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Introduction by the Organizers

The workshop Low-dimensional Topology (2020) was organized by Stefan Friedl
(Regensburg), Yoav Moriah (Haifa), Jessica Purcell (Melbourne) and Saul Schleim-
er (Coventry). Unfortunately Jessica Purcell could not attend due to logistical
problems. The workshop was attended by over 50 researchers from countries in-
cluding Australia, Canada, Denmark, France, Germany, Hungary, Israel, Japan,
UK, and USA.

We had sixteen research talks: speaking broadly, five lectures in knot theory,
two lectures on mapping class groups, five lectures on three-manifolds, and two
lectures on four-manifolds. Furthermore we had two talks by algebraic topologists
on the closely related topic of the homotopy types of embedding spaces. Also,
we had five survey talks on, respectively, hyperbolic geometry, four-manifolds,
computational low-dimensional topology, arithmetic hyperbolic three-manifolds,
and foliation theory. Finally we had three lively sessions of five-minute talks.
Altogether thirty-five participants spoke in these three sessions.
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Even though the talks covered a wide range of topics, the speakers were very
successful in establishing connections between the various subfields of low-dimen-
sional topology.

One of the highlights were the talks by Pinsky and Li on their recent proof,
with Moriah, of the Berge conjecture for tunnel number one knots. In addition to
the delicate analysis of the combinatorics of curves on surfaces the proof contains
a subtlety: a tunnel number one knot may be doubly primitive on one of its
Heegaard splittings while not being so on another. This requires “switching”
Heegaard splittings to complete the proof.

Another exciting talk, given by Rasmussen, covered her work-in-progress on the
Boyer-Gordon-Watson L-space conjecture; the innovation here is to decompose the
three-manifold after the fashion of Heegaard-Floer homology. This allows her to
transform the left-orderability hypothesis into a collection of explicit holonomies
in Homeo+(R) and thus construct a foliation.

Another spectacular result presented was the Bowden-Hensel-Webb theorem
that Homeo+(Sg) admits uncountably many unbounded quasimorphisms. This
talk, given by Webb, was particularly notable for its beautiful, much-praised,
exposition.

The conference concluded by a beautifully illustrated talk by Sakuma on his
classification, with various coauthors, of all Kleinian groups generated by two
parabolic transformations. This completes a research program initiated by Adams
in the 1990s and advanced by Agol in the 2000s.

A remarkable feature of the workshop were the computationally focused talks
by Burton, Dunfield, Owens, Schleimer and Segerman. They demonstrated how
increasingly sophisticated programs, such as Regina and SnapPy, have become
an indispensable tool in low-dimensional topology. We expect that such example
driven research will become an increasingly important feature the field.

In addition to the research and survey talks we initially planned to have a
single session of five-minute talks in the late afternoon. However, due to the
enthusiastic response to the first session we then scheduled another two sessions.
Altogether thirty-five participants gave five-minute presentations on a wide range
of topics. The very large majority of the speakers managed to get their key idea
across. This format was also a highly efficient means for younger participants to
introduce themselves, and their work, to the community.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Rachel Roberts and Henry Segerman in the “Simons
Visiting Professors” program at the MFO.
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Abstracts

Necklace Theory and Maximal Cusps of Hyperbolic 3-Manifolds

David Gabai

(joint work with Robert Haraway, Robert Meyerhoff, Nathaniel Thurston,
Andrew Yarmola)

Theorem 1. Let N be a complete finite volume hyperbolic 3-manifold with a
maximal cusp of volume ≤ 2.62. Then N is obtained by filling either the 3-cusped
manifold s776 or is obtained by filling one of 15 explicit 2-cusped hyperbolic 3-
manifolds. Further, the figure-8 knot complement and its sister are the two 1-
cusped hyperbolic 3-manifolds with a minimal volume maximal cusp. The maximal
cusp has volume

√
3 = 1.73 · · · .

The statement of this result was explained in more detail as well as basic back-
ground.

The main result can be viewed as a solution, for cusped hyperbolic 3-manifolds, to
the Hyperbolic Complexity Conjecture of Thurston, Matveev - Fomenko, Hodgson
- Weeks that was formulated in various forms in the 70’s and 80’s.

Conjecture 2. Low volume hyperbolic 3-manifolds are obtained by filling cusped
hyperbolic 3-manifolds of low topological complexity.

This conjecture is open ended and somewhat vague. The challenge includes
finding the right notion of topological complexity for the case at hand. Classi-
cally, volume meant volume of the manifold and relevant measures of complexity
included number of 3-simplices, the standard spine number and the mom number.
Here volume refers to the volume of a maximal cusp. The proof shows that a
manifold with a maximal cusp of volume ≤ 2.62 is obtained by filling a manifold
obtained from T 2 × I by adding a single 1-handle and a 2-handle that goes over
the 1-handle at most 7 times. This simple handle structure is what we mean by
low topological complexity in this context.

We went on to describe one application. Tom Crawford made a contribution to
the proof.

Theorem 3. The figure-8 knot complement is the unique 1-cusped hyperbolic 3-
manifold with nine or more non hyperbolic fillings.

This gives a positive solution to a well known conjecture of Cameron Gordon’s
from the 1990’s. Our main result also answers a question of Ian Agol from 2010
who asked what are the 1-cusped hyperbolic 3-manifolds with a maximal cusp of
volume ≤ 24/7 = 2.54 · · · . Agol noted that manifolds with larger cusps have the
property that the distance between non hyperbolic fillings is at most 5 and such
manifolds have at most 8 non hyperbolic fillings. Thus, the main result together
with some hyperbolicity / non hyperbolicity checking using the six theorem of Agol
and Lackenby and work of Robert Haraway and others, the proof is completed.
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We went on to outline the proof of the theorem, summarized as follows.

Step 1: A bicusped subgroup of π1(N) has g-exponent length ≤ 7. (This step
required rigorous computer assistance.)

Step 2: N has a handle decomposition of the form T 2 × I∪ 1-handle ∪ 2-handle,
where the 2-handle runs over the 1-handle at most 7 times.

Step 3: The enumeration of such hyperbolic 3-manifolds. (This step also required
rigorous computer assistance.)

Next we explained the structure of bi-cusped subgroups. We remarked that a
consequence of Step 2 is that such a bicusped group is in fact index-1. Also, our
results were close to being sharp in that SnapPy shows that the manifold m135 has
a maximal cusp of volume approximately 2.82. It’s bicusped group has (according
to SnapPy) g-exponent length 8.

Question 4. Does m135 have tunnel number 2.

We noted that a positive solution to this question would imply that m135 does
not have the structure of Step 2. We went on to explain how Step 1 implies that
there exists a cycle of k ≤ 7 horoballs with disjoint interiors, one tangent to the
next. If this cycle bounds an embedded 2-disc whose π1(N)-orbit is a union of non
intersecting discs, then we obtain the desired handle decomposition. We then drew
the picture of the necklace for m135 and indicated how it was blocked by another
horoball. We indicated that a key step towards proving Step 2 is showing that
minimal ≤ 7-necklaces arising from a cusped hyperbolic 3-manifold is unblocked.

Geometry of graphs of multicurves

Katie Vokes

(joint work with Jacob Russell)

Let S be a connected, compact, orientable surface. The curve graph, C(S),
has a vertex for every isotopy class of (essential simple closed) curves in S (that
is, homotopically non-trivial embedded copies of S1 in S), and an edge joining
two vertices if they have disjoint representatives. For any sufficiently complicated
surface, the curve graph has a countably infinite set of vertices, and in fact each
vertex has infinite degree.
We may introduce a metric in the curve graph by setting each edge to have length 1.
A key property of this graph is that it has a type of coarse negative curvature.

Theorem (Masur–Minsky [8]). For any surface S of sufficient complexity, the
curve graph of S has infinite diameter and is Gromov hyperbolic.

It is significant that the mapping class group, MCG(S), that is, the group of
isotopy classes of orientation-preserving self-homeomorphisms of S, acts on C(S)
by isometries. We can use such an isometric action of a group on a metric space
to study the large scale geometry of the group. In this way, the curve graph
has been an important tool in the study of the geometry of the mapping class
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(a) An example of four simple closed curves
on the genus 3 surface.

(b) The corresponding full sub-
graph of the curve graph.

Figure 1

group. Another topic where the curve graph has proved to be a natural object is
the geometry of 3-manifolds, playing a key role in the proof by Brock, Canary and
Minsky of Thurston’s Ending Lamination Conjecture [7].

In addition to the curve graph, we may define a whole family of graphs asso-
ciated to surfaces which have multicurves (collections of pairwise disjoint curves)
as vertices and a natural isometric action of the mapping class group. Many of
these have been found to arise in natural situations; for example, the graph of
pants decompositions of a surface was used by Brock to study the geometry of
quasi-Fuchsian 3-manifolds [6].

In a paper of 2000, Masur and Minsky described the large scale geometry
of MCG(S) by using a family of Lipschitz subsurface projection maps from
MCG(S) to curve graphs of subsurfaces of S [9]. Various properties of, and rela-
tions between, these projections, as well as the Gromov hyperbolicity of the curve
graphs, are combined to prove that the mapping class group has properties typical
of non-positive curvature. This work was axiomatised by Behrstock, Hagen and
Sisto to make MCG(S) the prototype of a kind of non-positively curved space
called a hierarchically hyperbolic space [2, 3]. I showed in [12] that many
graphs of multicurves also have this property.

Theorem 1. Let G(S) be a graph whose vertices are multicurves in S, satisfying:

• G(S) is connected,
• the action of MCG(S) on the set of curves in S induces a cocompact iso-
metric action on G(S),
• G(S) has no witnesses which are annuli (see below for definition).

Then G(S) is a hierarchically hyperbolic space.

In particular, we have certain subsurfaces of S called witnesses for G(S), which
are important in the hierarchically hyperbolic structure on G(S). A witness is a
subsurface X of S which has the property that every vertex of G(S) (which is a
multicurve) intersects X ; see Figure 2 for an example. In a sense X is a subsurface
which “sees” every vertex of G(S).
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Figure 2. Let S be the genus 3 surface and G(S) be the sep-
arating curve graph, with a vertex for every curve that cuts S
into two pieces. Then the two complementary components of the
multicurve shown are both witnesses for G(S).

The witnesses are those subsurfaces that we use for the subsurface projections;
for MCG(S) all subsurfaces are witnesses but for the graphs of multicurves we
consider the sets of witnesses are smaller.

Suppose that G(S) is one of the graphs of multicurves for which Theorem 1
applies. The way that the hierarchically hyperbolic structure on G(S) works im-
plies that pairs of disjoint witnesses give rise to product regions in G(S). These
product regions are, in particular, obstructions to G(S) being Gromov hyperbolic.
Results of Behrstock–Hagen–Sisto [4] and Bowditch [5] combine with Theorem 1
to give a converse to this.

Corollary 2. Let G(S) be a graph of multicurves satisfying the hypotheses of
Theorem 1. Then G(S) is Gromov hyperbolic if and only if there exists no pair of
disjoint witnesses for G(S).

Aweakening of Gromov hyperbolicity is relative hyperbolicity, where roughly
speaking we allow a space to have non-hyperbolic regions, but stipulate that these
should be sufficiently isolated within the space. In recent work, Jacob Russell gives
a sufficient condition for a hierarchically hyperbolic space to be relatively hyper-
bolic in terms of the hierarchically hyperbolic structure (in this setting, the set of
witnesses), and applies this to certain graphs of multicurves [10]. Combined with
Corollary 2 above, this led to a partial classification of (relative) hyperbolicity for
the separating curve graph, which we completed in joint work [11]. The separating
curve graph is the full subgraph of the curve graph spanned by curves which cut
the surface into two connected components.

Theorem 3 (with J. Russell). Let S = Sg,b, with g ≥ 3. Then the separating
curve graph is:

• Gromov hyperbolic if b ≥ 3,
• relatively hyperbolic if b = 0 or b = 2,
• neither hyperbolic nor relatively hyperbolic if b = 1.

We prove the last part of the theorem by showing that the separating curve graph
of a surface with one boundary component is a thick metric space (of order at
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most two). This is a concept introduced by Behrstock, Druţu and Mosher which
is an obstruction to relative hyperbolicity [1].

We are working on completing the classification for all graphs of multicurves
for which Theorem 1 applies.
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Surgery obstructions from character varieties

Raphael Zentner

(joint work with Steven Sivek)

If a closed 3-manifold can be obtained by surgery on a knot in S3 then its fun-
damental group is normally generated by one element. Every 3-manifold can be
obtained by Dehn surgery on a link in S3 by a Theorem of Lickorish-Wallace.
It isn’t an easy task to show that a 3-manifold which satisfies this condition on
its fundamental group cannot be obtained by surgery on a knot in S3. The first
obstructions (due to Auckly) have used instanton gauge theory [1], and in partic-
ular Donaldson’s diagonalisation theorem [4]. Later obstructions have been found
using Heegaard Floer homology by Hom, Karakurt, and Lidman, [8], or using the
Casson-Walker invariant by Boyer and Lines [2].

We present an infinite family of graph 3-manifolds, satisfying the fundamental
group constraint, cannot be obtained by surgery on a knot in S3. Our methods
use classical 3-manifold topology methods together with results of Gordon-Luecke
[7] on toroidal surgery on knots with complete hyperbolic complement, together



474 Oberwolfach Report 8/2020

with our classification results on SU(2)-cyclic Seifert fibered manifolds from [13]
and our classification of SU(2)-cyclic surgeries on iterated torus knots, building on
previous work in [12]. This gives a new method of obstructing 3-manifolds from
being surgery on a knot in S3 that is remarkable for the absence of gauge theory
in the set of tools that is being used.

To be more precise, our graph 3-manifolds in question are of the form

Y (Ta,b, Tc,d) :=
(
S3 \N(Ta,b)

)
∪T 2

(
S3 \N(Tc,d)

)
,

in which we glue a meridian of one torus knot exterior to a Seifert fiber of the
other and vice versa. Here, N(Ta,b) denotes a tubular neighborhood of the torus
knot Ta,b. These manifolds have been considered by Motegi [10] who has shown
that these manifolds have only representations of their fundamental group in SU(2)
with cyclic image (or short they are SU(2)-cyclic). They contain an incompressible
torus, namely the one along which we glue the two knot exteriors.

Some infinite classes of these graph manifolds appear as half-integral surgeries
on a class of knots introduced by Eudave-Muñoz [5], as has been shown by Ni and
Zhang in [11].

Our results include the following sample application. We say that a set T ⊂ N

has density zero if limn→∞
|T∩{1,2,...,n}|

n = 0.

Theorem 1. There is a set S ⊂ N of density zero such that if Ta,b is a nontrivial
torus knot with a, b > 2 and ab 6∈ S, then Y (Ta,b, T−a,b) is not Dehn surgery on
any knot in S3.

Our proof follows the following lines: By some linking form computations we
rule out the possibility of such graph manifolds being the result of integral surgery
on a knot in S3, for a a set of values of density 1. The numbers are chosen so that
these do not arise as the half-integral surgeries on a Eudave-Muñoz knot.

By Thurston’s geometrisation theorem for Haken manifolds, it is enough to
check the cases whether the manifolds in question may arise as non-integral surg-
eries on a hyperbolic knot, a torus knot, or a satellite knot. No surgery on a torus
knot contains an incompressible surface, however, so this case cannot produce a
Motegi manifold. Gordon and Luecke have shown that if a surgery on a hyperbolic
knot contains an incompressible torus, then the surgery is integral or half-integral,
and if it is non-integral, then it arises as one of the half-integral surgeries on the
Eudave-Muñoz knots. So we are left to deal with satellite knots. This uses classical
3-manifold topology, and in particular results due to Culler-Gordon-Luecke-Shalen
[3], of Gordon [6], of Miyazaki and Motegi [9], and some new result that we prove
which classifies SU(2)-cyclic surgeries on iterated torus knots. One consequence
of our classification result is that none of these contain an incompressible torus.
The combination of these results rules out the possibility that one of these Motegi
manifolds arises as non-integral surgery on a satellite knot.
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The Berge conjecture for tunnel number one knots

Tao Li, Tali Pinsky

(joint work with Yoav Moriah)

In these two talks, we give an overview of a recent proof of the Berge conjecture
for tunnel number one knots. A knot is called tunnel number one if the knot
complement has a Heegaard splitting of genus two. Let K be such a knot. If
K admits a non-trivial lens space surgery, the Heegaard surface of genus 2 is a
Heegaard surface for the lens space as well, hence stabilized. Thus, there exists a
planar surface P in the compression body (punctured by K) and a disk D in the
handlebody that intersect at a single point, and (P,D) extends to a stabilizing
pair for the splitting of the lens space given by Σ. John Berge observed [1], that
if one can find such a (P,D) pair with P an annulus, then a Dehn surgery on K
yields a lens space. Such a knot is said to be doubly primitive as it is a promitive
curve in both handlebodies of the Heegaard splitting. Berge compiled a list of
twelve families of doubly primitive knots K ⊂ S3 including known cases of torus
and satellite knots.
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Conjecture 1 (The Berge Conjecture). Let K ⊂ S3 be a non-trivial knot which
has Dehn surgery resulting in a lens space. Then K is doubly primitive.

As the notion of doubly primitive knots is not limited to S3, one can ask whether
a conjecture equivalent to the Berge Conjecture holds for other manifolds with
Heegaard genus at most 2. The answer to this is known to be false if M is the
Poincaré homology sphere [3] and is false for lens spaces in general [4]. The next
conjecture, which was made by J. Greene (see [7, Conjecture 1.8]) and by Baker,
Buck and Lecuona (see [4, Conjecture 1.1]), says that the answer is expected to
be true if M is S2 × S1.

Conjecture 2 (Berge Conjecture for S2 × S1). If K is a knot in S2 × S1 which
admits a non-trivial lens space Dehn surgery, then K is doubly primitive.

In the talks we sketch the proof of the following theorem, proving both conjec-
tures in the tunnel number one case:

Theorem 1. Let K ⊂M be a tunnel number one knot, whereM is either S3, S2×
S1 or (S2 × S1)#L(r, s), (where L(r, s) is any lens space). If a non-trivial Dehn
surgery on K yields a lens space, then K is doubly primitive.

The general method of proof is by starting with a genus two Heegaard surface
Σ and a (P,D) pair as above. One may choose a second meridian E for the
handlebody so that it does not intersect P or D. Next, let C be the unique
compressing disk in the compression body. Moreover, we choose a meridian A
punctured by K exactly once as a second meridian for the handlebody from the
trivial Dehn filling on the compression body. We study the Heegaard diagram
given by these disks.

We assume minimality of the choices of P , D, and A. Furthermore, we assume
P is incompressible, by else compressing it. The proof heavily relies on a the-
orem proven by Homma, Ochiai and Takahashi in [8], saying that any genus
two Heegaard diagram for S3 either is standard or contains a wave. If M =
(S1 × S2)#L(p, q), we use an analogous theorem proven by Negami and Okita in
[9].

These theorems allow us to co-orient ∂D and ∂E in Σ\∂P , as conflicting orien-
tations between the meridians on the two sides immediately prevent the existence
of waves, contradicting these theorems. We view Σ \ ∂P as a union of two annuli
and two rectangles, containing ∂D and ∂E except the intersection point P ∩ D.
The curves ∂D and ∂E in Σ \ ∂P are disjoint, and thus there are at most two
families of parallel such arcs that can pass through each annulus.

Putting a convenient product structure on Σ \ ∂P and collapsing the vertical
direction, we obtain a traintrack carrying ∂D. The proof then is completed, case
by case, according to the four possible configurations for this traintrack, corre-
sponding to the number of different families of parallel arcs in the two annuli of
Σ \ ∂P .
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In each of these cases, the proof terminates at one of the following conclusions:

(1) A contradiction to the Theorems of Homma-Ochiai-Takahashi or Negami-
Okita, or

(2) A contradiction to the minimality assumption, or
(3) The knot K is a Berge-Gabai knot [2, 6] and hence doubly primitive, or
(4) There exists a different genus 2 Heegaard splitting for M \K, in which K

is doubly primitive with respect to the new splitting.
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Developments in 4-manifolds

Mark Powell

I was asked to give an overview of the current state of the art in 4-manifold
topology, and to describe some recent advances. We will consider some of the
major open problems on 4-manifolds, discuss what classification results are known,
and then talk about recent interest in studying symmetries of 4-manifolds.

Fundamental problems

I want to start by drawing the following stark contrast in our knowledge. The
following five statements are true and known in the topological category with
locally flat embeddings for every n, but are unknown and open in the smooth
category for n = 4.

(1) The Poincaré conjecture that Mn ≃ Sn implies M ∼= Sn.
(2) The Schoenflies problem, that for every embedding f : Sn−1 →֒ Sn,

f(Sn−1) is unknotted.
(3) The unknot problem, that for every embedding K : Sn−2 →֒ Sn with Sn \

K(Sn−2) ≃ S1 is unknotted.
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(4) Let F : Dn
∼=−→ Dn be an equivalence with F |∂Dn = Id. Then F is isotopic

to Id.
(5) If Mn ≃ T n then M ∼= T n.

Let me briefly mention the status of the statements for other n in the smooth
and PL categories. They are also relatively well understood. The statements all
hold for n ≤ 3 in the smooth and PL categories. For smooth manifolds, statements
(1), (4), and (5) are generally false in dimensions n ≥ 5, for example due to the
existence of exotic spheres. Statements (1) and (4) do hold in the PL category for
n ≥ 5, but (5) does not. Statements (2) and (3) also hold in the smooth and PL
categories for n ≥ 5.

What do we know about 4-manifolds?

Thanks to the work of Freedman and Quinn, surgery theory allows one to classify
4-manifolds for certain fundamental groups. I will briefly describe the known
classifications. These exhibit cases where the topology of 4-manifolds corresponds
closely to the algebra of intersection forms. In each case, by a classification I
mean that there is a collection of algebraic-topological invariants of a 4-manifold
in the relevant class, and these invariants coincide if and only if the associated
4-manifolds are homeomorphic. The intersection form on the middle homology
and the Kirby-Siebenmann invariant always appear.

(1) Freedman and Quinn classified closed, simply connected 4-manifolds [FQ90,
Chapter 10].

(2) Freedman and Quinn classified closed, orientable 4-manifolds with funda-
mental group Z [FQ90, Chapter 10].

(3) Wang classified closed, nonorientable 4-manifolds with fundamental group
Z [Wan95].

(4) Hambleton and Kreck classified closed 4-manifolds with finite cyclic fun-
damental groups [HK88].

(5) Hambleton, Kreck and Teichner classified closed nonorientable 4-manifolds
with fundamental group Z/2 [HKT94].

(6) Hambleton, Kreck and Teichner classified closed orientable 4-manifolds
with fundamental group Z ⋉ Z[1/2] [HKT09].

(7) Freedman and Quinn classified closed aspherical 4-manifolds with good
fundamental groups for which the high dimensional Borel conjecture is
known [FQ90].

(8) Brookman, Davis, and Kahn classified 4-manifolds homotopy equivalent

to the connected sum of two copies of projective space RP4#RP
4 [BDK07].

(9) Boyer classified simply connected compact 4-manifolds with a fixed 3-
manifold as the boundary [Boy86].

(10) There are no known classifications for 4-manifolds with boundary that have
nontrivial fundamental group. The only groups that admit a surjection to
Z/2 for which nonorientable 4-manifolds are classified are Z and Z/2.
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In joint work with A. Conway and D. Crowley, we are working on a classification of
compact 4-manifolds with fundamental group Z and nonempty boundary. There
is a corresponding and equally interesting discussion of results on embedded sur-
faces in 4-manifolds, omitted for space reasons. All of these classifications rely on
Freedman’s disc embedding theorem. With Behrens, Kalmár, Kim and Ray, I am
an editor of a new book, written in a collaborative project with 20 authors, that
gives a new and complete proof of the disc embedding theorem.

One of the big themes of 4-manifold topology is the ubiquity of exoticness,
for example 4-manifolds that are homeomorphic but not diffeomorphic, diffeomor-
phisms that are topologically but not smoothly isotopic, and locally flat embed-
dings that are not smoothable. There is a wealth of fascinating complication in
smooth 4-manifolds, which makes any kind of classification scheme for smooth
structures hard to approach.

Stable classification

One way to obtain classification results for 4-manifolds in terms of algebraic topol-
ogy is to consider the stable classification.

Two closed 4-manifolds M and N are said to be stably diffeomorphic if there
are natural numbers m and n such that M#mS2 × S2 and N#nS2 × S2 are
diffeomorphic.

Kreck reduced this question to bordism: for example two spin 4-manifolds with
fundamental group π are stably diffeomorphic if and only if they represent, for

some choices of spin structure and maps to π, bordant elements of ΩSpin
4 (Bπ).

This enables one to reduce the question to algebraic topological invariants again.
Hambleton-Kreck-Teichner [HKT09] studied the case of 2-dimensional groups.
With Kasprowski, Land, and Teichner [KLPT17], I studied the case of 4-manifolds
with 3-dimensional groups. In a forthcoming paper with Kasprowski and Teichner,
we study spin 4-manifolds with abelian fundamental groups.

Another paper with Kasprowski and Teichner [KPT18] studied the analogous
question where one stabilises with copies of CP2 instead of S2 × S2.

Diffeomorphisms of 4-manifolds

A lot of recent activity has been on symmetries of 4-manifolds. Despite our lack
of knowledge in the smooth category, with regards to the five questions I started
with, one can still obtain information on the symmetries and families of such
symmetries. The following is a useful guiding question.

Question 1. For a fixed 4-manifold M , what are the homotopy types of
Homeo∂(M) and Diff∂(M)?

These are the spaces, in fact topological groups, of homeomorphisms and dif-
feomorphisms of M that restrict to the identity on the boundary, equipped with
the compact-open and Whitney topologies respectively.
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There are two reasons to study the homotopy type. First, it can be easier than
trying to study these purely as groups. Second, the homotopy type contains in-
formation on the classification of fibre bundles with fibre M .

In dimension 2, every connected component of the space of diffeomorphisms
of a compact surface is contractible, so one is left with studying the mapping
class group. In dimension 3, there is a strong understanding of diffeomorphism
spaces, thanks in particular to Thurston, Hatcher, and Perelman. In dimension
4, our knowledge is somewhat limited, but there has been some exciting progress
recently.

Theorem 2 (Watanabe, 2018). πk(Diff∂(D
4)) 6= 0 for k = 1, 4, 8.

Watanabe’s theorem [Wat18] implies in particular that the 4-dimensional gen-
eralised Smale conjecture does not hold, that is Diff(S4) is not homotopy equiv-
alent to O(5). Note that it was already known, and is not too hard to see, that
Diff(Sn) ≃ Diff∂(D

n)×O(n+ 1).
The idea of Watanbe’s proof is to construct bundles D4 → E → Sk+1, using

a 4-dimensional version of the Goussarov-Habiro clasper surgery. He then evalu-
ates Kontsevich configuration space integrals on these bundles, using parametrised
Morse theory. In 3-dimensions that analogous integrals give invariants of diffeo-
morphism classes of 3-manifolds, whereas in dimension 4 these are invariants of
families.

Here are some more selected results on diffeomorphism and homeomorphism
spaces of 4-manifolds. I find it striking that there are interesting results of a
similar flavour coming from such different techniques. We already mentioned that
Watanabe used configuration space integral characteristic classes.

Let Diff0 denote the subset of diffeomorphisms that are proper homotopy equiv-
alent to the identity.

Theorem 3 (Gabai, 2017). π0(Diff0(S
2 ×D2)/Diff0(D

4)) = 0.

Gabai’s proof [Gab17] uses intricate geometric constructions to show that ho-
motopy implies isotopy for certain embedded 2-spheres in 4-manifolds.

Theorem 4 (Budney-Gabai, 2019). π0(Diff∂(S
1 ×D3)/Diff∂(D

4)) 6= 0.

Budney-Gabai [BG19] use the Goodwillie-Klein-Weiss embedding calculus.

Theorem 5 (Baraglia-Konno, 2019). π1(Homeo(K3)//Diff(K3)) 6= 0.

Here Homeo(K3)//Diff(K3) denotes the homotopy quotient, which is homotopy
equivalent to the homotopy fibre of the forgetful map BDiff(K3)→ BHomeo(K3).
Baraglia and Konno [BK19] use family Seiberg-Witten theory.

Theorem 6 (Galatius-Randal-Williams, 2014). The limit homology

colimn→∞Hk(BDiff 1

2
∂(♮

nS2 × S2 \ D̊4);Q)

is generated by a collection of well-understood characteristic classes, the generalised
Miller-Morita-Mumford κ-classes.
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In particular, this homology is computed. Galatius and Randal-Williams [GRW14]
apply a notion of parametrised surgery to the Galatius-Madsen-Tillman-Weiss
theorem on the homotopy type of the cobordism category. It is unknown whether,
for a fixed k, there is an n such that the homology equals the limit homology.
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Circular Heegaard splittings and the additivity of the

Morse-Novikov number

Kenneth L. Baker

Given an oriented link L in S3, the Morse-Novikov number of L is the count
MN (L) of the minimum number of critical points among regular Morse functions
f : S3 − L → S1, see [VPR01] and [Paj06, Definition 14.6.2]. Pajitnov attributes
to M. Boileau and C. Weber the question of whether if the Morse-Novikov number
is additive on the connected sum of oriented knots, see the beginning of [Paj10,
Section 5] and the end of [Paj06, Section 14.6.2]. We show that it is.
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Theorem 1. The Morse-Novikov number is additive: If K = Ka#Kb is a con-
nected sum of two oriented knots Ka and Kb in S3, then

MN (K) =MN (Ka) +MN (Kb).

Instead of working with circle-valuedMorse functions directly, we use the handle-
theoretic interpretation of the Morse-Novikov number presented in [God06, §3]
and [GP05, §2] that enables the use of techniques from the theory of Heegaard
splittings. This approach is rooted in Goda’s work on handle numbers of su-
tured manifolds and Seifert surfaces [God92, God93] and Manjarrez-Gutierrez’s
work on circular generalized Heegaard splittings and circular thin decompositions
[MG09, MG13], and it uses a key proposition of Manjarrez-Gutierrez & Eudave-
Munoz about connected sums [EMnMG12].

On our way to Theorem 1, we establish the following:

Lemma 2. The handle number of a knot is realized by an incompressible Seifert
surface.

Furthermore, our proof of Theorem 1 also applies in the context of cabling.

Theorem 3. The Morse-Novikov number is unchanged under cabling: If Kp,q is
the (p, q)–cable of a knot K for coprime integers p and q, then

MN (Kp,q) =MN (K).

The driving observation for the proofs is that a related count called the handle
index is (a) unchanged by weak reductions and amalgamations and (b) equivalent
to the handle number of a generalized Heegaard splitting when the compression
bodies have no handlebody components. Figure 1 schmatically conveys the proof
of Lemma 2.

While we state our results for knots in S3, Lemma 2, Theorem 1, and Theorem 3
all can be immediately generalized to null-homologous knots in rational homology
spheres. With a little more attention they should also generalize to rationally
null-homologous knots in other orientable 3–manifolds.

A few questions arise.

Question 4. Is the handle number of a knot always realized by a minimal genus
Seifert surface?

Goda shows this is so for all small crossing knots [God93]. However he also
shows that there are knots with other minimal genus Seifert surfaces that do not
realize the handle number of the knot.

One may also wonder whether Theorem 1 might be proven more simply, albeit
possibly more indirectly, by expressing the Morse-Novikov number in terms of
other established knot invariants.

Question 5. Can the Morse-Novikov number of a knot be expressed in terms of
other established knot invariants?

Question 6. What knot invariants detect fibered knots and are additive under
connected sum?
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Figure 1. A maximal weak reduction followed by amalgama-
tions transforms a circular Heegaard splitting (M,R, S) with R
compressible into a circular Heegaard splitting (M,R0

2, S
′′) with

R0
2 incompressible and the same handle number. The central

loops/arcs represent the toroidal/annular sutures and the vertical
boundary of the compression bodies.

We note that the log of the rank of the knot Floer Homology of a knot K in
the highest non-zero grading, LR(K) = log rkHFK(K, g(K)), is both additive on
connected sums [OS04, Theorem 7.1] and equals zero precisely for fibered knots
[Ghi08, Ni07]. However, LR is distinct from MN ; neither is a function of the
other.
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Taut foliations and fundamental group left orders in Heegaard genus 2

Sarah Rasmussen

In addition to making predictions about Heegaard Floer homology, the L-space
conjecture [1, 3] implies that any closed oriented irreducible 3-manifold M admits
a cooriented taut foliation if and only if its fundamental group π1(M) admits a left
multiplication-invariant order. Dunfield has found particularly strong numerical
evidence for the “if” direction of this implication [2], but until now, the only
known examples in which one could associate a taut foliation on M to a left order
on π1(M) were those in which the left order was originally obtained from the taut
foliation in question.
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The purpose of this communication is to describe a new construction by which,
under certain hypotheses, I can build a cooriented taut folation on M from a left
order on π1(M). Unlike all taut foliation constructions on hyperbolic manifolds
in the literature, this novel method makes no recourse to branched surfaces. It
is particularly successful for M of Heegaard genus 2, but it is hoped that higher
Heegaard genus versions of this method will prove fruitful as well. In addition to
slightly stronger but more technical results, I can prove the following.

Theorem 2. Suppose M is a closed oriented irreducible 3-manifold, equipped with
a left order >l on π1(M). If a minimal intersection Heegaard diagram H for M
is of genus 2 and its associated fundamental group presentation has no subwords
that are trivial in π1(M), then one can use H and >l to build a cooriented taut
foliation on M with continuous tangent distribution, additionally certifying that
M is a non-L-space.

The Heegaard-diagrammatic tools developed in this construction also provide
new methods for analysing fundamental group left orders, and this holds for arbi-
trary Heegaard genus.

A left order on a group G is a strict total order >l on G such that g1 >l g2
if and only if hg1 >l hg2, for any g1, g2, h ∈ G. If G admits a left order >l

and is also countable, one can associate a dynamically realised real line action
ρ : G→ Homeo+R to >l, such that ρ(g)(0) >l ρ(h)(0) if and only if g >l h. Such
ρ is unique up to semiconjugacy and is an important ingredient in our construction.

Adopting the convention that all foliations are cooriented, a foliation F on a
closed oriented 3-manifold M is called taut if it is of codimension 1 and any leaf
of F intersects a closed transversal, i.e., a simple closed curve which has only
transverse intersections with leaves of F .

One key ingredient in our construction is the classical notion of the complete
transversely foliated bundle. Given oriented manifolds B and F with B closed,
and a representation ρ : π1(B) → Homeo+F , there is a unique (up to conjugacy)
complete transversely foliated bundle π : Eρ → B with foliation Fρ and holonomy
representation ρ, constructed by taking

Eρ := (B̃ × F )/(x, t) ∼ (x · g, ρ(g−1)(t)) for all g ∈ π1(B),(1)

Fρ :=
∐

t∈F B̃ × {t}/ ∼ ,(2)

where B̃ is the universal cover of B.
Suppose that F = R, B = M is a closed, oriented, irreducible 3-manifold, and

π1(M) admits a left order <l, to which we associate a dynamically-realised real
line action ρ′ : π1(M)→ Homeo+R. Since any co-oriented R-bundle is necessarily
trivial, the complete transversely foliated bundle Eρ′ is homeomorphic to M ×R.
If Eρ′ admits an embedding f : M → Eρ′ transverse to Fρ′ , then the induced
foliation Fρ′ |f(M) on M is of codimension 1 and has no compact leaves, which
one can show implies tautness. Unfortunately, it is not known what dynamical or
group theoretic properties, if any, ρ′ must satisfy in order for such f to exist, nor
is it known how to construct such f if such properties are satisfied.
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We therefore pursue the following modification of the above approach. Suppose
M = Uα ∪Σ Uβ is a Heegaard splitting for M , for some closed oriented Heegaard
surface Σ of genus g. Let ι : Σ →֒M be the associated embedding of Σ in M , and
pull the above ρ′ : π1(M)→ Homeo+R back to the representation

ρ := ρ′ ◦ ι∗ : π1(Σ)→ Homeo+R.(3)

The complete transversely foliated R-bundle π : Eρ → Σ with holonomy represen-
tation ρ and associated transverse foliation Fρ is now a foliated 3-manifold, with
Eρ
∼= Σ × R. Although Σ × R is not the same manifold as M , it does occur as

the normal bundle to Σ in M , and it is from this point of view that we use Fρ to
build a taut foliation on M .

Our construction adopts the following basic outline:

(1) construct certain simple, generically boundary-transverse, foliations on the
compression bodies Uα and Uβ;

(2) use the transverse foliation Fρ on Eρ to interpolate between these two
compression-body foliations;

(3) perform surgeries or isotopies to cancel or smooth out singularities created
by gluing these compression body foliations to the transverse foliation.

To accomplish this, we choose certain global sections sα, sβ : Σ →֒ Eρ which
intersect each other in at most finitely many points, and we decompose Eρ along
these sections into three components,

(4) Eα ∐E0 ∐Eβ := Eρ \ (sα(Σ)∪ sβ(Σ)), with Eρ = Eα ∪sα(Σ) E0 ∪sβ(Σ) Eβ ,

such that Eα is below E0 and E0 is below Eβ , with respect to the natural ordering
on R in Σ × R ∼= Eρ. We further demand that the induced singular foliation
Fsα := Fρ|sα(Σ) on sα(Σ) = ∂Uα has only isolated singularities, and extends to a
singular foliation, say Fα, on Uα, which restricts to a (nonsingular) foliation by
disks on the interior of Uα. We impose an analogous condition for β. Then since

(5) M ∼= Uα ∪sα(Σ) E0 ∪sβ(Σ) Uβ ,

we can glue together the foliations Fα on Uα, F0 := Fρ|E0 on E0, and Fβ on Uβ .
If sα(Σ) ∩ sβ(Σ) = ∅, then the resulting glued up foliation F ′ = Fα ∪ F0 ∪ Fβ

will necessarily contain singularities along some of the singular points of Fsα and
Fsβ , and we can attempt to surger F ′ to cancel pairs of singularities. In practice,
we instead move these cancelling pairs on top of each other during our initial
selection of sα and sβ, so that all potential singularities of F ′ lie in the finite set
sα(Σ) ∩ sβ(Σ). For suitable choices of sα and sβ , this makes F ′ nonsingular as a
topological foliation. It is then straightforward to isotop F ′ to a foliation F with
continuous tangent distribution, and we show that such F is taut.

The primary technical challenge of this construction is to find global sections
sα, sβ : Σ → Eρ that satisfy the needed conditions. To construct sα, we first
build an explicit model of Fρ on Σ× R by combining suspension foliations along
annuli whose cores are boundaries of compressing disks for Uα. We then take
sα(Σ) = π−1

α (0) ⊂ Eρ, for πα : Eρ → R the horizontal projection corresponding
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to the identification Eρ → Σ × R determined by our foliation model. Since the
section sβ is constructed similarly, the height comparison of these two sections is
governed by a type of decorated Heegaard diagram whose underlying structure is
an ordinary Heegaard diagram.

Given a pointed Heegaard diagram (Σ,α,β, x0) for the Heegaard splittingM =
Uα ∪Σ Uβ, we associate an element of π1(M,x0) to each component c ∈ π0(Σ \∐g

i=1 αi∪βi) corresponding to the based oriented knot associated to x0 and a point
in c. Studying the left (and dual right) order of these group elements informs the
adaptations needed to build our more intricate decorated Heegaard diagram. For
example, there are basepoint-invariant notions of minimal or maximal components
of Σ \∐g

i=1 αi ∪ βi with respect to the fundamental group right order.
This Heegaard diagrammatic perspective is also a useful tool in its own right for

analysing fundamental group left (and right) orders. In the case of genus 2, this
analysis simplifies considerably, enabling us to prove the earlier-stated theorem.
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Quasimorphisms on homeomorphism groups

Richard Webb

(joint work with Jonathan Bowden, Sebastian Hensel)

Let us write Diff(M) for the group of orientation-preserving, compactly-supported
diffeomorphismsM →M of an orientable manifoldM . This is a topological group
and may have infinitely many connected components. The component containing
the identity is the group Diff0(M) which consists of those diffeomorphismsM →M
that are isotopic to the identity.

The support of a diffeomorphism is the closure of the set of points that are
not fixed. A disk-supported map is a diffeomorphism whose support lies within
an open disk of M . The fragmentation lemma states that the disk-supported
maps generate Diff0(M). With respect to this generating set the word length or
fragmentation norm frag(f) of f ∈ Diff0(M) is the minimum length of a prod-
uct of disk-supported maps which equals f , and by convention, frag of the iden-
tity is zero. It is straightforward to see that the fragmentation norm endows
Diff0(M) with a metric which is both left and right invariant, or equivalently,
the fragmentation norm is a conjugation-invariant norm. The same applies for
homeomorphisms and Homeo0(M). In fact, a classic trick shows that any disk-
supported homeomorphism is a commutator of disk-supported homeomorphisms.
This shows that Homeo0(M) is a perfect group, and that the commutator length
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satisfies cl(f) ≤ frag(f). Commutator length is another example of a conjugation-
invariant norm. But this classic trick does not seem to work for diffeomorphisms.

In their insightful paper Burago–Ivanov–Polterovich [BIP08] showed that for
any conjugation-invariant norm ρ : Diff0(M)→ R we have that there exists C > 0
such that ρ(f) ≤ Cfrag(f). They also show that one can take C = 2 when ρ = cl.
This uses the fact that Diff0(M) is perfect, which is a deep theorem of Thurston.
This is an interesting relationship between an algebraically-defined function and a
topologically-defined function . . . but these functions are possibly bounded!

Burago–Ivanov–Polterovich then go on to show that the fragmentation norm
(and hence all conjugation-invariant norms) on Diff0(M) are bounded whenever
M is what they call a portable manifold, this includes for example any open disk,
open handlebody, or N×(0, 1) e.g. an open annulus. They also prove the theorem
when M is the n-sphere (n ≥ 1), or indeed when M is any closed, orientable 3-
manifold. Tsuboi [Tsu08, Tsu12] extended this result to all dimensions at least 5
and for 4-manifolds without 2-handles in a handlebody decomposition. This leaves
open the general case of closed, orientable manifolds of dimension 2 or dimension 4:
is cl bounded on Diff0(M) i.e. is it uniformly perfect? We prove that in dimension
2 a new phenomenon occurs [BHW].

Theorem 1. Let S = Sg be the closed, orientable surface of genus g ≥ 1 then
Homeo0(S) and Diff0(S) are not uniformly perfect and frag is unbounded.

The purpose of this talk is to explain how we prove this theorem. We find
unbounded quasimorphisms on our groups. The theory of quasimorphisms is an
important tool for showing certain groups are not uniformly perfect. Bestvina–
Fujiwara [BF02] introduced a criterion, which we shall call (BF), that enables
one to construct “many” unbounded quasimorphisms on a group. The criterion
requires an action by isometries on a hyperbolic space with two “independent”
loxodromic elements. Using their criterion they showed that any subgroup of the
mapping class group is either virtually abelian or satisfies (BF).

We would like to apply (BF) for surface homeomorphism groups. Fortunately
there already is a hyperbolic space associated to a surface S. Masur and Min-
sky [MM99] showed that the curve graph C(S) is hyperbolic. Unfortunately
Homeo0(S) and Diff0(S) act trivially on C(S) because the vertices are isotopy
classes of simple closed curves. We instead study C†(S) where vertices correspond
to simple closed curves (not their isotopy classes!) and edges connect two vertices
if the curves have empty intersection. We explain how to prove the following,
which in turn proves Theorem 1 [BHW].

Theorem 2. Let S = Sg be the closed, orientable surface of genus g ≥ 1. Then
C†(S) is hyperbolic and the action of Homeo0(S) on C†(S) satisfies (BF).

It would be interesting to know whether this is the first example of a simple
group that acts on a hyperbolic space satisfying (BF). Of course there are simple
groups that act on hyperbolic spaces for example PSL(2,R) but this group is
uniformly perfect so cannot satisfy (BF).
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Theorem 2 applies also to the smooth category. In fact we are able to define our
quasimorphisms on the entire diffeomorphism group such that it is unbounded on
each component.

These are the first known examples where Diff0(M) is not uniformly perfect and
M is a closed or open manifold. We believe our methods will determine precisely
which orientable surfaces of finite type have this property. However little is known
in dimension 4.

Question 3. Are there 4-dimensional closed, orientable, smooth manifolds M with
Diff0(M) not uniformly perfect?
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Symmetries and the Character Variety

Kate Petersen

(joint work with Jay Leach)

For a finite volume hyperbolic 3-manifold, M , the SL2(C) character variety of M
is

X(M) = {χρ | ρ : π1(M)→ SL2(C)}
where the character χρ : π1(M)→ C is defined by χρ(γ) = trace(ρ(γ)) for all γ ∈
π1(M). The character variety is a complex algebraic set with defining coefficients
in Q, and its isomorphism type is independent of the presentation of π1(M).
An irreducible component of X(M) is called a canonical component and written
X0(M) if it contains the character of a discrete and faithful representation. The
complex dimension of X0(M) equals the number of cusps of M [7].

We call an orientation preserving homeomorphism σ : M → M a symmetry of
M . A symmetry σ naturally acts on π1(M) by sending a loop class to its image
under σ; we write σ∗ for this action. Any symmetry σ of M acts on X(M) as
well. This action is given by σ̂ : X(M)→ X(M) where σ̂(χρ) = χσρ◦σ∗

. That is,
for γ ∈ π1(M),

σ̂(χρ)(γ) = χσρ◦σ∗
(γ) = trace(ρ(σ∗(γ))).
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This action σ̂ is trivial on X(M) if σ fixes unoriented free homotopy classes of
loops in M . In this case, ρ(γ) is sent to a matrix that is conjugate to ρ(γ)±1

under the induced action, and therefore has the same trace. However, this is not
a sufficient condition for σ̂ to act trivially on X(M) [1].

If M is a knot complement in S3, then σ extends to a symmetry of any Dehn
filling of M . It follows that σ̂ fixes a discrete and faithful representation, and all
representations associated to hyperbolic Dehn filling of π1(M). The corresponding
characters form a Zariski dense set in the curve X0(M), and therefore σ̂ fixes
X0(M) point-wise.

Culler and Shalen [2] showed that if π1(M) acts non-trivially and without in-
versions on a tree T , then there is an essential surface in M dual to this action.
Moreover, they demonstrated how to construct such actions on trees from X(M),
and specifically from ideal points of X(M).

Our main result shows that symmetries affect the detection of surfaces on a
canonical component. We state the consequence for boundary slopes, where G is
the symmetry group of M . We call a boundary slope symmetric if it is the slope
of a surface preserved by the symmetry.

Theorem 1. Let M be a finite volume, orientable, hyperbolic 3-manifold with a
single cusp, such that the orbifold quotient M/G has a flexible cusp. Any boundary
slope detected on X0(M) is a symmetric slope.

One key ingredient in our proof is the following extension of Culler and Shalen’s
theory to orbifolds.

Proposition 2. Let Q be a compact, orientable, irreducible 3-orbifold. If πorb
1 (Q)

acts non-trivially and without inversions on a tree T , then there exists an essential
2-suborbifold F in Q dual to this action.

The association between Q = M/G and M is made through Long and Reid’s
result [4] which implies that when Q has a flexible cusp, then X0(M) and X0(Q)
are birationally equivalent.

As an application, we consider the symmetric double twist knots Kn, which in
two-bridge notation are associated to the rational number 2n/(4n2 − 1). Let Mn

be the complement of Kn in S3. These knots have a symmetry corresponding to
turning the four-plat upside down which acts non-trivially on X(Mn). In fact [5],

X(Mn) = Xred(Mn) ∪X0(Mn) ∪X1(Mn)

where Xred(Mn) is the component of X(Mn) containing characters of reducible
representations. By work of Hatcher and Thurston [3] the boundary slopes of Mn

are 0, −8n+ 2 and −4n. The slopes 0 and −8n+ 2 are symmetric slopes of Mn

whereas −4n is not symmetric. All three slopes are detected by ideal points of
X(Mn) by work of Ohtsuki [6]. However, as a consequence of Theorem 1 we have
the following.

Corollary 3. The ideal points on the canonical component X0(Kn) detect only
the slopes 0 and −8n+ 2, and not −4n.
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Dehn fillings on knot groups

Kimihiko Motegi

(joint work with Tetsuya Ito, Masakazu Teragaito)

LetK be a nontrivial knot in S3 with its exterior E(K). We denote the knot group
π1(E(K)) by G(K). By the loop theorem the inclusion map i : ∂E(K) → E(K)
induces a monomorphism i∗ : π1(∂E(K)) → G(K), thence we have a peripheral
subgroup P (K) = i∗(π1(∂E(K))) ⊂ G(K). A slope element in G(K) is a primitive
element γ in P (K) ∼= Z ⊕ Z, which is represented by an oriented simple closed
curve in ∂E(K). Denote by 〈〈γ〉〉 the normal closure of γ in G(K). Using the
standard meridian-longitude pair (µ, λ) of K, each slope element γ is expressed
as µpλq for some relatively prime integers p, q. As usual we use the term slope to
mean the isotopy class of an unoriented simple closed curve in ∂E(K). Two slope
elements γ and its inverse γ−1 represent the same slope which is identified with
r = p/q ∈ Q ∪ {∞}. Since 〈〈γ〉〉 = 〈〈γ−1〉〉, it is convenient to denote them by 〈〈r〉〉.
Thus each slope defines the normal subgroup 〈〈r〉〉 ⊂ G(K), which will be referred
to as the normal closure of the slope r for simplicity.

A normal closure 〈〈r〉〉 of a slope r of K naturally arises via Dehn filling on
E(K). Denote by K(r) the 3-manifold obtained by r–Dehn filling of E(K). Then
we have the following short exact sequence which relates G(K), 〈〈r〉〉 and π1(K(r)).

1→ 〈〈r〉〉 → G(K)
pr−→ G(K)/〈〈r〉〉 = π1(K(r))→ 1.

In the talk we propose to study Dehn fillings from a group theoretic viewpoint.
For a given nontrivial element g ∈ G(K), how many Dehn fillings trivialize g?

To make precise define the function

D : G(K)− {1} → Z≥0 ∪ {∞} by

D(g) = ♯{r ∈ Q | pr(g) = 1 in π1(K(r))} = ♯{r ∈ Q | g ∈ 〈〈r〉〉}.
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If g is nontrivial and there are infinitely many such slopes, then D(g) is defined to
be ∞. In this context Property P [4] says that 〈〈r〉〉 = 〈〈∞〉〉 = G(K) if and only if
r =∞, and D(µ) = 0 for a meridian µ of K.

For simplicity, in what follows, we focus on hyperbolic knots in S3. Then we
have the following results [1, 2]:

(1) 〈〈r1〉〉 = 〈〈r2〉〉 if and only if r1 = r2.

(2) For any infinite family of slopes {r1, r2, . . . }, the intersection 〈〈r1〉〉∩〈〈r2〉〉∩
· · · = {1}. This implies that D(g) < ∞ for any nontrivial element g ∈
G(K).

(3) For any finite family of slopes {r1, . . . , rn}, the intersection 〈〈r1〉〉∩· · ·∩〈〈rn〉〉
is an infinite subgroup. More precisely 〈〈r1〉〉∩· · ·∩〈〈rn〉〉 is finitely generated
if and only if all the ri are finite surgery slopes. This implies that for a
given N > 0, there are infinitely many elements g ∈ G(K) such that
D(g) ≥ N .

We would like to ask:

Question. Which value is a “generic” for D(g) over g ∈ G(K)?

In spite of (3), it might be reasonable to expect that “most” elements g ∈ G(K)
satisfies D(g) = 0, i.e. g never becomes trivial by any nontrivial Dehn filling of
E(K). On the other hand, except for a meridian, and a pseudo-meridian, i.e. a
nontrivial element which is not conjugate to a meridian, but its normal closure
coincides with G(K), we have no explicit examples of elements g ∈ G(K) with
D(g) = 0. Recall that a meridian or a pseudo-meridian is a homological generator
of H1(E(K)) ∼= Z.

As the first step, we prove the following results.

Theorem 1. Let K be a hyperbolic knot in S3. Then there exist infinitely many,
mutually non-conjugate elements g ∈ [G(K), G(K)] such that D(g) = 0 if and only
if K has no cyclic surgeries.

Theorem 2. Let K be a hyperbolic knot in S3. There exist infinitely many, mu-
tually non-conjugate elements g ∈ G(K) which represent a generator of H1(E(K))
and D(g) = 0.

Furthermore, if we require that K has no finite surgeries, we have:

Theorem 3. Let K be a hyperbolic knot without finite surgeries. Then in each
homology class α ∈ H1(E(K)), there are infinitely many, mutually non-conjugate
elements g ∈ G(K) such that g represents α and D(g) = 0.

Following Theorems 1 and 3, we have infinitely many, mutually non-conjugate
elements g ∈ G(K) which are not pseudo-meridians, but D(g) = 0. On the other
hand, nontrivial elements g ∈ G(K) given in Theorem 2 may be pseudo-meridians.

Question. Let K be a hyperbolic knot and g ∈ G(K) a nontrivial element which
represents a generator of H1(E(K)) and satisfies D(g) = 0. Then is g a pseudo-
meridian?
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Obviously if K has a finite surgery slope s, there does not exist a subgroup H such
that H ∩ (

⋃
r∈Q〈〈r〉〉) = {1}, because that for any element g ∈ G(K) −⋃

r∈Q〈〈r〉〉
we have gn ∈ 〈〈s〉〉 for some integer n > 0.

Our results immediately imply that if K is a hyperbolic knot which admits
neither finite surgeries nor reducing surgeries, then there are infinitely many cyclic
subgroups Ci such that

Ci ∩ (
⋃

r∈Q

〈〈r〉〉) = {1}.

We would like to close the abstract with the following question.

Question. LetK be a hyperbolic knot which admits no finite surgery. Then does
there exist a subgroup H ⊂ G(K) which is a rank two free group and satisfies

H ∩ (
⋃

r∈Q

〈〈r〉〉) = {1}?
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Special covers of alternating links

David Futer

(joint work with Edgar A. Bering IV)

The spectacular resolution of Thurston’s virtual conjectures by Agol [2] and Wise
[9] shines a bright light on the power of cube complexes in studying 3–manifolds
and their fundamental groups. In particular, Agol [1] and Przytycki–Wise [8]
proved that every non-positively curved 3–manifold M is virtually fibered by first
proving M is cubulated (homotopy equivalent to a non-positively curved cube
complex X) and then proving M is virtually special (X has a finite cover whose
hyperplanes are free of several pathologies). Ever since the appearance of these
results, mathematicians have asked for a quantitative version: What is the degree

of a fibered cover of M? What is the degree of a cover M̂ with b1(M̂) ≥ 2? Or

b1(M̂) ≥ 10? For instance, see Agol [3, Question 11.4].
Quantifying virtual fibering appears to be very hard. Quantifying virtual spe-

cialness or the growth of betti numbers is more tractable, at least in particular
families of examples. For instance, given an alternating link diagram D = D(K),
a classical construction introduced by Dehn [7] produces a square complex XD

that is homotopy equivalent to S3 \ K. This complex has two vertices (one on
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each side of the projection plane), one edge through each region of D(K), and one
square for each crossing of D(K). See Figure 1 for an example.

In recent joint work [4], Bering and I explicitly construct a special cover of XD,
with control on the covering degree.

Theorem 1. Let D = D(K) be a prime, alternating link diagram with c crossings.

Then the Dehn complex XD has a special cover X̂D of degree at most 12(c− 1)!.

Beyond bounding the degree of the cover X̂D, we actually construct the cover.
As a consequence, we are able to gain structural understanding of surfaces in small-
degree covers of the link complement S3 \K. For instance, we get the following
effective version of a theorem of Cooper, Long, and Reid [5].

Corollary 2. Let D = D(K) be a prime, alternating link diagram with c ≥ 3

crossings. Then S3 \K has a cover M̂ of degree at most 12(c−1)!, which contains

four disjoint, orientable surfaces whose union does not separate M̂ . Recording

intersections of a loop with these surfaces yields a surjection π1(M̂)→ F4.

Given that the fundamental group of the cover X̂D embeds into a right-angled
Coxeter group with a simple description, we also learn something about linear
representations of the original knot group.

Corollary 3. Let D = D(K) be a prime, alternating link diagram with c crossings.
Then S3 \K embeds into SL(m,Z), where m ≤ 288((c− 1)!)2.

Finally, we obtain a quantification of residual finiteness.

x

y

z
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x
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x z x
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Figure 1. Left: an alternating diagram D = D(K). Right: the
Dehn complex XD corresponding to D. Labels on the edges of
XD correspond to regions of D(K). Edges with the same label
are identified. The hyperplanes of this complex correspond to the
checkerboard surfaces shown on the left.
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Corollary 4. Let D = D(K) be a prime, alternating link diagram with c crossings.
Let σ ⊂ S3 \ K be a closed curve that intersects the checkerboard surfaces of
D(K) a total of n times. Then there is a cover Mσ → S3 \K of degree at most
(n+ 1) · 12(c− 1)! such that σ does not lift to Mσ.

Our next aim in this investigation is to strengthen Corollary 4 to quantify the
separability of non-trivial finitely generated subgroups. That is: given a subgroup
H ⊂ π1(S

3 \K) and an element σ /∈ H , can one bound the index of a subgroup
G ⊂ π1(S3 \K) such that H ⊂ G but σ /∈ G? Geometrically, this is equivalent to
bounding the degree of a cover ofM = S3 \K where some immersion of a compact
manifold lifts to be an embedding. So far, we can quantify the separability of
Abelian subgroups.

It is reasonable to ask whether the bound of Theorem 1 is anywhere close to
optimal. We can give lower bounds on the degree of a special cover of the Dehn
complex, but we cannot rule out the possibility that some small-degree cover of
M = S3 \ K is homotopy equivalent to some other, seemingly unrelated, cube
complex. This prompts the following question.

Problem 5. Find an algorithm that takes as input a triangulated (hyperbolic?)
3–manifold M and decides whether M is homotopy equivalent to a special cube
complex. Equivalently, the algorithm should decide whether π1(M) embeds into a
right-angled Artin group.

In dimension 2, this problem was solved by Crisp and Wiest [6]. In dimension
3, normal surface theory should be helpful. For instance, it is not hard to show
that any cubulation of a closed, hyperbolic 3–manifold M can be expressed using
immersed normal surfaces in a 1–vertex triangulation of M . What is less clear
is how to go in the opposite direction and certify that a collection of immersed
normal surfaces provides a wall-space for a proper and cocompact cubulation. Still
harder is the question of how far one needs to search for a special cubulation via
normal surfaces before deciding that it does not exist.
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A geometric approach to the embedding calculus

Danica Kosanović

The embedding calculus of Goodwillie and Weiss (see [1] for details and references)
is a certain homotopy theoretic technique for studying spaces of embeddings. It
gives a new language in which many of the results of Whitney, Haefliger, Dax and
others can be recast, but also provides powerful new tools and results.

The embedding calculus

The idea is to use the fact that any manifold Q has a simple local description to
approximate the space1 Emb(Q,M) of embeddings of Q into M . This is done via
spaces Tn(Q,M) := TnEmb(Q,M) that fit into a Taylor tower2 · · · → Tn(Q,M)→
Tn−1(Q,M) → · · · → T1(Q,M). The definition of Tn(Q,M) is as a certain ho-
motopy limit, which extrapolates from the data of n disjointly embedded disks in
Q. Moreover, there are natural evaluation maps evn : Emb(Q,M) → Tn(Q,M)
approximating the domain ‘better’ as n increases.

As an example, T1(Q,M) is the coarsest approximation and is equivalent to
the space of immersions Imm(Q,M). Since immersions are given by a local con-
dition (on their derivative), the space Imm(Q,M) is the pullback of the diagram
Imm(V1,M)→ Imm(V1∩V2,M)← Imm(V2,M) for any open cover Q = V1∪V2.
Hirsch-Smale theory then shows that this pullback is also a homotopy pullback, and
precisely this property characterises the linear approximation T1(Q,M).

The more precise way in which evn are increasingly better approximations is
expressed in the following fundamental theorem of Goodwillie and Klein.

Theorem 1 ([2]). The map evn is ((3 − m) + (n + 1)(m − q − 2))-connected
(isomorphism on homotopy groups below this degree and surjective in it) if

(dimQ, dimM) = (q,m) 6= (1, 3).

Hence, in codimension at least 3 the connectivity increases with n, so the in-
duced map from Emb(Q,M) to the limit of the tower limn Tn is a weak homotopy
equivalence. However, even when the codimension is smaller, the tower remains a
useful object to study, since the spaces Tn are amenable to the tools of homotopy
theory (in analogy to how immersions adhere to the h-principle) and so πievn gives
invariants of πiEmb(Q,M), for i ≥ 0.

1We equip the set of smooth embeddings Emb(Q,M) with the Whitney C∞ topology.
2This name is not without reason: many constructions here are in a formal analogy to the

Taylor expansion of a function.
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Knots in 3-manifolds

One particularly appealing instance of embedding calculus is exactly when The-
orem 1 does not apply, namely, the space of long knots in M , a 3-manifold with
nonempty boundary. More precisely, let

Knots(M) := Emb∂(I,M) := {f : I →֒M | f ≡ U near ∂I},
where I = [0, 1] and U: I →֒M is some fixed proper embedding. The set of path
components K(M) := π0(Knots(M)) consists of isotopy classes of long knots in
M which agree with U near thier boundary.

The formula above for the connectivity of evn predicts that in this case – for
which their techniques were unsuccessful – all evn are 0-connected, i.e. surjective
on π0. In my thesis I confirm this prediction:

Theorem 2 ([3]). π0evn : K(M)→ π0Tn(I,M) is surjective for all n ≥ 1.

The geometric calculus

As a corollary, we also prove a part of the following conjecture by Budney, Conant,
Scannell and Sinha [4]:

Conjecture 3. π0evn : K(I3) → π0Tn(I, I
3) is a universal additive Vassiliev in-

variant of type ≤ n− 1 over Z.

Here U is the standard unknot and the operation of stacking makes K(I3) into an
abelian monoid (which is isomorphic to the more commonly used π0(Emb(S

1,R3))
under connected sum). Equivalently, the conjecture says that π0evn is a homo-
morphism of monoids (this was proven in [5]), that it is surjective and that its
kernel consists of knots which are n-equivalent to the unknot.

The n-equivalence relation comes from the geometric viewpoint on Vassiliev
theory, introduced independently by Gusarov and Habiro [6, 7] in terms of claspers
and extended by Conant and Teichner [8] in terms of gropes. Two knots are n-
equivalent K ∼n K

′ if there is a sequence of clasper surgeries or (simple capped)
grope cobordisms in I3 of degree n leading from K to K ′.

For n = 1 this is just a sequence of crossing changes. An example of a grope
cobordism of degree n = 2 is depicted in Figure 1; the grope removes J0 from the
unknot U and replaces it by the long blue arc (the remaining part of the boundary
of the yellow ‘punctured torus’ T 2 \ int(D2)) to give the trefoil.

In general, a grope cobordism of degree n is a certain geometric object built
from n− 1 copies of a punctured torus, by inductively attaching its boundary to
a simple closed curve generating the first homology of the object constructed so
far; finally, n copies of D2, called caps, are attached at the top. For the induction
step one follows the shape of a rooted planar tree with n leaves.

Habiro proved that K(I3)
/
∼n is an abelian group and that the projection

νn : K(I3)→ K(I3)
/
∼n is a universal additive Vassiliev invariant of type ≤ n− 1.

Hence, Conjecture 3 asserts that the evaluation map factors through:

(6) π0evn : K(I3)
/
∼n → π0Tn(I

3)
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J0 J1 J2

Figure 1. A grope cobordism with the underlying tree
2 1

from

the unknot to the trefoil. Its caps are the two dashed disks.

and that this map is an isomorphism. The existence of the factorisation was shown
in [5], and our Theorem 2 proves the surjectivity.

We actually prove a more general result implying this. A large part of [3] is
about properties of the punctured knots model for the Taylor tower, which has not
been extensively studied in the literature, but serves best for geometric purposes.
As a consequence of those more general results, and also recent work of Pedro
Boavida de Brito and Geoffroy Horel [9], we also obtain the following.

Corollary 3. The morphism (6) is an isomorphism after tensoring both sides

(1) with Q for all n ≥ 1;
(2) with p-adic integers Zp for n ≤ p+ 2.

In other words, we confirm Conjecture 3 rationally and, moreover, show that
the Kontsevich integral factors through the embedding calculus tower.

Generalisations of the geometric calculus

In current work in progress with Peter Teichner [10] we investigate to what extend
the geometric calculus (using either claspers or gropes) extends to other dimensions
and codimensions. This was inspired by the results of Watanabe [11] who uses such
constructions to obtain non-trivial classes in homotopy groups of Diff(D4, ∂). See
also the recent preprint [12] giving non-trivial classes in the fundamental group of
the embedding space of circles in a certain 4-manifold.
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From veering triangulations to link spaces and back again

Henry Segerman

(joint work with Saul Schleimer)

A veering triangulation is an ideal triangulation of a cusped oriented three-manifold
together with some combinatorial data: the triangulation admits a taut angle
structure, and there is a colouring of the edges of the triangulation satisfying
the following condition: The taut angle structure assigns angles of π to a pair of
opposite edges in each tetrahedron, and angle zero to all other edges. For each
tetrahedron, the four edges with angle zero are coloured either red or blue, as in
Figure 1. The π angle edges do not have colours specified. When the tetrahedra
are glued together to form the triangulation, the specified colours must agree at
each edge of the triangulation.

Figure 1. A veering tetrahedron. The zero angles are at the
four sides of the square, and the π angles are the diagonals. The
zero angle edges of a tetrahedron are coloured either red (dotted)
or blue (dashed).

Agol [1] introduced veering triangulations, and showed that for any pseudo-
Anosov surface bundle the result of drilling out singular fibers of the stable and
unstable foliations admits a veering triangulation canonically associated to the
pseudo-Anosov monodromy. Veering triangulations generated by Agol’s construc-
tion are always layered – Agol asks whether or not non-layered examples exist,
and what such would mean.

Hodgson, Rubinstein, Tillmann and I [4] found the first non-layered examples by
computer search. In recent work, Giannopolous, Schleimer and I [2] generate the
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census of all transverse veering triangulations with up to 16 tetrahedra, of which
there are 87,047. The first non-layered examples have five tetrahedra, and as the
number of tetrahedra increase, the proportion of non-layered veering triangulations
also seems to increase – we conjecture that non-layered veering triangulations
dominate.

Guéritaud [3] gave an alternative construction of (layered) veering triangula-
tions from pseudo-Anosov surface bundles, by associating maximal rectangles in
the singular Sol structure with tetrahedra of the triangulation. In unpublished
work, Guéritaud and Agol generalised this construction to any closed manifold
equipped with a pseudo-Anosov flow without perfect fits. In work in progress,
Schleimer and I build the reverse map, thus showing that veering triangulations
are the correct combinatorialisation of pseudo-Anosov flows without perfect fits.
As a first step, we construct the link space for a given veering triangulation. This
is a copy of R2, equipped with a transverse pair of foliations, from which the
Agol-Guéritaud construction recovers the veering triangulation. The link space is
analogous to Fenley’s orbit space for a pseudo-Anosov flow.

The first major step in building the link space is to construct a nested se-

quence of continents in the universal cover T̃ of the triangulation T . These are
taut polyhedra made from a finite collection of taut tetrahedra. The sequence

exhausts T̃ . This continental exhaustion implies that T̃ is layered, even when T
is not. It also implies that there is a canonical circular ordering of the cusps of T̃ .
This construction requires the veering structure: there are examples of taut angle
structures which admit uncountably many different circular orders on the cusps.

Agol’s layered construction uses splitting sequences of train tracks, drawn on
the two-skeleton of T . These give us a hint for how to proceed. We split these

train tracks through the layers of our layering of T̃ to generate stable and unstable
laminations in the veering circle – the completion of the canonical circular ordering
on the cusps.

The link space is (suppressing some details), the set of pairs of linked leaves,
one leaf from each lamination. The laminations become transverse foliations in
the link space. It turns out that the set of points of the link space for which

both corresponding leaves link a given edge of T̃ is a rectangle in the link space.
Similarly, each face and each tetrahedron has a corresponding rectangle. We show
that a rectangle in the link space is maximal if and only if it corresponds to
a tetrahedron rectangle. Following Guéritaud’s construction, this allows us to
recover the combinatorics of the veering triangulation from the link space.
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Embedding spaces of Hopf links

Rachael Boyd

(joint work with Corey Bregman)

Let us start with a brief history of this topic: The homotopy type of embedding
spaces of knots is well understood, due in the most part to work of Hatcher and
Budney. In particular Hatcher showed that each connected component of the em-
bedding space of long knots is a K(π, 1) [8], and Hatcher and McCullough showed
that furthermore it is a finite dimensional CW-complex [9]. Hatcher computed the
homotopy type of the component corresponding to the unknot, a torus knot, or a
hyperbolic knot [8]. Following this Budney gave a recursive formula to compute
the homotopy type of any connected component of the space of embeddings of
long knots, using the little disks operad and JSJ decomposition of the knot com-
plement [2]. To finish the program, Budney and Cohen provided a formula which
gives the relationship between the homotopy type of the long knot component to
the homotopy type of the connected component of the corresponding embedding
of S1 in S3, given by taking one point compactification [3].

Our work focuses on the homotopy type of embedding spaces of links.

Definition 1. Let SHm,n be the connected component of

Emb( ⊔
2m+n

S1,R3)/Diff( ⊔
2m+n

S1)

containing the split union of m Hopf links and n unknots.

Working modulo the diffeomorphism group gives that each component is un-
oriented and unparametrised, and the components of link are unordered. The
notation used here is motivated as follows: the letters in SHm,n stand for Smooth
H-trivial link, and in RHm,n for Round H-trivial. The term H-trivial comes from
[4], and describes that the link is trivial except for potential Hopf link split sub-
links. Since the number of Hopf link or unlink components corresponds different
connected components of the embedding space, we use the indices (m,n) to iden-
tify a component.

Definition 2. A round unknot is an unparametrised embedding φ ∈ SH0,1 for
which the image of φ is a Euclidean circle in some plane R2 ⊂ R3. A round Hopf
link is an unparametrised embedding ψ ∈ SH1,0 such that the image is a Hopf
link for which each link component is round unknot. We do not require the radius
of the components to be equal or for the disks that they span to intersect at a
particular angle; we only require the two round components to link exactly once.
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Define RHm,n to be the subspace of SHm,n consisting of those embeddings whose
images are split links with split sublinks m round Hopf links and n round unknots.

Recall the space SH0,n is the embedding space of the n-component unlink in R3

studied by Brendle and Hatcher [1]. They prove that the inclusion map

RH0,n →֒ SH0,n

is a homotopy equivalence. Our work is a generalisation of this, considering the
space SHm,n.

Previously, work on these embedding spaces has focused on computation of
the fundamental group, or motion group of the link in R3. Goldsmith [6] showed
that π1(SH1,0) ∼= Q8, as a special example of her work on motion groups of torus
links, and Damiani and Kamada [4] computed presentations for π1(RH1,0) (again
this is isomorphic to Q8) and π1(RH1,1).

Our result is the first step in a program to study the full homotopy type of
embedding spaces of links.

Theorem 3 (B. - Bregman 2020). The inclusion map RHm,n →֒ SHm,n is a
homotopy equivalence.

In particular, this Theorem shows that SHm,n has the homotopy type of a
finite dimensional CW complex, and that it is not a K(π, 1), due to the presence
of torsion in the fundamental group.

In future work we hope to compute this homotopy type up to extensions in
fibration sequences. We believe our proof can be extended to embedding spaces
of ‘Hopf trees’- these are split links in which each split sublink corresponds to
a tree graph in the following manner. Given a graph, place an unknot at each
vertex, and link two of these with linking number one if an edge exists between
the vertices. Then a link configuration corresponds to a disjoint union of trees,
and the fundamental group of the link complement in R3 is given by the right
angled Artin group (RAAG) associated this disjoint union of tree graphs. We
conjecture that the motion group of these spaces is isomorphic to the ‘symmetric
automorphism group’ of this right angled Artin group. Note here that the only
RAAGs that appear as fundamental groups of 3-manifolds are those corresponding
to disjoin unions of tree and triangle graphs, by work of Droms [5].
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The Trace Embedding Lemma

Lisa Piccirillo

There is a rich interplay between the fields of knot theory and 3- and 4-manifold
topology. In this talk, I’ll discuss the trace embedding lemma, an observation first
made by Fox and Milnor in 1957, which has on numerous occasions since provided
outsized contributions to both fields by translating an intractible problem in one
field to a tractible one in the other.

I will highlight three applications of the lemma:

(1) R4 admits multiple smooth structures
(2) The Conway knot is not slice
(3) There are PL 4-manifolds homotopy equivalent to S2 which do not admit

any PL embedding of S2 inducing the homotopy equivalence.

1. The trace embedding Lemma

Definition 3. For an integer n and a knot K in S3, the knot trace X(K) is the
4-manifold obtained by attaching an 0-framed 2-handle to the 4-ball along K.

Definition 4. A knot K is slice if it bounds a smooth D2 embedded in B4. K is
topologically slice if it bounds a locally flat D2 embedded in B4.

Lemma 1 ([FM66]). K is slice if and only if X0(K) embeds smoothly in S4.

2. Exotica

Motivating Problem 1. What is the simplest closed compact orientable 4-mani-
fold which admits multiple smooth structures?

Theorem 4 ([AP08]). CP 2#2CP 2 admits multiple smooth structures.

Open Problem 1. Does there exist any closed orientable compact definite 4-
manifold with multiple smooth structures?

Theorem 5. R4 admits multiple smooth structures.

The sketch that follows is folklore; it seems to have originated in Berkeley in
the late 1970s.

Proof. Let K be a knot which is topologically slice but not (smoothly) slice. A
version of Lemma 1 implies that there is a homeomorphism f embedding X0(K)
in R4. Define X to be R4r ν(f(X0(K))), where ν denotes an open tubular neigh-
borhood. Observe that X is a non-compact topological 4-manifold with boundary.
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By work of Freedman-Quinn [FQ90] X admits a smooth structure, we’ll call this
smooth manifold Xs. Now define W := Xs ∪X0(K). Since X0(K) is smooth by
construction, work of Moise [Moi52] implies W has a smooth structure. One can
write down a homeomorphism R4 to W by forgetting the smooth structure on X .
Observe that X0(K) embeds smoothly in W . Since K is not (smoothly) slice,
Lemma 1 implies that W cannot be diffeomorphic to R4. �

It is natural to ask whether this argument can be used to produce compact
exotic 4-manifolds. If one tries to replace R4 with S4 and run the above argument
verbatum, the trouble arises when trying to put a smooth structure on S4 r

ν(f(X(K))).

Fact 1. If K can be obstructed from being smoothly slice by an obstruction coming
from

• classical abelian or metabelian concordance invariants
• Donaldson’s theorem, Furuta’s 10/8 theorem
• Heegaard Floer homology or gauge theory
• adjunction-type inequalities

then K is not slice in any integer homology B4.

Thus, if K is known not to be smoothly slice via an obstruction coming from
any of these theories, S4 r ν(f(X(K))) does not admit any smooth structure.

Open Problem 2. Does S4 r ν(f(X(K))) admit a smooth structure for K the
Conway knot?

Open Problem 3. Build a smooth X4 with the integer homology type of S4 such
that there exists some non-slice knot K such that X(K) embeds smoothly in X.

Open Problem 4. Find any pair of closed oriented simply connected smooth 4-
manifolds X and W such that X is homotopy equivalent to W and such that there
exists some K so that X(K) embeds smoothly in X but not in W .

3. The Conway knot is not slice

The field of knot concordance is concerned with the study of knots up to sliceness,
and concordance theorists have developed a rich suite of sliceness obstructions
over the years. However, none of the obstructions are perfect, and there is an 11
crossing knot, the Conway knot, which sits in the intersection of the blind spots
of all known sliceness obstructions.

Theorem 6 ([Pic20]). The Conway knot is not slice

Sketch. Build a knot J such that X(J) is diffeomorphic to X(Conway). Lemma 1
implies that the Conway knot is slice if and only if J is. Show (using Rasmussen’s
s invariant) that J is not slice. �

There remain some important open sliceness problems in concordance, for example
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Open Problem 5. Is the positive Whitehead double of the left handed trefoil or
the (2, 1) cable of the figure eight knot slice?

The main technical hurdle of this technique is constructing a knot J with X(J)
diffeomorphic to X(K) for a given K. For some knots, such as the unknot, both
trefoils, and the figure eight knot, it is known that no such J exists.

Open Problem 6. For which K does there exist a distinct knot J with ∂(X(K)) ∼=
∂(X(J))? What about a distinct J so that ∂(X(K)) and ∂(X(J)) are just integer
homology cobordant? Give an algorithm for producing such a J .

4. PL representatives of homotopy equivalences

Motivating Problem 2. Given manifolds Xn and Mm which are homotopy
equivalent, does there exist an embedding φ : M → X inducing the homotopy
equivalence?

This classical problem is interesting in many dimensions, categories of mani-
folds and embeddings, and even relaxed from manifolds to spaces. In the case of
simply connected compact orientable PL manifolds where φ is required to be a PL
embedding, much is known:

Theorem 7 (Combined work of Browder, [Bro68], Casson, Haefliger [Hae68],
Sullivan, and Wall [Wal70]). When n is not 4 and m < n is not 2, such a φ
always exists.

When n = 4 and m = 2 the problem appears on Kirby’s list and was resolved
only recently:

Theorem 8 (Proven by Levine-Lidman [LL19], later proof in [HP19]). There
exists X4 homotopy equivalent to S2 such that no such φ exists.

The following lemma plays a key role in both proofs:

Lemma 2. A smooth 4-manifold X4 homotopy equivalent to S2 admits such a
φ if and only if there is some knot J in S3 such that X(J) embeds smoothly in
X0(J) inducing a homotopy equivalence.

To prove the theorem, Levine and Lidman show that for their candidate ex-
amples X , no such J exists. Because they have to obstruct trace embedding for
every knot J they are forced to use a difficult sophisticated obstruction (sets of
Heegaard Floer d-invariants), and their example X is quite contrived in order to
be able to compute the invariants. The trace embedding lemma allows a drastic
simplification; build a candidate example X which embeds in S4. Then the trace
embedding lemma implies that if X admits a trace embedding, the knot J must
be slice. It is much easier to show that many candidate manifolds X do not ad-
mit a slice trace embedding (for example with the adjuction inequality for Stein
domains).
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Kleinian groups generated by two parabolic transformations

Makoto Sakuma

(joint work with Shunsuke Aimi, Hirotaka Akiyoshi, Gaven Martin, Donghi Lee,
Ken’ichi Ohshika, Shunsuke Sakai, John Parker, Han Yoshida)

In 2002, Agol [2] announced the following classification theorem of non-free Kleinian
groups generated by two parabolic transformations, which generalises the results
of Adams [1].

Theorem 1. A non-free Kleinian group Γ is generated by two non-commuting
parabolic elements if and only if one of the following holds.

(1) Γ is conjugate to the hyperbolic 2-bridge link group, G(r), for some ratio-
nal number r = q/p, where p and q are coprime integers such that q 6≡ ±1
(mod p).

(2) Γ is conjugate to the Heckoid group, G(r;n), for some r ∈ Q and some n ∈
1
2N≥3.

Here G(r) is the Kleinian group that uniformises the complement S3 − K(r)
of the hyperbolic 2-bridge link K(r), and G(r;n) is the Kleinian group that uni-
formises the Heckoid orbifold S(r;n), which is isomorphic to one of the orbifolds
in Figure 1 (see [4, Definition 3.4 and the paragraph preceding it] for the precise
definition).

Agol [2] also announced the following classification of parabolic generating pairs
of the groups in Theorem 1, which also refines and extends Adams’ results in [1]
(see Figure 1).
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Figure 1. The black graphs illustrate weighted graphs represent-
ing 2-bridge links and Heckoid orbifolds, where the thick edges
with weight ∞ correspond to parabolic loci and thin edges with
integral weights represent the singular set. The red thin graphs
represent the parabolic generating pairs of the hyperbolic 2-bridge
link groups and the Heckoid groups.

Theorem 2. (1) If Γ is a hyperbolic 2-bridge link group, then it has precisely
two parabolic generating pairs, namely the upper and lower meridian pairs, up to
equivalence.

(2) If Γ is a Heckoid group, then it has a unique parabolic generating pair, up
to equivalence.

Here, by a parabolic generating pair of a Kleinian group Γ, we mean an unordered
pair {α, β} of parabolic transformations α and β that generate Γ. Two parabolic
generating pairs {α, β} and {α′, β′} are said to be equivalent if {α′, β′} is equal to
{αǫ1 , βǫ2} for some ǫ1, ǫ2 ∈ {±1} up to simultaneous conjugacy.

In the joint paper [4] with Hirotaka Akiyoshi, Ken’ichi Ohshika, John Parker
and Han Yoshida, we gave a full proof to Theorem 1, and in the joint paper [3]
with Shunsuke Aimi, Donghi Lee and Shunsuke Sakai, we gave an alternative proof
to Theorem 2.

In the first part of my talk, I explained an outline of the proof Theorem 1, by
pointing out the following facts behind the proof.

(1) The orbifold surgeries on hyperbolic 2-bridge link complements and Heck-
oid orbifolds, that replace the index ∞ with 2, produce spherical dihedral
orbifolds O(r; d+, d−) with d+ = 1 or 2 in Figure 2.

(2) Geometric orbifolds with dihedral fundamental groups can be classified
easily (see [4, Theorem 4.1]). In particular, spherical dihedral orbifold is
isomorphic to the orbifold O(r; d+, d−) in Figure 2.

The proof of Theorem 1 depends on two deep theorems, the orbifold theorem
established by Boileau-Leeb-Porti and Cooper-Hodgson-Kerckhoff, and the relative
version of the tameness theorem for orbifolds (see [4, Theorem 5.1]) which is a
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Figure 2. The spherical dihedral orbifold O(r; d+, d−), where
the singular set consists of the 2-bridge link K(r) together with
the upper/lower tunnels.

variant of the tameness theorem established by Agol, Calegari-Gabai, Soma, and
Bowditch.

Next, we explain a conjecture extending Theorems 1 and 2, which I proposed
in the third part of my talk. The conjecture is based on the fact that two-
parabolic-generator groups are commensurable with the images of certain special
type-preserving representations of the fundamental group of the once-puncture
torus (see [5, Lemma 5.3.2]).

Let T , S and O, respectively, be the once-punctured torus, the 4-times punc-
tured sphere, and the (2, 2, 2,∞)-orbifold (i.e., the 2-orbifold with underlying space
a punctured sphere and with three cone points of indices 2). They have R2 − Z2

as the common covering space. To be precise, let Λ and Λ̃, respectively, be the
groups of transformations on R2−Z2 generated by π-rotations about points in Z2

and (12Z)
2. Then T = (R2 − Z2)/Z2, S = (R2 − Z2)/Λ and O = (R2 − Z2)/Λ̃. In

particular, there is a Z2-covering T → O and a (Z2)
2-covering S → O: the pair

of these coverings is called the Fricke diagram and each of T , S and O is called
a Fricke surface. The fundamental groups π1(T ) and π1(S) are identified with
the normal subgroups of the orbifold fundamental group π1(O) of index 2 and 4,
respectively.

The isotopy classes of essential simple loops in a Fricke surface are in one-to-
one correspondence with Q̂ := Q ∪ {1/0}: A representative of the isotopy class

corresponding to r ∈ Q̂ is the projection of a line in R2 − Z2. The element r ∈ Q̂

associated to a loop is called its slope. We denote an essential loop of slope r in
T or O (resp. S) by βr (resp. αr). Then, after an isotopy, the restriction of the
projection T → O to βr (⊂ T ) gives a homeomorphism from βr (⊂ T ) to βr (⊂ O),
while the restriction of the projection S → O to αr gives a two-fold covering from
αr (⊂ S) to βr (⊂ O). By regarding αr and βr as (conjugacy classes of) elements
of π1(O), we have αr = β2

r .
Now recall that the 2-bridge link (S3,K(r)) of slope r is obtained as the sum

of the rational tangles of slope ∞ and r. This implies that the link group G(r) ∼=
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π1(S
3 − K(r)) is isomorphic to the quotient group π1(S)/〈〈α∞, αr〉〉. The pre-

ceding fact implies that G(r) is an index 4 normal subgroup of π1(O)/〈〈β2
∞, β

2
r 〉〉.

Thus G(r) is commensurable with the quotient group π1(T )/〈〈β2
∞, β

2
r 〉〉. Similarly,

it turns out that Heckoid group G(r;n) with n = m
2 ∈ 1

2N≥3 is commensurable

with the quotient group π1(T )/〈〈β2
∞, β

m
r 〉〉. The natural embeddings of G(r)

and G(r;n) into PSL(2,C) determine type-preserving representations of π1(T ) to
PSL(2,C), which have discrete images (and nonfaithful). Here a representation
ρ : π1(T ) → PSL(2,C) is said to be type-preserving if it is irreducible and maps
peripheral elements to parabolic transformations.

This observation together with Theorems 1 and 2 naturally leads us to the
following conjecture.

Conjecture 3. If a nonfaithful type-preserving representation ρ : π1(T ) →
PSL(2,C) is discrete, then its kernel is equal to 〈〈βm

r 〉〉 for some r ∈ Q̂ and m ≥ 2

or 〈〈βm1

r1 , β
m2

r2 〉〉 for some distinct r1, r2 ∈ Q̂ and m1,m2 ≥ 2. In particular, the

image of ρ is isomorphic to π1(T )/〈〈βm
∞〉〉 for some m ≥ 2 or π1(T )/〈〈β2

∞, β
m
r 〉〉.

for some r ∈ Q̂ and m ≥ 2.

It is also natural to conjecture that similar results hold for type-preserving
PSL(2,C)-representations of the orbifold fundamental group of the 2-orbifold T (n)
with underlying space the closed torus and with a single cone point of index n ≥ 2.

Finally, I explain a conjectural picture on the space of Kleinian groups generated
by two parabolic transformations, which was presented in the second part of my
talk. To describe the conjecture, recall that the Riley slice R is the subspace of
C∗ = C−{0} consisting of the non-zero complex numbers ω such that the following
marked groupGω has the domain of discontinuity whose quotient is homeomorphic
to the four-times punctured sphere:

Gω = 〈A, Bω〉 with A =

(
1 1
0 1

)
and Bω =

(
1 0
ω 1

)

It has been studied by Keen and Series [6] by using pleating rays, and further
by Komori and Series [7]. Ohshika and Miyachi [9] proved that the closure R̄ of
R in C∗ is equal to the space of the complex parameters ω such that Gω is a
rank 2 free Kleinian groups and that the boundary (frontier) ∂R of R in C∗ is
a Jordan curve. In the joint work [5] with Akiyoshi, Wada and Yamashita, we
studied extensions of the rational pleating rays to the outside of the Riley slice,
and announced that they correspond to continuous families of certain hyperbolic
cone manifolds and that their endpoints correspond to hyperbolic 2-bridge link
complements (or the 2-dimensional hyperbolic base orbifolds of the Seifert fibered
structures of non-hyperbolic 2-bridge links). See [5, Figure 0.2b]. Assuming this
announcement, Theorems 1 and 2 imply that all non-free discrete groups are lo-
cated on the extended rational pleating rays.

Through discussion with Gaven Martin and John Parker, and through collabo-
ration with Hirotaka Akiyoshi, the following conjecture arose.
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Figure 3. Conjectural tiling of the complement of R̄

Conjecture 4. The complement of R̄ admits a natural tiling {Rc(r)}r∈Q/2Z, as
shown in Figure 3, where each tile Rc(r) is characterized as follows.

Consider the link K(r∗) ∪ αr, where (i) r∗ is the Farey neighbour of r such
that if r has the continued fraction expansion [a1, · · · , an] then r∗ = [a1 · · · , an−1],
and (ii) αr is a simple loop of slope r on the 2-bridge sphere of the 2-bridge link
K(r∗). Consider hyperbolic Dehn fillings of S3−(K(r∗)∪αr) which keeps the cusps
around K(r∗) complete, and consider the subspace of the hyperbolic Dehn filling
space spanned by the line segments joining the points ∞, (±1, 1), (0, 1), (∓1, 1/2)
cyclically in this order, where the sign ± is determined by r. Then the tile Rc(r)
corresponds to the restrictions of the holonomy representations of the (possibly
incomplete) hyperbolic manifolds corresponding to the points in the above subspace
to the subgroup determined by the upper meridian pair of K(r∗). In particular,
each tile Rc(r) is a “quadrangle” which contains the extended pleating ray of slope
r as a diagonal.

Thus, each point in the complement of R̄ can be regarded as a subgroup of the
holonomy group of a certain (generically incomplete) hyperbolic manifold.

We note that Martin [8] identified the exterior of R as the Julia set of a certain
semigroup of polynomials and proved a “supergroup density theorem” for groups
in the exterior of R.
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