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Introduction by the Organizers

Geometric group theory and the topology of manifolds have seen significant ad-
vances and much of this based on the fertile interplay between these two areas. This
workshop concentrated on the interplay of several particularly successful trends
and guiding problems of this type:

• cobordism categories and their applications,
• applications of K-theory to topology,
• L2-invariants and their relatives,
• topological aspects of volume and curvature, metrically enriched topology,
• group homology and moduli spaces.

These areas are strongly connected, progress in one area is only possible through
advances and application of tools from the others. During the workshop, re-
searchers in these fields of all levels—from promising recent graduates to the lead-
ing experts—discussed current developments and exchanged ideas. The biggest
challenge (but also the biggest benefit) of this workshop was to bridge the gaps
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between the different fields and mathematical languages, ranging from higher cat-
egories to Benjamini–Schramm statistics. It is our hope that seeing problems
through the eyes of other fields will lead to new impulses.

The workshop programme offered 19 regular talks. The workshop also presented
a one hour session on Thursday night for a gong show which featured five 10
minute presentations where young researchers described their work. The speakers
at this gong show were Calista Bernard, Zhicheng Han, Biao Ma, Eduard Schesler,
and Engelbert Peter Suchla. The meeting was attended by 50 participants from
all over the world, including many early career researchers. Moreover, as usual in
Oberwolfach, the breaks and evenings were filled with a variety of lively discussions
in smaller groups.

The following describes the main topics and some selected recent achievements
that were discussed during this workshop in more detail.

L2-Invariants and their relatives. Grigori Avramidi reported on computations of
mod p homology gradients for right-angled Artin groups (joint work with Okun
and Schreve). Consequences of these investigations are the first construction of
groups whose L2-Betti numbers (i.e., the rational homology gradients) do not
coincide with their mod p homology gradients as well as the first construction of
counterexamples to the mod p Singer conjecture.

Dawid Kielak explained how to characterise group-theoretic virtual fibering
(which is inspired by 3-manifold topology) in terms of the first L2-Betti number.

Topological aspects of volume and curvature and metrically enriched topology. Ro-
man Sauer (in joint work with Braun) obtained a generalisation of Gromov’s main
inequality between volume and simplicial volume, where the lower Ricci curvature
bound is replaced by a macroscopic scalar curvature bound. The proof relies on
randomised version of metric methods by Larry Guth.

K-theory and topology. Fabian Hebestreit and Markus Land gave a pair of linked
talks on their work (with Calmès, Dotto, Harpaz, Moi, Nardin, Nikolaus, and
Steimle) on algebraic cobordism categories and Grothendieck–Witt theory. The
first talk explained the foundations and general structure of this theory, while the
second explained how this can be used to calculate the hermitian and symplectic
K-groups of the integers, in both the symmetric and quadratic situation.

Wolfgang Lück reported on extensive calculations on crystallographic groups,
including their topological and algebraic K-theory as well as their L-theory. Ap-
plications were then described to the classification of C∗-algebras, to the unsta-
ble Gromov–Lawson–Rosenberg conjecture, and to the classification of topological
manifolds homotopy equivalent to torus bundles over lens spaces.

Topology of moduli spaces. Manuel Krannich presented a new perspective on the
relationship between pseudoisotopy theory and K-theory. Focussing on the case
of an even-dimensional disc, he explained how results of Botvinnik–Perlmutter on
diffeomorphism groups of handlebodies, together with Morlet’s lemma of disjunc-
tion, can be used to relate the space of pseudoisotopies to algebraicK-theory of the
integers in a range of degrees which is 3 times better than the classical approach.
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Geometric group theory. Aspects of geometric group theory play an important
role in several talks, in particular also on L2-Betti numbers. Specific to geometric
group theory was the talk of Martin Bridson which discussed rigidity aspects of
the automorphism group of free groups, in particular new findings on the com-
plex of free factors as a space with controlled topology on which this group acts,
while Anna Erschler surveyed geometric group theoretical aspects of the Travelling
Salesman Problem.
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Abstracts

Variations of a conjecture of Singer

Grigori Avramidi

For a closed manifold M with contractible universal cover, the Singer conjecture
predicts that the L2-Betti numbers ofM are concentrated in the middle dimension.
In my talk I discussed what is known and unknown about this conjecture and
explained why it does not have a rational analogue [Avr18]. I also explained how
(following Davis, Okun, and Schreve [DO01, OS16]) to think of it as a conjecture
about arbitrary discrete groups and described a variant for CAT(0) groups relating
mod 2 L2-Betti numbers (interpreted dynamically as the entropy of the group
acting on homology of the boundary) to van Kampen embedding obstructions of
their boundaries that fits especially well with computations in right-angled Artin
groups.

Boundary Singer Conjecture. Suppose that BΓ is a d-dimensional, finite com-
plex and Γ is a residually finite CAT(0) or hyperbolic group. Let ∂Γ be a CAT(0)
or hyperbolic boundary for this group. If the entropy of Γ acting on Hst

d−1(∂Γ;F2)

is positive, then ∂Γ does not embed in S2d−2.

This conjecture is the question mark in the following schematic picture.

L2-Betti number

b
(2)
d (BΓ;Q)

Singer
−→

Conj.
−→

Thickening obstruction

BΓ 6∼M2d−1

GS,L ↓ ↑ BKK

Entropy

h(Γ y H
st

d−1(∂Γ,F2))

?
−→

Embedding obstruction

∂Γ 6 →֒ S2d−2

The left vertical arrow uses Lück’s approximation theorem [L94] to think of L2-
Betti numbers as a limit of normalized Betti numbers of covers and compare it
to the entropy (in the sense of [GS19]), which can be thought of as a limsup
of normalized mod 2-Betti numbers of covers (also referred to as mod 2 L2-Betti
numbers) in this case. The right vertical arrow is work of Bestvina, Kapovitch and
Kleiner [BKK02] which produces thickening obtsructions for BΓ from embedding
obstructions for the boundary ∂Γ.

The main piece of evidence for this conjecture comes from computations with
right Artin groups. One can compute when the entropy is positive ([AOS20]) and
when the van Kampen embedding obstruction does not vanish ([ADOS16]). The
computations are quite different but the results are identical.

As mentioned before, the computation of entropy is really a computation of mod
p L2-Betti numbers of right-angled Artin groups. We compute these completely.
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Theorem 1. Let L be a flag complex, Γ = AL the right-angled Artin group

AL := 〈av, v vertex of L | [av, aw] = 1 if v is adjacent to w〉,

Γn E Γ a chain of normal finite index subgroups and k any field (e.g. Q or Fp).
Then

b
(2)
i (AL; k) = bi−1(L; k),

where on the right we have the reduced Betti numbers of L with coefficients in k.

In particular, the mod p L2-Betti numbers of AL do not depend on the chain
Γn but do depend on the characteristic of the coefficient field k. For example, if
L is a flag triangulation of RP 2 then we have

Corollary 2. b
(2)
3 (ARP 2 ;Q) = 0 and b

(2)
3 (ARP 2 ;F2) = 1.

It follows from this that such a group ARP 2 has exponential homological torsion
growth in degree two

lim sup
n

log |H2(Γn;Z)tors|

|Γ/Γn|
> 0

answering a query of Bergeron for such a group.
In related work that was completed after the talk was given, we constructed for

odd primes p closed locally CAT(0) manifolds with residually finite fundamental
group and mod p L2-Betti numbers outside the middle dimension. These closed
aspherical manifolds show that the Singer conjecture on Betti number growth and
Lück’s conjecture on torsion homology growth are incompatible in the CAT(0)
setting, so at least one of them must be wrong. (See [AOS20] for details).
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Positive scalar curvature on manifolds with odd order abelian
fundamental groups

Bernhard Hanke

This talk reports on the paper [1]. The classification of closed manifolds admitting
Riemannian metrics of positive scalar curvature has been a major research topic
for some decades. While for simply connected manifolds of dimension at least 5
a complete classification has been achieved by Gromov-Lawson (1980) and Stolz
(1992) the picture remains largely unclear even for finite fundamental groups. The
following conjecture of Rosenberg (1986) addresses a specific issue in this direction.

Conjecture 1. Let M be a closed connected smooth manifold with finite funda-
mental group of odd order. If the universal cover of M admits a positive scalar
curvature metric, then M admits a positive scalar curvature metric.

Conjecture 1 holds for dimM ≤ 2 and for dimM = 3 it follows from the
geometrisation theorem. For dimM = 4 counterexamples were constructed by
Hanke-Kotschick-Wehrheim (2003) using Seiberg-Witten theory. Hence this case
must be excluded. Rosenberg pointed out that Conjecture 1 is false without as-
suming that π1(M) is of odd order. This and the failure of the conjecture in
dimension 4 imply that the metric obtaind from π1(M)-averaging a positive scalar
curvature metric on the universal cover of M is in general not of positive scalar
curvature. Conjecture 1 remains open in general in dimensions larger than 4.

Definition 2. Let p be a prime. A closed oriented manifold M of dimension d is
call p-atoral if for all ℓ ∈ N, ℓ ≥ 1, and cohomology classes c1, . . . , cd ∈ H1(M ;Z/pℓ)
we have (

c1 ∪ · · · ∪ cd
)
([M ]) = 0 ∈ Z/pℓ.

Otherwise M is called p-toral.

Remark 3.

• The d-torus T d = (S1 × · · · × S1)d, d ≥ 1, is p-toral for all p, and so are
all closed manifolds which are oriented bordant, over the classifying space
B(Z/p)d, to the canonical map T d = BZd → B(Z/p)d.

• It may be that p-toral manifolds for odd p do not admit positive scalar
curvature metrics. This would yield counterexamples to Conjecture 1.

In dimensions larger than or equal to 5 Conjecture 1 holds for p-atoral manifolds
whose fundamental groups are elementary abelian p-groups (p odd). This result is
due to Botvinnik-Rosenberg (2002, 2005) and to the author (2016). The following
is our main result. It resolves a problem stated in the 2002 paper of Botvinnik-
Rosenberg.

Theorem 4. Let M be a closed connected smooth manifold of dimension at least
5 with odd order abelian fundamental group. Assume that M is non-spin and p-
atoral for all primes p dividing the order of π1(M). Then M admits a Riemannian
metric of positive scalar curvature.
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In spirit of other existence results for positive scalar curvature metrics on high di-
mensional manifolds the proof of Theorem 4 is based on the propagation of positive
scalar curvature metrics along surgeries of codimension at least 3. We combine this
technique with the realization of singular homology classes by manifolds with Baas-
Sullivan singularities. To this end we introduce and discuss the concept of positive
scalar curvature metrics on manifolds with Baas-Sullivan singularities. Let ΩSO

∗

denote the oriented bordism ring and fix a family Q = (Q4i)i≥1 of closed oriented
manifolds of dimension 4i whose bordism classes form a set of polynomial genera-
tors of ΩSO

∗ /torsion, and each of which is equipped with a metric of positive scalar

curvature. Let ΩSO,Q
∗ (−) denote oriented bordism with singularities in Q. Baas-

Sullivan theory tells us that the natural transformation ΩSO,Q
∗ (−) → H∗(−;Z) is

an isomorphism after inverting 2. Given a topological space X we define a sub-

group HQ,+
∗ (X ;Z) ⊂ H∗(X ;Z), called the positive homology of X with respect to

Q. This group is generated by singular manifolds with Baas-Sullivan singulari-
ties admitting positive scalar curvature metrics. In particular, positive homology
classes need not be representable by smooth manifolds.

Theorem 5. Let M be a closed connected oriented smooth manifold of dimen-
sion d ≥ 5 with odd order fundamental group and which is non-spin. Let φ :
M → Bπ1(M) be the classifying map. Then M admits a metric of positive scalar

curvature, if and only if φ∗([M ]) ∈ HQ,+
d (Bπ1(M);Z).

It remains to show that under the conditions of Theorem 4 we have φ∗([M ]) ∈

HQ,+
d (Bπ1(M);Z). For this goal we first study the positive homology HQ,+

∗ (BΓ;Z)
for finite abelian p-groups Γ. The homology of BΓ can inductively be computed
by an exact Künneth sequence (with α ≥ 1)

0 → H∗(BΓ)⊗ H∗(BZ/pα)
×

−→ H∗(BΓ×BZ/pα) −→ Tor
(

H∗(BΓ),H∗(BZ/pα)
)

→ 0 .

The cross product can be realized by admissible products of manifolds with Baas-
Sullivan singularities, and the same is true for the torsion product, which is related
to a homological Toda bracket. By a variant of the well known “shrinking one
factor” argument the cross product of two homology classes is positive, if one of
the factors is positive. However we can in general show positivity of Toda brackets
only if both of the factors are positive. This excludes Toda brackets involving one
dimensional factors, represented by circles. Nevertheless we have the following
result.

Theorem 6. Let p be an odd prime, and let Γ be a finite abelian p-group. Then
all p-atoral classes in the image of ΩSO∗ (BΓ)→ H∗(BΓ;Z) are positive.

The proof of this fact relies on the homology of abelian p-groups and the rep-
resentability of certain homology classes in the classifying space of (Z/pα)n by
products of Z/pα-lens spaces. Theorems 5 and 6 imply Theorem 4 by a relatively
straightforward argument. We conjecture that Theorem 4 also holds for spin
manifolds with vanishing α-invariants. A proof should be based on real connective
K-homology instead of ordinary homology.
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Quasimorphisms on surface diffeomorphism groups

Sebastian Hensel

(joint work with Jonathan Bowden, Richard Webb)

Closed surfaces of genus g ≥ 2 are among the most fundamental and basic objects
in geometry and topology. Although surfaces are easy to describe and have been
studied intensively since the early twentieth century, their homeomorphism and
diffeomorphism groups show remarkable depth and complexity, and are still a rich
source of interesting open problems.

One can break the study of these groups into two complementary pieces: on the
one hand, there is the discrete mapping class group given by the path components
of the group of orientation preserving diffeomorphisms:

Mcg(S) = π0(Diff+(S)),

and on the other one hand, there is the identity component Diff0(S) of diffeomor-
phisms which are isotopic to the identity.

Until now, these two pieces have been studied with very different methods:
being finitely generated, the mapping class group fits into the realm of geometric
group theory, and this perspective has lead to enormous advances over the last
decades. The identity component is usually studied using geometric topology, and
remains much more mysterious

The philosophy behind our result is that it is possible to transfer geometric
methods (which have proven to be successful for mapping class groups) to the
realm of diffeomorphism groups.

Concretely, we proved the following:

Theorem 1 (Bowden-Hensel-Webb). The space of unbounded quasimorphisms on
Diff0(S) is infinite-dimensional.

Prior to this theorem, the existence of a single unbounded quasimorphism on
either Diff0(S) was unknown, and their existence is in fact somewhat surprising,
given previous results. Namely, up to now the behaviour in higher dimensions
was much better understood – and it is very different from the surface case. By
classical results of Mather and Thurston, the identity component of the diffeomor-
phism group Diff0(M) is perfect for any compact manifold. For all manifolds of
dimension not equal to 2 or 4 these groups are even uniformly perfect (Burago-
Ivanov-Polterovich, Tsuboi), meaning that any element can be written as a product
of commutators of uniformly bounded length. This means in particular that these
groups cannot admit any unbounded quasimorphisms.
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We also note that Theorem 1 has important implications for geometric properties
of surface homeomorphism and diffeomorphism groups. Namely, Burago-Ivanov-
Polterovich asked if there are any unbounded conjugation-invariant norms on these
groups. Theorem 1 then answers this in the positive and in particular the (strong)
fragmentation norm on this group is unbounded.

To prove Theorem 1, we construct a variant of the curve graph which works in this
setting. Curve graphs are a central tool in the study of mapping class groups. They
were originally introduced by Harvey, but their full potential has been observed
by Masur and Minsky, who showed that they are Gromov hyperbolic, and that
they can be used to hierarchically encode the geometry of mapping class groups.

Vertices of the (usual) curve graph correspond to isotopy classes of simple closed
curves on the surface, with edges corresponding to disjointness (up to isotopy). By
definition, the group Diff0(S) will act trivially on the curve graph. We define a fine
curve graph, whose vertices correspond to curves (as opposed to isotopy classes)
and edges to actual disjointess.

We show that the fine curve graph is hyperbolic, and in fact connect its geometry
to that of “usual” curve graphs of punctured surfaces. We then construct a large
class of diffeomorphisms which act as hyperbolic isometries on the fine curve graph.
Using a construction by Bestvina–Fujiwara we then construct quasimorphisms
which are unbounded on cyclic subgroups generated by these elements.

Fibring over the circle via group homology

Dawid Kielak

Perhaps the most naive question that one might ask when introduced to (compact,
connected, oriented) 3-manifolds for the first time is: what are the examples? An
extremely simple-minded way of producing many examples is to take a 2-manifold,
i.e., a surface Σ, and take a product with a circle, namely Σ×S1. A slightly more
involved variation on this idea is to add a twist – one way of thinking about Σ×S1

is that it is obtained from Σ× [0, 1] by gluing Σ× {0} to Σ× {1} via the identity
homeomorphism. One can take a different homeomorphism f ∈ Homeo+(Σ) and
use it instead of the identity when gluing. This way we obtain the mapping torus
Σ∗f of f . It is immediate that such a mapping torus is a 3-manifold. (Throughout,
we will implicitly assume that Σ is a surface of genus at least 2.)

Definition 1. We say that a 3-manifold M fibres if and only if we have M ∼= Σ∗f
for some surface Σ and its homeomorphism f .

As we have all learned from Thurston, 3-manifolds are best looked at through
their geometry. So what kind of geometry do fibring 3-manifolds carry?

Theorem 2 (Thurston [13]). A 3-manifold M ∼= Σ∗f is hyperbolic, that is, can
be endowed with a Riemannian metric of constant sectional curvature −1, if and
only if f is pseudo-Anosov.
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Being pseudo-Anosov means precisely not being isotopic to a homeomorphism of
finite order, or to one that permutes a finite system of disjoint closed geodesics on
Σ. Among homeomorphisms of Σ, pseudo-Anosovs are generic.

Now that we know how to construct many 3-manifolds, including many hyperbolic
ones, we may ask: are there any we cannot produce this way?

Theorem 3 (Agol [2]; Thurston’s Virtually Fibred Conjecture). Every hyperbolic
3-manifold M admits a finite cover which fibres.

We will sketch the proof, in two steps.

Step 1: LetG = π1(M). By a result of Kahn–Marković [6], M contains sufficiently
many surface subgroups to use a theorem of Bergeron–Wise [3] and conclude that
G acts freely and cocompactly on a CAT(0) cube complex X . We then use Agol’s
result [2] and find a finite-index subgroup H ≤ G which acts on X specially in the
sense of Haglund–Wise. Next, a paper of Haglund–Wise [5] tells us that H is a
subgroup of a RAAG (right-angled Artin group), and therefore of a right-angled
Coxeter group. Now Agol [1] tells us that H (and hence G) is virtually RFRS.

Step 2: We have learned that G is virtually RFRS. Let us recall the definition.

Definition 4. A finitely generated group G is residually finite rationally solvable
(or RFRS ) if and only if it admits a chain of subgroups

G = G0 ≥ G1 ≥ · · ·

satisfying

• for every i, the subgroup Gi is a normal subgroup of finite index of G,
•
⋂
iGi = {1},

• every surjection Gi → Gi/Gi+1 factors through Zni for some ni.

The following result connects the RFRS property back to fibring, and finishes
step 2 of our proof.

Theorem 5. Let M be an irreducible 3-manifold with non-trivial, RFRS funda-
mental group. Then M is virtually fibred if and only if the Euler characteristic
χ(M) vanishes.

A result of Lott–Lück [9] tells us that χ(M) = 0 is equivalent to the vanishing

of the first L2-Betti number β
(2)
1 (M), which depends only on G = π1(M), and can

be denoted by β
(2)
1 (G).

A result of Stallings [12] on the other hand says that an irreducible 3-manifold
M fibres if and only if its fundamental group G = π1(M) algebraically fibres, that
is, G admits an epimorphism to Z with a finitely generated kernel. We may thus
rephrase Agol’s theorem as follows.

Theorem 6. Let G be a non-trivial RFRS group, which is the fundamental group
of an irreducible 3-manifold. Then G is virtually algebraically fibred if and only if

β
(2)
1 (G) = 0.
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Phrased like this, an immediate question arises: how important is it for G to be
the fundamental group of a 3-manifold? It turns out that this is not important at
all.

Theorem 7 ([7]). Let G be a finitely generated non-trivial RFRS group. Then G

is virtually algebraically fibred if and only if β
(2)
1 (G) = 0.

There are two ingredients that come into the proof of the above result. The
first is the Atiyah conjecture, and more specifically the fact that RFRS groups are
residually {torsion-free nilpotent} (this is easy to see from the definition), that for
such groups the Atiyah conjecture was proven by Schick [10], and hence that the
L2-Betti numbers of G are computed by the D(G)-dimensions of H•(G;D(G)),
where D(G) is the Linnell skew-field – this last fact was shown by Linnell [8].

The second ingredient is the theorem of Sikorav [11], who showed that the kernel

of an epimorphism φ : G → Z is finitely generated if and only if H1(G; ẐG
φ
) =

H1(G; ẐG
−φ

) = 0, where ẐG
ψ

denotes the Novikov ring with respect to ψ : G→ Z.
The two ingredients connect virtual fibring and L2-Betti numbers to group

homology, and in [7] a connection on the level of rings is exhibited between D(G)

and Q̂G
φ
. An observant reader will notice that the coefficients in the Novikov ring

changed from Z to Q. For homology in dimension 1 this change is inconsequential.
There is a higher dimensional version of Sikorav’s theorem due to Schweizer [4],

which connects the vanishing of Hi(G;Q⊗Z ẐG
±φ

) to the kernel of φ being of type

FPi(Q). In [7] however we are working with Q̂G
φ

rather than Q⊗Z ẐG
φ
, and these

are not the same rings. Nevertheless, at this point one can formulate the following
natural conjecture.

Conjecture 8. Let G be a RFRS group of type FPn(Q). Then G admits a finite
index subgroup H and an epimorphism φ : H → Z with kernel of type FPn(Q) if

and only if β
(2)
i (G) = 0 for every i ≤ n.

References

[1] I. Agol, Criteria for virtual fibering, J. Topol., 1 (2008), no. 2, 269–284.
[2] I. Agol, The virtual Haken conjecture, With an appendix by Agol, Daniel Groves, and Jason

Manning, Doc. Math. 18 (2013), 1045–1087.
[3] N. Bergeron, D. T. Wise, A boundary criterion for cubulation, Amer. J. Math. 134 (2012),

no. 3, 843–859.
[4] R. Bieri, Deficiency and the geometric invariants of a group, With an appendix by Pascal

Schweitzer, J. Pure Appl. Algebra 208 (2007), no. 3, 951–959.

[5] F. Haglund, D. T. Wise, Special cube complexes, Geom. Funct. Anal., 17 (2008), no. 5,
1551–1620.

[6] J. Kahn, V. Markovic, Immersing almost geodesic surfaces in a closed hyperbolic three
manifold, Ann. of Math. (2) 175 (2012), no. 3, 1127–1190

[7] D. Kielak, Residually finite rationally solvable groups and virtual fibring, to appear in J.
Amer. Math. Soc.

[8] P. Linnell, Division rings and group von Neumann algebras, Forum Math. 5 (1993), no. 6,
561–576.



Manifolds and Groups 431

[9] J. Lott, W. Lück, L2-topological invariants of 3-manifolds, Invent. Math. 120 (1995), no. 1,
15–60.

[10] T. Schick, Erratum: “Integrality of L2-Betti numbers”, Math. Ann. 322 (2002), no. 2,
421–422.

[11] J.-C. Sikorav, Homologie de Novikov associée à une classe de cohomologie réelle de degré
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Pseudoisotopies of even discs, revisited

Manuel Krannich

The subject of pseudoisotopy or h-cobordism theory is the study of the homotopy
type of the topological group

C(M) = {φ : M × [0, 1]
∼=
−→M × [0, 1] | φ|M×0∪∂M×[0,1] = id}

of pseudoisotopies of a compact smooth manifold M in the smooth topology. In my
talk, I explained the following result from [5], which provides a p-local identification
of this homotopy type in the case of a closed 2n-dimensional disc D2n in terms of
the algebraic K-theory spectrum K(Z) of the integers in a range up to roughly the
dimension for primes p that are large with respect to the degree and the dimension.

Theorem 1. For n > 3, there exists a zig-zag

BC(D2n) −→ · ←− Ω∞+1
0 K(Z)

whose maps are p-locally min(2n− 4, 2p− 4− n)-connected for primes p.

So far, the relation of the homotopy type of spaces of pseudoisotopies with
algebraic K-theory was studied via a combination of a stability result of Igusa [4]
and foundational work of Waldhausen [7] and Waldhausen, Jahren, and Rognes
[8]. The proof of the theorem above is independent of this approach and provides a
new method to access spaces of pseudosisotopies of even-dimensional discs, which
does not involve stabilising the dimension, yields a better range in many cases,
and is homological (see [5] for an explanation). The most recent ingredient that
goes into the proof of this result is Botvinnik and Perlmutter’s computation of the
stable homology of the moduli space of high-dimensional handlebodies [2].

Rationally and combined with a result of Randal-Williams [6] and Borel’s work
on the stable cohomology of arithmetic groups [1], our theorem results in the follow-
ing partial computation of the rational homotopy groups of the group Diff∂(D2n+1)
of diffeomorphisms of an odd-dimensional disc fixing the boundary pointwise.

Corollary 2. There exists an isomorphism

π∗BDiff∂(D2n+1)⊗Q ∼= K∗+1(Z)⊗Q ∼=

{
Q if ∗ ≡ 0 (mod 4)

0 otherwise
for 0 < ∗ < 2n−5.
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Remark 3.

(1) In a range of degrees up to approximately 2n/3, these groups were previ-
ously known as a result of a computation of Farrell and Hsiang [3], who
combined Waldhausen’s approach to pseudoisotopy theory with the study
of a certain involution, neither of which the proof of the corollary requires.

(2) From work of Watanabe [9] on the value of certain characteristic classes
constructed by Kontsevich on disc bundles, one can deduce that the range
in the corollary is optimal up to at most three degrees.
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Scalable spaces

Fedor Manin

(joint work with Aleksandr Berdnikov)

As part of his foundational work in rational homotopy theory, Sullivan defined a
notion of a formal space, that is, one whose rational homotopy type is a “formal
consequence” of its rational cohomology algebra. For a manifold M , this means
that its cohomology algebra is quasi-isomorphic (that is, related by a zig-zag of
maps which are the identity on cohomology) to its algebra of differential forms.
An equivalent condition turns out to be the existence of an infinite sequence of
integers p and maps M → M which induce multiplication by pn on Hn(M ;Q)
[7]. A strengthened version of this notion turns out to play an important role in
quantitative homotopy theory. This program, laid out by Gromov in several places
in the 1990’s, most notably [4], is concerned with understanding questions such as
the following:
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(1) How can we estimate the geometric “complexity” of the “most efficient”
representative of a homotopy class of maps? How does this complexity
scale with the algebraic “size” of the homotopy class?

(2) If two maps are in the same homotopy class, how does the complexity of
the “most efficient” homotopy between them depend on the complexity of
the maps?

Most often, complexity (or efficiency) is measured using the Lipschitz constant.
In the simply connected world, the answers to these questions are closely tied to
rational homotopy theory, as has already been explored in e.g. [3], [2], [6]. Our
latest work [1] shows that spaces satisfying a metric version of formality (one
significantly weaker than the Riemannian formulation studied by Kotschick [5]
and others) exhibit particularly nice answers to these questions.

Theorem 1. The following are equivalent for a simply connected piecewise Rie-
mannian finite simplicial complex or compact Riemannian manifold Y :

(i) There is a homomorphism H∗(Y ) → Ω∗
♭Y of differential graded algebras

which sends each cohomology class to a representative of that class. (Here
Ω∗
♭Y denotes the flat forms, an algebra of not-necessarily-smooth differential

forms studied by Whitney.)
(ii) There is a constant C(Y ) and infinitely many (indeed, a logarithmically dense

set of) p ∈ N such that there is a C(Y )(p + 1)-Lipschitz self-map which
induces multiplication by pn on Hn(Y ;R).

(iii) Y is formal, and for all finite simplicial complexes X, nullhomotopic L-
Lipschitz maps X → Y have C(X,Y )(L+ 1)-Lipschitz nullhomotopies.

(iv) Y is formal, and for all n < dim Y , homotopic L-Lipschitz maps Sn → Y
have C(X,Y )(L + 1)-Lipschitz homotopies.

We call spaces satisfying (i)–(iv) scalable, after the scaling maps of (ii). It
is worth noting that scalability is an invariant of rational homotopy type and
that conditions (i) and (ii) can each be read as strengthenings of the equivalent
conditions defining formality. Examples include symmetric spaces (where one can
realize (i) by sending every class to its harmonic representative, as noted already

by Sullivan) but also many others. For example, (CP 2)#3 # (CP 2)#3 is scalable
while (CP 2)#4 is not; (S8 × S8)#6435 is scalable while (S8 × S8)#6436 is not. The
examples we have so far suggest the following line of inquiry:

Question 2. Is scalability an R-homotopy invariant? For that matter, is a space
Y scalable if and only if there is a dga embedding H∗(Y ;R)→

∧∗
RN for some N

(a finitary, purely local criterion)?

Spaces that are formal but not scalable display some subtle properties. For ex-
ample, the “distortion conjecture” of Gromov from [4] would imply in particular
that if M is a punctured simply connected n-manifold and α ∈ πn−1(M) is the
homotopy class of the puncture, then kα has a representative with Lipschitz con-
stant O(k1/n)—significantly more efficient than the obvious “wrap k times around
the puncture”, which would have Lipschitz constant ∼ k1/(n−1). We show that
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Gromov’s conjecture holds for scalable spaces, while giving the following coun-
terexample in general:

Theorem 3. Let M be the punctured S2 × (CP 2)#4. Then if α ∈ π5(M) is the
class of the puncture, then the growth of Lip(kα) (the optimal Lipschitz constant
of a representative of kα) is ω(k1/6).

However, this bound is tantalizingly incomplete, disproving Gromov’s conjec-
ture while giving no further information.

Question 4. What is the true distortion of the element α above? Can one find a
lower bound which grows strictly faster than k1/6, or an upper bound lower than
the obvious k1/5?

Finally, it is unclear how linearity of nullhomotopies plays out in non-formal
spaces. We have an example of a space which is non-formal and otherwise satisfies
condition (iv), but not condition (iii) of the main theorem.

Question 5. Does condition (iii) imply formality?

The answer to this, whether positive or negative, is likely to rely on highly
algebraic phenomena.
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Rigidity, the complex of free factors, and the
commensurator of Aut(F )

Martin R. Bridson

(joint work with Mladen Bestvina, Richard D. Wade)

There is a well established and powerful three-way analogy between mapping class
groups of compact surfaces, automorphism groups of free groups, and lattices in
semisimple Lie groups, particularly SL(n,Z). Classical rigidity results concerning
lattices have provided inspiration for the exploration of different manifestations
of rigidity among mapping class groups and automorphism groups of free groups,
and the results presented in this talk contribute to this topic.
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One type of rigidity result involves the identification of natural exact models for the
groups being studied. The fundamental theorem of projective geometry provides a
prototype for such theorems, and Tits’ Theorem showing that all automorphisms
of thick buildings arise from the underlying algebraic group extends this. In the
setting of mapping class groups, Ivanov’s Theorem shows that for a closed surface
S of genus at least 3, the action of the mapping class group on the complex of
curves C gives an isomorphism Mod(S) → Aut(C), where Aut(C) is the group of
simplicial automorphisms. From this result, Ivanov deduced that the natural map
from Mod(S) to its abstract commensurator is an isomorphism.

Recall that the abstract commensurator Comm(Γ) of a group Γ is the group
formed by equivalence class of isomorphisms between finite-index subgroups of
Γ, where two isomorphisms are equivalent if they agree on a common subgroup
of finite index. A celebrated theorem of Margulis states that a lattice Γ in a
semisimple Lie group is arithmetic if and only if the image of the map Γ →
Comm(Γ), given by conjugation, has finite index.

For Aut(Fn), the automorphism group of a free group of rank n, a natural
analogue of the curve complex is the complex of free factors Fn. This is the
geometric realisation of the poset of free factors A < Fn ordered by inclusion.
There is a natural action of Aut(Fn) on Fn and of Out(Fn) on [Fn] = Fn/Inn(Fn).

The following theorem was proved by myself and Mladen Bestvina a few years
ago and will appear on the arxiv shortly.

Theorem 1. The natural maps Aut(Fn) → Aut(Fn) and Out(Fn) → Aut[Fn]
are isomorphisms for n ≥ 3.

We had hoped that this would lead directly to a proof of commensurator rigidity
for Out(Fn) and Aut(Fn), in the manner of Ivanov’s theorem, but this proved
difficult. By different means, Farb and Handel (n ≥ 4) and Horbez and Wade (n ≥
3) proved that the natural map Out(Fn) → Comm(Out(Fn)) is an isomorphism
for n ≥ 3.

In a recent work, Ric Wade and I classify the subgroups of Aut(Fn) that are
direct products of r non-abelian free groups, where r = 2n − 3 is maximal. By
combining knowledge of these subgroups with Theorem 1 and ideas from its proof
we are able to prove:

Theorem 2. For n ≥ 3, the natural map Aut(Fn) → Comm(Out(An)) is an
isomorphism.

The proof shows that Aut(Fn) is also the abstract commensurator of various of
its natural subgroups.
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Detecting second order intersections of loops with string topology

Nathalie Wahl

(joint work with Nancy Hingston)

Let M be a closed, oriented manifold of dimension n, with LM = Maps(S1,M)
its free loop space. We consider the two following string topology operations on
the homology of LM :

• The Chas-Sullivan product H∗(LM × LM)
∧
−→ H∗−n(LM);

• The string coproduct H∗(LM)
∨
−→ H∗+1−n(LM × LM);

where the coproduct is the “extension by zero” on the constant loops of the
Goresky-Hingston coproduct, as considered in [1]. In [1, Rem 3.21], it is shown
that these operations do not satisfy the following Frobenius identity:

∨(A ∧B) 6= (∨A) ∧B) +A ∧ (∨B).

The failure of this identity can be considered as a new operation

H∗(LM × LM) −→ H∗+1−2n(LM × LM),

defined as the difference between the left hand side and the right hand side in the
above equation. We show that this operation detects second order intersections of
loops in the following sense:

Theorem 1. Let A,B ∈ H∗(LM) be homology classes that admit chain represen-

tatives Â, B̂ in smooth loops, such that for each α in the image of Â and β in the
image of B̂, if α(0) = β(0), then the derivatives α′(0) and β′(0) are transverse,
i.e. they span a 2–dimensional subspace of Tα(0)M = Tβ(0)M . Then the Frobenius
identity does hold for the pair (A,B), i.e.

∨(A ∧B) = (∨A) ∧B) +A ∧ (∨B).

This result can be reformulated as follows:

Corollary 2. If A,B ∈ H∗(LM) are such that ∨(A∧B) 6= (∨A)∧B)+A∧ (∨B),
then A and B do not admit transverse representatives in the sense of the theorem.

For example, let Sn be a sphere of odd dimension n ≥ 3, and consider a gen-
erator Θ ∈ H3n−2(LSn) ∼= Z. The class Θ can be represented in smooth loops
by the class of all circles, great and small, where a circle is the intersection of a
hyperplane with the sphere. In [1, Rem 3.21], we showed that the above identity
fails for the pair (Θ,Θ). Applying our result, we can conclude that the class Θ
cannot be made transverse to itself, in the sense we have described. And one can
quickly check that the representative of the class Θ as all circles, great and small,
is in fact far from being transverse to itself.
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The homotopy types of algebraic cobordism categories and
Grothendieck-Witt theory

Fabian Hebestreit

(joint work with B. Calmès, E. Dotto, Y. Harpaz, M. Land, K. Moi, D. Nardin,
T. Nikolaus, W. Steimle)

Through the work of Galatius, Madsen, Randal-Williams, Tillmann and Weiss
there has been a significant increase in the understanding of the continuous group
(co)homology of diffeomorphism groups (in even dimensions not 4), see for example
[2, 3, 6]. In the simplest case, namely that of the manifolds

W 2n
g = (Sn × Sn)♯g,

the calculations are based on equivalences

(1)


∐

g∈N

BDiff(Wg,D
2n)




grp

−→ Ω|Cobθn2n| −→ Ω∞MTθn

The left hand term consists of classifying space of diffeomorphisms fixing a speci-
fied disc pointwise. Because of these discs the indicated collection admits a well-
defined connected sum operation turning it into an E2n-space (i.e. a somewhat
commutative topological monoid). The superscript indicates its (homotopical)
group completion. The homology of the left hand side is then related to the
homologies of the individual terms BDiff(Wg,D

2n) by the group completion theo-
rem of McDuff–Segal. In particular, information about the (co)homology of these
classifying spaces can be obtained by studying the (co)homology of the left hand

term. In the middle term Cobθd is the cobordism (∞-)category associated to a d-
dimensional vector bundle θ: It has as objects closed d− 1-dimensional manifolds
equipped with a bundle map TM ⊕ R→ θ and as morphisms cobordisms of such
manifolds. Its higher structure is arranged so that

HomCobθ
d
(M,N) ≃

∐

W : M N

BDiffθ∂(W ),

with the right hand side denoting diffeomorphisms whose differential is compatible
with the θ-structure (which in general is additional structure, but let me not dwell
on that point). In particular, denoting by θn the pullback of the universal vector
bundle along the connective cover

τ>n(BO(2n)) −→ BO(2n)

then the forgetful map

BDiffθn(Wg ,D
2n) −→ BDiff(Wg,D

2n)

is an equivalence by obstruction theory, and we obtain maps

BDiff(Wg,D
2n) −→ HomCobθn

2n
(∅, ∅) −→ Ω|Cobθn2n|,
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since every endomorphism in a category defines a loop in its realisation. As the
target is a group complete monoid this map induces the left map in the original
sequence (1) by the universal property of group completions.

The second map in (1) is a parametrised refinement of the Pontryagin-Thom
construction, and generally MTθ is the Thom spectrum of the −d-dimensional
virtual bundle −θ. The cohomology of its infinite loop space is then accessible
through the Thom isomorphism and standard methodology of algebraic topology.

In (homotopical) algebra the left hand term has an analogue: Fix a ring R,
commutative for ease of presentation. Then

(∐

P

BGl(P )

)grp

= k(R),

is Quillen’s algebraic K-theory space, where P runs over Proj(R), the finitely
generated projective R-modules; the left hand side is then an E∞-space under
direct sum of modules. K-theory spaces are of great interest in both geometric
topology and number theory: As an illustration, on the one hand low-dimensional
K-groups house invariants such as Wall’s finiteness obstruction and Whitehead’s
torsion, and on the other the abelianised absolute Galois-group of local, global or
finite fields can be extracted from a mix of their K-theory and topological cyclic
homology (this recently lead to a conceptually new proof of Artin’s reciprocity law
in [1]). As another example the Kummer–Vandiver conjecture on class numbers
of cyclotomic fields is famously equivalent to π4kk(Z) = 0, the last remaining
unknown part of k(Z).

Analogous to the algebraic K-theory one can define the Grothendieck–Witt
space of R and a form parameter Λ (i.e. a choice of symmetric, quadratic, anti-
symmetric, even...) by


∐

(P,q)

BO(P, q)




grp

= gw(R,Λ),

where (P, q) runs over the unimodular Λ-forms on a finitely generated projective
R-module. By work of Karoubi and Schlichting [4, 7] the spaces gw(R,Λ) are
fairly well understood if 2 is a unit in R, in which case, however, much subtlety in
the theory of forms is lost. They considered the hyperbolisation map

k(R)hC2
−→ gw(R,Λ),

essentially assigning to a projective module P the unimodular form on P ⊕ P ∗

given by evaluation. The result is that its cofibre (as E∞-spaces) has 4-periodic
homotopy groups which are given by certain flavours of Witt groups and thereby
comparatively easy to compute. An extension of such a fibre sequence to general
R had been variously conjectured, but no concrete suggestion for the cofibre term
exists in the literature.

In the talk I explained that to a general pair (R,Λ) one can associate a Poincaré
category, a concept due to Lurie [5]. It consists of a stable ∞-category C together
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with a quadratic functor Q : Cop → E∞-Grp to the category of coherently com-
mutative and associative monoids in spaces. The latter is to be thought of as
associating to an object X ∈ C some flavour of hermitian forms on X . There is
a non-degeneracy condition placed on (C,Q), giving in particular rise to duality
self-equivalence DQ : Cop → C. The underlying category associated to R is then
Dperf(R) consisting of perfect chain complexes over R, and the quadratic func-
tor QΛ

R is the animation (or in more classical terminolgy the non-abelian derived
functor) of the functor

Proj(R)op −→ Ab, P 7−→ {not necessarily unimodular Λ-forms on P}.

To the data of such a Poincaré category (C,Q) there is then associated a space of
Poincaré forms in (C,Q): It consists of pairs (X, q), where X ∈ C and q ∈ Q(X),
for which an associated map

q♯ : X −→ DQ(X)

is an equivalence. In particular, the definitions are arranged so that any unimod-
ular Λ-form over R gives rise to a Poincaré object in (Dperf(R),QΛ

R). To the data
of a Poincaré category (C,Q) one can, following Lurie and Ranicki, assign an L-
theory spectrum L(C,Q) and furthermore, the K-theory spectrum K(C) acquires
a C2-action through the duality DQ.

Adding to this list of invariants I constructed in the talk for a Poincaré cat-
egory a cobordism (∞-)category Cob(C,Q) and a Grothendieck–Witt spectrum
GW(C,Q), such that there are maps

(2) gw(R,Λ) −→ Ω|Cob(Dperf(R),QΛ
R)|,

and

(3) |Cob(C,Q)| −→ Ω∞−1GW(C,Q)

completely analogous to those considered in (1) in the setting of diffeomorphisms.
As the main result of my talk I presented the following pair of results, which put
the algebraic situation into striking analogy with the geometric one sketched at
the beginning:

Theorem 1 (H–Steimle). The map (2) is an equivalence for all rings R and form
parameters Λ.

Theorem 2 (#9). For every Poincaré category (C,Q)

i) the map (3) is an equivalence,
ii) there is a natural cartesian square

GW(C,Q) //

��

L(C,Q)

Ξ��
K(C)hC2 // K(C)tC2 ,

and therefore
iii) a fibre sequence

K(C)hC2 −→ GW(C,Q) −→ L(C,Q).



440 Oberwolfach Report 7/2020

Abbreviating L(Dperf(R),QΛ
R) to L(R,Λ) one thus obtains a fibre sequence

k(R)hC2
−→ gw(R,Λ) −→ Ω∞L(R,Λ)

for general R and Λ.
In a follow-up talk Markus Land presented an analysis of the terms L(R,Λ) for

various choices of Λ leading, in particular, to a complete calculation of gw(Z,Λ)
in terms of the almost completely known algebraic K-groups of the integers. Let
me here just mention, that the spectra L(R,Λ) are not generally 4-periodic if 2
is not a unit in R, and therefore not quite equivalent to any of Ranicki’s classical
L-theory spectra.
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Invariants of groups and metric spaces related to Travelling
Salesman Problem

Anna Erschler

(joint work with Ivan Mitrofanov)

In [1] We study asymptotic invariants of metric spaces and infinite groups related
to (universal) Travelling Salesman Problem (TSP).
Let (M,d) be a metric space and T be a linear order on M . For a finite subset
X ⊂M we consider the restriction of the order T on X , and enumerate the points
of X accordingly:

x1 ≤T x2 ≤T x3 ≤T · · · ≤T xk
where k = #(X). We denote by lT (X) the length of the corresponding path

lT (X) := d(x1, x2) + d(x2, x3) + · · ·+ d(xk−1, xk).

Denote by lopt(X) the minimal length of a path passing through all points of X ,
we choose this path among k! paths visiting exactly once points of X .

Definition 1. For the ordered metric space M = (M,d, T ) we define the Ordering
Ratio function

ORM,T (k) := sup
X⊂M|2≤#(X)≤k

lT (X)

lopt(X)
.
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For an (unordered) metric space (M,d) we also define the Ordering Ratio Function
as

ORM (k) := inf
T

ORM,T (k).

The ratio between the value provided by an algorithm and its actual value is called
competitive ratio in computer science literature, so our function OR corresponds to
the competitive ratio for Universal Travelling Salesman Problem, for the problem
that searches the dependence on the number of points k. Recall a metric space
M is uniformly discrete, if there exists δ > 0 such that for all pairs of points
x 6= y the distance between x and y is at least δ. We show that for uniformly
discrete spaces the asymptotic class of the Ordering Ratio function behaves good
with respect to quasi-isometries. In contrast with previous works on competitive
ratio of Universal Travelling Salesmans Problem, we are interested not only in this
asymptotic behaviour but also in particular values of OR(k). We will in particular
study Travelling Salesman girth of an order:

Definition 2. Let M be a metric space, T be an order on M . We say that the
Traveling Salesman girth TSgirth(M,T ) = s if s is the smallest integer such that

OR(M,T )(s) < s− 1. If such s does not exist, we say that TSgirthM =∞.

The Travelling Salesman girth describes the minimal value k where for which
using the given order to solve TSP has some efficiency. The word ”girth” is chosen
with some analogy with girth of a group G with respect to a finite generating set
S, that is, the smallest length of a non-trivial loop in the Cayley graph. It is clear
that the girth g of a group is related to the smallest value k such that the growth
function of (G,S) is strictly smaller than the growth function of the group with the
same number of generators; indeed, k = ⌈ g2⌉. Likewise, the Travelling Salesman
Girth is the smallest number of points for which OR(k) is strictly smaller than its
maximal possible value (k − 1) From definition, it is clear that if M has at least
two points then TSgirth (M,T ) ≥ 3 and it is easy to see that TSgirth(M,T ) = 3 if
M is finite. It is also not difficult to see that a bounded degree infinite graph M
has the Travelling Salesman girth equal to 3 if and only if M is quasi-isometric
to a ray or a line. We characterize finitely generated groups with small (≤ 4)
Travelling Salesman Girth:

Theorem 3 (Theorem A). Let G be a finitely generated group. G admits an order
T with TSgirth(G,T ) ≤ 4 if and only if G is virtually free.

The idea to solve a Travelling Salesman problem on a set M by ordering all its
points, and then, given a finite set of M , to visit them with respect to this order,
is introduced by Bartholdi and Platzman [BP82], [PB89]. Their observation was
that this approach works good for subspaces of a plain lattice, significantly faster
than general algorithms for finite graphs. Their argument implies a logarithmic
upper bound for the function OR(k). There exist spaces where the function OR is
even better. Namely, it is not difficult to check that OR(k) is bounded by constant
2 for metric trees.

We prove that this best possible situation (OR(k) is bounded by above by a
constant) holds true for hyperbolic spaces.
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Theorem 4 (Theorem B). Let M be a δ-hyperbolic graph of bounded degree. Then
there exists an order T and a constant C such that for all k

ORM,T (k) ≤ C.

Since by a theorem of Bonk and Schramm [BS00] any δ-hyperbolic space of
bounded geometry can be quasi-isometrically imbedded to Hd, taking in account
Lemma about quasi-isometric imbeddings, the main goal in the proof of Theorem
is to prove it for subsets of Hd. We do it by choosing an appropriate tiling of this
space, an appropriate tree and we study the hierarchical order with respect to this
tree.

While in the original paper of Bartholdi and Platzman it was suggested that
such efficient behaviour holds for Zd, as we have already mentioned, it is known
that it is not the case (unless d = 1).

Theorem 5 (Theorem C). If M is a metric space of finite Assouad Nagata di-
mension, then

ORM (k) ≤ C ln k.

Moreover, if the Assouad Nagata dimension of M is at most m and if for all
r > 0 the space M admits a covering, satisfying the assumption of the definition
of AN dimension, with m-dimension control function at most Kr, then the positive
constant C can be chosen depending only on m and K.

The worst possible case for solving Universal TSP are spaces with linear OR(k).
An example of sequence of finite graph with linear OR(k) is constructed in Goro-
dezky et al [GKSS10], see also Bhalgat et al [BCK11] who show that a sequence of
Ramanujan graphs with large of bounded diameter-by-girth ratio has this prop-
erty. Since a result of Osajda allows to imbed subsequences of graphs with large
girth into Cayley Graphs, combining his result with that of [GKSS10] we can con-
clude that there exist groups with linear OR(k). It can be deduced from Lusternik
Schnirelman theorem that any ordering of an ε net of a sphere Sk contains snakes
(zigzags) on k + 2 points, alternating between neighborhoods of nearly antipo-
dal points. Combining it with the control of Ordering Ratio function for weak
imbeddings of spheres we get

Theorem 6 (Theorem D). If a space M admits a weakly imbedded sequence of
arbitrarily large spheres, then for any order T on M and any k

ORM,T (k) = k − 1

While we give the definition of a space to contain weakly arbitrarily large spheres
and a stronger notion to contain weakly arbitrarily large cubes, we mention here
that the class of such spaces includes spaces admitting uniform imbeddings of Zd.
In particular, this condition holds for any finitely generated group G that contains
Z∞ as a subgroup. Further examples of spaces that weakly contain arbitrarily
large cubes (and spheres) are Z2 ≀ A, for example Z2 ≀ Z/2Z and more generally
B ≀ A, where B is an infinite group of not linear growth and A is any finite or
infinite group containing at least two elements. In view of the results mentioned
above we ask:
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Question 7. Let M be a metric space of infinite Assouad Nagata dimension. Is
it true that the Travelling Salesman girth of M is infinite?

Observe that if the answer to this question is positive, this would provide a
positive answer to the following

Question 8 (Gap Problem for existence of orders). LetM be an uniformly discrete
metric space. Is it true that either for any order T on M and all k ≥ 1 it holds
ORM,T (k) = k − 1 or there exists an order T such that for all k ≥ 1 it holds
ORM,T (k) ≤ Const ln k?

Given a metric space, one can formulate a stronger Gap problem, which de-
scribes behavior of all orders (rather then searches an order on the space). Our
next result below solves this problem for spaces with doubling property:

Theorem 9. Theorem E[Gap for Ordering ratio functions on spaces with doubling]
Let M be a metric space with doubling and T be an order on M . Then either for
all s it holds

ORT,M (s+ 1) = s

or there exists C (depending only on the doubling constant of M , s and ε such
that ORM,T (s+ 1) = s− ε) such that

ORM,X(s) ≤ C ln s
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Grothendieck–Witt groups of the integers

Markus Land

(joint work with B. Calmès, E. Dotto, Y. Harpaz, F. Hebestreit, K. Moi,
D. Nardin, T. Nikolaus, W. Steimle)

This talk was a follow up to a previous talk given by Fabian Hebestreit. One of
the main results explained in Hebestreit’s talk was a fibre sequence of spectra

(1) K(C)hC2 −→ GW(C,Q) −→ L(C,Q)

associated to each Poincaré ∞-category (C,Q). The purpose of my talk was to
make this more explicit in an example and indicate how it leads to the calculation
of the Grothendieck–Witt groups of Z in its various flavours:

Theorem 1. We have the following table of Grothendieck–Witt groups of Z.

n 0 1 2 3 4 5 6 7
GWs

n(Z) Z2 (Z/2)3 (Z/2)2 Z/24 Z 0 0 Z/240
KSpqn(Z) Z⊕ Z/2 Z/4 Z Z/24 Z/2 Z/2 Z Z/240

Let us consider a discrete ring R with an involution. Associated to this ring
we may consider its category of perfect complexes Perf(R) = Dω(R) also known
as the compact objects in the derived ∞-category of R. Concretely, objects in
this category are represented by chain complexes of finitely generated projective
R-modules which are non-zero only in a finite range of degrees. In particular, there

is a canonical functor ProjfgR → Perf(R) obtained by viewing a finitely generated
projective module as a complex concentrated in degree zero. In order to pro-
mote this category to a Poincaré∞-category we need to equip it with a Poincaré
structure, i.e. with a non-degenerate quadratic functor. Any such gives rise to

a duality equivalence D : Perf(R)op
≃
→ Perf(R). Let us now only consider those

non-degenerate quadratic functors whose associated duality is the standard one:
D(M) = HomR(M,R). We have the following characterization of such Poincaré
structures on Perf(R):

Lemma 2. Poincaré structures on Perf(R) with associated duality D(M) =
HomR(M,R) are determined by an R module N and a map N → RtC2 of R-
modules.

Here RtC2 is an object of D(R) and denotes the Tate construction of the C2-
action induced by the involution on R. The homology groups of this complex are
the Tate cohomology of C2 acting on R. It is an R-module in a non-trivial way:
There is a map R → (R ⊗ R)tC2 called the Tate-diagonal [1]. Furthermore, RtC2

is an (R ⊗R)tC2-module as R is an (R ⊗R)-module since R is equipped with an
involution.

Definition 3. We call the Poincaré structure associated to the map τ≥0(RtC2)→
RtC2 the genuine Poincaré structure of the ring R. The associated quadratic
functor will be denoted by Qg : Perf(R)op → Sp.
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I discussed the following characterisation of this genuine Poincaré structure:

Proposition 4. The restriction of the functor Qg along the canonical inclusion

ProjfgR → Perf(R) takes a finitely generated projective module P to the (Eilenberg–
Mac Lane spectrum on the) abelian group HomR⊗R(P ⊗ P,R)C2 of symmetric
bilinear forms on P . It is uniquely characterized by this property, and is the non-
abelian derived functor in the sense of Dold–Puppe of P 7→ HomR⊗R(P ⊗P,R)C2 .

It is a theorem of Hebestreit–Steimle that GW(Perf(R),Qg) recovers the group
completion of the symmetric monoidal groupoid of non-degenerate symmetric bi-
linear forms on R, as indicated in Hebestreit’s talk. In the following Corollary, I
simply write the symbol Z for the Poincaré ∞-category (Perf(Z),Qg).

Corollary 5. For n ≥ 0 there is an isomorphism

GWn(Z)[ 12 ] ∼= Kn(Z)[ 12 ]C2 ⊕ Ln(Z)[ 12 ].

I then explained how to use algebraic surgery to prove the following theorem.

Theorem 6. Let R be a ring with involution. Then the homotopy groups of
L(Perf(R),Qg) can be expressed as follows:

πk(L(Perf(R),Qg)) ∼=





Lshort
k (R) for k ≥ 0

Wev
k+2(R,−) for k = −1,−2

Wq
k(R) for k ≤ −3

Here, Wev
∗ (R,−) denotes the Witt groups of unimodular even, antisymmetric

forms and formations, and Wq
∗(R) denotes the Witt groups of unimodular qua-

dratic forms and formations. The groups Lshort
k (R) denote the symmetric algebraic

L-groups of Ranicki [2] and are such that Lshort
k (R) ∼= Ws

0(R) where the latter de-
notes the Witt group of unimodular symmetric forms.

The non-negative symmetric L-groups of the integers have been calculated by
Ranicki, so we obtain for n ≥ 0

Lshort
n (Z) ∼=





Z if n ≡ 0(4)

Z/2 if n ≡ 1(4)

0 else.

To then calculate the Grothendieck–Witt groups of the integers (including the
2-torsion), one considers the canonical pullback square associated to the fibre
sequence (1):

GW(Z) L(Z)

K(Z)hC2 K(Z)tC2

Using localization and dévissage in L-theory, we can show that the right vertical
map in this diagram induces a 2-adic equivalence on connective covers. Hence the
same is true for the left vertical map:
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Corollary 7. The map GW(Z)→ K(Z)hC2 induces an equivalence on connective
covers.

From this, one can calculate the Grothendieck–Witt group of the integers, con-
ditional on the Kummer–Vandiver conjecture in general, and unconditional in a
range far beyond the table displayed above. This relies on the understanding of
the algebraic K-theory of the integers, which by the proven Quillen–Lichtenbaum
conjecture is controlled by étale cohomology. I mention that these calculations
have also recently been achieved by Schlichting [3], conditional on work to appear
which also proves the existence of the pullback diagram we have used.
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On the h-cobordism category

Wolfgang Steimle

(joint work with Georgios Raptis)

The h-cobordism category, denoted by Cob∼
d , is a topological category which is

(roughly) defined as follows: An object is a compact (d− 1)-dimensional manifold
M , possibly with boundary; the topology on the set of objects is defined in such
a way that the space of objects becomes a classifying space for bundles of (d− 1)-
dimensional smooth manifolds. A morphism from M to N is an cobordism

M
≃ // W N

≃oo

∂M
≃ //

OO

∂hW

OO

∂N

OO

≃oo

between the manifolds with boundary M and N (a smooth manifold with corners
at ∂M and ∂N), which is an h-cobordism in the sense that all labeled maps are
homotopy equivalences. The set of morphisms is also topologized in a way that
it becomes a classifying space of h-cobordism bundles. Composition is defined
by glueing of cobordisms. There is a variation of this definition, denoted Cob∼

θ ,
where objects and morphisms carry generalized orientations, that is, vector bundle
maps from the tangent bundle to a fixed d-dimensional vector bundle θ. Our main
result relates the classifying space of this category to Waldhausen’s space H(M)
of h-cobordisms on a given compact manifold M . A point in this space is an h-
cobordism W from M to some compact manifold N , which is ∂-trivial in the sense
that the “horizontal” boundary piece ∂hW of W is identified with the cylinder
M × [0, 1] (so, in particular, ∂M is identified with ∂N).
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Theorem 1 ([1]). Let d ≥ 7, and let M be an object of Cob∼
θ . For any ∂-trivial

h-cobordism (W ;M,N) on M , there is a homotopy fiber sequence

Emb∼
θ (M,N)→ ΩMB Cob∼

θ → H(M),

where the loop space is based atM , and the homotopy fiber is taken over (W ;M,N)
in H(M).

Here, the first space in the sequence is the space of θ-h-embeddings from M into
N , where “h” refers to the requirement that the complement of the embedding
be an h-cobordism, and “θ” refers to the datum of an additional identification
between the θ-structures on M and N . For the specific tangential structure θM
given by the tangent bundle of M itself, we obtain from Theorem 1 the following
result:

Theorem 2 ([1]). Let d ≥ 7 and let M be a compact connected smooth (d − 1)-
manifold of handle dimension k, regarded as an object of Cob∼

θM . There is a
(d− 2k − 2)-connected map

ΩMB Cob∼
θM → H(M).

From the stable parametrized h-cobordism theorem [3], we deduce from Theo-
rem 2:

Corollary 3. Let M be a compact connected smooth (d− 1)-manifold. There is
a homotopy equivalence

hocolimn ΩM×DnB Cob∼
θM×Dn ≃ Ω Whdiff(M).

Here, Whdiff(M) denotes the Diff Whitehead space of M [2], a space defined
through algebraic K-theory, which only depends on the homotopy type of M .
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Asympotic of twisted Alexander polynomials and hyperbolic volume

Léo Bénard

(joint work with Jérôme Dubois, Michael Heusener and Joan Porti)

We study a family of polynomial invariants of hyperbolic 3-manifolds: the twisted
Alexander polynomials. Twisted Alexander polynomials of knots have been de-
fined by Lin [4] and Wada [6]. Kitano [3] showed that they are Reidemeister tor-
sions, generalizing Milnor’s theorem on the (untwisted) Alexander polynomial [5].
Here we take the Reidemeister torsion approach to define the twisted Alexander
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polynomial for oriented, cusped, hyperbolic three-manifolds of finite volume. An
orientable hyperbolic three-manifold has a natural representation of its funda-
mental group into PSL2(C), the hyperbolic holonomy that is unique up to con-
jugation.The holonomy representation lifts to SL2(C), and a lift is unique up to
multiplication with a representation into the center of SL2(C). The corresponding
twisted Alexander polynomial has been considered, among others, by Dunfield,
Friedl and Jackson in [1]. Here we compose the lift of the holonomy represen-
tation with the irreducible representation of SL2(C) in SLn(C), the (n − 1)-th
symmetric power, and study its asymptotic behavior. Although in the paper we
consider non-compact, orientable, hyperbolic three-manifolds of finite volume in
general, here we discuss only the case of a hyperbolic knot complement S3 \ K
for simplicity. Let ρn : π1(S3 \ K) → SLn(C) be the composition of a lift of the
holonomy with the (n−1)-th symmetric power SL2(C)→ SLn(C). Let ∆ρn

K denote
the Alexander polynomial of K twisted by ρn, which equals Wada’s definition for
n even, but it is Wada’s polynomial divided by (t− 1) when n is odd, so that its
evaluation at t = 1 does not vanish. The set of unit complex numbers is denoted
by S1 = {ζ ∈ C | |ζ| = 1}. The following is a particular case of the main result of
this paper.

Theorem 1. For any ζ ∈ S1,

lim
n→∞

log |∆ρn
K (ζ)|

n2
=

1

4π
vol(S3 \K)

uniformly on ζ.

The definition of twisted Alexander polynomial as a Reidemeister torsion re-
quires a vanishing theorem in cohomology. Its proof mimics the classical vanishing
theorem on L2-cohomology of Matsushima–Murakami, as we explain in an Appen-
dix. As a direct consequence of this vanishing theorem, we obtain that the twisted
Alexander polynomials have no roots on the unit circle:

Theorem 2. For any ζ ∈ S1, ∆ρn
K (ζ) 6= 0.

We apply this theorem to study the dynamics of a pseudo-Anosov diffeomor-
phism on the variety of representations. Let Σ be a compact orientable surface,
possibly with boundary and with negative Euler characteristic. For a pseudo-
Anosov diffeomorphism φ : Σ → Σ, consider its action on the relative variety of
(conjugacy classes of) representations φ∗ : R(Σ, ∂Σ, SLn(C))→ R(Σ, ∂Σ, SLn(C)).
The mapping torus M(φ) is a hyperbolic manifold of finite volume and its ho-
lonomy restricts to a representation of π1(Σ) in SL2(C) whose conjugacy class
is fixed by φ∗. In particular the conjugacy class of the composition [ρn] =
[Symn−1 ◦hol|π1(Σ)] in R(Σ, ∂Σ, SLn(C)) is fixed by φ∗. We prove:

Theorem 3. The tangent map of φ∗ at [ρn] on R(Σ, ∂Σ, SLn(C)) has no eigen-
values of norm one. Namely, of φ∗ has hyperbolic dynamics at [ρn].

For n = 2 and ∂Σ = ∅, this was proved by M. Kapovich in [2]. The first part of
the talk will be mainly about motivations and context, and we present informally
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some of our results. Then we will try to explain part of the proof of Theorem 1.
The core of the proof deals with the study of the analytic torsion of some compact
hyperbolic manifolds, and we will explain how they are related, and some of the
techniques used to obtain the desired asymptotic.
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On the cost of Benjamini Schramm statistics with the Kazhdan
property

 Lukasz Grabowski

(joint work with Samuel Mellick)

This is report on an on-going joint work with S. Mellick. Recently T. Hutchcroft
and G. Pete showed that the cost of any infinite Kazhdan group is 1. We generalise
this result to the context of graphings. Our proof is noticably simpler than the
original proof of Hutchcroft and Pete even for graphings arising from actions of
countable Kazhdan groups, in particular our arguments do not use any ”hard”
probability theory. The main ingredient in our approach is the analysis of the
connectivity properties of partitions of the vertex space of a graphing, which are
“Cheeger-optimal”, i.e. minimise the amount of edges present between the parts
of a partition.

We work in the context of Benjamini-Schramm statistics, which are convenient
“group-like” objects roughly equivalent to “invariant random subgroups”. In par-
ticular we give examples of Benjamini-Schramm statistics with the Kazhdan prop-
erty which do not arise from actions of countable Kazhdan groups, by considering
point processes on lattice-free Kazhdan Lie groups. Of some interest might be also
a seemingly new characerisation of Kazhdan equivalence relations, as studied by
M. Pichot.

Our work is partially motivated by the following “Lueck approximation type”
question: Let d ∈ N with d ≥ 3, and let Mn be a sequence of triangulated
compact d-dimensional manifolds, such that the 1-skeleta of the triangulations
have uniformly bounded vertex degrees and which converge to a triangulation of
Rd in the sense of Benjamini-Schramm (informally speaking, this means that “Mn

is a sequence of compact manifolds with growing injectivity radia”). Is it true that
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lim dimH1(Mn)
|Mn|

= 0 ? Here |Mn| is the number of vertices in the triangulation of

Mn.
The answer is known to be positive for example when d = 3 and Mn is a

sequence of covers of a fixed compact aspherical manifold M which converges to
the universal cover of M . When d > 3 and Mn is a sequence of covers of a fixed
compact aspherical manifold M , then the question above is equivalent (by the
standard Lueck approximation theorem) to the “Singer conjecture in degree 1”,
i.e. the statement that the first L2-cohomology group of the universal cover of M
is trivial.

Our results imply that the question above has positive answer in the special
case when the limiting Benjamini-Schramm statistics has the Kazhdan property.
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Symmetries of exotic negatively curved manifolds

Mauricio Bustamante

(joint work with Bena Tshishiku)

Let M be a closed hyperbolic manifold of dimension n and fundamental group π.
Viewed as a Riemannian manifold and in dimensions larger than 2, the Rigidity
Theorem of Mostow implies that the isometries of M are captured entirely by those
of its fundamental group. More precisely, the isometry group of M is isomorphic to
the outer automorphism group Out(π) of π. When M is viewed only as a smooth
manifold, its group of isometries is the full group of diffeomorphisms of M , but
now the map

(1) ΨM : Diff(M)→ Out(π)

which takes a diffeomorphism to the automorphism of π that it induces, is no longer
an isomorphism. Nontheless it is a split surjection by the theorem of Mostow. In
my talk, I presented results about the map (1) for manifolds N homeomorphic but
not diffeomorphic to M . This has to do with the quesiton of how much symmetry
such exotic manifold N can have. Our results appear in [2].

Theorem 1. Fix an n, and assume that either n is even or the order of the group
Θn of homotopy n-spheres is not a power of 2. For all d > 0, there exists a closed
hyperbolic manifold M and a manifold N homeomorphic but not diffeomorphic to
M such that |Isom(M)| = |Out(π)| ≥ d and ΨN : Diff(N) → Out(π) is a split
surjection. A section to ΨN can be chosen to have image isomorphic with the
isometry group of some negatively curved metric on N

Remark 2. Farrell and Jones [3] proved that ΨN is not onto in general.
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Theorem 3. Fix an n such that Θn−1 6= 0. For all d > 0, there exists a closed
hyperbolic manifold M , and a manifold N homeomorphic but not diffeomorphic to
M such that |ImΨN | ≤

1
d |Out(π)|

The proof of Theorem 1 relies on work of Belolipetsky and Lubotzky [1], where
they show that for every finite group F and integer n ≥ 2, there exist infinitely
many n-dimensional hyperbolic manifolds M whose isometry group is isomorphic
to F . This is used to produce hyperbolic manifolds M with isometry group isomor-
phic to F , and a smooth action of F on an exotic N of the form M#Σ# · · ·#Σ,
where the number of sumands Σ ∈ Θn satisfies certain divisibility condition with
respect to |F |. B. Tshishiku and I showed, in addition, that among those mani-
folds M , there are infinitely many which are stably parallelizable and have very
large injectivity radius. This guarantees that N is indeed non-diffeomorphic to M
and admits a negatively curved metric with respect to which F acts by isometries.
The asymmetric manifolds of Theorem 3, are of the form

N = Mc,ϕ = M \ S1 × int(Dn−1) ∪id
S1×ϕ S

1 ×Dn−1

where [ϕ] 6= 0 ∈ π0Diff(Sn−2) ≃ Θn−1 and c is some simple closed geodesic in M
with trivial normal bundle (which we identify with S1 ×Dn−1). For this type of
manifold we find an obstruction to lifting an element in Out(π) to Diff(N). An
instance of this obstruction is as follows. Suppose that there is a cyclic group of
order d acting by isometries onM . If this group is generated by an isometry α, then
one can show that the smooth manifolds Mc,ϕ, . . . ,Mαd−1(c),ϕ define concordant
smooth structures on M . Smoothing theory tells us that concordance classes of
smooth structures on M are in bijective correspondence with the set (in fact,
abelian group) [M,Top/O] of homotopy classes of maps from M to Top/O. This
is the abelian group in which the desired obstruction lies. It turns out that the
smooth structures defined by Mc,ϕ, . . . ,Mαd−1(c),ϕ are not concordant to each
other, provided M is stably parallelizable. Hence to show the second theorem one
has to find hyperbolic manifolds with large finite cyclic groups in their isometry
groups. For this, we use a theorem of Lubotzky [4] where they produce hyperbolic
manifolds whose fundamental group surjects onto a free group.
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Stable integral simplicial volume of 3-manifolds

Marco Moraschini

(joint work with Daniel Fauser, Clara Löh and José Pedro Quintanilha)

Simplicial volume is a homotopy invariant of compact manifolds introduced by
Gromov [7] and it measures the complexity of a manifold in terms of its real
singular chains. Given an oriented compact connected n-manifold M (possibly
with non-empty boundary) the simplicial volume is defined by

‖M,∂M‖ := inf

{ m∑

j=1

|aj |

∣∣∣∣
m∑

j=1

aj · σj ∈ Cn(M ;R) is a relative

fundamental cycle of (M,∂M)

}
.

One of the main original aims of the investigation of simplicial volume [7] was the
understanding of the relation between the topology of a manifold and its (minimal)
volume. In particular, in the case of hyperbolic manifolds, one can show that the
simplicial volume is proportional to the Riemannian volume [7, 11]. I report in
this talk a recent work in collaboration with Fauser, Löh and Quintanilha [4], in
which we investigate an approximation problem of simplicial volume. A still open
problem proposed by Gromov [8, p. 232] is the following:

Question 1. Let M be an oriented closed connected aspherical manifold. Does
‖M‖ = 0 imply the vanishing of the Euler characteristic?

One way for studying the previous open problem is the following: If M admits
enough finite coverings (i.e. if π1(M) is residually finite), we introduce the stable
integral simplicial volume

‖M,∂M‖∞Z := inf
{‖W,∂W‖Z

d

∣∣∣ d ∈ N, W a d-sheeted covering of M
}
,

where the integral simplicial volume ‖W,∂W‖Z is defined as the classical one but
via Z-singular chains instead of the real ones. One can easily check that the stable
integral simplicial volume is always larger than or equal to the standard one:

‖M,∂M‖ ≤ ‖M,∂M‖∞Z .

As for Betti numbers, ranks of fundamental groups, or logarithmic torsion of
homology, one can ask which aspherical manifolds M satisfy integral approximation
for simplicial volume, i.e. when the previous inequality is in fact an equality.
Since the stable integral simplicial volume of closed manifolds provides an upper
bound (up to a uniform multiplicative factor depending only on the dimension
of the manifold) of the Euler characteristic [7, 5], Gromov’s Question 1 can be
reformulated in the following stronger way:

Question 2. Let M be an oriented closed connected aspherical manifold with
‖M‖ = 0. Does M satisfy integral approximation for simplicial volume?



Manifolds and Groups 453

Of course, a positive answer to Question 2 would also imply an affirmative answer
to Question 1 The following classes of manifolds are already known to satisfy
integral approximation for simplicial volume: closed surfaces of positive genus [7,
p. 9], closed hyperbolic 3-manifolds [6, Theorem 1.7] and graph manifolds with
infinite fundamental group [3] (see also the work by Fauser [1] and Frigerio, Löh,
Pagliantini and Sauer [6] for other examples). In contrast, approximation fails
uniformly for higher-dimensional hyperbolic manifolds [5, Theorem 2.1] and it fails
for closed manifolds with non-abelian free fundamental group [6, Remark 3.9]. Our
main result is the following:

Theorem 3. Let M be an oriented closed connected aspherical 3-manifold, then

‖M‖ = ‖M‖∞Z =
hypvol(M)

v3
.

Here, v3 is the volume of any regular ideal tetrahedron in H3, and hypvol(M) de-
notes the sum of the volumes of the hyperbolic pieces in the JSJ decomposition
of M . The equality ‖M‖ = hypvol(M)/v3 follows from the work of Soma [10].
Moreover, with regards to Question 2, we can provide the following complete pic-
ture of the 3-dimensional case:

Proposition 4. Let M be an oriented closed connected 3-manifold with ‖M‖ = 0.
Then the following are equivalent:

(1) The simplicial volume of M satisfies integral approximation.
(2) The manifold M is aspherical or M is homeomorphic to either S2 × S1 or

the connected sum of two copies of RP 3.

In this talk, we present the strategy for proving Theorem 3. We only have to
show that

‖M‖∞Z ≤
hypvol(M)

v3
.

The main difficulties arising from the JSJ decomposition of M are the following:

• to deal with the hyperbolic pieces with toroidal boundary and
• the subadditivity with respect to glueings along tori.

We explain here the strategy to overcome the previous issues: We work with a
parametrized version of the simplicial volume instead of the stable integral sim-
plicial volume. Since in this setting we can make use of the uniform boundary
condition on tori studied by Fauser and Löh [2], this allows us to avoid involved
bookkeeping for restrictions and compatibility of finite coverings to the glueing
tori. This leads to a nice subadditivity formula with respect to glueings along
tori in terms of parametrized simplicial volume. One fundamental ingredient in
the proof is that in some cases the most efficient parameter space is the profinite
completion of the fundamental group. Hence, it is convenient to rewrite the stable
integral simplicial volume as follows:

‖W,∂W‖∞Z = ‖W,∂W‖
π̂1(W )
F ,
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where π̂1(W ) denotes the profinite completion of the fundamental group of a piece
W appearing in the JSJ decomposition. Then, we also need to exploit some
profinite properties of the JSJ decomposition and to keep control over the size
of the boundary of the cycles appearing as representatives of the parametrised
fundamental classes of its pieces. Finally, we briefly discuss how to deal with the
hyperbolic pieces. To this end, we have to prove a proportionality result between
the parametrised simplicial volume of the hyperbolic pieces and their Riemannian
volume:

Theorem 5. Let W be an oriented compact connected hyperbolic 3-manifold with
empty or toroidal boundary and let M := W ◦. Then

‖W,∂W‖
π̂1(W )
∂ =

vol(M)

v3
,

where the subscript ∂ denotes the boundary control mentioned before.
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Volume and macroscopic curvature

Roman Sauer

(joint work with Sabine Braun)

I discussed a generalization of the following result by Guth from closed hyperbolic
manifolds to all closed Riemannian manifolds.

Guth’s Volume theorem [2]
Let (M, ghyp) be a d-dimensional closed hyperbolic manifold and let g be another
metric on M . Suppose that

V(M̃,g̃)(1) ≤ VHd(1),
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where Hd is d-dimensional hyperbolic space. Then

vol(M, ghyp) ≤ const(d) · vol(M, g).

To formulate the generalization one needs to replace the hyperbolic volume. We
replace it by the simplicial volume. By a classical result of Gromov and Thurston
the simplicial volume of a closed hyperbolic manifold is its hyperbolic volume up
to dimensional constant.

Theorem
Let (M, g) be a d-dimensional closed Riemannian manifold. Suppose that

V
(M̃,g̃)

(1) ≤ V1

for a positive real number V1. Then

‖M‖ ≤ const(d, V1) · vol(M, g).

This theorem also generalizes Gromov’s main inequality [1]. If the fundamental
group of M is residually finite, then one can modify the proof by Guth to obtain
the result. The main innovation is to drop residual finiteness. The idea is that
even though the fundamental group is not residually finite, one can define a good
analog of the solenoidal space which is defined as the projective limit of the finite
regular coverings of M . We then implement a foliated (or equivariant) version of
Guth’s techniques on this analog.
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Topological spines, minimal realizations and cohomology of strictly
developable simple complexes of groups

Nansen Petrosyan

(joint work with Tomasz Prytu la)

In [1], for any finitely generated Coxeter system (W,S), Bestvina constructed an
acyclic polyhedral complex B(W,S) of dimension equal to vcdW , on which W acts
as a reflection group, properly and cocompactly. The same construction produces a
contractible B(W,S) with dimB(W,S) = vcdW except possibly when vcdW = 2.
In fact in [2], we showed that B(W,S) is equivariantly homotopy equivalent to the
Davis complex ΣW . Therefore B(W,S) becomes a model for EW of minimal di-
mension. In [2], we derived an analogous result in the more general setting of thin
strictly developable simple complexes of finite groups. One of the main motiva-
tions to construct nice models for EG comes from the Isomorphism Conjectures.
Other applications include computations in group cohomology and the formulation
of a generalisation from finite to infinite groups of the Atiyah-Segal Completion
Theorem in topological K–theory. In recent work with Tomasz Prytu la, we are
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able to extend the results in [2] from finite to infinite local groups and to more
naturally occurring simple complexes of groups without the thinness assumption.
Many previous methods have relied on compactly supported cohomology as a con-
venient tool for computations. But this restricts one to only complexes that are
locally finite. To resolve this difficulty, we establish a direct link between Bredon
cohomology with certain coefficients and the relative cohomology of the strata.
This allows us to derive the following theorems in [3].

Theorem 1 (Petrosyan-Prytu la, [3]). Suppose a group G acts properly on a
CAT(0) polyhedral complex X with a strict fundamental domain K. Let Q de-
note the poset of cells of K ordered by the reverse inclusion (thus |Q| = K ′).
Then

cd(G) = max{n ∈ N | Hn(K ′
C ,K

′
>C) 6= 0 for some block C ⊆ Q}.

Theorem 2 (Petrosyan-Prytu la, [3]). Let G be a group acting chamber transi-
tively on a building of type (W,S). Let G(Q) be the associated simple complex of
groups and let F be the family generated by the stabilisers. Then D(B,G(Q)) is a
realisation of the building of dimension

dim(D(B,G(Q))) =

{
vcdW if vcdW 6= 2,
2 or 3 if vcdW = 2.

and

cdF G = vcdW = max{n ∈ N | Hn−1(K>J) 6= 0 for some J ∈ Q}.

The following are some of the remaining open questions.

Question 3. Does the Bestvina complex support a G-invariant CAT(0) metric?

Question 4. Is the Bestvina complex an equivariant deformation retract of the
Davis complex?

Question 5. When can the construction of the Bestvina complex be generalised
to actions with non-compact or non-strict fundamental domains?
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The K-and L-theory of crystallographic groups and their applications
to C

∗-algebras and manifolds

Wolfgang Lück

We give a report about a series of papers [1, 2, 3, 4, 5] where the K-and L-groups
of group rings or C∗-algebras of certain crystallographic groups are computed.
Moreover, applications to C∗-algebras and manifolds are discussed. We explain
the following results. Fix a group homomorphism ρ : Z/m → aut(Zn) such that
the Z/m-action on Zn is free outside the origin. Let G = Zn ×ρ Z/m be the
associated semi-direct product which is a crystallographic group. Let M be the
set of conjugacy classes of maximal finite subgroups of G.

Theorem 1.

(1) We obtain an isomorphism

ω1 : K1(C
∗
r (G))

∼=
−→ K1(G\EG).

Restriction with the inclusion k : Zn → G induces an isomorphism

k∗ : K1(C∗
r (G))

∼=
−→ K1(C

∗
r (Zn))Z/m.

Induction with the inclusion k yields a homomorphism

k∗ : Z⊗Z[Z/m] K1(C∗
r (Zn))→ K1(C∗

r (G)).

It fits into an exact sequence

0→ Ĥ−1(Z/m,K1(C∗
r (Zn)))→ Z⊗Z[Z/m] K1(C

∗
r (Zn))

k∗−→ K1(C∗
r (G))→ 0.

In particular k∗ is surjective and its kernel is annihilated by multiplication
with m;

(2) There is an exact sequence

0→
⊕

(M)∈M

R̃C(M)

⊕
(M)∈M

iM
−−−−−−−−→ K0(C∗

r (G))
ω0−→ K0(G\EG)→ 0,

where R̃C(M) is the kernel of the map RC(M)→ Z sending the class [V ] of
a complex M -representation V to dimC(C⊗CM V ) and the map iM comes
from the inclusion M → G and the identification RC(M) = K0(C∗

r (M)).
We obtain a homomorphism

k∗ ⊕
⊕

(M)∈M

iM : Z⊗Z[Z/m] K0(C
∗
r (Zn))⊕

⊕

(M)∈M

R̃C(M)→ K0(C∗
r (G)).

It is injective. It is bijective after inverting m;
(3) We have

Ki(C
∗
r (G)) ∼= Zsi

where

si =

{(∑
(M)∈M(|M | − 1)

)
+
∑

l∈Z
rkZ

(
(Λ2lZn)Z/m

)
if i even;∑

l∈Z
rkZ

(
(Λ2l+1Zn)Z/m

)
if i odd;
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(4) If m is even, then s1 = 0 and

K1(C∗
r (G)) ∼= {0}.

Theorem 2. The Conjecture due to Adem-Ge-Petroysan-Pan is true which says
that the Serre-Lyndon spectral sequence for the group cohomology associated to the
extension 1 → Zn → G → Z/m → 1 collapses (in the strongest sense). It is
in general not true if we drop the assumption that the Z/m-action on Zn is free
outside the origin.

Theorem 3. The group Z4×ρZ/3 satisfies for appropriate ρ the unstable Gromov-
Lawson-Rosenberg Conjecture.

Note that Schick proved that Z3 × Z/4 does not satisfy the unstable Gromov-
Lawson-Rosenberg Conjecture. Suppose that m = p holds for an odd a prime p.

Fix a free action of Z/p on a sphere Sl for an odd integer l ≥ 3. Define a closed
(n+ l)-manifold M := T nρ ×Z/p S

l.

Theorem 4. As an abelian group we get for the topological simple structure set
of M

S(M) ∼= Zp
k(p−1)/2 ⊕

n−1⊕

i=0

Ln−i(Z)rj ,

where the natural number k is determined by the equality n = k(p− 1) and rj :=

rk(Λj(Z[ζp]k)Z/p). Moreover, a simple homotopy equivalence N →M is homotopic
to a homeomorphism if and only if certain splitting obstructions vanish and certain
Rho-invariants of N and M agree.
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Fakultät für Mathematik
Universität Regensburg
Office M 232
93040 Regensburg
GERMANY

Prof. Dr. Wolfgang Lück

Mathematisches Institut
Universität Bonn
Endenicher Allee 60
53115 Bonn
GERMANY

Biao Ma

INLN - CNRS, UNS Mathématiques
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