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Introduction by the Organizers

The meeting in Oberwolfach, 28 Jun - 4 Jul 2020, was the second hybrid type
workshop since the partial relaxing of the corona related restrictions in Baden-
Württemberg. As the result, there were a score of problems with the workshop,
both as far as the setting up the lectures and the interaction between the partici-
pants was concerned.

The decision to let the workshop proceed in the hybrid form was taken fairly
late, because of the dynamics of the pandemics. Due to national travel restrictions,
none of the organisers were able to participate physically. We would like to express
our gratitude to both Birgit Richter and Thomas Schick, for the effort they put
into making the meeting happen at all. Also, the setting up of remote lectures
was initiated shortly before the beginning of the workshop, giving participants very
short time to prepare. The on-line lectures require substantial amount of effort.
As the result, the choice of subjects of lectures was dictated by what participants
have prepared previously, in connection with web-seminars they had participated
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in during the last couple of months. Also, the geographic spread of the participants
resulted in a relatively narrow time window - effectively three hours per day - for
presentation of lectures and, possibly, related discussions.

There were interesting discussions as on the evening of Tuesday, but what was
really missing was the actual physical gathering and its impromptu discussions.
The feedback from the in spe organisers present physically in Oberwolfach, stressed
that the main impact of the Oberwolfach workshops is achieved by direct inter-
action and discussions between the participants, be it at the break after lunch or
in the evening. According to Birgit Richter and Thomas Schick, the participants
present on site unanimously expressed their great satisfaction with the fact that
they finally could have this kind of direct personal interaction. While the lectures
are a very important element of the Oberwolfach type meeting, they do not seem
able to replace the immediacy of physical presence and reactions it allows. In
short, the on-line form of the workshop, while possible, does not seem to be an
appropriate replacement for traditional form of Oberwolfach meetings.
The main objective of the workshop was to instigate a real interaction between the
homotopy theorists and the operator algebraists, with their different approaches
to the subject and applications of topological and analytic cyclic homology in all
their variants. This was unfortunately made almost impossible in the hybrid type
set up. But just the few lectures and interactions during the meeting related to
this goal did show again the importance of this kind of event. Just for a starter,
we would like to point to the lectures - on site - by Dustin Clausen on his work
with Scholze and Ralf Meyer on his work with Guillermo Cortinas and Devarshi
Mukherjee (Non-Archimedean analytic cyclic homology, ArXiv:1912.09366, both
related to the way an appropriate version of (topological/bornological) cyclic ho-
mology relates to the cohomology of schemes in prime characteristic. While the
reasons for the workshop listed below remain just as valid as in the original appli-
cation, the latest developments in both TC and applications of bornological cyclic
homology stress, in our minds, the need to carry out a classical type Oberwolfach
workshop devoted to the interaction between the two mathematical communities.

Acknowledgement: We would like to express our gratitude to both Birgit Richter
and Thomas Schick, for the effort they put into making the meeting happen at all.
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Abstracts

Quantized calculus and Weil positivity

Alain Connes

(joint work with Caterina Consani)

My talk surveyed the recent developments of my collaborative research program
with C. Consani on the positivity of the Weil functional in number theory using
the Hilbert space framework of the semi-local trace formula of [2]. This research
is closely related to the main open question of the Riemann Hypothesis.

I started my talk by showing the Oberwolfach abstract of 1981 [1], Spectral
sequence and homology of currents for operator algebras, in which cyclic cohomol-
ogy, the SBI long exact sequence, and the computations for smooth manifolds and
non-commutative tori were done, while the origin of the theory came from the
quantized calculus whose basic equations are

−df := [F, f ], F = F ∗, F 2 = 1, Ωk := {ω =
∑

f0
−df1 . . .

−dfk}
I then explained how the quantized calculus clarifies why the Hilbert space frame-
work of the semi-local trace formula delivers a sum of terms as in the Riemann-Weil
explicit formula [7] while the underlying geometric space, the semi-local adele class
space is closely related to a product of local fields. The explanation comes from
the quantum logarithmic derivative of the product of ratios of local factors which
transforms a product into a sum. For the Riemann zeta function ζ(s) the explicit
formula takes the following form, with Z = 1

2+iS the multi-set of non-trivial zeros
of the Riemann zeta function

(1) f̂(−i/2)−
∑

s∈S

f̂(s) + f̃(i/2) =
∑

v

Wv(f) ∀f ∈ C∞
c (R∗

+)

Here one lets f̂ be the Fourier transform of the complex-valued function f with
compact support on the group R∗

+ whose dual is identified with R. The terms of
the sum in the right-hand side of (1) are of local nature, associated to the places v
of the field Q. Following Weil, the Riemann hypothesis (RH) is equivalent to the
negativity of the right-hand side of (1) for all functions f = g ∗ ḡ∗, g ∈ C∞

c (R∗
+),

such that f̂(s) = 0 for all s in a finite set E of complex numbers with E ⊃ {±i/2}
and E ∩ S = ∅. The key point is that the right-hand side of the explicit formula,
when evaluated on a test function f with compact support, involves only finitely
many places at a time. In the very recent paper [5] we have provided a theoretical
proof for the negativity of the right-hand side of (1) in the case one restricts to test
functions f with Support(f) ⊂ (1/2, 2) and whose Fourier transform vanishes at 0
and ± i

2 . In this case, the (geometric) right-hand side of the explicit formula is just
the archimedean distribution WR which coincides, outside 1 ∈ R∗

+, with a locally
rational, positive function that tends to +∞ as the variable tends to 1. In fact, the
main result in [5] provides an operator theoretic conceptual reason beyond Weil’s
positivity, which is rooted in the compression of the scaling action ϑ (of R∗

+ in the
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Hilbert space L2(R)ev of square integrable even functions) on Sonin’s space S(1, 1)
of functions, which, together with their Fourier transform, vanish identically in the
interval [−1, 1].
Theorem
Let g ∈ C∞

c (R∗
+) have support in the interval [2−1/2, 21/2] and Fourier transform

vanishing at i
2 and 0. Then one has, with W∞ := −WR,

(2) W∞(g ∗ g∗) ≥ Tr(ϑ(g)Sϑ(g)∗).

An important step toward the proof of this inequality is provided by the following
result which describes the functionalW∞(f) in terms of Sonin’s trace and a further
functional whose behavior and sign play a determining factor in this study

Theorem
Let S be the orthogonal projection of L2(R)ev on the closed subspace S(1, 1). The
following functional is positive

Tr(ϑ(f)S) =W∞(f) +

∫
f(ρ−1)ǫ(ρ)d∗ρ, ∀f ∈ C∞

c (R∗
+),

where ǫ(ρ) is the function of ρ ∈ R∗
+, with ǫ(ρ

−1) = ǫ(ρ), which is given, for ρ ≥ 1,
by

ǫ(ρ) =
∑ λ(n)√

1− λ(n)2
〈ξn | ϑ(ρ−1)ζn〉.

where the vectors ζn, ξn are given in terms of prolate functions.
The strategy pursued in this joint research is motivated by the desire to under-

stand the link between the analytic Hilbert space operator theoretic set-up of [2],
and the geometric approach pursued in the joint work in [3, 6]. The latter unveiled
a novel geometric landscape still in development for an intersection theory of di-
visors (on the square of the Scaling Site [6]), thus not yet in shape to handle the
delicate principal values involved in the Riemann-Weil explicit formula. The con-
tribution of [5] is to make very explicit the relation between the two approaches,
thus overcoming the above problem. The connection between the operator theo-
retic and the geometric viewpoints is effected by the Schwartz kernels associated to
operators. By implementing the additive structure of the adèles, one sees that the
Schwartz kernel of the scaling operator corresponds geometrically to the divisor of
the Frobenius correspondence.
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An analytic cyclic homology theory for algebras in finite characteristic

Ralf Meyer

(joint work with G. Cortiñas, J. Cuntz, G. Tamme, D. Mukherjee)

Let Fp be the finite field with p elements. It is difficult to define well behaved
cohomology theories for Fp-algebras. This is visible already for the affine line, that
is, the algebra Fp[t]. The usual de Rham cohomology recipe would say that the de
Rham cohomology of Fp[t] is given by the kernel and cokernel of the differentiation
map f 7→ f ′ on Fp[t]. Due to the finite characteristic of Fp, both are infinite-
dimensional Fp-vector spaces. A homotopy invariant cohomology theory should,
however, be trivial for the affine line.

A well known recipe to define a better behaved theory is to lift an algebra
over Fp to an algebra over the p-adic integers Zp. This is completed in a suit-
able way and tensored with Qp, and then we take de Rham cohomology. The
p-adic completion still gives the wrong cohomology for the affine line. Monsky
and Washnitzer [4] proposed to complete Zp[t] as follows. Let ν : Zp → N ∪ {∞}
be the p-adic evaluation, defined by ν(pkx) = k if x ∈ Zp \ p · Zp and ν(0) = ∞.
The weak completion or dagger completion of Zp[t] is defined by

Zp[t]
† =

{ ∞∑

n=0

cnt
n

∣∣∣∣ ν(cn) grows at least linearly
}
.

A similar recipe works for polynomials in several variables. A general finitely
generated algebra is written as a quotient of a polynomial algebra in order to
define its dagger completion.

When we tensor the algebra Zp[t]
† with Qp, then the differentiation map be-

comes invertible except for the constant functions in the kernel. This is because
the linear growth of ν(cn) dominates the at most logarithmic growth of the factors
that appear in the differentiation.

Monsky and Washnitzer [4] defined a cohomology theory for smooth affine va-
rieties over Fp by lifting a smooth commutative algebra over Fp to a (“very”)
smooth algebra over Zp, dagger completing, tensoring with Qp, and then taking
the de Rham cohomology of the resulting commutative algebra. The most difficult
issue is to prove that this theory is well defined. Since this uses the smoothness of
the lifting, this definition can only work for smooth varieties over Fp. Berthelot’s
rigid cohomology is a theory that still works for Fp-algebras that are not smooth.
The following description of it used in [1] is based on ideas of Große-Klönne. Write
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an Fp-algebra A as a quotient of a polynomial algebra Fp[x1, . . . , xn]. Let I be the
kernel of the resulting quotient map

Zp[x1, . . . , xn]→ Fp[x1, . . . , xn]→ A.

For each l ≥ 1, define the tube algebra at I l to be

∞∑

j=1

p−jI l·j ⊆ Qp[x1, . . . , xn].

These algebras form a projective system of finitely generated, commutative Zp-
algebras. Now dagger complete these algebras, tensor with Qp, and take the
de Rham complexes. The cohomology of the homotopy limit of these cochain
complexes for l → ∞ is isomorphic to the rigid cohomology of the affine variety
defined by A.

For algebras of smooth functions on smooth manifolds, it is well known that de
Rham cohomology made 2-periodic is isomorphic to periodic cyclic homology. It
is shown in [1] that this is also true for the projective system of Qp-algebras used
in the definition above. Thus rigid cohomology is expressed through the periodic
cyclic homology of a certain projective system of algebras.

Periodic cyclic homology makes sense for noncommutative algebras. The result
above suggests that it should be possible to extend rigid cohomology to a cohomol-
ogy theory for noncommutative algebras over Fp that is defined by resolving the
algebra by a Zp-algebra, then forming a tube algebra as above, and then taking a
suitable analogue of the dagger completion. The appropriate dagger completion is
described in [1]. It is based on analysis in complete bornological algebras over Zp.
A bounded subset of such an algebra has a spectral radius. The bornology con-
sisting of all subsets of

∑∞
j=1 p

jSj+1 for bounded subsets S is called the linear
growth bornology. It is the smallest bornology in which every bounded subset has
spectral radius at most 1. The completion of a bornological Zp-module is defined
by p-adically completing each bounded Zp-submodule, then taking an inductive
limit, and dividing out the closure of 0. The bornological completion in this sense
of an algebra with the linear growth bornology is a noncommutative analogue of
the weak completion of Monsky–Washnitzer.

A crucial result about Monsky–Washnitzer cohomology is that it does not de-
pend on the auxiliary choice of the lifting to Zp. Unfortunately, there is no reason
to expect that the periodic cyclic homology for noncommutative algebras over Zp

would have such invariance properties. Instead, we need an “analytic” variant
of periodic cyclic cohomology. This theory is introduced in [2]. It is analogous
to the analytic cyclic homology theory for bornological C-algebras studied in [3].
This is closely related to the entire cyclic cohomology introduced by Connes. The
point of analytic cyclic homology theories is to replace the product

∏∞
n=0 Ω

n(A) in
the bicomplex that computes periodic cyclic homology by a subcomplex, which is
defined by suitable growth conditions. As in [3], the growth condition is dictated
by a notion of “analytic” nilpotence. A given bornological Zp-algebra D has a
universal extension with analytically nilpotent kernel. This is obtained from the
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tensor algebra extension JD ֌ TD ։ D by the following steps: first, we form the
pro-algebra of tube algebras of TD relative to the ideals (JD)l. Then we equip
these with their linear growth bornologies and complete. The resulting “analytic”
tensor algebra is quasi-free. Therefore, its periodic cyclic homology is computed
by the X-complex, a rather small complex introduced by Cuntz and Quillen.

The analytic cyclic homology theory for algebras over Zp enjoys the same nice
formal properties as analytic cyclic homology for C-algebras. Namely, it is invari-
ant under “smooth” homotopies, satisfies excision for algebra extensions with a
bounded linear section, and it is stable for generalised matrix algebras. In partic-
ular, it is Morita invariant on unital algebras. These results are proven in [2] by
carrying over the proofs for the archimedean case in [3].

An important open problem is when the analytic cyclic homology theory de-
scribed above is isomorphic to periodic cyclic homology. This is true for algebras
that are “analytically” quasi-free. We show that this is the case for dagger com-
pletions of Leavitt path algebras and for the dagger completion of smooth commu-
tative algebras over Zp that lift affine curves over Fp. The argument uses analytic
quasi-freeness, which forces us to restrict to curves, that is, dimension 1. It is
unclear to what extent this remains true for higher-dimensional smooth algebras.

In ongoing work of Mukherjee and the author, the analytic cyclic homology
theory for algebras over Zp defined in [3] is used to define an analytic cyclic ho-
mology theory for algebras over Fp. We may lift such an algebra A to the free
Zp-algebra on the underlying set of A. Then we take a tube algebra and dag-
ger complete. The resulting algebra is already analytically quasi-free, so that its
X-complex computes its analytic cyclic homology. For computations, we want to
replace the free algebra by other dagger algebras that lift A. This can indeed be
done. The main result in this ongoing work will show that the analytic cyclic
homology of any dagger algebra that lifts A is isomorphic to the theory defined by
the free algebra lifting. This independence of the lifting allows to prove that the
analytic cyclic homology theory for algebras over Fp satisfies excision (at least for
finitely generated algebras), is invariant under polynomial homotopies, and stable
for matrix algebras.
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On Hopf Cyclic Cohomology and Characteristic Classes

Henri Moscovici

In the noncommutative approach to the geometry of the leaf-spaces of foliations,
Hopf cyclic cohomology replaces the role played by Lie algebra cohomology in
the construction of characteristic classes of foliations. The object of this talk is
to reveal the intrinsic relationship between the universal characteristic classes in
cyclic cohomology of étale smooth groupoids constructed out of the Hopf cyclic
cohomology of the Hopf algebraHn [2] and those constructed out of the differential
graded (DG) Hopf algebra Ω∗(GLn) [4]. The key to the linkage is provided by
Connes’ map Φ relating the equivariant cohomology to cyclic cohomology [1].

As shown in [2], the periodic Hopf cyclic cohomology HP •(Hn, On;Cδ) of Hn

(relative to On) is canonically isomorphic to the Gelfand-Fuks (continuous) coho-
mology H•

c

(
an, On;C

)
of the Lie algebra an of formal vector fields on Rn (relative

to On). The latter is in turn isomorphic to the cohomology H•
(
W (gln, On)n

)
of

the truncated Weil algebra (relative to On). On the other hand, Gorokhovsky
has shown that the truncated DG Hopf cyclic cohomology HC•(Ω∗(GLn))n is
also isomorphic to H•

(
W (gln, On)n

)
[4]. Thus, indirectly, HP •(Hn, On;Cδ) and

HC•(Ω∗(GLn))n are seen to be isomorphic. In view of their close connection with
the characteristic classes of foliations (cf. [2, 3, 6, 7] it is of definite interest to
exhibit a more intrinsic and explicit isomorphism.

1. The Hopf algebra Hn is a bicrossed product of two classical types of Hopf
algebras: the universal enveloping algebra of the affine Lie algebra Rn ⋉ gln and
the Hopf algebra of the pro-nilpotent formal group supplementing the affine group
in dRn. It acts naturally on the convolution algebra C∞

c (FΓn) of the prolongation
to the frame bundle of the Haefliger groupoid Γn, giving rise to a map of cyclic
complexes χ∗ : CC∗(Hn;Cδ)→ CC∗(C∞

c (FΓn)),

χF
q (h

1 ⊗ . . .⊗ hq)(a0, a1, . . . , aq) := τ
(
a0h

1(a1) · · ·hq(aq)
)
,

where τ : C∞
c (FΓn) → C is the canonical trace (integration over units Γ0

n = Rn

with respect to the canonical volume form of the frame bundle). The fact that χ∗

is a chain map is automatic, since it is faithful and the cyclic object underlying the
Hopf cyclic cohomology of Hn (with coefficients in the Hn-module Cδ associated
to the canonical character δ ∈ H∗

n) is the pullback by χ∗ of the standard cyclic
object for the algebra C∞

c (FΓn).
Furthermore, Hn acts on C∞

c (FΓ) for any flattened étale smooth groupoid Γ
(i.e. with Γ(0) =

⊔
i Ui, Ui

∼= Rn), giving rise to a corresponding characteristic map
χFΓ

∗ : CC∗(Hn;Cδ) → CC∗(C∞
c (FΓ)). Passing to On-invariants, which amounts

to replacing FΓ by the quotient groupoid PΓ = FΓ/On, one obtains an induced
characteristic map χPΓ

∗ : CC∗(Hn, On;Cδ)→ CC∗(C∞
c (PΓ)).

The isomorphism HP •(Hn, On;Cδ) ∼= H•
c

(
an, On;C

)
established in [2] is a

composition of two maps. The first map (described here as in [3, 7]) is induced by
the quasi-isomorphism D : C∗

c (an,On) → C•
d (Γn,Ω

∗(PΓn)) from the relative Lie
algebra cohomology complex to the complex defining the differentiable homology of
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Γn with coefficients in the sheaf of germs of currents Ω∗(PΓn), formed of cochains
whose values depend of finite order jets (cf. [5, IV, §4]), and is given by

D(ω) =
∮

∆•

σ̂∗(ω̃) ∈ C•
d (Γn,Ω∗(PΓn)) , ω ∈ C∗

c (an,On);

here ω̃ is the Γn-invariant form on PRn = J∞
0 Rn/On associated to ω, σ̂∗(ω̃) is

the form on the “thick” geometric realization of the nerve of PΓn obtained by
pullback using the standard connection on Rn, and

∮
∆• stands for integration over

simplices. The second map, which has quite an elaborate expression (cf. [1, Ch.
III, §2.δ]), is Connes’ map ΦP : C•

ν (Γn,Ω∗(PΓn)) → CC• (C∞
c (PΓn)), defined

on the normalized subcomplex. It is easily seen that D(ω) ∈ C•
ν (Γn,Ω∗(PΓn)),

and that (ΦP ◦ D)(ω) actually belongs to the image of the characteristic map
χ• induced by χF

• . Since the map χ• is faithful, this uniquely determines an
element χ−1(ΦP (ω)) in the cyclic object of Hn relative to On. The chain map
thus obtained, C∗

c (an,On) → CC•(Hn, On;Cδ) was shown in [2] to induce an

isomorphism in cohomology
∑⊕

i≥0H
q−2i
c

(
an, On;C

) ∼=→ HCq(Hn, On;Cδ).

2. In [4] Gorokhovsky devised a parallel Hopf algebraic construction in the differ-
ential graded (DG) context, which can be viewed as a noncommutative counter-
part of the Kamber-Tondeur setup for characteristic invariants of foliations. The
central object of his approach is the (Fréchet) Hopf DG algebra (Ω∗(GLn), d).
Analogously to Weil algebras, the cyclic bicomplex of Hopf DG algebras (defined
in [4, §3]) is naturally filtered and thus admits truncations [4, §4]. In the case of

(Ω∗(GLn), d), by [4, §6], HCq(Ω∗(GLn), d)m ∼=
∑⊕

i≥0H
q−2i(W (gln, On)m), where

m ∈ Z+ is the truncation level.
Furthermore, (Ω∗(GLn), d) acts on Ω∗

c(Γn) by multiplication with the pullback
by the first jet (Jacobian) map of forms in Ω∗(GLn) and, similarly to Hn, this ac-
tion gives rise to a characteristic map κ∗ : HC∗(Ω∗(GLn), d)n → HC∗(Ω∗

c(Γn), d),

κq(α
1⊗α2⊗· · ·⊗αq)(̟0, ̟1, . . . , ̟q) = (−1)

∑
i<j ∂αi∂̟j τ∧

(
̟0 α

1(̟1) · · ·αq(̟q)
)

where τ∧ : Ω∗
c(Γn)→ C is the canonical graded trace (integration over the units);

in this case too, the characteristic map is faithful and tautological, in the sense
that it transfers to Ω∗

c(Γn) the cyclic structure of the DG algebra Ω∗
c(Γn).

Given a smooth étale groupoid Γ, Gorokhovsky’s DG analogue of the chain map
Φ : C•

ν (Γ,Ω∗(Γ))→ CC• (C∞
c (Γ)) is the map Ψ : C•

ν (Γ,Ω∗(Γ))→ CC• (Ω∗
c(Γ)),

which assigns to γ ∈ C•
ν (Γn,Ω∗(Γ)) a cochain Ψ(γ) ∈ CC• (Ω∗

c(Γ)); its expres-
sion [4, §7] resembles that of κ∗ except that τ∧ is replaced by the current γ.
Gorokhovsky made the insightful observation that by extending the Connes’ no-
tion of a cycle to DG algebras then, for any cocycle c = {γp,q} ∈ C•

ν (Γ,Ω∗(Γ))
is a cocycle, Ψ(c) ∈ CC• (Ω∗

c(Γ)) becomes the character ChKc of a cycle Kc

over the DG algebra Ω∗
c(Γ). The bi-differential bi-graded algebra underlying all

such cycles is that defined by Connes in [1, Remark 15, Ch. III, §2. δ]. Fur-
thermore, the retraction map R : CC• (Ω∗

c(Γ)) → CC• (C∞
c (Γ)) [4, §2] which
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implements the isomorphism HP • (Ω∗
c(Γ))

∼= HP • (C∞
c (Γ)), sends Ψ(γ) into pre-

cisely Connes’ Φ(γ), for any cochain γ ∈ C•
ν (Γ,Ω∗(Γ)). In particular, for any

cocycle c, Φ(c) = R(ChKc) becomes the retracted character of a cycle.

3. The concept that allows to bind together the two approaches sketched above
is that of continuous (with respect to the completion topology in the formal
jet series) cohomology, i.e. Haefliger’s the differentiable cohomology of smooth
étale groupoids. The relevant groups for this discussion are H•

d (Γ,Ω
∗(PΓ)) and

H•
d (Γ,Ω

∗(Γ)), which consist of classes of characters of differentiable cycles over
Ω∗

c(PΓn), resp. Ω∗(Γ), and are in fact isomorphic. Indeed, the choice of a cross-
section ι : Γ(0) → PΓ(0), i.e. a metric, yields an isomorphism ι∗.

The isomorphism χ−1◦ΦP : C∗
c (an,On)→ CC•(Hn, On;Cδ) from §1 can be re-

fined by the insertion of differentiable cohomology. Indeed, the image of the map D
is contained in C•

d,ν (Γn,Ω∗(PΓn)) and D : C∗
c (an,On)→ C•

d,ν (Γn,Ω∗(PΓn)) is a

quasi-isomorphism (cf. [7]). Since ΥP = ΦP ◦D is quasi-isomorphism, so is the re-
striction ΦP

d = ΦP | C•
d,ν (Γn,Ω∗(PΓn)). Moreover, the image of ΦP

d is included in

the image of χ. Because the latter is faithful, Ξ = χ−1◦ΦP
d : C•

d,ν (Γn,Ω∗(PΓn))→
CC•(Hn, On;Cδ) is well-defined. Similar results hold true in the DG framework of
§2. In particular, the map Υ = κ−1 ◦Ψ : C•

d,ν (Γn,Ω∗(Γn))→ CC•
(
Ω∗(GLn), d

)
n

is well-defined.
Given a cocyle c = {γp,q} ∈ C•

d,ν (Γn,Ω∗(PΓn)), Ξ(c) can be regarded as the

Hopf cyclic character Hch(Kc) of the differentiable cycle Kc over Ω∗(PΓn), while
for a cocyle c′ =

{
γ′p,q

}
∈ C•

d,ν (Γn,Ω∗(Γn)), Hch(c
′) := Υ(c′) is the Hopf cyclic

character of the differentiable cycle Kc
′ over Ω∗(Γn).

The main result can now be stated as follows.

Theorem. (i) Both maps Ξ• : H•
d (Γn,Ω∗(PΓn)) → HP •(Hn, On;Cδ) and

Υ• : H•
d (Γn,Ω∗(Γn))→ HP •

(
Ω∗(GLn), d

)
n

are isomorphisms.

(ii) The map Θ : HP •(Hn, On;Cδ)→ HP •
(
Ω∗(GLn), d

)
n
which sends the class

of Hch(Kc) to the class of Hch(Kι∗(c)), for any cocyle c ∈ C•
d,ν (Γn,Ω∗(PΓn)), is

an isomorphism.

Concluding remarks. (1) The Chern-Weil theory applied in the setting of
Dupont’s (commutative) DG algebra of compatible De Rham forms on the nerve
of Γn, produces Chern forms and Chern-Simons forms from which one can build
(cf. [7]) a Vey type basis of H•

d (Γn,Ω∗(PΓn)). By transport through the isomor-
phisms in the above theorem, the groups H•

d (Γn,Ω∗(Γn)), HP
•(Hn, On;Cδ) and

HP •
(
Ω∗(GLn), d

)
n
inherit similar bases.

(2) The isomorphism Θ implements the descent of the universal Hopf cyclic
transverse characteristic classes from the Hopf algebra Hn, acting at the level of
frame bundle, to the Hopf DG algebra Ω∗(GLn), acting at the base level.
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Homology and K-theory of torsion free ample groupoids and
Smale spaces

Makoto Yamashita

(joint work with Valerio Proietti)

Ample groupoids, that is, étale Hausdorff groupoids with totally disconnected
topology, provide a groupoid model of dynamical systems on Cantor spaces. We
relate their groupoid homology and the K-groups of crossed products.

Theorem 1. Let G be an ample groupoid that has torsion free stabilizers and
satisfies the strong Baum–Connes conjecture, and let A be a separable G-C∗-algebra
which is KKX-nuclear for X = G(0). Then there is a convergent spectral sequence

E2
pq = Hp(G,Kq(A))⇒ Kp+q(G⋉A).

Here, the K-group Kq(A) admits a structure of unitary Cc(G,Z)-module, and
Hp(G,Kq(A)) is the groupoid homology [1] with coefficient in the associated G-
sheaf. The construction of spectral sequence is based on the triangulated cate-
gorical approach to the Baum–Connes conjecture by Meyer and Nest [3, 2]. We
relate their machinery to a projective resolution of A with respect to the ker-
nel of ResGX : KKG → KKX induced by the adjoint pair of functors ResGX and

IndGX : KKX → KKG.
An interesting example is unstable equivalence relationRu(Y, ψ) of Smale spaces

(Y, ψ). In this setting, there is another homology theory proposed by Putnam [4].
We show that one of the variants, Hs

∗ , fits into our scheme.

Theorem 2. Let (Y, ψ) be an irreducible Smale space with totally disconnected
stable sets. Then there is a convergent spectral sequence

E2
pq = E3

pq = Hs
p(Y, ψ)⊗Kq(C)⇒ Kp+q(C

∗(Ru(Y, ψ))).
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Here we look at a factor map f : Σ → Y from a shift of finite type used in the
definition of Hs

∗(Y, ψ). Taking a good transversal T ⊂ Σ, we obtain an inclu-
sion of étale groupoids H = Ru(Σ, σ)|T ⊂ G = Ru(Y, ψ)|f(T ). Then the restric-
tion and induction for this inclusion gives the above result. In fact, we obtain
Hs

p(Y, ψ) ≃ Hp(G,Z) through a detailed analysis of the equivariant sheaves and
multiple fibered product of groupoids.
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Index theorem for elliptic operators invertible at infinity

Hang Wang

(joint work with Xiaoman Chen, Hongzhi Liu, Guoliang Yu)

Let X be a complete spin manifold with metric admitting uniform positive scalar
curvature outside a compact set Z. Consider the Dirac operatorD on the universal

covering space X̃ of X . Denote by G the fundamental group of X . Let

indG(D) ∈ K0(C
∗
r (G))

be the higher index of the Dirac operator D. Suppose that g ∈ G is a nontrivial
element whose conjugacy class (g) has polynomial growth. Then C∗

r (G) admits a
smooth subalgebra depending on g on which the delocalized trace

trg : CΓ→ C
∑

h∈G

ahh 7→
∑

h∈(g)

ahh

extends continuously. The aim of the talk is to compute the pairing of the delocal-
ized trace at g with the higher index of D, in terms of the delocalized eta invariant
at infinity, denoted by ηg,∞(D):

(1) trg(indG(D)) = −1

2
ηg,∞(D).

The delocalized eta invariant at infinity, introduced in [1], admits the following
formula

(2)
1

2
ηg,∞(D) = lim

t→0

∫ ∞

t

trg(e
−sD−

c D+
c D−

c [D
+, ψ2])ds
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where Dc is the invertible Dirac operator on X̃\Z̃, and ψ2 is a G-invariant cutoff

function from X̃ to [0, 1], which equals 0 on a cocompact neighbourhood of Z̃, the
G-Galois covering space of Z, and equals 1 outside a cocompact set far from Z.
The integral on the right hand side of (2) is independent of the choice of the cutoff
function ψ2.

Let M be a manifold with boundary N , carrying a product metric near the
boundary. Assume in addition that the metric on N admits positive scalar cur-
vature. Then the delocalized eta invariant at infinity for the Dirac operator on
X := M ∪N N ⊗ [0,∞) reduces to Lott’s delocalized eta invariant of the Dirac
operator on N , and (1) recovers a main result of [4]:

trg(indG(D)) = −1

2
ηg,∞(D) = −1

2
ηg(DN ).

The main result (1)-(2) also applies to the example of a manifold with corners,
recovering corresponding delocalized APS type formula. In view of the motivation
from [4], the nonalgebraicity of the delocalized eta invariant at infinity is an ob-
struction for the Baum-Connes assembly map for G being surjective. The proof
of (1)-(2) is motivated by a new way of obtaining the equivariant Atiyah-Patodi-
Singer index theorem for a manifold with boundary in the joint work of the speaker
with Bai-Ling Wang and Peter Hochs [2, 3].
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Bivariant hermitian K-theory

Guillermo Cortiñas

In currently ongoing work with Santiago Vega we introduce an excisive, homotopy
invariant and matricially stable functor jh from the category Alg∗ of algebras with
involution over a commutative ring ℓ with involution (assuming 1/2 ∈ ℓ) to a tri-
angulated category kkh, and show it is universal initial among those functors from
Alg∗ to triangulated categories, which are excisive, homotopy invariant and ma-
tricially stable. Weibel-style homotopy invariant hermitian K-theory is recovered
as a hom in this category:

homkkh (jh(ℓ), jh(A)[n]) = KHh
n(A)

Here [−n] is the n-fold suspension.
Usual Karoubi hermitianK-theoryKh (a.k.a. Grothendieck-Witt theory) maps

to KHh, and the map is an isomorphism for sufficiently regular A.
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We prove a version of Karoubi’s fundamental periodicity theorem ([2]) in terms
of kkh. There are an a endofunctor Λ of kkh, which represents K-theory and
natural transformations F : 1 → Λ and H : Λ → 1, representing the forgetful
and hyperbolic maps, as well as a change of symmetry functor ǫ. The version of
Karoubi’s fundamental theorem says that the polynomial homotopy fibers V of F
and U of H satisfy

ǫ(U(A))[1] = V (A)

We use kkh to attack a long standing problem in Leavitt path algebras (purely
algebraic analogues of graph, or Cuntz-Krieger C∗-algebras). It is known that two
purely infinite simple CK-algebras of finite graphs have isomorphic K0-invariants
if and only if they are isomorphic. The analogue question for LPAs is wide open;
in particular it is not known whether the LPA of a graph and of its Cuntz splice
(which changes the sign of the determinant of the adjacency matrix but preserves
K0) are isomorphic. We classify Leavitt path algebras up to involution preserving
homotopy. We show that two purely infinite simple LPAs of finite graphs with iso-
morphic K0 invariants are homotopy equivalent, via a homotopy equivalence that
preserves their standard involutions. This result can be seen as an improvement
upon the main theorem of [1], where a similar homotopy equivalence, maybe not
involution preserving, was obtained. We also consider the involution that results
from composing the standard involution of a LPA with the automorphism that
multiplies homogeneous elements of degree n by (−1)n. We show that, equipped
with this signed involution, the algebraic analogues Ln and Ln− of the Cuntz
algebra On and its Cuntz splice On− have nonisomorphic hermitian K0-groups.
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Liquid modules

Dustin Clausen

(joint work with Peter Scholze)

0.1. Introduction. I will be describing some new foundations for functional anal-
ysis. In the standard foundations, one starts with the category of topological real
vector spaces, and then singles out the more relevant full subcategory of complete
locally convex topological real vector spaces:

{complete, locally convex} ⊂ {topological real vector spaces}.
Our replacement for this inclusion will be the following:

{liquid R-modules} ⊂ {condensed R-modules}.
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Actually, there is a missing parameter p in the liquid theory, but we’ll get to
that.

There is a natural functor from (Hausdorff) topological real vector spaces to
condensed R-modules which restricts to a functor from complete locally convex
to liquid, and this functor is fully faithful on the metrizable spaces (plus many
others). In particular every Frechet space can just as well be viewed as a liquid
R-module.

On the other hand, the categorical properties of the second inclusion are much
better. Both condensed R-modules and liquid R-modules form abelian categories,
and moreover of a very simple kind, being generated by a class of compact projec-
tive objects. This makes them very similar to categories of modules over a ring,
which are exactly the abelian categories generated by a single compact projective
object. There is also a tensor product on each of these categories which preserves
colimits in each variable separately, and there are corresponding internal mapping
objects.1

Furthermore, the full subcategory of liquid modules has extremely strong closure
properties inside all condensed R-modules: it is closed under all colimits and limits,
and if M is condensed and N is liquid then the internal ext’s Exti(M,N) are all
liquid. Moreover, the inclusion functor admits a left adjoint “liquidification”,
which in practice functions as a kind of completion functor. All of these nice
properties make the liquid theory smooth and easy to use in practice.

0.2. Definitions. Just as topological real vector spaces are gotten by piling alge-
braic structure on topological spaces, so are condensed R-modules gotten by piling
algebraic structure on our analog of topological spaces, which are called condensed
sets. These are functors X : CHausop → Sets such that:

(1) For allK,K ′ ∈ CHaus, the mapX(K⊔K ′)→ X(K)×X(K ′) is a bijection;
also X(∅) = ∗.

(2) If K ′ → K is a surjective map in CHaus, then the map X(K) → X(K ′)
is injective with image the subset of those elements whose two pullbacks
to X(K ′ ×K K ′) agree.

(3) A technical set-theoretic condition: X is a small colimit of representable
functors.2

The idea (the same as for Spanier’s quasi-topological spaces, [9]) is that X(K)
stands for the set of continuous maps from K to some fictional space “X”. This
intuition promotes to a functor from T1 topological spaces to condensed sets, which

1In general, the liquid tesnor product doesn’t correspond to any of the usual tensor products
on complete locally convex topological vector spaces. But on nuclear Frechet spaces it is the
same as the usual tensor product (essentially unique in this case by Grothendieck’s work [4]). In
terms of cyclic homology, this means that the cyclic homology of things like algebras of smooth
functions as naturally defined in our theory is the “correct” one, whereas the cyclic homology of,

for example, C∗-algebras is pathological.
2Barwick and Haine, [2], have recently studied essentially the same concept, but with a dif-

ferent set-theoretic condition in 3 (using cut-off cardinals instead); they call that notion pyknotic
set. At first pass (and probably at nth pass as well) one should ignore the distinction.
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is fully faithful on a large class of topological spaces (e.g. the metrizable ones).
Encoding “topologies” via points (or K-families of points) as opposed to subsets
makes for much nicer interaction with algebraic structures.

CondensedR-modules are just condensed abelian groups together with an action
of the condensed ring R. That these form an abelian category follows from formal
topos-theoretic considerations, but that it has enough compact projectives relies
on a remark of Gleason’s, [5], that CHaus itself “has enough projectives” given by
the Stone-Cech compactifications βS of discrete sets S. It follows that the free
modules R[βS] provide compact projective generators.

How to single out the liquid ones inside? It suffices to understand the liquid-
ifications L(R[βS]) of the above generators, which come equipped with natural
maps R[βS]→ L(R[βS]). Indeed, then the desired axiomatics outlined in the first
section will ensure that the following two properties of a condensed R-module M
are equivalent, and define when M is liquid:

(1) M is generated under colimits by modules of the form L(R[βS]).
(2) For all sets S and all maps R[βS] → M , there is a unique extension to

L(R[βS])→M .

The space R[βS] can be interpreted as a certain space of measures on βS, namely
the finite linear combinations of Dirac measures. Then L(R[βS]) should be some
larger space of measures, and the liquid condition 2 is more closely related to the
classical notion of quasi-completeness for topological vector spaces. To check that a
choice of L(R[βS])’s works, meaning satisfies the strong axiomatics described in the
first section, the condition one needs to check is the following: for any condensed
R-moduleM which is the cokernel of a direct sum of copies of L(R[βS])’s, we have

Exti(L(R[βS]),M))
∼→ Exti(R[βS],M).

Our solution to this problem is as follows: we fix a real number 0 < p ≤ 1, and
we define L(R[βS]) =M<p(βS) = ∪c>0,q<pMq(βS)≤c, where

Mq(βS)≤c = lim←−
βS→Si

R[Si]ℓq≤c.

Here the index is over all continuous surjective maps from βS to a finite set
Si; note that then βS = lim←−Si. Also, R[Si]ℓq≤c is the compact subpsace of R[Si]
consisting of those points whose ℓq quasinorm is ≤ c.

Where did this come from? The naive initial attempt was to take L(R[βS]) to
be the analogously definedM1(βS), which is essentially the usual space of Radon
measures on βS showing up in the notion of quasi-completeness3, but this turned
out to fail the above Ext condition even for M = R and i = 1: there are exotic
Ext’s on the left hand side, variants of Ribe’s construction [7] based on the entropy
functional. This is fixed by taking the union of q < p ≤ 1 as above, in accordance

3The topology is not the Banach topology, but the “Smith space” topology, [1], for which
the closed unit ball is compact. Smith spaces are actually better building blocks than Banach
spaces because every Banach space is a filtered colimit of Smith spaces and filtered colimits are
homologically nice, whereas to build Smith spaces from Banach spaces you need inverse limits
which are homologically complicated.
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with Kalton’s theorem, [6], that any extension of p-Banach spaces is q-Banach for
all q < p. We thus find that to obtain good categories of “complete” R-modules
it is necessary to take non-locally convex spaces as basic building blocks.

A word about the proof, an account of which (plus more information on the
above) can be found in my collaborator Peter Scholze’s lecture notes [8]. It is
long and difficult, but there is one crucial shift which is worth mentioning. To
prove this statement about R we need to deform to a ring of (overconvengent)
arithmetic Laurent series Z((T ))>r which recovers R after modding out by some
regular element. The reason it’s easier to prove the statement for this other ring is
that Z((T ))>r is an increasing union of profinite sets, which are zero-dimensional
and therefore easy to control even after taking something like infinite products.

In particular, we find that the real numbers are not isolated, but rather sit
in a natural one-parameter family of theories parametrized by 0 < p ≤ 1. The
relevant category of modules, that of the liquid modules, varies as you vary p, so
this is quite a non-trivial deformation. One can access the corresponding formal
deformation as a formal completion of the ring Z((T ))>r . This itself carries natural
notions of liquid modules very much related to Ribe’s extension and the entropy
functional. Such structure has been to some extent previsaged by Connes and
Consani when they defined their archimedean analog of BdR, based also on the
entropy functional, [3]. What we have provided is the natural theory of modules
which expresses the essential structure and non-triviality of such deformations.
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Slant products on the Higson–Roe exact sequence

Christopher Wulff

(joint work with Alexander Engel and Rudolf Zeidler)

This talk is on the recent paper with the same title [5]. Let G,H be countable
groups acting properly and isometrically on proper metric spaces X,Y , respec-
tively. We have to assume that X,Y satisfy some kind of bounded geometry
assumption, which will not be specified in this abstract.

The Higson–Roe exact sequence associated to the G-space X is a long exact
sequence

· · · → SGp (X)→ KG
p (X)

µ−→ Kp(C
∗
GX)→ KG

p−1(X)→ . . .

which relates the equivariant K-homology KG
∗ (X), the K-theory of the equivariant

Roe algebra K∗(C
∗
GX) and the analytic structure group SG∗ (X) [6]. Its impor-

tance comes from index theory: If X is a complete Riemannian manifold, then
equivariant elliptic operators over it have fundamental classes [D] ∈ KG

∗ (X) and
indices ind(D) := µ([D]) ∈ K∗(C

∗
GX) which are the images of the fundamental

classes under the assembly map µ. If the operator is invertible, then its index
vanishes and in this case the invertibility can be used to construct an element in
the structure group, a so called secondary index invariant, which is mapped to
the fundamental group and can thus be seen as a reason for the vanishing of the
index. Both index and secondary index invariants are important obstructions to
topological properties. For example, if X carries a G-invariant spin-structure, then
the index of the spin-Dirac operator is an obstruction to the existence of metrics
of uniformly positive scalar curvature, and metrics g of uniformly positive scalar
curvature give rise to the ρ-invariants ρ(X, g) ∈ SG∗ (X) which distinguish these
metrics up to concordance.

One of the challenges surrounding the Higson–Roe exact sequence is to construct
maps out of it into something more computable. Chern characters into cyclic
homology were constructed in [1, 7], see also the talks by Xie and Zenobi at this
workshop.

The main technical innovation of our work is the construction of slant products
from the Higson–Roe exact sequence of the product space X×Y into the arguably
simpler Higson–Roe exact sequence of X alone:

SG×H
∗ (X × Y ) //

/θ

��

KG×H
∗ (X × Y )

µ
//

/µ∗(θ)

��

K∗(C
∗
G×H(X × Y ))

/θ

��

// SG×H
∗−1 (X × Y )

/θ

��

SG∗−q(X) // KG
∗−q(X)

µ
// K∗−q(C

∗
GX) // KG

∗−1−q(X)

Here, θ ∈ K1−q(c
redY ⋊H), where credY denotes the stable Higson corona of Y ,

and µ∗ : K1−q(c
redY ⋊H) → K−q(C0Y ⋊H) =: Kq

H(Y ) denotes a version of the
co-assembly map [2, 3, 4].

The important feature of the slant products is that they can be used to show
(rational) split injectivity of well known exterior products. Given z ∈ KH

q (Y ),
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these exterior products are natural transformations

SG∗ (X) //

×z

��

KG
∗ (X)

µ
//

×z

��

K∗(C
∗
GX)

×µ(z)

��

//

×µ(z)

��

SG∗−1(X)

×z

��

SG×H
∗+q (X × Y ) // KG×H

∗+q (X × Y )
µ

// K∗+q(C
∗
G×H(X × Y )) // SG×H

∗−1+q(X × Y )

with the property that composing them from the right with the slant products
yields exactly multiplication with pairings 〈θ, µ(z)〉 = 〈µ∗(θ), z〉 ∈ Z. Thus, if a θ
exists for which these pairings are ±1 (6= 0), then the exterior products with z are
(rationally) split injective. This allowed us to use the index theory on X to derive
numerous interesting implications for metrics of uniformly positive curvature on
the product manifold X × Y .

One must also ask the question of how our slant products compare with already
existing slant products. As it turns out, the slant product Kp(X × Y )⊗Kq(Y )→
Kp−q(X) in the non-equivariant case G = H = 1 agrees with the slant product
obtained as the composition product

Ep(C0(X × Y ),C)⊗ E−q(C,C0(Y ))→ Ep−q(C0(X),C) , x⊗ y 7→ x ◦ (idX ⊗ y)

in E-theory. Unfortunately, it cannot be generalized directly to the non-equi-
variant case by simply replacing the three E-theory groups by their G ×H-, H-
and G-equivariant versions, most importantly because the products cannot get rid
of the H-invariance.

This gives rise to the following question, which could be of interest to other
participants of this particular conference as well: Given a G-C∗-algebra A, an H-
C∗-algebra B and a group homomorphism α : G → H , are there “α-equivariant”
E-theory groups Eα

∗ (A,B) which generalize the usual equivariant E-theory groups
in the sense that for G = H , α = idG we have

Eid
∗ (A,B) ∼= EG

∗ (A,B)

and which include the equivariant K-homology and K-theory of spaces as the
special cases with trivial group homomorphisms

E1→H
−∗ (C,C0(Y )) ∼= K∗

H(Y ) and EG→1
∗ (C0(X),C) ∼= KG

∗ (X) ?

Of course, straightforward adaptions of the well-known properties of bivariant
K-theory should hold, so in particular there should be composition and exterior
products of the form

Eα
p (A,B)⊗ Eβ

q (B,C)→ Eβ◦α
p+q(A,C)

Eα
p (A,B) ⊗ Eγ

q (C,D)→ Eα×γ
p+q (A⊗ C,B ⊗D) .

Such a theory could also explain our equivariant slant products from an E-theoretic
viewpoint. The same question can be asked about equivariant KK-theory.
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Stability of Loday constructions

Birgit Richter

(joint work with Ayelet Lindenstrauss)

For a commutative ring spectrum R and a commutative R-algebra spectrum A
the Loday construction LRX(A) for a finite simplicial set X generalizes the concept
of topological Hochschild homology of A which corresponds to the case where X
is the circle, S1, and R is the sphere spectrum S. Of particular interest is the case
X = T n = (S1)n, an n-torus, as LSTn(A) is the target of an iterated trace map
from the n-fold iterated algebraic K-theory of A. The homotopy groups of LSTn(A)
are in general difficult to calculate.

If we assume that R and A are cofibrant, then the homotopy type of LRX(A)
only depends on the homotopy type of X . In several classes of examples it actually
only depends on the homotopy type of ΣX . In this case one says that R → A
is stable. For such R → A one can for instance determine the homotopy type of
LRTn(A) in terms of LRSk(A) for 1 ≤ k ≤ n and the homotopy groups of the latter
are known in many examples, such as when R is the sphere spectrum and A is the
Eilenberg-MacLane spectrum HFp for any prime p [2].

In the talk we present several different notions of stability together with their
structural properties and we discuss examples an non-examples of stability.

A strong notion of stability is the following: Let R → A be a cofibration of
commutative S-algebras with R cofibrant. We call R → A multiplicatively stable
if for every pair of pointed simplicial sets X and Y an equivalence ΣX ≃ ΣY
implies that LRX(A) ≃ LRY (A) as augmented commutative A-algebras. There are
also linear variants of stability.

An easy stability result says that for any augmented commutative R-algebra
spectrum A, A→ R and R→ LRΣX(A;R)→ R are multiplicatively stable.
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Dundas and Tenti show [3] that the 2-torus is a witness for the fact that HQ[t]/t2

is not stable and in [4] we show that HQ→ Q[t]/tm is not multiplicatively stable
for all m ≥ 2 by using the m-torus as a witness.

In [4] we also show that for any commutative Hopf algebra spectrum H and
every equivalence Σ(X+) ≃ Σ(Y+) in the infinity category of pointed spaces S∗,
there is an equivalence LX(H) ≃ LY (H). This generalizes a result by Berest,
Ramadoss, Yeung for commutative Hopf algebras over a field [1].

Other concrete examples are that HR → HR/(a1, . . . , an) is multiplicatively
stable if R is a commutative ring and (a1, . . . , an) is a regular sequence and if R→
A is a cofibration of commutative S-algebras with R cofibrant, then A→ LRΣX(A)
is multiplicatively stable for all X ∈ sSets∗ [5].

We show [5] that stability satisfies certain inheritance properties: If f : A→ B
is multiplicatively stable, then so is C ∧R f : C ∧R A → C ∧R B. Multiplicative
stability is closed under pushouts: If R → B and R → C are multiplicatively
stable, then so is R→ B ∧R C.

Multiplicative stability is also closed under forming Loday constructions: If
R → A is multiplicatively stable, then so is R → LRZ (A) for any Z. If S →
A and S → B are cofibrations of commutative S-algebras and if A and B are
multiplicatively stable, then for connected X and Y with ΣX ≃ ΣY , there is an
equivalence

LSX(A×B) ≃ LSY (A×B)

of commutative S-algebras.
Beware, however, that stability is not transitive: If R → A and A→ B satisfy

stability then this does not imply that R → B is stable. A concrete example is
Q→ Q[t] and Q[t]→ Q[t]/tm.

Dundas and Tenti [3] show that for k → A smooth, the mapHk → HA is stable.
We develop an adequate generalization of this phenomenon for ring spectra [5]. We
show that for every simplicial set X there is a weak equivalence of commutative
R-algebras

LRX(PR(M)) ≃ PR(X+ ∧M),

in particular, if ΣX ≃ ΣY , then LRX(PR(M)) ≃ LRY (PR(M)) as commutative
R-algebra spectra. Here, PR(M) is the free commutative R-algebra spectrum
generated by an R-module spectrum M .

For ring spectra there are several non-equivalent notions of étale maps. Let
R → A → B be a sequence of cofibrations of commutative S-algebras with R
cofibrant. Then this sequence satisfies étale descent if for all connected X the
canonical map

LRX(A) ∧A B → LRX(B)

is an equivalence.
We call a map of cofibrant S-algebras ϕ : R → A really smooth if it can be

factored as R
iR

//PR(M)
f

//A where iR is the canonical inclusion, M is an

R-module, and R
iR

//PR(M)
f

//A satisfies étale descent.
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We establish, for instance, that periodic complex topological K-theory, KU , is
stable and we deduce with the Galois descent property ofKO→ KU that periodic
real topological K-theory, KO, is also stable.
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Higher index theorem for proper action of Lie groups

Yanli Song

(joint work with Peter Hochs, Xiang Tang)

Let G be a connected real reductive group and H be its Cartan subgroup. For
any smooth function f on G with compact support and regular element h ∈ Hreg,
the orbital integral ∫

G/H

f(ghg−1)dg

defines a trace on the convolution algebra C∞
c (G), which extends to Harish-

Chandra’s Schwartz algebra C(G). Orbit integrals have been proved to be es-
sential tools in both representation theory and number theory. We study orbital
integrals as tools to probe the tempered dual, and exam their relationship to the
Connes-Kasparov isomorphism.

In the first part, we introduce a construction of higher orbital integrals in the
direction of higher cyclic cocycles on the Harish-Chandra Schwartz algebra of G.
Using the Fourier transform or Harish-Chandra’s Plancherel formula, the higher
orbital integrals can be expressed as integrals on the tempered dual of G. In
general, the higher orbital integrals are very difficult to compute. However, the
pairing between the higher orbit integrals and the K-theory of the reduced group
C∗-algebra are easier to compute and can be used to detect some information
about the Plancherel measure of tempered representations of G.

In the second part, we consider a Riemannian manifold M together with a
proper, cocompact, isometric G-action. Let D be a G-equivariant, elliptic differ-
ential operator on M . By the assembly map in the Baum-Connes conjecture, D
has an equivariant index in the K-theory of the reduced group C∗-algebra C∗

r (G).
We prove a topological index formula for the pairings of the higher orbital integrals
with the equivariant index of D, which generalizes Connes-Moscovici’s L2-index
theorem to the non-equal rank case, and the Atiyah-Bott fixed point theorem to
the non-compact Lie group action case.
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The Novikov conjecture for geometrically discrete groups of
diffeomorphisms

Jianchao Wu

(joint work with Sherry Gong and Guoliang Yu)

The Novikov conjecture is a central problem in differential topology. It states that
the higher signatures of closed oriented smooth manifolds are invariant under ori-
entation preserving homotopy equivalences. Noncommutative geometry provides
a potent approach to tackle this conjecture. In particular, Connes [2] proved a
very striking theorem that the Novikov conjecture holds for higher signatures as-
sociated to Gelfand-Fuchs classes of groups of diffeomorphisms. Connes’s proof is
a technical tour de force and uses the full power of noncommutative geometry.

Using C∗-algebraic andK-theoretic tools, we [3] prove that the (rational strong)
Novikov conjecture holds for geometrically discrete subgroups of the group of vol-
ume preserving diffeomorphisms of any closed smooth manifold N . More precisely,
given a density ω on N , which we regard as a measure on N , we let Diff(N,ω)
denote the group of diffeomorphisms on N that fix ω. A countable subgroup Γ of
Diff(N,ω) is said to be a geometrically discrete subgroup if the integral

∫

N

(log(‖Dϕ‖))2dω

goes to infinity when ϕ→ ∞ in Γ. Here Dϕ is the Jacobian of a diffeomorphism
ϕ, and the norm ‖ · ‖ denotes the operator norm, computed using an arbitrarily
fixed Riemannian metric on N . Intuitively speaking, this function measures how
much a diffeomorphism ϕ deviates from an isometry in an L2-sense. Observe that
when the subgroup Γ actually fixes a Riemannian metric, the above integral is
bounded on Γ. This suggests that geometrically discrete subgroups of Diff(N,ω)
are, in a sense, conceptual antitheses to subgroups of isometries. We remark that
since the group of isometries of a closed Riemannian manifold is a Lie group, all its
countable subgroups satisfy the rational strong Novikov conjecture by [5]. Thus
our theorem gives hope for a unified approach to prove the rational strong Novikov
conjecture for all countable subgroups of Diff(N,ω).

The crucial geometric property of these groups Γ that we exploit is the fact
that they admit isometric and proper actions on a type of infinite-dimensional
symmetric space of nonpositive curvature called the space of L2-Riemannian met-
rics, which is defined as the completion of the space of all bounded Borel maps
from N to the symmetric space X := SL(n,R)/ SO(n) with regard to the following
metric:

d(ξ, η) =

(∫

y∈N

(dX(ξ(y), η(y)))2 dω(y)

) 1
2

for two such maps ξ and η ,

where dX is the standard Riemannian metric on X . Observe that this symmetric
space parametrizes all inner products on Rn with a fixed volume form. Thus
Riemannian metrics on N that induce ω correspond to the smooth sections of an
X-bundle over N . Upon taking a Borel trivialization of this bundle, these smooth
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sections are embedded into the space of all bounded Borel maps from N to X ,
and thus also into L2(N,ω,X), with a dense image. This explains the terminology
“L2-Riemannian metrics”.

In fact, in [3], we prove a more general statement that the rational strong
Novikov conjecture holds for any discrete group admitting an isometric and proper
action on an admissible Hilbert-Hadamard space. Admissible Hilbert-Hadamard
spaces are a type of (possibly infinite-dimensional) non-positively curved (i.e.,
CAT(0)) metric spaces that include Hilbert spaces, complete simply connected
Riemannian-Hilbertian manifolds with non-positive sectional curvature, and cer-
tain infinite-dimensional symmetric spaces such as the space of L2-Riemannian
metrics introduced above. Hence our result partially extends earlier ones on the
rational strong Novikov conjecture for groups admitting isometric and proper ac-
tions on Hadamard manifolds ([6]) and on Hilbert spaces ([4]).

A key ingredient in our proof is the construction of a C∗-algebra associated to a
Hilbert-Hadamard space, which generalizes a construction of Higson and Kasparov
[4] for a Hilbert space and is analogous to the one constructed by Kasparov and Yu
[7] for Banach spaces with property (H). This algebra comes with a natural dual
Dirac (or Bott) element, but the construction of a Dirac element remains elusive.
As a result, our proof deviates from the standard Dirac-dual-Dirac method: We
develop a novel deformation technique that “trivializes” the Γ-action at the KK-
theoretic level. This deformation technique is only accessible in the framework
of infinite-dimensional spaces. In addition, we make use of the newly developed
KK-theory of real coefficients ([1]) to go beyond the case of torsion-free groups.
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Connes-Chern characters for higher rho invariants and higher
eta invariants

Zhizhang Xie

(joint work with Xiaoman Chen, Jinmin Wang and Guoliang Yu)

Higher index theory is a far-reaching generalization of the classic Fredholm index
theory by taking into consideration of the symmetries of the underlying space. Let
X be a complete Riemannian manifold of dimension n with a discrete group G
acting on it properly and cocompactly by isometries. Each G-equivariant elliptic
differential operator D on X gives rise to a higher index class IndG(D) in the K-
groupKn(C

∗
r (G)) of the reduced group C∗-algebra C∗

r (G). This higher index is an
obstruction to the invertibility of D. The higher index theory plays a fundamental
role in the studies of many problems in geometry and topology such as the Novikov
conjecture, the Baum-Connes conjecture and the Gromov-Lawson-Rosenberg con-
jecture. Higher index classes are invariant under homotopy and often referred to
as primary invariants.

When the higher index class of an operator is trivial and given a specific trivial-
ization, a secondary index theoretic invariant naturally arises. One such example

is the associated Dirac operator on the universal covering M̃ of a closed spin man-
ifold M equipped with a positive scalar curvature metric. It follows from the

Lichnerowicz formula that the Dirac operator on M̃ is invertible. In this case,
there is a natural C∗-algebraic secondary invariant introduced by Higson and Roe

in [3, 4, 5, 8], called the higher rho invariant, which lies in Kn(C
∗
L,0(M̃)Γ), where

Γ is the fundamental group π1(M) of M and C∗
L,0(M̃)Γ is a certain geometric

C∗-algebra. This higher rho invariant is an obstruction to the inverse of the Dirac
operator being local and has important applications to geometry and topology.

Despite its importance, the higher rho invariant is difficult to compute in gen-
eral. Connes’ cyclic cohomology theory provides a powerful method to compute
the higher rho invariant. Roughly speaking, this is done through a pairing between
the Connes-Chern character of a higher rho invariant and the cyclic cohomology
of the relevant group algebra. In the case of higher rho invariants arisen from
invertible1 operators on manifolds, such a pairing coincides with Lott’s higher eta
invariants [6].

Let us first recall the definitions of some geometric C∗-algebras.

(1) C∗(M̃)Γ denotes the C∗-closure of all Γ-invariant locally compact and

finite propagation operators on L2(M̃).

(2) C∗
L(M̃)Γ is the C∗-closure of uniformly continuous maps

ϕ : [0,∞)→ C∗(M̃)Γ

with the propagation of ϕ(t) goes to zero, as t→∞.

(3) C∗
L,0(M̃)Γ is the kernel of the map C∗

L(M̃)Γ → C∗(M̃)Γ.

1Here “invertible” means being invertible on the universal cover of the manifold.
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Note that C∗(M̃)Γ ∼= C∗
r (Γ) ⊗ K, where K is the algebra of compact operators.

Also, we have Ki(C
∗
L(M̃)Γ) ∼= Ki(M), where Ki(M) is the K-homology of M .

Here is an example of higher rho invariants that naturally arise from invertible
operators. For simplicity, we shall only discuss the odd dimensional case. The
even dimensional case is completely similar. Suppose M is an odd-dimensional
closed spin manifold equipped with a positive scalar curvature metric. Let D be
the associated Dirac operator. The higher rho invariant of D (with respect to the
given metric) is defined to be

ρ(D̃) = e2πi
Ft+1

2 ∈ K1(C
∗
L,0(M̃)Γ)

where Ft = Chi(D̃/t) for some normalizing function Chi, where normalizing func-
tion Chi : R → [−1, 1] is an odd continuous function such that Chi(λ) → ±1, as
λ→ ±∞. For example, one can choose

Chi(λ) =
2√
π

∫ λ

0

e−s2ds.

The Connes-Chern character for a secondary invariant, i.e., an element [u] in

K1(C
∗
L,0(M̃)Γ), is defined as follows.

Definition 1. For u ∈ K1(C
∗
L,0(M̃)Γ), we define its Connes-Chern character to

be

Tch(u) :=

∞∑

k=0

(−1)k (k − 1)!

πi

( k∑

j=0

∫ ∞

0

tr((u⊗ u−1)⊗j ⊗ u̇u−1 ⊗ (u ⊗ u−1)⊗k−j)dt
)
.

If u is the higher rho invariant ρ(D̃) arising from an invertible elliptic operator

D̃, then the above formula can be identified with Lott’s higher eta invariants, cf.
[2].

Now supposeA is a locally m-convex Fréchet smooth dense subalgebra of C∗
r (Γ).

Let CC∗,〈1〉(CΓ) be the 〈1〉-summand of cyclic chain complex CC∗(CΓ) of the
group algebra CΓ and CC∗,〈1〉(A) be the closure of CC∗,〈1〉(CΓ) in CC∗(A). We
have the short exact sequence of cyclic chain complexes

0→ CC∗,〈1〉(A)→ CC∗(A)→ CC∗(A)/CC∗,〈1〉(A)→ 0.

We define HPe/o(A)〈1〉 (resp. HPe/o(A)del) to be the even/odd homology of the
cyclic chain complex CC∗,〈1〉(A) (resp. CC∗(A)/CC∗,〈1〉(A)). Then the above
Connes-Chern character fits into the following commutative diagram:

(1)

K0(M)

Chloc

��

// K0(C
∗
r (Γ))

Ch

��

// K1(C
∗
L,0(M̃)Γ)

Tch

��

HPe(A)〈1〉 // HPe(A) // HPe(A)del
where Chloc is the (local) Connes-Chern character for K-homology classes and Ch
is the Connes-Chern character for K-theory classes. More precisely, we have the
following theorem.
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Theorem 2 ([2]). Let A be a Fréchet locally m-convex smooth dense subalgebra
of C∗

r (Γ). Then the Connes-Chern character map

Tch: Ko/e(C
∗
L,0(M̃)Γ)→ HPe/o(A)del

given by the above formula is well-defined and makes the diagram (1) commute.

Despite our explicit formula for the Connes-Chern character map Tch of sec-
ondary invariants, the homology group HP∗(A) is rather difficult to compute in
general. In order to compute the Connes-Chern character, we shall pair it with
HP∗(CΓ) to obtain numerical invariants, where HP∗(CΓ) is much better under-
stood. Indeed, by a theorem of Burghelea [1], we have

HP∗(CΓ) ∼=
⊕

〈g〉

HP∗(CΓ)〈g〉

summing over all conjugacy classes of Γ. Moreover, for a finite order element g,
HP∗(CΓ)〈g〉 ∼= H∗(Ng), where Zg is the centralizer group of g and Ng = Zg/{g} is
the quotient of Zg by the cyclic subgroup generated by g. In particular, we have

HPe/o(CΓ)〈1〉 ∼= He/o(Γ)

and

HPe/o(CΓ)del ∼=
⊕

〈g〉6=〈1〉

HPe/o(CΓ)〈g〉.

where He/o(Γ) is the even/odd group homology of Γ. This naturally brings us to
the following question.

Question 3. When does a cyclic cocycle of CΓ extends to a cyclic cocycle of A?
The above question is wide open for general groups. For word hyperbolic groups,

we have the following theorem.

Theorem 4 ([2]). If Γ is a word hyperbolic group, then every element in HCn(CΓ)
has a representative of polynomial growth,for all n ≥ 0. Furthermore, when n 6= 1,
every element in HCn(CΓ) has a bounded representative.

As a consequence, we have the following corollary.

Corollary 5 ([2]). If Γ is hyperbolic and A is the Puschnigg smooth dense sub-
algebra of C∗

r (Γ), then any cyclic cocycle of CΓ extends to a cyclic cocycle of
A.

To summarize, we have the following theorem.

Theorem 6 ([2]). Let M be a closed manifold whose fundamental group Γ is word
hyperbolic. Suppose 〈h〉 is a non-trivial conjugacy class of Γ. Then the paring
between delocalized Connes-Chern characters and delocalized cyclic cohomology

Ki(C
∗
L,0(M̃)Γ)⊗HP 2k+1−i(CΓ)〈h〉 → C
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given by (u, ϕ) 7→ 〈Tch(u), ϕ〉 is well-defined. In particular, if D is an elliptic

operator onM such that the lift D̃ of D to the universal cover M̃ ofM is invertible,
then Lott’s higher eta invariant

ηϕ(D̃) := −〈Tch(ρ(D̃)), ϕ〉
converges absolutely, where ρ(D̃) is the higher rho invariant of D̃.

So far, we have seen that the existence of a smooth dense subalgebra CΓ ⊂ A ⊂
C∗

r (Γ) and the extendability of a cyclic cocycle ϕ of CΓ to A together provide a
sufficient condition for the convergence of the pairing

ηϕ(D̃) := −〈Tch(ρ(D̃)), ϕ〉.
This naturally brings us to the following question.

Question 7. What happens in the general? Does this pairing always converge?
Are there other geometric situations where the convergence holds?

In the rest of this report, we shall discuss some results that partially answer
the above question. Let us first discuss the degree-zero cyclic cocycle case. For a
given h ∈ Γ with h 6= 1, let 〈h〉 be its conjugacy class in Γ. The following trace

tr〈h〉 : CΓ→ C,
∑

β

cββ 7→
∑

β∈〈h〉

cβ

defines a degree-zero cyclic cocycle of Γ. In this case, the pairing between the

Connes-Chern character of the higher rho invariant ρ(D̃) and tr〈h〉 takes the fol-
lowing form:

〈Tch(ρ(D̃)), tr〈h〉〉 =
2√
π

∫ ∞

0

tr〈α〉(D̃e
−t2D̃2

)dt

where we have chosen the normalizing function Chi to be

Chi(λ) =
2√
π

∫ λ

0

e−s2ds

in the definition of ρ(D̃) = exp(2πiChi(D̃/t)+1
2 ). We have the following theorem.

Theorem 8 ([2]). If 〈h〉 6= 〈1〉 and the spectral gap of D̃ at zero is sufficiently
large, then the pairing

〈Tch(ρ(D̃)), tr〈h〉〉
absolutely converges.

Let us make precise of what “sufficiently large spectral gap” means. Fix a finite

generating set S of Γ and a fundamental domain F for the action of Γ on M̃ . Let
ℓ be the corresponding word length function on Γ determined by S. The spectral

gap of D̃ at zero is said to be sufficiently large if its spectral gap is larger than the
constant

2K〈h〉 · cD
C〈h〉

,

where
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(1) K〈h〉 is the smallest number nonnegative number such that

#{β ∈ 〈α〉 : ℓ(β) ≤ n} ≤ A · eK〈h〉·n;

(2) cD = sup
{
‖σD(x, v)‖ : x ∈M, v ∈ T ∗

xM, ‖v‖ = 1
}
;

(3) and

C〈h〉 = lim inf
g∈〈h〉

ℓ(g)→∞

(
inf
x∈F

dist(x, gx)

ℓ(g)

)
.

Note that if 〈h〉 has subexponential growth, then any spectral gap of D̃ at zero
is automatically sufficiently large, hence the following immediate corollary.

Corollary 9 ([2]). If 〈h〉 6= 〈1〉 has subexponential growth and D̃ has a spectral
gap at zero, then the pairing

〈Tch(ρ(D̃)), tr〈h〉〉
absolutely converges.

Now for higher degree cyclic cocycles, we have the following analogue.

Theorem 10 ([2]). Given 〈h〉 6= 〈1〉, if ϕ ∈ HP e(CΓ)〈h〉 is a cyclic cocycle of at

most exponential growth and the spectral gap of D̃ at zero is sufficiently large, then
the pairing

〈Tch(ρ(D̃)), ϕ〉
absolutely converges.

Here we say the spectral gap of D̃ is sufficiently large if it is larger than the
following constant:

σϕ =:
2(KG +Kϕ) · cD

CΓ
,

where

(1) KΓ is the exponential growth rate of the group Γ andKϕ is the exponential
growth rate of the cyclic cocycle ϕ;

(2) cD = sup
{
‖σD(x, v)‖ : x ∈M, v ∈ T ∗

xM, ‖v‖ = 1
}
;

(3) and

CΓ = lim inf
ℓ(g)→∞

(
inf
x∈F

dist(x, gx)

ℓ(g)

)
.

We would like to point out that Piazza, Schick, and Zenobi gave alternative
proofs for some of the results mentioned in this report, cf. [7].
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Higher ̺-numbers and delocalized cocycles

Vito Felice Zenobi

(joint work with Paolo Piazza, Thomas Schick)

1. Long exact sequences in K-theory

Let M be a smooth compact manifold with fundamental group Γ. Let us denote

by M̃ the universal covering of M . Then we can associate to it the following long
exact sequence of groups, called the analytic surgery exact sequence of Higson and
Roe,

· · · // K∗+1(C
∗
rΓ) // SΓ∗ (M̃) // KΓ

∗ (M̃) // K∗(C
∗
rΓ) // · · ·

where K∗(C
∗
rΓ) is the K-theory of the reduced group C*-algebra, KΓ

∗ (M̃) is the

Γ-equivariant K-homology of M̃ and SΓ∗ (M̃) is the so-called Γ-equivariant structure

group of M̃ .
Among all the realizations of the Higson-Roe exact sequence we will consider

the one obtained as the long exact sequence in K-theory induced by the following
short exact sequence of C*-algebras

0→ C∗
r (M̃ ×Γ M̃)⊗C0(0, 1)→ C(C(M)→ Ψ0

Γ(M̃))→ C(C(M)→ C(S∗M))→ 0

where Ψ0
Γ(M̃) and C∗

r (M̃×Γ M̃) are the C*-closure of the 0-order and the smooth-

ing Γ-equivariant pseudodifferential operators on M̃ , respectively; C(S∗M) is the
algebra of continuous functions on the cosphere bundle ofM ; finally C denotes the
mapping cone C*-algebra. See [5] for the details.
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2. Chern characters to non-commutative de Rham homology

Let us now consider a dense and holomorphically closed Frèchet subalgebra AΓ
of C∗

rΓ. Let Ω̂∗(AΓ) be the universal differential graded algebra of AΓ. Moreover

denote by Ω̂e
∗(AΓ) the localized part of Ω̂∗(AΓ), namely the subcomplex generated

by those forms g0dg1 . . . dgn such that g0g1 . . . gn = e. Then the short exact
sequence of complexes

0 // Ω̂e
∗(AΓ) // Ω̂∗(AΓ) // Ω̂del

∗ (AΓ) // 0

induces the following long exact sequence of homology groups

· · · // He
∗(AΓ) // H∗(AΓ) // Hdel

∗ (AΓ) // · · ·
By using relative Chern characters in non-commutative de Rham homology, we
are able to prove the following theorem.

Theorem A. There exists the following commutative diagram

· · · // K∗−1(C
∗
rΓ)

//

ChΓ

��

SΓ∗ (M̃) //

Chdel
Γ

��

KΓ
∗ (M̃) //

Che
Γ

��

· · ·

· · · // H[∗−1](AΓ) // Hdel
[∗−1](AΓ)

δ
// He

[∗](AΓ) // · · ·

where H[∗] denotes the direct sum
⊕

n∈N
H2n+∗ for ∗ = 0, 1.

3. Pairings with delocalized cocycles

Thanks to the Burghelea’s Theorem we have that the cyclic cohomology group of
the group ring CΓ is given by the following product

HC∗(CΓ) ∼=
∏

〈x〉∈〈Γ〉

HC∗(CΓ; 〈x〉)

where 〈Γ〉 is the set of the conjugancy classes of Γ. Observe that Hdel
[∗] (AΓ) is a

subgroup of the cyclic homology HC[∗](AΓ). Therefore, thanks to a key result of
Puschnigg (see [4]), we can prove the following theorem.

Theorem B. If Γ is Gromov-hyperbolic, then the following pairing

SΓ∗ (M̃)×HCk(CΓ; 〈x〉)→ C,

given by (̺, τ) 7→ 〈ChdelΓ (̺), τ〉, is well-defined for all 〈x〉 6= 〈e〉 in 〈Γ〉.
If u : M → BΓ is the classifying map of the universal covering M̃ , let us consider

the singular cohomology relative group H∗(M
u−→ BΓ). After realizing this coho-

mology group in terms of delocalized cocycles à la Alexander-Spanier, we obtain
the following result.

Theorem C. 1) There exists a morphism of relative cohomology groups

χ : H∗(M
u−→ BΓ)→ HC∗(Ψ0

Γ,c(M̃), C∞(M))
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where Ψ0
Γ,c(M̃) is the algebra of Γ-compactly supported equivariant ΨDOs on M̃

and C∞(M) is the subalgebra of smooth functions on M .
2) If Γ is Gromov-hyperbolic, then the following pairing

SΓ∗ (M̃)×H∗(M
u−→ BΓ)→ C,

given by (̺, λ) 7→ 〈̺, χλ〉, is well-defined.

Recall that so far we used the realization of SΓ∗ (M̃) as K-group of the mapping

cone associated to the pair (Ψ0
Γ(M̃), C(M)).

4. Geometric applications

Let g be a Riemannian metric on M with positive scalar curvature. In [2] Piazza

and Schick associated to g an element ̺(g) ∈ SΓ∗ (M̃). This K-theory element
is well-defined on concordance classes of metrics with positive scalar curvature
(shortly psc). Then the previous pairings allows to associate higher ̺-numbers to
psc metrics. This numbers will be used to study the moduli space of concordance
classes of psc metric, namely the quotient of the set of concordance classes under
the action of Diffeo(M), the diffeomorphisms group of M .

Some of the results of this work where independently treated in [1].
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Cyclic homology and group actions on manifolds

Raphaël Ponge

There is a huge amount of work on the cyclic homology of crossed-product algebras
(see, e.g., [1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 18, 19, 20, 21, 28]). However, at
the notable exception of the characteristic map of Connes [9, 10] from the early
80s, we don’t have explicit chain maps that produce isomorphisms at the level of
homology and provide us with geometric constructions of cyclic cycles in the case
of group actions on manifolds or varieties.

This talk reported on the construction of explicit quasi-isomorphisms for crossed
products associated with actions of discrete groups [22, 23, 24, 27]. In the algebraic
setting the results hold for unital algebras over rings containing Q. They extend
mutatis mutandis to continuous actions on locally convex algebras. Along the way
we recover and clarify various earlier results (in the sense that we obtain explicit
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chain maps that yield quasi-isomorphisms). In particular, we recover the spectral
sequences of Feigin-Tsygan [13] and Getzler-Jones [14], and derive an additional
spectral sequence. In the case of the localization at infinite order conjugacy classes
we obtain a module structure over group homology. This result goes back to
Nistor [20], but we are able to implement the action at the chain level by means
of an explicit coproduct for the paracyclic category (i.e., by using a biparayclic
version of the Alexander-Whitney map).

In the case of group actions on manifolds we have an explicit description of cyclic
homology and periodic cyclic homology. In the finite order case, the results are
expressed in terms of what the so-called ‘mixed equivariant homology’, which in-
terpolates group homology and de Rham cohomology. This is actually the natural
receptacle for a cap product of group homology with equivariant cohomology. As
a result taking cap products of group cycles with equivariant characteristic classes
naturally gives to a geometric construction of cyclic cycles. For the periodic cyclic
homology we recover earlier results of Connes [9, 10] and Brylinski-Nistor [8] via a
Poincaré duality argument. For the non-periodic cyclic homology the results seem
to be new. In the infinite order case, we fix and simplify the misidentification of
cyclic homology by Crainic [11]. In the case of finite group actions we also recover
earlier results of Baum-Connes [2] for proper actions. In the case of group actions
on smooth varieties we obtain the exact analogues of the results for group actions
on manifolds. In particular, in the special case of finite group actions on smooth
varieties we recover recent results of Brodzki-Dave-Nistor [6] via the construction
of explicit quasi-isomorphism. (Actions of infinite groups are not dealt with in [6].)

The approach consists in several intermediate steps that are put together.
Roughly speaking we devise a simple machinery that produces quasi-isomorphisms
for the localizations at finite order and infinite order conjugacy classes once we have
quasi-isomorphisms for twisted cyclic homology of the sole algebra. Combining
this with twisted versions of the Hochshild-Kostant-Rosenberg (due to Brylinski-
Nistor [8] and Brodzki-Dave-Nistor [6]) leads us to the aforementioned results for
group actions on manifolds and smooth varieties.

Several of the ideas were contained in earlier works. However, an important issue
is to find the right homological setting to work with. In the case of localization
at finite order cases the setting of the cylindrical complexes of Getzler-Jones [14]
is especially relevant. However, we need to go beyond cylindrical complexes to
deal with the infinite order case. To this end we introduce the notions of para-S-
module and triangular S-module. The former is a “para” version of the notion of
an S-module introduced by Jones-Kassel [15]. The latter is some kind of bivariant
combination of the former and parachain complexes. It allows us to consider tensor
products of para-S-modules and parachain complexes; this precisely what we need
in order to deal with the infinite order case.

The main difference between a para-S-module and an S-module is the removal
of the condition d ◦ d = 0 for the differential. As a result we don’t obtain chain
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complexes in the usual sense (although we may get a chain complexe by tak-
ing a suitable tensor product). This does not allow us to speak about quasi-
isomorphisms. Nevertheless, we still can speak about chain homotopy equiva-
lences. As a result this forces us to derive chain homotopy equivalences, and so
the quasi-isomorphisms that we get actually are chain homotopy equivalences. A
very convenient tool for constructing chain homotopy equivalences is provided by
a suitable generalization of Brown’s perturbation lemma to para-S-modules [25].
This can be seen as a para-version of the results of Kassel [16]. As an application,
building on earlier work of Bauval [3] and Khalkhali-Rangipour [17], we obtain a
version of Eilenberg-Zilber Theorem for bi-paracyclic modules [26]. This is stated
in terms of chain homotopy equivalences at the level of unnormalized chains, and
so we actually get a bi-paracyclic version of Dold-Puppe Theorem. In particular,
this leads us to a natural notion of cup product for paracyclic comodules.
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Rigidity and characteristic classes for cyclic homology over
p-adic numbers

Boris Tsygan

In the 80s Goodwillie [1] proved two theorems about cyclic homology over rational
numbers Q. First, periodic cyclic homology is rigid, i. e., it does not change
if one factorises our algebra by a nilpotent ideal. Second, relative K theory of a
nilpotent ideal is isomorphic to relative cyclic homology. Closely related to the first
statement is Getzler’s construction of a Gauss-Manin connection on the periodic
cyclic complex of a family of algebras. (See [2])

The first theorem is obviously false over integers (consider for example an alge-
bra with zero multiplication). What it implies, though, is that, over the rationals,
any two algebra structures on the same space that are the same modulo an ideal
with a certain divided power property have isomorphic (completed) periodic cyclic
complexes. We also construct a regulator map from algebraic K theory of such an
ideal to (completed) cyclic homology (a version of a recent work of Beilinson [3]),
as well as a version of Getzler’s Gauss Manin connection.

In particular, if an algebra over Z/p (p > 2) admits a lifting to an algebra
over p-adic numbers, then the completed periodic cyclic complex of the lifting is
independent of the choice of a lifting. Furthermore, this complex can be defined
even if a lifting does not exist. This construction is closely related to a recent work
of Petrov, Vaintrob, and Vologodsky [4].
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Institut de Mathématiques de Jussieu
Case 247
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