asymptotic estimates for σd(S

d
2,+ ∩H+).

ψ

ϕ

H

H1

H2

For this we noted that, up to isometry, the shape of the intersection

S
d
2,+ ∩H+ = S

d ∩H+
1 ∩H+

2 ∩H+ = S
d
3,+,

is controlled by only two parameters–the angle ψ between H1 and H , and the angle
ϕ between H1 ∩H2 and H1 ∩H (measured within H1). By choosing coordinates
in the right way, we may reduce asymptotically the above integral expression to a
double integral of the form

cdn
d

∫ a

0

∫ b

0

ϕd+1

(cosψ)d+1
(sinψ)d−1(sinϕ)d−2 exp

(
− n

2
ϕ2 tanψ

)
dψdϕ,

for some fixed a, b > 0.
By appropriate substitutions one can see that, as n → ∞, this behaves like a

constant multiple of logn, where the constant only depends on d and not on a and
b. Summarizing, we conclude that

Efd−1(K
(s,2)
n ) = cd(log n)(1 + on(1))

for an appropriate constant cd only depending on d. This establishes the conjecture
for the special case j = 2.
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Large deviations for random measures associated with certain
projections: Report of the group work

David Alonso-Gutiérrez, Nina Gantert, Samuel Johnston, Zakhar

Kabluchko, Eliza O’Reilly, Joscha Prochno, Kavita Ramanan

Suppose under a probability measures P we have a random variable X uniformly
distributed on the unit cube [−1, 1]N in N dimensions. For elements θ of the
Euclidean unit sphere SN−1 in RN , let µθ be the probability measure on R defined
by setting

µθ(A) := P (〈θ,X〉 ∈ A) ,

where 〈·, ·〉 is the standard Euclidean inner product on RN .
Now suppose we choose θ = ΘN according to the uniform measure on SN−1

so that νN := µΘN is a random measure on R. We are interested in studying
these random measures as the underlying dimension N tends to infinity, with a
particular emphasis on the large deviation behaviour.

First, let us make a few remarks on the typical behaviour of the random mea-
sures νN as N tends to infinity. The random variable 〈θ,X〉 whose law is given by
νN may be expressed as a sum of independent random variables

〈θ,X〉 = θ1X1 + . . . θnXn,

where the Xi are independent random variables uniformly distributed on [−1, 1]
and from this fact we may expect Gaussian behaviour in the limit. We make the

first observation that as long as no θi is large compared to the sum
∑N

j=1 θ
2
j = 1,

for large N the random variable 〈θ,X〉 is close to a Gaussian random variable with
variance (

N∑

i=1

θ2i

)
E[X2

1 ] = 1/3.

We now make the second observation that for large N , when ΘN is uniformly
distributed on the unit sphere, all of the coordinates of ΘN are small with high

probability. Let γσ2 := 1√
2πσ2

e−
1

2σ2 s
2

ds be the Gaussian measure with variance

σ2. Pairing these two observations, we naturally expect that
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For large N , νN is typically concentrates around the Gaussian
measure γ1/3 of variance 1/3.

With this picture in mind we now turn to looking at the large deviations of the se-
quence of random measures (νN )N≥1. Below we state a conjecture giving a precise
prediction for these large deviations, which is based on the idea that the contri-
butions in large deviation come from coordinates of the random vector ΘN taking
atypically large values. Before stating this conjecture, we would first like to furnish
some motivation by gaining an understanding on the asymptotic probabilities that
some of the coordinates of ΘN take on aytpically large values.

A straightforward calculation tells us that the marginal distribution of the first
k coordinates of an element chosen uniformly from the unit sphere SN−1 is given
by

gN,k(s1, . . . , sk) =
Γ(N/2)

πk/2Γ(N−k
2 )

(
1−

k∑

i=1

s2i

)N−k−1
2

It is clear that as N becomes large (with k fixed), the measure gN,k on R
k con-

centrates around zero, and from here it is straightforward to study the deviations
of gN,k away from the origin. Indeed, for a fixed vector t := (t1, . . . , tk) of R

k we
have

lim
N→∞

1

N
log gN,k(t1, . . . , tk) =

{
− 1

2

(
1− ||t||22

)
if ||t||2 < 1,

∞ otherwise.
(1)

Now consider reordering the coordinates in a non-increasing in terms of their
absolute value. Rough calculations based around Markov’s inequality as well as
the simple observation that limN→∞

1
N log

(
N
k

)
= 0 suggest that k coordinates

with largest modulus of a uniformly chosen element θN of the unit sphere SN−1

also satisfy this same large deviation principle (1).

Let Θ̃N be an element of SN−1 obtained by listing the components in decreasing
order of magnitude (with an arbitrary choice made in the case of a tie). By taking k
to be arbitrarily large in our previous calculation, evidence leads us towards making
the following statement about the large deviations of the largest components of
ΘN :

Theorem 1. The random vector Θ̃N satisfies a large deviation principle with
speed N and rate function

I(α) = −1

2
log
(
1− ||α||22

)

for α ∈ ℓ2 whose components are listed in nonincreasing order of magnitude.

We now relate this observation to the random measures νN = µΘN . To set this
up, given an element α in the unit ball of ℓ2, let κα be the probability measure
associated with the random variable

〈α,X〉+
√

1− ||α||22
3

Z,
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where X = (X1, X2, . . .) is a sequence of random variables uniformly distributed
on [−1, 1] and Z is a standard Gaussian random variable.

Now when N is large, if we condition on ΘN having k atypically large coor-
dinates of sizes (α1, . . . , αk), the remaining N − k coordinates tend to be small
compared to 1, and the sum of squares of these coordinates is equal to

(
1− ||α||22

)
.

It follows that the conditional law of the random variable 〈ΘN , X〉 given that the
largest coordinates of θN have sizes (α1, . . . , αk) is close to κα when N is large.
Based on Theorem 1, which characterises the large deviations of ΘN , we are lead
to make the following conjecture about the large deviations of (νN )N≥1.

Conjecture 1. Let Θ(N) be a sequence of elements of RN uniformly distributed on
the unit sphere SN−1. Then the sequence of random measure νN := µΘ(N) satisfy
a large deviation principle with rate N and rate function

I(ν) =

{
− 1

2 log
(
1− ||α||22

)
if ν = κα where ||α||2 < 1,

∞ otherwise.

One of the key intermediate results that must necessarily hold in order for
Conjecture 1 to be true is the following technical lemma about the limits of certain
sequences of probability distributions.

Lemma 1. For N ≥ 1, let EN denote the set of probability laws of random

variables of the form
∑N

i=1 α
(N)
i Ui, where α(N) ∈ SN−1. Clearly EN ⊆ EN+1.

Suppose ν(N) is a sequence of measures such that each ν(N) is contained in EN
and the sequence ν(N) converge (in Prohorov topology) to some measure ν on R.
Then the set of all possible limits is given by

E∗ :=
{
κα : α is an element of the unit ball in ℓ2

}
.

We have so far investigated two contrasting approaches towards proving this
lemma, one involving characteristic functions and another involving the Berry-
Esseén theorem.

Reporters: Anna Gusakova and Samuel Johnston
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Fakultät für Mathematik
Ruhr-Universität Bochum
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