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Lutz Dümbgen, Bern
Klaus-Robert Müller, Berlin

Richard Samworth, Cambridge UK

26 January – 1 February 2020

Abstract. Theory and application go hand in hand in most areas of statis-
tics. In a world flooded with huge amounts of data waiting to be analyzed,
classified and transformed into useful outputs, the designing of fast, robust
and stable algorithms has never been as important as it is today. On the other
hand, irrespective of whether the focus is put on estimation, prediction, clas-
sification or other purposes, it is equally crucial to provide clear guarantees
that such algorithms have strong theoretical guarantees. Many statisticians,
independently of their original research interests, have become increasingly
aware of the importance of the numerical needs faced in numerous appli-
cations including gene expression profiling, health care, pattern and speech
recognition, data security, marketing personalization, natural language pro-
cessing, to name just a few.

The goal of this workshop is twofold: (a) exchange knowledge on successful
algorithmic approaches and discuss some of the existing challenges, and (b)
to bring together researchers in statistics and machine learning with the aim
of sharing expertise and exploiting possible differences in points of views to
obtain a better understanding of some of the common important problems.

Mathematics Subject Classification (2010): 62xx.

Introduction by the Organizers

The Oberwolfach workshop Statistics meets Machine Learning, organized jointly
by Fadoua Balabdaoui (ETH Zürich), Lutz Dümbgen (University of Bern), Klaus-
Robert Müller (Technical University of Berlin) and Richard Samworth (Cam-
bridge) took place during the period January 26th – February 01st, 2020. The
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meeting’s main goal was to gather researchers from statistics interested in compu-
tational tasks and machine learners to exchange current research methods, prob-
lems and techniques between the two areas.

The goals of the workshop were successfully attained. During the 21 main
talks, the audience got the chance to learn about some of the latest research in
neural networks, including recent applications, advances in their implementation,
their fundamental limits, and the asymptotic property of the generalization error
in the case of over-parametrized neural networks. On the statistical side, the
presentations covered a large spectrum of very relevant topics on both theory and
computational issues. This includes nonparametric estimation of spatial covariance
operators and related separability tests, recent algorithms for single-index models,
new methods in functional analysis with big data and interesting theoretical results
related to geodesic convex functions. Tuesday evening was devoted to listening to
6 young researchers (students and post-docs) who offered short lightening talks
where they presented their most recent results. The organizers take pride in having
28% female participants at this meeting. They also would like to thank all the
participants and the administrative staff of the MFO for their great support and
help before and during the workshop.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
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Massoulié, Yin-Tat Lee)
Distributed Machine Learning over Networks . . . . . . . . . . . . . . . . . . . . . . . . 238

Johannes Schmidt-Hieber
Neural networks in the overparametrized regime . . . . . . . . . . . . . . . . . . . . . 240

Emmanuel Candès (joint with Stephen Bates, Matteo Sesia and Chiara
Sabatti)
Causal Inference for Genetics with the Digital Twin Test . . . . . . . . . . . . . 241

Helmut Bölcskei (joint with D. Elbrächter, P. Grohs, G. Kutyniok, and D.
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Abstracts

Explaining the decisions of deep neural networks and beyond

Grégoire Montavon and Wojciech Samek

(joint work with Klaus-Robert Müller, Sebastian Lapuschkin, Alexander Binder,
Jacob Kauffmann)

Machine learning models have become increasingly complex and this complexity
has allowed them to reach high prediction accuracy on challenging datasets. In
some cases, improved predictivity has come at the expense of interpretability, in
particular, complex models tend to be perceived as black-boxes.

A lack of interpretability is problematic, not only because interpretability is
desirable in itself (e.g. to extract useful insights from a model or from the modeled
data), but also because common measurements of prediction accuracy can become
strongly unreliable when certain assumptions about the training data are not met.
Real-world datasets are typically not representative of all possible cases and the
truly relevant variables may correlate with other irrelevant variables. In such
circumstances, one would need to ensure that the machine learning model does
not rely on these irrelevant variables. An assessment based purely on test set
accuracy would be oblivious to the exact decision strategy and could overestimate
the true prediction performance. This phenomenon has been referred to as the
‘Clever Hans’ effect [9]. Only an extension of the dataset with specific test cases,
or an inspection of the model, e.g. via interpretability techniques [3, 16, 12], is
capable of highlighting the improper decision structure.

In this talk, we look at the question of explaining the predictions of deep neural
networks, a successful machine learning approach that has been used increasingly
in real-world applications. A challenge for getting these explanations is the com-
plexity of the decision function, which makes it hard to apply simple explanation
methods developed in the context of linear models, e.g. based on first-order Taylor
expansions. In particular, DNN decision functions are highly nonlinear and multi-
scale, with a gradient that is highly varying or ‘shattered’ [4]. Also, local searches
in the input space easily result in ‘adversarial examples’ [13] where the prediction
no longer corresponds to the observed pattern in the input.

Layer-wise relevance propagation (LRP) [3] is a technique that was proposed
to robustly explain the neural network decision in terms of input features. It
was shown to work on numerous models in a wide range of applications [14, 5,
15]. LRP departs from the neural network’s function representation to consider
instead its graph structure. Specifically, the LRP algorithm performs an iterative
redistribution of the neural network output to the lower layers. Redistribution
from each layer to the layer below is achieved by means of propagation rules
that satisfy a conservation property analogous to Kirchoff’s conservation laws in
electrical circuits. The LRP algorithm terminates once the input layer has been
reached. The LRP algorithm can be motivated as decomposing a complex problem



236 Oberwolfach Report 4/2020

(analyzing a highly nonlinear function) into a collection of simpler subproblems
(treating each neuron individually).

Furthermore, it was shown that the LRP algorithm can be interpreted as a
collection of Taylor expansions performed at each layer and neuron of the neural
network [11]. Specifically, the ‘relevance’ received by a given neuron is approxi-
mately the product of the neuron activation and a locally constant term. In turn,
the LRP redistribution step can be interpreted as (1) identifying the linear terms
of a Taylor expansion of the relevance expressed as a function of activations in the
lower layer, and (2) propagating to the lower layer accordingly. A connection can
be made between different proposed LRP propagation rules and the choice of refer-
ence point at which the Taylor expansion is performed [11, 10]. This Taylor-based
view on the LRP algorithm allows in particular to verify that the corresponding
reference points are meaningful, for example, that they satisfy domain member-
ship constraints. This interpretation of LRP as a collection of Taylor expansions
is referred to as “deep Taylor decomposition” [11].

The LRP algorithm has been successfully applied to various data types and
problems, ranging from computer vision and natural language processing tasks
such as classification of concepts in images [3], age prediction [8] or categorization
of text documents [2], over reinforcement learning tasks such as playing computer
games [9], to various medical data analysis tasks, e.g., decoding of fMRI signals
[14] or therapy outcome prediction [15]. In these diverse applications, LRP expla-
nations provide additional insights into the decision strategies used by the model,
which not only help to better understand the data, including its biases and arti-
facts [8, 9], but also help to analyze the learning processes and model’s decision
strategies [9].

In the second part of the talk, two recent advances that broaden the usefulness
of explanation methods are discussed. First, Spectral Relevance Analysis (SpRAy)
[9], a dataset-wide analysis of individual explanations that summarizes the overall
decision structure of the model into a finite and easily interpretable set of prototyp-
ical decision strategies. This analysis allows to systematically investigate complex
models on large datasets. It has unveiled in commonly used datasets, artifacts,
that tend to systematically induce flaws into the decision structure of ML models
trained on them. For example, a website logo was found in some images of the
class ‘truck’ of the ImageNet dataset, which the state-of-the-art VGG-16 neural
network would then use for its predictions [1].

Another advance brings successful explanation techniques to non-neural net-
work architectures such as kernel-based models. The approach that we term ‘neu-
ralization’ [6] finds for these non-neural network architectures a functionally equiv-
alent neural network so that state-of-the-art explanation techniques such as LRP
can be applied. The approach was successfully applied to various unsupervised
models, in particular, kernel one-class SVMs [7] and various k-means clustering
models [6], thereby shedding light into what input features make a data point
anomalous or member of a given cluster.
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Although significant progress has been made to improve the transparency of ML
models such as deep neural networks, numerous challenges still need to be ad-
dressed both on the methods and theory side. In particular, there is a need for
standardized and unbiased evaluation benchmarks for assessing the quality and
usefulness of an explanation. Furthermore, an important future work will be to
adopt a more holistic view on the problem of explanation, that considers how to
make best use of the user’s interpretation and feedback capabilities, and that also
integrates the end goal of the explanation method, for example, achieving bet-
ter and more informed decisions, or systematically improving and robustifying a
machine learning model.
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A feature sparse neural network

Robert Tibshirani

(joint work with Ismael Lemhadri, Feng Ruan)

We introduce LassoNet, a neural network model with global feature selection [1].
The model uses a residual connection to learn a subset of the most informative
input features. Specifically, the model honors a hierarchy restriction that an input
neuron only be included if its linear variable is important. This produces a path
of feature-sparse models in close analogy with the lasso for linear regression, while
effectively capturing complex nonlinear dependencies in the data. Using a single
residual block, our iterative algorithm yields an efficient proximal map which ac-
curately selects the most salient features. On systematic experiments, LassoNet
achieves competitive performance using a much smaller number of input features.
LassoNet can be implemented by adding just a few lines of code to a standard
neural network.

We also apply LassoNet and the linear model lasso to convolution features from
mammograms to classify cancer images from normal images. We find that the
new methods are nearly as accurate as the state-of–the-art using ResNet, and the
results are easier to interpret
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Distributed Machine Learning over Networks

Francis Bach

(joint work with Hadrien Hendrikx Sébastien Bubeck, Laurent Massoulié,
Yin-Tat Lee)

The success of machine learning models is in part due to their capacity to train
on large amounts of data. Distributed systems are the common way to process
more data than one computer can store, but they can also be used to increase the
pace at which models are trained by splitting the work among many computing
nodes. In this work, we study the corresponding problem of minimizing a sum
of functions which are respectively accessible by separate nodes in a network.
New centralized and decentralized algorithms are analyzed, together with their
convergence guarantees in deterministic and stochastic convex settings, leading to
optimal algorithms for this particular class of distributed optimization problems.
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For generic problems [1], we determine the optimal convergence rates for strong-
ly convex and smooth distributed optimization in two settings: centralized and
decentralized communications over a network. For centralized (i.e., master/slave)
algorithms, we show that distributing Nesterov’s accelerated gradient descent is
optimal and achieves a precision ε > 0 in time O(

√
κg(1 +∆τ) ln(1/ε)), where κg

is the condition number of the (global) function to optimize, ∆ is the diameter of
the network, and τ (resp. 1) is the time needed to communicate values between
two neighbors (resp. perform local computations). For decentralized algorithms
based on gossip, we provide the first optimal algorithm, called the multi-step dual
accelerated (MSDA) method, that achieves a precision ε > 0 in time O(

√
κl(1 +

τ√
γ ) ln(1/ε)), where κl is the condition number of the local functions and γ is

the (normalized) eigengap of the gossip matrix used for communication between
nodes.

Within machine learning, for smooth and strongly convex problems, existing
decentralized algorithms [1] are slower than modern accelerated variance-reduced
stochastic algorithms when run on a single machine, and are therefore not efficient.
Centralized algorithms are fast, but their scaling is limited by global aggregation
steps that result in communication bottlenecks. In [2], we propose an efficient
Accelerated Decentralized stochastic algorithm for Finite Sums named ADFS,
which uses local stochastic proximal updates and randomized pairwise communi-
cations between nodes. On n machines, ADFS learns from nm samples in the
same time it takes optimal algorithms to learn from m samples on one machine.
This scaling holds until a critical network size is reached, which depends on com-
munication delays, on the number of samples m, and on the network topology.
We provide a theoretical analysis based on a novel augmented graph approach
combined with a precise evaluation of synchronization times and an extension of
the accelerated proximal coordinate gradient algorithm to arbitrary sampling. We
illustrate the improvement of ADFS over state-of-the-art decentralized approaches
with experiments.
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Neural networks in the overparametrized regime

Johannes Schmidt-Hieber

Some statistical effects observed in modern machine learning seem to contradict
classical statistical theory. The most disturbing empirical finding is that over-
parametrization tends to generalize well in practice.

The classical statistical theory states that there is a so called bias-variance
trade-off. Methods with few parameters are not flexible enough to capture the
underlying structure in the data. Increasing the number of parameters in the
method reduces the statistical risk, but only up to a certain point after which
we enter the overparametrized regime where the method starts to explain the
randomness in the data. Overfitting adds a lot of stochastic variability to the
estimator leading to poor statistical performance. Overfitting should consequently
be avoided in practice.

For fixed sample size, plotting the number of parameters (for instance in a neu-
ral network) versus the stochastic risk, classical statistical theory predicts that one
should see a U -shaped curve. If done in practice, however, the U -shape explains
the behavior for the number of parameters being at most the order of the sam-
ple size. For machine learning methods with extreme overparametrization, the
statistical risk typically becomes again small. Because of this phenomenon, for
neural networks it is now common to train them to have zero training loss. This
is somehow the most extreme form of overparametrization as it essentially means
interpolation of all points in the dataset. The reconstruction thus also perfectly
fits all randomness in the data.

The common explanation why overfitting can work is that the gradient descent
type methods employed to fit the parameters in machine learning converge to an
interpolant satisfying some minimum norm constraint. This phenomenon is also
known as implicit regularization. Based on the earlier work by [3], we show that
in a simplified neural network model in which only the parameters in the output
layer are learned by stochastic gradient descent and all other parameters are fixed
beforehand, the minimum norm is a Sobolev norm, see [2] for a precise statement.
The neural network reconstruction converges moreover to the natural cubic spline
interpolant in the overparametrized regime. If the data have been generated from
the nonparametric regression model, the neural network reconstruction can then
be shown to be far away from the regression function, proving that at least in this
setup implicit regularization is insufficient to do denoising.

General claims that have been made in the machine learning literature, such
as the claim that overfitting works well, should therefore be taken with a grain of
salt. Despite being true on standardized datasets that are commonly used to test
machine learning methods, these claims can be misleading for different types of
data structures, such as for instance extremely noisy data. It is the combination
of the statistical model and the method that ultimately determines the statistical
properties.
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Causal Inference for Genetics with the Digital Twin Test

Emmanuel Candès

(joint work with Stephen Bates, Matteo Sesia and Chiara Sabatti)

This work introduces a method to rigorously draw causal inferences—inferences
immune to all possible confounding—from genetic data that include parents and
offspring. Causal conclusions are possible with these data because the natural ran-
domness in meiosis can be viewed as a high-dimensional randomized experiment.
We make this observation actionable by developing a novel conditional indepen-
dence test that identifies regions of the genome containing distinct causal variants.
The proposed Digital Twin Test compares an observed offspring to carefully con-
structed synthetic offspring from the same parents in order to determine statistical
significance, and it can leverage any black-box multivariate model and additional
non-trio genetic data in order to increase power. Crucially, our inferences are
based only on a well-established mathematical description of the rearrangement of
genetic material during meiosis and make no assumptions about the relationship
between the genotypes and phenotypes.

Fundamental limits of deep neural network learning

Helmut Bölcskei

(joint work with D. Elbrächter, P. Grohs, G. Kutyniok, and D. Perekrestenko)

Deep neural networks have become state-of-the-art technology for a wide range
of practical machine learning tasks such as image classification, handwritten digit
recognition, speech recognition, or game intelligence. This talk develops the fun-
damental limits of learning in deep neural networks by characterizing what is
possible if no constraints on the learning algorithm and the amount of training
data are imposed. Concretely, we consider information-theoretically optimal ap-
proximation through deep neural networks with the guiding theme being a rela-
tion between the complexity of the function (class) to be approximated and the
complexity of the approximating network in terms of connectivity and memory re-
quirements for storing the network topology and the associated quantized weights.
The theory we develop educes remarkable universality properties of deep networks.
Specifically, deep networks are optimal approximants for vastly different function
classes such as affine systems and Gabor systems. Affine systems are generated by
the affine group (scalings and translations) whereas Gabor systems are generated
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by the Weyl-Heisenberg group (time-shifts and modulations). This universality
is afforded by a concurrent invariance property of deep networks to time-shifts,
scalings, and frequency-shifts. In addition, deep networks provide exponential ap-
proximation accuracy—i.e., the approximation error decays exponentially in the
number of non-zero weights in the network—of vastly different functions such as
the squaring operation, multiplication, polynomials, sinusoidal functions, general
smooth functions, and even one-dimensional oscillatory textures and fractal func-
tions such as the Weierstrass function, both of which do not have any known
methods achieving exponential approximation accuracy. In summary, deep neural
networks provide information-theoretically optimal approximation of a very wide
range of functions and function classes used in mathematical signal processing.
We also show that in the approximation of sufficiently smooth functions finite-
width deep networks require strictly smaller connectivity than finite-depth wide
networks.

Testing validity of statistical inference in approximate models

Natalia Bochkina

Detecting model misspecification historically has been important in statistics, with
the tests known as goodness-of-fit tests. Typical tests that don’t involve parameter
estimation are Kolmogorov-Smirnov and Anderson-Darling tests. A universal test
that takes into the account parameter estimation is the χ2 test which applies to
discrete data, and involves a discretisation of a continuous distribution. This test
applies usually to one-dimensional data.

Current demand on statistical modelling for modern data usually involves high
dimensional distributions and estimating a large number of parameters. Also, con-
straints on computing imply that approximate models are often used in challenging
high dimensional setting.

So, to address these practical problems, the problem we consider here is wider
than the standard goodness of fit tests: we are interested whether the asymptotic
Gaussian inference is appropriate here, rather than whether the model is correct.
In particular, we want to identify the models that “may be wrong but are useful”,
i.e. the models that produce appropriate asymptotic inference. Note that the
proposed method applies to both classical (frequentist) and Bayesian, as they are
asymptotically equivalent for well-specified regular models. So informally, we can
formulate the hypothesis we will be testing as

H0: asymptotic inference is correct vs H1: asymptotic inference is not
correct.

For the inference problems where the asymptotic Gaussian inference is not appro-
priate, e.g. if n is small or where the model is non-regular (e.g. densities with
jump, true parameter is on the boundary of the parameter space), this test should
not be used. We will also discuss application of this method to models that are
not fully identifiable, e.g. inverse problems.
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[2] has proposed a test for model misspecification based on comparing the infor-
mation and curvature of the model which he named the information matrix test
which is based on verifying the second Bartlett identity. His test applies in small
dimensions and is based on using the third derivatives of the log likelihood (which
do vanish for some models, as explained in [2] as well as a subset of entries of these
matrices. For linear models with a parameter of fixed dimension, this was done
by [3], with a particular choice of a test statistic specific to the linear model.

We propose a generic test that can apply to any regular model, in the sense of
Wald and Cramer-Rao. Some versions of it have been appearing as ad hoc tests,
e.g. testing the equality of the mean and the variance for the Poisson distribution.
As compared to the information test of [2], we propose an alternative test statistic
based on a distance between two Gaussian distributions that does not involve any
additional differentiation or an ad hoc selection of elements of the matrices to be
compared, it is a general method that applies for any regular model, and it applies
to high dimensional problems.

[1] has a nice discussion of geometry of asymptotic statistical inference where
the parametric set of probability models {Pθ, θ ∈ Θ} is viewed as a Riemannian
manifold, with matrixD being a curvature which defines geodesics on the manifold.
For a well-specified model, curvature equals to the Fisher information whereas for
a misspecified model this is not always the case. This motivates our name for the
test, internal coherence test.

This test is applied to members of exponential family, linear and generalised
linear models, inverse problems and Variational Bayes approaches.
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Bayesian inference for nonlinear inverse problems

Vladimir Spokoiny

1. Introduction

Bayesian inference for inverse problems attracted a lot of attention in the recent
literature. We mention only few relevant papers. [Knapik et al., 2011] studied
minimax contraction rate for linear inverse problems, [Knapik et al., 2016] dis-
cussed adaptive Bayes procedures. [Nickl, 2017] studied the BvM for Schrödinger
equation, [Nickl and Söhl, 2019] focused on statistical inverse problems for com-
pound Poisson processes, [Monard et al., 2017] discussed applications to X-Ray
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Tomography, [Nickl and Söhl, 2017] studied posterior contraction rates for dis-
cretely observed scalar diffusions, [Gugushvili et al., 2018] considered Bayesian in-
verse problems with partial observations, [Trabs, 2018] discussed a linear inverse
problem with an unknown operator, [Lu, 2017] established BvM results for a rather
general elliptic inverse problem with an additive noise. Nonlinearity of the model
makes the study very involved and the cited results heavily used the recent ad-
vances in the theory of partial differential equations, inverse problems, empirical
processes. We mention [Nickl, 2017] and [Nickl et al., 2018] as particular illustra-
tion of the major difficulties in the study of concentration of the penalized MLE
and of posterior concentration.

The main contribution of this paper is a novel approach allowing a unified study
of a large class of nonlinear inverse problems. The approach is based on a double
relaxation by introducing an auxiliary functional parameter, replacing the struc-
tural equation with a penalty, and imposing an additional prior on the auxiliary
parameter. This leads to a new model with an extended parameter set but the
stochastic term is linear w.r.t. the total parameter set. This fact helps to obtain
sharp finite sample bounds for concentration of the penalized maximum likelihood
estimator (pMLE) around its population counterpart and for posterior concen-
tration around pMLE. Also we establish a finite sample result about Gaussian
approximation of the posterior with an explicit error term in the total variation
distance and for the class of centrally symmetric sets around pMLE. All the bounds
are given in term of effective dimension in place of the total parameter dimension.
This helps to compensate the increase of the parameter set and to get the right
accuracy of approximation. The approach is “coordinate free” and does not rely
on any spectral decomposition and/or any basis representation for the target pa-
rameter and penalty term. We focus here on the problem of inverting an known
nonlinear smooth operator from noisy discrete data Y following the equation

Y = A(f) + σε. (1)

A forthcoming paper explains how the proposed approach called “calming” can be
extended to many other models including generalized regression, nonparametric
diffusion, Bayesian deconvolution, dimension reduction etc.

Now we explain the idea of the method. For the original problem (1), a prior
density Π(f) on the target parameter f yields the posterior

f
∣∣Y ∝ exp

{
−‖Y −A(f)‖2/(2σ2)

}
Π(f).

Now denote by g the image function, g = A(f) ∈ Yd and relax the structural
equation g = A(f) replacing it with a penalty λ‖g−A(f)‖2/2. The image function
g is modelled using a separate prior. The proposed approach leads to the extended
parameter set (f , g) which is modelled as

(f , g) ∝ exp
{
−‖Y − g‖2/(2σ2)− λ‖g −A(f)‖2/2

}
Π(f)Π(g).
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Such a decoupling increases substantially the parameter space. However, by a
proper choice of a g-prior one can keep the effective dimension of the same order
as for the original problem. One can treat the calming approach as a kind of
transformation of the original nonlinear problem to a linear one with an extended
parameter set and a special prior that includes the structural penalty term. Our
theoretical results justify the proposed method and state a number of remarkable
features of the total and marginal posteriors.

Theorem 1. It holds on Ωn with P
(
Ωn

)
≥ 1− 1/n

sup
A∈B(X d)

∣∣∣P
(
fG − f̃G ∈ A

∣∣Y
)
− P

′(
D̃

−1
G γ ∈ A

)∣∣∣ ≤ C
{
δ3,n + 1/n

}

where δ3,n is an explicit error term of order n−1/2.
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Divided differences, falling factorials, and discrete splines: Another

look at trend filtering and related problems

Ryan J. Tibshirani

This talks serves as a postscript of sorts to [6, 7], who developed continuous-
time formulations and properties of trend filtering, a discrete-time smoothing tool
proposed (independently) by [5, 1]. The central object of study is the falling
factorial basis, as it was called by [6, 7]. Its span turns out to be a space of
piecewise polynomials that has a classical place in spline theory, called discrete
splines [3, 4]. At the time of [6, 7], we were not fully aware of these connections.
The current talk reflects ongoing work, which attempts to rectify this by making
these connections explicit, reviewing (and making use of) some of the important
existing work on discrete splines, and contributing several new perspectives and
new results on discrete splines along the way.

To fix ideas, given an integer k ≥ 0 and input points x1 < z · · · < xn, the kth
order falling factorial basis hki , i = 1, . . . , n is defined as

(1)

hkj (x) =
1

(j − 1)!

j−1∏

ℓ=1

(x − xℓ), j = 1, . . . , k + 1,

hkj (x) =
1

k!

j−1∏

ℓ=j−k

(x− xℓ) · 1{x > xj−1}, j = k + 2, . . . , n.

(This basis is given its name because when the input points are unit-spaced inte-
gers, i.e., xi = i, i = 1, . . . , n, the basis functions evaluate to falling factorials.)
For k = 0 or k = 1, this reduces to the well-known truncated power basis; but for
k ≥ 2, these functions have discontinuous derivatives and therefore are not splines,
but some other “spline-like” piecewise polynomials of degree k.

In [6], and in follow-up work [7], we established several key properties of falling
factorial functions, and functions in their span Hk

n = span{hk1 , . . . , hkn}, i.e., of the
form

f =

n∑

i=1

αih
k
i .

The foremost property is that, for any f ∈ Hk
n, the total variation of its kth de-

rivative is exactly equal to its discrete kth order total variation, i.e.,

(2) TV(f (k)) =

n∑

i=1

∣∣(∆k+1f)(xi)
∣∣ · xi+k+1 − xi

k + 1
,

where ∆k+1 is a discrete derivative operator based on divided differences of order
k+1. This bridges the gap between the continous-time locally adaptive regression
spline variational problem posed by [2] and the discrete-time problem solved by
trend filtering. It also allows us to interpolate (extrapolate) the fitted values from
trend filtering into a fitted function that is exactly as smooth in continuous-time
as the fitted values are in discrete-time.
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It turns out that there is much more to the story than this. The span Hk
n of

the kth degree falling factorial basis functions is in fact quite a special space of
piecewise polynomials: a space of kth degree discrete splines. Speaking informally,
a discrete spline is a piecewise polynomial that exhibits continuity in all its lower-
order discrete derivatives (rather than classical derivatives) at its knot points.
Discrete splines have been studied since the early 1970s by applied mathematicians,
but have nowhere near the visibility nor popularity of splines. Investigating the
connection between falling factorial functions and discrete splines has led us to
develop numerous interesting properties underlying these functions, particularly
with respect to interpolation and representation, which we describe next.

• We have developed a new perspective on how to construct the falling fac-
torial basis (1) “from scratch”. This starts by defining a discrete derivative
operator (in continuous-time, i.e., from functions to functions) and its in-
verse, a discrete integrator; we then show that the falling factorial basis
functions are given by kth order discrete integration of appropriate step
functions. The importance of this construction is two-fold: first, it re-
veals an even stronger property of discrete splines than the total variation
equality (2): for kth degree discrete splines, their kth discrete derivative
matches their kth derivative everywhere, and furthermore, they are the
only kth degree piecewise polynomials with this property. Second, it sug-
gests an avenue for how to construct multivariate discrete splines (see the
last bullet point).

• We have identified a natural dual basis to the falling factorial basis that
is based on evaluations of discrete derivatives. As a primary use case, this
dual basis allows us to efficiently interpolate within the space of discrete
splines, which generalizes Newton’s divided difference interpolation for-
mula. More importantly, it turns out that this interpolation formula can
be recast in an implicit form, showing that interpolation using discrete
splines can be done in constant-time. In other words, discrete spline in-
terpolation can be made entirely local and even more efficient than spline
interpolation.

• We are working on further representation properties of discrete splines.
The fact that their kth discrete derivatives matches their kth derivatives
everywhere directly implies that their continuous-time kth degree total
variation matches their discrete-time kth degree total variation (2). But
preliminary calculations suggests that there are likely other important
representational results (i.e., the ability to represent a continuous-time
smoothness functional exactly in of simple discrete-time quantities), e.g.,
for classical Sobolev-type smoothness functions, yet to be worked out. This
could allow us to discretize a variety of variational problems or differential
equations in a fundamentally new and potentially more efficient way.

• Lastly, an open direction is to construct discrete splines over triangula-
tions. The hope is to follow the construction of univariate discrete splines
via iterated discrete integration, and leverage this in appropriate sense.
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We note that, in a multivariate setting, extensions of the local interpola-
tion and representation properties of univariate discrete splines would be
particularly important (as both of these are especially expensive in mul-
tiple dimensions), and would thus mark a particularly big success of the
discrete spline view.
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Profile least squares estimators in the monotone single index model

Piet Groeneboom

(joint work with Fadoua Balabdaoui)

The monotone single index model tries to predict a response from the linear com-
bination of a finite number of parameters and a function linking this linear com-
bination to the response via a monotone link function ψ0 which is unknown. So,
more formally, we have the model

Y = ψ0(α
T
0 X) + ǫ,

where Y is a one-dimensional random variable, X = (X1, . . . , Xd)
T is a d-dimen-

sional random vector with distribution function G, ψ0 is monotone and ǫ is a
one-dimensional random variable such that E[ǫ|X] = 0 G-almost surely. For iden-
tifiability, the regression parameter α0 is a vector of norm ‖α0‖ = 1, where ‖ · ‖
denotes the Euclidean norm in Rd, so α0 ∈ Sd−1, the boundary of the unit sphere
in Rd.

The ordinary profile least squares estimate of α0 is anM -estimate in two senses:
for fixed α the least squares criterion

ψ 7→ n−1
n∑

i=1

{
Yi − ψ(αTXi)

}2
(1)
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is minimized for all monotone functions ψ (either decreasing or increasing) which

gives an α dependent function ψ̂n,α, and the function

α 7→ n−1
n∑

i=1

{
Yi − ψ̂n,α(α

TXi)
}2

(2)

is then minimized over α. This gives a profile least squares estimator α̂n of α0,
which we will call the LSE.

Although this estimate of α0 has been known now for a very long time (more
than 30 years probably), it is not known whether it is

√
n convergent (under

appropriate regularity conditions), let alone that we know its asymptotic distribu-
tion. Also, simulation studies are rather inconclusive. Other simulation studies,
presented in [1], are also inconclusive. In that paper, it was also proved that an
ordinary least squares estimator (which ignores that the link function could be
non-linear) is

√
n-convergent and asymptotically normal under elliptic symmetry

of the distribution of the covariate X. Another linear least squares estimator of
this type, where the restriction on α is αTSnα = 1, where Sn is the usual esti-
mate of the covariance matrix of the covariates, and where a renormalization at
the end is not needed (as it is in the just mentioned linear least squares estimator)
was studied in [2] and there shown to have similar behavior. If this suggests that
the profile LSE should also be

√
n-consistent, the extended simulation study in [2]

shows that it is possible to find other estimates which exhibit a better performance
in these circumstances.

An alternative way to estimate the regression vector is to minimize the criterion

α 7→
∥∥∥∥∥n

−1
n∑

i=1

{
Yi − ψ̂n,α(α

TXi)
}
Xi

∥∥∥∥∥

2

(3)

over α ∈ Sd−1, where ‖ · ‖ is the Euclidean norm. Note that this is the sum of d
squares. We prove that this minimization procedure leads to a

√
n consistent and

asymptotically normal estimator, which is a more precise and informative result
compared to what we know now about the LSE.. Using the well-known properties
of isotonic estimators, it is easily seen that the function (3) is piecewise constant
as a function of α, with finitely many values, so the minimum exists and is equal
to the infimum over α ∈ Sd−1. Notice that this estimator does not use any tuning
parameters, just like the LSE.

In [2], a similar Simple Score Estimator (SSE) α̂n was defined as a point α ∈
Sd−1 where all components of the function

α 7→ n−1
n∑

i=1

{
Yi − ψ̂n,α(α

TXi)
}
Xi

cross zero. If the criterion function were continuous in α, this estimator would
have been the same as the least squares estimator, minimizing (3), with a mini-
mum equal to zero, but in the present case we cannot assume this because of the
discontinuities of the criterion function.
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The definition of an estimator as a crossing of the d-dimensional vector 0 makes
it necessary to prove the existence of such an estimator, which we found to be a
rather non-trivial task. Defining our estimator directly as the minimizer of (3), so
as a least squares estimator, relieves us from the duty to prove its existence. Since
our estimator is asymptotically equivalent to the SSE, we refer to it here under
the same name.

A fundamental function in our treatment is the function ψα, defined as follows.

Definition 1. Let Sd−1 denote again the boundary of the unit ball in Rd. Then,
for each α ∈ Sd−1, the function ψα : R → R is defined as the nondecreasing
function which minimizes

ψ 7→ E{Y − ψ(αTX)}2

over all nondecreasing functions ψ : R → R. The existence and uniqueness of the
function ψα follows for example from the results in [5].

The importance of the function ψα arises from the fact that we can differentiate

this function w.r.t. α, in contrast with the least squares estimate ψ̂n,α, and that
ψα represents the least squares estimate of ψ0 in the underlying model for fixed
α, if we use αTx as the argument of the monotone link function.

It is also possible to introduce a tuning parameter (bandwidth) h and use a

kernel estimate ψ̃′
n,h,α(u) =

1
h

∫
K

(
u−x
h

)
dψ̂n,α(x) for

d
duψα(u)

∣∣
u=αTX

, where we
minimize

α 7→
∥∥∥∥∥n

−1
n∑

i=1

{
Yi − ψ̂n,α(α

TXi)
}
Xi ψ̃

′
n,h,α(α

TXi)

∥∥∥∥∥

2

(4)

instead of (3). All estimators are computed by an augmented Lagrange method,
embedded in the Hooke-Jeeves pattern search method, which avoids reparametriza-
tion. Details of the method are given and the implementation in R, using Rcpp,
can be found in [3].

We note that this method is, for several reasons, rather different from the heuris-
tic Lagrange method, suggested in Section 4.2 of [2]. The method in Section 4.2 of
[2] was still based on the “crossing of zero” definition instead of the least squares
definition of the estimators above and in fact tried to eliminate the Lagrange pa-
rameter. The result of that procedure could not ascertain that the solution α̂n

had norm 1, and a renormalization at the end was needed to enforce this con-
straint, which has a somewhat unpredictable influence on the convergence of the
algorithm. The augmented Lagrange method, on the other hand, has two penalty
terms, a linear and a quadratic one, and does not eliminate the two Lagrange pa-
rameters. In this case we may assume that the solution, provided by the method,
has indeed norm 1 in the number of decimals, set by the procedure.

We finally give simulation results for these different methods, where we make a
comparison with the results of the Effective Dimension Reduction (EDR) method,
proposed in [4] and implemented in the R package edr. The results show that the
profile least squares estimators have a much better performance for the present
simulation models, which were also used in [1].
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The generalization error of overparametrized models: Insights from

exact asymptotics

Andrea Montanari

(joint work with Song Mei, Feng Ruan, Youngtak Sohn, Jun Yan)

Modern neural networks are often so complex that they can perfectly fit the data,
achieving vanishing error on the training set. Empirical work [5] demonstrated that
this is often the case even if the actual labels in the training set are replaced by
purely random labels, and if training error is measured using any one of several loss
functions: zero-one loss, hinge loss, or square loss. Despite their huge complexity,
these models generalize well to unseen data. Finally, the generalization error
degrades gracefully with labels noise.

As shown empirically in [1], these phenomena are not specific to neural net-
works, and instead arise in a variety of statistical models. When the number of
parameters increases (for fixed sample size), the test error first decreases, driven
by a decrease in approximation error, and then increases, driven by an increase in
generalization error. This familiar U-shaped curve is normally taken as indication
that the number of parameter should not be ‘too large’ not to overfit the data.
However, it turns out that –as the number of parameters increases further– the
test error decreases again and is minimal when the number of parameters is much
larger than the number of samples. An illustration of this behavior is given in
Figure 1 (from [3]), which is further discussed below.

These observations pose several challenges to statistical theory. Let us outline
two of them: (i) In the overparametrized regime, the training error vanishes and
the test error remains different from zero: as a consequence, it is difficult to under-
stand the behavior of these models in terms of uniform convergence; (ii) The fact
that the error vanishes (even for square loss) implies that good generalization per-
formances are achieved with vanishing or nearly vanishing explicit regularization.
This is particularly surprising in the presence of noise.

In order to understand these phenomena, in two recent papers [3, 4] we study
the following random features function class

https://github.com/pietg/single_index
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Figure 1. Random features ridge regression with ReLU activa-
tion (σ = max{x, 0}). Data are generated via yi = 〈β1,xi〉 (zero
noise) with ‖β1‖22 = 1, and ψ2 = n/d = 3. Left frame: regu-
larization λ = 10−8 (we didn’t set λ = 0 exactly for numerical
stability). Right frame: λ = 10−3. The continuous black line is
our theoretical prediction, and the colored symbols are numerical
results for several dimensions d. Symbols are averages over 20 in-
stances and the error bars report the standard error of the means
over these 20 instances.

FN
RF
(W ) ≡

{
f̂(x;a) =

N∑

i=1

ai σ(〈wi,x〉) : ai ∈ R ∀i ≤ N
}
.

The function class is parametrized by a = (a1, . . . , aN) ∈ RN , and the weights
W = [w1, . . . ,wN ] are fixed and random with wi ∼iid Unif(Sd−1(1)) (where
Sd−1(r) is the sphere in Rd, with radius r). This model can be regarded as a
two-layers neural network with random first-layer weights or as a randomized ap-
proximation of the reproducing kernel Hilbert space, with kernel

H(x1,x2) = E{σ(〈w,x1〉)σ(〈w,x2〉)}
(where expectation is taken with respect to w ∼ Unif(Sd−1(1))).

We assume that coefficients a are trained using iid data samples {(yi,xi)}i≤n,

whereby xi ∼ Unif(Sd−1(
√
d)) and we consider two models for the labels yi:

Continuous response [3]: yi = f∗(xi) + εi , εi ∼ N(0, τ2) ,

Binary labels [4]: yi ∈ {+1,−1} , P(yi = +1|xi) = g∗(〈β0,xi〉) .

where f∗ : Sd−1(
√
d) → R, and g∗ : R → R satisfy certain technical conditions.

In the first setting, we fit the parameters a using ridge regression. In the second,
we consider max margin classification. In both cases we consider the proportional
asymptotics N,n, d → ∞ with N/d → ψ1, n/d → ψ2, and obtain the following
results: (i) For ridge regression, we characterize the asymptotics of the test and
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training error, under an isotropicity assumption on the nonlinear component of
f∗; (ii) For max-margin classification we obtain the same type of results, for a
Gaussian proxy of the original model that we refer to as the ‘noisy linear activation
model.’ We conjecture that the latter has the same asymptotics as the original
random features model.

Figure 1 compares our analytical predictions for the test error of random fea-
tures ridge regression with numerical simulations. The agreement is excellent al-
ready at d = 100, and the analytical curves provide a clear picture of the decrease
of test error in the overparametrized regime. We obtain several new insights:

(1) Only the linear component of function f∗ is learnt in this regime, while
the nonlinear component is treated as noise. This is consistent with the
findings of [2].

(2) For fixed sample size-to-dimension ratio ψ2, the minimum test error is
achieved at large overparametrization ψ1 → ∞.

(3) The optimum value of the regularization parameter (at large overparamet-
rization), depends on the signal-to-noise ratio (SNR). At low SNR the
optimum regularization vanishes, while at high SNR it is nonzero.

(4) The latter phenomenon is related to a ‘built-in’ regularization mechanism.
In high dimension the nonlinear component of the activation functions
effectively acts as a ridge regularizer.
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Estimating functionals under local differential privacy

Angelika Rohde

(joint work with Cristina Butucea, Lukas Steinberger)

Consider n individuals who possess data X1, . . . , Xn, assumed to be iid from some
probability distribution P ∈ P . The statistician does not get to see the original
data X1, . . . , Xn, but only a privatized version of observations Z. The conditional
distribution of Z given X = (X1, . . . , Xn)

′ is denoted by Q and referred to as a
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channel distribution or a privatization scheme, i.e. Pr(Z ∈ A|X = x) = Q(A|x).
For α ∈ (0,∞), the channel Q is said to provide α-differential privacy if

(1) sup
A

sup
x,x′:d0(x,x′)=1

Pr(Z ∈ A|X = x)

Pr(Z ∈ A|X = x′)
≤ eα,

where the first supremum runs over all measurable sets and d0(x, x
′) denotes the

number of distinct entries of x and x′. An α-DP channel Q even provides local
privacy, if individual i can generate its privatized data Zi on its local machine,
without ever giving away its original data Xi. We consider two particular classes

Q(SI)
α and Q(NI)

α of locally α-DP channels, namely sequentially interactive (SI)
and non-interactive (NI) channels. A channel Q : B(Zn) × Xn → [0, 1] is called
sequentially-interactive, if there exist Markov kernels Qi, i = 1, . . . , n, such that

Q(dz|x) = Qn(dzn|xn, z1, . . . , zn−1) · · ·Q2(dz2|x2, z1)Q1(dz1|x1).
The corresponding priviazation scheme is illustrated in the following diagram

X1 X2, Z1 Xn, Z1, . . . , Zn−1

Q1









y

ց Q2









y

ց . . . . . . ց Qn









y

Z1 Z1, Z2 Z1, . . . , Zn.

A channel is said to be non-interactive, if there exist Markov kernels Qi such that

Q(dz|x) =
n⊗

i=1

Qi(dzi|xi).

Of course, Q(NI)
α ⊂ Q(SI)

α . We study the problem of estimating a functional θ(P)
of an unknown probability distribution P ∈ P in which the original iid sample
X1, . . . , Xn is kept private from the statistician via an α-local differential privacy
constraint. Let

M(SI)
n,α = inf

Q∈Q(SI)
α

inf
θ̂n

sup
P∈P

EQPn |θ̂n − θ(P)|

M(NI)
n,α = inf

Q∈Q(NI)
α

inf
θ̂n

sup
P∈P

EQPn |θ̂n − θ(P)|

and

Mn = inf
θ̂n

sup
P∈P

EPn |θ̂n − θ(P)|

denote the α-SIDP, the α-NIDP and the conventional minimax risk, respectively.
We write ωTV and ωH for the modulus of continuity of the functional θ over P with
respect to total variation and Hellinger distance. Our first result complements the
theory developed by [2], who established the characterization

Mn ≍ ωH

(
n−1/2

)

under the same conditions on θ and P as in the following theorem.
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Theorem 1 (Rohde and Steinberger, 2019 [3]). Suppose that P is convex and
dominated, and that θ : P → R is linear and bounded. Then, for any sequence
αn ∈ (0, 1],

M(SI)
n,αn

M(NI)
n,αn

}
≍ ωTV

(
(n(eαn − 1)2)−1/2

)
, as n→ ∞.

Somewhat surprisingly, the difficulty of estimating a linear functional based
on privatized data is characterized by ωTV , whereas, it is characterized by the
Hellinger modulus of continuity ωH if the original data X1, . . . , Xn are available.
This may, and typically will, lead to different rates of convergence in private and
non-private problems. Note that even in cases where we do or can not compute
the moduli ωTV and ωH explicitly, we always have the a priori information that

ωH(ε) ≤ ωTV (ε) ≤ ωH(
√
2ε).

This means that the private rate of estimation is never faster than the non-private
rate and is never slower than the square root of the non-private rate. Next, we point
out that for estimation of linear functionals, sequentially interactive procedures do
not improve in terms of rate over non-interactive ones.

We also provide a general construction of α-locally differentially private estima-
tion procedures that is minimax rate optimal if P is convex and dominated and θ
is linear and bounded. The construction relies on a bounded functional parameter
ℓ : X → R. Each individual generates Zi independently and binary distributed on
{−z0, z0}, with

Pr(Zi = z0|Xi = xi) =
1

2

(
1 +

ℓ(xi)

z0

)

and z0 = ‖ℓ‖∞ eα+1
eα−1 . The next theorem states that there exists always a non-

interactive channel and an estimator which is then given by an affine transforma-
tion of the sample mean Z̄n = n−1

∑n
i=1 Zi, which attains the optimal minimax

rate of Theorem 1.

Theorem 2 (Rohde and Steinberger, 2019 [3]). Fix α ∈ (0, 1] and n ∈ N. Suppose
that P is convex and dominated, and that θ : P → R is linear and bounded. Then
there exists a bounded function ℓ∗ : X → R and a number b ∈ R, such that

sup
P∈P

E
[Q

(α,ℓ∗)
1 P]n

[∣∣Π[Z̄n + b]− θ(P)
∣∣] . ωTV

(
(n(eα − 1)2)−1/2

)
,

where

Π(x) =





sup
P∈P θ(P), sup

P∈P θ(P) < x,

x, infP∈P θ(P) ≤ x ≤ sup
P∈P θ(P),

infP∈P θ(P), x < infP∈P θ(P).

The same rate of M(SI)
n,α and M(NI)

n,α in case of linear functionals raises the
question whether these two minimax risks always coincide. Turning to a quadratic
functional, however, we find that using a sequentially interactive privatization
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scheme considerably improves over the non-interactive one in terms of minimax-
optimal rates of convergence. Let Hβ,L denote the Hölder ball on [0, 1] of radius
L to the exponent β.

Theorem 3 (Butucea, Rohde and Steinberger, 2020). Let X1, . . . , Xn be iid with

density p ∈ Hβ,L([0, 1]), β > 0. For the functional θ(p) =
∫ 1

0 p
2(x) dx, the α-SIDP

minimax risk of is of order

M(SI)
n,α ≍ n− 4β

4β+2 + n−1/2, ‘elbow’ at β =
1

2
and the α-NIDP minimax risk is of order

M(NI)
n,α ≍ n− 4β

4β+3 + n−1/2, ‘elbow’ at β =
3

4
.

Recall from [1] that the non-privatized minimax risk of estimating θ(p) =∫ 1

0 p
2(x) dx is of order

Mn ≍ n− 4β
4β+1 + n−1/2, ‘elbow’ at β =

1

4
.
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Measuring separability in covariance operators of random surfaces

Holger Dette

(joint work with Pramita Bagchi)

A common approach to obtain reasonable estimates of the covariance operator from
surface data is the structural assumptions of separability, which has become very
popular, for example in the analysis of geostatistical space-time models. Roughly
speaking, this assumption allows to write the covariance

c(s, t, s′, t′) = E[X(s, t)X(s′, t′)]

of a (real valued) space-time process {X(s, t)}(s,t)∈S×T as a product of the space
and time covariance function, that is

c(s, t, s′, t′) = c1(s, s
′)c2(t, t

′).

It was pointed out by many authors that the assumption of separability - although
rarely satisfied in real applications - yields a substantial simplification of the es-
timation problem and thus reduces computational costs in the estimation of the
covariance in high dimensional problems.

To develop measures for the deviation from separability we consider a random
element X in the Hilbert space H with E‖X‖4 <∞, which is the tensor product
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H1 ⊗ H2 of two real separable Hilbert spaces H1 and H2. A typical example is
the space of all real-valued square integrable functions H = L2 (S × T ) defined on
S × T , where H1 = L2(S) and H2 = L2(T ). The covariance operator of X is an
element of S2(H), the space of all Hilbert Schmidt operators, and defined by

C := E [(X − EX)⊗o (X − EX)] ,

where for f, g ∈ H the operator f ⊗o g : H → H is defined by

(f ⊗o g)h = 〈h, g〉f for all h ∈ H .

We also assume ‖C‖2 6= 0, which essentially means the random variable X is
non-degenerate. The covariance operator is called separable if

C = C1⊗̃C2 for some C1 ∈ S2(H1) and C2 ∈ S2(H2).

To measure separability we consider the bounded linear operator T1 : S2(H) ×
S2(H1) 7→ S2(H2) defined by

T1(A⊗̃B,C1) = 〈A,C1〉S2(H1)B

for all C1 ∈ S2(H1). Similarly, let T2 : S2(H)×S2(H2) → S2(H1) be the bounded
linear operator defined by

T2(A⊗̃B,C2) = 〈B,C2〉S2(H2)A

for all C2 ∈ S2(H2). It can be shown that the operators T1 and T2 are well-defined,
bi-linear and continuous. Interestingly, we can define a nonnegative measure,
which vanishes under the assumption of separability and depends only on the
covariance operator C. To be precise, let Ψ be any fixed element of S2(H2) such
that T2(C,Ψ) 6= 0, and define

(1) D(C) = ‖C‖22 −
‖T1(C, T2(C,Ψ))‖22

‖T2(C,Ψ)‖22
.

It can be shown that D(C) ≥ 0 and equality holds, if and only if C is separable.
Formally we estimate the distance D(C) by plugging in the estimator

ĈN :=
1

N

N∑

i=1

[
(Xi −X)⊗o (Xi −X)

]
.

for C based on a sample X1, X2, . . . , XN . The resulting statistic is given by

D̂N = ‖ĈN‖22 −
‖T1(ĈN , T2(ĈN ,Ψ))‖22

‖T2(ĈN ,Ψ)‖22
.

As this representation only involves norms we do not have to store the complete
estimate of the covariance kernel. The following results provide the asymptotic

properties of the statistic D̂N
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Theorem 1. If E‖X‖42 <∞ and the assumptions of separability holds we have

ND̂N
d→
∥∥∥∥G − T2(G,Ψ)⊗̃T1(C, T2(C,Ψ))

‖T2(C,Ψ)‖22

∥∥∥∥
2

2

− ‖T1(G, T2(C,Ψ))− T1(C, T2(G,Ψ)‖22
‖T2(C,Ψ)‖22

=

∥∥∥∥G − T2(G,Ψ)⊗̃C2

〈C2,Ψ〉S2(H2)

∥∥∥∥
2

2

−
∥∥∥∥
T1(G, C1)

‖C1‖2
− 〈C1, T2(G,Ψ)〉S2(H1)C2

〈C2,Ψ〉S2(H2)‖C1‖2

∥∥∥∥
2

2

,

where G is a centered Gaussian process with covariance operator

Γ := lim
N→∞

Var(
√
NĈN ) = Var(X1 ⊗o X1)

Theorem 2. If E‖X‖42 <∞, then the statistic
√
N

(
D̂N −D(C)

)

converges in distribution to a centered normal distribution with variance ν2 :=
4 〈Γ(A−B), (A −B)〉HS , where 〈·, ·〉HS is the inner product on S2(H),

A =C − T2(C,Ψ)⊗̃T1(C, T2(C,Ψ))

‖T2(C,Ψ)‖22
,

B =
1

‖T2(C,Ψ)‖22

[
T2(C, T1(C, T2(C,Ψ)))⊗̃Ψ− ‖T1(C, T2(C,Ψ))‖22

‖T2(C,Ψ)‖22
T2(C,Ψ)⊗̃Ψ

]
,

and the centering term D(C) is defined in (1).

References

[1] P. Bagchi, H. Dette (2020), A test for separability in covariance operators of random sur-
faces, Annals of Statistics, to appear.

The role of geodesic convexity in covariance estimation

David E. Tyler

It is well known that the negative log-likelihood for the covariance matrix Σ based
on a random sample X1, . . . , Xn from a multivariate normal distribution, i.e.
L(Σ) = tr{Σ−1Sn} + log detΣ with Sn being the sample covariance matrix, is
convex in the precision matrix Σ−1. When penalizing L(Σ) it is then natural to
add a penalty term which is convex in Σ−1, as is the case for the graphical lasso.
Perhaps a lesser know property of L(Σ) is that it is also geodesically convex (or g-
convex) in Σ, or equivalently in Σ−1. Consequently, penalized covariance matrices
based on g-convex penalties are also fairly tractable.

In this talk, a number of results based on g-convex penalties are discussed. For
example, a class of non-smooth g-convex penalty functions are introduced for which
the eigenvalues of the corresponding penalized covariance matrices has distinct
groups of equal eigenvalues. This penalization method can be viewed as lassoing
eigenvalues. A particularly promising member of this class of non-smooth g-convex
penalties arises from an application of the Marc̆enko-Pasteur law.
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G-convexity also has applications to penalized M-estimators of covariance ma-
trices. The M-estimators of covariance can be defined as the value of Σ which
minimizes the loss function Lρ(Σ) = n−1

∑n
i=1 ρ(X

′
iΣ

−1Xi)+ log detΣ for a given
ρ-function. Under the standard condition that ρ(s) is convex in log(s), the func-
tion Lρ(Σ), although not convex in Σ−1, is known to be g-convex, as recently
shown within the area of signal processing. Consequently, the minimization prob-
lem arising from adding a g-convex penalty to Lρ(Σ), or when restricting Σ to a
g-convex set, has a unique solution. A simple reweighting algorithm for computing
the resulting penalized M-estimator of scatter is shown to always converges to the
the minimum regardless of the initial value. Finally, it is noted that the popular
spatial sign covariance matrix, defined as V = n−1

∑n
i=1 θiθ

′
i where θi = Xi/‖Xi‖

is the spatial sign of Xi, can be viewed as a limiting version of a penalized M-
estimator of scatter.

Extracting robust and accurate features via a robust information

bottleneck

Po-Ling Loh

(joint work with Ankit Pensia, Varun Jog)

We propose a novel strategy for extracting features in supervised learning that can
be used to construct a classifier which is more robust to small perturbations in the
input space. Our method builds upon the idea of the information bottleneck by
introducing an additional penalty term that encourages the Fisher information of
the extracted features to be small, when parametrized by the inputs. By tuning
the regularization parameter, we can explicitly trade off the opposing desiderata
of robustness and accuracy when constructing a classifier. We derive the opti-
mal solution to the robust information bottleneck when the inputs and outputs
are jointly Gaussian, proving that the optimally robust features are also jointly
Gaussian in that setting. Furthermore, we propose a method for optimizing a vari-
ational bound on the robust information bottleneck objective in general settings
using stochastic gradient descent, which may be implemented efficiently in neural
networks. Our experimental results for synthetic and real data sets show that
the proposed feature extraction method indeed produces classifiers with increased
robustness to perturbations.
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Functional and complex data: new methods merging statistics,

scientific computing and engineering

Laura M. Sangalli

Recent years have seen an explosive growth in the recording of increasingly complex
and high-dimensional data. Classical statistical methods are often unfit to handle
such data, whose analysis calls for the definition of new methods merging ideas
and approaches from statistics, applied mathematics and engineering. This work
in particular focuses on functional data defined over complex multidimensional
domains, including curved bi-dimensional domains. I will present an innovative
class of methods, based on regularizing terms involving partial differential equa-
tions. The proposed methods make use of advanced numerical techniques such as
finite element analysis and isogeometric analysis. An illustration to the analysis of
neuroimaging data is provided. In this applied field, the proposed methods offer
important advantages with respect to the best state of the art techniques, allowing
to correctly take into account to complex anatomy of the brain.

Multivariate Rank-based Distribution-free Nonparametric Testing

using Optimal Transport

Bodhisattva Sen

(joint work with Nabarun Deb)

In the talk, we propose a general framework for distribution-free nonparamet-
ric testing in multi-dimensions, based on a notion of multivariate ranks defined
using the theory of optimal transport (see e.g., Villani (2003)). Unlike other exist-
ing proposals in the literature, these multivariate ranks share a number of useful
properties with the usual one-dimensional ranks; most importantly, these ranks are
distribution-free (i.e., its joint distribution does not depend on the underlying data
generating process). This crucial observation allows us to design nonparametric
tests that are exactly distribution-free under the null hypothesis. We demonstrate
the applicability of this approach by constructing exact distribution-free tests for
two classical nonparametric problems: (I) testing for mutual independence between
random vectors, and (II) testing for the equality of multivariate distributions. In
particular, we propose (multivariate) rank versions of distance covariance ([3]) and
energy statistic ([4]) for testing scenarios (I) and (II) respectively. In both these
problems we derive the asymptotic null distribution of the proposed test statis-
tics. We further show that our tests are consistent against all fixed alternatives.
We also study the asymptotic (Pitman) efficiency of these multivariate rank-based
tests and show that these are the only computationally-feasible tests that have
non-zero Pitman efficiency among asymptotically distribution-free procedures.

Moreover, the proposed tests are tuning-free, computationally feasible and are
well-defined under minimal assumptions on the underlying distributions (e.g., they
do not need any moment assumptions). We also demonstrate the efficacy of these
procedures via extensive simulations. In the process of analyzing the theoretical
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properties of our procedures, we end up proving some new results in the theory
of measure transportation and in the limit theory of permutation statistics using
Stein’s method for exchangeable pairs, which may be of independent interest.

These multivariate rank maps are optimal transport maps that transport the
(empirical) data distribution to a (discretization of a) reference measure (e.g., uni-
form distribution on the unit hypercube). Although strong consistency properties
of these empirical rank maps are known in the literature (see e.g., [2] and [1]), the
rate of convergence of these estimators is still unknown (and is an open problem).
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Testing for the Rank of a Covariance Kernel by Matrix Completion

Victor M. Panaretos

(joint work with Anirvan Chakraborty)

How can we discern whether a continuous time stochastic process {X(t) : t ∈
[0, 1]} is finite dimensional, and if so, what its precise dimension is? And how
can we do so at a given level of confidence? This question is central to a great
deal of methods for functional data, which require low-dimensional representations
whether by functional PCA or other methods. The determination is to be made
on the basis of i.i.d. replications of the process {X1, . . . , Xn} (assumed continuous
and centered), with the twist that these are measured with measurement error
contamination on a grid of finite size,

Wip = Xi(tp) + εip,

{
i = 1, . . . , n

p = 1, . . . , L
,

where 0 < t1 < . . . < tL < 1 is a fixed grid (assumed regular without loss
of generality) and the array εip is i.i.d. with zero mean, variance σ2

p > 0, and
independent of {Xi}ni=1. This measurement scheme obfuscates the underlying
dimension: the L × L covariance matrix KW ,L of Wi = (Wi,1, ...,Wi,L)

⊤ is the
superposition of that of Xi = (Xi(t1), ..., Xi(tL))

⊤and that of ε = (εi,1, ..., εi,L)
⊤,

KWi,L = KXi,L +KWi,L
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and so its rank is always equal to L ∧ n. This leads to the following conundrum:
if one were to smooth in order to annihilate the noise, then the resulting rank
would depend on the choice of smoothing parameter. Without smoothing, the
ridge added by the noise variance confounds the rank. For this reason, it was
remarked by Hall & Vial [2] that the problem of inferring the rank of the underlying
covariance kernel k(u, v) = E[X(u)X(v)] may not be amendable to approaches
based on formal hypothesis testing.

Observing that the smoothing step might be entirely circumvented, we construct
a formal testing approach based on matrix completion. The key observation is that
only the diagonal is affected by the presence of noise, and that since KXi,L is a
discrete version of an otherwise continuous continuous covariance k(u, v), we might
be able to determine the rank relying solely on its off-diagonal entries, whereKXi,L

coincides with KWi,L, provided L is sufficiently large.
We show that when the true rank rtrue of k(u, v) is finite, there exists a critical

1 ≤ L∗ <∞ such that for all L > L∗, the polynomial

Θ 7→ ‖PL ◦ (KW,L −Θ)‖2F
is strictly positive when Θ ranges over matrices of rank < rtrue, whereas it has a
unique root at Θ = KX,L when Θ ranges over matrices of rank ≤ rtrue.

We use this identifiability result to build a matrix-completion test statistic
that measures the best possible least square fit of the off-diagonal elements of the
empirical version of KWi,L, K̂Wi,L = 1

n

∑n
i=1 WiW

⊤
i , optimised over covariances

of given finite rank:

Tj = min
ΘL×L:rank(Θ)≤j

||PL ◦ (K̂W,L −Θ)||2F .

For a given grid of supercritical but fixed size, we determine the statistic’s as-
ymptotic distribution as the number of replications n diverges, under the null
hypothesis {H0,j : rank = j}. We then use it to construct an appropriate boot-
strap calibration scheme. This is combined with a stepwise testing procedure
controlling the family-wise error rate corresponding to the collection of hypothe-
ses {H0,j : j = 1, ..., L − 1} formalising the question at hand. Under minimal
regularity assumptions we prove that the procedure is consistent and that its
bootstrap implementation is valid. The procedure rests on minimal regularity as-
sumptions, involves no tuning parameters or pre-smoothing, and is indifferent to
the homoskedasticity or lack of it in the measurement errors.
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Network change point localisation

Yi Yu

In this talk I will start with a parametric network offline change point detection
problem, showing consistent and optimal change point estimators and a phase
transition phenomenon [1]. I will then move on to a nonparametric dynamic
network problem allowing for both across-time and within network dependence,
accompanied with its application on a zebrafish neuronal activity data set [2].
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Learning from Complex Medical Data, Clustering, and Interpretable

Kernel Dimensionality Reduction

Jennifer G. Dy

(joint work with Chieh Wu, James Ross)

Machine learning as a field has become more and more important due to the
ubiquity of data collection in various disciplines. Coupled with this data collection
is the hope that new discoveries or knowledge can be learned. In many applications,
data is often complex, high-dimensional and multi-faceted, where multiple possible
interpretations are inherent in the data. In the talk, I highlight these challenges
through my experience in a collaborative research working on discovering disease
subtypes and then provide examples of how these challenges led to innovations in
machine learning and to new discovery.

Chronic Obstructive Pulmonary Disease (COPD) is a lung disease characterized
by airflow limitation usually associated with chronic inflammatory responses to
noxious particles, such as cigarette smoke. COPD is a heterogeneous disease. The
COPDGene Study[1], which involves 21 clinical sites throughout the US, collected
high-resolution computed tomography images, physiological features, demographic
features, and genetics data from 10,000 patients. Our goal is to discover disease
subtypes that leads to better stratification of the patients so as to provide better
prognosis and personalized therapies.

Subtyping from a machine learning point of view is a clustering problem. Clus-
tering is the process of grouping instances together based on some notion of sim-
ilarity (typically in the form of a metric or a probability model). The first chal-
lenge in working on real data is finding the right model. Most standard clustering
methods do not take the structure of the problem into account and treat all the
features/variables in the same way; however, in our COPD sub-typing problem, we
have variables such as age and smoking that are causative agents of variables that
indicate lung function and disease severity. The type of grouping we are interested
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in discovering relates to how different groups of individuals respond to exposure.
The manner in which lung health changes as a function of age and smoke exposure
can be used to identify meaningful subgroups. Some people are genetically resis-
tant to the effects of smoke exposure and have preserved lung health even after
years of smoking. On the other hand, others are highly sensitive to smoke and
experience rapid health decline given similar levels of exposure. This led us to the
notion of disease trajectories. We model the unknown disease trajectory by a flexi-
ble distribution over functions with Gaussian processes (GPs). We define a cluster
component as belonging to one of k possible GPs. In our problem, we one have
a few (two) time points per patient. We introduce a variational Dirichlet process
mixture of Gaussian processes that can also learn from must-link and cannot-link
constraints [2]. Our model is able to learn the number of clusters (trajectories)
automatically for a mixture of GPs, learn the trajectories, and learn the cluster
membership (which trajectory) a patient belongs to. We utilize the must-link con-
straint to allow us to guide the few time points belonging to the same patient to
be in the same trajectory.

The second challenge is high-dimensionality. Not all features are important.
Only subsets of the features are useful for describing each cluster. We allow both
instances and features to belong to more than one cluster. We utilize GPs to repre-
sent trajectories and dual beta process priors for instance and feature assignment
to the latent clusters (subtypes) [3].

The third challenge is that data is often multi-faceted, where multiple possible
interpretations are inherent in the data. Given a face image data set. One can
cluster it based on person’s identity; another reasonable clustering is based on
pose. Data can be grouped in multiple ways and different subspaces reveal dif-
ferent possible groupings. However, typical clustering algorithms output a single
clustering solution. The solution found by the algorithm may not be what the
domain scientist is interested in. We introduced a new clustering paradigm: Find
multiple alternative clustering views (perspectives) from data, where data points
belonging to the same cluster in one view can belong to different clusters in an-
other view [4]. There are two modes of discovering multiple alternative clustering
views: simultaneously [5] or iteratively [6].

In the talk, I focused on our recent work for learning alternative clustering,
the Kernel Dimension Alternative Clustering (KDAC) via an Iterative Spectral
Method (ISM) [7]. In alternative clustering, the goal is to find solutions that are of
high cluster quality and non-redundant to the existing (previously found) cluster-
ing. Moreover, we noticed that typically, the different alternative clusterings reside
in different subspaces. Thus, in our formulation, we also simultaneously learn the
subspace in which the clustering reside. To enable capturing arbitrarily-shaped
clusters, we employ the spectral clustering [8] objective to define cluster quality.
We would like the clustering solutions we discover to be non-redundant with each
other. There are several possible criteria for measuring non-redundancy: corre-
lation or mutual information. Correlation can capture only linear dependencies.
Mutual information can capture non-linear dependencies, but requires estimating
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the joint probability distribution. We suggest the Hilbert-Schmidt Independence
Criterion (HSIC) [9]. HSIC measures dependence by mapping variables into a
reproducing kernel Hilbert space such that correlations measured in that space
correspond to high-order joint moments between the original distributions. This
approach is able to estimate dependence between variables without explicitly es-
timating the joint distribution of the random variables. In addition, as shown in
[6], HSIC between the data and the latent clustering is mathematically equivalent
to the spectral clustering objective.

Let X ∈ Rn×d be a dataset with n samples and d features, along with an
existing clustering Y ∈ Rn×k, where k is the number of clusters. If xi belongs to
cluster j, then Yi,j = 1; otherwise, Yi,j = 0. We wish to discover an alternative
clustering U ∈ Rn×k on some lower dimensional subspace of dimension q ≪ d. Let
W ∈ Rd×q be a projection matrix such that XW ∈ Rn×q. We seek the optimal
projectionW and clustering U that maximizes the statistical dependence between
XW with U , yielding a high clustering quality, while minimizing the dependence
between XW and Y , ensuring the novelty of the new clustering.

Using HSIC as a dependence measure, the objective of KDAC becomes

Maximize: HSIC(XW,U)− λHSIC(XW,Y )

subject to: WTW = I, UTU = I.
(1)

where HSIC(X,Y ) ≡ 1
(n−1)2Tr(KXHKYH). Here, the variables KX and KY are

Gram matrices, and the H matrix is a centering matrix where H = I − 1
n1n1

T
n

with 1 the n-sized vector of all ones. The elements of KX and KY are calculated
by kernel functions kX(xi, xj) and kY (yi, yj). The kernel functions for Y and U
used in KDAC are KY = Y Y T and KU = UUT , and the kernel function for XW
is the Gaussian kXW (xi, xj) = exp(−Tr[(xi − xj)

TWWT (xi − xj)]/(2σ
2)). Due

to the equivalence of HSIC and spectral clustering, the practice of normalizing
the kernel KXW is adopted from spectral clustering by [6]. That is, for KXW the
unnormalized Gram matrix, the normalized matrix is defined asD−1/2KXWD−1/2

where D = diag(1T
nKXW ) is a diagonal matrix whose elements are the column-

sums of KXW .
We optimize Equation (1) using alternating optimization. Holding U and W

constant, D is computed as D = diag(1T
nKXW ). Holding W and D constant and

solving for U reduces to spectral clustering [8].
While holding U and D constant to solve for W , (1) reduces to:

Maximize: F (W ) =
∑

i,j γi,je
−Tr[WT Ai,jW ]

2σ2

subject to: WTW = I
(2)

where γi,j are the elements of matrix γ = D−1/2H(UUT − λY Y T )HD−1/2, and
Ai,j = (xi−xj)(xi−xj)T . This objective, along with a Stiefel Manifold constraint,
WTW = I, pose a challenging optimization problem as neither is convex.

We introduce ISM to solve (2). ISM attempts to find such a W in the following
iterative fashion. LetW0 be an initial matrix. GivenWk at iteration k, the matrix
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Wk+1 is computed as:

Wk+1 = eigmax(Φ(Wk)), k = 0, 1, 2, . . . ,

where the operator eigmax(Φ(Wk)) returns a matrix whose columns are the q eigen-
vectors corresponding to the q largest eigenvalues of Φ(Wk).

(3) Φ(W ) =
∑

i,j
γi,j

σ2 exp(−Tr[WTAi,jW ]
2σ2 )Ai,j ,

We iteratively update W with Wk until convergence.
We provide ISM a natural initialization, W0, constructed through a second or-

der Taylor approximation of the objective. This resulted in high quality results
without random restarts in search of a better initialization. Furthermore, we pro-
vide theoretical guarantees on its fixed point. In particular, we establish conditions
under which the fixed point of ISM satisfies both the 1st and 2nd order necessary
conditions for local optimality. Empirical experiments show that ISM outperforms
gradient ascent on a Stiefel manifold and dimension growth in clustering quality
measures along with significantly lower computational cost.

Finally, we end our talk showing how we can utilize ISM as an algorithm for
solving more generally Interpretable Kernel Dimensionality Reduction (IKDR)
problems [10]. Kernel dimensionality reduction (KDR) algorithms find a low di-
mensional representation of the original data by optimizing kernel dependency
measures (such as HSIC) that are capable of capturing nonlinear relationships.
The standard strategy is to first map the data into a high dimensional feature
space using kernels prior to a projection onto a low dimensional space. While
KDR methods (e.g., kernel principal component analysis [11]) can be easily solved
by keeping the most dominant eigenvectors of the kernel matrix, the new fea-
tures are no longer easy to interpret. To make KDR interpretable, IKDR projects
the original input onto a subspace before the kernel feature mapping; therefore,
the projection matrix can indicate how the original features linearly combine to
form the new features. Unfortunately, the IKDR objective requires a non-convex
manifold optimization that is difficult to solve and can no longer be solved by
eigendecomposition.

IKDR for a variety of machine learning (ML) paradigms – supervised, semi-
supervised, unsupervised, alternative clustering, can be expressed as the following
optimization problem:

(4) max
W

Tr(ΓKXW ) s.t. WTW = I,

where Γ is a symmetric matrix commonly derived from KY . Refer to [10] for the
explicit form of Γ for the various ML paradigms. KXW ∈ Rn×n is a kernel matrix
with each entry defined as KXWij

= k(WTxi,W
Txj) where k : Rq × Rq → R is a

kernel function. Let Y be the one-hot encoding of the labels with its corresponding
kernel matrix denoted as KY .

We show that an efficient iterative spectral (eigendecomposition) method (ISM)
can be utilized to solve the general IKDR optimization problem (4). Previously,
in [7] ISM only provides theoretical guarantees for the Gaussian kernel. In [10],
we generalize the theoretical guarantees of ISM to an entire family of kernels
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and propose the necessary criteria for a kernel to be a member of the family. In
identifying this family, we prove that each kernel within the family has a surrogate
Φ matrix and the optimal projection is formed by its most dominant eigenvectors.
We further show that conic combinations of kernels from the ISM family belong
to the ISM family and their respective Φ matrix is the conic combination of the
corresponding Φ matrices. With this extension, we establish how a wide range of
IKDR applications across different learning paradigms can be solved by ISM.
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ETH Zürich
Rämistrasse 101
8092 Zürich
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