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Introduction by the Organizers

The workshop Mechanics of Materials: Mechanics of Interfaces and Evolving Mi-
crostructure attracted about 40 participants with broad geographic representation.
Even though about 15 of the invited researchers canceled their participation shortly
before the workshop due to the start of the SARS-CoV-2 pandemic, this workshop
comprised a well balanced blend of researchers with backgrounds in mathematics,
mechanics and materials science. The organizers successfully recruited a signifi-
cant number of younger representatives of the mentioned research communities.
The sequence and duration of the sessions were defined on Monday morning. They
were moderated by session chairs and each consisted of 3-5 extended lectures (30
minutes each, including discussion) presented to all participants of the workshop.
Ample time was devoted to discussion, both during and following presentations.
The format of the sessions (subject to hard stops for lunch and dinner), including
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coffee breaks, gave the flexibility to maximize productive discussion. Reports from
the session chairs were summarized and discussed extensively on Friday and are
summarized in this report.
The organizers regard this particular workshop as extremely successful in the top-
ical area of mechanics of materials, for several reasons. First, a number of young
participants were involved and highly active in presentations and discussions, rep-
resenting the next generation of blending applied mathematics with mechanics of
materials. Second, the discussions were detailed and deep into the subject, with
many useful points and counterpoints discussed. We believe that this workshop has
launched many potentially fruitful couplings of researchers, and has defined some
specific target areas as goals for mathematics, mechanics and materials science.

One of the major advances of the past few decades has been the improvement of
computational methods and applied mathematics directed at thermodynamically
consistent forms of constitutive equations for complex non-equilibrium evolution-
ary phenomena such as plasticity, damage and fracture of materials. This includes
methods for modelling material response at multiple spatial length scales. On
the other hand, mathematical machinery and algorithms for addressing evolution
of material structure occurring over a broad range of time scales is much less
well developed. The fact that various structural attributes of materials (atoms,
molecules, defects) have a spectrum of characteristic relaxation times is a key fac-
tor in limiting access to long time scales in modelling. It is a much more daunting
problem, in general, than modelling spatial scale transitions alone. The conven-
tional mathematical machinery of energy minimization provides guidance but has
limited direct applicability to material systems evolving away from equilibrium.
When microstructures evolve, as during plastic deformation, progressive damage
and fracture, stress-assisted diffusion, migration or chemical/thermal aging, the
associated classical mathematical frameworks are often ad hoc and heuristic. Ad-
vancing new and improved methods is a major focus of 21st century mechanics
of materials. This state of affairs motivated the central theme of the workshop,
namely to explore new and emerging mathematical approaches or schema to esti-
mate and predict kinetics of fundamental processes in plasticity, damage and frac-
ture. This requires a careful examination of various classes of modern constitutive
theories for dislocation dynamics in metal plasticity ranging from coarse-grained
atomistics to discrete dislocation dynamics and phase field models, for example, as
well as defect cascades in fractures. Careful examination of transition state theory
and entropic effects (both configurational and vibrational) is warranted. There are
serious unresolved physical and mathematical issues and limitations in time up-
scaling of predictive computational methods for up-scaling atomistic simulations
to relevant time scales, and additional issues that pertain to modelling kinetics of
evolution using continuum phase field models or discrete defect models. Based on
the above sketch of current and highly relevant topics and the experience gained
in organizing preceding workshops on mechanics of materials, five main topical
working groups were suggested and the main results and numerous open questions
of the dedicated sessions are summarized in the following sections.



Mechanics of Materials 715

1. Multiphysics

Multiphysical problems had received considerable attention on the theoretical side
during the era of rational mechanics in the middle of the twentieth century. The
field has continually gained fresh impetus since the 1990s from two main sources.
Firstly, the emergence of new classes of materials that show strong multiphysical
coupling effects (e.g. shape memory alloys and polymers, giant magnetostrictives,
ferroelectrics, multiferroics, magneto- and electroactive polymers, etc.) – often
classified as smart, active and/or multifunctional materials – has enabled new ar-
eas of technological application (smart actuators, sensors, and structures, energy
harvesting, self-healing, data storage, biomimetics, substitute materials) that were
previously simply inconceivable. Secondly, the rapid increase of computational
power has led to the feasibility of incorporating complex constitutive behaviors,
geometrical nonlinearity and multiscaling into the numerical treatment of multi-
physics problems. However, despite decades of intense, multidisciplinary research
efforts in the mathematical modeling of multiphysics systems, there remain many
fundamental challenges, such as:
1) Even for many established continuum mechanics-based formulations capturing
multifield coupling phenomena, fundamental mathematical analysis – e.g. prov-
ing the non-existence of solutions – is not available. This is particularly true, if
nonlinearities, anisotropy and non-convexity come into play.
2) The calibration, verification, and validation of multiscale, multiphysics material
models naturally proves particularly difficult. Since full sets of physical input pa-
rameters are almost never available from experimental measurements, the question
arises on how uncertainties of various type – and statistical information in general
– can be incorporated into multiphysical material models.
3) In addition to the lack of data, we now often face the difficulty of overdeter-
mination, i.e. having too much data, possibly of very different origin or trustwor-
thiness and containing undetected correlations. Data-driven materials science and
machine-learning techniques, that currently receive enormous attention in many
fields, may prove to be of particular merit in this regard.
4) In view of the ever increasing complexity of multiscale models, it is highly
desirable to establish adaptive methods, for instance FE2-techniques for structural
computation, in which direct numerical homogenization from the lower length-
scale is activated only if triggered by an appropriate error estimator.
5) New classes of concurrent multiscale methods centering on reduced-order mod-
eling (e.g. proper generalized decomposition) are beginning to emerge, along with
the data-driven methods (e.g. self-consistent clustering analysis) to complement
the FE2 approach. Much work will be needed to investigate the full potential –
and limitations – of these methods.
6) Finally, all of the developments discussed in the other working groups also bear
great relevance to multi-physics problems. In our experience, much fundamental
understanding and also novel theoretical and numerical techniques that were orig-
inally developed in the multiphysics context can vice versa lead to new approaches
in more classical research areas.
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2. (Visco)Plasticity

Important and stimulating talks and discussions centered around the following
topics.
1) Smooth rate-independent elastoplastic models are physically more realistic than
standard ones with a kink at yield. They are also computationally advantageous
due to the absence of consistency condition to be exploited. Implications of strain
localization analysis have been investigated recently.
2) Invariance principles in mechanics are instrumental in the derivation reduced
forms of constitutive equations. The methodology has been recently applied to
second gradient fluids. Applications to turbulence have been highlighted and to
blood flow in vessels. Such models are mature for CFD.
3) Quite current is the mathematical modelling of energetic materials that have
large amounts of stored chemical energy. It is then imperative to describe simul-
taneously the mechanics and the thermodynamics of the body. The presented
model attempts to describe an archetypal thermo-mechanical phenomenon: shear
banding. It is challenging to analyse the equations for heat flow within thermo-
mechanical bodies when their material parameters are temperature-dependent.
There is a need for a rigorous mathematical treatment of internal energy in dif-
ferent material types, for the existence theory for the parabolic free boundary
problem that arises in the shear band model, as well as a call for empirical data
from experiments.
4) Crystal plasticity models involve sophisticated constitutive equations account-
ing for the kinetics of dislocation multiplication and storage depending on stress
and strain rate. Parameter identification from macroscopic tensile tests over a
large range of temperatures turns out to be a challenging issue. A discussion
followed on the most suitable form for the viscoplastic slip rate function with pro-
posals from the audience. Suggestions followed regarding the use of strain rate
jump tests and relaxation tests.
5) A hierarchy of viscoplasticity models emerges from the discussion: from the
most simple J2 plasticity model to crystal plasticity and strain gradient models.
They are ready for goal-oriented model adaptative schemes.

3. Fracture, damage and structural mechanics

The most important outcomes of the talks and discussions are as follows.
1) In the field of fracture and damage models as rate-independent systems it
became clear, that different approaches lead to different solutions. So far, it is
not evident, which approach can be considered as the correct one.
2) Cavitation is a process, that is known in fluid dynamics for a long time. The
occurrence in solid mechanics and its interpretation as fracture is a quite new
development. Of special interest seems to be the occurrence of hardening (in
coexistence with strain-induced crystallization) and healing, thus introducing a
negative rate of damage.
3) It became obvious, that the mathematical research concerning the development
of cracks might improve the computation of damage of fiber reinforced materials
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using phase-field approaches. The use and determination of appropriate material
properties of heterogeneous materials taking into account the actual microstruc-
ture is a central aspect to obtain reliable results. The simulation of fatigue of
materials with plastic deformation can be done in a timely more efficient way as
it has been presented, but for larger plastic zones, a more detailed computation of
the plastic zones might be necessary.
4) Findings are related to new areas for the use of metamaterials such as panto-
graphic structures, large elastic deformations, high-damage tolerances, deployable
structures or simply engineered material with special properties, discrete models
for higher-order gradient materials.
5) An a priori error estimate for consistent plate theories is difficult and important,
especially when results need to be reliable. This includes boundary conditions.
The discussion showed the necessity to put more effort into the differentiability
of the used approximations for the description of e.g. the loading. Localization
of errors, not only for stress resultants but also for stresses should be taken into
account. Oscillations of stresses at corners should be investigated as well.

4. Mechanics of materials

The session was devoted to the field of mechanics of materials itself. It com-
prised a wide mixture of topics ranging from mathematical aspects to engineering
applications.
1) The mathematically oriented contributions demonstrate that the impact of
mathematics to the field are of utmost importance since rigorous checks and proofs
of suggested models of the material behavior are necessary for applications, espe-
cially if computer simulations should be realized.
2) Several application oriented contributions have shown the diversity of research
in the field of mechanics of materials. Solving practical problems in the case of
advanced materials, improvement of materials properties, data handling, and new
applications are only a few examples.
3) The interpretation of the term mechanics of materials is not unique as it
ranges from the classical term strength of materials up to the German term Werk-
stoffmechanik. The last one is more general, since it aims to abstract the material
behavior by equations taking into account the kinetics of microstructure evolution
due to processing and/or service conditions.

5. Dislocations

With regard to the continuum dislocation dynamics CDD theories, the constitutive
closure for the average dislocation velocity was discussed as a persistent challenge
which deserves special attention and possibly the development of novel approaches.
Classical continuum thermodynamics as well as the GENERIC framework show
weaknesses when applied to dislocation systems. The reason is on the one hand
the complexity of the developing dislocation networks, and on the other hand,
that dislocations are mostly in metastable states without being much affected by
thermal activation at low homologous temperatures. With regard to the universal



718 Oberwolfach Report 13/2020

laws the discussions addressed the question of the predictive power of the presented
theories.
1) One talk explained how CDD defines a crystal plasticity theory solely built upon
transport or transport-reaction equations for vectorial or tensorial dislocation den-
sity measures. Constitutive modelling in CDD based crystal plasticity therefore
means the provision of a relation between the current stress and dislocation state
and the average dislocation velocity, rather than a stress-shear-rate relation, which
defines phenomenological crystal plasticity. Focus was put on the incorporation
of dislocation reactions and cross-slip in the CDD framework, in order to capture
well-known processes on the single dislocation level within the continuum frame-
work. It was demonstrated that according large-scale CDD simulations reproduce
salient features of strain hardening in single crystals and dislocation pattern for-
mation, both in uni-directional and in cyclic loading. Furthermore it was shown
how averaged CDD theories may be developed which overcome restrictions on the
spatial resolution, which are present in dislocation density-vector based CDD the-
ories. Finally, it was concluded that large deformation CDD needs to be coupled
to evolving fields of point defects, most notably vacancies.
2) The General Equation for Non-Equilibrium Reversible Irreversible Coupling
(GENERIC) is a tool for deriving the above mentioned closure, i.e., deriving the
average dislocation velocity in CDD formulations as a function of the current stress
and dislocation state. The presented approach was based on the general elastic
interaction energy functional for curved dislocation networks from dislocation field
theory. In particular, this formulation results in coarse-grained continuum balance,
transport, and thermodynamic flux-force, relations depending on the underlying
discrete energetics and dynamics.
3) A further talk introduced a polycrystal theory based on evolution laws for scalar
dislocation densities. Focus was laid on capturing the strain-rate and temperature
dependence of polycrystalline metals in the spirit of constitutive laws based on
thermally activated dislocation motion as first introduced by U.F. Kocks. However,
the presented work heavily built on recent work by J.S. Langer, where the usual
exponential Arrhenius law for the strain rate, with power law dependencies on the
stress in the exponential, is replaced by a double exponential dependency on the
stress.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
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Abstracts

Electric Power Absorption Caused Thermal Tissue Damage

Bilen Emek Abali

Electrically induced tissue damage is a coupled phenomenon in multiphysics. Con-
ducting electricity produces heat and this increases the temperature. The soft
tissue – skin, organs, brain, or muscles – is burnt under successive heating. This
thermal damage is modeled by using a scalar field called a damage parameter with
a corresponding evolution law. Electromagnetism, thermomechanics, and damage
modeling creates a set of coupled and nonlinear field equations. The correct weak
formulation is challenging in the case of a numerical implementation with the aid
of the finite element method. The reasons of this difficulty is discussed and a
possible remedy is shown allowing a monolithic as well as robust computational
implementation of the electromagneto-thermomechanics damage simulation.

1. Interaction of Electromagnetism and Thermomechanics

Mechanical and electric energy are transferable such that there is a strong cou-
pling between these fields. Consider the balance of mechanical momentum in a
“material” frame for obtaining displacement, u, depending on the momentum flux
or usually called engineering stress,1 P , as follows:

(1) ρ0u
••

i − Pji,j − ρfi = Fi ,

where the mass density, ρ0, is a given function in space, X, gravitational (specific,
i.e. per mass) body force, f , is often modeled as a constant. Einstein’s sum-
mation convention is understood for repeated indices. A comma denotes a space
derivative, all fields are expressed in Cartesian coordinates. The coupling term,
FFF , is the ponderomotive force density, in the case of non-polarized material,

(2) Fi = ρzEi + ǫijkJjBk

is called the Lorentz force with the electric field, EEE , and magnetic flux, BBB, mea-
sured on the “material” frame. In the case of polarized material, the discus-
sion is tedious and a definition seems to be arduous, known as the Abraham–
Minkowski controversy, see for example [1, 2, 3, 4, 5]. Already in the Lorentz
force, we realize that the mass density, ρ, and specific charge, z, are given with
respect to material (meaning mass) positions at the current placement, although
the formulation for mechanics is in the material frame often chosen as the initial
placement. The transformation between them is well known for thermomechani-
cal fields, where coordinate transformation is used for fields leading to a Euclid
transformation. The same transformation fails to hold for electromagnetic fields
and the Maxwell equations. The coupling is of interest, but it seems to be very

1Stress on a material frame is called the Piola or Boussinesq or first Piola–Kirchhoff
stress
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difficult to develop a unique theory. By starting from Faraday’s law, we obtain
two Maxwell equations with the following ansatz functions fulfilling them

(3) Ei = −φ,i −
∂Ai

∂t
, Bi = ǫijkAk,j ,

electric field, E, magnetic flux (area density), B, are given by electric potential, φ,
magnetic potential, A. All fields are measured on a laboratory frame assumed to
be fixed in space. This solution is adequate, but E and B consist of 6 components
and cannot be described uniquely by φ and A related 4 components. The missing
conditions are called “gauge” conditions and we can freely choose rate of electric
potential and divergence of magnetic potential. Electromagnetic fields, E, B, will
remain the same. They are the real measurable quantities and their transformation
properties are given by

(4) Ei = Ei + ǫijku
•

jBk , Bi = Bi ,

as well as Ji = Ji + ρzu•

i. Obviously, the transformation is different between
two frames, we ignore the difference and use “space” in a lax terminology as
being the reference frame equal to the material frame for thermomechanics and
electromagnetism. As a gauge condition, one is free to choose any combination,
for computational performance, we choose the Lorenz gauge condition:

(5)
∂φ

∂t
= − 1

µ0ε0
Ai,i ,

with the universal constants, ε0, µ0, and we refer to [6] for computational im-
plementations. From the balance of charge, we obtain another two Maxwell
equations

(6)
∂ρz

∂t
+ Ji,i = 0 , ρz = Di,i ,

∂Dj

∂t
= ǫjklHl,k − Jj .

with Maxwell–Lorentz aether relations:

(7) Di = ε0Ei , Hi =
1

µ0
Bi .

By using the latter, field equations for φ, A read

(8)
∂Di,i

∂t
+ Ji,i = 0 , ε0

∂2Ai

∂t2
− 1

µ0
Ai,kk − Ji = 0 ,

respectively. For the balance of internal energy, supply term, r is known, stress,
Pji = FikSjk, is given by the material stress, S, with the deformation gradient,
Fij = ui,j + δij , as follows:

2

(9) ρ0u
• +Qi,i − ρ0r = JJiEi + Sijε

•

ij , J = det(F ) ,

where the heat flux, Q, needs to be modeled, the specific internal energy, u, is
modeled by the specific Helmholtz heat energy, f = u − Tη. Temperature, T ,

2Rate denoted by dot is an objective time derivative tantamount to the partial time derivative
in the material frame.
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is the unknown and specific entropy, η, needs to be defined. If we use a Fung
material model:

(10) u = c(T − TRef) +
D

ρ0

(
exp

(1
2
εijBijklεkl

)
− 1

)
,

with the damage variable, α, we observe that f = f (T, ε, α). Relations,

(11) η =
∂f

∂T
, Sij = ρ0

∂f

∂εij
= Cijklεkl ,

allow us to obtain the balance of internal entropy:

(12) ρ0η
• +
(Q
T

)
,i
− ρ0

r

T
= Σ , Σ = −Qi

T 2
T,i +

J

T
JiEi −

ρ0
T

∂f

∂α
α• .

According to the second law of thermodynamics, Σ ≥ 0, we obtain the following
conclusion according to the Curie principle,

(13) −ρ0
T

∂f

∂α
α• ≥ 0 ,

εijC
0
ijklεkl

2Tα2
exp

( 1

2Dα
εmnC

0
mnopεop

)
α• ≥ 0 ,

such that α• ≥ 0, analogous to the Karush–Kuhn–Tucker condition. A simple
model relies on a positive rate activated beyond a threshold value. Now for the
other terms, we utilize, for the sake of simplicity, linear relations,

(14) Qi = −κT,i + ςπTEi , Ji = ςπT,i + ςEi .

2. Weak formulation

We discretize in time by using the finite difference method, ∂()/∂t =
(
()−()0

)
/∆t,

with the known (computed) solution ()0 at the last time step. In space, we use the
finite element method and obtain the weak form by multiplying by test functions,
performing integration by parts, as well as apply jump conditions—especially for
electromagnetic potentials, jump conditions are crucial, we refer to [7] for a veri-
fication of the numerical procedure by an analytical solution. We emphasize that
the total weak form is the sum of all weak forms for each unknown, namely,

(15) Weak Form = Fφ + FA + Fu + FT .

Hence, each weak form has to be in the same unit. All unknowns are from the
same space
(16)

V =

{
{φ,A1, A2, A3, u1, u2, u3, T } ∈ [H1(Ω)]8 : {φ,Ai, ui, T }

∣∣∣
∂Ω

= given

}
.

This choice is possible as we have chosen the Lorenz gauge. In this case, electro-
magnetic potentials generate the following weak forms:

(17)

Fφ =
∑

ele

∫

Ω

(
− (Di −D0

i )δφ,i −∆tJiδφ,i

)
dV ,

FA =
∑

ele

∫

Ω

(
ε0
Ai − 2A0

i +A00
i

∆t2
δAi +

1

µ0
Ai,jδAi,j − JiδAi

)
dV .
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The computational domain, Ω, is simply the triangulation of the physical domain
and the boundary conditions as well as jump conditions are of importance, we di-
rect to [8] for further details as well as convergence analysis. For thermomechanical
fields we have

(18)

Fu =
∑

ele

∫

Ω

(
ρ0
ui − 2u0i + u00i

∆t2
δui + Pjiδui,j − ρfiδui − Fiδui

)
dV ,

FT =
∑

ele

∫

Ω

(
ρ0(η − η0)δT −∆t

Qi

T
δT,i −∆tρ0

r

T
δT −∆tΣδT

)
dV

+

∫

∂Ω

∆t

T
h(T − Tamb)δT dA ,

where for temperature, we use so-called natural boundary conditions with the
convection parameter, h. The damage parameter is updated as

(19) α := α+∆tα• ,

where “:=” denotes an assigning new values operator in computational algebra.
Weak formulation for a multiphysics application including displacement, temper-
ature, electromagnetism, as well as thermal damage has been briefly shown. We
emphasize that this weak form is delivering a robust method to simulate appli-
cations even under loading leading to high rates of unknowns as demonstrated in
[8].
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Mechanics of Materials - Werkstoffmechanik

Holm Altenbach

The material life cycle comprises different stages (Fig. 1). It is easy to see that
some of these stages belong to Mechanics of Materials. But at first one should
clarify the meaning of Mechanics of Materials.
From the internet one gets the following information concerning Mechanics of
Materials:

• Mechanics of Materials is an international journal (founding editor S.
Nemat-Nasser, Elsevier).

• Wikipedia [2]: Strength of materials, also called mechanics of ma-
terials, deals with the behavior of solid objects subject to stresses and
strains. The complete theory began with the consideration of the behav-
ior of one and two dimensional members of structures, whose states of
stress can be approximated as two dimensional, and was then generalized
to three dimensions to develop a more complete theory of the elastic and
plastic behavior of materials. An important founding pioneer in mechanics
of materials was Stephen Timoshenko.

• Translation: Mechanics of Materials ↔ Werkstoffmechanik [3].

Mechanics of Materials is an interdisciplinary topic in between Materials Science,
(Continuum) Mechanics, (Applied) Mathematics. The focus is on the description
of the material behaviour by equations. The outcome is computer simulation of
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Figure 1. Material life cycle [1]
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tests with simple specimens an of structural elements or structures. There are the
following challenges

• Identification of the material parameters or parameter functions,
• Verification of the models,
• Mathematical correctness of the models, and
• Physical admissibility of the models.

One direction of Mechanics of Materials is related to the basic equations of Con-
tinuum Mechanics [4]. For solving problems we need:

• first set of equations
– kinematical relations,
– statements w.r.t. loadings,
– balance equations

∗ mass,
∗ momentum,
∗ moment of momentum,
∗ energy,
∗ entropy,

• second set of equations
– constitutive and
– evolution equations.

In addition, one needs

• boundary and/or initial conditions
• jump conditions, if the physical fields are non-smooth.

There are several extensions to the classical statements discussed during this con-
ference, e.g. Gradient Theories, Cosserat theories or Multiphysics.
The second set of equation are the material-dependent equations. They are spe-
cific for each material since they are describing the individual response of the
continuum on loading (mechanical, thermal, electrical,magnetic, etc.). Constitu-
tive equations can be algebraic (e.g. Hooke’s law), differential (e.g. creep law),
integral (viscoelatic behaviour), etc. Evolution equations are differential equation
of first order w.r.t. time describing evolution processes like damage in the material.
Mechanics of Materials is also focused on scales. The classical scales are: the
macroscopic scale (phenomenological description of the material behavior on the
base of experimental observations and a mathematical framework), microscopic
scale (description of the microstructural changes, for example, texture, damage,
phase transitions, etc.), and the atomistic scale (description of the interatomic
actions, for example, by assuming force potentials). Now, we have also other
(more) scales, for example, the mesoscale (between macro- and microscale) or the
submicroscale.
The constitutive behavior can be modeled on the base of Materials Physics, Ma-
terials Science, and Mechanics. Material physics is the use of physics to describe
materials. It is a synthesis of physical sciences such as chemistry, solid mechan-
ics and solid state physics. Solid-state physics is the largest branch of condensed
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matter physics, is the study of rigid matter, or solids. The bulk of solid-state
physics theory and research is focused on crystals, largely because the periodic-
ity of atoms in a crystal – its defining characteristic – facilitates mathematical
modeling, and also because crystalline materials often have electrical, magnetic,
optical, or mechanical properties that can be exploited for engineering purposes.
Materials science or materials engineering is an interdisciplinary field involving the
properties of matter and its applications to various areas of science and engineer-
ing. This science investigates the relationship between the structure of materials
and their properties. It includes elements of applied physics and chemistry, as well
as mechanical, civil and electrical engineering.
In Mechanics we have three modeling approaches. The first is the Top-down
Modeling (deductive approach). The starting point of the deductive approach
is the introduction of axioms of the material theory: causality, determinism,
equipresence, material objectivity, local action, memory, and physical consistency,
etc. The second approach Bottom-up Modeling (inductive approach) is a more
engineering way of formulation constitutive equations. For example, we start we
the Hooke’s law (tension with σ - normal stress, E - Young’s modulus and ε normal
strain

σ = Eε

or torsion with τ - shear stress, G - shear modulus and γ - shear strain

τ = Gγ

and generalize towards the following cases: three-dimensional isotropic case, three-
dimensional anisotropic case, nonlinear behavior, . . . . In each case, the thermo-
dynamical consistency, which is guaranteed in the deductive approach, should be
checked separately. The last approach is the Rheological Modeling. This ap-
proach is founded on the introduction of some basic models, for example, related to
elastic behavior, plastic behavior, and viscous behavior. In addition, the assump-
tion that the connection of basic models can be realized only in parallel or series.
Then any complex behavior can be represented by these connection, for example,
visco-elastic = elastic + viscous or visco-plastic = plastic + viscous. Important
contributions to the last one field were made Markus Reiner (1886-1976) and dis-
cussed, for example, by Arnold Krawietz and Vladimir Palmov (1934-2018). The
last one realized this approach in the case of isotropic and anisotropic materials
including large strains.
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On Invariance Requirements for Gradient Fluids

Albrecht Bertram

In 1867 Levy [1] and de Saint-Venant [2] stated that the measured velocity profiles
of turbulent channel flows can not be simulated neither by a (linear) Navier-Stokes
law nor by a non-linear extension of it. On this occasion, de Saint-Venant already
suggested to take higher velocity gradients into account.
A century later Trostel made the same suggestion. His intention was to describe
fully developed turbulence, and he and his group worked out a theory of second-
order [3] and third-order linear fluids [4]. For such models, invariance requirements
play a crucial role, and are not always correctly stated. Three main issues are
involved

1. invariance under change of observer (objectivity)
2. invariance under superimposed rigid body modifications
3. invariance under symmetry transformations

These three invariances must be carefully distinguished.
The first one leads to the objectivity of the stress tensors, and should hold for all
materials.
The second allows for reduced forms of the stress laws. In fact, a necessary and
sufficient condition for this invariance to hold is that the stress laws are hemitropic
functions of the kinematical ones [5, 6]. However, it may be questioned if or how
far this invariance can be assumed for turbulent flows.
In contrast to the first and second invariance requirement, the third one is less
controversial. One usually defines a fluid by its symmetry group as being formed
by the whole unimodular group. One has to keep in mind that a symmetry trans-
formation is usually introduced as a change of the reference placements which lets
the material law unaltered [7]. In the case of viscous and incompressible fluids the
description can be made fully Eulerian so that no reference placement is involved.
In such a case the symmetry group is automatically the maximal one, i.e., the
proper unimodular group.
If we restrict our concern to second order linear viscous fluids, one can start with
a dissipation potential as a square form in the first and second velocity gradients.
Such square forms are given by material tensors of fourth, fifth, and sixth order.
Lists of hemitropic tensors of these orders can be found in [8, 9, 10, 11], and others.
The complete dissipation potential, the resulting stress laws, and the equation of
motion for such materials are given by [5, 6].
Because of the assumed incompressibility of our fluid, we have the classical internal
constraint div v = 0 and the non-classical one graddiv v = 0. Consequently, some
of the terms in the dissipation potential vanish. On the other hand, reaction
stresses have to be added, see [14]. One is a spherical part in the second-order
stress tensor standing for the usual hydrostatic pressure. But additionally, three
third-order hyperstresses appear, so that finally four scalar fields of the reactive
parts are present in the balance equation for the linear momentum. This has not
been considered by Trostel [3] and Silber [4].
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Applications to turbulence can be found in [13] and to blood flow in [12].
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On smooth rate–independent isotropic and crystal plasticity

Samuel Forest

(joint work with Miles B. Rubin)

1. Smooth rate–independent isotropic elastoplasticity

The smooth rate-independent elastoplasticity model discussed here was pointed
out by M. B. Rubin recently [1, 2]. It introduces a rate–independent overstress
whose influence on plastic failure modes has been studied recently [3, 4].
Smooth and standard J2 rate–independent isotropic elastoplasticity share the fol-
lowing common features, here presented within the small strain framework for
brevity:
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• Elastic strain tensor, εe
• Deviatoric strain and elastic strain tensors, ε′, ε′e ε′ = ε− 1

3 (ε : 1)1

• Equivalent elastic strain measure γe =
√

2
3ε

′
e : ε

′
e

• Yield function
g(γe, κ) = 1− κ

γe
• Evolution law for elastic strain ε̇e = ε̇− Γε′e
• Evolution of the hardening variable

κ̇ = m(κs − κ)Γ = HΓγe, κ(0) = κ0

• Stress and plastic strain based presentation

f(σ, κ) = J2(σ)− 2µκ, J2(σ) =

√
3

2
σ′ : σ′ = 2µγe

ε̇p = ṗ
3

2

σ′

J2(σ)
= Γε′e, Γ =

3

2

ṗ

γe

• Equivalent deviatoric strain rate measure ε̇ =
√

2
3 ε̇

′ : ε̇′

The difference lies in the definition of the intensity of plastic flow as

Γ = b < g(γe, κ) > ε̇

which is a homogeneous function of degree 1 leading to rate–independence. It
involves a new parameter b characterizing the overstress. This is in contrast to the
standard model

g = 0, ġ = 0 =⇒ Γ =
3

2γ2e

< ε′e : ε̇ >

1 +H

for which the plastic multiplier is obtained from the consistency condition.
The properties of the smooth rate–independent overstress model are the following

• The model is rate–independent

ε̇e = ε̇− b < g > ε̇ ε′e

• The model is smooth at yield;
• There exists an overstress and there is no consistency condition;
• The model tends to the standard one for b→ ∞
• The tangent elastoplastic operator is not symmetric which has conse-
quences on strain localization properties [4].

2. Smooth rate–independent crystal plasticity

The previous smooth approach to elastoplasticity can be extended to anisotropic
media like single crystals. The method is in fact particularly effective in that case
because it gives a solution to a long–standing problem in quasi–rate–independent
crystal plasticity. Standard rate–independent crystal plasticity models namely
suffer from the indeterminacy problem of activated slip systems if the number of
available slip systems is too large, as it is the case in FCC crystals [5]. Various
remedies are available currently:
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• Viscoplastic regularization: A viscous overstress is introduced which should
remain small enough in the studied range of strain rates [6];

• Selection based on maximal plastic dissipation [7, 8];
• Unified power-law yield function [9, 10, 15];
• Pseudo-inverse used as an active set selection method [12, 13];
• Algorithmic active set selection [11, 14];
• The smooth rate–independent crystal plasticity model proposed in [16].

The modification of the classical crystal plasticity framework is minimal as it is
now explained. The usual Mandel multiplicative decomposition is used

F = EP

Crystallographic plastic flow results from the contribution of N slip systems:

Ṗ P−1 =
N∑

s=1

γ̇s ℓs ⊗ ns

where γ̇s is the individual slip rate for slip system s defined by the slip direction ℓs

and the normal to the slip plane ns. The resolved shear stress is computed from
the Mandel stress tensor:

τs = M · (ℓs ⊗ ns), with M = (detE)ETσE−T

We introduce again an equivalent total distortional strain rate

ε̇ =

√
2

3
D′ ·D′

The Schmid law is still of the form

f s(σ, xs, rs) = |τs − xs| − rs

The modification of the standard model consists in replacing the usual viscoplastic
flow rule by the rate–independent one:

γ̇s =

〈
f s

K

〉n

sign(τs − xs) =⇒ γ̇s = ε̇

〈
f s

R

〉
sign(τs − xs)

This model has turned out to be computationally very efficient for massive com-
putations of polycrystalline aggregates under cyclic loading, see [17].
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Cavitation as a fracture event

Gilles A. Francfort

(joint work with A. Giacomini, O. Lopez-Pamies)

The view of cavitation as an elastic phenomenon found its root in the poker-chip
experiment of A.N. Gent & P.B. Lindley [4] and was promoted and argued
for by J.M. Ball [1]. In their view, point defects expand spherically like x/|x|.
This forces slow growth of the elastic energy at large strains when adopting the
Ball viewpoint that elastic solutions are global minimizers of the potential energy
of the system.
As remarked early on most notably by M.L. Williams & R.A. Schapery [9]
doing so results in extremely high elastic strains along the boundary of the cav-
ity. Going from an invisible defect (so one of sub-micron size if using electron-
microscopy) to a typical 10 micron hole, one would observe bi-axial stretches of
the order of 102 to 103 on the surface of the cavity. But polymer chains cannot
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stretch to such an extent. Consequently, they suggested to complement the Gent-
Lindley picture by accounting for the possible breakage of the crosslinks. This
landed with a big thud in the “rubber” world.
A particle filler experiment of A.N. Gent & B. Park [5] was recently revisited by
K. Ravi-Chandar [6] and the resulting picture, while vindicating the concepts
put forth by Williams and Schapery, calls for a more intricate picture. Indeed,
healing occurs, even during the loading phase of a loading cycle. Further, cavities
appear in regions of high hydrostatic stress and 0 strain, most likely because of
incompressibility. Finally, some kind of hardening phenomenon prevents cavities
from reappearing at prior nucleation and propagation sites.
So it seems that cavitation is not only a fracture event, but further, one that is
ruled by a non-trivial interplay between elasticity, fracture, incompressibility and
hardening. A tall order indeed.
If focussing solely on healing, one can come up with a simple model, assuming,
which is most likely not so, that energy is recovered through healing the way it is
lost through cracking. In 2D, the energetics is as follows: when going from a crack
K to a crack S one should pay (dissipate) βH1(S \K) and recover αH1(K \ S)
with β > α > 0 so that there is a net loss (an entropy increase). This is surely
an overly simplistic view because it ignores many essential features, but it already
tests our current mathematical abilities.
In any case, within this framework one can propose a Griffith-type model which
goes roughly as follows for a connected crack Γ (ℓ) of length ℓ at time t along a
prescribed crack path Γ ⊃ Γ (ℓ) in a domain Ω. If, for a given set of boundary
conditions on ∂Ω and time-dependent loads, P(t, ℓ) denotes the potential energy
at time t for the crack Γ (ℓ) associated with the solution of the elasticity problem
on the uncracked part of the domain Ω \ Γ (ℓ) , then the crack evolution – the
crack length ℓ(t) at time t – is governed by

α ≤ −∂P
∂ℓ

(t, ℓ(t)) ≤ β

−∂P
∂ℓ

(t, ℓ(t)) = β, if ℓ̇(t) > 0

−∂P
∂ℓ

(t, ℓ(t)) = α, if ℓ̇(t) < 0.

In [3] we demonstrate the existence of a well posed quasi-static energetic evolu-
tion à la A. Mielke [7] for the variational rendering of the formulation set forth
above under the further topological restriction that the cracks be continua of fi-
nite length (compactly connected, or maybe with a preset number of connected
components). This is an existence result in the spirit of the original 2D existence
result for fracture evolution by G. Dal Maso & R. Toader for fracture only
[2]. The precise result was the topic of a previous talk at Oberwolfach; we refer
the interested reader to Report No. 33/2017 or, for more details to [3].
We do not know at present how to account for the other ingredients like incom-
pressibility. However, if we adopt a phase field approach, then doing so becomes
possible as demonstrated in [8]. Of course, there is a price to pay. We do not know
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whether the proposed model converges in any sense to a sharp interface model as
the size of the process zone vanishes.
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Continuum dislocation dynamics: A mathematical framework for
developing a dislocation-based crystal plasticity theory

Anter El-Azab and Thomas Hochrainer

Understanding the strength of metals has been a scientific challenge for many
decades. In recent years, much progress was made toward understanding the plas-
tic strength of metals, thanks to the method of dislocation dynamics simulations.
This method proved to be powerful for understanding the mechanism of deforma-
tion at small strains (about a few percent). Practical levels of crystal deformation
encountered in experiments require the development of dislocation based theories
of plasticity that capture the deformation mechanisms over a much larger range of
strain. The method of continuum dislocation dynamics (CDD) is believed to meet
this objective. The method casts the dislocations dynamics problem in the form
of transport-reaction equations for crystal dislocations after expressing them in
terms of density fields. At this point, however, the method faces theoretical chal-
lenges, including modeling of dislocation reactions, collective dislocation mobility,
short range interactions, and accounting for the finite deformation kinematics in
its mathematical formulation.
The current presentation provided an overview of the current state of CDD mod-
elling, mostly based on the evolution of dislocation density vector fields ρs tied to
slip systems s. In this case the dislocation vector fields are supposed to provide a
complete characterization of the dislocation state. The density fields characterize
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Figure 1. Dislocation vein structure developing in CDD simula-
tions of cyclic loading. Grayscale depicts total dislocation density.
Color inlet shows alternating edge-component in the wall.

a distribution of curves. Given a dislocation velocity vector field vs of these curves,
the evolution equations of the density fields are given by balance laws of the form

(1) ρ̇s = curl (vs × ρs) + ρ̇s
net ,

in small deformation formulation. The curl-term represents the pure transport of
line-density, while the network term ρ̇s

net may represent a multitude of dislocation
reactions [1] (typically involving other slip systems) which affect the evolution
of the dislocation network. The network term was recently adapted to consider
cross-slip and various dislocation reactions, including collinear reactions and glis-
sile reactions, which recently received increased attention due to findings in discrete
dislocation simulations. The power of such CDD formulations was demonstrated
by revealing the origin of dislocation cell structure formation and hardening be-
havior in FCC crystals. Figure 1 exemplarily shows a vein structure that consists
of dislocation walls perpendicular to the Burgers vectors, which developed in CDD
simulations of cyclic loading. The color inlet shows the (signed) edge-component
of the dislocation density, which demonstrates the dipolar nature of the walls.
Besides the progress towards including dislocation reactions into CDD we also
discussed recent reformulations of CDD in the large deformation framework of
multiplicative crystal plasticity [2]; when the deformation gradient F is decom-
posed as F = F eF p into an elastic and a plastic part. It was shown that large
deformation kinematics applied to evolving fields of tensorial dislocation densities
accounts for kinking and jogging of dislocations when cutting through one an-
other. This may be best seen when dislocation density vector fields are defined on
the intermediate (or isoclinic) configuration. On this configuration the evolution
equation for the dislocation density vector takes the form (neglecting a possible
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network term)

(2) ρ̇s = curlp (vs × ρs) +Lpρs − tr (Lp)ρs ,

where Lp denotes the rate of plastic distortion tensor, such that Ḟ p = LpF p.
Furthermore, curlp denotes the curl-operator on the intermediate configuration.
Equation (2) entails that the dislocation vector fields ρs do not remain planar
vector fields in the slip planes, such that multiple slip deformation will necessarily
involve non-conservative motion of jogged dislocations. Because non-conservative
dislocation motion in crystals is only possible through the creation or destruction
of point-defects, large deformation CDD needs to be coupled to evolving fields of
point defects; most notably vacancies. Such a theory opens new persepctives for
modelling various phenomena in metal physics and plasticity which are tied to
high point defect densities, e.g., strain hardening, creep, hydrogen embrittlement,
or ductile fracture.
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Phase-field modeling of fracture – heterogeneities and cyclic loadings

Markus Kästner

(joint work with Franz G. Dammaß, Arne C. Hansen-Dörr, Martha L. Seiler)

The phase-field method has become a powerful tool for the modelling of fracture.
Due to the diffuse representation of the crack, topological updates of the analysis
mesh are avoided which is particularly helpful for the analysis of complex crack
patterns and three-dimensional problems. Recent developments of the method
involve the representation of fracture in heterogeneous solids and the numerically
efficient consideration of cyclic loadings. In this contribution, both problems are
addressed in terms of modifications of the fracture toughness Gc.

1. Heterogeneities

In heterogeneous material, e.g. composites, interfaces play a crucial role in com-
ponent failure. Here, a phase-field model for brittle fracture is combined with a
diffuse representation of the microstructure. In particular, the fracture toughness
Gc (x) is reduced in the vicinity of an interface

(1) Π =

∫

Ω

(1− d)2ψel
+ + ψel

− dV +

∫

Ω

Gc (x)
1

2ℓ
(d2 + ℓ2|∇d|2) dV .

It is shown that the regularisations of crack in terms of the phase-field order
parameter d with the characteristic length ℓ and a diffuse interface of width ℓi
interact which has to be compensated [1]. The approach is compared to and
validated for an example from linear elastic fracture mechanics [2], Fig. 1.
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Figure 1. Initial crack perpendicular to an interface under mode
I loading (horizontal direction): In line with linear elastic fracture
mechanics, three different phenomena (a) – (c) are predicted de-
pending on the ratio Gb

c/G
i
c of bulk and interface fracture tough-

nesses. The midline of the regularised weak interface is indicated
in black.

2. Fatigue crack growth

As fatigue comes along with high numbers of load cycles, a direct simulation of the
loading history [3] is computationally expensive, especially for inelastic material
behaviour. To this end, we combine the phase-field method for brittle fracture
with the notch strain concept. The standard phase-field formulation is extended
to fatigue crack growth by a fracture toughness Gc(D) that depends on a lifetime
variable D [4]

(2) Π =

∫

Ω

g(d)ψe(ε) dV +

∫

Ω

Gc (D)
1

2ℓ
(d2 + ℓ2|∇d|2) dV .

For D = 0 a material point has experienced no fatigue loads at all, while D = 1
means it has undergone all load cycles it can possibly bear before loosing its
integrity. The lifetime variable D is determined with the local strain concept
and is associated to cyclic plasticity in the vicinity of the crack determined by
Neuber’s rule. The method is tested with a compact tension (CT) test. In Fig. 2,
the evolution of the crack d and of the zone of cyclic plasticity D are illustrated.
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Figure 2. Compact tension test: Evolution of phase-field vari-
able d and lifetime variable D for load cycles N .

Achievements and open challenges in modeling microstructure
evolution in magnetizable solids via energy relaxation

Bjoern Kiefer

(joint work with Thorsten Bartel, Andreas Menzel)

Magnetic shape memory alloys (MSMA) are an ideal model material to study the
interplay of microstructure evolution and effective magnetomechanical response
characteristics. Microstructure in this case refers to twinned variants with internal
domain structures in ferromagnetic martensites. After initially pursuing MSMA
modeling in the tradition of plasticity-like models for conventional thermal SMA
[11], a fundamentally different approach was taken by the authors in recent years,
in following concepts of energy relaxation, for which much experience also already
existed in the group [3].
The relaxation approach centers on describing stable effective material behavior
by computing convex hulls (of different variety) to multi-well energy landscapes.
Microstructure formation can in this context be interpreted as material instability
on the lower scale. As a point of departure for employing this method in the context
of magnetomechanical coupling, the constrained theory of magnetoelasticity was
studied [7], which comprises elements of micromagnetics theory [4] and the Ball
and James theory on martensitic microstructures as minimizers of energy [1]. It
was also demonstrated, however, that some of the restrictions of such a model are
so severe that they contradict experimental observations and consequently elastic
straining, magnetization rotations—i.e. deviations from the energetic minima—
as well as dissipation must be included in the constitutive model to capture the
characteristic of MSMA responses.
There are several distinct advantages to the relaxation modeling approach for
MSMA, see [10, 2]. Both the parameter set and the microstructural variables
consist of physically well-motivated and easily interpretable quantities. Moreover,
all key mechanisms may occur simultaneously and in arbitrary combinations or
order. The model obeys a single physical principle, i.e. stationarity of an energy
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functional, with no need for purely phenomenological evolution equations. The mi-
crostructure formation at each material point is influenced by the magnetostatic
energy stored in the entire self-field [5]. The theoretical foundation of the ap-
proach is strongly supported by mathematical analysis, related to the existence of
minimizers for the underlying variational problems [1, 6, 7]—although more work
is needed to fully analyze the extended formulation. The model captures all key
response features characteristic of single crystalline MSMA behavior (e.g. nonlin-
ear, anisotropic, stress-level and loading history-dependent magnetic field-induced
strain and magnetization responses, magnetic field-biased pseudoelasticity etc.)
and its predictions have been validated by experiments—where relevant data was
available. Finally, the relaxation-based modeling framework is so general that it
can be applied to many other cases of microstructure-driven magnetomechanical
material behavior, such as observed in giant magnetostrictives [7].
A caveat to the current formulation is the fact that relaxation is, strictly speaking,
only applied w.r.t. mechanical degrees of freedom—although minimization of a
fully-coupled functional is conducted. No regard is currently given, however, to the
interface compatibility of magnetic field variables during relaxation. On the other
hand, we were recently able to show that concepts analogous to rank-one conve-
xification can be established for the purely magnetic case [9]. An open question
is therefore how to combine these concepts and whether relaxation in the coupled
case ought to be carried out in monolithic or rather staggered fashion, in the sense
of sequential partial relaxations. Some interesting discussions to this end were held
during the Oberwolfach workshop, in which generalized concepts of relaxation [8]
were pointed out by colleagues of the mathematics community, as one possible
avenue of future investigation in this regard.
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Uniform-approximation approach vs. Vekua-type approximation

Reinhold Kienzler

(joint work with Patrick Schneider)

The three-dimensional continuum theory of elasticity can be derived in a mathe-
matically rigorous way from first principles. In contrast, theories for thin struc-
tures, that are modeled by differential equations on one- or two-dimensional do-
mains, can only be approximations of the three-dimensional theory. The treatment
of a structural element as a thin structural member comes always along with a
systematic error, even if the modeling equations are solved exactly. Although there
is a vast amount of literature concerning theories (mathematical models) for thin
structural members, only for very few models there exist justifications in the sense
of a mathematical proof that the systematic error is actually converging to zero if
the structure gets thinner.
The uniform-approximation approach is a structured, constructive approach for
the derivation of lower-dimensional analytical theories for thin structural members
from the three-dimensional theory of elasticity. It has been successfully applied
to a variety of problems by numerous authors. The justification of the approach
in the form of an order of magnitude estimate for the systematic error, using a
duality principle, was recently provided in [1].
After the insertion of a suitable series expansion of the displacement field, the
elastic potential takes the form of a power series-expansion in a dimensionless
parameter that describes the relative thinness of the structure. The approach
delivers hierarchies of theories by truncating the elastic potential after a certain
power of the dimensionless parameter, which defines the order of approximation
for the uniform-approximation approach.
It has been shown that the first-order approximations for isotropic material deliver
the known classical theories, like the Kirchhoff plate theory, or the Euler-Bernoulli
beam theory, without invoking a-priori assumptions [2]. This is also in accordance
with results using different justification approaches. On the other hand, due to
its constructive nature, the uniform-approximation approach also allows to derive
extended refined theories and/or theories for anisotropic materials in a systematic



Mechanics of Materials 741

way, like demonstrated by the authors for the case of a Reissner-type plate theory
for monoclinic material [3, 4].
In contrast to the uniform-approximation approach, the in the engineering litera-
ture most used structured approach, here called Vekua-type approach, generates
approximate theories by replacing the infinite series expansion of the displacement
field by a fixed finite sum [5]. Here the order of approximation is usually defined
as the order of the finite displacement ansatz.
In the talk, we used standard arguments from duality theory to derive a priori
error estimates of the systematic error of solutions of the so-derived approximate
theories in comparison to the exact solution of three-dimensional elasticity. Both
approaches achieve convergence in a weak-solution sense.
Comparing the magnitudes of the energetic summands that are considered for
both approaches, we find that the geometric scaling factors describing the relative
thinness of the structure, that are used to truncate the energy series in the case
of the uniform approximation approach, initially dominate the decaying behavior,
whereas, the Vekua-type approach is favorable for asymptotic investigations.
However, in practice, there is no demand for arbitrary high precision: After a
certain threshold a further increase of precision will be irrelevant for practical
applications. We show that even for not at all thin structures, the geometric scaling
factors clearly still dominate the decaying behavior in the regime of technical
relevant precision. Furthermore, we show that for a given precision, the Vekua-
type theory achieving this precision has in general a more complex modeling partial
differential equation (PDE) system than the uniform theory. Therefore, the Vekua-
type approach is considered suboptimal by the present authors. In addition, the
uniform theories’ PDE systems are better suited for so-called pseudo reductions,
which are transformations that reduce the number of PDEs in the system as well
as the number of unknowns at the cost of higher-order PDEs. All details about
the error estimate as well as the comparison of the approaches can be found in [1].
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A scale adaptive FE2 method for the analysis of the non-linear
thermo-mechanical coupled behavior of a fiber reinforced material

Sven Klinkel

(joint work with Maximilian Praster)

The contribution deals with the multiscale analysis of a reinforced matrix with
shape-memory-alloy (SMA) fibers. With respect to the assumption of scale sepa-
ration, the problem is simulated with the FE2 approach, see [1]. The mechanical
behavior of the micro structure, which consists of a linear-elastic matrix and a
random fiber distribution, is captured by a representative volume element (RVE).
The SMA fibers are characterized by a highly non-linear, thermo-mechanically
coupled material behavior. The nonlinear behavior of the macroscopic structure
depends on the deformation, the SMA fiber orientation and the temperature of
the micro scale. This necessitates an accompanying homogenization to capture the
macroscopic stress and stiffness during the loading of the structure. Therefore, the
FE2 method is employed. It solves two nested boundary value problems (BVP) on
the micro and on the macro scale. The BVP of the micro scale is solved at every
integration point of the macroscopic problem in each iteration step. This makes
the FE2 method computational expensive. The purpose of the present work is to
reduce the computational effort by introducing an indicator for the multiscale anal-
ysis. The accompanying homogenization is only performed if the indicator predicts
nonlinear behavior on the micro structure. The SMA in the micro structure will
stay linear elastic until the phase transition condition is reached, which is defined
by a critical temperature dependent stress state. It motivates the introduction of
an indicator on the macro scale, which is defined as a critical temperature depen-
dent strain state, see also [2]. A strain state above the limit strain indicates that
an accompanying homogenization at the integration point is necessary. Therefore,
Dirichlet boundary conditions are employed for the underlying RVE. In the initial
iteration step of the first load step the homogenization is performed by assuming
Neumann boundary conditions for the underlying RVE.
A numerical example demonstrates the capability of the present approach. The
Cook membrane with an uniformly distributed load and randomly oriented SMA
fibers is analyzed. The system and loading are illustrated in Fig. 1. The matrix
is assumed to be linear elastic, whereas the fibers have non-linear temperature
dependent behavior. The fibers are randomly oriented.
The representative volume element is modeled by 20 × 20 elements. The Cook
membrane is discretized by 400 elements. The temperature is assumed to be linear
distributed from the left to the right from 255K to 270K. The load F is increased
form F = 0 up to F = 20 in 20 load steps. For each load step the indicator is
employed to decide weather an embedded numerical homogenization is possible or
not. In Fig. 2 the identified elements with an embedded homogenization are shown
for two load levels. Especially at the beginning of the loading the accompanying
homogenization is not necessary for the most of the elements. In comparison to the
situation where all elements have a nested homogenization the present approach
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Figure 1. Cook membrane, loading and system with randomly
oriented fibers with a volume fraction of 10%

Figure 2. Illustration of elements with (green) and without
(blue) a nested homogenization for F=10 (left) and F=20 (right)

saves some computational cost. The difference of the maximum displacement of the
present approach and the situation, where a nested homogenization is considered
in all elements, depends on the load level and is in-between 5% and 0%.
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Fracture and damage models as rate-independent systems

Dorothee Knees

1. Short overview on solution concepts for
rate-independent systems

Within certain regimes the behavior of dissipative solids can be considered as rate-
independent. Rate-independence means that after rescaling the loads in time the
solutions to the system with the new loads are exactly the rescaled solutions of
the original system. Phenomena like plasticity, damage and fracture of brittle ma-
terials or the shape memory effect can be modeled in this framework. Following
the frame of standard generalized materials, [4], one assumes that the state of a
mechanical structure is completely characterized by a displacement (or deforma-
tion) field u belonging to a state space U and internal variables z ∈ Z. The latter
for instance encode the plastic strains, the damage state or the polarization in
ferroelectric materials. Due to constraints like the flow rule in plasticity or the
Griffith fracture criterion the resulting system in general consists of a (quasistatic)
balance of linear momentum and a nonsmooth evolution inclusion: Given a time
dependent load ℓ : [0, T ] → U∗ and an initial state z0 ∈ Z the task is to determine
u : [0, T ] → U and z : [0, T ] → Z with z(0) = z0 satisfying for (almost all) t

ℓ(t) = DuE(u(t), z(t)),(1)

0 ∈ ∂R(ż(t)) + DzE(u(t), z(t)) .(2)

Here, E : U × Z → R is the stored energy functional and R : Z → [0,∞] is a
convex pseudo dissipation potential with R(0) = 0. In the rate-independent case
it is assumed that R is positively homogeneous of degree one. DuE(·) and DzE(·)
are the variational derivatives of E with respect to u and z, while ∂R denotes the
subdifferential of R.
In many applications, in particular in the modeling of damage and fracture, the
stored energy functional E is not convex. In this case, the system (1)–(2) in general
does not admit global in time continuous solutions, even if the applied loads are
smooth in time. We illustrate this observation in Section 2 with an example.
Hence, one either has to resort to a local existence theory or one has to interpret
the system (1)–(2) in a weak form that also admits discontinuous solutions. In
this way, the system is enriched with jump criteria. There are several different
ways of defining weak solutions for rate-independent systems. Note that they are
not equivalent and that the jump criteria introduced are not the same. From the
point of view of applications this is a severe problem since according to one weak
solution concept a structure might be safe while according to a different solution
concept the structure might fail given the same loads.
In the last twenty years, two main solution concepts were developed: (global) ener-
getic solutions and vanishing viscosity solutions. We refer to [15] for an overview.
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Energetic solutions are characterized by a global stability condition and an
energy dissipation balance that both have to be satisfied for all t ∈ [0, T ]:

∀(v, ζ) ∈ U× Z Ẽ(t, u(t), z(t)) ≤ Ẽ(t, v, ζ) + R(ζ − z(t)),(3)

Ẽ(t, u(t), z(t)) + DissR(z, [0, t]) = Ẽ(0, u0, z0)−
∫ t

0

〈ℓ̇(τ), u(τ)〉dτ.(4)

Here, Ẽ(t, u, z) := E(u, z)− 〈ℓ(t), u〉 and

DissR(z, [α, β]) = sup
Partitions of [α, β]

∑

α=t0<...<tn=β

R(z(ti+1)− z(ti))

denotes the total variation of a curve z : [α, β] → Z with respect to the dissipa-
tion potential R. For many rate-independent mechanical models the existence of
energetic solutions was shown, [15]. Since the characterization (3)–(4) involves E
only but not its derivatives, rather mild assumptions on E are sufficient in order
to guarantee the existence of solutions. As a highlight it was possible to prove
the existence of solutions to the quasistatic Francfort-Marigo fracture model, [2].
Moreover, this solution concept allows for the application of variational arguments
and in particular for the tools from Γ -convergence theory if one wants to analyze
parameter dependent systems and identify effective quantities in scaling limits.
However, due to the global minimality condition (3), energetic solutions tend to
develop jumps across energy barriers.
Balanced viscosity solutions are obtained as vanishing viscosity limits (ν ց 0)
of viscously regularized rate-independent systems consisting of (1) and

0 ∈ ∂R(ż(t)) + νż(t) + DzE(u(t), z(t)).(5)

We will not give here a detailed characterization of balanced viscosity solutions
but refer to [13, 6]. Starting from the paper [3] this concept was developed for
abstract rate-independent systems (e.g. [13]), and applied to damage models (e.g.
[8]), crack propagation models with single cracks (e.g. [10, 12]) and different models
in plasticity (e.g. [1]). According to this solution concept, solutions tend to develop
discontinuities as late as possible and they do not jump across energy barriers.
However, from a mathematical point of view strong structural assumptions have
to be formulated for the energy functional E in order to guarantee the existence
of solutions. In particular, certain weak continuity properties on the derivatives
of E are needed. Due to these constraints it is not clear how to apply this solution
concept to the Francfort-Marigo fracture model. In addition to these two main
concepts further solution concepts were developed in the last years, where for
instance solutions are allowed to jump across small energy barriers [11], or where
special scalings in the viscosity approach were prescribed (visco-energetic solutions,
[16]).
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2. Example: Propagation of a single crack

The example from [9] illustrates the different predictions of the two main solution
concepts. Let Ω = (0, 10)×(−1, 1) ⊂ R

2 (in cm) be a two dimensional rectangular
domain where a single crack may propagate along the line (0, 10)×{0} (prescribed
crack path) according to the Griffith fracture criterion. The body is occupied by
a linear elastic, isotropic material (with E = 210kN/mm2, ν = 0.28, fracture

toughness κ = 50MPam
1

2 ). Non penetration conditions are imposed on the crack
faces. Let Ωz := Ω\

(
(0, z) × {0}

)
denote the domain with a crack of length z.

The set of admissible displacements is given by

K(Ωz) = {u ∈ H1(Ωz ,R
2) ; u = 0 on {10}×(−1, 1), [u]·n ≥ 0 along the crack } .

On the upper and lower boundary (i.e. on (0, 10) × {±1}), monotone loads are
applied of the form ℓ(t) = tℓ∗ for t ∈ [0, T ] and with a piecewise constant load
profile ℓ∗(x) = ±0.15 for x ∈ (0, 2) × {±1}, ℓ∗(x) = ∓1 for x ∈ (2, 4) × {±1}
and ℓ∗(x) = ±1 for x ∈ (4, 5) × {±1}. Finally, ℓ∗ = 0 on the remaining parts of
the boundary. Clearly, for every t and z there is a unique u = u(t, z) ∈ K(Ωz)
that minimizes E(t, ·, z) with respect to K(Ωz). Let I(t, z) := E(t, u(t, z), z) be the
reduced functional. The energy release rate G(t, z) := − d

dz I(t, z) is well defined
and we refer to [9, 5] for a short overview on further mathematical properties.
Given a fracture toughness κ > 0 the Griffith fracture criterion characterizes the
propagation of the crack as follows:

ż(t) ≥ 0, G(t, z(t)) ≤ κ, ż(t)
(
κ− G(t, z(t))

)
= 0.

In terms of the dissipation functional R(v) := κv if v ≥ 0 and R(v) = ∞ for v < 0,
these conditions can be reformulated as

0 ∈ ∂R(ż(t)) + DzI(t, z(t)),

which is (2).

t t

z z

Figure 1. Left: Energetic solution; Right: vanishing viscosity
solution; both as functions of time (horizontal axis)

The red curves in Figure 1 show a sketch of the energetic solution (left) and the
vanishing viscosity solution (right) for this example. For the precise numerical
calculations we refer to [9]. The blue regions in both figures indicate those pairs
(t, z) for which G(t, z) < κ, while in the white regions we have G(t, z) > κ. Observe
that the energetic solution develops a first jump although according to the Griffith
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criterion the crack should not grow at all. Due to the global minimality condition
(3), a second jump appears, where the crack passes through the compressed region
in the body and continues to grow afterwards. In contrast to this, the vanishing
viscosity solution develops one jump with a subsequent continuous propagation.
Observe that at the time instance, where the viscosity solution develops the jump,
it is not possible to extend the crack in a continuous way and at the same time
respecting the condition G(t, z(t)) ≤ κ.

3. Discussion and questions

The example in the previous section illustrates that the two solution concepts
(energetic solutions and vanishing viscosity solutions) are not equivalent and that
they predict substantially different jump discontinuities. Such phenomena do not
only appear in this particular crack propagation example but they are intrinsic to
all rate-independent models with a nonconvex energy E. Let us stress that rate-
independent damage models and phase-field fracture models used in practice have
these ambiguities. In fact, the choice of the solution class is part of the modeling.

This observation raises the following questions: Which types of solutions are
approximated by numerical schemes that are used in practice (e.g. time incremental
alternate minimization schemes or staggered schemes)? In [7], this question was
investigated for the Ambrosio-Tortorelli damage model. Are there efficient and
feasible schemes that reliably approximate that type of solution one is interested
in? Some prototypical schemes were analyzed in [6] for a simplified semilinear
rate-independent system. Do scaling limits of multi-rate systems help to identify
physically reasonable solution classes? Here, we refer to [14] for first answers.
What is a good mathematical as well as mechanical framework for the coupling of
rate-dependent with rate-independent processes?
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Anisotopic elasticity of nickel-base alloys processed by selective
laser melting

Christian Krempaszky

(joint work with Thomas Obermayer, Peter Holfelder, Susanne Junghans,
Ewald Werner)

Since their early days in the 1980ies the additive manufacturing techniques have
been continuously developed further and now have nearly reached the stage for
serial production of components. They promise a high geometric design free-
dom, functional integration and a high level of material utilization. Selective laser
melting is an already established additive manufacturing process for small batch
production of metallic components. Due to the high cooling rates and thermal
gradients occurring during the process, high residual stresses are induced and
the evolving microstructures as well as the resulting properties of selective laser
melted alloys differ considerably from those manufactured in conventional produc-
tion routes. Both strongly depends on the processing parameters. The residual
stresses play a crucial role in the ability to achieve complex/slender geometries
with high accuracy and may lead to in-process failure, localized deformation and
component distortion during processing and during subsequent machining to fi-
nal geometry, e.g. the finishing of functional surfaces or the removal of support
structures. Experimental and theoretical estimation of residual stresses in selec-
tive laser melted components are challenging as the microstructures are strongly
textured and result in pronounced mechanical anisotropy. Hence the knowledge of
the relation between process parameters, texture and the resulting full elasticity
tensor is of utmost importance for the optimization of the selective laser melting
process on the base of physical based models.
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Within the scope of this contribution a method is presented to determine the
complete elasticity tensor of anisotropic materials via mechanical spectroscopy [1],
following the basic ideas of the impulse excitation technique. It involves a sensitive
microphone and electronics to record and to analyze the sound waves emitted from
a free vibrating specimen by fourier analysis of the recorded acoustic signal. In the
standard procedure [2], the elastic constants of isotropic elasticity are calculated
by empirical analytical functions from the eigenfrequencies of the fundamental
flexural and torsional modes.
An extension of this procedure to anisotropic materials is proposed as follows: A
specially designed set of 15 differently oriented specimens is analyzed with respect
to the eigenfrequencies of their fundamental (flexural and torsional) modes.
The identification of the components of the elasticity tensor on the basis of the
set of measured eigenfrequencies represents an inverse problem, which is solved
iteratively by an optimization procedure applying the Newton-Raphson method.
During this procedure, the eigenfrequencies of the specimen are calculated numer-
ically in dependence of the components of the stiffness tensor by a modal analysis
using the finite element method. Since this optimization problem shows many local
minima, the result of Newton-Raphson method strongly depends on the starting
point.
Hence a good initial estimation of the elasticity tensor is necessary. This is realized
by modifying the modulus equations from the standard [2]. The eigenfrequency of
the fundamental flexural mode is used to calculate Young’s modulus in longitudi-
nal direction of each specimen, whereas the in-plane shear modulus is calculated
from the eigenfrequency of the fundamental flexural mode of each of the rectan-
gular plate-type specimens. A selection of 21 of these calculated moduli allows an
initial estimation of the elasticity tensor.
The proposed approach is validated by numerical studies and allows a fast and
efficient estimation of the full elasticity tensor. The method is demonstrated on
a nickel-base alloy specimen set fabricated by selective laser melting. The results
are compared to experimental uniaxial loading experiments and discussed with es-
timations of the elastic properties of the material based on single crystal constants
and texture measurements performed by electron backscatter diffraction. Follow-
ing the approach of Cowin [3] and Baerheim [4], a harmonic decomposition of the
identified anisotropic elasticity tensor, Cijkl , is carried out, allowing an analysis
of the fourth order tensor with respect to symmetry planes. Indications for some
shortcomings of the measurements are the relatively high deviatoric parts of the
Voigt-tensor, C· · j

ij·k , and the dilatational modulus, C· · ·k
ijk . These discrepancies are

also observed by comparison to texture based estimations of the elasticity tensor
and can be explained by inhomogeneities and residual stresses.
Hence, a more detailed texture analysis of the specimen set and a clarification
of the influence of residual stress are essential. On this basis, an optimization
of the specimen geometry and an exploitation of resonant frequencies of higher
order modes will be promising steps to improve the quality of the results. Finally,
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following the ideas of Weber et al. [5], an approximation of the identified elastic-
ity tensor by fourth order tensors of given symmetry classes will further help to
interprete the experimental results.
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Two universal laws for plastic flows

Khanh Chau Le

It is experimentally observed that a dislocated crystal deforming at constant strain
rate and fixed ambient temperature will approach a steady state of plastic flow, and
the corresponding steady-state flow stress, σs, depends on the ambient tempera-
ture T and the strain rate ε̇. Kocks and Mecking [1] were the first to formulate the
following universal law for the plastic flow of fcc-crystals: The steady-state flow
stress is a function of the combination of ambient temperature and strain rate,
(T/TP) ln(ε̇r/ε̇). Here TP is an energy barrier expressed in the temperature unit,
while ε̇r is a reference strain rate. However, the empirical quadratic function pro-
posed in [1], which contains the square root of this combination, is not appropriate
for two reasons: (i) this function does not fit the experimentally observed steady-
state flow stresses, which are usually greater than those obtained by extrapolation
based on the Voce law, (ii) it cannot be derived from the first principle calculation.
The alternative scaling law for the steady-state flow stress can be obtained from
the kinetics of thermally activated dislocation depinning first proposed by Langer,
Bouchbinder and Lookman [2]. Applying the inverse relationship to the double
exponential formula for the plastic strain rate (see Eq. (5.4) in [2]) to the steady
state, the following scaling law is obtained

(1)
σs
σTs

= ln
( 1

T
TP

ln( ε̇r
ε̇
)

)
.

Here, σTs = µ(T )αb
√
ρs is the steady-state Taylor stress, µ(T ) the shear modulus

that depends on the ambient temperature, b the Burgers’ vector, ρs the steady-
state dislocation density, and ε̇r = b

√
ρs/t0, where t0 is the time characterizing the

depinning rate. It must be emphasized that (1) is derived under the assumption
that the depinning rate, by being the slow “bottleneck”, is dominant, and that
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therefore the time for dislocations to move between pinning sites and specific effects
such as cross slip could be neglected. The other main assumption is that the energy
barrier and the steady-state dislocation density are independent of strain rate and
temperature. The scaling law (1) provides the method for determining the three
material parameters s = αb

√
ρs, TP, and ε̇r from the experimental data. To the

author’s knowledge, this has not yet happened, so it remains unclear whether this
law is supported by the experiment and in what temperature and strain rate range
it is valid. To clarify this matter I use the data obtained from the compression
tests of copper (aluminum) at three (four) different elevated temperatures and
four (five) different strain rates [3], with the quasi-static case being excluded, and
identify that, for pure copper, s = 6.3915×10−3, TP = 45000K, ε̇r = 3.16×1012/s,
while for pure aluminum, s = 5.4526 × 10−3, TP = 27800K, ε̇r = 7.5 × 1011/s.
Note that the shear modulus depends on the ambient temperature according to
µ(T ) = µ1 − D/(exp(T1/T ) − 1), where µ1 = 51.3GPa, D = 3GPa, T1 = 165K
for copper, and µ1 = 28.8GPa, D = 3.44GPa, T1 = 215K for aluminum (see [4]).
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Figure 1. Dimensionless steady-state flow stresses σs

µs
versus

T
TP

ln( ε̇r
ε̇
) for copper (circle) and aluminum (triangles) and the

master curve y = ln(1/x).

Fig. 1 shows the data points with x-coordinate being (T/TP) ln(ε̇r/ε̇) and y-
coordinate being σs/µ(T )s of copper (circles) and aluminum (triangles) as well
as the master curve y = ln(1/x). It is seen that most points lie almost exactly
on this curve. Since the experimental points of other fcc-crystals such as silver
or nickel are also close to those of copper and aluminum [1], it is concluded that
Eq. (1) is the validated scaling law for the steady-state flow stress of these materials
for temperatures from room temperature to two-thirds of the melting temperature
and for strain rates from 1/s to 1010/s.
The law (1), however, does not say anything about how the stress and dislocation
density approach the steady state. This behavior can be extracted from a second
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law for plastic flows formulated also by Langer et al. [2] as follows: The configura-
tional entropy of the subsystem of dislocations must increase and reach its maxi-
mum in the steady state. This law is the consequence of the thermodynamics and
statistical mechanics of configurational subsystem of moving dislocations regarded
as a dissipative driven system. The underlying thermodynamics is based on the
existence of slow and fast variables in this system. Fast variables are coordinates
of dislocations. Slow variables are elastic deformation, dislocation density, and
configurational entropy (or effective disorder temperature). The conditions under
which fast variables can be averaged out are not the same as those of reversible
Hamiltonian systems for which ergodicity is crucial [5]. The laws governing the
slow variables are also not the same as those of equilibrium thermodynamics of
ergodic Hamiltonian systems. Even the steady state, regarded as “equilibrium”
state of the configurational subsystem, is not a strict equilibrium, since disloca-
tions are permanently pinned and depinned and move between the pinning sites
so that the body flows plastically at the constant strain rate. This is similar to
the slow change of amplitude of non-linear vibration of a forced dissipative oscil-
lator towards the steady-state amplitude after the fast oscillation is averaged out
[6, 7]. Although the dissipative configurational subsystem of dislocations is driven,
it seems physically reasonable that the configurational entropy must increase and
reach a maximum in the steady state regarded as “equilibrium”.
The theory based on the law of maximum configurational entropy was proposed
in [2] and slightly modified in [8] for polycrystals. The problem with using system
of governing equations to simulate stress-strain curves is the choice of parameters.
Unfortunately, the choice made in [2] is not fully consistent with the scaling law
(1). For instance, the selected value of TP = 40800K for copper is somewhat
smaller than the value 45000K identified from Eq. (1). Similarly, for the ad-hoc
selected parameters χ0, a, and t0, it is found that ε̇r = 1.35× 1011/s which is less
than the value 3.16× 1012/s identified above. Therefore the inconsistent and ad-
hoc choices made in [2] are abandoned and all parameters and initial conditions are
identified with the large-scale least-squares analysis [10, 9]. This yields in addition
to TP, s, and ε̇r the three basic parameters for copper χ̃0 = 0.2177, Kρ = 0.833,
Kχ = 2.66. With this I find that r = 0.0635, t̃0 = 3.18 × 10−14 s which is also
consistent with Eq. (1). I have simulated several stress-strain curves for copper
under compression at different thermal and loading conditions and compared them
with the experimental points taken from [3, 11]. The excellent agreement between
theory and experiment and the consistency with the formulated universal laws
allows the conclusion that this theory can be used to predict the plastic flows of
fcc-crystals over a wide range of strain rates and temperatures.
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Plate theories: A mixed Vekua and consistent approximation approach

Michael Meyer-Coors

(joint work with Reinhold Kienzler and Patrick Schneider)

Plates are thin, plane structures, which are typically loaded transversally to their
midplanes. The classical approach to obtain plate theories invokes kinematical
a-priori assumptions. Exemplarily the Kirchhoff plate theory and the Reissner-
Mindlin plate theory may be mentioned. Systematic approaches, on the contrary,
try to avoid a-priori assumptions. They are based on the threedimensional theory
of linear ealsticity. By applying the first variation to it, equating it with zero,
using integration by parts only in x1 and x2 direction and substituting the virtuell
quantities by their taylor series, the quasi twodimensionell problem with the global
Dirichlet and Neumann boundary conditions and the global equilibrium conditions
is obtained. This problem can be seperated into the plate and the disc problem for
at least monotropic material (with the midplane as symmetrie plane). Thus, the
plate problem can be treated isolated. So far, there are infinitely many equations
with infinitely many unknowns. To get to calculable equation systems, an appro-
ximation is necessary. One possiblity is the Vekua-type approximation [1]. Here, a
series expansion of the displacements is applied and the corresponding truncation
is done after a certain number of displacement coefficients. Another approxima-
tion method, which is also based on series expansions, is described by Kienzler &
Schneider [2]. They discovered that the magnitude of each summand of the poten-
tial energy is almost completely determined by powers of a geometric factor. This
approach is called the consistent approximation approach. Both methods lead to
hierarchic theories, which are distinguished by their approximation order.
Based on the consistent approximation approach, a split of displacement coeff-
icients, which is applicable for any approximation order, is carried out. The resul-
ting scheme allows to obtain a reduction equation for every displacement coefficient
of a certain order. Especially, the basic differential equations which resemble the
Kirchhoff plate theory by first order approximation can be easily obtained. By
applying the scheme, the original triangular-like coefficient matrix (of the PDE
system) turns into a rectangular coefficient matrix, the form of Vekua-type plate
theories. The evolving theory is called complete plate theory. To verify the scheme,
i.e., to proof that every complete theory leads to reduction equations for every
displacement coefficient, the determinants of the coefficient matrices are studied.



754 Oberwolfach Report 13/2020

For complete reducibility of the equation systems, they have to be unequal to
zero. Driven by the observation that the coefficent matrices of the complete plate
theories have an interlaced structure (like a Matrjoschka), the problem is reduced
to the calculation of a Hilbert matrix with only odd denominators. A closed
formula to determine the inverse and the determinant was found so that the proof
is almost finished.
For the special cases of isotropy and transverse isotropy it has been shown that
the reduction equations, gained by solving the PDE systems of the complete plate
theories, identically fulfill the local equilibrium conditions, the local Neumann
boundary conditions and the local Dirichlet boundary conditions. To proof that
all reduction equations of every order satisfy the local conditions, the global and
local conditions have to be linearly interdependent. This proof is subject of ongoing
research.
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On finite-strain thermo-viscoelasticity

Alexander Mielke

(joint work with T. Roub́ıček)

In [4] we provide a mathematical existence theory for a thermodynamically con-
sistent model for thermo-viscoelasticity at finite strain. We denote by Ω ⊂ R

d

the bounded reference configuration, by y(t, ·) : Ω → R
d the time-dependent de-

formation, and by θ(t, ·) : Ω → [0,∞[ the temperature field. Moreover, F (t, x) =
∇y(t, x) ∈ R

d×d is the deformation gradient.
There are several nontrivial challenges to be overcome:

• Even for elastostatics frame-indifference and the blow-up of the energy density
F 7→ ϕ(F, θ) for infinite volume compression, i.e. detF ց 0, it is impossible to
control the stresses that will be needed for the dynamic theory.

• We will neglect inertia to avoid formation of shocks.
• The viscous stresses need to obey time-dependent frame indifference, see [1, 8],

such that the viscous dissipation only controls Ċ = F⊤Ḟ + Ḟ⊤F , but not the
rate Ḟ of the deformation gradient F .

• The coupling of the temperature θ and the deformation F leads to latent heat ef-
fects, thermal expansion etc. Moreover, the right-hand side of the heat equation
includes the viscous heating that can only be controlled in L1([0, T ]×Ω).

To tackle these challenges we consider a second-grade material, where the stored
elastic energy is enhanced with a term depending on the second gradient ∇2y of
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the deformation. This term leads to a mathematical regularization making the
deformation tensor F = ∇y Hölder continuous.
More precrisely, using a total free energy of the form

F(y, θ) =

∫

Ω

{
ϕelast(∇y) + φjoint(∇y, θ) +H(∇2y)

}
dx

we can define the total internal energy via e(F, θ) = ϕelast(F ) + w(F, θ) with
w(F, θ) = φjoint(∇y, θ)− θ ∂θφjoint(∇y, θ) and obtain

E(y, θ) =

∫

Ω

{
ϕelast(∇y) +w(∇y, θ) +H(∇2y)

}
dx.

The viscoelastic dissipation is characterized by a dissipation potential in the form

R(y, θ, ẏ) =

∫

Ω

ζ(∇y, θ, ∇ẏ) dx

where time-dependent frame-indifference implies that ζ has the form ζ(F, θ, Ḟ ) =

ζ̂(C, θ, Ċ) with C = F⊤F and Ċ = F⊤Ḟ + Ḟ⊤F , see [1, 8].
The linear momentum equation (neglecting inertia) can be written in the abstract
form 0 = DẏR(y, θ, ẏ) + DyF(y, θ). The heat equation is best formulated for the
“thermal part” w of the internal energy, namely

ẇ− div
(
K(∇y, θ)∇θ

)
= ∂Ḟ ζ(∇y, θ,∇ẏ):∇ẏ + ∂Fφjoint(∇y, θ):∇ẏ.

Besides of the classical assumption in this area, the following special constitutive
conditions are imposed:

coercivity: ϕelast(F ) ≥ c(detF )−δ, H(A) ≥ c|A|r −K,
1

δ
+

1

r
≤ 1

d
,(1a)

stress control: |∂Fφjoint(F, θ)|2 ≤ Kφelast(F ) +K2 ,(1b)

viscosity: ζ̂(C, θ, Ċ) =
1

2
Ċ:D(C, θ):Ċ ≥ c|Ċ|2 ,(1c)

where c and K are a suitable small and big constant.
The main result in [4] shows that for all initial conditions (y(0), θ(0)) = (y0, θ0)
with E(y0, θ0) <∞, there exists a suitable weak solution (y, θ) : [0, T ] → W2,r(Ω)×
L1(Ω) satisfying

y ∈ C0
w([0, T ];W

2,r(Ω)) ∩ H1([0, T ]; H1(Ω)) and(2a)

θ ∈ L1([0, T ];W1,1(Ω)) ∩ Lq([0, T ];W1,q(Ω)) for all q ∈ [1, d+2
d+1 [ .(2b)

Moreover, the solution is constructed to satisfy the energy balance E(y(t), θ(t)) =
E(y0, θ0) and the mechanical energy-dissipation balance

M(y(T )) +

∫ T

0

{
2R(y, θ, ẏ) +

∫

Ω

∂Fφjoint(∇y, θ):∇ẏ dx
}
dt = M(y0),(3a)

where M(y) =

∫

Ω

{
ϕelast(∇y)+H(∇2y)

}
dx .(3b)

The proof of the result relies on three mathematical tools that are of independent
interest:
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(A) The global invertibility theory for second-grade materials pioneered by
Healey and Krömer in [3] relies on the coercivity assumption (1a). Given any

constant M there exist positive constants K and c such that y ∈ W2,r
Dir(Ω) with

M(y) ≤M satisfies

det∇y(x) ≥ c and ‖∇y‖Cα + ‖(∇y)−1‖Cα ≤ K.

(B) The positive lower bound for the determinant is crucial for exploiting the
second tool, which is a generalized version of Korn’s inequality. The relevant
version was derived by Neff and Pompe in [6, 7] and provides, via (1c), an L2

control of ∇ẏ by the viscous dissipation, viz.

∫

Ω

|∇y⊤∇V +∇V ⊤∇y|2 dx ≥ cKorn(M)‖V ‖2H1

for all y with M(y) ≤M and V ∈ H1
0(Ω).

(C) The third mathematical tool is the abstract chain rule for semi-convex
functions as devised by Brézis for convex functionals in [2, Lem. 3.3] and by [5,
Sec. 2.2] for general λ-convex functionals in separable Banach spaces.
The construction of solutions is done by several approximations: (i) the viscous
dissipation is enhanced by an artificial and physically unacceptable dissipation
ε
2 |Ḟ |2 (cf. [1]); (ii) the viscous heating is modified to 2ζ(· · · )/(1+2εζ(· · · )) which
makes this right-hand side bounded; and (iii) the time is discretized with time
step τ > 0 to exploit incremental minimization techniques.
Because of (iii) we lose the control on the energy balance E(yε,τ (t)) ≤ E(y0, θ0),
but we still obtain a discrete counterpart of mechanical energy balance (3), namely

M(yε,τ (T )) +

∫ T

0

{
ε‖∇ẏε,τ‖2 − ‖∂Fφjoint(∇yε,τ , θε,τ‖L2‖∇ẏε,τ‖L2

}
dt ≤ M(y0).

This estimate allows us to obtain ε-dependent a priori estimates that control
the limit (yε,τ , θε,τ ) → (yε, θε) for τ ց 0. Next, in the time-continuous case
the chain rule (C) can be employed to regain the energy inequality M(yε(t)) ≤
E(yε(t), θε(t)) ≤ E(y0, θ0).
With this, the invertibility theory (A) and the generalized Korn inequality (B)
can be applied on the sublevel

{
y ∈ W2,r(Ω)

∣∣M(y) ≤ M(y0)
}
, uniformly in

ε > 0. Thus, the limit εց 0 can be performed as well with the weak convergence
∇ẏε ⇀ ∇ẏ in L2([0, T ]×Ω;Rd×d). To pass to the limit in the heat equation
with the right-hand side 2ζ(∇yε, θε,∇ẏε)/(1+2εζ(· · · )) that is only bounded in
L1([0, T ]×Ω), we exploit the abstract chain rule (C) for M and improve the weak
convergence of ∇ẏε to strong convergence.
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Making, testing, and modeling of pantographic structures

Wolfgang H. Müller

(joint work with Gregor Ganzosch)

In the recent past the fabrication of complex-designed and function-oriented struc-
tures became possible due to new developments in the additive manufacturing
and prototyping industries. This progressive manufacture technique enables the
combination of specially tailored (sub)structures with custom designed materials
resulting in a new class of material, the so called meta-materials.

Figure 1. Pantographic
structure developed
by [2] and manufactured
at the Institute of Me-
chanics at Technische
Universität Berlin by
means of an FDM tech-
nique (using polylactide
as raw powder on an
Ultimaker 3 extended
printer).

Meta-materials are able to show an extraordinary deformation behavior on the
macroscopic scale, which is strongly dependent on the substructure in microscopic
scale. Pantographic Structures (PS), which can be described as meta-materials
with a substructure composed of two orthogonal arrays of beams, connected by
internal cylinders (see Fig. 1), were manufactured by using three different additive
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manufacturing techniques - Fused Deposition Modeling (FDM), Direct Melting
Laser Sintering (DMLS), and Selective Laser Sintering (SLS). In general, effec-
tive properties are carefully chosen by designing microscopic constituents in the
substructure in order to achieve specially desired properties ([1, 2, 3]). Therefore
the mechanical performance of PSs depends not only on the global structure, but
also on the morphology of their subunits consisting of so-called inner parameters,
which are repeated periodically in the substructure.

Figure 2. Stress-Strain
diagram of an extension
test of PS made out of
polyactide (PLA). Points
A, B, and C, correspond
to the different loading
steps from Fig. 3.

Samples with different inner parameters have been tested in standard extension
and shear tests (Tytron MTS 250, Minnesota, USA), as well as in torsion tests
(Zwick Z010, Ulm, Germany). Different materials were chosen: Polyamide (PA),
Polylactide (PLA), and Aluminum (ALU). Digital Image Correlation (DIC) was
used to determine displacements and strains on the specimen surfaces by means
of a standard digital single-lens reflex camera Canon 600D (Canon Inc., Tokyo,
Japan) and the open-source GOM Correlation software (GOM GmbH, Braun-
schweig, Germany).
Loaded specimen respond linear elastically with a strong resilient deformation
behavior being capable to resist even higher loads after internal failure. Results
from a discrete 2D-model of the Hencky type (for further informations see [4]) was
compared with experimental results of extension- and shear-tests in the elastic
range because of model limitations.
In Fig. 2 the stress-strain diagram of FDM-printed PS (PLA) is shown. Linear
elastic deformation can be recognized up to an enlargement of about ε = 3.5 %
(corresponding to Fig. 3B). Resilient response occurs at about ε = 6.5 %
(corresponding to Fig. 3C). Because of the laterally asymmetrical structure of
PS, non symmetric deformation was measured during extension tests (see DIC
in Fig. 3). Therefore [5] introduced an extended version of the PS by changing
the inner parameters resulting in so-called Bi-Pantographic Structures (Bi-PS, see
Fig. 4). Being axially loaded in an extension test Bi-PS deform symmetrically in
contrast to PS. Another very promising advantage of this kind of structure lies
in the very large elastic deformation behavior. Bi-PS are capable to resist outer
axial loads (extension) up to about 40 percent of elongation (displacement of 80
mm) in the non-linear elastic regime (Fig. 5A). This exceptional response was also
calculated with the help of an in-plane discrete model (see Fig. 5A; right hand side).
Here, the rotational stiffness of the pivot and flexural stiffness of the beam mark the
inner parameters of the substructure, which had been determined in experiments.
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Figure 3. Image sequence of PS during tensile loading. Step A
- C correspond to the the marked points in Fig. 2. The picture in
the lower right corner shows exemplary the calculated necking in
y-direction by means of 2D-DIC shortly before first rupture oc-
curs.

Figure 4. Quadratic Bi-
Pantographic structure de-
veloped by [5] printed on a
Formiga P 100 using SLS tech-
nique.

Furthermore, in a shear test the linear elastic response was calculated resulting in
an elongation in shear-direction of about 20 percent (shear-displacement of about
30 mm). These results are in good agreement with the experimental measurements
(Fig. 5B).
It should also be mentioned that two different DMLS-printed PS have been inves-
tigated in torsion tests as well. The heat-treated as well as the non-heat-treated
specimen show small elastic deformations. Further analysis would go beyond the
scope of this discussion but are available in [6].
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Figure 5. A: Overlay of a discrete model (blue) on a rectangular
specimen Bi-PS during an extension experiment with about 40
percent of axial elongation. B: Overlay of a discrete model (blue)
on a quadratic specimen Bi-PS during a shearing experiment with
about 30 percent of axial elongation.
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Breaking the limits of metal strength

Eugen Rabkin

We studied the uniaxial compression behavior of micro- and nanoparticles of sev-
eral elemental metals (Au [1], Ni [2], Ag [3], Mo) and alloys (Ni-Fe, Ni-Co, Au-Ag).
The particles were obtained by solid state dewetting of thin metal films and mul-
tilayers deposited on sapphire substrates. The high homological temperatures
employed in dewetting process ensure the low concentration of dislocations and
their sources in the particles. The particles compressed with a flat diamond punch
exhibit purely elastic behavior up to very high values of strain approaching 10%,
followed by a catastrophic plastic collapse. The uniaxial yield strength of the par-
ticles defined as an engineering stress at the point of catastrophic collapse reached
the astonishing values of 34GPa and 46GPa for the smallest faceted particles
of Ni and Mo, respectively. The atomistic molecular dynamic simulations of the
particles compression demonstrated that the catastrophic plastic yielding of the
particles is associated with the multiple nucleation of dislocations at the facet cor-
ners or inside the particles. The latter, homogeneous nucleation mode resulted in
higher particle strength. The size effect in compression was observed both in the
experiments and in atomistic simulations, with smaller particles exhibiting higher
compressive strength. We discussed the stronger size effect observed in the ex-
periment (as compared with simulations) in terms of the effect of residual defects
trapped in the particles [4]. Finally, we produced Au-Ag core-shell nanoparticles
by coating the single crystalline Ag nanoparticles with a polycrystalline Au shell.
The core-shell nanoparticles exhibited much lower strength than their single crys-
talline pure Ag counterparts. We related this decrease in strength with the activity
of grain boundaries in the polycrystalline Au shell.

An ultrahigh strength of metal nanoparticles observed in the experiments indi-
cates that the contribution of diffusion-controlled Cobble-like creep to the overall
plastic strain increases with decreasing the particle size. We analyzed the experi-
ment on in-situ pseudo-elastic deformation of Ag nanoparticles inside the transmis-
sion electron microscope [5] in terms of Ag self-diffusion along the particle-punch
interface, and on the side surfaces of the particle [3]. We have considered an ax-
isymmetric Ag particle attached to a rigid inert substrate, and compressed by a
flat inert punch (Figure 1a). An irreversible change of stress-free particle height
is only possible due to the self-diffusion of Ag atoms along the particle-substrate
and particle-punch interfaces (Figure 1a). The Ag atoms emerging from the two
interfaces are re-distributed along the side surface of the particle. The mass con-
servation condition requires

Jc1 = Js1 and Jc2 = −Js2(1)

where Jc and Js are interface and surface diffusion flows, respectively, at the triple
line where the interface, the substrate surface, and the particle side surface meet
(r = Rc). The indexes “1” and “2” refer to the particle-substrate and particle-
punch interfaces, respectively. In what follows we will consider both interfaces in
a similar way and omit the indexes “1” and “2”. The evolution of side surface
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topography is described by Mullins equation. The driving force for diffusion along
the interfaces is the gradient of chemical potential of Ag atoms, µ, at the interface:

J(r) = −Bi2πr
∂µ

∂r
(2)

where J(r) is the total diffusion flow of Ag atoms through the circle of radius r at
the interface, and Bi is the interfacial Mullins coefficient:

Bi =
Diνi
kT

.(3)

In the expression (3), Di, and νi are the self-diffusion coefficient of Ag atoms along
the interface and the number of mobile atoms per unit area of the interface, respec-
tively. kT has its usual thermodynamic meaning. The condition of the rigidity of
the substrate and the punch requires that the materials accretion/depletion at the
interface is homogeneous, or, in other words, that the divergence of the interface

Figure 1. a) Schematic presentation of the diffusion model of a
creep-like deformation of Ag nanoparticles controlled by Ag self-
diffusion along the Ag-substrate and Ag-punch interfaces. b) The
simulated dependencies of the average contact pressure, Paverage,
on particle height, H , for several different values of the interface
diffusivity.
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diffusion flow is constant:

r−1 ∂J

∂r
= const = −2πBia(4)

where a =const. The axisymmetrical geometry of the problem requires J = 0 for
r = 0 and, hence,

J(r) = −πBiar
2(5)

Combining equations (2) and (5) yields the following expression for the interface
chemical potential:

µ(r) = µc + 0.25a
(
r2 −R2

c

)
(6)

where µc = µ(Rc). The constant a in equation (6) can be found by adding a
uniform layer of Ag of a thickness dz to the interface, calculating the total change
of the energy of all surfaces and interfaces in the system, and the work done against
the applied load, F , and equating them to the total energy contribution of all Ag
atoms in the added material:

2πRc∆γ − F =
1

Ω

∫ Rc

0

µ(r)2πr dr(7)

where Ω is the atomic volume of Ag and

∆γ =
γ + (γi − γs) cos θ

sin θ
(8)

with γ, γi, γs and θ being the surface energy of Ag, the interface energy, the surface
energy of the substrate, and the contact angle of solid Ag on the substrate, re-
spectively. Substituting equation (6) into (7) yields the value of interface diffusion
flow at the triple line:

J(Rc) = Jc = 8πBi

(
µc −

2∆γΩ

Rc
+
FΩ

πR2
c

)
(9)

The condition of flux continuity requires matching of the interface diffusion flow
given by equation (9) with the respective surface diffusion flow at the triple line.
Also, the continuity of the chemical potential requires µc = γK, where K is the
curvature of the surface near the triple line. Equation (9), together with the
Mullins equation for surface diffusion fully determine the evolution of the particle
shape controlled by diffusion under applied load F . The way to treat the particle
deformation under the condition of constant deformation rate is given in Ref. [3].
The results of simulation for the constant punch displacement rate of H = 0.1
nm/s are shown in Figure 1b for the different values of interface diffusivities δDi

and the maximum compressive displacement equal to one-half of initial particle
height. One can see from Figure 1b that for the room temperature interface
diffusivity of δDi = 5.0× 10−30m3/s the maximum compressive stress reached in
simulations is about 9.5GPa, close to the experimentally determined strength of
8GPa. Thus, this value of interface diffusivity can be considered as a lower bound
for the actual diffusivity enabling pseudoelastic deformation of Ag nanoparticles
without activating of dislocation plasticity. In conclusion, our results confirm a
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transition from the dislocation-nucleation controlled plasticity to the Coble-type
creep deformation with decreasing particle size.
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(Re-) formulation of dislocation density based crystal plasticity
models in view of insights from parameter determination

Franz Roters

(joint work with Martin Diehl, Karo Sedighiani)

Dislocation density-based crystal plasticity formulations incorporate metal physics
into continuum models of plastic deformation. Typically, the Orowan equation is
used to relate the plastic shear rates on system α to the motion of dislocations
through an average dislocation velocity:

(1) γ̇α = ραbvα,

with ρα the mobile dislocation density, b the Burgers vector, and vα the mean
dislocation velocity. According to Kocks [1] the velocity can be calculated as:

(2) vα = lsω0 exp

[
−∆F

kBT

{
1−

[
τ∗αT
τ∗0

]p}q]
sign (τα) ,

with ls the inter obstacle spacing, and ω0 the attack frequency. If the waiting
time in front of obstacles is the rate limiting factor for the dislocation movement
(see figure 1), the average dislocation velocity is determined by the probability of
a successful jump from one obstacle to the next. At finite temperatures, thermal
energy helps a dislocation to overcome a barrier by thermal activation, a process
typically described by the Arrhenius-like formulation, i.e. the exponential term
with ∆F the total activation energy, kB the Boltzmann constant, T the temper-
ature, τ∗αT the driving stress, and τ∗0 the critical stress to overcome the obstacle
without any thermal activation, i.e. at T = 0K. Finally the sign of the resolved
stress τα determines the direction of shear. The athermal part of the obstacles
ταG, i.e. the barrier that is too strong for thermal activation to be significant and
needed to be overcome by the resolved shear stress only, can be computed from
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Figure 1. Schematic of dislocation motion in an obstacle field.

the dislocation density with a generalized Taylor law, so that the driving stress
can be calculated as:

(3) τ∗αT = |τα| − µb

(
Ns∑

α′=1

ξαα′

(
ρα

′

+ ρα
′

D

))
1

2

,

with µ the shear modulus, ξαα′ the slip interaction coefficients, and ρα
′

D the dipole
density. Kocks–Mecking like expressions finally provide the means to determine
the dislocation density evolution.
Including all these mechanisms into a crystal plasticity formulation results in a
large number of adjustable material parameters. While the upper and lower
bounds for many parameters of these physics-based expressions are known, the
precise determination of their values for a specific material is a time-consuming
process. Even though simulations at smaller scales enable the determination of
parameters such as interaction coefficients (by means of discrete dislocation dy-
namics), experimental data is often indispensable.
Due to the high computational effort and the many local minima we employed
an efficient optimization scheme combining a genetic algorithm with the response
surface methodology [2] to fit the stress–strain curves of an interstitial free steel
for a wide range of temperatures and strain rates. Still we were not able to find a
parameter set correctly describing the yield stress over the full temperature range,
figure 2.
This raises the question, whether the parameter set found was not good enough
or whether the model description is insufficient to describe the yield stress drop
at high temperatures. To check the quality of the parameter optimization we
used pre-calculated stress–strain curves as input, i.e. a set of curves for which
a unique parameter set exists. It turned out that, while most parameters were
well recovered, there was significant scatter for the parameters ∆F , p, and q,
when multiple fitting runs were carried out. This finding indicates a possible
over-parametrization of the model suggested by Kocks [1]. This assumption is
also supported by figure 3, which shows that completely different choices of the
three parameters can result in a temperature dependence of τ∗, which is almost
identical in a large temperature range. Only for very low temperatures distinct
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Figure 2. Temperature dependence of the yield stress: experi-
ment vs. simulation.

Figure 3. Temperature dependence of τ∗ for two different pa-
rameter sets of ∆F , p and q.

differences exist, however, usually we are lacking experimental data at these low
temperatures.
An alternative formulation frequently found in literature uses an activation Volume
V ∗ for the mechanical contribution to the activation energy:

(4) exp

[
−∆F − τ∗TV

∗

kBT

]
.
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As can be easily shown:

(5) ∆F − τ∗TV
∗ = ∆F

{
1− τ∗TV

∗

∆F

}
= ∆F

{
1− τ∗TV

∗

τ∗0 V
∗

}
= ∆F

{
1− τ∗T

τ∗0

}
,

this formulation is almost identical to the one by Kocks, however, without the
parameters p and q. Therefore, this alternative formulation might help to overcome
the problems during parameter fitting, as it reduces the number of free parameters.
In addition, strain rate jump tests can help to better identify the parameters.
While this might solve the issue of over-parametrization it cannot explain the yield
stress drop at high temperatures. Resolving this will require additional changes
in the model.
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About a mathematical difficulty in magnetoviscoelasticity

Anja Schlömerkemper

The mathematical analysis of the coupled system of partial differential equations
in (1), which models the flow of magnetoviscoelastic materials, requires several
assumptions on the elastic stored energy W . The aim of this talk is to discuss
these assumptions from the mathematical and mechanical point of view and to
indicate potential improvements. The system (1) under consideration allows for
micromagnetism, finite elasticity, viscosity and dynamics. It is phrased in Eulerian
coordinates and was derived in an energetic variational approach, cf. [1]. The
system includes the incompressible Navier-Stokes equations, an evolution equation
for the deformation tensor (transformed to Eulerian coordinates), and the Landau-
Lifshitz-Gilbert equation for the magnetization vector.
For T > 0 and Ω ⊂ R

d being a bounded domain with d = 2, 3, the system reads

∂tv + v · ∇v − ν∆v +∇p = div
(
W ′(F )F⊤ − (∇M)⊤∇M

)
+ (∇Hext)

⊤M,

div v = 0,

∂tF + v · ∇F −∇vF = 0,

∂tM + (v · ∇)M = −M × (∆M +Hext) +∆M + |∇M |2M
− (M ·Hext)M +Hext,

(1)

where v : (0, T ) × Ω → R
d denotes the velocity field, p : (0, T ) × Ω → R is the

pressure of the system, F : (0, T ) × Ω → R
d×d is the deformation tensor in the

Eulerian setting and M : (0, T )× Ω → R
3 the magnetization. The elastic energy

density is denoted by W : R
d×d → [0,+∞). The deformation tensor and the
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magnetization vector satisfy the constraints divF = 0, |M |2 = 1 on Ω × (0, T ).
The system is supplemented with initial and boundary conditions and obeys an
energy law.
Existence of weak solutions is known globally in time for suitably small initial data
if d = 2 and if the transport equation for F , equation (1)3, is replaced by

∂tF + v · ∇F −∇vF = κ∆F

for some κ > 0 [1, 3]. Existence of strong solutions to the system with the regu-
larized transport equation was shown in [3].
Existence of dissipative solutions to system (1) (without the regularization) is
known globally in time and for general initial data in d = 2, 3 dimensions [2].
For references regarding existence of solutions for initial data that are close to
equilibrium or locally in time, see the introduction of [2].
In this talk I discuss the assumptions on the elastic stored energy density W :
R

d×d → [0,∞) from a mathematical and mechanical perspective, respectively.
As usual in continuum mechanics, W is assumed to be frame-indifferent, i.e.,
W (RF ) =W (F ) for all R ∈ SO(d) and all F ∈ R

d×d. In the mathematical proofs,
which are based on a Galerkin approach, we make use of a lower semicontinuity
property of the energy functional and of W ′′(F ) ≥ 0. We assume the elastic
stored energy density to be (i) a strictly convex C2-function in [1], (ii) a convex
C2-function in [3] and (iii) a quadratic function, e.g., W (F ) = 1

2 |F |2 in [2]. In (i)

and (ii) we furthermore require that there exists a C > 0 such that C(|F |2 − 1) ≤
W (F ) ≤ C(|F |2 + 1) for all F ∈ R

d×d.
As is well-known in continuum mechanics, the drawback of the convexity assump-
tions is that the energy density will not become infinite in complete compression,
and self-interpenetration of matter would be possible. However, in the incompress-
ible setting with detF = 1, there is no interpenetration of matter anyhow and the
convexity assumption seems not to be too bad. In the case of the regularized
transport equation, i.e., in the case with κ > 0, the initial incompressibility condi-
tion detF0 = 1 is not preserved. It would be desirable to have a term penalizing
deviations from detF = 1, which would be non-convex. This motivates to apply
the notions of polyconvexity and gradient polyconvexity in this context, which I
addressed in this talk.
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[1] B. Benešová, J. Forster, C. Liu, A. Schlömerkemper, Existence of weak solutions to an
evolutionary model for magnetoelasticity, SIAM J. Math. Anal. 50 (2018), 1200–1236.
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Magneto-electric composites: An algorithmic scale-bridging approach

Jörg Schröder

(joint work with Matthias Labusch)

Materials which combine two or more ferroic characteristics are known as mul-
tiferroics and can exhibit an interaction between magnetic and electric fields.
This magneto-electric (ME) coupling can find applications in sensor technology
or in electric field controlled magnetic data storage devices. Since ME-single-
phase materials show an ME-interaction far below room temperature, the design
of two-phase composites consisting of a ferroelectric matrix and magnetostrictive
inclusions becomes important.
We distinguish between the direct and converse ME effect. The direct effect charac-
terizes magnetically induced polarization, where an applied magnetic field yields
a deformation of the magnetic active phase which is transferred to the electric
phase. The converse effect characterizes an electrically activated magnetization.
In this contribution we discuss the two-scale modeling of micro-heterogeneous
composites, which exhibit as a product property an effective (macroscopic) ME-
coupling. In order to determine the effective properties, a homogenization ap-
proach – the FE2-method – is designed for this multiphysics application. This
connects via scale-bridging the microscopic and nanoscopic levels. To predict a re-
alistic coupling behavior we imlemented suitable material models for the individual
phases on the microscopic level which reflect the typical hysteresis curves.

Mechanics of Biomaterials

Vadim V. Silberschmidt

Our understanding of mechanics of biological tissues, their properties and per-
formance as well as their interaction with biomedical devices still remains lim-
ited. This is a result of multiple factors, most important being a hierarchical and
heterogeneous nature of biological tissues, non-trivial loading and environmental
conditions, to which they are exposed as well as multi-disciplinary nature of the
processes involved. This abstract presents an overview of the latest research activ-
ities and achievements in the area of mechanics of biomaterials at Loughborough
University, UK. It covers various types of biological materials and tissues – both
hard (bones) and soft (muscles, etc.) – that have been studied in previous studies
[1, 2, 3, 4] at various spatial and temporal domains. These studies laid a foun-
dation for development and implementation of advanced computational modelling
of mechanics of these biological tissues at different stages (healthy, diseased and
traumatic conditions) and for several areas of biomedical applications (injury pre-
vention, wound care and rehabilitation). Performed numerical simulations, on the
one hand, elucidate processes of deformation of biological tissues and, on the other
hand, provide solutions for design and optimization of medical and rehabilitation
procedures and devices. Research on mechanical behaviour of a naturally occur-
ring composite material, cortical bone tissue, has attracted increasing attention
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over the past few decades, not only because bones play an important role in struc-
tural integrity of a musculoskeletal system, but also due to our growing knowledge
of their intrinsic hierarchical structure and heterogeneous mechanical properties.
This mineralized biological tissue is a main load-bearing component. Being a
living tissue, cortical bone also has the ability to adapt (both its shape and in-
ternal structure) to mechanical environment through processes called remodelling.
Macroscopically, the deformation mechanisms of bones differ from those of engi-
neering materials since bones consist of a living tissue with a continuously evolving
hierarchical microstructure. Mechanical properties of cortical bone vary not only
from bone to bone; they demonstrate spatial viability even within the same bone
due to changes of the underlying microstructure [1, 2]. Considering the wide spec-
trum of material properties of cortical bone and its intricate deformation processes
associated with various loading modes and orientations, an investigation was per-
formed to elucidate the effect of variations in material properties in relation to the
local regions and underpinning microstructural constituents on crack propagation.
The contributions of main bone’s micro-constituents – osteons, Haversian canals
and cement line – on evolution of crack propagation were assessed. Microscopically,
the intrinsic micro-architecture of cortical bone has a significant effect on its macro-
scopic mechanical and fracture properties. Anisotropic deformation and fracture
behaviours observed at macroscopic level are largely attributed to the preferential
alignments of micro-constituents at subsequent length-scales: micro-scale for os-
teons and Haversian canals, or nano-scale for collagen fibrils and mineral crystals.
From a fracture-toughness perspective, intricate structural hierarchy and material
heterogeneity observed in the cortical bone tissue can often lead to an improved
fracture resistance thanks to various fracture-toughening mechanisms. A process of
deterioration of human cortical bone due to age and/or disease (e.g. osteoporosis)
could increase a risk of bone fracture. Hence, the methods to predict such devel-
opment and to protect patients are becoming an increasingly attractive research
topic. A traditional evaluation method was to measure bone mineral density, but
this single factor is insufficient to predict bone fracture because of heterogeneous
properties and hierarchy structure of human cortical bone. So, a stress intensity
factor related to extrinsic toughening mechanism, is also used to quantify the frac-
ture resistance of human cortical bone. However, the understanding of the effect
of micro-morphology of osteonal structure on fracture toughness of human cortical
bone is still not fully established. The experimental analysis is not suitable for
this investigation because of the difficulty of recording a crack path at micro-level
and quantifying this effect without accounting for mechanical properties of cortical
bone and its constituents. Therefore, a novel computational method is suggested
and adopted to simulate crack propagation process in domains with a direct ac-
count for bone’s micro-morphology. The research also covers quantification and
modelling of soft tissues – muscles – playing (together with bones) important role
in biomechanics of limbs. A high mismatch in mechanical properties of soft tissues
both with the hard tissue and a prosthesis is a significant challenge. Numerical
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simulations can provide solutions for this challenge and elucidate processes at the
interface between the life tissues and engineering structures.
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Experimental challenges for electro- and magnetoactive polymers

Paul Steinmann

In a nutshell, electro-active polymers (EAP) and magneto-active polymers (MAP)
can be actuated with large deformations by either an electric field applied via flex-
ible electrodes or a magnetic field applied contactless, respectively. The ability for
extreme actuation makes EAP and MAP interesting candidates for soft actuators,
e.g., in novel concepts for soft robotics. However, the fabrication, testing, and
characterisation of this class of materials, needed as a necessary preliminary for
their modelling and simulation, comes with a multitude of challenges.

Regarding EAPs, challenges reported on, e.g., in [1, 3, 4, 9, 10] are:

• the extreme compliance of the dielectric acrylic VHB polymer tape,
• the difficult specimen preparation and handling due to its stickyness,
• the necessity for pre-stretching the polymer tape in a controlled fashion,
• the application and influence of the flexible electrodes via conducting
grease,

• the application and control of the electric field of up to 7 kV,
• the rate and temperature dependence of the polymer,
• among many others.

Regarding MAPs, challenges reported on, e.g., in [2, 5, 6, 7, 8] are:

• the agglomeration of the carbonyl iron filler particles during specimen
fabrication,

• their sedimentation during the curing phase of the liquid silicone rubber
matrix,

• the contact between the rotor surface and specimen during rotational
rheometry,

• the application and control of the magnetic flux of up to 1 Tesla,
• the control of heat generation during testing,
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• the rate and temperature dependence of the polymer,
• among many others.

The presentation gave a summarising, though brief, account on how to address
these experimental challenges when investigating EAPs and MAPs.
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GENERIC-based formulation of coarse-grained dislocation dynamics,
transport and kinetics

Bob Svendsen

(joint work with Markus Hütter)

Collective dislocation behavior in metallic systems is highly dissipative in nature
and results in the formation and evolution of a wide variety of microstructures.
Discrete modeling approaches for this at the mesoscopic level include for example
kinetic Monte Carlo or line dislocation dynamics (e.g., [1]). Related continuum
modeling approaches are often based on direct averaging methods and phenomeno-
logical transport relations (e.g., [2, 3]). The inherent “slowness” of dislocation dy-
namics even on macroscopic timescales and concomitant lack of timescale separa-
tion motivates the application of more sophisticated coarse-graining methods. To
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this end, following previous work (e.g., [4]), coarse-graining of dislocation dynamics
is carried out in the current work in the context of non-equilibrium statistical ther-
modynamics with the help of projection-operator [5] and fluctuation-dissipation
methods as well as the General Equation for Non-Equilibrium Reversible Irre-
versible Coupling [6]. Generalizing the straight dislocation treatment in [4], the
current approach is based on the general elastic interaction energy functional for
curved dislocation networks from dislocation field theory [7]. In particular, this
formulation results in coarse-grained continuum balance, transport, and thermo-
dynamic flux-force, relations depending on the underlying discrete energetics and
dynamics. Although exact, the resulting functional relations are not computable.
Analogous to the case of density functional theory, approximations and simplifi-
cations such as the local density approximation [8], or discretization in the sense
of line dislocation dynamics [9], are necessary to this end and investigated here.
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Temperature-dependent Mechanical Parameters: A Mechanical
Motivation for studying Nonlocal, Parabolic PDEs

David Torkington

(joint work with Heiko Gimperlein, Andrew A. Lacey)

If a material is extremely energetic – that is, it possesses a large amount of stored
chemical energy – then improper handling poses a serious safety concern, as even
a mild deformation of the material could lead to heat build-up (through internal
mechanical dissipation) that exceeds the energetic material’s low activation energy.
It is well attested by experiment that macroscopic mechanical parameters, such as
viscosity and elastic modulus, vary with temperature. Hence, any heat build-up
will affect the energetic material’s mechanical response, in turn affecting the rate
of any additional heat build-up due to mechanical dissipation. As such, due to the
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extreme sensitivity of energetic materials, it is vital to account for the temperature
dependence of the mechanical parameters.
Herein, a model to describe the heat evolution within a sheared one-dimensional
material body with temperature-dependent mechanical parameters produces non-
local, parabolic partial differential equations, thereby motivating both the analyt-
ical and numerical study of these equations. Analogous equations, but derived in
different contexts, have been examined in [1] and [2], for example.
A one-dimensional material is considered, parametrised by the Eulerian ordinate
x ∈ [0, 1]. The material undergoes quasi-static simple shear (with no compression
mode) in the y direction, in the absence of body forces. We denote by v(x, t)
the material’s pointwise velocity in the y direction; by τ(x, t) the local shear stress
experienced by the material; and by ρ, c and k, the material’s mass density, specific
heat capacity, and thermal conductivity respectively, each taken to be constant
in spacetime. The lateral velocity in the y direction is specified at each of the
boundary points: v(0, t) ≡ 0 and v(1, t) = V (t), for V (t) given.
The material must satisfy the local balances laws for momentum and energy:

ρvt = τx, and(1)

ρcTt − kTxx = τvx.(2)

The quantity τvx in the energy equation is the local heat released due to mechanical
dissipation (per unit time). Since the material is sheared quasi-statically, equation
(1) reduces to τx ≈ 0 ⇔ τ ≈ τ(t). The final expression will be taken to be an
exact equality, serving to decouple (1) and (2).
Indeed, for example, considering an incompressible, thermo-viscous material de-
scribed by the constitutive equation

(3) τ = µ(T )vx

(the pressure field can be neglected in this one-dimensional setting), where im-
portantly, the (dynamic) viscosity µ = µ(T ) depends on the local temperature
T = T (x, t), we can obtain

vx =
τ(t)

µ(T )
=⇒ V (t)− 0 =

∫ 1

0

vx dx = τ(t)

∫ 1

0

1

µ(T )
dx ,

since τ is independent of space x due to the quasi-static approximation. Hence,
setting φ(T ) := 1/µ(T ) and using (3), the local heat released due to mechanical
dissipation (per unit time) within the thermo-viscous material is given by

(4) τvx =
τ2(t)

µ(T )
≡ φ(T )τ2(t) =

φ(T )V 2(t)
(∫ 1

0 φ(T ) dx
)2 ,

yielding the following nonlocal, parabolic partial differential equation for the heat
evolution:

(5) ρcTt − kTxx =
φ(T )V 2(t)

(∫ 1

0 φ(T ) dx
)2 .
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Similarly, considering an incompressible, Maxwellian-thermo-viscoelastic material
(again the pressure field is not needed in this one-dimensional setting) described
by the constitutive equation

(6) τ +
µ(T )

G(T )
τ̇ = µ(T )vx,

where the dynamic viscosity µ = µ(T ) and the shear elastic modulus G = G(T )
each depend on the local temperature T (x, t). Still with φ(T ) := 1/µ(T ) and
setting W (T ) := 1/E(T ), then, similar to before, we can obtain

V (t)− 0 =

∫ 1

0

vx dx = τ(t)

∫ 1

0

φ(T ) dx+ τ̇(t)

∫ 1

0

W (T ) dx,

yielding the following ordinary differential equation for τ = τ(t):

(7) τ̇(t) +

∫ 1

0 φ(T ) dx∫ 1

0
W (T ) dx

τ(t) =
V (t)

∫ 1

0
W (T ) dx

.

For ease of notation, setting f(t) :=
∫ 1

0
f(T )dx for any temperature-dependent

function f(T ), and imposing the stress-free initial condition τ(0) = 0, (7) has
solution formula

(8) τ(t) =

∫ t

0

V (t′′)

W (t′′)
exp

(
−
∫ t

t′′

φ(t′)

W (t′)
dt′
)
dt′′.

As well as being nonlocal in space, through the terms φ(t) and W (t), this expres-
sion exemplifies the memory property of the thermo-viscoelastic material, through
the integration in time. This expression is too cumbersome for direct use as a
source term in a nonlocal, parabolic partial differential equation, and so instead
we take the elastic portion of the Maxwellian material to be asymptotically rigid,
in the sense that there exist 0 < ε≪ 1 and r(T ) such that

(9) W (T ) ≡ 1

G(T )
= εr(T ),

where the function r(T ) is independent of ε. The viscosity µ(T ) is also taken to
be independent of ε. We then expand the solution (8) as an asymptotic series in
the small parameter ε, making the previously unwieldy nonlocal, parabolic partial
differential equation more amenable to numerical analysis. This expansion must
be done with care, due to the appearance of terms in 1/ε, but we have succeeded
in determining the zeroth- and first-order modes analytically.
Now that such nonlocal, parabolic partial differential equations have been moti-
vated, we are investigating their well-posedness, as well as developing schemes to
solve them numerically, both in the one-dimensional setting and in higher dimen-
sions, after first generalising the equations to higher dimensions in the natural
way. On this note, we are hoping to derive these higher-dimensional counterparts
from first principles, rather than simply performing this generalisation step, but
this requires more work than the one-dimensional case presented herein.
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Application of crystal plasticity to nickel-based honeycomb structures
under rubbing loading

Ewald Werner

(joint work with Tim Fischer, Sonan Ulan kyzy, Oliver Munz)

Sealing systems play a key role in the efficiency of gas turbine engines. The purpose
of the sealing system is to keep the gap between the rotating and the stationary
components as small as possible. This ensures a low leakage mass flow, thereby
maintaining the pressure difference between the turbine stages resulting in a high
efficiency and consequently a reduction in fuel consumption. However, due to the
small gap widths, a contact between the components is much more likely. This
procces is called rubbing. As stationary component of the sealing system, the
honeycomb structures’ role is to prevent catastrophic failure of the rotating com-
ponent. During contact the honeycomb structure can also be critically damaged.
Figure 1 illustrates the cross section of the honeycomb structure including the po-
tential rubbing surface. Typical types of damage of the honeycomb structure are
large and localised deformation, overheating, and crack initiation (mainly at the
edges of the rubbing patch). The crack can subsequently cause large honeycomb
structure parts to break out, thus compromising the functionality of the sealing
system. Polycrystalline nickel-based superalloys are usually used as honeycomb
structure material. Extreme thermo-mechanical loads are generated during rub-
bing, making the material properties of central importance. A variety of factors
influence rubbing. Since most of these effects can only be determined to a limited
degree with time-consuming and cost-intensive tests, it is aimed to capture the
rubbing process in thermo-mechanical models taking into account the macro- and
microstructure features of the honeycomb structure.
To achieve a detailed representation of the material response, the constitutive be-
haviour of the employed nickel-based superalloys Hastelloy X and Haynes 214 is
modelled with a crystal plasticity approach, utilising a finite element framework.
The material model is based on the multi-physics software tool DAMASK (devel-
oped at the Max-Planck-Institut für Eisenforschung, Düsseldorf) [1]. Using the
crystal plasticity approach, it is assumed that plastic flow is mainly achieved by
dislocation glide in slip systems. This allows to model effects influenced by in-
dividual grains and their respective orientation. The material model is designed
for a wide range of temperatures and strain rates. In addition, isotropic thermal
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expansion and the influence of the grain size are taken into account. As an in-
troduction into the application of crystal plasticity, reference [1] is recommended.
Further insights into the material model can be found in [2, 3, 4].
For an efficient rubbing simulation, the structural domain is restricted to the unit
cell of the honeycomb structure (highlighted by the dashed box in Fig. 1) and
periodic displacement boundary conditions (BCs) are applied to the outer faces
of the cell. In addition, the bottom surface is fixed in z-direction. The thermo-
mechanical loads acting on the rubbing surface are derived from experiments on a
test rig [5]. A homogeneous temperature distribution is assumed at the beginning
of the simulation. To further improve the efficiency of the rubbing simulation,
the honeycomb structure is seperated into a core and an outer part (see Fig. 2).
This modelling strategy is known as embedded cell approach [6, 7]. A similar
approach was used in the past for fretting simulation [8, 9]. While the core part
is provided with the crystal plasticity model, an isotropic plasticity model is as-
signed to the outer part. It is worth mentioning, that the wall thickness of the
honeycomb structure is a few micrometers. Hence, the macroscopic scale of the
honeycomb structure is of the same magnitude as the characteristic length of the
microstructure of the material.
For the simulative study the mean grain size of the honeycomb structure is varied
between 50 − 174µm. In addition to the grain size, the influence of the grain
orientation is investigated. A distinction is made between three different types
of crystallographic grain orientation: (i) no texture (grain orientation is random),
(ii) [111]-texture ([111] || z-axis), and (iii) [001]-texture ([001] || z-axis). The
results of the study reveal that the macroscopic load of the honeycomb structure
can be reduced by increasing the mean grain size. This can be attributed to the
implemented grain size effect and the associated lower flow stress of the material.
Moreover, a larger grain size leads to a greater spread of the loads for different
random grain orientations. Similar to the grain size study, an effect of the grain

Figure 1. Geometry and boundary conditions (BCs) of the
honeycomb structure for the rubbing simulation.
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Figure 2. Embedded cell approach of the honeycomb structure
consisting of a core part with a fully resolved microstructure em-
bedded in a macroscopic outer part.

orientation is clearly observable. For the [001]-texture the macroscopic loads of
both alloys are least pronounced. Finally, the studies show that the macroscopic
load and the surface deformation occurring during rubbing are much greater for
Haynes 214 than for Hastelloy X.

Acknowledgment. This work has been conducted in the context of the research
project WE 2351/14-1, funded by the DFG (Deutsche Forschungsgemeinschaft).
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Stress-free configurations in martensites and nematic liquid
crystal elastomers

Barbara Zwicknagl

(joint work with P. Cesana, S. Conti, F. Della Porta, M. Klar, A. Rüland,
C. Zillinger)

Shape memory alloys are special materials that undergo a martensitic phase trans-
formation, i.e., a diffusionless, solid-to-solid phase transition of first order. The
formation of microstructures in such materials is often modelled variationally in
terms of the phenomenological theory of martensite [1] based on the geometrically
nonlinear theory of elasticity.
Of recent interest are materials for which the high-temperature austenite and the
low-temperature martensite phase are exceptionally compatible in the sense that
exact interfaces without complicated microstructures are possible (see e.g. [2]
and the references therein). Building on [3], we focus on highly compatible planar
materials for which piecewise affine stress-free nuclei are possible. Mathematically,
this corresponds to deformations u : R2 → R

2 which satisfy

∇u ∈
{
SO(2) a.e. in Ω⋃

P∈P
SO(2)PTUP a.e. in R

2 \Ω,(1)

where Ω ⊂ R
2 is the domain occupied by the martensitic nucleus, U ∈ R

2×2 is
a positive definite matrix that denotes a transformation matrix from austenite
to one variant of martensite, and P ⊂ O(2) is the point group of the underlying
austenite lattice. The SO(2)-invariance corresponds to the assumption of frame
indifference.
Using the rotated n-gon construction from [4, 5], we identify crystallographic pa-
rameters for which piecewise affine solutions u to (1) exist for a polygonal annular
domain Ω. This includes in particular certain cubic-to-oblique (for n = 4) and
hexagonal-to-oblique (for n = 3) phase transitions [3].
These results can be also generalized and related to different phase transforma-
tions, see [6]. In particular, iterating such constructions in a self-similar way, one
obtains (stressed) microstructures that are closely related to some experimentally
observed tripole-star patterns (see [6] and the references given there). Further-
more, in the limit n → ∞, the differential inclusion problem is related to models
for nematic liquid crystal elastomers from [7, 8], see [6].
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91003 Évry Cedex
FRANCE

Prof. Dr. Gilles A. Francfort

LAGA UMR 7539
Institut Galilee
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Institut für Festkörpermechanik
Fakultät Maschinenwesen
Technische Universität Dresden
01062 Dresden
GERMANY

Prof. Dipl.-Ing. Björn Kiefer

Institut für Mechanik und Fluiddynamik
Technische Universität Bergakademie
Freiberg
Akademiestrasse 6
09599 Freiberg
GERMANY

Prof. Dr.-Ing. Reinhold Kienzler

FB 4 / FG 15 / IW 3
Universität Bremen
Postfach 330440
28334 Bremen
GERMANY

Dr. Sven Klinkel

Fakultät für Bauingenieurwesen
RWTH Aachen
Mies-van-der-Rohe-Strasse 1
52074 Aachen
GERMANY

Prof. Dr. Dorothee Knees

FB 10 - Mathematik und
Naturwissenschaften
Institut für Mathematik
Universität Kassel
Heinrich-Plett-Strasse 40
34132 Kassel
GERMANY

PD Dr.-Ing. Christian Krempaszky

Lehrstuhl für Werkstoffkunde und
Werkstoffmechanik
Technische Universität München
Boltzmannstrasse 15
85748 Garching bei München
GERMANY

Prof. Dr. Khanh Chau Le

Lehrstuhl für Allgemeine Mechanik
Fakultät für Bauingenieurwesen
Ruhr-Universität Bochum
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Flächentragwerke
Technische Universität Dresden
August-Bebel-Straße 30
01219 Dresden
GERMANY

Prof. Dr. Barbara Zwicknagl

Institut für Mathematik
Humboldt-Universität zu Berlin
Rudower Chaussee 25
12489 Berlin
GERMANY




