
Mathematisches Forschungsinstitut Oberwolfach

Report No. 3/2020

DOI: 10.4171/OWR/2020/3

Representation Theory of Quivers and Finite Dimensional
Algebras

Organized by
Claire Amiot, Grenoble

William Crawley-Boevey, Bielefeld
Osamu Iyama, Nagoya

Henning Krause, Bielefeld

19 January – 25 January 2020
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theory of algebras.
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Introduction by the Organizers

The representation theory of quivers is probably one of the most fruitful parts of
modern representation theory because of its various links to other mathematical
subjects. This has been the reason for devoting a substantial part of this Ober-
wolfach meeting to problems that can be formulated and solved involving quivers
and their representations. The interaction with neighbouring mathematical sub-
jects like geometry, topology, and combinatorics is one of the traditions of such
Oberwolfach meetings; it continues to be a source of inspiration. There were 28
lectures given at the meeting, and what follows is a quick survey of their main
themes.

Gentle algebras and geometry. The link between derived categories of gentle
algebras and the geometry of graded surfaces has been established in the last 5
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years by Haiden-Katzarkov-Kontsevich and Opper-Plamondon-Schroll. This led
to many applications and generalizations in representation theory. In his talk,
Plamondon explained this geometric model and its use to get a complete geometric
derived invariant for gentle algebras. While Schroll explained how to generalize this
geometric model to get a model for the derived category of skew-gentle algebras,
Brüstle used group actions to generalize the geometric derived invariant to skew-
gentle algebras. Zvonareva gave also a complete derived invariant for Brauer graph
algebras, using A∞-structures associated to surfaces, following Haiden-Katzarkov
and Kontsevich ideas. The class of gentle algebras has also been generalized to
quasi-gentle algebras by Burban, who explained why this bigger class yields tame
algebras. Torsions classes and pairs for derived categories of gentle algebras have
been also discussed in talks by Laking and Chan. Finally, the link between partially
wrapped Fukaya categories and derived categories of non commutative algebras
generalizes beyond the 2-dimensional case. Higher Auslander algebras seem to be
the higher analogue when the dimension of the symplectic variety is greater than
2. Jasso reported about the An case which has been recently treated in joint work.

Cluster categorification. The Grassmannian variety of a vector space was one
of the first motivating example of a cluster variety. Their categorifications have
been studied by Geiss Leclerc and Schröer using preprojective algebras, and by
Jensen, King and Su using the singularity category of a quotient of the preprojec-
tive algebra. The Grassamnnian variety comes with an action of the affine braid
group discovered by Fraser. Keller explained their joint work on this subject: it is
possible to lift this action as a categorical action. The Jensen-King-Su categorifi-
cation has also been generalized by the authors to categorify the quantum Grass-
mannian, and this new approach has been reported by King. Concerning acyclic
categorification, Hubery discussed the non-algebraically closed situation, which
surprisingly was still open. Finally, Jacobian algebras which naturally appear ev-
erywhere in cluster categorification, were discussed by Davison, who provided a
rich source of finite dimensional Jacobian algebras.

Persistent modules. Topological data analysis using persistent homology nat-
urally produces linear algebra data, which may be in the form of quiver represen-
tations, or more general persistence modules of some type. The analysis of such
data, for example using barcodes, involves the decomposition into indecomposable
representations and fits therefore into representation theory. Two experts from
this field reported about recent developments and interesting connections to rep-
resentation theory. Botnan gave a survey about the decomposition of persistent
modules, their barcodes, and the interleaving distance between persistent mod-
ules. One of the challenges in the subject is the generalisation from dimension one
(so representations of the real line R1) to higher dimensions. The talk by Oudot
was devoted to some specific results in this direction for the case R2 and based on
appropriate generalizations of interval modules.

Module varieties. Recent results on various schemes associated with quiver rep-
resentations were reported during the workshop. Thomas considered the Jordan
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type J(X) of generic nilpotent endomorphisms of a representation X of a Dynkin
quiver Q. For a cominuscule vertex i of Q, if all direct summands of X are
supported at i, one can recover X from J(X). Moreover, this correspondence
gives a generalization of the Robinson–Schensted–Knuth correspondence for type
An. For a gentle algebra associated with a triangulation of a marked surface,
Schröer considered certain irreducible components of the module varieties, called
generically τ -reduced. These components with decorations correspond bijectively
with laminations on the marked surface, and the generic Caldero–Chapoton func-
tions coincides with the bangle functions. For a representation M of a quiver
Q, Cerulli-Irelli discussed geometric properties of the quiver Grassmaniann X of
M . He explained that X has a cellular decomposition in many cases, e.g. if Q is
Dynkin. If M is rigid, then X satisfies a certain weaker condition (S) about the
Borel–Moore homology. He posed some conjectures.

Homologically defined algebras and representations. A number of recent
developments on homological aspects of representation theory were presented dur-
ing the workshop. For an algebraic triangulated category D and the heart H of a
t-structure of D, there is a triangle functor G, called the realization functor, from
the bounded derived category of H to D. Chen gave a necessary and sufficient
condition for G to be an equivalence when the t-structure is given by a HRS tilt.
Qiu introduced a notion of global dimension of a triangulated category by using
Bridgeland’s stability conditions. He explained some results on the explicit val-
ues of the global dimension of the bounded derived category of Dynkin quivers,
smooth projective curves and P2. Gnedin discussed silting theory of orders Λ over
commutative Noetherian complete local rings R. For a regular sequence x of R
and the factor algebra Λ = Λ/xΛ, there is a bijection between the silting com-
plexes of Λ and those of Λ. He also gave a result about tilting complexes, and an
application to ribbon graph orders and twisted Brauer graph algebras.

Minamoto discussed a certain central extension of the preprojective algebra of
an acyclic quiver Q, called the quiver Heisenberg algebra. It contains various in-
formation on the category of representations of Q, and its Z/2Z-covering is the
3-preprojective algebra of a certain explicit 2-hereditary algebra. Herschend talked
about a Z-graded hypersurface singularity R of dimension 1. The stable category
of the Z-graded Cohen-Macaulay R-modules has a tilting object, whose endomor-
phism algebra is 2-hereditary and given by a quiver with potential. Its cluster
category is equivalent to the stable category of Z/2Z-graded Cohen-Macaulay R-
modules.

Modules with double centralizer property are called faithfully balanced. Rogner-
ud gave a combinatorial description of the basic faithfully balanced modules over a
path algebra of the linearly oriented An quiver, and calculate the number of them.
Marczinzik discussed two generalizations of Gorenstein algebras, namely the class
of weakly Gorenstein algebras, and the class of Cohen-Macaulay artin algebras due
to Auslander-Reiten. He explained some properties and examples, and also posed
questions. Skowronski introduced weighted surface algebras, which are symmetric
of tame representation type and periodic of period 4. He conjectured that an
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algebra of generalized quaternion type is either a weighted surface algebras or
belongs to nine ‘exotic’ familes of algebras. Then he explained a partial result.

Further topics. Tensor categories or monoidal categories arise frequently in rep-
resentation theory. One can define algebras and modules in such tensor categories
and this leads to a Morita theory. The talk of Kinser was devoted to a description
of Morita equivalence classes and enhanced by a series of interesting examples.
Tensor categories also provide a possible setting for defining support varieties,
but interesting results often depend on an altervative approach via chomological
varieties. Koenig reported about finiteness conditions for such support varieties
using Hochschild cohomology. Monomorphism categories form another convenient
setting in representation theory. For instance, they arise as categories of Goren-
stein projective objects when one generalizes quiver representations. The talk of
Külshammer was devoted to the Auslander-Reiten theory of such monomorphism
categories, involving the general theory of relative Nakayama functors.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
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Andrzej Skowroński (joint with Karin Erdmann)
Symmetric periodic algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

Alastair King (joint with Bernt Tore Jensen and Xiuping Su)
Categorification and the Quantum Grassmannian . . . . . . . . . . . . . . . . . . . . 220



Representation Theory of Quivers and Finite Dimensional Algebras 149

Abstracts

Grassmannian braiding categorified

Bernhard Keller

(joint work with Chris Fraser)

1. Grassmannian braiding

Let n ≥ 3 be an integer. The extended affine braid group on n strands, denoted by

B̃rn, is the fundamental group of the space of configurations of n distinct points
in an annulus. It has generators σi, 1 ≤ i ≤ n, and ρ as depicted in Figure 1. We
refer to [5] for more information on this group.

1
i−1 i

i+1

i+2
n

1
2 i

i+1

i+2
n−1n

Figure 1. The affine braid generators σi and ρ

Let 1 ≤ k ≤ n − 1 be an integer. Let Gr(k, n) be the Grassmannian of k–
dimensional subspaces in Cn. Via the Plücker embedding

Gr(k, n) // PN (C)

taking a subspace U to ΛkU it embeds into projective space, where N =
(
n
k

)
− 1.

The cone G̃r(k, n) over the Grassmannian embeds into CN and the pullbacks of the
coordinate functions are the Plücker coordinates, which generate the coordinate

ring A = C[G̃r(k, n)]. Explicitly, if we represent a k-tuple of vectors in Cn by a
k × n-matrix, the Plücker coordinate PI associated with an increasing sequence
i1 < · · · < ik of elements of {1, . . . , n} is the minor on the columns indexed by
i1, . . . , ik. The Plücker coordinate PI is called frozen if the classes modulo n of
the indices i1, . . . , ik form an interval. Let A denote the quotient of A by the ideal
generated by all PI − 1, where PI is frozen.

Theorem 1.1 (Scott [13]). The algebra A is the cluster algebra associated with the
triangle product quiver Ak−1 ⊠An−k−1 (cf. section 3.3 of [10] for the notation).
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Figure 2. The quiver of the preprojective algebra Π for n = 5

Theorem 1.2 (Fraser [4]). Let d be the greatest common divisor of k and n.

The group B̃rd naturally acts on A by cluster automorphisms (i.e. automorphisms
taking cluster variables to cluster variables and clusters to clusters).

Notice that the action of the Theorem is not faithful as ρn acts by the identity

but ρ is of infinite order in B̃rn. Now let ∆ and ∆′ be simply laced Dynkin
diagrams with Coxeter numbers k and n− k. By the periodicity theorem for pairs
of Dynkin diagrams [10], if we take ρ to the Zamolodchikov transformation of the
cluster algebra A(∆⊠∆′) associated with ∆⊠∆′, we also obtain an action of the

cyclic group 〈ρ〉 ⊂ B̃rn taking ρn to the identity.

Conjecture 1.3. The action of 〈ρ〉 extends to an action of B̃rd on A(∆⊠∆′).

Using the quiver mutation applet [9] we have checked the conjecture for Ar⊠Ds

for the following pairs (r, s): (2, 7), (2, 10), (3, 5), (3, 9), (4, 6).

2. Categorification

Let Π denote the completed preprojective algebra of type Ãn−1 over C. It is
presented by the quiver of Figure 2 subject to the n relations xy − yx. Let B
be the quotient of Π by all relations xk − yn−k. It was introduced by Jensen–
King–Su in [8]. The algebras Π and B are noetherian, the preprojective algebra
Π is of global dimension 2 and bimodule 2-Calabi-Yau [2, 7] and the algebra B
is Iwanaga–Gorenstein of infinite global dimension, cf. [8]. Let modB denote the
category of finitely generated right B-modules, Db(modB) its bounded derived
category and per(B) its perfect derived category, i.e. the full subcategory whose
objects are quasi-isomorphic to bounded complexes of finitely generated projective
B-modules. Let sg(B) denote the singularity category of B, i.e. the quotient
Db(modB)/per(B), cf. [1, 11]. Equivalently, it may be described as the stable
category of Gorenstein projective modules over B. The triangulated category
sg(B) is Hom-finite and 2-Calabi-Yau. A triangle equivalent category was first
constructed in a different manner by Geiss–Leclerc–Schröer [6].

Theorem 2.1 (Geiss–Leclerc–Schröer [6]). The cluster algebra A is categorified
by sg(B).
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Since the algebra Π is bimodule 2-Calabi-Yau, the simple modules Si over Π are
2-spherical in the bounded derived category Db(modΠ), i.e. Ext∗Π(Si, Si) is the
cohomology algebra of a 2-sphere (with complex coefficients). Therefore, from
Seidel–Thomas’ work [14], we get a braid group action:

Theorem 2.2 (Seidel–Thomas [14]). The group B̃rn acts on Db(modΠ) taking ρ
to the automorphism induced by counterclockwise rotation of the quiver and σi to
the spherical twist twSi

such that for an object X, we have a triangle

RHom(Si, X)⊗ Si
// X // twSi

(X) // ΣRHom(Si, X)⊗ Si .

Now notice that we have an embedding B̃rd ⊂ B̃rn taking ρ to ρd and σi to the
product of the (commuting) σj such that j ≡ i modulo d. Whence an action of

B̃rd on Db(modΠ).

Theorem 2.3. a) There is an action of B̃rd on Db(modB) such that the

functor ?
L
⊗Π B : Db(modΠ)→ Db(modB) becomes equivariant.

b) The action of a) induces an action on sg(B) = Db(modB)/per(B) such
that the canonical cluster character [12]

CC : sg(B)→ A

becomes equivariant for the action of Theorem 1.2 on A.

Let Aloc denote the localization of A with respect to all frozen Plücker coordi-
nates. The more precise version of Theorem 1.2 proved in [4] yields an action of

B̃rd on Aloc by pseudo-isomorphisms. These are certain algebra morphisms intro-
duced in [3] (where they were called quasi-isomorphisms) which act non trivially
on the frozen variables and take cluster variables to products of cluster variables
with Laurent monomials in the frozen variables. The following theorem shows that

the lift of the B̃rd-action from A to Aloc corresponds to the lift of the action on
the singularity category sg(B) to the derived category Db(modB).

Theorem 2.4. There is a ‘refined cluster character’

CCloc : D
b(modB)→ Aloc

which is equivariant for the B̃rd-actions introduced above and compatible with CC.

Acknowledgements

Thanks are due to the authors of [5] for Figure 1 and those of [8] for Figure 2. I
am grateful to Chris Fraser, Alastair King, Matthew Pressland and Yilin Wu for
helpful remarks on a draft of this report.

References

[1] Ragnar-Olaf Buchweitz, Maximal Cohen–Macaulay modules and Tate cohomology over
Gorenstein rings, http:hdl.handle.net/1807/16682 (1986), 155 pp.

[2] William Crawley-Boevey, On the exceptional fibres of Kleinian singularities, Amer. J. Math.
122 (2000), no. 5, 1027–1037.



152 Oberwolfach Report 3/2020

[3] Chris Fraser, Quasi-homomorphisms of cluster algebras, Adv. in Appl. Math. 81 (2016),
40–77.

[4] Christopher Fraser, Braid group symmetries of Grassmannian cluster algebras,
arXiv:1702.00385 [math.CO].

[5] Agnès Gadbled, Anne-Laure Thiel, and Emmanuel Wagner, Categorical action of the ex-
tended braid group of affine type A, Commun. Contemp. Math. 19 (2017), no. 3, 1650024,
39.

[6] Christof Geiß, Bernard Leclerc, and Jan Schröer, Partial flag varieties and preprojective
algebras, Ann. Inst. Fourier (Grenoble) 58 (2008), no. 3, 825–876.

[7] Victor Ginzburg, Calabi-Yau algebras, arXiv:math/0612139v3 [math.AG].
[8] Bernt Tore Jensen, Alastair D. King, and Xiuping Su, A categorification of Grassmannian

cluster algebras, Proc. Lond. Math. Soc. (3) 113 (2016), no. 2, 185–212.
[9] Bernhard Keller, Quiver mutation in Javascript and Java, Java applet available at

https://webusers.imj-prg.fr/ bernhard.keller/quivermutation/.
[10] , The periodicity conjecture for pairs of Dynkin diagrams, Ann. of Math. (2) 177

(2013), no. 1, 111–170.
[11] D. O. Orlov, Triangulated categories of singularities and D-branes in Landau-Ginzburg

models, Tr. Mat. Inst. Steklova 246 (2004), no. Algebr. Geom. Metody, Svyazi i Prilozh.,
240–262.

[12] Yann Palu, Cluster characters for 2-Calabi-Yau triangulated categories, Ann. Inst. Fourier
(Grenoble) 58 (2008), no. 6, 2221–2248.

[13] Joshua S. Scott, Grassmannians and cluster algebras, Proc. London Math. Soc. (3) 92

(2006), no. 2, 345–380.
[14] Paul Seidel and Richard Thomas, Braid group actions on derived categories of coherent

sheaves, Duke Math. J. 108 (2001), no. 1, 37–108.

Poset Representations in Data Analysis

Magnus Bakke Botnan

Topological data analysis (TDA) is a novel approach to data science in which the
“shape” of the data is inferred through topological invariants. One of the most
notable tools in TDA, persistent homology, assigns a collection of intervals to an
input data set. These intervals are to be interpreted as topological features in
the data. It is customary to treat short intervals as “noise” and long bars as
“significant”, with the precise notion of what constitutes a long interval being
application-dependent.

The idea is as follows: given a filtered topological space

X0 ⊆ X1 ⊆ X2 . . . ⊆ Xn

(typically a filtered simplicial complex), one obtains a sequence of homology vector
spaces and linear maps by applying the p-th (singular) homology functor with
coefficients in a field

Hp(X0)→ Hp(X1)→ . . .→ Hp(Xn).

The resulting object is nothing more than a representation of the linear quiver
and thus decomposes into a direct sum of constant modules. The support of these
modules constitute the barcode and correspond to the intervals mentioned above.
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1. Single parameter

It is convenient to work in the following more general setting. Consider R as
a category with respect to its total order in the obvious way. We define a per-
sistence module to be a functor M : R → veck where veck is the category of
finite-dimensional k-vector spaces.

Theorem 1.1. [5, 3] Any persistence module M decomposes as a direct sum of
interval modules, i.e. constant modules kI where I ⊆ R is an interval.

The collection of intervals (the barcode) in the decomposition of M is denoted
by B(M). One way of obtaining such a functor is as follows: let f : Y → R be
any function and define Mt := f−1(−∞, t]. Under the assumption that the sub-
level sets have finitely generated homology, it follows that M defines a persistence
module. A natural question arises: let g be a real-valued function defined on Y
satisfying ||f − g||∞ ≤ ǫ and let Nt := g−1(−∞, t]. Will the barcodes of M and
N also be at most ǫ apart? The answer turns out to be yes, and it is one of the
fundamental results in the field of TDA. One way to prove this is through the use
of interleavings. Let M(ǫ) denote the persistence module M(ǫ)t = Mt+ǫ. We say
that M,N : R→ vec are ǫ-interleaved if there exist morphisms f : M → N(ǫ) and
g : N →M(ǫ) such that gt+ǫ ◦ ft =M(t ≤ t+ 2ǫ) and ft+ǫ ◦ gt = N(t ≤ t+ 2ǫ).

Definition 1.2. The interleaving distance between M and N is

dI(M,N) = inf
ǫ
{ǫ : there exists an ǫ-interleaving between M and N}.

It is a small exercise to show that the persistence modules M and N associated
to the functions f and g are ǫ-interleaved, and therefore dI(M,N) ≤ ǫ. What
is important, is that the interleaving distance has a combinatorial counterpart
which is defined in terms of collections of intervals. This distance is denoted by
dB(B(M), B(N)) and called the bottleneck distance between M and N . Through
this equivalence, called the isometry theorem[4], we obtain the stability result:

dB(B(M), B(N)) = dI(M,N) ≤ ǫ.

2. Multiple parameters

Motivated by applications - such as to clustering[1] - it is natural to consider
persistence modules indexed by other types of posets, such as R2 or any finite
subgrid thereof. The representation theory in this setting is however extremely
complicated and the pipeline from the linear setting does not directly generalize.
Therefore new, potentially stable, invariants are needed to push the field forward.
Likewise, the interleaving distance mentioned above does generalize to higher di-
mensions but there is no corresponding bottleneck distance. Furthermore, whereas
computing the interleaving distance in the linear case, through its equivalence with
the bottleneck distance, comes down to a bipartite matching problem, it has re-
cently been shown that computing its multi-parameter analogue is NP-hard[2].
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The Robinson–Schensted–Knuth correspondence via quiver
representations

Hugh Thomas

(joint work with Alexander Garver, Rebecca Patrias)

This talk was based on the preprint [2]. A shorter version of the preprint, aimed
more at combinatorialists, is also available [3].

1. Generic nilpotent endomorphisms

Let Q be a Dynkin quiver. Given a representation X (typically decomposable),
we consider a nilpotent endomorphism φ of X . At each vertex, it induces φj , a
nilpotent endomorphism of Xj . We can ask about the sizes of the Jordan blocks
of φj . We have the following result (which I state more generally).

Proposition 1. For X an A-module, A a finite-dimensional algebra, and φ a
nilpotent endomorphism of X , there is a well-defined generic behaviour of the
Jordan block sizes of φj .

Denote this J(X), with J(X)j the block sizes of φj . We think of J(X)j as a
partition of dim(Xj). If need be, we order the parts in weakly decreasing order,
and refer to J(X)1j ≥ J(X)2j ≥ . . . .

We are interested in the question of when an object X in a subcategory of repQ
can be recovered from J(X).

For example, consider the A3 quiver 1→ 2← 3. ConsiderM = P a
2 ⊕P

b
1 ⊕P

c
3 ⊕

Id2 ⊕ I
e
1 ⊕ I

f
3 . Then

J(X)1 = (b+ d+ e), J(X)2 = (a+max(b, c) + d,min(b, c)), J(X)3 = (c+ d+ f).

We observe that from these four integers it is obviously impossible to recover
(a, b, c, d, e, f), but if we assume that e = f = 0, it is indeed possible to recover
(a, b, c, d). This is a small example of the phenomenon which we will be interested
in.

Let Q be a Dynkin quiver, with Q0 = {1, . . . , n}. Let i be a (co)minuscule
vertex. That says that every indecomposable representation has dimension at
most 1 at vertex i.
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These are the “very good” nodes. All nodes in type An are (co)minuscule, as
well as the most type-A-ish in other types. These are the leaves in Dn, the leaves
furthest from the branch point in E6, and the leaf furthest from the branch point
in E7. There are none in E8.

Let Ci be the subcategory of representations of Q consisting of sums of copies
of representations which are supported at i.

Theorem 1. X ∈ Ci can be recovered up to isomorphism from J(X).

We say that Ci is “Jordan recoverable.”
Note that our theorem wouldn’t hold if we chose a non-minuscule vertex, such

as the middle vertex of D4. We can write the highest root of D4 as a sum of roots
all of which include the central node in five different ways, so there are five different
isoclasses of representations of that dimension in the analogous additive category,
but there are only two different possibilities for the Jordan data, so obviously we
can’t reconstruct the representation from the Jordan data.

Question 1. What additive subcategories C of repQ are Jordan recoverable?

There is a specific way in which we might hope to recover X from J(X). Given
a collection of Jordan data J (i.e., a partition Ji at each vertex), for i ∈ Q0, let Vi
be a vector space of the right dimension. Choose a nilpotent linear transformation
Ni with Jordan form given by Ji.

Now, consider representations of Q on the vector spaces Vi, such that the col-
lection (Ni) defines an endomorphism. Such representations form an irreducible
variety cut out by linear equations, and have a dense open set where the dimen-
sion vectors of their indecomposable summands are well-defined. (This generalizes
Kac’s canonical decomposition of dimension vectors [5]; to recover Kac’s result,
set all the Ni = 0.) If this allows us to reconstruct X for any X ∈ C, we say that
C is canonically Jordan recoverable.

We have the following strengthening of Theorem 1:

Theorem 2. Ci is canonically Jordan recoverable.

We will now consider two examples where we start with a representation, cal-
culate the Jordan form of a generic nilpotent endomorphism, and then reconstruct
the representation as described above.

Consider 110⊕ 011. Its only nilpotent endomorphism is 0, whose Jordan form
is ((1),(1,1),(1)). The nilpotent linear transformations are zero. So we are just
asking about the canonical decomposition in the sense of Kac of the dimension
vector (1,2,1), the generic representation with that dimension vector. Nothing
forces the images of the vector spaces over 1 and 3 to line up, so they don’t, and
we recover 110⊕ 011.

Now consider 111⊕010. The generic Jordan form of a nilpotent endomorphism
is (1), (2), (1). The nilpotent linear transformation Ni is non-zero at vertex 2, but
zero elsewhere. The images of the generator of the vector space at 1 and 3 must
lie in the kernel of N2 (for N to be an endomorphism). This forces the images to
line up, so we get 111⊕ 010.
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Looking more closely at the Jordan block sizes we calculated in our original exam-
ple, we notice that, assuming X ∈ C2, the sizes of the different blocks at different
vertices satisfy some inequalities. Specifically, we see that the block size at 1 is
between the two block sizes at 2, and the same thing at 3. In order to make a
general statement, we need a definition.

2. Structure of Jordan block size data for Ci

Taking the AR-quiver of repQ and restricting to Ci, we get a poset with minimal
element Pi and maximal element Ii. We call this posetMi.

In type An, for example, with vertex i as the chosen node, the resulting poset
is the product of an i-element chain and an n+ 1− i-element chain.

Because applying reflection functors at vertices other that i does not change the
vector space at i of a representation, and we can get from any orientation of Q to
any other without reflecting at i, this poset does not depend on the orientation of
Q. This is the “minuscule poset” associated to Q and i. The minuscule poset has
other interpretations, in terms of Schubert calculus, and in terms of Weyl group
combinatorics [6].

One feature of the minuscule poset is that there is a natural map π fromMi

to Q0, where π(X) = j iff X and Pj are in the same τ -orbit.
In general, we have the following description of the Jordan form data:

Theorem 3. Let X ∈ Ci. Define a function from Mi to Z≥0 by setting f(x)
for x ∈ π−1(j) to be the elements of J(X)j , in decreasing order as we go up the
poset, adding zeros if necessary so that f is defined everywhere. The result is an
order-reversing map fromMi to Z≥0. Further, the map from isomorphism classes
of objects in Ci to order-reversing maps fromMi to Z≥0 is a bijection.

In particular, this theorem asserts a bound on the number of Jordan blocks at
vertex j, namely |π−1(j)|.

It might not be too surprising that in type An, it is possible to work out this
combinatorics explicitly. And in fact essentially this was done, without the lan-
guage of quivers, for a particular choice of orientation, by Gansner [1], who showed
that it realizes a rather general version of the Robinson–Schensted–Knuth map.
The bijection between arbitrary functions fromMi to Z≥0 (thought of as encoding
multiplicities of indecomposables) and order-reversing maps fromMi to Z≥0 (Jor-
dan form data) can be considered a generalization of this map. For an excellent
introduction to the Robinson–Schensted–Knuth map in a form compatible with
our treatment, see [4].

3. Affine generalization

There is a generalization of the categories Ci to affine type. There is a natural
poset, and a map from isomorphism classes of representations to order-reversing
maps from the poset to the non-negative integers, but the map is now an injection
rather than a bijection. We are studying this in ongoing work.
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Quiver Heisenberg Algebras

Hiroyuki Minamoto

(joint work with Martin Herschend)

1. Quiver Heisenberg Algebras

Let K be a field of characteristic 0.
We denote by Q the double quiver of Q. We recall that the mesh relation ρ is

defined as

ρ :=
∑

α∈Q1

αα∗ −
∑

α∈Q1

α∗α.

For an arrow a ∈ Q1, we define the quiver Heisenberg relation ηa ∈ KQ to be the
commutator of a and ρ, namely,

ηa := [a, ρ] = aρ− ρa.

We define the quiver Heisenberg algebra Λ(Q) to be

Λ(Q) := KQ/(ηa| a ∈ Q1).

1.0.1. Previous results. As is explained in Section A.1, the algebra Λ(Q) is a special
case of classes algebras introduced before. Specializing previous results, we obtain
the following results.

For an ADE Dynkin quiver Q, the following assertions hold:

(1) (Etingof-Latour-Rains [4]) Λ(Q)is a symmetric algebra.
(2) (Eu-Schedler [6]) Λ(Q) is stably 3-Calabi-Yau.
(3) (Etingof-Rains [3])

dimΛ(Q) =
∑

M :∈indKQ

(dimM)2 =
rh2(h+ 1)

12

where h is the Coxeter number of Q.
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1.0.2. Our results. We equip Q with the grading degQ0 := 0, degα := 0, degα∗ =
1 for α ∈ Q1. The algebra Λ = Λ(Q) inherits the grading. We denote Λn the
degree n-part of n. We note Λ0 = KQ.

Since Π = Λ/(ρ), we have an exact sequence Λ(−1)
ρ
−→ Λ→ Π→ 0. Looking at

the degree 1-part of this sequence, we obtain an exact sequence θ : KQ
ρ
−→ Λ1 →

Π1 → 0.

For Q we define an algebra A(Q) to be

A(Q) :=

(
KQ Λ1

0 KQ

)
.

The following theorem together with the above results obtained before shows
that Λ(Q) and A(Q) can be looked as one-dimensional higher version of the pre-
projective algebras Π(Q) and the path algebras KQ.

The following assertions hold.

(1) IfM is an indecomposable non-injectiveKQ-module, then the map ρ⊗M :
M → Λ1⊗KQM is injective and the exact sequence θ⊗M is an Auslander-
Reiten sequence

θ ⊗M : 0→M
ρ⊗M
−−−→ Λ1 ⊗KQ M → τ−1M → 0.

(2) Let µ : Λ1 ⊗KQ Λ1 → Λ2 be the multiplication map. Then there exists a

map Π1
η∗

−→ Λ1 ⊗KQ Λ1 such that Ker µ = Im η∗.
(3) We have an algebra isomorphism

Λ = TKQ(Λ1)/(Im η∗)

where T denotes the tensor algebra.
(4) As KQ-modules we have

KQΛ(Q) ∼=
⊕

M∈ indP(KQ)

M⊕ dimM

where P(KQ) denotes the full subcategory of the preprojective KQ-
modules.

(5) Λ(Q) is finite dimensional if and only if Q is an ADE-quiver if and only if
A(Q) is 2-representation finite algebra.

(6) Λ(Q) is infinite dimensional if and only if Q is not an ADE-quiver A(Q)
is 2-representation infinite algebra.

Assume this is the case. Then Λ is graded coherent and 3-Calabi-Yau.
(7) In any case, the 2-quasi-Veronese algebra of Λ(Q) is isomorphic to the

3-preprojective algebra of A(Q). 2-APR-tilting operations on A(Q) are
compatible with reflections of a quiver Q.
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2. Algebraic McKay correspondence

Let Q be an ADE-Dynkin quiver, Q̂ the extended quiver, 0 ∈ Q̂0 the extended
vertex and G < SL(2) the corresponding finite subgroup. LetH denote the Heisen-
berg algebra in two variables

H := K〈x, y〉/([x, [x, y]], [y, [x, y]]).

Then G naturally acts on H and the slew group algebra H ∗G is Morita equivalent

to Λ(Q̂). We note that by [7, Corollary 1.7] the fixed subalgebra HG is AS-
Gorenstein. Using a slight generalization of a result by Amiot-Iyama-Reiten [1],
we obtain a Heisenberg analogue of algebraic McKay correspondence.

Namely, under the above situation, we have a triangle equivalence Db(A(Q) mod )

≃ CM HG which descents to give a triangle equivalence C2(A(Q)) ≃ CMZ/2ZHG.

Appendix A. Related algebras

We point out the following isomorphism of algebras

Λ(Q) ∼= (K[z]Q)/(ρ− z),

from which we see that Λ(Q) is a special case of algebras introduced before.

(1) The central extension of the preprojective algebras by Etingof-Rains [3]

Π(Q)λ,µ := (K[z]Q)/(ρi − (λiz + µi)ei | i ∈ Q1).

where λi, µi ∈ K for each i ∈ Q0.
This algebra is a special case of the following algebra.

(2) The N = 1-quiver algebra by Cachazo-Katz-Vafa [2]

Π(Q)P := (K[z]Q)/(ρi − Pi(z)ei | i ∈ Q1).

where Pi(z) ∈ K[z] for each i ∈ Q0.
This algebra is obtained as a pull back of the following family of alge-

bras.
(3) The deformation family of the preprojective algebras Crawley-Boevey-

Holland [5]

Π(Q)• := (K[x1, · · · , xr]Q)/(ρi − xi | i ∈ Q0)

where r = #Q0.
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Comparing support varieties over different algebras

Steffen Koenig

(joint work with Yiping Chen)

Support varieties of modules or complexes over an algebra A are defined when
A satisfies a finite generation condition (Fg), which forces A to be Gorenstein.
When A is derived equivalent to another algebra B, then validity of (Fg) and
support variety theory can be transfered, as shown by Külshammer, Psaroudakis
and Skartsæterhagen [6]. We propose methods to transfer such information from
A to B in the absence of a derived equivalence.

(Fg) condition and support varieties can be redefined in terms of small stable
Hochschild cohomology (defined in [2]). Building on the long exact sequences in-
volving Hochschild cohomology established in [5], it is shown that small stable
Hochschild cohomology behaves better under recollements of derived module cat-
egories involving for instance one term having finite global dimension. In such a
situation, the support varieties of objects in the middle term of the recollement
are seen to coincide with their images in the outer term that is not assumed to
have finite global dimension. Similarly, validity of the (Fg) condition of the middle
term is determined on that outer term.

These results allow to develop a tool box (using for instance glueing in the sense
of [1] and the split pairs in [4]) for removing or adding arrows or vertices or glueing
algebras without changing (Fg) or support varieties.

This implies that gentle algebras, or more generally Gorenstein quadratic mono-
mial algebras, satisfy (Fg) and their indecomposable objects have the same support
varieties as objects over Nakayama algebras. The tools also work for other algebras
such as cluster tilted algebras of Dynkin type.

The approach using recollements of triangulated categories complements the
approach via abelian recollements developed in published and forthcoming work
of Psaroudakis, Solberg and others, using for instance eventually homological iso-
morphisms as in [7]. Validity of the (Fg) condition for Gorenstein monomial
algebras in general has been shown in parallel and independent work by Dotsenko,
Gélinas and Tamaroff [3], using a very detailed study of A∞-structures on Yoneda
extension algebras.

References
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Dissections of surfaces and derived invariants for gentle algebras

Pierre-Guy Plamondon

(joint work with C. Amiot, S. Opper, S. Schroll)

Our aim in this talk is to see how a surface model for the derived category of
a gentle algebra yields a complete derived invariant for this class of algebras.
This is very much related to recent work on partially wrapped Fukaya categories
of surfaces with stops (see [8, 9]), although we will focus on the algebraic and
combinatorial aspects. This is mainly a report on [11, 1]. We fix a field k.

1. Surfaces and dissections

By surface we will always mean surface with boundary, that is, smooth compact
oriented surface with a finite number of open discs removed. Let S be a surface
and let M = M◦ ⊔ M• be a finite set of marked points on the boundary of S
such that each boundary component of S contains at least one marked point,
and that points ◦ in M◦ and • in M• alternate on each boundary component.
Let P = P◦ ⊔ P• be a finite set of punctures in the interior of S.

A ◦-arc (or •-arc) is a smooth map from [0, 1] to the surface S whose endpoints
are in M◦∪P◦ (orM•∪P•, respectively) and whose interior is in the interior of S.
We consider arcs up to (smooth) homotopy.

From now on, let (S,M,P ) be a surface with marked points and punctures.

Definition 1.1. A finite collection ∆ of pairwise distinct ◦-arcs (or •-arcs) on
the surface (S,M,P ) is admissible if the arcs of ∆ are pairwise non-intersecting
in their interior, and the arcs of ∆ do not enclose a subsurface containing no •
(or no ◦, respectively). An admissible ◦-dissection (or admissible •-dissection) is
a maximal admissible collection of ◦-arcs (or •-arcs, respectively).

Example 1.2. The following pictures show admissible ◦-dissections and their
dual •-dissections.
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2. The gentle algebra of a dissection

Definition 2.1. Let ∆ be an admissible ◦-dissection of (S,M,P ). We define
the algebra A(∆) = kQ(∆)/I(∆) as follows. The quiver Q(∆) has vertices in
bijection with the arcs of ∆, and there is an arrow from i to j for each ◦ shared
by i and j and such that j appears immediately after i around that ◦ in the
counter-clockwise order. The ideal I(∆) of the path algebra kQ(∆) is generated
by the path of length 2 defined as follows: whenever i, j and k are adjacent arcs
in a polygon of ∆ in the counter-clockwise order, and if α : i → j and β : j → k
are the corresponding arrows, then βα ∈ I(∆).

Example 2.2. Below is the quiver with relations associated to the first ◦-dissection
of Example 1.2. Dotted lines represent relations.

25

6

4

8 3

1

7

Algebras obtained in this way are (possibly infinite-dimensional) gentle alge-
bras, as introduced in [3]. In fact, this construction defines a bijection between
gentle algebras (up to isomorphism) and dissected surfaces (up to oriented home-
omorphism) [5, 11, 12].

3. Derived invariants

From now on, assume that (S,M,P,∆) is a dissected surface with P◦ = ∅. This
is equivalent to assuming that the algebra A(∆) is finite-dimensional. We are
interested in the bounded derived category of A(∆), and more specifically in the
homotopy categoryKb(projA(∆)). Our first result is that we can interpret objects
and morphisms in Kb(projA(∆)) using curves on S and their intersections. We
recall that in [6, 7], the indecomposable objects of Kb(proj(A(∆)) were classified
into string and band objects.
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Theorem 3.1 ([11]). Graded ◦-arcs on (S,M,P ) correspond to string objects in
the category Kb(projA(∆)); graded closed curves of winding number zero (with re-
spect to ∆∗), together with an indecomposable k[t, t−1]-module, correspond to band
objects. Intersections between them correspond to the bases of the homomorphism
spaces described in [2].

This result allows us to describe tilting and silting objects in the derived cate-
gory of a gentle algebra.

Theorem 3.2 ([1, 10]). Let X be a basic silting object of Kb(projA(∆)). Then
the indecomposable summands of X correspond to graded ◦-arcs in (S,M,P ) that
form an admissible ◦-dissection of (S,M,P ).

Finally, let (c1, . . . , cr) be closed curves on S, each freely homotopic to either
one of the boundary components of S or to one of the punctures in P•. Number the
boundary components of S from 1 to b. Let G = {α1, β1, . . . , αg, βg} be a geometric

symplectic basis, as illustrated below, and denote by w∆∗

(γ) the winding number
of a curve γ with respect to ∆∗.

α1

β1

α2

β2

c1 c2

c3c4

Theorem 3.3 ([1]). The derived equivalence class of the algebra A(∆) is deter-
mined by the following data: the genus g of S; the number p of punctures in P•;
the multiset {n1, . . . , nb}, where each ni is the number of marked points on the i-

th boundary component of S; if g = 1, the number gcd(w∆∗

(γ), w∆∗

(ci) + 2 | γ ∈
G, ci ∈ B); if g ≥ 2, the existence of γ ∈ G ∪ B such that w∆∗

(γ) is odd, or (if

no such γ exists) the existence of ci ∈ B such that w∆∗

(ci) ≡ 0 mod 4, or (if no
such ci exists) the number

∑g
i=1(

1
2w

∆∗

(αi) + 1)(12w
∆∗

(βi) + 1) mod 2.

Problem 3.4. Given only the quiver with relations (Q(∆), I(∆)) defining A(∆),
find an algorithm to compute all the data appearing in Theorem 3.3.

The algorithm found in [4] computes the numbers p, n1, . . . , nb. The genus g
is easy to deduce using the fact that Q(∆) is a retract of the surface. The other
data of Theorem 3.3 remain to be computed algorithmically.
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Skew-gentle algebras and orbifolds

Sibylle Schroll

(joint work with Daniel Labardini-Fragoso, Yadira Valdivieso-Dı́az)

Originating in cluster theory, geometric surface models have been instrumental in
connecting representation theory with other areas of mathematics such as, for ex-
ample, homological mirror mirror symmetry, see for example [9, 10] and [7]. In this
extended abstract based on [6], we give an orbifold model for the bounded derived
category Db(A) of a skew-gentle algebra A which encodes the indecomposable
objects in Db(A) in terms of graded curves in the orbifold.

Skew-gentle algebras were introduced in [8] in the context of the study of the
Auslander Reiten theory of clannish algebras. They are closely linked to the well-
studied class of gentle algebras.

A quiver is a quadruple Q = (Q0, Q1, s, t) consisting of a pair of finite sets, the
vertex set Q0 and the arrow set Q1, and two maps s, t : Q1 → Q0. We think of
Q as a directed graph and of elements in Q1 as the arrows, that is, directed edges
s(a)→ t(a), for a ∈ Q1. Throughout let K be an algebraically closed field.

Definition 1. AK-algebraA is skew-gentle if A is Morita equivalent to an algebra
KQ/I whereQ1 = Q′

1∪S with S ⊂ {a ∈ Q1 | s(a) = t(a)}, I = I ′∪{ε2−ε | ε ∈ S},
and where KQ′/I ′ is a locally gentle algebra with Q′ = (Q0, Q

′
1). Furthermore, if

ε ∈ S then s(ε), as a vertex in Q′, is a single arrow source, a single arrow sink or
there exist exactly one arrow a ∈ Q1 and one arrow b ∈ Q1 with s(b) = t(a) and
ab ∈ I ′. We call the elements of S special loops.

We note that in the above definition even if the skew-gentle algebra KQ/I is
finite dimensional, the ideal I is not necessarily admissible. We refer to [8] for an
admissible presentation KQsg/Isg isomorphic to KQ/I.
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Finite dimensional skew-gentle algebras are tame [5] and derived tame [2, 3]. In
this paper we will use the description of the indecomposable objects in Db(A),
for A finite dimensional skew-gentle, in terms of generalised homotopy strings and
bands as given in [2].

Given a skew-gentle algebra KQ/I with underlying gentle algebra KQ′/I ′, we
will now construct an orbifold dissection into generalised polygons. For this,
recall from [11] that gentle algebras (up to isomorphism) are in bijection with
surface dissections into a special set of polygons (up to homeomorphism). Let
(Σ′, G′, G′∗,M ′, P ∗) be the surface dissection corresponding to KQ′/I ′ as defined
in [11, §1], where Σ′ is an oriented surface with boundary and marked points, G′

is a dissection of Σ′ into polygons, G′∗ is a graph dual to G′, M ′ are those vertices
of G′ which are in the boundary of Σ′ and P ∗ are those vertices of G′∗ which are
in the interior of Σ′.

We recall that the edges in G′ correspond to the vertices in Q′
0 = Q0. Suppose

an edge g′ ∈ G′ corresponds to a vertex v in Q′
0 which is the start of a special

loop. Then g′ cuts out a digon in (Σ′, G′). We now describe a local replacement
operation resembling in each step two consecutive Whitehead moves: namely, we
contract the special edge g′ and expand it in the orthogonal direction producing
in the process an edge g connecting a new marked point on the boundary and an
orbifold point ω of order 2 as illustrated locally in the following example:

X Y

g′
. . . . . .

. . .

G′ :
X = Y

. . .
×
ω

g

.

.

.

.

.

.

G :

Figure 1. Local replacement in Σ′ of the special edge g′ in G′

and the resulting local picture in O with new edge g connecting
the new marked point X = Y with a new orbifold point ω.

We do this for every edge corresponding to the start of a special loop and
we obtain in this way a dissection of an orbifold which we will denote by
(O,G,G∗,M, P ∗,Ω), where O is an orbifold with Ω its set of orbifold points (which
are all of order two), G is a dissection of O into polygons (including the edges to
orbifold points), G∗ is the graph dual to G, M is the set of boundary vertices of
G, and P ∗ are the vertices of G∗ in the interior of O. By construction we have
a bijection between Ω and the set of special loops S and we call a polygon in G
containing at least one orbifold point a generalised polygon.

We then show the following result, which has also been shown in [1].

Proposition 2. With the notation above, there is a bijection between skew-gentle
algebras up to isomorphism and homeomorphism classes of dissections of orbifolds
into polygons and generalised polygons such that each (generalised) polygon has
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either exactly one boundary segment with a marked point in M or is a (gener-
alised) polygon with only internal edges with exactly one marked point in P ∗ in
its interior. The bijection is given by the map which associates to a skew-gentle
algebra KQ/I the orbifold dissection (O,G,G∗,M, P ∗,Ω).

We show that a skew-gentle algebra A is Koszul and that its Koszul dual is
skew-gentle with associated orbifold dissection induced by the dual graph of the
orbifold dissection of A. More precisely, we show the following:

Proposition 3. Let A be a finite dimensional skew-gentle algebra. Then A is
Koszul and the Koszul dual A! is skew-gentle. Furthermore, if A has orbifold
dissection (O,G,G∗,M, P ∗,Ω) then A! has orbifold dissection (Õ, G∗, G,M∗, P,Ω)

where Õ is the orbifold associated to A!, M∗ are the boundary vertices of G∗ and
P corresponds to the set of non-boundary vertices of G.

We note that similarly to the case of gentle algebras, a skew-gentle algebra A
is finite dimensional if and only if all the vertices of G are on the boundary of O,
that is P = ∅. Furthermore, A is of finite global dimension if and only if P ∗ = ∅.

Let O be an orbifold as above. We recall the notion of O-free homotopy from [4].

Definition 4. Two oriented closed curves γ and γ′ in an orbifold O with orbifold
points of order 2 are O-homotopic if they are related by a finite number of moves
given by either a homotopy in the complement of the orbifold points or a skein
relation as in Figure 2 taking place in a disk D containing exactly one orbifold
point ω. A segment of a curve with no self-intersection in D and passing through
ω is O-homotopic relative to its endpoints to a segment spiralling around ω in
either direction exactly once.

× ∼ × ∼ ×

Figure 2. Skein relations.

Let H denote the upper half plane and let Γ < PSL(2,R) be a Fuchsian group
such that O is a suborbifold of H/Γ with geodesic boundary. It is shown in [4]
that there is a natural bijection between the set of conjugacy classes of Γ and the
set of O-free homotopy classes of closed oriented curves in O.

We are now in a position to state the main result of [6].

Theorem 5. Let A be a finite-dimensional skew-gentle algebra with orbifold dis-
section (O,G,G∗,M, P ∗,Ω). Then the homotopy strings and bands of A, giving
rise to the indecomposable objects in Db(A), are in bijection with graded curves
(γ, f) where
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(1) γ is an O-homotopy class of curves in O connecting marked points in
M ∪ P ∗ or γ is an O-homotopy class of certain closed curves in O.

(2) Given a curve γ as in (1), set f : γ ∩ G∗ → Z to be the map such that,
denoting the segment connecting two consecutive (in the direction of γ)
intersection points xi, xi+1 of γ with G∗ by γi, we have

f(xi+1) =

{
f(xi) + 1 if ∃m ∈M to the left of γi in Ri

f(xi)− 1 if ∃m ∈M to the right of γi in Ri

where Ri is the (generalised) polygon of G∗ containing γi.
(3) The open curves correspond to homotopy strings and the closed curves cor-

responding to homotopy bands are exactly those that have combinatorial
winding number induced by f equal to zero.

Remark 6. (1) We note that since A is finite-dimensional the segment γi will lie
in exactly one (generalised) polygon of G∗ which by construction has exactly one
boundary segment with a marked point in M . Thus the map f is well-defined.

(2) In ongoing work we are showing the connection between ’well-graded’ in-
tersections of two graded curves and maps between the corresponding objects in
Db(A).
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Derived equivalences between skew-gentle algebras using orbifolds

Thomas Brüstle

(joint work with Claire Amiot)

Gentle algebras provide an example of a class of algebras whose derived category
can be described explicitly. The class of gentle algebras contains all finite dimen-

sional path algebras of type A and Ã, and has been shown to be stable under
derived equivalences. More recently, gentle algebras have been found to be deeply
connected to the combinatorics and geometry of marked surfaces: The Jacobian
algebra of a triangulation of an unpunctured surface (S,M) is a gentle algebra.
Thus certain gentle algebras appear as endomorphism ring of cluster-tilting ob-
jects in the cluster category C(S,M) associated to the cluster algebra of a marked
surface (S,M) without punctures. Building on this, a geometric model for the ob-
jects in the cluster category C(S,M) can be given associating strings and bands
with curves and closed curves.

Obviously, triangulations of surfaces yield only certain gentle algebras. This
shortcoming has been overcome in [BCS] and [OPS] by relating every gentle algebra
to a dissection of a marked surface, cutting (S,M) into polygons. Using this
correspondence one can obtain a geometric description of the module category of
a gentle algebra, or of its derived category.

Independently, Haiden, Katzarkov and Kontsevich establish in [HKK] a descrip-
tion of the (partially wrapped) Fukaya category of a surface S with stops using the
derived category of a (graded) gentle algebra associated to these data, also given
by a dissection of S. Combining results in [OPS] and [LP], a geometric interpre-
tation of the derived equivalence relation for gentle algebras is given in [APS] and
[O].

We explain in this talk how to extend these results to orbifolds S̄ admitting a
two-fold cover. The two-fold cover S corresponds to a gentle algebra which comes
equipped with a Z2-action. The corresponding skew-group algebra is studied in
[GePe], called skew-gentle algebra. This class of algebras contains in particular all

path algebras of type D and D̃. We employ this point of view, where a description
of the derived category of a skew-gentle algebra can be obtained using the Z2-
action, and the known results for gentle algebras.

Looking back to the cluster algebra of a triangulated surface, the orbifold points
correspond to punctures, and the fact that the Jacobian algebra admits a Z2-
action corresponds to having all orbifold points lying in a self-folded triangle. The
description of the cluster category for punctured surfaces with skew-gentle algebras
has been given in [AP] using a Z2-action on the category and on the surface. We
follow a similar approach, generalizing it to study the derived category in the
case of an orbifold allowing a dissection such that all orbifold points are uniquely
connected by an arc to the boundary (this is the polygonal equivalent of the self-
folded triangle in the cluster situation).

Of course, the class of skew-gentle algebras is not stable under derived equiv-
alences, not even the simplest case of type D satisfies this. It is however natural
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to ask what is the geometric interpretation of the derived equivalence relation for
skew-gentle algebras.

To answer this, we study the Z2-action, both on the algebraic side of the skew-
gentle algebras, and on their geometric realizations. To any dissected surface which
is invariant under the action of an order-2 diffeomorphism (with finitely many fixed
points), we associate a gentle algebra Λ together with a Z2 action and an orbifold
together with an orbifold dissection.

We give a geometric interpretation of the derived equivalence relation for skew-
gentle algebras when the equivalence is given by a Z2-invariant tilting object. The
Z2-invariant line field η of the double cover induces a line field η̄ on the orbifold,
and we have the following characterization:

Theorem 1. Two skew-gentle algebras Λ̄ and Λ̄′ are derived equivalent via a Z2-
invariant tilting object if and only if there exists a diffeomorphism between their
corresponding orbifolds sending η̄ to η̄′ up to homotopy.
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Derived equivalence classification of Brauer graph algebras
via A∞-algebras

Alexandra Zvonareva

(joint work with Sebastian Opper)

Brauer graph algebras, or equivalently symmetric special biserial algebras, first
appeared in modular representation theory in form of blocks with cyclic [5] or
dihedral defect group [6]. Roughly speaking, a Brauer graph algebra can be con-
structed from the data of a graph Γ with a cyclic ordering of edges around each
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vertex and a multiplicity function on the set of its vertices m : V (Γ)→ N>0. Note
that such a graph can be embedded into a unique closed oriented surface SΓ in
such a way that its complement is a union of open discs and the ordering of edges
comes from the orientation of the surface (when drawn on the plane, the ordering
of the edges will always be assumed to go clockwise). In this case the graph Γ
cuts the surface SΓ into polygons called the faces of Γ, if a certain face of Γ is an
n-gon, then n will be called the perimeter of that face.

To the data (Γ,m) one can associate a path algebra of a quiver with relations
A ≃ kQΓ/IΓ (we assume that k is an algebraically closed field), the algebras of
this form are called Brauer graph algebras. The quiver QΓ can be constructed
as follows: the vertices of QΓ correspond to the edges of Γ, the arrows of QΓ are
induced from the ordering of edges (see figures).

The arrows of QΓ are naturally divided into cycles, corresponding to vertices
of Γ. The ideal of relations IΓ is generated by two types of relations, graphically
they can be given as follows:

v1 v2

= 0

Composing not in the cyclic ordering is 0.

v1 v2

m(v1)

= v1 v2

m(v2)

For an edge (v1, v2), going m(v1) times around the cycle corresponding to v1 is
the same as going m(v2) times around the cycle corresponding to v2.

The derived equivalence classification of Brauer graph algebras was considered
in the literature over the past years. The classification for the case of Brauer
graph algebras of finite representation type was provided by Rickard [9]. Antipov
classified Brauer graph algebras up to derived equivalence in the case when the
surface SΓ is a sphere [1]. He also produced a list of combinatorial invariants of the
derived category of any Brauer graph algebra (see Theorem) [1, 3]. Furthermore,
the class of Brauer graph algebras is closed under derived equivalence [2, 3].

It turns out that Brauer graph algebras can be consider as a part of a bigger
class of A∞-algebras, which can be constructed from a full collection of arcs on a
surface, equipped with a line field. Working in this much larger class of algebras
it becomes easier to produce equivalences of derived categories. Using ideas of
Bocklandt [4] and Haiden-Katzarkov-Kontsevich [7], as well as results of Lekili-
Polishchuk [8] we can prove the following theorem:

Theorem 1. Let B and B′ be Brauer graph algebras with Brauer graphs Γ and
Γ′ (assume that neither Γ nor Γ′ is a loop with multiplicity 1 or an edge with
multiplicity 2 at both ends). Then, B and B′ are derived equivalent if and only if
the following conditions are satisfied.
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(1) Γ and Γ′ have the same number of vertices, edges and faces, i.e. the surfaces
of B and B′ are homeomorphic;

(2) the multisets of perimeters of faces and the multisets of the multiplicities
at vertices of Γ and Γ′ coincide;

(3) Either both or none of Γ and Γ′ are bipartite.

The exception for the case of a loop with multiplicity 1 or an edge with multi-
plicity 2 at both ends has to be made, since in this case the Brauer graph is not
invariant under isomorphism of algebras [3].
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Torsion pairs for cluster-tilted algebras of type Ã

Rosanna Laking

(joint work with Karin Baur)

We presented an account of the classification of cosilting modules over cluster-
tilted algebras of type Ã contained in [3]. In particular, we emphasised the strong
links between cosilting modules and the torsion pairs in the category of finite-
dimensional modules.

Let A be a finite-dimensional algebra over a field k. We will denote the category
of left A-modules by Mod(A) and the full subcategory of finite-dimensional left A-
modules by mod(A). In an abelian category A (e.g. mod(A) or Mod(A)) we define
a torsion pair to be a pair of full subcategories (T ,F) such that HomA(T ,F) = 0
and such that every object X ∈ A has a subobject t(X) ∈ T such that X/t(X) ∈
F . We may consider the torsion pairs in mod(A) and Mod(A) and ask how they
relate to each other.

Since mod(A) is closed under subobjects, we have that every torsion pair (T ,F)
in Mod(A) restricts to a torsion pair (T ∩mod(A),F ∩mod(A)) in mod(A). Note
that there may be many torsion pairs in Mod(A) that restrict to the same torsion
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pair in mod(A). Crawley-Boevey [5, Lem. 4.4] showed that, if (t, f) is a torsion
pair in mod(A), then (lim

−→
t, lim
−→

f) is a torsion pair in Mod(A). Moreover, he

showed that lim
−→

f consists of the modules F such that Hom(t, F ) = 0 and so we

have that (lim−→ t, lim−→ f) restricts to (t, f). Torsion pairs in Mod(A) of this form are

therefore in bijection with torsion pairs in mod(A) and it turns out that they can
be characterised as those with F = lim

−→
F . Such torsion pairs are known as torsion

pairs of finite type.
Another characterisation of torsion pairs of finite type in Mod(A) has recently

emerged from silting theory: a torsion pair is of finite type if and only if it is a
cosilting torsion pair (see, for example, [1]). In particular, for every torsion pair
(T ,F) of finite type in Mod(A), there exists a cosilting module C such that T
consists of the modules T such that HomA(T,C) = 0 and F is exactly the class of
modules cogenerated by C.

Cosilting modules C are not necessarily finite-dimensional, however they are
pure-injective [4, 8], which, over a finite-dimensional algebra, means that they
arise as direct summands of set-indexed products of finite-dimensional modules.
The pure-injective modules are a particularly well-behaved class of modules and
in some cases it is even possible to classify the indecomposable pure-injective
modules over a given algebra. For example, Prest and Puninski [6] classify the
indecomposable pure-injective modules over domestic string algebras (when k is
algebraically closed).

Since every algebraA that is cluster-tilted algebras of type Ã is a domestic string
algebra, their classification yields the following complete list of indecomposable
pure-injective A-modules :

• string modules indexed by finite and infinite strings (in the sense of [7]);
• band modules indexed by the set k∗ ∪ {∞,−∞};
• a generic module.

It was shown in [2] that the class of cluster-tilted algebras of type Ã coincides
with the class of surface algebras coming from triangulations Γ of the annulus with
finitely many marked points in its boundary (where triangulation means a maximal
collection of noncrossing arcs whose endpoints are marked points). Moreover, the
finite-dimensional string modules are in one-to-one correspondence with arcs on
the surface (that are not contained in Γ) up to end-point fixing homotopy. We show
that the string modules indexed by infinite strings are in bijection with so-called
asymptotic arcs.

Let A be a cluster-tilted algebra of type Ã corresponding to an annulus S with
marked pointsM . Using the geometric description of the strings modules, we may
classify the cosilting modules and hence all torsion pairs in mod(A). First we con-
sider the finite-dimensional cosilting modules. For every triangulation of (S,M),
the corresponding direct sum of string modules is a finite-dimensional cosilting
A-module. Moreover, every finite-dimensional cosilting module is equivalent to
such a module.
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The infinite-dimensional cosilting A-modules are similar but they may contain
direct summands that are Prüfer, adic or generic modules. Every maximal col-
lection T of arcs containing at least one asymptotic arc together with a partition
P1 ⊔ P2 = k∗ yields a cosilting A-module. The direct summands of this module
are given by the collection of string modules corresponding to the arcs in T , the
Prüfer modules parametrised by P1, the adic modules parametrised by P2 and the
generic module. Moreover, such collections parametrise the equivalence classes of
infinite-dimensional cosilting modules.
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Torsion classes of gentle algebras

Aaron Chan

(joint work with Laurent Demonet)

For an abelian category A consisting only of finite length objects, recall that a
full subcategory is called torsion class if it is closed under taking quotients and
extensions. Torsion classes play a central role in the homological behaviour of a
finite-length abelian category, c.f. (aisles of) t-structures in triangulated categories.

The combinatorics arising from the collection tors(A) of torsion classes is just
as interesting. In fact, it is a complete lattice, meaning that any set of torsion
classes has a greatest common lower bound given by their intersection, and a least
common upper bound given by the smallest torsion class containing their union.
For various lattice theoretic results, particularly in the case when tors(A) is finite,
see [3].

In general, classifying torsion classes is an extremely difficult task - especially
if one does not want to appeal to big module theory (see [1]). Nevertheless, in the
case where A is the category of finitely generated modules over a so-called special
biserial algebra, there are various expositions in the literature that give us some
hopes in completing this task.

Firstly, for special biserial algebras, the classification of finite-dimensional in-
decomposable modules as well as their homomorphisms are completely known.
These can be described easily using the so-called string combinatorics. Indeed,
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there already exist descriptions, in terms of strings, of the Ext-projective gener-
ator (or the associated two-term silting complex) of a functorially finite torsion
class. However, the combinatorics in these cases can be cumbersome to work with.
Taking various ideas and techniques from [3], it occurs to us that the better set-
ting is to take A to be the category f.l.Λ of finite length modules over a (possibly
infinite-dimensional) gentle algebra Λ.

Secondly, it is now well-known that gentle algebras are in correspondence with
marked surfaces [5]. The finite length indecomposable modules can be interpreted
as closed curves or arcs (meaning curves that connect marked points) on the asso-
ciated surface. This connection between gentle algebras with topology gives us an
alternative, and often useful, way to think about various homological behaviour.
Indeed, the functorially finite torsion classes also admit nice interpretation in terms
of surface combinatorics. For example, in the case of Jacobian algebras arising from
surface triangulations, the Ext-projective generator of a functorially finite torsion
class can be combinatorially described by a maximal set of pairwise non-crossing
arcs.

One of the ideas in Fomin and Thurston article [4] is that, in order for the
combinatorics to be better-behaved (from the perspective of computing g-vectors),
one can look at laminations of the surface instead of maximal non-crossing sets.
Algebraically, this means that one will work with two-term (silting) complexes
instead of their zeroth homology. Combinatorially, all we need to do is to perturb
the endpoints of an arc. Namely, if an endpoint is in the interior (resp. boundary),
then its neighbourhood in the curve is modified to wind indefinitely towards (resp.
hit a boundary slightly away from) this point, in an appropriately chosen direction.
Such a modification will change a maximal non-crossing set of arcs into a maximal
set of pairwise non-crossing curves which is called a lamination. In particular,
the g-vector of (the two-term silting complex associated to) the corresponding
Ext-projective generator is just the shear coordinate of the lamination.

Even though a general torsion class in f.l.Λ does not necessarily admit a Ext-
projective generator, inspired by Fomin-Thurston’s idea, we speculate that there
is still a combinatorial replacement for the Ext-projective generator, namely, we
simply relax the restriction of a lamination so that it can contain curves that go
off indefinitely wherever they want.

Finally, by “orienting crossings” between two curves, one can give the collection
of non-crossing sets of arcs the structure of a poset. It can be observed from
existing results in the literature that this poset structure is compatible with the
poset structure on the collection of functorially finite torsion classes. Now, it is
natural to expect this combinatorics of oriented crossings can be generalized to
the setting of generalized laminations.

Combining these ideas, we obtain an isomorphism (of complete lattices) between
tors(f.l.Λ) and the complete lattice of generalized laminations of the associated
surface. This talk aims to explain the necessary definitions that goes into this
result so that one can now compute torsion classes from generalized laminations.
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In view of the recent article by Baur and Laking [2], we expect that our result
essentially gives a description of all cosilting modules over gentle algebras, even
though the classification of the pure-injective (big) modules over a lot of gentle
algebras (precisely, those of non-domestic type) seems to be unknown. To finish,
let us remark also that there are still various aspects of the theory that remains
mysterious - for example, how one could compute the Bongartz (co)completion
explicitly using the combinatorics of generalized laminations. Unfortunately for
us, who want to stay inside the finite length setting as much as possible, it seems
that a better understanding of the Hom-spaces between the cosilting modules over
the gentle algebras seems to be necessary.
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Derived tameness of quasi-gentle algebras

Igor Burban

(joint work with Yuriy Drozd)

Quasi-gentle algebras were introduced in [4]. As special cases, these class of alge-
bras includes the gentle and skew-gentle algebras.

Example (degenerate tubular algebra). The path algebra of the quiver

•

a1

ww♦♦♦
♦♦♦

♦♦♦
♦♦♦

♦

a2
��⑦⑦
⑦⑦
⑦⑦
⑦⑦

a3
��❅

❅❅
❅❅

❅❅
❅

a4

''❖❖
❖❖❖

❖❖❖
❖❖❖

❖❖

•

b1 ''❖❖
❖❖❖

❖❖❖
❖❖❖

❖❖ •

b2

��❅
❅❅

❅❅
❅❅

❅ •

b3

��⑦⑦
⑦⑦
⑦⑦
⑦⑦

•

b4ww♦♦♦
♦♦♦

♦♦♦
♦♦♦

♦

•

subject to the relations b2a2 = b3a3 and b1a1 + b2a2 + b4a4 = 0, is a quasi-gentle
algebra.
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Example. The path algebra of the quiver

•

•

x−

1,1

��
x+
1,1

��

•

w1,1

��

t1,1

��

z1,1

��

•

x+
2,1

��
x−

2,1

��
•

u2

��❅
❅❅

❅❅
❅❅

❅

u1

77♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
•

z1,2 ((

•

w1,2

��

v2

tt❥❥❥❥
❥❥❥

❥❥❥
❥❥❥

❥❥❥
❥❥❥ •

t1,2vv

•

v1

gg◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆

• •

v+
3

vv

v−

3

((
• •

modulo the relations: 



z1,2z1,1 + w1,2w1,1 + t1,2t1,1 = 0
v±3 w1,2 = 0
u1x

−
1,1 = 0 = v1x

+
2,1

u2x
+
1,1 = 0 = v2w1,1

is a quasi-gentle algebra.

Theorem (Burban & Drozd). Let Λ be a quasi-gentle algebra over an algebraically
closed field k and Hot∗

(
pro(Λ)

)
be the homotopy category of complexes of finitely

generated projective Λ-modules, where ∗ ∈ {+,−, b, ∅}. Then Hot∗
(
pro(H)

)
is

representation-tame.

Following the scheme, proposed for the first time in [2], a proof of this result is
obtained by constructing a representation embedding

Hot∗
(
pro(Λ)

) Φ
−→ Rep∗

(
XΛ

)

(i.e. Φ is a k-linear functor, which reflects indecomposability and isomorphism
classes of objects), where Rep∗

(
XΛ

)
is the category of representations of a bunch

of semi-chains XΛ, known to be representation tame by a work of Bondarenko [1].

A description of XΛ is essentially based on a detailed study of the Auslander–
Reiten quiver of the category of vector bundles on a weighted projective line of
type (2, 2, n), made by Kussin, Lenzing and Meltzer [5].

As a consequence of the derived tameness of quasi-gentle algebras, we complete
the classification of derived-tame non-commutative nodal curves [4].
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Two decomposition results for bipersistence modules

Steve Oudot

(joint work with Magnus Botnan, Jérémy Cochoy, Vadim Lebovici)

Recent work by Botnan and Crawley-Boevey [3] shows that pointwise finite-dimen-
sional (pfd) representations of posets over an arbitrary field k decompose as direct
sums of indecomposables with local endomorphism ring. Here we are interested
in the poset Rd equipped with the product order. This choice is motivated by
applications in topological data analysis (TDA), where representations of this poset
arise naturally. While the poset is of wild representation type (for d > 1), we are
only interested in a subclass of its indecomposables, called interval modules, which
by definition are indicator representations kI of connected and convex subsets
(called intervals) I of Rd. Here, connectivity and convexity are understood in the
product order, see Figure 1 for an example where d = 2.

R
2

k

k

k

k k

k
0

0
id

id
id

id

id

I

Figure 1. An interval I ⊂ R2 and its associated interval module kI .

These indecomposables play a key role in TDA. Indeed, given a pfd representa-
tion M , the collection of the supports of the interval summands appearing in its
direct-sum decomposition can be used as a descriptor of M—called its barcode—
and thereby also as a descriptor of the data from which the representation origi-
nates. This descriptor is purely geometric by nature, therefore easy to interpret
for practitioners, and efficient to encode and manipulate on a computer. Fur-
thermore, its stability properties, proven in the TDA literature [7, 8], make it a
relevant choice to derive consistent estimators in statistical analysis.

From the computational point of view, an important question is to be able to
determine quickly whether a given representationM of Rd has interval summands
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or not, and if so, to extract these summands. An obvious solution for this consists
in decomposing M then checking its summands one by one, however this is far
too costly in practice. Rather, one seeks to find local, easily checkable conditions,
that guarantee the existence of such summands, or at least, that test whether M
entirely decomposes into interval summands. Such conditions can be useful not
only for algorithms, but also for the mathematical analysis of certain classes of
problems in data analysis, for which they may help assert that such problems do
(or do not) yield interval summands when TDA is applied to them.

The work presented here tackles this question in the special case where d = 2.
Note that the case where d = 1 is already known, and the question in that case
is actually trivial because every pfd representation decomposes into interval sum-
mands without any further conditions [6]. In the case d = 2 however, we can show
that no local condition for full interval-decomposability exists, for any reasonable
notion of locality. For instance, restricting the focus to the fully commutative
square grid Gn = J1, nK2, we can exhibit non-thin indecomposable representations
of Gn whose restrictions to any strict subgrid of Gn fully decompose into interval
summands. One such representation is shown below, where ιj : k→ kn−1 denotes
the canonical inclusion of the j-th copy of k into the direct sum kn−1.

(1)

k kn−1 kn−1 kn−1 kn−1

0 k kn−1 kn−1 kn−1

. . . kn−1 kn−1

0 0 k kn−1

0 0 0 k

ι1 id id id

ι2

ι2

id

id id

id id

id

id

id

ιn−1

ιn−1 id

[

1
|
1

]

This negative result settles the question in 2-d. From here, one might ask whether
there are reasonable subclasses of the interval modules that enjoy a local char-
acterization. This new question can be answered positively, and the classes of
summands of interest are the ones of so-called rectangle modules and block mod-
ules. A rectangle is a product of two 1-d intervals, and a block is a rectangle that
extends to infinity in at least 2 directions, more precisely it is either an upper-right
quadrant, or a lower-left quadrant, or a vertical band, or a horizontal band (other
types of rectangles extending to infinity in 2 directions or more are forbidden).
The corresponding interval modules can be characterized locally as follows: an
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interval module over R2 is a rectangle (resp. block) module if and only if all its
restrictions to squares {x, x′}× {y, y′} ⊂ R2 are. More generally, we can establish
the following decomposition theorem:

Theorem 1 ([2, 3, 5]). A pfd representation of R2 decomposes as a direct sum
of rectangle (resp. block) modules if and only if all its restrictions to squares
{x, x′} × {y, y′} ⊂ R2 do.

This result (in fact two results, distinguishing between the rectangle case and
block case) has important implications in TDA, for instance to the stability theory
of the class of representations of R2 called level-sets persistence modules [1, 4],
which find applications e.g. in the study of Reeb graphs and their approximations
from data. From there, a number of open questions arise, most notably:

• Working out local conditions that assert the presence of interval (resp.
rectangle or block) summands in the decomposition, not just the full in-
terval (resp. rectangle or block) decomposability. Such conditions would
greatly benefit to the algorithms computing decompositions in general.
• Extending the analysis to larger classes of indecomposables beyond the
interval modules, and to larger classes of posets beyond R2. In particular,
understanding what in the poset structure allows us to derive such local
conditions as above.

These questions will be the subject of further investigations by the TDA commu-
nity in the near future. Our hope is that the representation theory community
will be interested as well, and take part in this effort.
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Derived equivalences via HRS-tilting

Xiao-Wu Chen

(joint work with Zhe Han, Yu Zhou)

Let A be an abelian category. A torsion pair (T ,F) in A consists of two full
subcategories subject to the following conditions.

(1) HomA(T ,F) = 0, that is, HomA(T, F ) = 0 for any T ∈ T and F ∈ F ;
(2) For any object X in A, there exists a short exact sequence

0 −→ T −→ X −→ F −→ 0

with T ∈ T and F ∈ F , called the decomposition sequence of X .

The decomposition sequence is unique up to isomorphism.
Following [7], a torsion pair (T ,F) is said to be tilting provided that any object

in A is isomorphic to a sub object of some object in T ; dually, the torsion pair is
cotilting provided that any object is isomorphic to a factor object of some object
in F . As these terminologies suggest, torsion pairs arise naturally in the classical
tilting theory [6, 5].

Denote by Db(A) the bounded derived category of A. We identify objects in A
with stalk complexes concentrated in degree zero. The key observation is made in
[7]: associated to any torsion pair (T ,F) in A, the following full subcategory of
Db(A)

B = {X ∈ Db(A) | H−1(X) ∈ F , H0(X) ∈ T , Hi(X) = 0 for i 6= −1, 0}

is abelian, called the (forward) HRS-tilt of A with respect to (T ,F). Indeed, we
have a bounded t-structure (U≤0,U≥0) on Db(A), where

U≤0 = {U ∈ Db(A) | H0(U) ∈ T , Hi(U) = 0 for i > 0}, and

U≥0 = {V ∈ Db(A) | H−1(V ) ∈ F , Hi(V ) = 0 for i < −1}).

As B is the heart of this t-structure, it is naturally an abelian category.
Let us recall some general facts on bounded t-structures. Let D be a triangu-

lated category, and let (D≤0,D≥0) be a bounded t-structure. Then we have the
heart H = D≤0 ∩ D≥0 and its bounded derived category Db(H). By a realization
functor of the bounded t-structure, we mean a triangle functor

G : Db(H) −→ D

whose restriction on H is isomorphic to the inclusion H →֒ D. If the triangulated
category D is algebraic, that is, triangle equivalent to the stable category of a
Frobenius category, such a realization functor always exists [9]. We mention that
the original construction of a realization functor via filtered triangulated categories
is given by [1]; compare [2].

We observe that a realization functor is unique on the level of objects. However,
it is a very subtle issue whether a realization functor is unique. Despite the lack
of uniqueness, we still often say the realization functor.
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In general, a realization functor is not an equivalence. It is a standard fact that a
fully-faithful realization functor is dense, and thus an equivalence [2]. The converse
is somehow surprising to us, although the proof is standard; see [4].

Theorem A. Let G : Db(H) → D be the realization functor as above. Assume
that G is dense. Then G is fully-faithful, and thus a triangle equivalence.

The following classical result unifies the corresponding derived equivalences in-
duced by classical tilting modules over artin algebras [6] and tilting sheaves on
weighted projective lines [5].

Theorem. (Happel-Reiten-Smalø) Let (T ,F) be a torsion pair in A, and let
B be the forward HRS-tilt. Assume that (T ,F) is tilting or cotilting. Then the
corresponding realization functor

G : Db(B) −→ Db(A)

is a triangle equivalence.

We mention that there are torsion pairs, neither tilting nor cotilting, whose
corresponding realization functor is a derived equivalence. Indeed, the examples
arise from two-term tilting complexes [8, 3]. We point out that the well-known
HW-reflection is induced from a term-term tilting complex.

As the HRS-tilt plays an essential role in both quasi-tilted algebras and stability
conditions for certain geometric objects, it might be of great interest to know
when precisely the realization functor in an HRS-tilt is a derived equivalence. The
following main result answers this question in full generality; see [4].

Theorem B. Let (T ,F) be a torsion pair in A, and let B be the forward HRS-tilt.
Denote by G : Db(B) → Db(A) the corresponding realization functor. Then the
following statements are equivalent.

(1) The realization functor G is an equivalence.
(2) The subcategory A lies in the essential image of G.
(3) For each object X ∈ A, there is an exact sequence in A

ηX : 0 −→ F 0 −→ F 1 −→ X −→ T 0 −→ T 1 −→ 0

with F i ∈ F and T i ∈ T , such that the corresponding class [ηX ] in the
Yoneda extension group Yext3A(T

1, F 0) vanishes.

The proof of Theorem B uses the backward HRS-tilt of B with respect to the
induced torsion pair. One of the key ingredients is a categorical version of [3,
Proposition 4.1 and Theorem 4.4].

We mention that the condition (3) is intrinsic. In view of it, the classical result
of Happel-Reiten-Smalø follows immediately. Unlike the decomposition sequence,
the exact sequence ηX is not unique in general. There is an example in [4] to show
that the vanishing condition on [ηX ] is necessary.

In view of the condition (2), the following question is natural.

Question. Let A be an abelian category, and let (D≤0,D≥0) be a bounded t-
structure. Denote by H = D≤0 ∩ D≥0 the heart, and by G : Db(H) → Db(A)
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the corresponding realization functor. Assume that A is contained in the essential
image of G. Is G a derived equivalence?

The answer to this question is affirmative, provided that the abelian category
A is hereditary. Indeed, in this situation, the realization functor G is dense. Then
the assertion follows from Theorem A.
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Silting theory of orders modulo a regular sequence

Wassilij Gnedin

Let R be a commutative complete local Noetherian ring, and let x be some R-
regular sequence of elements in the maximal ideal m of R. In [2], Eisenbud studied
the question how the homological algebra of the ring R differs from that of its lower-
dimensional quotient R = R/xR. We shall be concerned with a non-commutative
analogue of this question in the framework of derived categories.

To simplify the exposition, we assume that the base ring R is regular. Let Λ be
an R-order, by which we mean an R-algebra Λ such that Λ is finitely generated
and free as an R-module. In particular, the R-algebra Λ is x-regular.

We would like to compare the derived representation theory of the ring Λ to
that of its quotient Λ = Λ/xΛ. Both rings have the same finite number n of
isomorphism classes of of simple modules. However, the natural push down functor

P : D = D−(modΛ) D = D−(modΛ), L• L• = L•
L

⊗Λ Λ

is usually not dense and does not reflect isomorphism classes of objects.
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Example. Let Λ be the arrow ideal completion of the preprojective algebra of

affine type Ã2. Its quiver (Q, I) is shown on the left:

(Q, I) (Q, I)s
2
•

•
1

•
3

a2

b1

a1

b3

a3

b2

b1a1 = a3b3
b2a2 = a1b1
b3a3 = a2b2

2
•

•
1

•
3

a2

b1

a1

b3

a3

b2

biai = 0
aibi = 0
i∈{1,2,3}

It can be shown that the ring Λ is an R-order with respect to the structure mor-
phism

R = kJs, tK −→ Λ, s 7−→
3∑

i=1

biai, t 7−→ sum of all 3-cycles in (Q, I).

Any element p ∈ m = (s, t) is R-regular and Λp = Λ/pΛ is a one-dimensional order.

For the special choice p = s, the kJtK-order Λs is isomorphic to the completed path

algebra of the gentle quiver (Q, I)s on the right. We note that the perfect complex

P1 P2 P1
a1· b1· of Λs cannot be lifted to a perfect complex of Λ.

For any number n ∈ N+ the sequence x = (s, tn) is R-regular as well. The
finite-dimensional k-algebra Λs,tn = Λ/xΛ is isomorphic to the path algebra of

the quiver (Q, I)s with the additional relations:

(a3a2a1)
n = (b1b2b3)

n (a1a3a2)
n = (b2b3b1)

n (a2a1a3)
n = (b3b1b2)

n

We will return to the R-order Λ and its quotients Λp, Λs and Λs,tn later.

Silting theory and three bijections

For any perfect complexes L•,M • of Λ we set L• ≥M • if HomD(L
•,M •[p]) = 0 for

any positive number p ∈ N+. Let presiltnΛ denote the set of isomorphism classes of
basic perfect complexes L• with n indecomposable summands satisfying L• ≥ L•.
The set siltΛ consists all elements in presiltnΛ which generate the perfect derived
category of Λ. Finally, its subset tiltΛ is given by all complexes T • ∈ siltΛ such
that HomD(T

•, T •[i]) = 0 for any integer i ∈ Z\{0}.
Our study of silting complexes is motivated by work of Aihara and Iyama [1].

They have shown that (siltΛ,≤) is a partially ordered set, which is a derived
invariant of the ring Λ. Given a silting complex L•, it is possible to compute new
silting complexes from L• by an explicit process called mutation. In contrast to
silting complexes, the class of tilting complexes is not closed under mutation.
At last, silting objects are closely related to certain t-structures.
The same notions and results apply to the quotient ring Λ.

It turns out that the push down is well-behaved on silting complexes:
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Theorem 1. In the setup above, the functor P induces three well-defined bijec-
tions

presiltnΛ siltΛ tilt∗Λ

presiltnΛ siltΛ tiltΛ

1:1ψp 1:1ψs 1:1ψt

where tilt∗Λ := {T • ∈ tiltΛ | the R-algebra EndD(T
•) is x-regular }

= {T • ∈ tiltΛ | HomD(T
•, T •[−1]) = 0 }.

Moreover, for any two complexes L•,M • ∈ presiltΛ the following statements hold:

(a) It holds that L• ≥M • in D if and only if L• ≥M • in D.
(b) There is an isomorphism of R-algebras

R⊗R EndD(L
•) ∼= EndD(L

•)

In particular, there is an isomorphism (siltΛ,≤) ∼= (siltΛ,≤) of posets.

Let us comment on the three bijections above:
Assuming that the map ψp is well-defined, its bijectivity follows from the fol-

lowing “lifting folklore” for any complex P • ∈ D :

(a) If HomD(P
•, P •[2]) = 0, then P • has some lift L• ∈ D with respect to P.

(b) If HomD(P
•, P •[1]) = 0, then any two lifts of P • are isomorphic in D.

These results were established by Rickard in a setup including group theory [4],
and by Yoshino in commutative algebra [5]. Theorem 1 can be generalized to a
framework unifying both setups.

The surjectivity of the map ψs follows by dg-categorical arguments due to Keller.
It was shown originally by Rickard that the map ψt is well-defined and bijective

in the case that Λ = Λ/mΛ. In this setup, tilt∗Λ is given by all complexes T • ∈ tiltΛ
such that EndD(T

•) is an R-order.
Theorem 1 is inspired by Rickard’s work [4]. It has the following consequences:

Corollary. In the setup above, the following statements are true:

(a) It holds that presiltnΛ = siltΛ if and only if presiltnΛ = siltΛ.
(b) Let Γ be some x-regular R-algebra derived equivalent to the R-order Λ.

Then the quotients Γ = Γ/xΓ and Λ are derived equivalent, too.
(c) Let C be some class of R-orders which is closed under derived equivalences.

Then C = {Λ | Λ ∈ C} is closed under derived equivalences as well.

It is an open problem whether any presilting complex with n summands is al-
ready silting. For the R-order Λ, this problem can be reduced to the corresponding
problem for the finite-dimensional k-algebra Λ/mΛ.
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An application to ribbon graph orders

•

A finite quiver (Q, I) is 2-regular gentle if at any vertex of Q
we have the situation on the right. Any such quiver comes from
a ribbon graph. The arrow ideal completion Λ of its infinite-
dimensional path algebra kQ/I will be called a ribbon graph
order. The ring Λ becomes a kJtK-order by identifying t with
the sum of all repetition-free cyclic paths in the quiver (Q, I).

It can be shown that ribbon graph orders have unique homological features
which allow to deduce the first part of the following statement:

Theorem 2. Both classesR of ribbon graph orders andR of twisted Brauer graph
algebras are closed under derived equivalences.

A ring Λ ∈ R is isomorphic to some symmetric Brauer graph algebra if and
only if the field k has characteristic two or the underlying graph is bipartite [3].

Example (continued). Because the R-order Λ is symmetric, it can be shown that
tilt∗Λ = siltΛ. For any p ∈ m and any n ∈ N+ Theorem 1 yields the bijections:

tiltΛp tiltΛ tiltΛs tiltΛs,tn
1:1 1:1 1:1

It holds that Λs ∈ R and Λs,tn ∈ R. By a result of Burban and Drozd, the ribbon

graph order Λs is derived-tame. On the other hand, the preprojective algebra Λ,
most of its quotient rings Λp and all Brauer graph algebras Λs,tn are derived-wild.

Thus, the tilting theory of a family of rings is reduced to a single feasible case.
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Schemes of modules over gentle algebras and laminations of surfaces

Jan Schröer

(joint work with Daniel Labardini-Fragoso, Christof Geiß)

1. Introduction

We study some geometric aspects of the representation theory of gentle algebras.
This class of finite-dimensional algebras was defined by Assem and Skowroński [3],
who were classifying iterated tilted algebra of path algebras of extended Dynkin

type Ã. Gentle algebras are special biserial, which implies that their module
categories can be described combinatorially, see [18] and also [5].

The irreducible components of the affine schemes of modules over gentle algebras
are easy to classify. As a first main result, we describe all smooth points of these
schemes, and we show that most components are generically reduced.

A special class of gentle algebras are Jacobian algebras arising from triangu-
lations of unpunctured marked surfaces (S,M). For these we obtain a bijection
between the set of generically τ -reduced decorated irreducible components and the
set of laminations of the surface. This bijection is compatible with the parametriza-
tion of these two sets via g-vectors and shear coordinates, and it has some appli-
cation to cluster algebras, a class of combinatorially defined commutative algebras
discovered by Fomin and Zelevinsky [10]. Initially meant as a tool to describe
parts of Lusztig’s dual canonical basis of quantum groups in a combinatorial way,
cluster algebras turned out to appear at numerous different places of mathemat-
ics and mathematical physics. The generically τ -reduced decorated components
parametrize the generic Caldero-Chapoton functions, which belong to the upper
cluster algebra U(S,M) associated with (S,M). In many cases, these generic Caldero-
Chapoton functions are known to form a basis, called the generic basis, of U(S,M),
see for example [11] and [17]. We use the bijection mentioned above to show that
the generic basis coincides with the Musiker-Schiffler-Williams bangle basis (see
[15]) of the cluster algebra A(S,M) associated with (S,M). (In most of these cases,
we have A(S,M) = U(S,M).)

In the following, we describe our results in more detail.

2. Main results

2.1. Gentle algebras. Let Q = (Q0, Q1, s, t) be a quiver. Thus by definition, Q0

and Q1 are finite sets, where the elements of Q0 and Q1 are the vertices and arrows
of Q, respectively. Furthermore, s and t are maps s, t : Q1 → Q0, where s(a) and
t(a) are the starting vertex and terminal vertex of an arrow a ∈ Q1, respectively.
A loop in Q is an arrow a ∈ Q1 with s(a) = t(a).

A basic algebra A = KQ/I is a gentle algebra provided the following hold:

(i) For each i ∈ Q0 we have |{a ∈ Q1 | s(a) = i}| ≤ 2 and |{a ∈ Q1 | t(a) =
i}| ≤ 2.

(ii) The ideal I is generated by a set ρ of paths of length 2.
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(iii) Let a, b, c ∈ Q1 such that a 6= b and t(a) = t(b) = s(c). Then exactly one
of the paths ca and cb is in I.

(iv) Let a, b, c ∈ Q1 such that a 6= b and s(a) = s(b) = t(c). Then exactly one
of the paths ac and bc is in I.

A gentle algebra A = KQ/I is a Jacobian algebra in the sense of [6] if and only
if the following hold:

(v) Q is connected.
(vi) Q does not have any loops.
(vii) Let a, b ∈ Q1 such that s(a) = t(b) and ab ∈ I. Then there exists an arrow

c ∈ Q1 with s(c) = t(a) and t(c) = s(b) such that bc, ca ∈ I.

The gentle Jacobian algebras are exactly the Jacobian algebras associated to tri-
angulations of unpunctured marked surfaces. This follows from [2, Section 2].

2.2. Generically τ-reduced irreducible components of module schemes.
Let Q be a quiver with Q0 = {1, . . . , n}, and let A = KQ/I be a basic algebra.
For d ∈ Nn let Irr(A,d) be the set of irreducible components of the affine scheme
mod(A,d) of A-modules with dimension vector d. Let

Irr(A) :=
⋃

d∈Nn

Irr(A,d).

The group

GLd :=

n∏

i=1

GLdi
(K)

acts on mod(A,d) by conjugation, where d = (d1, . . . , dn). The orbit of M ∈
mod(A,d) is denoted by OM . The orbits in mod(A,d) correspond bijectively to
the isomorphism classes of A-modules with dimension vector d.

For M ∈ mod(A,d) let

cA(M) := max{dim(Z) | Z ∈ Irr(A,d), M ∈ Z} − dimOM ,

eA(M) := dimExt1A(M,M),

hA(M) := dimHomA(M, τA(M)).

Here τA denotes the Auslander-Reiten translation of A.
For each Z ∈ Irr(A) there is a dense open subset U ⊆ Z such that the maps cA,

eA and hA are constant on U . These generic values are denoted by cA(Z), eA(Z)
and hA(Z). Voigt’s Lemma and the Auslander-Reiten formulas imply that

cA(Z) ≤ eA(Z) ≤ hA(Z).

Clearly, an irreducible component Z is generically reduced if and only if cA(Z) =
eA(Z). We say that Z is generically τ-reduced provided

cA(Z) = eA(Z) = hA(Z).

Such irreducible components were first defined and studied in [11], where they ran
under the name strongly reduced components.
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Let Irrτ (A) be the subset of Irr(A) consisting of the generically τ -reduced compo-
nents.

Recall that an A-module M is rigid (resp. τ -rigid) if Ext1A(M,M) = 0 (resp.
HomA(M, τA(M)) = 0). By the Auslander-Reiten formulas, any τ -rigid module is
rigid, wheras the converse is wrong in general. Each rigid A-module M yields a
generically reduced component Z = OM . IfM is τ -rigid, then this Z is generically
τ -reduced.

2.3. Laminations of marked surfaces and generically τ-reduced compo-
nents. A lamination of an unpunctured marked surface (S,M) is (roughly speak-
ing) a set of homotopy classes of curves and loops in (S,M), which do not intersect
each other, together with a positive integer attached to each class. Let Lam(S,M)
be the set of such laminations.

Let T be a triangulation of (S,M), and let AT be the associated gentle Jacobian
algebra. Instead of studying irreducible components of the schemes mod(AT ,d),
one can equip the components with a decoration, which is just an extra integer
datum. Similarly as before, one defines generically τ -reduced decorated irreducible
components. Let decIrrτ (AT ) be the set of such components.

Theorem 2.1. Let (S,M) be an unpunctured marked surface, and let T be a
triangulation of (S,M). Let A = AT be the associated Jacobian algebra. Then
there is a natural bijection

η : Lam(S,M)→ decIrrτ (A).

In their ground breaking work, Fomin, Shapiro and Thurston [8] proved that
the laminations of (S,M) consisting of curves are in bijection with the cluster
monomials of a cluster algebra A(S,M) associated with (S,M). (Cluster algebras
were introduced by Fomin and Zelevinsky [10].) Musiker, Schiffler and Williams
[15] extended this by defining a set

BT := {ψL | L ∈ Lam(S,M)} ⊂ U(S,M)

of bangle functions, whose elements are parametrized by Lam(S,M), and which
(by results in [14]) contains all cluster monomials. Here U(S,M) denotes the upper
cluster algebra associated with (S,M). A result by W. Thurston (see [9, Theo-
rem 12.3]) says that there is a bijection

shT : Lam(S,M)→ Zn

sending a lamination to its shear coordinate. Combining a theorem by Brüstle
and Zhang [4, Theorem 1.6] with a result by Adachi, Iyama and Reiten [1, Theo-
rem 4.1], one gets a bijection between the laminations in Lam(S,M), which consists
only of curves, and the set of generically τ -reduced components in Irrτ (AT ), which
have a dense orbit. Plamondon [16] proved that there is a bijection

gT : decIrrτ (AT )→ Zn

sending a component to its g-vector. Theorem 2.1 extends the bijection mentioned
above to a bijection η : Lam(S,M)→ decIrrτ (AT ) such that gT ◦ η = shT .
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Let
GT := {φZ | Z ∈ decIrrτ (AT )} ⊂ U(S,M)

be the set of generic Caldero-Chapoton functions as defined in [11]. By [7], the set
GT contains all cluster monomials. Furthermore, by [16, Theorem 1.3], the set GT
is (in a certain sense) independent of the choice of the triangulation T of (S,M).

The proof of the next theorem is based on the bijection from Theorem 2.1.

Theorem 2.2. BT = GT .

It is known in most cases (for example, if |M| ≥ 2) that A(S,M) = U(S,M) (see
[12, 13]) and that BT is a basis of U(S,M) (see [15]).

The following diagram summarizes the situation:

{cluster monomials in A(S,M)}OO

reformulation of [8]1-1

��

⊆
[14]

BTOO

[15] (by def.)1-1

��

Thm. 2.2

{L ∈ Lam(S,M) | L consists of curves}
OO

reformulation of [4] (+[1])1-1

��

⊆ Lam(S,M)
OO

Thm. 2.11-1

��

oo
[9]

1-1 // Zn

{Z ∈ decIrrτ (AT ) | Z has a dense orbit} ⊆ decIrrτ (AT )OO

[11] (by def.)1-1

��

oo
[16]

1-1 // Zn

{cluster monomials in A(S,M)}
��
reformulation of [7] (+[8])1-1

OO

⊆
[7]

GT
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The symplectic geometry of higher Auslander algebras, an overview

Gustavo Jasso

(joint work with Tobias Dyckerhoff, Yankı Lekili)

Let k be a commutative ring. Let D be the 2-dimensional unit disk and Λn ⊂
∂D the set of (n + 1)-th roots of unity, where n ≥ 0. To these data one can
associate [Aur10b, Aur10a] a partially wrapped Fukaya category W(D,Λn), which
is an idempotent-complete triangulated A∞-category. After choosing appropriate
generators, the aforementioned Fukaya category can be described combinatorially
as the perfect derived category of k-linear representations of the linearly oriented
quiver

An := (1→ 2→ · · · → n)

of Dynkin type An. As originally observed by Waldhausen [Wal85] (in a slightly
different language), the derived functors induced by the morphisms between the
various quivers An, n ≥ 0 are part of a co-simplicial object perfA•. Consequently,
for each A∞-category A there is an associated simplicial object

Funk(W(D,Λ•),A)
(a)
≃ Funk(perfA•,A)

(b)
≃ S(A)•

whose triangulated A∞-category of n-cells is given by the A∞-category of A∞-
functors W(D,Λn) → A. The simplicial object S(A)•, called the Waldhausen
S-construction of A, is the main ingredient in the construction of the Waldhausen
K-theory space K(A) of A, for we have the formula

K(A) := Ω|S(A)≃• |.

In summary, the quasi-equivalent simplicial objects above provide an explicit con-
nection between

• the (partially) wrapped Floer theory of the 2-dimensional unit disk,
• the derived representation theory of Dynkin quivers of type A and
• the Waldhausen K-theory of A∞-categories.

Let d ≥ 1 be a natural number. In previous work with Dyckerhoff and Walde
[DJW19] we have described a higher-dimensional generalisation of the quasi-equi-
valence (b) above, which now takes the form

(1) Funk(perfA•,d,A) ≃ S〈d〉(A)•
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and relates the d-dimensional Waldhausen S-construction S〈d〉(A)• of A (intro-
duced by Hesselholt and Madsen [HM15] in the case d = 2 and by Dyckerhoff
[Dyc17] and Poguntke [Pog17] in general) to the derived representation theory of
Iyama’s d-dimensional Auslander algebras of type A [Iya11]. The relevance of the
simplicial object S〈d〉(A)• in K-theory stems from the homotopy equivalence

K(A) ≃ Ωd|S〈d〉(A)≃• |,

which, by letting d vary, exhibits K(A) as a so-called connective spectrum.
In recent work with Dyckerhoff and Lekili [DJL19] we extend the above discus-

sion by providing a d-dimensional analogue

Funk(W(Symd
D,Λ

(d)
• ),A) ≃ Funk(perfA•,d,A)

of the quasi-equivalence (a) above, induced by quasi-equivalences

(2) W(Symd
D,Λ(d)

n ) ≃ perfAn,d

of triangulated A∞-categories. In (2), the left-hand side denotes the partially
wrapped Fukaya category associated to the d-fold symmetric product

Symd
D := D× · · · × D︸ ︷︷ ︸

d times

/Sd

equipped with the stops

Λ(d)
n :=

⋃

p∈Λn

{p} × Symd−1
D,

we refer the reader to [Aur10b, Aur10a] for the details of this construction. The
existence of a quasi-equivalence in (2) is established by leveraging general gener-
ation results of Auroux [Aur10b, Aur10a] together with the explicit computation
of the quasi-isomorphism type of the derived endomorphism algebra of an explicit

set of generators of W(Symd
D,Λ

(d)
n ) following and idea of Lipshitz, Ozsváth and

Thurston [LOT15]. In representation-theoretic terms, we construct an explicit

tilting object in W(Symd
D,Λ

(d)
n ) whose endomorphism k-algebra is isomorphic to

An,d.
As an application of our results, and as a consequence of Koszul duality for

augmented A∞-categories, in [DJL19] we also establish the existence of quasi-
equivalences

(3) W(Symd
D,Λ(d)

n ) ≃ W(Symn−d
D,Λ(n−d)

n ),

n ≥ d ≥ 1, thereby providing a symplectic proof of a result of Beckert [Bec18] con-
cerning the derived equivalence between the k-algebras An,d and An,n−d obtained
by a delicate calculus of homotopy Kan extensions in stable derivators.

References

[Aur10a] D. Auroux, Fukaya categories and bordered Heegaard-Floer homology, Proceedings of
the International Congress of Mathematicians. Volume II, Hindustan Book Agency,
New Delhi, 2010, pp. 917–941. MR 2827825



192 Oberwolfach Report 3/2020

[Aur10b] , Fukaya categories of symmetric products and bordered Heegaard-Floer homol-
ogy, J. Gökova Geom. Topol. GGT 4 (2010), 1–54. MR 2755992

[Bec18] F. Beckert, The bivariant parasimplicial S•-construction, Ph.d. thesis, Bergische Uni-
versität Wuppertal, July 2018.

[DJL19] T. Dyckerhoff, G. Jasso, and Y. Lekili, The symplectic geometry of higher auslander
algebras: Symmetric products of disks, arXiv:1911.11719 (2019).

[DJW19] T. Dyckerhoff, G. Jasso, and T. Walde, Simplicial structures in higher Auslander–
Reiten theory, Adv. Math. 355 (2019), 106762. MR 3994443

[Dyc17] T. Dyckerhoff, A categorified Dold–Kan correspondence, arXiv:1710.08356 (2017).
[HM15] L. Hesselholt and I. Madsen, Real algebraic K-theory, Unpublished, April 2015.
[Iya11] O. Iyama, Cluster tilting for higher Auslander algebras, Adv. Math. 226 (2011), no. 1,

1–61. MR 2735750
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Geometric properties of (certain) quiver Grassmannians

Giovanni Cerulli-Irelli

(joint work with Francesco Esposito, Hans Franzen, Markus Reineke)

Let Q be a quiver with set of vertices Q0 and set of arrows Q1, and let M be
a finite dimensional complex representation of Q. Let us denote by d = (di) ∈

Z
Q0

≥0 the dimension vector of M. We identify M with a point of the vector space

Rd(Q) =
⊕

α:i→j∈Q1
Hom(Cdi ,Cdj ). Given another dimension vector e ∈ Z

Q0

≥0,

following Schofield [8], we define the incidence variety

GrQ
e
(d) = {((Ni)i∈Q0 , (Mα)α∈Q1) ∈ Gre(d)×Rd(Q)|Mα(Ni) ⊆ Nj, ∀α : i→ j}.

where Gre(d) :=
∏

i∈Q0
Grei(C

di). A point of GrQe (d) is hence a pair consisting
of a collection of subspaces N together with a Q-representation M such that N is
a Q-subrepresentation of M. It is endowed with the the two maps

GrQe (d)

p2

$$❏
❏❏

❏❏
❏❏

❏❏
p1

zztt
tt
tt
tt
t

Gre(d) Rd(Q)

induced by the two projections. The map p1 is a vector bundle and the map
p2 : GrQe (d) → Rd(Q) is proper. The image of p2 is the closed subvariety of
Rd(Q) consisting of Q-representations of dimension vector d which admit a sub-
representation of dimension vector e. The group Gd =

∏
i∈Q0

GLdi
(C) acts nat-

urally on GrQe (d) and on Rd(Q) and p2 is Gd-equivariant. The fiber of a point
p−1
2 (M) =: Gre(M) is called a quiver Grassmannian.
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Quiver Grassmannians are interesting projective varieties naturally arising in dif-
ferent parts of mathematics. What we show in our paper [3] is that some of their
geometric properties can be studied using Auslander-Reiten theory.

In order to state the resut we need to recall a few definitions from [5]. An
α–partition of a complex algebraic variety X is a finite partition (Xi) of X whose
parts can be ordered so that

(1) X1 ∐ · · · ∐Xi is closed in X for every i.

Clearly, every piece of an α–partition is locally closed. Property (1) can be refor-
mulated by

(2) Xi ⊆ X1 ∐ · · · ∐Xi−1

for every i. A cellular decomposition of X is an α–partition whose parts Xi are
(complex) affine spaces. For example, Grassmannian manifolds admit a cellular
decomposition. The variety X = {[x : y : z] ∈ P2|xyz = 0} does not admit a
cellular decomposition. The existence of a cellular decomposition for X is rare but
when happens it implies wonderful homological properties: we denote by Hi(X)
the i–th space of the Borel–Moore homology of X . Following [5, Sec. 1.7] we say
that an algebraic variety X has property (S) if Hodd(X) is zero, Heven(X) has no
torsion and the cycle map ϕi : Ai(X)→ H2i(X) is an isomorphism for all i. (Here
Ak(X) denotes the Chow group generated by k–dimensional irreducible subvari-
eties modulo rational equivalences (see [10, Sec. 1.3])). Cellular decomposition
implies property (S) but the opposite is not true (a counterexample is the famous
example of Barlow of an irrational surface with trivial H1 [1]).

Coming back to quiver Grassmannians, we say that a Q-representation M has
property (C) (resp. (S)) if every quiver Grassmannian Gre(M) attached to M
admits a cellular decomposition (has property (S), respectively).

Recall that a Q-representation M is rigid if Ext1(M,M) = 0. Our main result
is the following.

Theorem 0.1. [3] Let Q be a connected quiver and let M be a Q-representation.

(1) Q Dynkin +3 M has property (C).
(2) Q extended Dynkin, M indecomposable +3 M has property (C).
(3) M rigid +3 M has property (S).

The key technical result to prove part (1) and (2) is what we call the reduction
theorem: it states that if there exists a short exact sequence ξ : 0 → X → Y →
S → 0 such that Ext1(S,X) ≃ Cξ then one can obtain property (C) or (S) of
the middle term Y as a consequence of the same property for the external terms
X and S together with two extra representations XS ⊂ X and S/SX which are
trivial if ξ = 0. We call such sequences ξ generating. This result implies that if
Y = X ⊕S and Ext1(S,X) = 0 then if both X and S have property (C) the same
holds for Y . In particular, for preprojective or preinjective representations, the
problem reduces to the study of the indecomposables. Now, for Dynkin quivers
we found a way to deal with indecomposable inductively, using the fact that their
dimension vector is minuscule (a part for type E8 which is treated separately). In
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the affine case the situation is much more complicated and the result is obtained by
using Auslander-Reiten theory. By the reduction theorem, part (2) of theorem 0.1
implies that every representation of an extended Dynkin quiver whose regular part
is rigid has property (C). Part (2) of theorem 0.1 has been obtained before in [12]
for affine type D and in [4] for the Kronecker quiver, with different techniques.

Part (3) of theorem 0.1 is obtained as a consequence of a stronger property:
we show that quiver Grassmannians associated to rigid quiver representations
admit the decomposition of the diagonal. This property implies property (S). It
is worth noticing that in a recent preprint Hans Franzen has shown that quiver
Grassmannians associated to rigid quiver representations are rational [9].

1. Conjectures and open problems

The following is a list of conjectures and open problems.

(1) We conjecture that every rigid Q-representation has property (C).
(2) I conjecture that every representation of an extended Dynkin quiver has

property (C). What remains to do here is to show that the regular repre-
sentations with more than two summands have property (C).

(3) It would be interesting to study the behaviour of property (C) or property
(S) under Fomin-Zelevinky mutation i.e. if M has such property is it true
that also the mutation µk(M) has?

(4) It would be interesting to study other geometric properties of quiver Grass-
mannians attached to rigid quiver representations: e.g. are they Fano?

(5) Maksimau [13] has recently adapted the proof of part (3) of theorem 0.1
to the case of flags of subrepresentations of a rigid quiver representation.
This has applications in the theory of quiver Hecke algebras. He also shows
property (C) in type A and D. Type E is open.

(6) It is interesting to study the behaviour of cellular decomposition under
degeneration of quiver representations. Together with F. Esposito, G.
Fourier, X. Fang [2] we study it in the case of the equioriented quiver of
type A, generalizing a result of Lanini and Strickland [11].

(7) Since the family p2 is proper, by the decomposition theorem the direct im-
age of the constant sheaf on Gre(d) decomposes as a finite direct sum of
simple perverse sheaves which are the intersection cohomology of the orbit
closures. The support of the decomposition has been studied by Fang and
Reineke [6] in the case when the family gives irreducible linear degnera-
tions of the complete flag variety. It is an open problem to determine the
coefficients of the decomposition, i.e. the multiplicities of the simples.
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Combinatorics of faithfully balanced modules for Nakayama algebras

Baptiste Rognerud

(joint work with William Crawley-Boevey, Biao Ma, Julia Sauter)

We consider the category modΛ of finitely generated left Λ-modules, where Λ is
a finite-dimensional algebra over a field K. Recall that a module M is said to be
balanced, or to have the double centralizer property if the natural map from Λ to
EndEndΛ(M)

(M) is surjective, and it is said to be faithfully balanced if the natural
map is bijective. Balanced and faithfully balanced modules appear in various
places in the literature on ring theory, such as Schur-Weyl duality, Thrall’s notion
of a QF-1 algebra and Morita theory.

In general the behaviour of faithfully balanced modules is rather mysterious. We
will illustrate this by studying these modules for the path algebra Λn of a linearly
oriented An quiver. More generally our methods can be applied to Nakayama
algebras. Our main tool is the reformulation of the double centralizer property
in terms of certain subcategories of modΛ. For a Λ-module M we denote by
cogen(M) the full subcategory of modΛ consisting of the submodules of direct
sums of M and we denote by cogen1(M) the full subcategory of modΛ consisting
of the modules X ∈ cogen(M) such that the minimal left add(M)-approximation
of X has cokernel in cogen(M). Dually, we define gen(M) and gen1(M), then we
have the following useful characterization of faithfully balanced modules.

Proposition 1. Let M be a Λ-module. Then the following are equivalent

(1) M is faithfully balanced.
(2) cogen1(M) contains the finitely generated projective modules.
(3) gen1(M) contains the finitely generated injective modules.

As a corollary we have easy proofs of the following well-known results.
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Proposition 2. Let M be a Λ-module. If M is a generator, a cogenerator, a
tilting module or a cotilting module, then M is faithfully balanced.

Proof. Since Proposition 1 is self-dual, it is enough to prove the result for cogen-
erators and tilting modules. If M is a cogenerator, then cogen1(M) = modΛ.

If M is a tilting module, there is an exact sequence

0→ Λ
α0→M1 → · · ·

αn−1
→ Mn → 0,

where the M ′
is are in add(M). If Kn−1 denotes the kernel of αn−1, we easily

see that 0 → Kn−1 → Mn−1 is a left add(M)-approximation of Kn−1 and that
Exti(Kn−1, T ) = 0 for i ≥ 1. Then, by induction we show that A → M1 is a left
add(M)-approximation with cokernel in cogen(M). �

The indecomposable modules for Λn are in bijection with the set of intervals
[i, j] for 1 ≤ i ≤ j ≤ n. We display them as the blocks of a Young diagram of
staircase shape. The box with coordinates (i, j) corresponds to the module Mij

with top and socle the simple modules S[i] and S[j]. The left hand column is the
indecomposable projective modules, the top row is the indecomposable injective
modules and the modules Mii are the simple modules S[i]. By a leaf we mean an
element of the set L = {(1, 0), (2, 1), . . . , (n+ 1, n)}.

We define cohooks for (i, j) ∈ In and virtual cohooks for (i, j) ∈ L by the formula

cohook(i, j) = {Mkj : 1 ≤ k < i} ∪ {Miℓ : n ≥ ℓ > j}

In the Young diagram the cohook of (i, j) consists of all the boxes on the left and
above (i, j). Using this combinatorial gadget we can characterize the faithfully
balanced modules for the algebra Λn, along with its generalization to Nakayama
algebras and a version for balanced modules.

Theorem 3. A Λn-module M is faithfully balanced if and only if it satisfies the
following conditions:

(FB0) M1n is a summand of M ;
(FB1) if Mij is a summand of M , (i, j) 6= (1, n), then cohook(i, j) contains a

summand of M ; and
(FB2) every virtual cohook contains a summand of M .

With this characterization, we can count faithfully balanced modules for Λn

and we obtain the following theorem.

Theorem 4. In the expansion of the polynomial

hn(x1, . . . , xn) =

n∏

r=1

(
r∏

s=1

(1 + xs)− 1

)
,

the coefficient of the monomial xt11 . . . xtnn is the number of basic faithfully balanced
Λn-modules M with ti indecomposable summands having top S[i] (or equivalently
in row i of the Young diagram), for all i.
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It follows that the number of basic faithfully balanced modules for Λn is the 2-
factorial number

[n]2! :=

n∏

i=1

(2i − 1).

Also, any basic faithfully balanced module for Λn has at least n summands, and
the number with exactly n summands is n!. For comparison, note that the number
of basic tilting modules for Λn is the nth Catalan number. This also shows that the
frequency of isomorphism classes of basic faithfully balanced modules in the set of
isomorphism classes of all basic modules is almost constant and approximatively
equal to 0.29.

Let fb(n) be the set of faithfully balanced modules with exactly n indecompos-
able summands. Since | fb(n)| = n!, we would like to find an explicit bijection with
a family of objects classically counted by n!. Moreover, we would like this bijection
to preserve the very rich combinatorics of tilting modules. For that, we introduce
the notion of interleaved trees. They can be though as binary trees together with a
shuffle of their leaves. They naturally generalizes binary trees, which can be seen
as interleaved trees with a trivial shuffle of the leaves.

Theorem 5. Given n, there are explicit bijections between the following types of
objects:

(i) faithfully balanced modules for Λn with exactly n indecomposable sum-
mands;

(ii) interleaved trees with n vertices;
(iii) increasing binary trees with n vertices;
(iv) functions f : {1, . . . , n} → {1, . . . , n} such that f(i) ≤ i for all i.

These restrict to bijections between basic tilting modules; binary trees; well-ordered
increasing binary trees and non-decreasing self-bounded functions.

Finally to give more structure on the set fb(n), we show that the relation given
by N ✂ M if and only if cogen(N) ⊆ cogen(M) and gen(N) ⊇ gen(M) is a
partial order on fb(n). If we restrict this partial order to the set of basic tilting
modules, we recover the usual partial ordering of tilting modules by inclusion of
the corresponding torsion-free classes (or by reverse inclusion of torsion classes). It
is well-known that this poset is actually a lattice isomorphic to the Tamari lattice.
For faithfully balanced modules, we prove the following result.

Theorem 6. (1) The poset (fb(n),✂) is lattice.
(2) The Tamari lattice is a sub-lattice of (fb(n),✂).
(3) The cover relations in (fb(n),✂) are given by exchanging exactly one in-

decomposable summand.

In other words, we have obtained a lattice structure on a set with n! elements
which extends naturally the Tamari lattice and which is not isomorphic to the
weak order on the symmetric group as it can be seen below.
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Figure 1. The Hasse diagram of (fb(3),✂) and the graph of the
Hasse diagram of (fb(4),✂).
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Monomorphism categories for Eilenberg–Moore categories

Julian Külshammer

(joint work with Nan Gao, Sondre Kvamme, Chrysostomos Psaroudakis)

Let k be a field and let Q be a finite (or more generally locally bounded) quiver.
Then the path algebra kQ is of global dimension one, and therefore in particular
1-Iwanaga-Gorenstein. A kQ-module M is Gorenstein projective if and only if it
is in the image of the inverse Nakayama functor HomkQ(D(kQ),−) if and only if
it is projective. This happens if and only if the map

Mi,in :
⊕

α : s(α)→iMs(α) Mi

(Mα)α

is a monomorphism for all i ∈ Q0.
More generally, for any finite dimensional algebra Λ, the path algebra ΛQ ∼=

Λ⊗k kQ is no longer of global dimension one, but in some sense of still of relative
global dimension one, since for each ΛQ-moduleM there is the standard resolution:

0→ ΛQ⊗ΛQ0 ΛQ1 ⊗ΛQ0 M → ΛQ⊗ΛQ0 M →M → 0,

where modules of the form ΛQ⊗ΛQ0 N , for a ΛQ0-module N , can be regarded as
relative projective, similarly to a familiar setup in group representation theory (see
for example [1, Section 3.6]). This in particular implies that if Λ is selfinjective,
then the algebra ΛQ is 1-Iwanaga-Gorenstein, i.e. of finite injective dimension
considered as a left or right module over itself.

In this setup a module M is Gorenstein projective if and only if the analogous
map Mi,in is a monomorphism for all i ∈ Q0 and for all i ∈ Q0 the Λ-module



Representation Theory of Quivers and Finite Dimensional Algebras 199

coker(Mi, in) is Gorenstein projective. The monomorphism category, that is the
category of all modules for which only the former condition is satisfied, also con-
tains the relative projective modules. It is a functorially finite resolving subcat-
egory of modΛQ, in particular it has almost split sequences. In the case that Q
is the quiver of Dynkin type A2, that is that ΛQ ∼= ( Λ Λ

0 Λ ), this subcategory was
studied extensively by Ringel and Schmidmeier. It is easy to see that it is pre-
cisely the image of the kernel functor sending a Λ-representation (M1,M2,Mα) to
(ker(Mα),M1, incl). This functor behaves like a relative inverse Nakayama func-
tor in that it sends relative injective modules to relative projective modules. For
the case of a general quiver, one can prove that there is also a relative inverse
Nakayama functor, namely HomΛQ(HomΛQ0 (ΛQ,ΛQ0),−), which sends relative
injective modules to relative projective modules. It can be computed explicitly
using the dual of the standard resolution above. The essential image of the rel-
ative inverse Nakayama functor is precisely the monomorphism category of ΛQ,
which can therefore be regarded as the category of relative Gorenstein projective
modules.

More recently, motivated by applications to the theory of cluster algebras, in-
terest has grown in certain generalisations of ΛQ called generalised species (or
modulated quivers), see [6, 4]. The idea is to vary the algebra Λ associated to each
vertex and relating them via bimodules on the arrows. A generalised species is a
quiver Q together with a finite dimensional algebra Λi for each vertex i ∈ Q0 and
Λt(α)-Λs(α)-bimodule Λα associated to each arrow, such that Λα is finitely gener-
ated projective from either side, and together with an isomorphism of bimodules

HomΛop
s(α)

(Λα,Λs(α)) ∼= HomΛt(α)
(Λα,Λt(α)) =: Λα∗ .

A representation of such a species is then given by a Λi-moduleMi for each vertex
i ∈ Q0 together with a Λt(α)-linear mapsMα : Λα⊗Λs(α)

Ms(α) →Mt(α). The cate-
gory of representations of a species is equivalent to the category of modules over the
tensor algebra T∏

i Λi
(
⊕

α∈Q1
Λα). Analogous statements regarding the descrip-

tion of Gorenstein projectives, relative projectives, and monomorphism category
can be proven. In particular, the monomorphism category is a functorially finite
resolving subcategory, whence has almost split sequences. Dually, one can define
the epimorphism category, which is a functorially finite coresolving subcategory.

The main goal of our work in progress (the first part of which can be found in [3])
is to study the relationship between the Auslander–Reiten theory of mod

∏
i Λi,

modT∏
i Λi

(
⊕

α∈Q1
Λα), and of the monomorphism category. We obtain the fol-

lowing results generalising the work of Ringel and Schmidmeier:

Theorem. Let (Λi,Λα) be a generalised species over a locally bounded quiver.
Denote by ν− the relative inverse Nakayama functor.

(1) Let

0→ L→M → N → 0
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be an almost split sequence in modT∏
i Λi

(
⊕

α Λα) with N being in the
epimorphism category, but not projective in there. Then

0→ ν−(L)→ ν−(M)→ ν−(N)→ 0

is the sum of an almost split sequence and a split sequence in the monomor-
phism category.

(2) The Auslander-Reiten translation τ in the monomorphism category can be
computed as

τ = Mimo ◦

(∏

i

τΛi

)
◦ ν

where ν denotes the relative Nakayama functor,
∏

i τΛi
denotes the oper-

ation of applying the Auslander-Reiten translation of modΛi ‘pointwise’
to the representation and Mimo denotes the minimal right approximation
to the monomorphism category.

We also provide an explicit description of the minimal right approximation
Mimo. Our results are deduced from the general theory of relative Nakayama func-
tors developed in [5] in a slightly more general setup, which also reveals potential
connections to the theory of categorification as in [2]. More precisely we work with
an abelian ‘base’ category C, here given by mod

∏
i Λi as well as with endofunctors

X and Y on C. In the special case given by the functors X =
⊕

α Λα⊗∏

i Λi
− and

Y =
⊕

α Λα∗ ⊗∏

i Λi
−. The following properties are crucial to develop the theory:

(P1) X and Y form an ambidextrous adjunction X ⊣ Y ⊣ X , i.e. they are
Frobenius functors;

(P2) The coproducts and products of powers of X exist and the natural map∐
i≥0X

i →
∏

i≥0X
i is an isomorphism. Similary for Y ;

(P3) There is no epimorphism XM → M as well as no monomorphism M →
YM for any M 6= 0 in C.

The third property is an analogue of Nakayama’s lemma in this more general
setup and follows from (P1) and (P2) under the assumption of enough projectives
and injectives.

The first part of the theorem above follows from a general statement on preser-
vation of almost split morphisms under adjoint functors applied to the setup of
the adjunction ν ⊣ ν− of the relative Nakayama functor and the relative inverse
Nakayama functor.

Theorem. Let A and B be abelian categories and let L : A → B be left ad-
joint to R : B → A. Assume that the counit of the adjunction is a (pointwise)
monomorphism. If g : M → M ′ is a right almost split morphism in B then
R(g) : R(M)→ R(M ′) is a right almost split morphism in Im(R).
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Refined invariants of finite-dimensional Jacobi algebras

Ben Davison

Finite-dimensional Jacobi algebras. Jacobi algebras play a central role in the
theory of 3–Calabi–Yau algebras, the 3-dimensional minimal model programme
and Donaldson–Thomas theory; see [1] [2], [13] for a small selection of the back-
ground material approaching the study of these algebras from a primarily algebraic
point of view. We will approach these algebras via a seemingly innocent question,
especially appropriate for this conference: When are they finite-dimensional?

First we define these algebras. Let Q be a quiver, that is, a pair of finite sets
Q1 and Q0, to be thought of as arrows and vertices, respectively, along with maps
s, t : Q1 → Q0. To this data we associate the free path algebra CQ in the usual
way: a C-basis is provided by paths in the quiver, multiplication is defined by
concatenation of paths. We complete with respect to the ideal generated by the

arrows, to obtain the algebra ĈQ. Given a single cyclic path (always assumed to
have length at least three) a1 . . . an we define

∂a1 . . . an/∂a =
∑

ai=a

ai+1 . . . ana1 . . . ai−1.

We extend the above definition to formal linear combinations of cyclic paths in Q
via linearity and continuity. We define IW to be the closure of the two-sided ideal

containing all ∂W/∂a for a ∈ Q1, and set Ĵac(Q,W ) = ĈQ/IW .

The main question for the talk is: when is Ĵac(Q,W ) finite-dimensional? For
the sake of brevity we restrict our attention to quivers with one vertex, though
the conjectures and theorems we present generalise to a wide class of quivers. We
denote by Q(l) the quiver with one vertex and l loops.

(0) If l = 0 there is not much to say: W = 0, and Ĵac(Q(0),W ) ∼= C is
obviously a finite-dimensional C-algebra.

(1) If l = 1, and W 6= 0 then up to formal automorphism we have W = xd+1

for some d ≥ 2, and Ĵac(Q(1),W ) ∼= C[x]/(xd) is finite-dimensional. If

W = 0, then Ĵac(Q,W ) ∼= CJxK is infinite-dimensional. Thus any finite-
dimensional quotient of the one loop quiver algebra is a Jacobi algebra.

(2) If l = 2, the situation is more complicated. Now there are nonzero poten-
tials that give rise to infinite-dimensional algebras, for instance labelling

the loops x and y, Ĵac(Q(2), y3) ∼= CJx, yK/(y2). On the other hand, if
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W = x2y + y4 then [3] Ĵac(Q(2),W ) is a 9-dimensional algebra, aris-
ing from considering noncommutative deformations of the Laufer flopping
curve [9].

(3) There is a famous Jacobi algebra with l = 3, given by taking W = xyz −

xzy. Then Ĵac(Q,W ) ∼= CJx, y, zK. This is certainly not finite-dimensional
though! We will return to the l = 3 case shortly.

Jacobi algebras from geometry. The Laufer example above points towards a
rich source of finite-dimensional Jacobi algebras, which we recall. Say we are given
a resolution of singularities f : X → Y with Y = Spec(R) an isolated Gorenstein
singularity, with exceptional fibre P1 ⊂ X which we denote C. Consider the A∞-
Yoneda algebra of OE , which we denote A = Ext∞(OE ,OE). The noncommutative
deformation theory of OE is represented by H0(A!), where A! is the A∞-Koszul
dual of A in the sense of e.g. [10]. This algebra can be defined as follows: it
is the free tensor algebra on Ext1(OC ,OC), with relations given by the noncom-
mutative derivatives of W (x) =

∑
i≥2〈bi(x, . . . , x), x〉 where bi : (A

1)⊗i → A2 are

the (higher) composition maps in A, and 〈•, •〉 is the pairing from Serre dual-
ity. In particular, H0(A!) is a Jacobi algebra, with underlying quiver Q(e) where
e = ext1(OC ,OC).

The interest for us comes from a result of Donovan and Wemyss [4], stating
that the algebra Λ = H0(A!), which they call the contraction algebra, is finite-
dimensional, since we have just seen that it is a Jacobi algebra. Furthermore, in
[4] it is conjectured that Λ is a complete invariant of (a formal neighbourhood of)
the flopping curve; a weakened form of this conjecture is proved in [6]. We’ll be
focusing on a different conjecture, due to Brown and Wemyss, stating that all1

finite-dimensional Jacobi algebras arise this way.
Attack on the conjecture: We will try (and fail!) to disprove this conjecture

using features of contraction algebras that “remember” the geometric origin of Λ.
As a warmup application of this strategy, note that by [11] there are only three
possibilities for the normal bundle of C: writing NC,X

∼= OC(a) ⊕ OC(b) with
a ≥ b, we must have either

(0) (a, b) = (−1,−1), the “Atiyah flop”. This case is unique up to local
isomorphism

(1) (a, b) = (0,−2), Reid’s “pagoda” [12]. Up to local isomorphism there are
N of these, all explicitly written down.

(2) (a, b) = (1,−3): the zoo. Here the classification of these curves becomes
challenging...

In each case we have ext1(OC ,OC) = a+1, and this is the number of loops in the
underlying quiver of Λ. So if we find a Jacobi algebra with underlying quiver Q(l)

for l ≥ 3, we disprove the conjecture. Unfortunately for this approach, by a result
of Iyudu and Smoktunowicz [8] there is no such Jacobi algebra! Furthermore, in
the cases (0) and (1) the classification of flopping curves matches our by-hand

1At least for one-vertex quivers: for quivers with many vertices the statement is more involved.
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classification of Jacobi algebras for one-vertex quivers. So to try to break the
conjecture we focus on the two loop quiver and (1,−3)-curves.

Fortunately, there is a lot of algebraic geometry studying this “zoo”, since flop-
ping curves are one of the fundamental objects of the minimal model programme
in 3-dimensional birational geometry. In particular, associated to our curve are
Gopakumar–Vafa invariants, positive numbers n1, n2, . . ., which count rational
curves in deformations of X . Now define

CCν(Λ, t) =

dim(Λ)∑

i=0

χ(Gri(Λ), ν)(−t)
i

a modification of the usual Caldero-Chapoton character of Λ, considered as a right
module over itself, where we take the Euler characteristic weighted by Behrend’s
microlocal function ν, essentially to take account of the non-reduced/singular
structure of the above Grassmannians. Then by [7] there is an equality

(1) CC(Λ) =
∏

i

(1− ti)ini .

Note that the left hand side is defined for any algebra, and so the numbers ni

are also. In general, these are known as the DT invariants of Λ, and they can be
negative, for instance setting Λ = C[x] we find n1 = −1 and ni = 0 for i ≥ 2. So
we have a more advanced trap for the Brown–Wemyss conjecture: we just need to
find a finite-dimensional Jacobi algebra with at least one negative DT invariant.
But alas, instead we have the following theorem, which should thus be interpreted
as strong evidence for their conjecture (which remains open):

Theorem 0.1. [5] Let Λ be a finite-dimensional Jacobi algebra. Then all of the
DT invariants, defined in the same way as ni in (1), are non-negative integers.
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2-hereditary algebras from hypersurfaces

Martin Herschend

(joint work with Osamu Iyama)

Let k be a field and R = k[x, y]/(f), where f = f1f2 · · · fn for some linear forms
fi(x, y) = αix + βiy ∈ k[x, y] satisfying (fi) 6= (fj) for any i 6= j. We equip
R with the standard Z-grading: deg x = deg y = 1. Then R is a 1-dimensional
hypersurface and an isolated singularity. Since R is Gorenstein the category CMZR
of Z-graded Cohen-Macaulay modules is a Frobenius category and so its stable
category CMZR is triangulated. Our aim is to apply tilting techniques to obtain
2-hereditary algebras from CMZR.

Let d ≥ 1. We recall that d-hereditary algebras are a class of finite dimen-
sional algebras of global dimension d, which were introduced in [HIO] to play
the role of hereditary algebras in higher dimensional Auslander-Reiten theory. In
particular, d-hereditary algebras come in two types: finite and infinite, which are
called d-representation finite and d-representation infinite respectively. If A is a
d-representation finite algebra, then its (d+1)-preprojective algebra Πd+1(A) is fi-
nite dimensional, selfinjective and stably (d+1)-Calabi-Yau. If, on the other hand,
A is d-representation infinite, then Πd+1(A) is infinite dimensional, has global di-
mension d + 1 and is a (d + 1)-Calabi-Yau algebra. For more details we refer to
[HIO]. From now on we focus on the case d = 2.

We define graded R-modules

Ti := S/(f1 · · · fi), T :=

n⊕

i=1

Ti, U := T ⊕ T (1).

The completion of T was shown in [BIKR, Theorem 4.1] to be a 2-cluster tilting
object in the category of Cohen-Macaulay modules over the completion of R. Our
first result says that U gives a tilting object in the graded setting.
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Theorem 1. The following statements hold.

(1) U is a tilting object in CMZR.

(2) Λ := EndZR(U) is a 2-representation finite algebra.

(3) CMZR is triangle equivalent to Db(modΛ).

Since Λ is 2-representation finite, there is a canonical 2-cluster tilting subcate-
gory in Db(modΛ) (see [HIO]). Using the equivalence in Theorem 1(3) we obtain

a corresponding 2-cluster tilting subcategory in CMZR, which can be lifted to
CMZR. More precisely, we show the following.

Theorem 2. The following statements hold.

(1) CMZR has a 2-cluster tilting subcategory

add{U(2ℓ) | ℓ ∈ Z} = add{T (ℓ) | ℓ ∈ Z}.

(2) CMZ/2ZR has a 2-cluster tilting object U .
(3) CMR has a 2-cluster tilting object T .

Next we use a graded version of Knörrer periodicity (see [Y]) to obtain similar
results for a hypersurface of dimension 3. Set R♯ := k[x, y, u, v]/(f(x, y) − uv),
with Z-grading given by deg x = deg y = 1, deg u = a and deg v = n− a for some
1 ≤ a ≤ n− 1. Knörrer periodicity gives a triangle equivalence

KG : CMGR→ CMGR♯.

for each G ∈ {0,Z/2Z,Z}, which sends Ti to T
♯
i := (u, f1 · · · fi) for 1 ≤ i ≤ n− 1

and Tn to T ♯
n := R♯. Thus we obtain 2-cluster tilting objects

T ♯ :=

n⊕

i=1

T ♯
i and U ♯ := T ♯ ⊕ T ♯(1)

in CMR♯ and CMZ/2ZR♯ respectively. We show that End
Z/2Z

R♯ (U ♯) is a 3-Calabi-
Yau algebra and can be realized as the Jacobian algebra of a certain quiver with
potential (see [DWZ] for definitions of Jacobian algebras and [G] for the relation-
ship to 3-Calabi-Yau algebras). More precisely, let Q be the following quiver with
2n vertices

n
an // n− 1

an−1 //
bn−1

yyrrr
rr
rr

n− 2
an−2 //

bn−2

ww♦♦♦
♦♦♦

· · · · · ·
a3 //

bn−3

ww♣♣♣
♣♣♣

2
a2 //

b2
tt

zzttt
tt
tt

1
a1 //

b1

||①①①
①①
①

0
b0

||①①①
①①
①

n′

a′

n

// (n− 1)′
a′

n−1

//
b′n−1

ee▲▲▲▲▲▲▲

(n− 2)′
a′

n−2

//
b′n−2

gg❖❖❖❖❖❖❖

· · · · · ·
a′

3

//
b′n−3

gg◆◆◆◆◆◆

2′
a′

2

//
b′2❏❏

dd❏❏❏❏❏❏

1′
a′

1

//
b′1

bb❋❋❋❋❋❋

0′
b′0

bb❋❋❋❋❋❋

where we identify (n, n′) = (0, 0′) if a is even and (n, n′) = (0′, 0) if a is odd. Set

γij := det

(
αi αj

βi βj

)

and define the potential

W :=

n∑

i=1

1

γi−1,i

(
b′i−1bi−2ai−1ai −

γi−1,i+1

γi,i+1
b′i−1a

′
ibi−1ai + bi−1b

′
i−2a

′
i−1a

′
i

)
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where by convention γ0,i = γn,i and

(a0, a
′
0, b−1, b

′
−1) =

{
(an, a

′
n, bn−1, b

′
n−1) if a is even,

(a′n, an, b
′
n−1, bn−1) if a is odd.

Moreover, denote by (Q,W ), the quiver with potential obtained by removing the

vertices n and n′ from (Q,W ). We denote the Jacobian algebras of (Q,W ) and
(Q,W ) by P (Q,W ) and P (Q,W ) respectively.

Theorem 3. The following statements hold.

(1) End
Z/2Z

R♯ (U ♯) ≃ P (Q,W ) is selfinjective and stably 3-Calabi-Yau.

(2) End
Z/2Z

R♯ (U ♯) ≃ P (Q,W ) is a 3-Calabi-Yau algebra.

It turns out that we can realize P (Q,W ) and P (Q,W ) as the 3-preprojective
algebras of certain 2-hereditary algebras, by introducing suitable gradings. For
this purpose let C be a set of arrows in Q such that each cycle in the potential W
contains exactly one arrow from C. Moreover, assume that C∩{ai, a′i | 1 ≤ i ≤ n}
contains exactly a elements. Define a grading on Q by setting

deg(a) =

{
1 if a ∈ C

0 if a 6∈ C
for a ∈ Q1.

This induces a grading on Q and the Jacobian algebras P (Q,W ) and P (Q,W ). We
denote the corresponding graded Jacobian algebras by P (Q,W,C) and P (Q,W,C)
and their degree zero parts by P (Q,W )C and P (Q,W )C respectively.

By applying certain degree shifts to the summands of U ♯ we obtain U ♯
C ∈

CMZR♯, which is isomorphic to U ♯ in CMZ/2ZR♯ and satisfies the following.

Theorem 4. In the notation above we have the following results.

(1) Λ♯
C := EndZR♯(U

♯
C) ≃ P (Q,W )C is a 2-representation finite algebra.

(2) Π3(Λ
♯
C) ≃ End

Z/2Z

R♯ (U ♯
C) ≃ P (Q,W,C) as Z-graded algebras.

(3) Λ♯
C := EndZR♯(U

♯
C) ≃ P (Q,W )C is a 2-representation infinite algebra.

(4) Π3(Λ
♯
C) ≃ End

Z/2Z

R♯ (U ♯
C) ≃ P (Q,W,C) as Z-graded algebras.

Finally, we describe the cluster categories C(Q,W ), C(Q,W ) of the quivers with

potential (Q,W ), (Q,W ) and the cluster categories C(Λ♯
C), C(Λ

♯
C) of the algebras

Λ♯
C and Λ♯

C . See [A] for relevant definitions.

For G ∈ {Z,Z/2Z} consider the Serre quotients qmodGR♯ := modGR♯/fdGR♯,

where fdGR♯ denotes the full subcategory of modGR♯ consisting of all finite di-
mensional modules.

Theorem 5. In the notation above we have the following triangle equivalences.

(1) CMZR♯ ≃ Db(modΛ♯
C) and CMZ/2ZR♯ ≃ C(Q,W ) ≃ C(Λ♯

C).

(2) Db(qmodZR♯) ≃ Db(modΛ♯
C) and Db(qmodZ/2ZR♯) ≃ C(Q,W ) ≃ C(Λ♯

C).

Note that similar results were obtained in [AIR].
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Global dimension for triangulated categories via stability conditions

Yu Qiu

Classical, the global dimension is defined for an algebra A. There are various
definitions and we will take the following one:

gldimA : = sup{k ∈ Z | HomDb(A)(HA,HA[k]) 6= 0}

where HA = mod A is a heart in Db(A). A classical question is to compare
gldimB for any algebra B that is derived equivalent to A. The minimal value
among all such gldimB may be regarded as the global dimension of Db(A).

We can generalize such a definition to any heart H in a fixed triangulated
category D as

gldimH : = sup{k ∈ Z | HomD(H,H[k]) 6= 0}

Note that here the Hom is not taken in the derived category Db(H) of H. A heart
H is equivalent to a (bounded) t-structure (P⊥,P) in D, which is a torsion pair
such that the torsion part P is closed under shift [1] (and a technical condition
boundedness). Towards a R-generalization of global dimension, it is natural to
consider the R-generalization of t-structure, the slicing.

Definition 1. A slicing P is a R-collection {Pφ | φ ∈ R} of full additive (in fact
abelian) subcategories in D such that P(φ + 1) = P(φ)[1] and, for any φ ∈ R,

there are t-structures
(
P(−∞, φ),P [φ,+∞)

)
and

(
P(−∞, φ],P(φ,+∞)

)
.

Here P(I) is the full extension-closed subcategory of D generated by zero object
and objects in P(ϕ), ϕ ∈ I. Then we can define the global dimension for a slicing
P (in fixed D) as

gldimP = sup{φ2 − φ1 | HomD(P(φ1),P(φ2)) 6= 0}

Note that when D = Db(A) and consider the slicing PA with PA(0) = HA and
PA(φ) = 0 for φ /∈ Z, we have indeed

gldimPA = gldimA.
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Therefore, it is natural to regard gldim as a function on the space of slicing and
its infimum can be regard as the global dimension of D. However, such a space is
too big and does not have good properties. More rigid structure is better to be
added, which leads to Bridgeland stability conditions.

Definition 2. A stability condition σ = (Z,P) on a triangulated category consists
of a central charge Z ∈ HomZK(D),C), where K(D) is the Grothendieck group
of D, and a slicing P such that they are compatible in the sense that

• for any M ∈ P(φ), one has Z(M) = m(M) · eiπφ for some m(M) ∈ R≥0.

The following is a crucial result, due to Bridgeland, that equips complex struc-
ture on the space of stability conditions.

Theorem 3. [B] The space StabD of stability conditions σ satisfying support
property on D form a complex manifold with dimension rankK(D) and local co-
ordinate Z.

There is a natural C-action Stab(D) by s · (Z,P) = (Z · e−iπs,Pℜ(s)), where
Px(φ) = P(φ+ x). There is also a natural action induced by Aut(D): Φ(Z,P) =(
Z ◦ Φ−1,Φ(P)

)
.

So it is natural to define gldimσ : = gldimP for σ = (Z,P) and we have the
following.

Lemma 4. [IQ1] gldim is a continuous function on AutD\ StabD/C. with values
in R≥0 ∪ {+∞}.

Definition 5. The infimum of gldim on StabD, denoted by gdD, is the global
dimension of a triangulated category D.

We have the following calculation of gdD in some examples.

Theorem 6. [Q1] Let D(Q) = Db(kQ) be the bounded derived category of the path
algebra of an acyclic quiver Q (and k is a field). Then we have

• If Q is a Dynkin quiver, then gdD(Q) = 1− 2/h, where h is the Coxeter
number of Q.

• Otherwise, gdD(Q) = 1.

Moreover, in the Dynkin case, there is a unique stability condition σG, up to C-
action, with gldimσG = 1 − 2/h. In fact, σG is also the unique solution, up to
C-action, of the Gepner equation (cf. [KST])

τ(σ) = (−2/h) · σ.

Theorem 7. [KOT] Let D(X) = Db(cohX) be the bounded derived category of
coherent sheaves a smooth projective curve X with genus g. Then gdD(X) = 1.
The infimum 1 is reachable by some stability conditions if and only if g ≤ 1.

We conjecture the following.

Conjecture 8. Let gdD be the global dimension of a triangulated category D.

• If the subspace gldim−1(gdD) is non-empty, then it is contractible.
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• gldim−1(gd, x) contracts to gldim−1(gdD, y) for any real number gdD <
y < x.

Here, we may take the preimage of gldim in a preferable connected component of
D.

Note that such a conjecture implies the general contractibility conjecture of
StabD. The conjecture holds for Db(cohP1) and Db(kA2) by direct calculation,
see [Q1]. We have the following.

Theorem 9. [FLLQ] Let D(P2) = Db(cohP2) be the bounded derived category
of coherent sheaves on P2. Then gdD(P2) = 2 and Conjecture 8 holds (for the
principal component of StabD(P2)).

Finally, here is a version of Gabriel’s theorem, which is due to [KOT] but we
state it in a slightly more general form in [Q2].

Theorem 10. [KOT, Q2] Let D be a connected triangulated category. Then
gldimD < 1 if and only if D = D(Q)/ι for some Dynkin quiver Q and ι ∈
AutD(Q) being induced from some graph automorphism of Q.
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On generalisations of Iwanaga-Gorenstein algebras

Rene Marczinzik

(joint work with Aaron Chan on Cohen-Macaulay Artin algebras)

Assume all algebras are connected, non-semisimple Artin algebras and all modules
are finitely generated right modules unless stated otherwise. Recall that an Artin
algebra A is called Iwanaga-Gorenstein in case the left and right injective dimen-
sion of the regular module A are finite, in which case they coincide. In this case
the selfinjective dimension of A is defined as the injective dimension of A. P<∞

denotes the full subcategory of modules having finite projective dimension and
I<∞ denotes the full subcategory of modules having finite injective dimension. It
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is well known that A is Iwanaga-Gorenstein if and only if P<∞ = I<∞. We will
discuss two generalisations of Iwanaga-Gorenstein algebras here. The first one is
due to Auslander and Reiten from [AR] nearly 30 years ago and the second is a
recent generalisation due to Ringel and Zhang from [RZ]. At the end we briefly
discuss an open problem on the injective dimension of the Jacobson radical that
is known to be true for Iwanaga-Gorenstein algebras.

1. Cohen-Macaulay Artin algebras

In the last section of [AR], Auslander and Reiten introduced Cohen-Macaulay
Artin algebras as a generalisation of Iwanaga-Gorenstein algebras. By definition, A
is Cohen-Macaulay in case there exists anA-bimoduleW , called the dualizing mod-
ule, such that there is an equivalence of categories HomA(W,−) : I

<∞ → P<∞.
In this case W is a cotilting module as a left and right A-module with several
special properties, we refer to [AR2] for more information and equivalent char-
acterisations of Cohen-Macaulay Artin algebras. The CM dimension of a Cohen-
Macaulay Artin algebra is defined as the injective dimension ofW , which coincides
with the finitistic dimension of the algebra by proposition 1.6. of [AR2]. It is easy
to see that a Cohen-Macaulay Artin algebra A is Iwanaga-Gorenstein if and only
if W = A. The full subcategory of Cohen-Macaulay A-modules for an Cohen-
Macaulay Artin algebra A is defined as CM(A) := {X |ExtiA(X,W ) = 0 for all
i ≥ 1}. Following Iyama and Solberg [IS], an Iwanaga-Gorenstein algebra A is
called minimal Auslander-Gorenstein in case id(A) ≤ d ≤ domdim(A) for some
d ≥ 2. This class of algebras generalised the higher Auslander algebras in [I]
that are in a bijective correspondence with cluster tilting modules and are by
definition just the minimal Auslander-Gorenstein algebras of finite global dimen-
sion. We define minimal Auslander-Cohen-Macaulay algebras as Cohen-Macaulay
Artin algebras that satisfy the condition id(W ) ≤ d ≤ domdim(A) for some d ≥ 2.
This generalises minimal Auslander-Gorenstein algebras, which are exactly those
minimal Auslander-Cohen-Macaulay algebras that are Iwanaga-Gorenstein. One
can show that for minimal Auslander-Cohen-Macaulay Artin algebras A, one has
domdim(W ) = domdim(A) and one can use this to get a generalisation of several
results on minimal Auslander-Gorenstein algebras such as the correspondence to
precluster-tilting modules that is theorem 4.5. in [IS]. In [AR2], after proposi-
tion 3.1., Auslander and Reiten posed the question whether for a Cohen-Macaulay
Artin algebra A with CM dimension d > 0, CM(A) = Ωd(mod− A) implies that
A is Iwanaga-Gorenstein. We show that in case A is minimal Auslander-Cohen-
Macaulay with CM dimension d ≥ 2 one always has CM(A) = Ωd(mod−A). Thus
in order to give a negative answer to the question of Auslander and Reiten it would
be enough to find a minimal Auslander-Cohen-Macaulay algebra with CM dimen-
sion d ≥ 2 that is not Iwanaga-Gorenstein. With the help of the GAP-package
QPA, see [QPA], we were able to find such an algebra and a general plan for a con-
struction of such algebras. Namely let A = kQ/I be the quiver algebra where Q is
the quiver with 3 vertices 1,2 and 3 and arrows a1 from 1 to 3, a2 from 2 to 3, a3
from 3 to 1 and a4 from 3 to 2 and set I =< a1a3, a3a1− a4a2, a2a3a1a4 >. Then
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A is a minimal Auslander-Cohen-Macaulay Artin algebra of CM dimension 2 that
is not Iwanaga-Gorenstein. It has the property that CM(A) = Ω2(mod−A), thus
giving a negative answer to the question of Auslander and Reiten. In fact we were
able to construct an infinite family of minimal Auslander-Cohen-Macaulay Artin
algebras that are not Iwanaga-Gorenstein algebras and it is work in progress to
be able to obtain a general construction of Cohen-Macaualay Artin algebras from
noetherian (non-artin) rings coming from commutative algebra.

2. Weakly Gorenstein algebras

In [AB], Auslander and Bridger introduced the concept of Gorenstein projective
modules for a general Artin algebra A. An A-module M is Gorenstein projective
in case ExtiA(M,A) = 0 = Exti(D(A), τ(M)) for all i > 0. In case A is Iwanaga-
Gorenstein, this is equivalent to the single condition ExtiA(M,A) = 0. For nearly
40 years it was an open question whether ExtiA(M,A) = 0 already implies thatM
is Gorenstein projective for a general Artin algebra A until in [JS] a first counterex-
ample was given. In [RZ], Ringel and Zhang defined semi-Gorenstein projective
modules as modulesM with ExtiA(M,A) = 0 for all i > 0 and defined an algebraA
to be weakly Gorenstein in case every semi-Gorenstein projective module is already
Gorenstein projective. Iwanaga-Gorenstein algebras are weakly Gorenstein, but
also many other classes of algebras such as representation-finite algebras. Ringel
and Zhang gave a first systematic study of semi-Gorenstein projective modules
and weakly Gorenstein algebras and gave another example of an algebra that is
not weakly Gorenstein. It seems that no other example of non-weakly Gorenstein
algebras have appeared in the literature and both examples were local algebras.
Weakly Gorenstein algebras satisfy the Nakayama conjecture and from the point
of view of finding possible counterexamples to this conjecture it is important to
find examples of non-weakly Gorenstein algebras. We give a first systematic con-
struction of non-weakly Gorenstein algebras by using symmetric algebras. Namely
we prove that in case A is a symmetric algebra with A-modules X and M such
that ExtlA(X,M) 6= 0 for some l ≥ 1 but ExtiA(X,M) = 0 for all i ≥ l + 1,
then the algebra B := EndA(A ⊕ X) is not weakly Gorenstein. We can con-
struct like this many non-weakly Gorenstein algebras using for example quantum
exterior algebras, we refer to [M2] for more details and examples of explicit con-
structions. We remark that all known examples of non-weakly Gorenstein algebras
have relations containing field elements that are not roots of unity. In particular,
non-weakly Gorenstein finite dimensional algebras are not known over finite fields.
We are also able to show that a very large class of algebras are weakly Gorenstein.
Namely for an Artin algebra A, define sGp(A) as the full subcategory of semi-
Gorenstein projective A-modules and φn(A) := sGp(A) ∩ add(Ωn(mod−A)). We
call A φn-finite in case φn(A) contains only finitely many indecomposable modules.
In [RZ], it was shown by Ringel and Zhang that in case A is φ1-finite, then A is
weakly Gorenstein. A corollary of this result is that any torionless-finite algebra is
weakly Gorenstein. We have shown in [M3] that the result holds for any n, namely
every φn-finite algebra A is weakly Gorestein. As a corollary we can prove that
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any monomial algebra or any algebra of the form EndB(M) is weakly Gorenstein
in case B is representation-finite with an arbitrary B-module M .

3. The injective dimension of the Jacobson radical

At the end we briefly discuss a question on the Jacobson radical J of a general
Artin algebra. By work of Auslander it is known that the projective dimension
of the Jacobson radical of A is equal to the global dimension of A minus one. It
seems however, that the injective dimension of the Jacobson radical of A has not
been studied yet. We conjecture that the injective dimension of J is always equal
to the global dimension of A. This is true in case A is Iwanaga-Gorenstein and in
some other cases such as when A is a Nakayama algebra or a radical square zero
algebra, see [M].
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Categorifying acyclic cluster algebras via hereditary algebras

Andrew Hubery

Cluster algebras. Cluster algebras were introduced by Fomin and Zelevinsky [4]
as a tool to study total positivity and Lusztig’s theory of canonical bases in Lie
theory, but have since found applications in many areas of mathematics, including
Poisson geometry, integral systems and Teichmüller theory.

Briefly, a cluster algebra is an integral subring A of F = Q(x1, . . . , xn), de-
termined by an initial seed and mutation rule. More precisely, a seed consists of
an ordered set of generators (y1, . . . , yn) of F together with an exchange matrix
B which encodes how one can mutate in any of the n positions to obtain a new
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seed. Starting from an initial seed, one thus obtains via repeated mutation a dis-
tinguished set of elements of F , called cluster variables, and the cluster algebra is
defined to the the integral subring of F generated by all these cluster variables.

Cartan lattices. A generalised Cartan lattice Γ consists of a lattice Zn equipped
with an integral-valued bilinear form 〈−,−〉 such that, setting aij := 〈ei, ej〉 for
the standard basis vectors ei, we have aij ≤ 0 for i < j and aij = 0 for i > j,
whereas aii is positive and divides both aij , aji for all j. It follows that Z

n together
with the associated symmetric bilinear form (x, y) := 〈x, y〉 + 〈y, x〉 is a Cartan
datum in the sense of Lusztig, and the matrix with entries a−1

ii (aij + aji) is a
symmetrisable generalised Cartan matrix.

Attached to every generalised Cartan lattice Γ is a cluster algebraAΓ, where the
exchange matrix of the initial seed has entries a−1

ii (aij − aji). The cluster algebras
which arise in this way are called acyclic, reflecting the fact that the matrix (aij)
is upper triangular.

Hereditary algebras. Starting from a finite dimensional hereditary k-algebra Λ,
we naturally obtain a generalised Cartan lattice by taking its Grothendieck group
K0(modΛ), with standard basis given by the simple modules, and Euler form
〈[M ], [N ]〉 := dimHomΛ(M,N) − dimExt1Λ(M,N). Recall that Λ is hereditary
provided Ext2Λ(M,N) = 0 for all modules M,N , in which case the Euler form on
the module category does indeed descend to a bilinear form on the Grothendieck
group.

Observe that if Λ = kQ is the path algebra of an (acyclic) quiver, then the
bilinear form satisfies aii = 1 for all i. On the other hand, if k is a finite field, then
every generalised Cartan lattice arises as the Grothendieck group of some finite
dimensional hereditary k-algebra.

In a sequence of papers, including [1, 2, 3], an explicit connection was made
between the representation theory of a path algebra CQ and the corresponding
cluster algebraAQ. More precisely, there is an explicit map from CQ-modules to F
which restricts to a bijection between the exceptional modules and the non-initial
cluster variables, in such a way that the clusters (or seeds) correspond bijectively
to the support-tilting modules, and the mutation of clusters corresponds to the
usual mutation of support-tilting modules.

The natural question was therefore whether this beautiful relationship can be
extended to cover all finite dimensional hereditary algebras and all acyclic cluster
cluster algebras. There are three ingredients needed to obtain such a result.

(A) Since clusters are by definition obtained via mutation from the initial clus-
ter, it is necessary that the same result holds for all support-tilting modules for
Λ.

(B) One needs an analogue of the Caldero-Chapoton map [2], from (rigid) Λ-
modules to F . One would also like to obtain from such a map that the image of a
rigid module is a Laurent polynomial with non-negative coefficients and denomi-
nator given by the dimension vector of the module.
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(C) Finally one has to check that this map respects the two notions of mutation;
in other words, one needs to prove the relevant cluster multiplication formula,
generalising Caldero-Keller [3].

Main results. Let Λ be a finite dimensional hereditary k-algebra, and write Γ
for the associated generalised Cartan lattice. A (right) Λ-module M is said to
be rigid provided Ext1(M,M) = 0, and exceptional provided it is both rigid
and indecomposable. A rigid module M is (basic) tilting if its indecomposable
summands form a basis of the Grothendieck group K0(modΛ). More generally,
M is support-tilting if there is an idempotent e ∈ Λ such that Me = 0 and M is
a tilting module for Λ/ΛeΛ.

We call d ∈ Zn a dimension vector provided it has only non-negative coeffi-
cients. These are precisely the elements of the form [M ] for some Λ-module M .
The dimension vectors of the exceptional modules are called positive real Schur
roots, and are known to depend only on Γ. One can characterise them in terms of
the poset of non-crossing partitions attached to Γ. More generally, the dimension
vectors of the rigid modules depend only on Γ, and for each such rigid dimen-
sion vector d and hereditary algebra Λ of type Γ, there exists a unique (up to
isomorphism) rigid module M of dimension vector d.

(A) In [5] I showed that the support-tilting modules for Λ form a simplicial
polytope, where the vertices of the polytope correspond to the exceptional modules
together with a complete set of primitive orthogonal idempotents in Λ, and the
facets of the polytope correspond to the support-tilting modules. In particular,
any two support-tilting modules are mutation-equivalent.

(B) The original Caldero-Chapoton map, for a moduleM over the path algebra
CQ, has coefficients which are (sums of) Euler characteristics of quiver Grassman-
nians attached to M . For a general hereditary algebra Λ it is unclear what the
replacement of the Euler characteristic should be. Using the theory of Ringel-Hall
algebras and quantum groups, however, I showed in [6] that for each pair of dimen-
sion vectors (d, e) in Γ such that d is rigid, there is a polynomial g(d,e)(t) ∈ Z[t]
with the following property:

For each finite field k and each finite dimensional hereditary k-algebra Λ of type
Γ, if M is a rigid module of dimension vector d, then g(d,e)(|k|) equals the number
of submodules of M of dimension vector e.

One can then construct an analogue of the Caldero-Chapoton map using the
numbers g(d,e)(1) instead of Euler characteristics of quiver Grassmannians. More-
over, in the quiver case, it is known that if the quiver Grassmannian of a rigid
module is non-empty, then it is smooth, projective, and defined over the integers.
Thus one may use the Weil conjectures to deduce that its Euler characteristic
is positive and equals the number g(d,e)(1). In fact, in this case the polynomial
g(d,e)(t) always has non-negative coefficients. For general Γ one can use results
of Deligne and Lusztig to show that the number g(d,e)(1) is again positive, and
conjecturally it will also have non-negative coefficients.

(C) The main announcement of my talk was that, using this analogue of the
Caldero-Chapoton map, one can now prove the cluster-multiplication theorem for
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general Γ, [7]. This therefore completes the programme stated above connecting
the combinatorics of acyclic cluster algebras with the support-tilting modules for
finite dimensional hereditary algebras.

Furthermore, one sees that the image under the Caldero-Chapoton map of a
rigid module of dimension vector d is a Laurent polynomial with non-negative
coefficients and denominator xd.

One can now relate exceptional modules to non-initial cluster variables in such
a way that the coefficients appearing in the cluster variable express knowledge
about the corresponding submodule Grassmannians. This connection holds for all
finite dimensional hereditary algebras over either an algebraically-closed field (so
one has the path algebra of a quiver), or over a finite field. The question remains,
however, about other fields, in particular in characteristic zero. A simple example

would be an algebra of the form

(
R H

0 H

)
involving the real numbers and the

quaternions. Is there an appropriate analogue of the Euler characteristic of the
submodule Grassmannian which covers all such cases?

References

[1] A.B. Buan,R. Marsh,M. Reineke, I. Reiten and G. Todorov, Tilting theory and cluster
combinatorics, Adv. Math. 204 (2006), 572–618.

[2] P. Caldero and F. Chapoton, Cluster algebras as Hall algebras of quiver representations,
Comment. Math. Helv. 81 (2006), 595–616.

[3] P. Caldero and B. Keller, From triangulated categories to cluster algebras. II, Ann. Sci.
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Tensor algebras in finite tensor categories

Ryan Kinser

(joint work with Pavel Etingof and Chelsea Walton)

1. Preliminaries

We assume throughout that k is an algebraically closed field, and all categories,
functors, etc. are k-linear. A standard reference for our terminology and conven-
tions is [EGNO15]. Here, a finite tensor category is given by the following data,
subject to some natural axioms:

• C an abelian category which is equivalent to the category of finite dimen-
sional representations of some finite-dimensional associative k-algebra,
• − ⊗ − : C × C → C a biexact functor which is bilinear on morphisms,
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• a unit object 1 ∈ C such that EndC(1) = k and both 1⊗− and −⊗ 1 are
autoequivalences of C,
• an arbitrary, fixed isomorphism 1⊗ 1

∼
−→ 1,

• a functorial associativity isomorphism aX,Y,Z : (X⊗Y )⊗Z
∼
−→ X⊗(Y ⊗Z).

In particular, we assume all objects are rigid (possess both right and left duals).
Examples include the category Vec of finite-dimensional vector spaces, Rep(G)
and VecG where G is a finite group, Rep(H) where H is a finite-dimensional Hopf
algebra, and Bimod(A) where A is a finite-dimensional semisimple algebra. But
in general we do not assume that objects have underlying vector spaces (e.g. the
Yang-Lee tensor category).

An associative algebra in C is an object A ∈ C with morphisms m : A⊗A→ A
and u : 1 → A satisfying the diagrams of the usual definition of an algebra. In
a general tensor category C, we always have the algebras 1 and X ⊗X∗ for any
X ∈ C. Examples arising in nature include k-algebras with additional structure,
such as actions of or gradings by a finite group, and more generally, algebras with
an action of a finite-dimensional Hopf algebra.

A right A-module is an object M ∈ C along with an action M ⊗ A → M
satisfying the diagrams of the usual definition of a module. Right A-modules
form an abelian category ModC(A), which carries a left action of C by taking
X ∈ C, M ∈ ModC(A), and forming X ⊗ M ∈ ModC(A) in the natural way.
Algebras A and B in C areMorita equivalent if there is an equivalence of categories
ModC(A) ≃ ModC(B) which is compatible with the C-action.

Now let S be an algebra in C, and E an S-bimodule. We form the tensor algebra

TS(E) := S ⊕ E ⊕ (E ⊗S E)⊕ (E ⊗S E ⊗S E)⊕ · · ·

using tensor product over the algebra S, which can be naturally defined for S-
bimodules in C. (This may actually lie in Ind(C) instead of C).

Etingof and Ostrik introduced the following notion as a good generalization of
semisimplicity of an algebra [EO04]: the algebra S is exact if P ∈ C projective
and M ∈ ModC(S) arbitrary imply P ⊗M is projective in ModC(S). If C itself
is semisimple, then S is exact if and only if ModC(S) is semisimple. When C is
not semisimple (e.g. C = Rep(G) and char k divides |G|), exact algebras give more
flexibility but they still have nice properties. For example, 1 is always an exact
algebra in any finite tensor category. We always assume below that S is exact.

We say TS(E) is equivalent to TS′(E′) if there exists a Morita equivalence S ∼ S′

in C which identifies E with E′ via the induced equivalence on bimodule categories.

Theorem 1. [EKW, Theorem 3.11] Let C be a finite tensor category. Then
equivalence classes of tensor algebras are in bijection with pairs (S,E) where we
take one S from each Morita equivalence class, and for each choice of S, one E
from each conjugacy class (conjugacy by invertible S-bimodules).

In the case C = Vec, the theorem above translates to the fact that each tensor
algebra TS(E) (with S semisimple and E a finite-dimensional bimodule) is Morita
equivalent to the path algebra of a quiver. Future work will develop a similar com-
binatorial model for tensor algebras in more general C. When C is a fusion category
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(i.e. semisimple as well), Ocneanu rigidity can be applied in the above situation
to conclude that there are only finitely many “building blocks” for constructing
all tensor algebras in C (see [EKW, Cor. 3.16]). Future work will study quotients
of tensor algebras in tensor categories and other generalizations of classical theory
of finite-dimensional algebras to tensor categories.

2. Categorical Morita equivalence and sketch of an example

From now on we assume the characteristic of k is zero. The Kac-Paljutkin Hopf
algebra H8 is generated as a k-algebra by x, y, z subject to the relations

x2 = y2 = 1, z2 =
1

2
(1 + x+ y − xy), xy = yx, xz = zy, yz = zx.

Comultiplication is given by x, y being group-like and

∆(z) =
1

2
(1⊗ 1 + 1⊗ x+ y ⊗ 1− y ⊗ x)(z ⊗ z).

This 8-dimensional algebra is semisimple, but not isomorphic as a Hopf algebra
to any group algebra or dual group algebra. To illustrate our main result, we
set the goal of classifying tensor algebras in Rep(H8) (this includes our original
motivation, classifying Hopf actions of H8 on path algebras, as a special case).

Tensor categories C,D are categorically Morita equivalent if there exists an ex-
act algebra A in C such that D is tensor equivalent to BimodC(A). This is an
equivalence relation. In this situation, there is an induced bijection on algebras,
module categories, bimodule categories, etc., and thus we obtain a bijection be-
tween tensor algebras in C and D (up to equivalence). For example, if G is a finite
group, then Rep(G) and VecG are categorically Morita equivalent (take the group
algebra A = kG in VecG).

Let G be a finite group and consider a 3-cocycle (with trivial G-action on k×)

ω : G×G×G→ k×.

We obtain the tensor category VecωG whose objects areG-graded vector spaces, with
simple objects δg = k concentrated in degree g ∈ G, tensor product determined
by δg ⊗ δh = δgh, and associativity isomorphism determined by

ag,h,k : (δg ⊗ δh)⊗ δk
∼
−→ δg ⊗ (δh ⊗ δk)

being multiplication by ω(g, h, k). Fixing G, tensor-equivalence classes of such
categories are in bijection with H3(G, k×).

Let D8 be the dihedral group of order 8, presented by the same generators
and relations as H8 above, but with z2 = 1. Take ω to be any cohomologically
non-trivial 3-cocycle on D8, and consider the algebra A = k〈z〉 in C = VecωD8

.
Then Rep(H8) is tensor equivalent to BimodC(A), so categorical Morita equivalence
induces a bijection between tensor algebras in Rep(H8) and C (up to equivalence
of tensor algebras).

Work of Ostrik [Ost03b] and Natale [Nat17] gives a classification of semisimple
algebras in VecωG up to Morita equivalence: they are parametrized by pairs (L,ψ)



218 Oberwolfach Report 3/2020

where L ≤ G and ψ : L×L→ k× is a 2-cochain such that dψ = ω|L. Equivalence
is rather complicated, but explicitly computable.

From the above, one can compute that there are 6 equivalence classes of inde-
composable semisimple algebras in VecωD8

, thus in Rep(H8) as well. Explicit repre-
sentatives can be found in [EKW, §5.3]. This means that there will be 6 flavors of
“vertices” in a combinatorial, quiver-type model for equivalence classes of tensor
algebras in Rep(H8). Turning to the analogue of “arrows” in such a model, for
each pair of indecomposable semisimple algebras (S1, S2) in Rep(H8), one needs to
classify the indecomposable (S1, S2)-bimodules in Rep(H8). Again using the cat-
egorical Morita equivalence, this can be done explicitly by using [Ost03b, Nat17].
We leave this for future consideration along with other classes of examples.
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Symmetric periodic algebras

Andrzej Skowroński

(joint work with Karin Erdmann)

This is report on the joint project with Karin Erdmann concerning the Morita
equivalence classification of symmetric periodic tame algebras over an algebraically
closed field K.

By general theory (see [1, 2, 9]), every basic, indecomposable, symmetric, pe-
riodic, tame algebra of polynomial growth is socle equivalent to an orbit algebra
T(B)/G of the trivial extension algebra T(B) of a tilted algebra B of Dynkin type
or a tubular algebra B, with respect to free action of a finite cyclic group G. The
following problem was raised in [4].

Problem. LetA be an indecomposable symmetric tame algebra of non-polynomial
growth for which all simple modules are periodic. Is it true that A is a periodic
algebra of period 4?
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Following [5], an algebra A is said to be of generalized quaternion type if A is
symmetric, indecomposable, tame of infinite type, and all simple modules are pe-
riodic of period 4. We note that every indecomposable, symmetric, representation-
infinite periodic algebra of period 4 is an algebra of generalized quaternion type.
Moreover, the class of algebras of quaternion type described in [3] is the class of
algebras of generalized quaternion type with nonsingular Cartan matrix.

During the talk we introduced weighted surface algebras Λ = Λ(S, ~T ,m•, c•, b•)
in the general form as follows.

A triangulation quiver is a pair (Q, f) where Q = (Q0, Q1, s, t) is a finite con-
nected 2-regular quiver and f : Q1 → Q1 is a permutation of the set Q1 of arrows
such that f3 = id and s(f(α)) = t(α) for any arrow α ∈ Q1. Every triangulation

quiver is the triangulation quiver (Q(S, ~T ), f) of a directed triangulated surface

(S, ~T ) [4].
Let (Q, f) be a triangulation quiver, ¯: Q1 → Q1 the involution which assigns

to an arrow α ∈ Q1 the arrow ᾱ 6= α with s(α) = s(ᾱ), g = f̄ : Q1 → Q1

the associated permutation, and O(g) the set of all g-orbits in Q1. We consider
three functions: a weight function m• : O(g) → N \ {0}, a parameter function
c• : O(g) → K \ {0}, and a border function b• : Q1 → K such that bα = 0
if α 6= f(α). For each arrow α ∈ Q1, we denote by O(α) the g-orbit of α in
Q1, and set nα = |O(α)|, mα = mO(α), cα = cO(α), and define two paths Aα =

αg(α) . . . gmαnα−2(α) and Bα = αg(α) . . . gmαnα−1(α).
We assume that mαnα ≥ 2 for all arrows α ∈ Q1 (and further restrictions (see

[7, Sections 2 and 3]), and call α ∈ Q1 virtual if mαnα = 2. Then the associated
weighted triangulation algebra Λ(Q, f,m•, c•, b•) is the quotient algebra KQ/I of
the path algebra KQ of Q over K by the ideal I = I(Q, f,m•, c•, b•) generated
by:

(1) αf(α)− cᾱAᾱ − bαBᾱ, for all arrows α of Q,
(2) αf(α)g(f(α)) for all arrows α of Q such that f2(α) is not virtual,
(3) αg(α)f(g(α)) for all arrows α ∈ Q such that f(α) is not virtual.

If (Q, f) = (Q(S, ~T ), f) for a directed triangulated surface (S, ~T ), then

Λ(S, ~T ,m•, c•, b•) = Λ(Q(S, ~T ), f,m•, c•, b•) is called a weighted surface algebra.
The following theorem describes basic properties of weighted surface algebras.

Theorem 1. Let Λ = Λ(S, ~T ,m•, c•, b•) be a weighted surface algebra. Then the
following statements hold:

(i) Λ is a symmetric algebra with dimK Λ =
∑

O∈O(g)mOn
2
O.

(ii) Λ is a periodic algebra of period 4.
(iii) Λ is a tame algebra, and (with few exceptions) of non-polynomial growth.

There are known nine (exotic) families of algebras of generalized quaternion
type which are not weighted surface algebras, six of them were discovered and
studied recently (see [6, 8, 10] and forthcoming joint papers with T. Holm).

We stated the following conjecture.



220 Oberwolfach Report 3/2020

Galactic Conjecture. Every algebra of generalized quaternion type is Morita
equivalent to a weighted surface algebra or one of the nine exotic algebras.

It was confirmed for algebras whose Gabriel quiver is 2-regular and has at least
three vertices [5, Main Theorem].

Theorem 2. Let A be a basic, indecomposable algebra whose Gabriel quiver is
2-regular and has at least three vertices. The following statements are equivalent:

(i) A is of generalized quaternion type.
(ii) A is a symmetric tame periodic algebra of period 4.
(iii) A is isomorphic to a weighted surface algebra or a higher tetrahedral al-

gebra.
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Categorification and the Quantum Grassmannian

Alastair King

(joint work with Bernt Tore Jensen and Xiuping Su)

One aim of this talk is to illuminate the slogan “quantization is categorification” by
showing how the quasi-commutation indices for quantization of the Grassmannian
cluster algebra are read off from the dimensions of certain vector spaces that can
be found within the categorification of this cluster algebra from [5].

1. The quantum Grassmannian.
The homogeneous coordinate ring C

[
Grk,n

]
of the Grassmannian is the subring of

the coordinate ring C
[
Mk,n

]
of all k × n matrices generated by the k × k minors

∆J for each k-subset J ⊆ {1, . . . , n}. We refer to such J as ‘labels’.
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From work of Fomin-Zelevinsky [4] and Scott [10], we know that C
[
Grk,n

]
is a

cluster algebra with several clusters of minors, corresponding to triangulations of
an n-gon, when k = 2, and to Postnikov diagrams in general. See Figure 1 for an
example with n = 5 and k = 2.
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Figure 1. A cluster of minors from a triangulation.

To quantize, you first deform the coordinate ring of matrices to a non-commuta-
tive ring Cq

[
Mk,n

]
and then modify the definition of the minors ∆J . This yields a

quantum cluster algebra in the sense of Berenstein-Zelevinsky [2] with essentially
the same clusters, but, for example, with minors replaced by quantum minors.
The seed data now consists of the exchange matrix (or quiver) and an additional
matrix L = (ℓij) encoding the quasi-commutation rules: XiXj = qℓijXjXi.

The quasi-commutation rules for quantum minors were computed by Leclerc-
Zelevinsky [7] as follows:

Theorem 1. Two quantum minors ∆I and ∆J quasi-commute if and only if
either J r I = J ′ ∪ J ′′ with J ′ < (I r J) < J ′′, in which case

(1) q|J
′|∆I∆J = q|J

′′|∆J∆I ,

or vice versa, i.e. swapping I and J . Then I, J are said to be ‘non-crossing’.

Indeed, every cluster of (quantum) minors corresponds to a maximal non-
crossing set C of labels. A first observation is that (1) can be rewritten as

(2) qκ(I,J)∆I∆J = qκ(J,I)∆J∆I ,

where κ(I, J) = MaxDiag(λI r λJ ) is defined for any pair I, J as the largest
diagonal distance (or height in Russian orientation) in the set difference of the
partitions λI , λJ whose ‘profiles’ are the labels I, J . See [9] for more detail and
Figure 2 for an example.

2. Categorification.
In [5], an additive categorification of C

[
Grk,n

]
is given by the category CM(B) of

(finitely-generated) Cohen-Macaulay modules for the twisted group ring B = R∗G,
where

R = C[[x, y]]/(xk − yn−k) and G = {ζ ∈ C : ζn = 1},
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1 2 3 4 5 6 7

Figure 2. Showing that κ(245, 167) = 1 and κ(167, 245) = 2.

acting with weights 1 on x and −1 on y. We can also describe B as the (complete)
path algebra of a quiver Q with Q0 = G∨ = Zn, with arrows xj : (j − 1)→ j and
yj : j → (j − 1) and with relations xy = yx and xk = yn−k. See Figure 3 in the
case n = 7 (so vertices 0 and 7 are identified).
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Figure 3. Quiver of B with the rank 1 module M245.

Note that the centre of B is the subring Z = RG = C[[t]], where t = xy, and
that Cohen-Macaulay B-modules are precisely those that are free over Z. As
representations of the quiver Q, a Cohen-Macaulay module has the same rank at
each vertex. In particular, for each label J , we can define a rank 1 module MJ

with Z at each vertex, yj = t for j ∈ J and xj = t for j /∈ J , while the other arrow
of each pair is 1. See Figure 3 for an example.

There is a cluster character Φ: CM(B)→ C
[
Grk,n

]
, so that Φ(MJ) = ∆J and

another key feature of this categorification is the following [5].

Proposition 2. Labels I, J are non-crossing if and only if Ext1(MI ,MJ) = 0.

Thus any maximal non-crossing set C of labels also determines a maximal rigid
(hence cluster tilting) object TC =

⊕
J∈C MJ in CM(B). The main result of [1] is

that A = EndB(TC)
op is the ‘dimer algebra’ associated to the Postnikov diagram

D(C) which can be defined for any such C by [8]. In particular, the quiver of A
has vertex set C.

A further feature of the categorification CM(B) is recently proved in [6].

Theorem 3. For any labels I, J , we have κ(I, J) = dimK(MI ,MJ), where

(3) K(M,N) = HomZ(M0, N0)/HomB(M,N).

Note that M0 = e0M is the ‘fibre’ of M at the vertex 0. The forgetful functor
CM(B) → CM(Z) : M 7→ M0 has a right adjoint J : CM(Z) → CM(B), so that
HomZ(M0, N0) ∼= HomB(M,JN0) and further the canonical map N → JN0 is
injective, so that we effectively have an inclusion HomB(M,N) ⊆ HomZ(M0, N0).
This explains how (3) is to be understood.
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In addition, this means that, for the cluster tilting object TC as above, K(TC , N)
is a finite dimensional A-module. We can now define κ(M,N) = dimK(M,N) for
any M,N in CM(B), and, as a compact notation, write the dimension vector of
K(TC, N) as κ(TC , N) ∈ NC .

To see why Theorem 3 is true, we can consider the labels I, J as ‘profiles’ of
the modules MI ,MJ , as in [5], drawn like the profiles of the partitions λI , λJ as
in Figure 2. Then the codimension of HomB(MI ,MJ) in HomZ(e0MI , e0MJ) is
computed by moving the profile of MI to just below the profile of MJ and finding
the height difference at vertex 0, as in Figure 4.

0 1 2 3 4 5 6 7

Figure 4. Showing that dimK(M167,M245) = 2.

Now, since we can recover the quasi-commutation rules for quantum minors
from the dimensions κ(M,N) for rank 1 modules, it is natural to ask what we get
for higher rank modules.

Indeed, a key point of categorification is that there is a process of mutation
of cluster tilting objects parallel to mutation of cluster seeds and so, for every
cluster, there is a cluster tilting object T =

⊕
i Ti in CM(B) for which the quiver

of EndB(T )
op is the quiver of the corresponding seed. From this we can read off

the exchange matrix B as the anti-symmetrized adjacency matrix. To extend this
to quantum seeds, we define a matrix L = (ℓij) by

ℓij = κ(Tj , Ti)− κ(Ti, Tj)

and show in [6] that

Theorem 4. The matrices B and L associated to any cluster tilting object T in
CM(B) are compatible, in the sense of [2]. Furthermore, under mutation of cluster
tilting objects, they undergo mutation of quantum seed data.

As a consequence, the dimensions κ(M,N) for higher rank summands of cluster
tilting objects also determine the quasi-commmutation rules for higher degree
quantum cluster variables.

3. Newton-Okounkov bodies
Associated to any maximal non-crossing collection C, and thus Postnikov diagram
D(C), there is a ‘network chart’ (cf. [9]), which is a coordinate system on an affine
open subset of Grk,n in which the minors are given by partition functions for dimer
configurations on the associated bipartite graph, as follows:

(4) ∆J =
∑

µ:∂µ=J

ywt(µ),
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where µ ranges over perfect matchings and wt(µ) ∈ NC , so that yw is a formal
variable. In [9], the right-hand side of (4) is called the ‘flow polynomial’ and is
(equivalently) expressed as a sum over flows rather than perfect matchings.

In [9], Rietsch-Williams show that this flow polynomial has a common factor
ywt(µ0), for a certain minimal matching (or flow) µ0, and that wt(µ0)I = κ(I, J).
As a consequence of this, they deduce, in effect, that the dimension vectors
κ(TC ,MJ) are the integral points in a Newton-Okounkov body for Grk,n

In recent work [3], it is shown that, when T = TC and M = MJ , there is a
one-to-one correspondence

(5) {µ : ∂µ = J} ←→ {X ⊆ HomB(T,M) : eX =M}

where e is the boundary idempotent of A, for which eAe = B.
We can now further show that, under this correspondence, wt(µ) = dimWt(X),

where Wt(X) = HomZ(T0,M0)/X . From this it immediately follows that κ(T,M)
is a minimal weight, because K(T,M) is a quotient of Wt(X) for each X .

Since the right-hand side of (4) is defined for any M it is natural to conjecture
a general formula for any cluster character in the network chart

(6) Φ(M) =
∑

X:eX=M

ywt(X),

where the sum is overX ⊆ HomB(T,M) and wt(X) = dimWt(X). Since this sum
may be infinite, it should be really be formulated as sum over dimension vectors
weighted by the Euler characteristics of suitable quiver Grassmannians, along the
lines of a CC formula. We can also extract the common factor and obtain

(7) Φ(M) = yκ(T,M)
∑

d∈NC

χ(Grd(HomB(T,M))yd,

where Grd denotes the quiver Grassmannian of quotients of dimension vector d.
It is then also natural to conjecture that the dimension vectors κ(T,M) for M in
CM(B) of rank r are all the integral points in the Newton-Okounkov body scaled
up by r.
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Faculty of Mathematics and Computer
Science
Nicolaus Copernicus University
ul. Chopina 12/18
87-100 Toruń
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