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Abstract. The conference focused on the use of geometric methods to study
infinite groups and the interplay of group theory with other areas. One of
the central techniques in geometric group theory is to study infinite discrete
groups by their actions on nice, suitable spaces. These spaces often carry
an interesting large-scale geometry, such as non-positive curvature or hy-
perbolicity in the sense of Gromov, or are equipped with rich geometric or
combinatorial structure. From these actions one can investigate structural
properties of the groups. This connection has become very prominent dur-

ing the last years. In this context non-discrete topological groups, such as
profinite groups or locally compact groups appear quite naturally. Likewise,
analytic methods and operator theory play an increasing role in the area.
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Introduction by the Organizers

A unifying theme in the modern study of infinite groups is to study actions of
such groups on spaces with an interesting geometric structure. There is a rich
interplay between geometric properties of the space that a group can (or cannot)
act on, and algebraic properties of the group. This meeting focused on thriving
areas within this setting.

The spaces in question often have specific curvature properties, such as the CAT(0)
condition, or Gromov’s notion of hyperbolicity. Results about group actions on
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CAT(0) cube complexes have lead, for example, to the positive solution of several
points in Thurston’s program for 3-manifolds. Several talks during this workshop
highlighted new developments in the theory of groups acting on CAT(0) cube
complexes and on hyperbolic or nonpositively curved spaces.

But other geometric conditions have also emerged during the last years. The
notion of acylindrically hyperbolic groups has opened the door for studying a large
class of non-hyperbolic groups by geometric means. Properties of random groups
or growth properties of groups are topics of continuing interest in the area, and
several lectures reported on them.

Another recurring theme is to study the automorphism groups of interesting
groups, such as free groups, Coxeter groups, and Artin groups. One major recent
breakthrough in this area, which was also highlighted in the conference, is the
construction of an outer space for right-angled Artin groups.

More on the analytic side the following topics were covered. Measure-theoretic
properties of group actions were discussed, such as measure equivalence and rigid-
ity results related to them. The notion of amenability played a central role in var-
ious talks. It was in particular used to study questions about group C∗-algebras.
Moreover new results on L2-Betti numbers were presented. Kazhdan’s property
(T) as well as strong analogs played a prominent role in several lectures at the
conference. In addition nonstandard analytic methods were shown to lead to com-
pactifications of character varieties with good properties.

This workshop took place under special conditions. In the implemented hybrid
format, both in-person and virtual participants attended the meeting. This was
the first Oberwolfach workshop after the institute had been shut down due to the
COVID-19 pandemic for more than 3 months. A reduced number of 20 participants
was present in Oberwolfach, while roughly the same number participated virtually.
The lectures were broadcast live and provided as video recordings for all those
participants who could not come in person. Besides eleven lectures presented by
participants present at the workshop, we had four video lectures from participants
in Japan, Canada, the United States, and Great Britain. This mixture worked
remarkably well and the conference benefited immensely from the video lectures.

Even though the size of the workshop was reduced the interaction between the
participants was, as always, very lively. The schedule provided enough time for
discussions in smaller groups during the early afternoons. It is safe to say that
we can expect to hear about several interesting projects that emerged during this
week at future group theory conferences.

The whole staff in Oberwolfach succeeded in meeting the necessary hygiene
measures while at the same time providing excellent working conditions and a re-
laxed and enjoyable atmosphere as usual. We would especially like to mention the
supportive and helpful work of the IT group. The recording and video equipment
set up in the lecture hall worked remarkably well and we had plenty of support
during the week. We thank the staff in Oberwolfach very much for providing such
excellent working conditions during these difficult times.
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We are glad that this workshop could take place in this reduced form. Although
the virtual attendance of many participants was (obviously) not a replacement for
being in Oberwolfach, we got the impression that overall this conference was very
successful and has fully met the high standards of the Oberwolfach workshops.
The scientific exchange between the participants in Oberwolfach and elsewhere
will certainly lead to exciting new developments and collaborations.
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Abstracts

The real spectrum compactification of character varieties:
characterizations and applications

Alessandra Iozzi

(joint work with Marc Burger, Anne Parreau, Maria Beatrice Pozzetti)

We consider the real spectrum compactification ΞRSp(Γ, G) of the character va-
riety ΞRSp(Γ, G) = Hom(Γ, G)/ ∼, where Γ is finitely generated, G < SLn is a

semisimple algebraic group defined over the field Q
r
of the real algebraic numbers

and ∼ is G-conjugation. We give properties of ΞRSp(Γ, G) and of its closed points

ΞRSp
cl (Γ, G) and we characterize ΞRSp(Γ, G)rΞRSp(Γ, G) in terms of (equivalence

classes of) representations ρ : Γ → GF, where F is a non-Archimedena minimal
real closed field on which there exists an order compatible valuation v : F → R≥0.
Inspired by work by Kramer and Tent (see [4] for an announcement and [1] for
details), we show that associated to any representation (ρ,F) there is a Λ-building
BGF

, where Λ := v(F×), on which Γ acts isometrically. We can hence further char-

acterize the closed points (ρ,F) ∈ ΞRSp
cl (Γ, G) r ΞRSp(Γ, G) as those on which Γ

acts without fixed points or, equivalently, those for which there exists an element
of finite length ≤ 2n − 1 (where n is the cardinality of a finite generating set of
Γ) that has positive translation length. Any such representation (ρ,F) can also be
realized as (equivalent to) an (ω,λλλ)-limit of a sequence ρk : Γ → G, where ω is a
non-principal ultrafilter on N and λλλ = (λk)k≥1 is a sequence of scales defined in
terms of the displacement functions of (ρk)k≥1. Furthermore we show that there
is a field embedding F →֒ Rω

λλλ , where Rω
λλλ is the Robinson filed associated to ω and

λλλ, and an embedding of buildings BGF
→֒ BGRωλλλ

that identifies BGF
with a totally

geodesic CAT(0)-complete subspace of the affine building BGRωλλλ
. Since BGRωλλλ

can be identified isometrically with an asymptotic cone of symmetric spaces, BGF

inherits this CAT(0) metric.
This whole machinery can be used to show also that if (ρ,F) ∈ ΞRSp(Γ, G) r

ΞRSp(Γ, G), then the action of Γ on BGF
is proper in the sense of Korevaar and

Schoen, [3, § 3], and this implies the existence of a Γ = π1(M)-equivariant Lipschitz

harmonic map M̃ → BGF
, where M is a complete Riemannian manifold.

Finally we show that if ρ : Γ → GF is any representation, where F is a real closed
filed with an order compatible evaluation, the building BGF

arises as a quotient of
the symmetric space associated to GF.
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Group C∗-algebras of locally compact groups acting on trees

Tim de Laat

(joint work with Dennis Heinig and Timo Siebenand)

There are several ways to construct C∗-algebras from locally compact groups. Such
group C∗-algebras typically encode part of the (unitary) representation theory of
the underlying group. The best known are the universal group C∗-algebra C∗(G)
and the reduced group C∗-algebra C∗

r (G) of a locally compact group G. It is well
known that these two algebras coincide if and only if G is amenable.

For our purposes, a group C∗-algebra of G is a completion A of Cc(G) with
respect to a C∗-norm ‖.‖µ satisfying ‖f‖u ≥ ‖f‖µ ≥ ‖f‖r for all f ∈ Cc(G).
Here, ‖.‖u and ‖.‖r denote the universal and the reduced C∗-norm, respectively.
For such a group C∗-algebra A, the identity map from Cc(G) to itself induces
canonical surjective ∗-homomorphisms C∗(G) ։ A and A։ C∗

r (G). The algebra
A is called an exotic group C∗-algebra if both the quotient map C∗(G) ։ A and
the quotient map A։ C∗

r (G) are non-injective.
It is an open problem whether every non-amenable locally compact group ad-

mits exotic group C∗-algebras. For (non-amenable) countable discrete groups hav-
ing a non-abelian free subgroup, it follows from [5] that there is always a continuum
of exotic group C∗-algebras.

Let G be a locally compact group. A natural construction of potentially exotic
group C∗-algebras comes from Lp-integrability properties of matrix coefficients of
unitary representations. Let p ∈ [1,∞]. A unitary representation π : G → U(H)
is called an Lp-representation if there exists a dense subspace H0 ⊂ H such that
for all ξ, η ∈ H0, the matrix coefficient πξ,η, i.e. the function from G to C defined
by πξ,η(s) = 〈π(s)ξ, η〉, is an element of Lp(G). The representation π is an Lp+-
representation if for all ε > 0, it is an Lp+ε-representation.

For p ∈ [2,∞], let C∗
Lp+(G) denote the group C∗-algebra obtained as the com-

pletion of Cc(G) with respect to the norm

‖ · ‖Lp+ : Cc(G) → [0,∞), f 7→ sup{‖π(f)‖ | π is a Lp+-representation}.
This essentially goes back to [1], where algebras coming from Lp-representations
of countable discrete groups were studied.

In [3], we study the group C∗-algebras C∗
Lp+(G) for classes of (non-discrete)

totally disconnected locally compact groups G acting on trees. A tree T is called
semihomogeneous of degree (d0, d1) if every vertex of T has degree d0 or d1 and
for every two adjacent vertices, one of them has degree d0 and the other one has
degree d1. Furthermore, it is assumed that d0, d1 ≥ 2 and that one of them is at
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least 3. If d0 = d1, then the tree is called homogeneous, in which case we assume
that the degree is at least 3.

Our first result shows that given an appropriate locally compact group G acting
on a (semi)homogeneous tree, the group C∗-algebras C∗

Lp+(G) are canonically
pairwise distinct for p ∈ [2,∞]. The following is [3, Theorem A].

Theorem 1. Let G be a non-compact, closed subgroup of the automorphism group
Aut(T ) of a (semi)homogeneous tree T , and suppose that G acts transitively on
the boundary ∂T . For 2 ≤ q < p ≤ ∞, the canonical quotient map

C∗
Lp+(G) ։ C∗

Lq+(G)

is not injective.

This result reproves a result of Samei and Wiersma [6]. Our approach is similar
to theirs, in the sense that it relies on establishing the so-called integrable Haagerup
property for the groups under consideration. This property, combined with the
Kunze-Stein property, which is known for these groups, leads to the theorem.
Our approach towards the integrable Haagerup property, however, relies more on
harmonic analysis and representation theory rather than on geometric arguments,
which was the case in [6].

In [3], we also consider the question whether the algebras C∗
Lp+(G) are the only

group C∗-algebras coming from a G-invariant ideal of the Fourier-Stieltjes algebra
B(G) of G. The latter consists of all matrix coefficients of unitary representations
of G. The following result is [3, Theorem B].

Theorem 2. Let G be a non-compact, closed subgroup of the automorphism
group Aut(T ) of a homogeneous tree T satisfying Tits’ independence property,
and suppose that G acts transitively on T and on the boundary ∂T . If C∗

µ(G) is
a group C∗-algebra of G such that its dual space C∗

µ(G)
∗ is a G-invariant ideal in

B(G), then there exists a unique p ∈ [2,∞] such that C∗
µ(G)

∗ = BLp+(G), where
BLp+(G) := C∗

Lp+(G)∗.

Our results have nice consequences for certain classes of groups. For instance,
by the work of Bruhat and Tits, it is known that simple algebraic rank one groups
over non-Archimedean local fields admit a natural boundary-transitive action on
their Bruhat-Tits tree [2]. It follows that Theorem 1 in particular applies to these
groups.

Let us point out that group C∗-algebras constructed from Lp-integrability prop-
erties of matrix coefficients were already studied extensively before for countable
discrete groups and for Lie groups. The systematic study of such algebras (in the
setting of discrete groups) was initiated in [1]. As already mentioned above, for
countable discrete groups containing a non-abelian free subgroup, it is known that
there always exists a continuum of exotic group C∗-algebras constructed from Lp-
integrability properties [5]. In the setting of Lie groups, interesting results were
obtained by Wiersma [7] and by Samei and Wiersma [6]. In particular, the ana-
logue of Theorem 1 for the groups SO0(n, 1) and SU(n, 1) was proved by Samei
and Wiersma. In [4], Siebenand and the author generalised this to all classical
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simple Lie groups with real rank one, including the ones with property (T), which
could not be dealt with before. This culminated in the following theorem (see [4,
Theorem B]), which is the analogue of Theorem 1 for Lie groups of real rank one.

Given a locally compact group G, we define Φ(G) by

Φ(G) := inf{p ∈ [1,∞] | ∀π ∈ Ĝ \ {τ0}, π is an Lp+-representation},

where τ0 denotes the trivial representation of G. For the classical Lie groups with
real rank one, the constant Φ(G) is known and given by

Φ(G) =





∞ if G = SO0(n, 1),

∞ if G = SU(n, 1),

2n+ 1 if G = Sp(n, 1).

Theorem 3. Let G be a (connected) classical simple Lie group with real rank one.
Then for 2 ≤ q < p ≤ Φ(G), the canonical quotient map

C∗
Lp+(G) ։ C∗

Lq+(G)

is not injective. Furthermore, for every p, q ∈ [Φ(G),∞), we have

C∗
Lp+(G) = C∗

Lq+(G).

Note that in case the Lie group has property (T), which is the case for Sp(n, 1),
we see that from a certain p0 onwards, the chain C∗

Lp+(.) “stabilizes”. This
behaviour is very different from the behaviour of groups with the (integrable)
Haagerup property.
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Tits Alternative in dimension 2

Piotr Przytycki

(joint work with Damian Osajda)

Tits proved that every finitely generated linear group is either virtually solvable
or contains a nonabelian free group. In other words, each linear group GLn(k)
satisfies the Tits Alternative, saying that each of its finitely generated subgroups
is virtually solvable or contains a nonabelian free group. Whether CAT(0) groups
satisfy the Tits Alternative remains an open question, even in the case of groups
acting properly and cocompactly on 2-dimensional CAT(0) complexes. We prove
the following.

Theorem 1. Let X be a 2-dimensional building or a 2-dimensional systolic com-
plex. Suppose that G acts on X properly and there is a bound on the order of its
finite subgroups (e.g. G acts on X properly and cocompactly). Then G satisfies the
Tits Alternative.

Same methods allow also to extend Theorem 1 to X a simply connected B(6)-
small cancellation complex. With Jon McCammond we also extend Theorem 1 to
X the Cayley complex for the standard presentation of an Artin group AΓ of large
type.

Coherence of random groups

Dawid Kielak

(joint work with Robert Kropholler and Gareth Wilkes)

In 1973 Scott proved the following remarkable theorem.

Theorem 1 ([11]). Every finitely generated fundamental group of a (not neces-
sarily compact) 3-manifold is finitely presented.

In response to Scott’s findings Stallings formulated the following definition.

Definition 2. A group is coherent if and only if all of its finitely generated sub-
groups are finitely presented.

(In today’s terminology one might call such groups locally finitely presented.)
Coherence of fundamental groups of compact 3-manifolds is an immediate corollary
of Scott’s theorem.

It was known since 1961 that not all finitely presented groups are coherent – one
can use the Higman embedding theorem to construct a finitely presented group
containing a subgroup (like Z≀Z) which is finitely generated, recursively presented,
but not finitely presented. The first explicit example of a finitely presented inco-
herent group was given by Stallings in 1963 [12]. A simpler example was given
again by Stallings in 1977 [13] in reaction to Scott’s paper: we take G = F2 × F2,
and consider an epimorphism φ : F2 → Z which sends the elements of chosen basis
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of the F2 factors to a generator in Z. The kernel of φ is finitely generated but not
finitely presented.

In view of the above, one might be tempted to ask: what is the generic picture
for finitely presented groups? This is the motivation behind our work. To study the
problem we decided to work in the few relators model of Arzhantseva–Ol’shanskii
[2]. The model is constructed as follows. We fix a number of generators n > 2 and
a number of relators m. Now for every l ∈ N we consider a group-valued random
variable

G(n,m, l) = 〈a1, . . . , an | r1, . . . , rm〉
where the relators are chosen at random from among the cyclically reduced words
of length l in the free group F (a1, . . . , an).

Definition 3. Given a property P of groups, we say that random groups (in the
(n,m)-few relators model) satisfy P

• with asymptotic probability 1 if and only if

lim
l→∞

P
(
G(n,m, l) satisfies P

)
= 1

• with positive asymptotic probability if and only if

lim inf
l→∞

P
(
G(n,m, l) satisfies P

)
> 0

It follows from the work of Gromov [6] that presentation complexes of random
groups (in the above sense) are aspherical with asymptotic probability 1, and hence
with the same probability the Euler characteristic of a random group is 1−n+m.
We can now state our main theorem.

Theorem 4. A random group in the (n,m)-few relators model with Euler char-
acteristic χ

(1) is coherent with asymptotic probability 1 when χ < 0;
(2) is coherent with positive asymptotic probability when χ = 0;
(3) is incoherent with asymptotic probability 1 when χ > 0, provided that

n = 2.

The theorem comes coupled with a conjecture.

Conjecture 5. A random group in the (n,m)-few relators model with Euler char-
acteristic χ is

(1) coherent when χ 6 0;
(2) incoherent when χ > 0;

both with asymptotic probability 1.

Our key input is a computation of the first ℓ2 Betti numbers of random groups.

Theorem 6. A random group in the (n,m)-few relators model with Euler char-

acteristic χ has the first ℓ2 Betti number β
(2)
1

(1) equal to χ with asymptotic probability 1 when χ < 0;
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(2) equal to 0 with positive asymptotic probability when χ = 0 and with as-
ymptotic probability 1 when both χ > 0 and n = 2.

To perform the computation we use the technology of Novikov rings, which are
sufficiently combinatorial to be amenable to probabilistic arguments.

When the fist ℓ2 Betti numbers vanish, we proceed as follows: With asymptotic
probability 1, random groups are C′(16 ) small cancellation [2]. Such groups are
aspherical (and hence torsion-free) [5], virtually RFRS [15, 1, 7], and satisfy the
Atiyah conjecture [10]. Random groups are also infinite. Infinite virtually RFRS

groups with vanishing β
(2)
1 are virtually algebraically fibred [8].

Now the proof splits into two cases, depending on χ. When χ = 0, we see that
also the second ℓ2 Betti number vanishes [9]. Hence, the infinite virtually RFRS
group in question virtually maps onto Z with kernel of type FP2 [8]. The kernel
must therefore be of cohomological dimension 1 [3], and so must be free [14]. This
shows that the random group is virtually a free-by-cyclic groups, and such groups
are coherent [4]. Coherence easily passes to finite index overgroups.

When χ > 0, we see that β
(2)
2 6= 0. This implies that our random group

cannot virtually map onto Z with finitely presented kernel [9]. But we know that
the group virtually algebraically fibres, and hence virtually maps onto Z with a
finitely generated kernel. This kernel now certifies that the random group was not
coherent.

The case of negative Euler characteristic follows from a careful construction
of an embedding of random groups with negative Euler characteristic into well-
controlled random groups of Euler characteristic 0.
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Coxeter quotients of the automorphism group of a Coxeter group

Olga Varghese

One fascinating property of a group is property (T). It was defined by Kazhdan
for topological groups in terms of unitary representations and was reformulated
by Delorme and Guichardet in geometric group theory. A countable group G has
Kazhdan’s property (T) if every action of G on a real Hilbert space by isometries
has a global fixed point ([1, Theorem 2.12.4]). Examples of groups satisfying this
property are finite groups ([1, Proposition 1.1.5]), the general linear groups GLn(Z)
for n ≥ 3 ([1, Theorem 4.2.5]), the automorphism groups of free groups Aut(Fn)
for n ≥ 5 ([2], [3]).

We focus on groups which are defined in combinatorial way. Given a finite
simplicial graph Γ = (V,E) with an edge-labelling ϕ : E → N≥2, the Coxeter
group WΓ associated to Γ is the group with the presentation

WΓ = 〈V | v2, (vw)ϕ({v,w}) for all v ∈ V and {v, w} ∈ E〉.
If Γ is disconnected with connected components Γ1, . . . ,Γn, then WΓ is the free

product WΓ1
∗ . . . ∗WΓn

and if Γ is a join Γ = Γ1 ∗ Γ2 and ϕ({v, w}) = 2 for all
v ∈ V1 and w ∈ V2, then WΓ is the direct product WΓ1

×WΓ2
. Coxeter groups

are fundamental, well understood objects in geometric group theory, but there are
many open questions concerning their automorphism groups.

We address the following conjecture:

Conjecture. For every infinite Coxeter group WΓ, the group Aut(WΓ) virtually
maps onto some infinite Coxeter group.

If this conjecture is true, then we know that

Corollary. The automorphism group of an infinite Coxeter group does not satisfy
Kazhdan’s property (T).

Our goal is to verify the above conjecture for a large class of Coxeter groups.

Theorem A. Let WΓ be an infinite Coxeter group. If Γ has a maximal complete
subgraph ∆ such that the center of W∆ is trivial, then the automorphism group
Aut(WΓ) virtually surjects onto WΓ.
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The next large class of Coxeter groups on which we want to focus is the class
consisting of even Coxeter groups. This class of groups is known as a generalization
of right-angled Coxeter groups. A Coxeter groupWΓ is called even, if all edge labels
are even. A vertex v ∈ V is called even, if all edge labels of e ∈ E with v ∈ e are
even.

Theorem B. Let WΓ be a Coxeter group. If there exist two non-adjacent even
vertices v, w ∈ V , then the automorphism group Aut(WΓ) virtually surjects onto
Z2 ∗ Z2.

Theorem C. Let WΓ be an infinite Coxeter group and let Γ1, . . . ,Γn be the con-
nected components of Γ. If n ≥ 2, then the automorphism group Aut(WΓ) virtually
surjects onto W ab

Γi
∗W ab

Γj
for all i 6= j, i, j ∈ {1, . . . , n}.
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Outer space for RAAGs

Karen Vogtmann

(joint work with Corey Bregman and Ruth Charney)

A right-angled Artin group (RAAG) based on a finite simplicial graph Γ is the
group

AΓ =
〈
vertices(Γ) | vw = wv if v and w are joined by an edge of Γ

〉
.

For any RAAG AΓ we construct a finite-dimensional space OΓ on which the group
Out(AΓ) of outer automorphisms of AΓ acts properly. We prove that OΓ is con-
tractible, so that the quotient is a rational classifying space for Out(AΓ).

Free groups and free abelian groups are special examples of RAAGs. The space
OΓ blends features of the symmetric space of lattices in Rn, with its action of
Out(Zn) = GL(n,Z), and those of Outer space for the free group Fn, with its
action by Out(Fn). Both of those spaces can be described as spaces of marked
metric objects, namely flat tori T n marked by an isomorphism of π1(T

n) with Zn,
and metric graphs G marked by an isomorphism of π1(G) with Fn.

Points in OΓ are also marked metric spaces with fundamental group AΓ. These
metric spaces are homeomorphic (but not isometric) to certain locally CAT(0)
cube complexes called Salvetti blowups. Recall that the usual Salvetti complex
associated to AΓ is the cube complex with one vertex and one k-dimensiohnal
cube for every k-clique; for example if AΓ = Fn, the Salvetti complex is a rose
with n petals and if AΓ = Zn the Salvetti complex is an n-dimensional torus. In
general the Salvetti complex has fundamental groupAΓ and is locally CAT(0) so its
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universal cover is contractible. Salvetti blowups are the RAAG analog of graphs.
In fact for AΓ = Fn they are graphs, namely those with no univalent or bivalent
vertices and no separating edges; they are obtained from a rose by “blowing up”
the vertex into a maximal tree. General Salvetti blowups were introduced in a
previous paper of the second two authors and N. Stambaugh [1]. In that paper
marked Salvetti blowups formed the vertices of a contractible simplicial complex
KΓ with a proper action by a subgroup U(AΓ) of Out(AΓ).

The subgroup U(AΓ) does not contain twists, i.e. transvections v 7→ vw where
vw = wv, so is called the untwisted subgroup. To incorporate twists, in this paper
we endow Salvetti blowups with locally CAT(0) metrics in which the “cubes” are
isometric to Euclidean parallelotopes. This presents difficulties since many stan-
dard results about CAT(0) cube complexes assume that all k-cubes are isometric
to [0, 1]k. The steps in the proof are as follows

(1) Embed the contractible simplicial complex KΓ into a space ΣΓ of marked
cuboid Γ-complexes, where “cubes” are still rectilinear but can have differ-
ent edge-lengths. The action of U(AΓ) on KΓ extends to ΣΓ. Show that
the image of KΓ is a deformation retract of ΣΓ, so ΣΓ is contractible.

(2) Embed ΣΓ into a space TΓ of marked skewed Γ-complexes, where “cubes”
may now be Euclidean parallelotopes but the metric on the skewed Γ-
complex as a whole must still be locally CAT(0). The action of U(AΓ) on
ΣΓ extends to an action on TΓ. Show that the image of ΣΓ is a deformation
retract of TΓ.

(3) Points in OΓ are certain locally CAT(0) metric spaces, marked by an
arbitrary isomorphism of their fundamental group with AΓ. Each of these
metric spaces is isometric to some skewed Γ-complex, but it may support
many different Γ-complex structures. The entire group Out(AΓ) acts by
changing the marking. Map TΓ to OΓ by forgetting the combinatorial
structure. Prove that this map is a fibration with contractible fibers.

The first step is easy, the second requires some work, and the third step is the
hardest. This third step is accomplished by analyzing the relation between the
combinatorial and metric structures of a skewed Γ-complex. Specifically, we must
show that the map is surjective (since the markings in TΓ are of a restricted type,
admitting only an action of U(AΓ), while there are no restrictions on the markings
in OΓ), then determine the set of all possible skewed Γ-complex structures one can
put on a given marked metric space, and finally show that the map is a fibration,
i.e. one can lift small neighborhoods in OΓ to TΓ.
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The rates of growth in a hyperbolic group.

Koji Fujiwara

(joint work with Zlil Sela)

In [3], we study the set of rates of growth of a hyperbolic group with respect to
all its finite generating sets. We prove that the set is well-ordered, and that every
real number can be the rate of growth of at most finitely many generating sets up
to automorphism of the group. We prove that the ordinal of the set of rates of
growth is at least ωω , and in case the group is a limit group (e.g., free and surface
groups), it is ωω.

In this talk, I give a brief background of the subject (for example see [2]),
describe an application of the main results to show a hyperbolic groups is Hopf
using the growth tightness by [1], which was known by a different argument in [4],
then explain the strategy to prove the theorems. We use techniques from limit
groups that was developed by Sela, [5]. This is a joint work with Zlil Sela.
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Strong property (T) for Ã2-lattices

Stefan Witzel

(joint work with Jean Lécureux and Mikael de la Salle)

I presented a result showing that Ã2-lattices satisfy Lafforgue’s strong property
(T), see Theorem 12 below. A talk on the same result, but with a very different
focus, has been given by de la Salle during the Oberwolfach workshop 1933 in
2019.

1. Ã2-lattices

We begin by introducing Ã2-lattices and discussing their relevance. In the theory
of reductive groups over local fields, the role that is played by symmetric spaces
for Archimedean fields (R and C) is played by locally finite Euclidean buildings
for non-Archimedean fields (such as Qp and Fp((t))). In type A there is the fol-
lowing correspondence in which the first part follows from Bruhat–Tits theory
[BT72, BT84] and the second from the classification by Tits–Weiss [Tit79], [Wei09,
Tables 28.5, 28.6].
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Fact 1. If K is a non-Archimedean local field (possibly non-commutative), there

is a locally finite building of type Ãn on which PGLn+1(K) acts properly and

cocompactly. Conversely, if n ≥ 3 then every locally finite building of type Ãn is
of that form.

We call buildings that correspond to PGLn+1(K) as above Bruhat–Tits. There

are infinitely many buildings of type Ã2 that are not Bruhat–Tits [VM87], even
with cocompact automorphism group [BCL19, Section 10], [Rad19, Corollary E].

If X is a building of type Ãn we say that a group that acts with finite stabilizers
and cocompactly on X is an Ãn-lattice.

An important result in the linear case is the Margulis Normal Subgroup Theo-
rem which we formulate in a special case:

Theorem 2 ([Mar91, Theorem IV.4.9]). If Γ < PGLn(K) is a lattice then every
proper quotient of Γ is finite.

A complementary result is due to Bader, Caprace, and Lécureux:

Theorem 3 ([BCL19]). If Γ is an Ã2-lattice that is not virtually contained in any
PGL3(K) then every linear quotient of Γ is finite.

The statement of Theorem 2 for general Ã2-lattices had been announced by
Shalom and Steger but was never published. A new proof is currently being
written up by Bader, Caprace, Furman, and Lécureux. Although it will not be
important in what follows, we remark in passing that the division line between
the Ã2-lattices in Theorems 2 and 3 is not quite the same as between the cases
in Fact 1: a local field of positive characteristic K has an infinite automorphism
group that acts on the Bruhat–Tits building and it is not clear that a lattice on
the building will be virtually contained in PGLn(K), see [BCL19] for details.

The results we have mentioned so far may seem to suggest that general Ã2-
lattices are not be very different from those virtually contained in some PGL3(K).
A fundamental difference, however, is that the latter are residually finite (being

finitely generated, linear) while for a general Ã2-lattice it is not clear how to obtain
finite quotients. In fact it is conjectured

Conjecture 4 ([BCL19, Conjecture 1.5]). An Ã2-lattice whose associated building
is not Bruhat–Tits is virtually simple.

We take this conjecture as an important motivation for studying general Ã2-
lattices.

2. Strong property (T)

Strong property (T) was introduced by Lafforgue [Laf08, Laf09] as a strengthening
of Kazhdan’s property (T). We introduce it by analogy, giving a definition and
two consequences first for (T) and then for strong (T).

Definition 5 (Property (T)). A group Γ has property (T) if there exists a sequence
(µn)n∈N of finitely supported probability measures on Γ such that for every unitary
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representation π : Γ → U(H) the sequence π(µn) =
∑

γ∈Γ µn(γ)π(γ) converges in
norm to a projection on the space of π-invariant vectors.

Definition 6 (Strong property (T)). Let E be a family of Banach spaces. A
finitely generated group Γ has strong property (T) with respect to E if there ex-
ists an α > 0 and a sequence (µn)n∈N of finitely supported probability mea-
sures on Γ such that for representation π : Γ → B(E) with E ∈ E satisfying
supg∈Γ‖π(γ)‖ exp(−αℓ(g)) <∞ the sequence π(µn) =

∑
γ∈Γ µn(γ)π(γ) converges

in norm to a projection on the space of π-invariant vectors.

Here ℓ(g) denotes the word length of g with respect to some finite generating
set of Γ. If the class of Banach spaces is not specified it is understood to be Hilbert
spaces.

It is well known that property (T) implies Serre’s property (FA):

Theorem 7 ([Wat82]). If Γ has property (T) and acts isometrically on a tree then
it has a global fixed point.

Strong property (T) extends this phenomenon to arbitrary hyperbolic spaces:

Theorem 8 ([Laf08, Théorème 1.4]). If Γ has strong property (T) and acts iso-
metrically on a coarsely geodesic, uniformly locally finite hyperbolic space then it
has a bounded orbit.

Another fixed point property concerns affine actions:

Theorem 9 ([Del77, Théorème V.1]). If Γ has property (T) then every affine
isometric action on a Hilbert space has a fixed point.

Theorem 10 ([Laf09, Proposition 5.6]). If Γ has strong property (T) with respect
to E then every affine isometric action on a space E ∈ E has a fixed point.

3. Results

When introducing strong property (T) Lafforgue proved it for the following groups.
The statement involves strong property (T) for non-discrete groups, which we did
not introduce.

Theorem 11 ([Laf08]). If K is a local field, Archimedean or not, and G is a
simple algebraic group whose Lie-algebra contains sl3 then G(K) as well as its
uniform lattices have strong property (T).

Jean Lécureux, Mikael de la Salle and I extended this result to include general
Ã2-lattices:

Theorem 12 (Lécureux–de la Salle–W.). If Γ is an Ã2-lattice then Γ has strong
property (T) with respect to Hilbert spaces and all ℓp-spaces with 1 < p <∞.

Using Theorem 10 one obtains

Corollary 13. For every uniformly bounded representation π of Γ on an ℓp-space
we have H1(Γ, π) = 0.
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As a consequence ℓp-cohomology vanishes for the building on which Γ acts. We
show this also for buildings whose automorphism group is not cocompact:

Theorem 14 (Lécureux–de la Salle–W.). If X is a locally finite Ã2-buildings then
ℓpH1(X) = 0.

4. Buildings

Before being able to say something about the proof of Theorems 12 and 14, we
need to establish a fact about Ã2-buildings.

Definition 15. A projective plane consists of points, lines, and an incidence rela-
tion between points and lines such that any two distinct points are incident with
a unique line and vice versa. It has order q if every point is incident with q + 1
lines and vice versa.

Definition 16. A building of type Ã2 is a 1-connected simplicial complex in which
every vertex link is the incidence graph of a projective plane.

Any three points in a projective plane form a triangle. As a consequence vertex
links in Ã2-buildings contain many 6-cycles and the buildings themselves contain
many apartments : subspaces that are isomorphic to the Euclidean plane tiled by
regular triangles. Fixing a vertex x in the building, every apartment containing
that vertex can be folded, essentially uniquely, onto a sector : the points y such
that the geodesics [x, y] start off in the same (closed) triangle. Note that the
vertices of the sector can be canonically identified with Λ := N× N. The general
fact we need is that these maps on apartments fit together to give a well defined
map on the whole building:

Fact 17. Let X be the set of vertices of a building of type Ã2 and let x ∈ X.
There is a canonical map ωx : X → Λ that on each apartment restricts to the
above folding.

This fact allows, in particular, to introduce the sphere Sλ(x) = ω−1
x (λ) for

λ ∈ Λ as well as the vectorial distance σ(v, w) = ωv(w).

Example 18. If x ∈ X is arbitrary then, by definition lk(x) is the incidence graph
of a projective plane. The sets S(1,0)(x) and S(0,1)(x) are the sets of points and
lines of that projective plane.

5. Proof sketch

A general problem when adapting results for lattices in reductive groups over local
fields to deal with general building lattices is of course that there is no ambient
non-discrete locally compact group to work with. A somewhat surprising but well-
known phenomenon is that the building itself can serve as a substitute to some
extent. With this in mind one defines, given a representation π : Γ → B(E), the
induced space

Ẽ = {f : X → E | f(gx) = π(g)f(x)}.
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Note that this would define the induced representation if X was replaced by a
supergroup of Γ.

Next we define Aλ : Ẽ → Ẽ to be the operator that averages over the λ-sphere:

Aλf(x) =
1

|Sλ(x)|
∑

y∈Sλ(x)

f(y).

At this point, in order to avoid technicalities, we will assume that Γ acts transi-
tively on types, i.e. that X does not admit a Γ-invariant coloring. Then the key
steps in the proof are the following propositions. In both statements appropriate
assumptions on π are implicitly made.

Definition 19. An element f ∈ Ẽ is harmonic if Aλf = f for all λ ∈ Λ.

Proposition 20. The net (Aλ)λ∈Λ converges in norm to a projection P onto
harmonic functions.

Proposition 21. Harmonic functions are constant.

Note that harmonicity can be expressed as vanishing of the Laplace-operator,
which characterizes first ℓp-cohomology, while the statement that harmonic func-
tions are constant translates into vanishing of first ℓp-cohomology. This indicates
the connection of Proposition 21 with Theorem 14.

Let us verify that the propositions indeed give Theorem 12 at least in the case
of a lattice Γ that acts freely and transitively on the vertex set X . In this case
E and Ẽ are in bijection: once some x0 ∈ X is fixed, every ξ ∈ E gives rise to
fξ ∈ Ẽ by setting fξ(gx0) = π(g)ξ; the inverse map is just evaluation at x0. In

this correspondence a constant function in Ẽ corresponds to an invariant vector
in E. We can now define the measure µλ on Γ by

µλ =
1

|Sλ(x0)|
∑

g.xo∈Sλ(x0)

δg

so that Aλ is integration over mλ (up to the identification of E and Ẽ). Then the
sequence µλn

, where λn ∈ Λ is an arbitrary sequence tending to infinity, satisfies
the condition of Definition 6.
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donnée radicielle valuée, Inst. Hautes Études Sci. Publ. Math. (1984), no. 60, 197–376.
MR 756316

[Del77] Patrick Delorme, 1-cohomologie des représentations unitaires des groupes de Lie semi-
simples et résolubles. Produits tensoriels continus de représentations, Bull. Soc. Math.
France 105 (1977), no. 3, 281–336. MR 578893



898 Oberwolfach Report 16/2020

[Laf08] Vincent Lafforgue, Un renforcement de la propriété (T), Duke Math. J. 143 (2008),
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Computing fibrings

Giles Gardam

(joint work with Dawid Kielak)

A basic mathematical instinct is to break an object into simpler pieces; we then
hope to understand the pieces and how they are assembled back together. One way
a 3-manifold could break into simpler pieces is if it fibres over the circle, so that
it is assembled by taking the mapping torus of a homeomorphism of a surface.
The usefulness of this approach has been proved by the spectacular resolution
of Thurston’s Virtual Fibring Conjecture by Agol [1] building on work of Wise,
Kahn–Markovic and others: every closed hyperbolic 3-manifold has a finite cover
that fibres over the circle.

A 3-manifold M may well of course fibre in multiple essentially different ways,
corresponding to different ‘characters’ π1M → Z, and a remarkable theorem of
Thurston controls exactly which characters come from fibrings [10]. Specifically,
what is now known as the Thurston norm is a semi-norm H1(M,R) → [0,∞)
whose unit ball is an integral polytope P . If a character φ : π1M → Z corresponds
to a fibring then it lies in the cone over an open maximal face of P , and the other
characters in the same cone are also fibred, so we call the face fibred and think of
this as a marking of the polytope.

The fundamental group of a fibred 3-manifold with boundary is free-by-cyclic,
that is, of the form Fn⋊αZ where Fn is a finite rank free group and α ∈ Aut(Fn).
The classes of 3-manifold groups and free-by-cyclic groups have substantial overlap
but also their own particular behaviour; there is an emerging picture that the
similarities run deep, as is the case for the mapping class group of a surface and
Out(Fn). Kielak showed that, analogously to the situation for 3-manifolds, the
ways in which we can fibre a free-by-cyclic group (or more generally an ascending
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HNN extension of a finitely generated free group) are controlled by a polytope [8].
We make this effective.

Theorem 1. There is an algorithm that takes input a free-by-cyclic G = Fn ⋊α Z

(given say by α ∈ Aut(Fn)) and computes the associated polytope.

One application is that we have a new computable conjugacy class invariant
for Out(Fn). An implementation of this algorithm is work in progress. A key
ingredient is the word problem in a certain skew field containing the integral group
ring ZFn [4]; recently this problem has been revisited and a solution implemented
[9].

It has long been known that the Thurston polytope is computable [11]; our
methods however are algebraic yet actually extend to recover much of the 3-
manifold picture. The Thurston norm provides a measure of the complexity of
a character: Poincaré duality gives a corresponding class in H2(M) and we take
(roughly speaking) the minimal negative Euler characteristic of surfaces represent-
ing it (for a fibred character this is just the negative Euler characteristic of the
fibre). For a free-by-cyclic group the polytope determines the L2-Euler charac-
teristic of the kernel of a character (which makes sense even when the kernel is
infinitely generated) and we conjecture that we can, similarly as for 3-manifolds,
interpret this as the minimal complexity achievable for corresponding splittings.

Conjecture. Let G be a free-by-cyclic group. For a character φ : G → Z, the
negative L2-Euler characteristic −χ(2)(kerφ) coincides with the minimal value of
−χ(A) such that G splits as an HNN extension A∗B, with both A and B finitely
generated, inducing the character φ.

The conjecture is true if G is moreover a one-relator group [7, Theorem 6.4].
This conjecture would allow us to overcome, in certain cases, the lack of effective-
ness in Feighn and Handel’s theorem [6] that free-by-cyclic groups are coherent,
that is, that their finitely generated subgroups are finitely presented. This would
then enable us to determine which faces of the polytope are marked. Note that
unlike for 3-manifolds, the polytope and its marking need not be symmetric, so the
marking actually describes which characters are in the BNS invariant [2], which
one could call being ‘semi-fibred’; the BNS invariant is not computable for general
finitely presented groups [3, Theorem 6.4].

Theorem 2. Assuming the conjecture, there is an algorithm that furthermore
computes the marking of the polytope associated to a free-by-cyclic group.

This would allow us to reduce the isomorphism problem for free-by-cyclic groups
to the conjugacy problem in Out(Fn). Note that neither problem has a solution
in full generality in the literature; Dahmani has a partial reduction in the other
direction for atoroidal automorphisms [5].
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Arithmetic groups and Reidemeister classes

Yuri Santos Rego

(joint work with Paula M. Lins de Araujo)

Given a group Γ and an automorphism ϕ ∈ Aut(Γ) we say that two elements
g, h ∈ Γ are ϕ-conjugate if there exists k ∈ Γ such that g = khϕ(k)−1. This defines
an equivalence relation generalizing the usual notion of conjugacy, and the class
of the element g is denoted by [g]ϕ. With this notation, the set of Reidemeister
classes of ϕ is just R(ϕ) = {[g]ϕ | g ∈ Γ} and the Reidemeister number of ϕ is the
number of elements R(ϕ) = |R(ϕ)| ∈ N ∪ {∞}.

1. Background on twisted conjugacy

The study of Reidemeister classes arose from two major topics. On the one hand we
have fixed-point theory in algebraic topology; see e.g. [20] for a well-documented
historical account and introduction to the topic. As an example, the induced au-
tomorphism f∗ ∈ Aut(π1(M)) of a self-homeomorphism f of a compact, connected
nilmanifold M has R(f∗) = ∞ if and only if the Lefschetz number of f is zero [5],
which in turn implies that f is fixed-point-free up to homotopy.

On the other hand, counting problems related to (twisted) conjugacy classes
of groups are also far from new. To name a few results in this direction, the
first example of infinite group with R(id) <∞ was given in the seminal paper by
Higmann–Neumann–Neumann [9]. In the succeeding decades, G. Zappa [21] stud-
ied the relationship between the structure of polycyclic groups and the existence of
automorphisms ϕ with R(ϕ) = 1. In the linear algebraic setting, R. Steinberg [18]
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showed that R(ϕ) = 1 if ϕ is a (rational) automorphism with finitely many fixed
points of a connected linear algebraic group over an algebraically closed field.
Moving over to more recent results, E. Jabara [10] established, in particular, that
residually finite groups admitting automorphisms ϕ with R(ϕ) = p prime must be
virtually nilpotent.

In contrast, a plethora of groups ‘that occur in nature’, with interesting geo-
metric features, turn out to have R(ϕ) = ∞ for any automorphism ϕ. The oldest
documented result is perhaps that of the infinite dihedral group [21], whereas fa-
mous modern examples include the family of Gromov hyperbolic groups [3]. This
motivates the following.

Definition 1. We say that Γ has property R∞ if R(ϕ) = ∞ for all ϕ ∈ Aut(Γ).

Historically, the quest to determine which groups have R∞ was sparked by the
work of Fel’shtyn and Hill in the 1990s [4]. This has been an active area ever since.

2. The arithmetic case

As mentioned, many natural groups are known to exhibit R∞. A good num-
ber of the groups investigated so far in fact belong to the family of S-arithmetic
groups [13]. For the purpose of this note, we think of an S-arithmetic group as
a concrete subgroup of matrices in G ∩ GLn(OS), where G ≤ GLn is a linear
algebraic group defined over a global field K and OS ⊂ K is a ring of S-integers
(also known as Dedekind domain of arithmetic type). Typical examples of OS are:
rings of integers O of algebraic number fields, polynomials (and Laurent polynomi-
als) on one variable over finite fields Fq[t],Fq[t, t

−1], and rational numbers whose
denominators lie in a finite set of primes Z[ 1

p1···pr
].

Summarizing the state of knowledge in the arithmetic set-up, the literature indi-
cates that non-amenable S-arithmetic groups typically have property R∞. Some of
the key examples are GLn(O) with |O×| <∞ [15], GLn(Fq[t]) and GLn(Fq[t, t

−1])
[12], and lattices in semisimple Lie groups (with finitely many connected compo-
nents and finite center) [14]. Taking the Tits alternative into account, we are led
to the following motivating question.

Problem. Determine which soluble S-arithmetic groups have property R∞.

As it turns out, the above classification problem is rather challenging. Indeed,
soluble groups have a rather erratic behavior regarding Reidemeister classes. To
begin with, the simplest example of soluble arithmetic lattice is Z = U2(Z) =
( 1 ∗
0 1 ) ≤ GL2(Z), which does not have R∞ because R(−id) = 2. On the other hand,

going up a few dimensions, the group of integral upper unitriangular matrices
Un(Z) does have R∞ whenever n ≥ 5 — a similar situation happens for other
rings of integers [16]. Further families of (virtually) polycyclic groups contain
members that do and members that do not have R∞ [1, 2, 20]. Varying pattern
is also seen for the metabelian lamplighter groups Cp ≀ Z — which have property
R∞ if and only if p ∈ {2, 3} [8] — and for a family of metabelian polycyclic groups
[7] which includes the Gardam group G = Z2 ⋊A Z, A = ( 1 2

1 1 ). In contrast, the
metabelian Baumslag–Solitar groups BS(1, p) [19] always have R∞.
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3. Checking for R∞ in groups of triangular matrices

The previously mentioned subclasses of soluble groups can be put into the broader
framework of S-arithmetic subgroups in Borel groups of type A. We need a bit
more notation for this. Throughout R means a commutative unital ring.

Write Bn(R) for the subgroup of upper triangular matrices of GLn(R). By
PBn(R) we mean its projective variant, i.e. Bn(R) modulo multiples of the iden-
tity. Both Bn(R) and PBn(R) are the semi-direct product of the subgroup of
upper unitriangular matrices Un(R) and the respective diagonal parts. In the
metabelian case, PB2(R) is isomorphic to the group of affine transformations
Aff(R) = (R,+) ⋊ (R×, ·) = ( ∗ ∗

0 1 ) ≤ GL2(R). Lastly, B+
n (R), PB+

n (R) and
Aff+(R) denote the variants of our groups without torsion on the diagonal.

With the above notation, we have e.g. BS(1, p) ∼= Aff+(Z[1/p]), Cp ≀ Z =

Aff+(Fp[t, t
−1]), and G = Aff+(Z[

√
2]). We also have Un(O) as a characteristic

subgroup of PBn(O). Our main results give sufficient conditions for our groups of
interest to have property R∞, not only over S-arithmetic rings but rather a much
wider class of rings.

Theorem 1 ([11]). Let R be an integral domain. Given ψ ∈ Aut(Aff(R)) and

ψ+ ∈ Aut(Aff+(R)), denote by ψ (resp. ψ
+
) the induced automorphism on

Aff(R)/U2(R) (resp. on Aff+(R)/U2(R)). The following hold for all n ≥ 2.

(1) If R(ψ) = ∞ for all ψ ∈ Aut(Aff(R)), then Aff(R), PBn(R) and Bn(R)
have property R∞.

(2) If R(ψ
+
) = ∞ for all ψ+ ∈ Aut(Aff+(R)), then Aff+(R), PB+

n (R) and
B+

n (R) have property R∞.

Theorem 2 ([11]). Let R be an integral domain such that (R×, ·) is finitely gen-
erated. Given a ring automorphism α ∈ Autring(R), let αadd denote the same
map viewed as automorphism of (R,+). Suppose both αadd and the map (r, s) 7→
(αadd(s), αadd(r)) have infinite Reidemeister number for all α ∈ Autring(R). Then
the groups Bn(R) and PBn(R) have property R∞ for all n ≥ 5.

Applying our results to the arithmetic case and working out new metabelian
examples we also obtain the following list.

Theorem 3 ([11]). The matrix groups Γ = G(OS) have R∞ in the following cases.

(1) G ∈ {Bn,PBn,Aff, B
+
n ,PB

+
n ,Aff

+ | n ≥ 2} and OS = Z[1/m];
(2) G ∈ {B+

n ,PB
+
n ,Aff

+ | n ∈ N≥2} and OS = Fq[t, t
−1, f(t)−1], where q is a

power of any prime p, the polynomial f(t) ∈ Fp[t] ⊆ Fq[t] is non-constant
monic and irreducible over Fq ⊇ Fp, and f(t) 6= t− 1 in the case p = 2;

(3) G ∈ {Bn,PBn | n ≥ 5} and OS ∈ {Fp[t],Fp[t, t
−1],O}.

On the other hand, Γ = G(OS) does not have property R∞ when

(4) G ∈ {B2,Aff} and OS = Fq[t];

(5) G ∈ {B+
2 ,Aff

+} and OS = Fq[t, t
−1] with q ≥ 4.

We point out that Gonçalves and Kochloukova [6] discovered via homolog-
ical finiteness properties a connection between Reidemeister numbers and the
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Σ-invariants of Bieri–Neumann–Strebel. Here we remark that the soluble S-
arithmetic groups we consider are distinguished by their finiteness properties [17].
A careful inspection of the list from our previous theorem and other cases from
the literature naturally indicate the following.

Conjecture. Let Γ ≤ B be an S-arithmetic subgroup of a Borel subgroup of a
split, connected, reductive, non-commutative linear algebraic group G defined over
a global field. If Γ is finitely presented and not virtually polycyclic, then it has R∞.
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Cubulations determined by their length function

Elia Fioravanti

(joint work with Jonas Beyrer and Mark Hagen)

Beginning with the foundational work of Sageev [11], the theory of group actions
on CAT(0) cube complexes has exerted a strong influence on geometric group
theory and low-dimensional topology in the last two decades. On the one hand,
knowing that a group G acts “nicely” on a CAT(0) cube complex reveals a lot of
its algebraic structure (as exemplified by the work of Agol, Haglund, Wise [1, 10]
and many others). On the other hand, an impressive number of classically studied
groups happens to admit such nice actions on cube complexes.

In this talk, we are rather interested in understanding — for a fixed finitely
generated group G — all the different ways that G can act by isometries on a
CAT(0) cube complex. A good notion of “space of all such actions” would provide
a useful tool in the study of outer automorphisms of G in a fairly general setting
(e.g. whenever G is a special group in the sense of [10]).

Definition 1.
(1) Let G be a group. A cubulation of G is a properly discontinuous, cocom-

pact G–action on a CAT(0) cube complex X by cubical automorphisms.
(2) Two cubulations G y X and G y Y are equivalent if there exists a

G–equivariant isomorphism of cube complexes Φ: X → Y .

One quickly realises that, whenever a group admits at least one cubulation,
it actually admits infinitely many pairwise non-equivalent ones. In most cases,
such abundance is due to “interesting reasons”, i.e. it tells us something about the
specific “geometry” of the group.

Example 2.
(0) Let G y X be a cubulation given by a homomorphism ρ : G → Aut(X).

Every ϕ ∈ Aut(G) induces a twisted cubulation ρ◦ϕ. If Out(G) is infinite,
this results in infinitely many non-equivalent cubulations of G.

(1) Let G = Fn with n ≥ 2. Although G admits cubulations of arbitrarily high
dimension, it is particularly interesting to restrict to those of dimension 1.
These are proper cocompact actions on simplicial trees. They correspond
to the vertices in the spine of the Culler–Vogtmann Outer Space [6].

(2) Let G = π1Σg for a closed oriented surface Σg of genus g ≥ 2. Every
finite filling collection of closed curves on Σg gives rise to a cubulation of
G via Sageev’s construction [11]. Non-isotopic collections of curves yield
non-equivalent cubulations. Even fixing the genus g, these cubulations can
have arbitrarily high dimension.

(3) Let G = π1M for a closed, hyperbolic 3–manifold M . Sageev’s construc-
tion can be applied to any family of quasi-convex, immersed surfaces in
M . From the work of Kahn and Markovic [7], M always contains many
such surfaces. In particular, G admits cubulations of arbitrarily high di-
mension.
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It should be apparent from these examples that, in general, the space of all cubu-
lations of G is terribly large and poorly understood. It can be endowed with
the topology of equivariant Gromov–Hausdorff convergence, but this is somewhat
unwieldy in such generality.

It is reasonable to try and make sense of the space of cubulations of G by em-
bedding into some more concrete object with a nice topology, for instance a locally
convex topological vector space. A natural attempt is by pairing each cubulation
G y X with its length function ℓX ∈ RG, i.e. the function that associates to
every g ∈ G its translation length in X . As customary, we compute the latter with
respect to the ℓ1 metric on X , rather than the CAT(0) metric.

Unfortunately, there are many silly ways of deforming a cubulation without al-
tering its length function (e.g. attaching loose edges, or inflating edges to squares).
These procedures can be performed in absolute generality – on any cubulation of
any group – and therefore cause the space of cubulations to be uninterestingly
large, i.e. for reasons independent of the specific geometry of the group.

This leads us to introduce the following requirements.

Definition 3 ([4, 9]). A CAT(0) cube complex X is said to be:

(1) essential if no halfspace is at finite Hausdorff distance from its hyperplane;
(2) hyperplane-essential if every hyperplane is an essential cube complex;
(3) EHE if it is both essential and hyperplane-essential.

By the work of Hagen–Touikan [9], cubulations can always be “shaved” into be-
ing EHE. In particular, the class of groups admitting an EHE cubulation coincides
with the class of cubulated groups. It should also be noted that all cubulations
mentioned in parts (1)–(3) of Example 2 are EHE.

We propose the space of EHE cubulations as a more interesting object to study.
The rationale supporting this restriction is provided by the following results:

Theorem 4 ([3]). Let G be a hyperbolic group. Two EHE cubulations of G are
equivalent if and only if they have the same length function.

Theorem 5 ([8]).
(1) Every cubulated hyperbolic admits infinitely many EHE cubulations.
(2) Burger–Mozes groups admit a unique EHE cubulation.

By analogy with the work of Culler and Morgan on actions on trees [5], one may
wish for an analogue of Theorem 4 under weaker assumptions on the groups and
the actions. We provide this under stronger assumptions on the cube complex:

Theorem 6 ([2]). Let G be any group. Two irreducible cubulations of G without
free faces are equivalent if and only if they have the same length function.

This holds more generally for all minimal, non-elementary G–actions (not nec-
essarily proper or cocompact) on irreducible cube complexes with no free faces.

Theorems 4 and 6 can be used to compactify the space of G–actions satisfying
either of their sets of hypotheses, provided some upper bound is set to the di-
mensions of the cube complexes considered. Boundary points will be projectivised
length functions of G–actions on finite-rank median spaces [2].
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This can be viewed as an analogue of Thurston’s compactification of Teichmüller
space in the cubical setting.
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Boundary amenability and measure equivalence rigidity among
Artin groups

Camille Horbez

(joint work with Jingyin Huang)

Let Γ be a finite labeled graph, with no edge loop and no multiple edges, where
every edge st is labeled by an integermst ≥ 2. The Artin group GΓ with underlying
graph Γ is defined by the following presentation: it has one generator per vertex
of Γ, and one relation of the form

aba · · ·︸ ︷︷ ︸
m

= bab · · ·︸ ︷︷ ︸
m

whenever a and b span an edge labeled by m. While Artin groups remain very
mysterious in general, much more is known in restriction to certain specific classes.

We restrict our attention to Artin groups of cohomological dimension at most
2 whose associated Coxeter group (defined by adding an extra relation s2 = 1 for
every standard generator s of GΓ) is hyperbolic. In terms of the defining graph of
Γ, this amounts to imposing that whenever Γ contains a triangle str, one has

1

mst

+
1

mtr

+
1

mrs

< 1,



Geometric Structures in Group Theory 907

and Γ does not contain any diagonal-free square with all labels equal to 2 [4].
Every 2-dimensional Artin group GΓ acts on its modified Deligne complex, a 2-
dimensional simplicial complex introduced by Charney and Davis [3]. When GΓ

is of hyperbolic type, this carries a natural metric which is globally CAT(−1),
with finitely isometry types of simplices isometric to simplices in the hyperbolic
plane H2. Recently, Martin and Przytycki built a cone-off of the modified Deligne
complex with the extra property that the action of GΓ is acylindrical [14].

Boundary amenability. Our first main result concerns the asymptotic geometry
of these groups. Recall that a countable group G is boundary amenable if it admits
an action on a compact topological space X which is Borel amenable, i.e. such that
there exists a sequence of Borel maps νn : X → Prob(G) (the space of probability
measures on G, equipped with the topology of pointwise convergence) which is
asymptotically equivariant in the sense that for every x ∈ X and every g ∈ G, one
has ||νn(gx)− g · νn(x)||1 → 0 as n goes to +∞.

Boundary amenability is known to hold for many groups having negative cur-
vature features. In the context of Artin groups, Guentner and Niblo proved in [10]
that all spherical Artin groups (those whose associated Coxeter group is finite) and
more generally all Artin groups of FC type, are boundary amenable: these are pre-
cisely the Artin groups whose modified Deligne complex has a natural structure of
a CAT(0) cube complex. We prove that 2-dimensional Artin groups of hyperbolic
type are boundary amenable, as a consequence of the following theorem.

Theorem 1. Let X be a connected piecewise hyperbolic CAT(−1) simplicial com-
plex with countably many simplices that belong to finitely many isometry types.
Let G be a countable group acting discretely on X by isometries.

If the G-stabilizer of every vertex of X is boundary amenable, then G is boundary
amenable.

The proof goes by associating to every point of the horofunction compactifica-
tion of X , an asymptotically equivariant sequence νn of probability measures on
the countable set of simplices of X . When the horofunction is naturally associated
to a point ξ in the Gromov boudary ∂∞X , the probability measures νn are defined
by considering the geodesic ray r from a fixed base point ∗ to ξ, and choosing for
νn a carefully weighted probability measure on the simplices close to r|[0,n].

Corollary 1. Every 2-dimensional Artin group of hyperbolic type is boundary
amenable.

This implies that their reduced C∗-algebra is exact [2, 17] and that they satisfy
the Novikov conjecture on higher signatures [18, 11]. As explained below, this also
has applications in measured group theory.

Measure equivalence rigidity. Measure equivalence of countable groups was
introduced by Gromov [9] as a measure-theoretic analogue of quasi-isometry of
finitely generated groups. Two countable groupsG1 and G2 aremeasure equivalent
if there exists a standard measure space Σ on which G1 × G2 acts by measure-
preserving Borel automorphisms, so that the actions of G1 and G2 are esentially
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free and have finite-measure fundamental domains. Typically, two lattices in the
same locally compact second countable group are always measure equivalent.

A first striking theorem in the theory, due to Ornstein and Weiss [16], building
on earlier work of Dye [5, 6], states that countably infinite amenable groups are all
measure equivalent. In contrast, strong rigidity results were obtained for lattices
in higher rank simple Lie groups (Furman [7]), for some products of negatively
curved groups (Monod and Shalom [15]), and for mapping class groups of finite-
type surfaces (Kida [13]). We obtain superrigidity results for infinitely many 2-
dimensional Artin groups of hyperbolic type, among which the following.

Theorem 2. Let GΓ be an Artin group whose underlying graph is an n-cycle with
n ≥ 4, with all labels at least 3.

Then GΓ is superrigid for measure equivalence: every countable group H which
is measure equivalent to GΓ, is almost isomorphic to GΓ.

In the statement, we say that two groups G1 and G2 are almost isomorphic if
there exist finite-index subgroups G0

i ⊆ Gi and finite normal subgroups Fi E G0
i

such that G0
1/F1 is isomorphic to G0

2/F2.
Our theorem is actually more general: sufficient conditions on Γ ensuring the

superrigidity of GΓ, coming from earlier work of Crisp [4], are that Γ is connected,
triangle-free, with all labels at least 3, with no separating vertex or edge, and every
label-preserving automorphism of Γ that fixes the neighborhood of a vertex is the
identity. All these groups have finite outer automorphism group (Crisp [4]) and
are also superrigid for quasi-isometry (Huang and Osajda [12]).

Through work of Furman [8], our theorem can be rephrased in terms of orbit
equivalence rigidity: if GΓ andH have (stably) orbit equivalent free ergodic actions
on standard probability spaces, then GΓ and H are almost isomorphic, and in fact
the actions are almost conjugate.

Our general proof strategy is inspired by Kida’s work on mapping class groups.
Tools include earlier work of Crisp giving an analogue of the curve graph, all of
whose automorphisms come (essentially) from the GΓ-action. We also use the
horofunction compactification X of the coned-off Deligne complex, notably the
amenability of the GΓ-action on the Gromov boundary, and a barycenter map
associating a point in X to every triple of pairwise distinct points of the Gromov
boundary, in order to apply an argument originating from work of Adams [1].
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AH−accessibility of groups

Sahana Balasubramanya

The poset of acylindrically hyperbolic structures on a group G, denoted AH(G),
was introduced in [1]. It aims at understanding all of the cobounded, acylindrical
actions that a group can admit on a hyperbolic space. More precisely, the poset
contains equivalence classes of (not necessarily finite) generating sets X such that
the Cayley graph Γ(G,X) is hyperbolic and the action of G on Γ(G,X) is acylin-
drical. Two generating sets are equivalent if their word metrics are bi-Lipschitz
equivalent, and the ordering reflects the amount of information the action retains
about the group.

Some properties of this poset that were studied in [1] are discussed in this
talk. Firstly, the cardinality of this poset can either be 1, 2 or ≥ c. The case
when |AH(G)| = 2 occurs exactly when G is virtually cyclic and the case when
|AH(G)| ≥ c occurs exactly when G is an acylindrically hyperbolic group. This is
a large class of groups that contains many interesting examples.

Actions of an acylindrically hyperbolic group G are built by inducing actions
from its hyperbolically embedded subgroups. (These are a generalization of pe-
ripheral subgroups of relatively hyperbolic groups.) Indeed, we can embed AH(H)
into AH(G) when H is a hyperbolically embedded subgroup of G. A consequence
of the proof is that AH(G) contains chains and anti-chains of cardinality c.
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It is easy to see that equivalent generating sets yield the same set of loxodromic
elements. One can therefore ask if an action is characterized by the set of its
loxodromics. The authors construct infinitely many incomparable actions which
have the same set of loxodromic elements, answering the question in the negative.

The existence of largest actions for certain acylindrically hyperbolic groups is
discussed. A group G is said to be AH−accessible if the poset AH(G) contains
the largest element. The following acylindrically hyperbolic groups are known
to be AH−accessible : non-elementary hyperbolic groups, mapping class groups,
RAAGs, fundamental groups of compact orientable 3-manifolds. The largest ac-
tions in all these cases are well-studied actions of these groups.

Lastly, a recent result from [2] is discussed, which shows that being AH−acces-
sible is preserved under finite extensions. This also shows that being acylindrically
hyperbolic is preserved in this specific case of a quasi-isometry, which relates to
the larger open question of the quasi-isometry rigidity of this class of groups.

References

[1] C. Abbott, S. Balasubramanya, D. Osin; Hyperbolic structures on groups, Algebraic &
Geometric Topology 19-4 (2019), 747-1835.

[2] S. Balasubramanya, Finite extensions of H− and AH−accessible groups, Topology Proceed-
ings Volume 56 (2020), 297–304 .

Small hyperbolic groups with property (T)

Marek Kaluba

(joint work with Pierre-Emmanuel Caprace, Marston Conder and Stefan Witzel)

The goal of our research is to provide explicit presentations of infinite hyperbolic
groups that enjoy peculiar properties. Our initial motivation revolves around the
following problem dating back to a remark [2, Remark 5.3.B] of M. Gromov.

Is every hyperbolic group residually finite?

While looking for a possible counter-example though we need to exclude families
known to be residually finite. The groundbreaking work of Agol, Haglund and
Wise implies that all cocompactly cubulated hyperbolic groups are residually finite
(see [1] and references therein). On the other hand, Kazhdan’s property (T) is
an obstruction to cocompact cubulations [7]. Therefore to identify a potential
candidate to negative answer for the question, property (T) is a precious ally.

Since the advent of random methods in the theory of finitely presended groups,
we know that a “generic” random group is hyperbolic and (with the correct choice
of parameters for the random model) it enjoys property (T), see e.g. [9]. And yet,
very few explicit examples of such groups are known. We are interested in finding
small, tractable presentations of such groups.

What is the smallest total length of a presentation of an infinite
hyperbolic group with Kazhdan’s property (T)?
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Generalized n-fold triangle groups. We call a group generalized n-fold triangle
group if it admits a structure of a triangle of groups i.e. is the fundamental group
of a poset of groups over a 2-dimensional simplex. Moreover we requre that

• (the unique) face group is trivial
• the groups on the edges are are Ck, cyclic of order k.

In other words, a group G is a generalized n-fold triangle group when it admits
a presentation

G = 〈x1, x2, x3 | xn1 , xn2 , xn3 , r1, . . . , rk〉,
where each relation ri involves at most two of the generators x1, x2, x3. The
term generalized refers to the fact that traditionally a triangle group is formed by
intersecting such G and the kernel of the map G → Ck sending each generator
of G to the generator of Ck, i.e. be adding additional relation x1x2x3 to the
presentation of G.

Note. Coxeter group given by

∆(l,m, r) = 〈a, b, c | a2, b2, c2, (ab)l, (bc)m, (ac)r〉

is an example of generalized 2-fold triangle group.

Fix G = 〈x1, x2, x3 | xk1 = xk2 = xk3 = 1〉 to be the free product of three copies
of Ck. In general, let P1 = 〈x2, x3〉, P2 = 〈x1, x3〉 and P3 = 〈x1, x2〉. Fix Li ⊳ Pi,
three different normal, finite index subgroups.

Definition (due to Lubotzky-Manning-Wilton [4]). A generalized n-fold triangle
group associated to (L1, L2, L3) is defined as the quotient group

G(L1, L2, L3) = G
/
〈L1, L2, L3〉.

In the case of Coxeter groups we have e.g. L1 = 〈(bc)m〉.
A. Lubotzky, J. Manning, and H. Wilton [4] were able to prove the existence

of hyperbolic groups with property (T) among generalized 18-fold triangle groups.
Moreover they rised the following question.

What is the smallest k such that there exist a generalized k-fold
triangle group that is hyperbolic and has Kazhdan’s property (T)?

Since Coxeter groups do not have property (T), such k satisfies 3 ≤ k ≤ 18. The
aim of this note is to sketch a proof of the following theorem.

Theorem. In the question above k ≤ 5. More precisely, let

G = Ck ∗ Ck ∗ Ck = 〈x1, x2, x3〉.

Fix subgroups Li < Pi such that

• P1/L1 = C5 × C5, i.e. L1 = 〈[x2, x3]〉,
• P2/L2 = H(F5) (the Heisenberg group over the field of 5 elements), i.e.
L2 = 〈[x1, x3, x1], [x1, x3, x3]〉, and
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• P3/L3 = PSL2(F109), i.e.

L3 =〈x1x2x1x−1
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−1
2 x21x

−1
2 x1x2x

−2
1 x22〉.

Then

H = G
/
〈L1, L2, L3〉

is a generalized 5-fold triangle group which is hyperbolic and has property (T).

H is hyperbolic. The proof follows from analyzing the links of Cayley graphs of
Gi = Pi/Li. It was shown in [5, Theorem II.12.28] that coset graphs ΓGi

(〈xj〉, 〈xk〉)
can be used to determine the geometry upon which G = G(L1, L2, L3) acts. In
particular, if rH denotes the half of girth of ΓH , then

1

rG1

+
1

rG2

+
1

rG3

< 1

implies that G is (non-elementary) hyperbolic. Since rC5×C5
= 2, rH(F5) = 3 and

one can show (e.g. by computer calculations) that rPSL2(F109) = 7, the sum of

reciprocals is equal to 41
42 , i.e. G is hyperbolic.

H has property (T). The proof relies on a criterion of M. Ershov and A. Jaikin-
Zapirain [3], relating angles between groups to property (T).

Let A,B < G be subgroups and let (π, V ) be a unitary representation of G
without non-zero G-fixed vectors. We define

εG(A,B;π) = sup
‖a‖=‖b‖=1

{
〈a, b〉 : a ∈ V A, b ∈ V B

}

which can be thought as the cosine of angles between subspaces of V fixed by A
and B. The (cosine of) angle between groups is defined as

εG(A,B) = sup
π∈Ĝ

εG(A,B;π)

and serves the role of the idealized (cosine) of angles between subspaces V A and
V B. The intuition behind the definition is that if the angle between subgroups is
bounded from 0 by a positive constant, then a vector almost fixed by one of the
subgroups must me moved significantly by the other.
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Theorem ([3], Corrolary to Theorem 5.9). Let G = 〈A1, A2, A3〉, and for three
distinct indices i, j, k ∈ {1, 2, 3} let Xi = 〈Aj , Ak〉. If each Xi is finite and

ε2X1
+ ε2X2

+ ε2X3
+ 2εX1

εX2
εX3

< 1,

then G has property (T).

It is easy to compute that εC5×C5
(〈x2〉, 〈x3〉) = 0. Moreover the angle

εH(F5) (〈x1〉, 〈x3〉) =
1√
5

has been computed in [3]. Let X = PSL2(F109). To compute εX(〈x1〉, 〈x2〉), the
angle in X between 〈x1〉 and 〈x2〉 we make use of the following result.

Theorem. Let X = 〈A,B〉 be a group generated by two finite, proper subgroups
A,B, and consider S = (A∪B)\ {e} as its generating set. Let ∆ = 1− 1

|S|

∑
s∈S s

denote the Laplacian of X associated to the generating set. Then 1− εX(A,B) is
the smallest positive eigenvalue of ∆.

A numerical estimate of
εX ≈ 0.877825171

was obtained by applying standard ARPACK eigenvalue routines to the adjacency
matrix of the full Cayley graph of (X,S). However, since X = PSL2(F109) has
about half a million elements, we do not know how to compute the eigenvalue in
a certified way directly.

In order to obtain the required certification, we have computed the largest
eigenvalue of the hermitian operator

̺(∆) =
4∑

i=1

ρ(x1)
i + ρ(x2)

i

for each non-trivial irreducible representation ρ of X individually. An implemen-
tation of those representations is available at [8]. The certification, including prov-
ably correct bounds, is provided by the Arblib library [6] and eigenvalue routines
therein. The smallest eigenvalues for all non-trivial irreducible representations of
X have been computed up to 67 decimal places and allow to certify that

|εX − 0.87782517106|< 10−10.

Thus we can bound the quantity in the Ershow–Jaikin-Zapirain

ε2C5×C5
+ ε2H(F5)

+ ε2X + 2εC5×C5
εH(F5)εX ∈ [0.77975134287± 10−10] < 1,

which proves that H has property (T).
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Profinite invariants of (non-)arithmetic groups

Roman Sauer

(joint work with Holger Kammeyer, Steffen Kionke, Jean Raimbault)

A finitely generated, residually finite group Γ is called profinitely rigid if any
other such group Λ with the same set of finite quotients as Γ is isomorphic to Γ;

this can be expressed in terms of profinite completions: if Λ̂ ∼= Γ̂, then Λ ∼= Γ.
While all finitely generated abelian groups have this property, there are already
virtually cyclic groups which are not profinitely rigid. In general, profinite rigidity
is extremely difficult to characterize. Recent work of Bridson–McReynolds–Reid–
Spitler [2] shows that profinite rigidity holds for certain Kleinian groups, including
the Weeks manifold group. On the other hand we note that profinite rigidity of
free groups, surface groups or SLn(Z) is still open.

Two related questions seem more accessible: (i) to establish profinite rigidity
among a certain class of groups and (ii) to find profinite invariants. A group in-
variant is profinite if it takes the same value on finitely generated, residually finite
groups whose profinite completions are isomorphic. In this talk we discuss the
profinite invariance of the sign of the Euler characteristic within a most relevant
subclass of finitely generated, residually finite groups: arithmetic groups with the
congruence subgroup property. In particular, this (conjecturally) includes all irre-
ducible lattices in higher-rank semisimple Lie groups. The following is our main
result.

Main Theorem. Let G1 and G2 be linear algebraic groups defined over number
fields k1 and k2, and let Γ1 ≤ G1(k1) and Γ2 ≤ G2(k2) be arithmetic subgroups.
Suppose that G1 and G2 have a finite congruence kernel and that Γ1 is profinitely
commensurable with Γ2. Then signχ(Γ1) = signχ(Γ2).

The following theorem shows that we cannot extend the main result from the sign
of the Euler characteristic to its actual value.
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Theorem. For positive integers m and n, let Γm,n be the level four principal

congruence subgroup of Spin(m,n)(Z). Then Γ̂8,2
∼= Γ̂4,6 but

χ(Γ8,2) = 289 · 52 · 17 whereas χ(Γ4,6) = 290 · 52 · 17.
The spinor groups Spin(m,n)(Z) arise from the (m + n)-ary integral diagonal

quadratic form with m coefficients “+1” and n coefficients “−1”.
The existence of the above examples can be used to show that one cannot

broaden the conclusion of the Main Theorem from arithmetic to residually finite
groups that admit a finite classifying space. The latter is referred to as being of
type (F ).

Theorem. There are three residually finite groups Γ1, Γ2, and Γ3 of type (F)
which have isomorphic profinite completions such that

χ(Γ1) < 0, χ(Γ2) = 0, χ(Γ3) > 0.
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SWITZERLAND

Dr. Marek Kaluba

Institut für Mathematik
Technische Universität Berlin
Straße des 17. Juni 135
10623 Berlin
GERMANY

Daniel Keppeler

Mathematisches Institut
Universität Münster
Einsteinstrasse 62
48149 Münster
GERMANY

Dr. Dawid Kielak

Fakultät für Mathematik
Universität Bielefeld
Postfach 100131
33501 Bielefeld
GERMANY

Prof. Dr. Dessislava H.

Kochloukova

Departamento de Matematicas
IMECC - UNICAMP
Rua Sérgio Buarque de Holanda, 651
13083-970 Campinas -SP
BRAZIL

Prof. Dr. Linus Kramer

Mathematisches Institut
Universität Münster
Einsteinstrasse 62
48149 Münster
GERMANY

Prof. Dr. Gilbert Levitt
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