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Introduction by the Organizers

The meeting in 2020 was different. It was deemed worthwhile to run the workshop,
although only one of the organizers could attend, only Europeans, mostly from
Germany and France, could be present physically and the week had more the
character of ‘Research in several groups’ than a proper workshop. The mostly
young participants, the overwhelming majority for the first time at the MFO,
enjoyed the experience but the workshop was lacking some of its usual energy and
could not fulfill its role as a catalyst in the area of algebraic geometry. Many of
the original invited participants (only a couple declined the invitation) expressed
explicitly their regret about not being able to attend the workshop and their
interest in a workshop on the original topics in the very near future.

The format of the workshop was naturally also somewhat different. We had only
one talk in the morning, usually by a first time participant and not video recorded,
and one talk in the afternoon that was streamed online (and watched by some of
the external participants). The afternoon speakers were asked to make their talks
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accessible to a wide audience, which was very much appreciated by everybody.
There was a clear emphasis on hyperkähler geometry and derived categories, but
we did arrange for one (after dinner) talk on foliations in the minimal model
program, a new research direction that has been picking up speed recently. We
tried to keep the workshop thematically broad but certain new active directions,
e.g. moduli spaces of Fano varieties, could not be covered as none of the experts
could come.

Despite the exceptional situation of this installment of the workshop series, the
participants spent a productive and stimulating week at the MFO. People used
the opportunity to discuss mathematics in person for the first time in months,
pursued existing research projects and started new ones. Some of the originally
invited participants used the opportunity to invite a collaborator along, which
contributed to the success of the week.
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Abstracts

Elliptic quintics on cubic fourfolds, O’Grady 10 and Lagrangian
fibrations

Laura Pertusi

(joint work with Chunyi Li, Xiaolei Zhao)

In this talk we study certain moduli spaces of semistable objects in the Kuznetsov
component of a cubic fourfold. We show that they admit a symplectic resolution

M̃ which is a smooth projective hyperkähler manifold deformation equivalent to
the 10-dimensional example constructed by O’Grady. As a first application, we

construct a birational model of M̃ which is a compactification of the twisted in-

termediate Jacobian of the cubic fourfold. Secondly, we show that M̃ is the MRC
quotient of the main component of the Hilbert scheme of elliptic quintic curves in
the cubic fourfold, as conjectured by Castravet.

1. Introduction

Moduli spaces of stable sheaves on a K3 surface provide examples of projective
hyperkähler manifolds, which are deformation equivalent to Hilbert schemes of
points on a K3 surface, by the seminal work of Mukai [15] and the contribution
of many other authors, including Beauville, Huybrechts, O’Grady, Yoshioka [19,
20]. In [16] O’Grady considered the case when the moduli space contains also
strictly semistable sheaves. In particular, he constructed a symplectic resolution
of the singular moduli space of semistable torsion-free sheaves on a K3 surface
with rank 2, trivial first Chern class and second Chern class equal to 4. This
construction provides a new example of a hyperkähler manifold of dimension 10,
not deformation equivalent to the previous construction. O’Grady’s result was
generalized by Lehn and Sorger in [12] to moduli spaces of semistable sheaves on
a K3 surface having Mukai vector of the form v = 2v0 with v20 = 2. In addition,
they showed that the symplectic resolution of the moduli space can be obtained
by blowing up the singular locus with the reduced scheme structure.

In the paper [14] under report we investigate the analogous situation of
O’Grady’s example, in the case of moduli spaces of semistable complexes in the
noncommutative K3 surface associated to a smooth cubic fourfold. Indeed, by [9]
the bounded derived category of a cubic fourfold Y has a semiorthogonal decom-
position of the form

Db(Y ) = 〈Ku(Y ),OY ,OY (1),OY (2)〉,

where Ku(Y ) is a triangulated subcategory of K3 type, in the sense that it has
the same Serre functor and Hochschild homology as the derived category of a K3
surface. We call this category Ku(Y ) the Kuznetsov component of Y .
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2. Kuznetsov component of a cubic fourfold

One reason to study Ku(Y ) is related to the birational geometry of Y . For instance,
there is a folklore conjecture [9, Conjecture 1.1] saying that Y is rational if and
only if Ku(Y ) is equivalent to the derived category of a K3 surface.

Another interest in studying Ku(Y ) is to generalize Mukai’s construct to this
noncommutative K3 surface. Bayer, Lahoz, Macr̀ı and Stellari construct Bridge-
land stability conditions on Ku(Y ) in [3]. In a second paper [4], joint also with
Nuer and Perry, they develop the deep theory of families of stability conditions,
which allows studying the properties of moduli spaces of stable objects in Ku(Y )
by deforming to cubic fourfolds whose Kuznetsov components are equivalent to
the derived category of a K3 surface. As a consequence, they produced infinite
series of unirational, locally complete families of smooth polarized hyperkähler
manifolds, deformation equivalent to Hilbert schemes of points on a K3 surface.
These hyperkähler manifolds are given as moduli spaces of stable objects in Ku(Y )
of primitive Mukai vector.

It is worth to point out that the hyperkähler manifolds constructed from some
Hilbert schemes of rational curves of low degree in Y can be interpreted as moduli
spaces of stable objects in Ku(Y ). Indeed, we gave in [13] a description of the Fano
variety of lines in Y and, when Y does not contain a plane, of the hyperkähler
8-fold constructed in [11] using twisted cubic curves in Y , as moduli spaces of
stable objects in Ku(Y ) with primitive Mukai vector.

3. O’Grady spaces

The algebraic Mukai lattice H∗
alg(Ku(Y ),Z) of Ku(Y ), introduced in [3, Proposi-

tion and Definition 9.5], consists of algebraic cohomology classes of Y which are
orthogonal to the classes of OY , OY (1), OY (2) with respect to the Euler pairing.

On the other hand, we denote by Stab†(Ku(Y )) the connected component of the
stability manifold containing the stability conditions constructed in [3].

Consider now a vector v = 2v0 ∈ H∗
alg(Ku(Y ),Z) such that v0 is primitive with

v20 = 2. Let τ be a stability condition in Stab†(Ku(Y )) which is generic with
respect to v, in other words, the strictly τ -semistable objects with Mukai vector v
are (S-equivalent to) direct sums of τ -stable objects with Mukai vector v0. Let M
be the moduli space of τ -semistable objects with Mukai vector v. Our first result
is the following.

Theorem 3.1 ([14], Theorem 1.1). The moduli space M has a symplectic resolu-

tion M̃ , which is a 10-dimensional smooth projective hyperkähler manifold, defor-
mation equivalent to the O’Grady’s example constructed in [16].

Idea of proof. We apply the same argument used in [12] in the case of the moduli
space of semistable sheaves over a polarized K3 surface. The strategy is to study
the local structure of the moduli space at the worst singularity and prove that
its normal cone is isomorphic to an affine model obtained as a nilpotent orbit
in the symplectic Lie algebra sp(4). It turns out that the singularity is formally
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isomorphic to its normal cone. Since the singularity at the generic point of the

singular locus of M is of type A1, one can conclude that the blow up M̃ of M
at its singular locus endowed with the reduced scheme structure is a symplectic
resolution of M . The main difference with [12] is that in the case of moduli of
sheaves, the moduli is constructed as a GIT quotient. To study the local structure,
it is enough to take an étale slice. In our case, we instead use the deep result

on étale slice of algebraic stacks [2]. The other properties of M̃ (projectivity,
deformation type) are obtained by degeneration to the locus of cubic fourfolds
with Kuznetsov component equivalent to the bounded derived category of a K3
surface, as in [4]. �

4. Applications

We explain two main applications, which make a connection between the derived
categorical viewpoint of Theorem 3.1 and the classical construction of hyperkähler
manifolds from Y .

Recall that by [1], the algebraic Mukai lattice of Ku(Y ) contains two classes λ1

and λ2 spanning an A2-lattice. Motivated by classical geometric constructions (as
it will be clear later), we consider the case v0 = λ1+λ2, v = 2v0 and we analyze the
objects in M := Mσ(v) where σ is a stability condition as constructed in [3]. It is
not difficult to see that by [13] the strictly semistable locus of M is identified with
the symmetric square of the Fano variety of lines in Y , up to a perturbation of the
stability condition. On the other hand, stable objects are harder to describe. If X
is a smooth hyperplane section of Y , in other words, X is a smooth cubic threefold,
then the moduli space Minst parametrizing rank 2 instanton sheaves on X have
been described in [8]. In particular, stable sheaves in Minst belong to one of the
following classes: rank 2 stable vector bundles constructed from non-degenerate
elliptic quintics in X , rank 2 stable torsion free sheaves associated to smooth
conics in X . Moreover, the strictly semistable objects in Minst are direct sums of
two ideal sheaves of lines in X . By [5, 8] the moduli space Minst is birational to
the translate J2(X) of the intermediate Jacobian, which parameterizes 1-cycles of
degree 2 on X .

A key result for our applications is the following theorem, which provides a
description of an open subset of the stable locus of M := Mσ(2λ1 + 2λ2).

Theorem 4.1 ([14], Theorem 1.2). Let X be a smooth hyperplane section of Y .
Then the projection in Ku(Y ) of the stable rank 2 instanton sheaves associated to
non degenerate elliptic quintic curves and smooth conics in X are σ-stable objects
with Mukai vector 2λ1 + 2λ2.

We apply Theorem 4.1 to show that, up to a perturbation of the stability con-

dition σ in Stab†(Ku(Y )), the sympletic resolution M̃ , given by Theorem 3.1 has
a deep connection to a classical construction of Jacobian fibration associated to
Y . Consider the (P5)∨-family of cubic threefolds obtained as hyperplane sections
of Y and let P0 be its smooth locus. Consider the twisted family of intermedi-
ate Jacobians p : J ! P0, whose fibers are the twisted intermediate Jacobians of
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the smooth cubic threefolds parametrized by P0. It is known that there exists a
holomorphic symplectic form on J by [7]. However, it remained a long standing
question whether J can be compactified to a hyperkähler manifold J̄ and a La-
grangian fibration J̄ ! (P5)∨ extending p. This has been recently proved for very
general cubic fourfolds in the beautiful works [10] for the untwisted family and
[18] by Voisin for J . We mention that in the recent preprint [17], Saccà extended
the result for the untwisted family in [10] to all smooth cubic fourfolds. The same
argument applies to the twisted family and extends Voisin’s result to all smooth
cubic fourfolds (see [17, Remark 1.10]).

Our main result is the following modular construction of a hyperkähler com-
pactification of J for every cubic fourfold Y , obtained combining Theorems 3.1,
4.1 and some techniques in birational geometry of hyperkähler varieties.

Theorem 4.2 ([14], Theorem 1.4). There exists a hyperkähler manifold N bi-

rational to M̃ , which admits a Lagrangian fibration structure compactifying the
twisted intermediate Jacobian family J ! P0.

It is worth to note that N and M̃ are birational, but not isomorphic if Y is
very general [14, Example 6.8]. Also N is isomorphic to the compactification
constructed by Voisin if Y is very general [14, Remark 6.9].

The next application arises from the following conjecture of Castravet.

Conjecture 4.3 ([6, Page 416]). Let C be the connected component of the Hilbert
scheme Hilb5m(Y ) containing elliptic quintics in Y . Then the maximally ratio-
nally connected quotient of C is birationally equivalent to the twisted intermediate
Jacobian of Y .

Using Theorems 3.1, 4.1 and 4.2 we are able to prove Conjecture 4.3.

Proposition 4.4 ([14], Proposition 1.5). The projection functor in Ku(Y ) induces
a rational map C 99K M which is the maximally rationally connected fibration of
C. The maximally rationally connected quotient of C is birational to the the twisted
family J of intermediate Jacobians of Y .
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How do semiorthogonal decompositions behave in families?

Pieter Belmans

(joint work with Shinnosuke Okawa, Andrea T. Ricolfi)

In this talk I gave a brief history of semiorthogonal decompositions, explained
how they can be studied using Fourier–Mukai transforms, and how they behave
in families. What follows is an overview of the historical motivation with addi-
tional references, and a summary of the results on moduli spaces of semiorthogonal
decompositions.

1. Semiorthogonal decompositions

For an introduction to semiorthogonal decompositions, and many more examples,
one is referred to [13]. They are introduced to understand the structure of the
derived category of coherent sheaves of a smooth projective variety X , from now
on denoted Db(X).
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A brief history of semiorthogonal decompositions: 3 examples.

In [2] Bĕılinson described the derived category of Pn, starting the whole field.

Example 1.1. Using the usual notation for exceptional collections we have that

(1) Db(Pn) = 〈OPn ,OPn(1), . . . ,OPn(n)〉

Here all the admissible subcategories are equivalent to Db(k).

The next step came with the introduction of semiorthogonal decompositions by
Bondal–Orlov in [6].

Example 1.2. The first example is given by the (smooth) intersection of two
even-dimensional quadrics X = Q1 ∩Q2 in P2g+1, for which we have

(2) Db(X) = 〈Db(C),OX ,OX(1), . . . ,OX(2g − 3)〉

where C is a hyperelliptic curve of genus g. As we will discuss in the next example,
Db(C) cannot be decomposed further, so this is a semiorthogonal decomposition
into “atomic” components.

By now there exists a vast literature on exceptional collections and semiorthog-
onal decompositions. The final example we want to give discusses the absence of
non-trivial semiorthogonal decompositions.

Example 1.3. Let X be either a Calabi–Yau variety, or a curve of genus g ≥ 2.
Then by Bridgeland [7] resp. Okawa [14, Theorem 1.1] we have that Db(X) is
indecomposable.

Families of varieties. Once one understands a semiorthogonal decomposition of
one fibre in a family, what can be said about semiorthogonal decompositions for
other fibres?

An important guiding principle here is Dubrovin’s conjecture [8]. It states that

BQH•(X) is (generically) semisimple if and only if Db(X) admits a full excep-
tional collection. But BQH•(X) depends on the symplectic, not the complex
structure of X . Hence conjecturally the existence of full exceptional collection is
constant in nice families. A more general version of this conjecture for arbitrary
semiorthogonal decompositions can be found in [17].

The behavior of exceptional collections in families is studied in [10] using
Lieblich’s deformation theory of perfect complexes. Full exceptional collections
are shown to extend to étale neighbourhoods. In what follows we discuss how this
deformation theory result generalises, by constructing an actual moduli space of
semiorthogonal decompositions with arbitrary components.

2. The moduli space of semiorthogonal decompositions

The general procedure to make exceptional collections and semiorthogonal decom-
positions behave well in a family over a base S is that of S-linearity [12]. The main
result is then following [4, Theorem A].
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Theorem 2.1. Let f : X ! S be a smooth projective morphism, where S is an
excellent scheme. Then there exists an algebraic space SODf ! S, such that

(1) SODf ! S is étale;
(2) there exists a functorial bijection between SODf (T ! S) and the set of T -

linear semiorthogonal decompositions (of length 2) of Perf X ×T S.

The proof consists of checking Artin’s axioms for étale algebraic spaces, in the
form of Hall–Rydh [9, Theorem 11.3]. For this we use that S-linear semiorthogonal
decompositions can be represented using (morphisms of) Fourier–Mukai kernels.
The main technical ingredient is then a deformation theory of morphisms of com-
plexes in a derived category (with a fixed lift of the codomain), generalising the
deformation theory of complexes.

The main important geometric feature of this moduli space (which is rather
strange in other respects, see §3) is that it is étale over S. This is consistent with
the suggestion of Dubrovin’s conjecture.

Application: indecomposability. We can use the moduli space of semiorthog-

onal decompositions to show that having an indecomposable derived category spe-
cialises in a family of smooth projective varieties. The details for this are contained
in the joint work [1] with Francesco Bastianelli. We can obtain for example the
following result.

Theorem 2.2. Let C be a smooth projective curve of genus g ≥ 2. Let n =
1, . . . , ⌊ g+3

2 ⌋ − 1. Then Db(Symn C) is indecomposable.

Its proof is obtained by bootstrapping from the indecomposability result [11,
Theorem 1.4], analysing the relationship between the gonality of a curve and
the base locus of the canonical linear system (see also [5]). This theorem set-
tles (the easier) half of [3, Conjecture 2], which suggests the indecomposability

of Db(Symn C) for n up to g − 1.

3. Examples, pathologies and amplifications

By describing SODf in 3 instances, we can see how this algebraic space has an
interesting geometry, and what kind of variations we can moreover study.

Example 3.1. Let f : X ! Spec k be an example from Example 1.3. Then SODf

consists of two points, given by the trivial semiorthogonal decompositions 〈Db(X), ∅〉
and 〈∅,Db(X)〉.

To remedy this, one can study the open and closed algebraic subspace ntSODf ⊂
SODf , only parametrising non-trivial semiorthogonal decompositions.

More interestingly we can consider Bĕılinson’s semiorthogonal decompositions
from Example 1.1.

Example 3.2. For n = 1 (folklore) and n = 2 [16] there exists a classifica-

tion of semiorthogonal decompositions of Db(Pn). For f : P1
! Spec k it shows

that ntSODf =
⋃

i∈Z Spec k, indexing the decomposition 〈OP1(i),OP1(i + 1)〉.
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This shows that SODf and ntSODf are usually not quasicompact. It also shows the
necessity to extend the definition of the moduli space to incorporate semiorthogo-
nal decompositions of length ℓ. This can be done, and yields moduli spaces SODℓ

f

and ntSODℓ
f with similar properties.

One can show that SODℓ
f and ntSODℓ

f admit (commuting) actions by the
group Auteq(f) of f -linear autoequivalences and the braid group Brℓ acting by
mutations. The quotient by these groups might yield more tractable moduli spaces.

Finally, the most interesting behaviour is showcased by the following example.

Example 3.3. Let f : X ! A1 be the degeneration of P1 × P1 into the second
Hirzebruch surface F2 (at the point 0 ∈ A1). By comparing the classification
of exceptional objects for the quadric with the results of [15], one can construct
distinct families of exceptional objects, which agree on A1 \ {0}, but give different

exceptional objects in Db(F2).

This shows that SODf can in general be non-separated. This is an important
feature of the behavior of semiorthogonal decompositions in families, and it would
be interesting to understand this in more instances.
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Equivariant categories and fixed loci of holomorphic
symplectic varieties

Thorsten Beckmann

(joint work with Georg Oberdieck)

In this talk I explained the close relationship between equivariant categories and
fixed loci of finite groups acting on Bridgeland moduli spaces. The abstract theory
was accompanied by examples of holomorphic symplectic varieties.

1. Equivariant categories

If a finite group G acts on a symplectic surface S and preserves the symplectic
form, then the quotient variety S/G has isolated ADE singularities and admits a
crepant resolution S′ which is again symplectic. The derived McKay correspon-
dence [4] provides a natural equivalence between the bounded derived category of
G-equivariant sheaves on S and the bounded derived category Db(S′) of coherent
sheaves on S′.

One may ask what happens if we work more generally with an abstract action of
a finite groupG on the derived categoryDb(S). Is the equivariant category, assum-
ing reasonable conditions, again equivalent to the derived category of a symplectic
surface S′?

Our setup is the following: Let S be a non-singular complex projective surface
which is symplectic, hence either a K3 surface or an abelian surface. Let G be a
finite group acting symplectically and faithfully on Db(S) such that there exists a

stability condition σ ∈ Stab†(S) which is fixed by the action of G.
Write Λ = H2∗(S,Z) for the even cohomology lattice. The induced G-action

on cohomology preserves the sublattice Λalg. We write ΛG
alg for the invariant

sublattice. Let Mσ(v) be the moduli space of σ-semistable objects with Mukai
vector v. If v is G-invariant, then we have an induced action of G on Mσ(v). Let
G∨ = Hom(G,C∗) be the group of characters of G.

Theorem 1.1. Let v ∈ ΛG
alg such that Mσ(v) is a fine moduli space. If the fixed

locus Mσ(v)
G has a 2-dimensional G-linearizable connected component F , then

there exists a connected étale cover S′
! F of degree dividing the order of G∨ and

an equivalence

Db(S′)
∼=
−! Db(S)G

induced by the restriction of the universal family to S′ × S.
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We say here that a connected component of Mσ(v)
G is G-linearizable if for some

(or equivalently any) point on it the corresponding G-invariant object in Db(S)
admits aG-linearization. For cyclic groups, the condition on F to be G-linearizable
is automatically satisfied.

We state a version of Theorem 1.1 where we drop the condition on the moduli
space to be fine. This is useful since not every group action on Db(S) induces an
action on a fine moduli space.

Definition 1.2. Let Z denote the central charge of σ. A vector v ∈ ΛG
alg is (G, σ)-

generic if it is primitive and for every splitting v = v0 + v1 with v0, v1 ∈ ΛG
alg \ Zv

the values Z(v0) and Z(v1) have different slopes.

Given any primitive vector v ∈ ΛG
alg, one can show that after a small deformation

of σ along G-fixed stability conditions the class v becomes (G, σ)-generic.
Let also Mσ(v) denote the moduli stack of σ-semistable objects in class v.

Theorem 1.3. Let v ∈ ΛG
alg be (G, σ)-generic.

(a) The fixed stack Mσ(v)
G has a good moduli space π : Mσ(v)

G
! N which

is smooth, symplectic and proper. The map π is a Gm-gerbe.
(b) If N has a 2-dimensional connected component S′, then the restriction of

the universal family induces an equivalence

Db(S′, α)
∼=
−! Db(S)G

where α ∈ Br(S′) is the Brauer class of the gerbe.

Here we let Db(S′, α) denote the derived category of α-twisted coherent sheaves
on S′. The notion of a good moduli space was introduced in [1]. The fixed stack
is taken in the categorical sense of Romagny [5].

For the proof we use Orlov’s result on Fourier–Mukai functors to construct
an action of G on the stack M of universally gluable objects in Db(S) in the
sense of Lieblich. The fixed stack MG is precisely the stack of objects in the
equivariant category Db(S)G. By transferring geometric properties from M to its
fixed stack, this yields a well-behaved moduli theory for objects in the equivariant
category. The restriction of the universal family of MG to components, which
are 2-dimensional and parametrize stable objects, then leads to a Fourier–Mukai
kernel which induces the desired equivalence.

2. Fixed loci

After having seen how fixed loci determine the equivariant category, we describe
how conversely the equivariant category controls the fixed loci of moduli spaces of
stable objects.

Consider a symplectic action of a finite group G on Db(S). Assume that we
have an equivalence

Db(S′, α)
∼=
−! Db(S)G.
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The surface S′ here is necessarily symplectic but can be disconnected. Let

P : H2∗(S′,Z) ! H2∗(S,Z)

be the map induced from the composition Db(S′, α) ! Db(S)G ! Db(S) where
the latter map is the forgetful functor. Given an element v ∈ ΛG

alg we write

Rv = {v′ ∈ Λ(S′,α),alg | P (v′) = v}.

The G-invariant stability condition σ induces a stability condition, denoted σG,
on Db(S)G and hence on Db(S′, α). We write MσG

(v′) for the good moduli space
of the stack MσG

(v′).

Theorem 2.1. Let v ∈ ΛG
alg such that Mσ(v) is a moduli space of stable objects.

Then there exists a degree |G∨| étale morphism

(1)
⊔

v′∈Rv

MσG
(v′) ! Mσ(v)

G

whose image is the union of all G-linearizable connected components of Mσ(v)
G.

If G is cyclic, then (1) is surjective.

We refer to [2, Thm. 3.20] for a more general version of Theorem 2.1 which
applies to any variety with a suitable stability condition and where we do not
require the equivariant category to be equivalent to the derived category of some
variety.

If S′ is a K3 surface and the equivalence is geometric, we can be more precise
with our description of the fixed locus. Let

Rv ⊂ Λ(S′,α),alg

be a set of representatives of the coset Rv/G
∨.

Theorem 2.2. Let v ∈ ΛG
alg such that Mσ(v) is a moduli space of stable objects.

Suppose that G is cyclic and that we have an equivalence Db(S′, α) ! Db(S)G for
a K3 surface S′ which is induced from a universal family as in Theorem 1.3.

Then the induced stability condition σG lies in Stab†(S′) and we have an iso-
morphism

(2) Mσ(v)
G ∼=

⊔

v′∈Rv

MσG
(v′).

We finally remark that symplectic actions of finite groups on moduli spaces
of stable objects on K3 surfaces are always induced by actions on the derived
category as considered above. Hence Theorems 2.1 and 2.2 in combination with
Theorem 1.1 provide an effective method to determine the fixed locus of any such
action.

Proposition 2.3. Let S be a K3 surface and let σ′ ∈ Stab†(S) be a stability
condition. Let G be a finite cyclic group which acts faithfully and symplectically on
a moduli space M of σ′-stable objects. Then there exists a faithful and symplectic
action of G on Db(S) which induces the given G-action on M .
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Stability conditions in families, without applications

Arend Bayer

(joint work with Mart́ı Lahoz, Emanuele Macr̀ı, Howard Nuer, Alexander Perry,
Paolo Stellari)

The construction of Bridgeland stability conditions in families [BLMNSP19] led
to a number of applications, including an infinite sequence of locally complete
unirational families of polarised Hyperkähler varieties of K3 type, or the complete
classification of cubic fourfolds whose derived category contains the derived cate-
gory of a K3 surface as its Kuznetsov component. This talk focussed instead on
the foundational aspects, explaining the notion of a stability condition for a family
of varieties precisely, along with some motivation for the definition.

Recall that a stability condition σ on a triangulated category D consists of

• a central charge, i.e. a group homomorphism Z : K(D) ! C, and
• a slicing, i.e. a list P(φ) of semistable objects of phase φ for all φ ∈ R

satisfying a number of conditions. Now let π : X ! S be a flat projective mor-
phism. When does a collection of stability conditions σs on the derived categories
of the fibers Db(Xs) form a nice family, that we can reasonably call a stability
condition on X over S? Our goal is to answer this question.

1. Setting

Let π : X ! S be a flat1 projective2 morphism, e.g. for S a scheme of finite type
over a field.3 To allow for stability conditions on semiorthogonal components of

1This is essential, e.g. as we frequently use base change arguments of the form Hom(Es, Fs) =
(π∗ Hom(E, F ))

s
for E,F ∈ Db(X) with E S-perfect.

2Unlike in the absolute case, we will need moduli spaces of semistable objects to be proper to
get a satisfactory theory; thus the equivalent of working with compactly supported objects on a

quasi-projective variety would require additional arguments.
3More precisely, we assume that S is Nagata, quasi-projective over a noetherian affine scheme,

and X is noetherian affine scheme of finite Krull dimension; in particular, S can be a localisation
of a finite type scheme over a field, or a Dedekind domain of mixed or infinite characteristic.
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the fibers Db(Xs), we consider a semiorthogonal4 component D ⊂ Db(X) that is
S-linear (i.e., preserved by tensoring with perfect objects on S).

Example 1.1. If π : X ! S is a family of smooth Fano varieties, we can consider

D = {F ∈ Db(X) : π∗ Hom(O,F ) = 0}.

Here we can replace O by any relative exceptional object.

We write DT and Ds for the base change of D for any morphism T ! S or point
s ∈ S, which exist by the S-linearity of D. We write σ = (σs)s∈S for a collection
of stability conditions σs on Ds for all (closed or non-closed) points of S.

2. Base change for field extensions

We will frequently apply base change to such collections; this relies on base change
of stability conditions for (not necessarily finite) field extensions.

If X is projective over a field, the numerical K-group Knum(D) of D is the
quotient of K(D) by the kernel of the Euler characteristic pairing K(Perf(D)) ×
K(D) ! Z, where Perf(D) = Perf(X) ∩ D. A stability condition is numerical if
its central charge factors via Knum(D).

Theorem 2.1 ([Sos12], [BLMNSP19, Theorem 12.17]). Let σk = (A, Z) be a nu-
merical stability condition on D over a field k, and let k ⊂ ℓ be any field extension.
Then σk has a canonical base change to a stability condition σℓ = (Aℓ, Zℓ) on Dℓ.

Here we recall that a stability condition can also be given via its associated
heart A ⊂ Db(X), the extension closure of

⋃
φ∈(0,1]P(φ). Following Abramovich-

Polishchuk [AP06, Pol07], Aℓ consists of objects E ∈ Dℓ whose associated ob-
ject Ek ∈ Dqc(X) lies in the unbounded quasi-coherent version Aqc ⊂ Dqc of
the heart A ⊂ D. The central charge Zℓ is obtained by dualising the pull-back
K(Perf(Dk)) ! K(Perf(Dℓ)) using Knum(Dℓ)Q = Knum(Perf(D))∨Q.

3. Central charge in families

Consider two S-perfect objects E,F ∈ Db(X), from which we get objects Es, Fs ∈
Ds for all s ∈ S. Whether Es has bigger slope than Fs should not depend on the
choice of s, and the same should hold after base change T ! S for any connected
scheme T . Therefore, the appropriate notion of a family of central charges is the
following.

4We also assume that it is part of a semiorthogonal decomposition Db(X) = 〈D1,D1, . . . ,Dn〉
where each inclusion Di ! D admits a right adjoint of finite cohomological amplitude.



994 Oberwolfach Report 19/2020

Definition 3.1. A collection Z = (Zs)s∈S of homomorphisms Zs : Knum(Ds) ! C

is a central charge on D over S if for every base change T ! S and every T -perfect
object E ∈ DT , the function

t 7! Zt(Et)

is locally constant on T .

(Here Zt is obtained as in Theorem 2.1 from Zs for the image s ∈ S of t.)
We will always fix a finite rank free abelian group Λ and group homomorphisms

vt : Knum(Dt) ! Λ for all points t over S such that vt(Et) ∈ Λ is locally constant
in the above setting. Then we only consider central charges that factor via a
common Z : Λ ! C.

Example 3.2. If π : X ! S has a polarisation OX(1), then any linear combi-
nation of the coefficients of the Hilbert polynomial with respect to OX(1) gives a
central charge on D over S. More generally, there is a pairing

KS−Perf(D)×
⊕

s∈S

K(Ds) ! Z

induced by ([E], [Fs]) = χ(Es, Fs) for Fs ∈ Ds; we can set Λ to be the quotient of
the right-hand side by the kernel of the pairing.

4. Openness

Recall that for slope- or Gieseker-stability, and a flat family of sheavesE ∈ Coh(X)
over S, the set of fibers where Es is geometrically stable5 is open. In our situa-
tion, we instead use this property as a compatibility condition glueing stability
conditions for different s ∈ S:

Definition 4.1. A collection σ of stability conditions σs universally satisfies open-
ness of stability if for every T ! S, and every T -perfect object E ∈ DT , the set

{t ∈ T : Et is geometrically σt-stable} ⊂ T

is open.

Note that σt, and the notion of geometric σt-stability, are both given by The-
orem 2.1. Due to a lack of intrinsic characterisation of σs-(semi)stable objects
in the definition of stability conditions, Definition 4.1 seems the only reasonable
compatibility condition between slicings on different fibers.

The existence of Harder-Narasimhan (HN) filtrations for the generic point, to-
gether with openness of stability, already implies the existence of generic HN
filtrations for any S-perfect object E ∈ D.

In the case of a product X = X0 × S, local constantness of central charges and
openness of stability already guarantee that a collection of stability conditions is
constant (under mild assumptions on S, see [BLMNSP19, Proposition 20.11]).

5stable after base change to the algebraic closure



Algebraic Geometry 995

5. Boundedness

We would like stability conditions σ on D over S to satisfy a version of Bridgeland’s
deformation theorem: given a small deformation Z  Z ′ in Hom(Λ,C), there
should be an associated deformation σ  σ′. Therefore, we need assumptions
that ensure openness of stability in the sense of Definition 4.1 is preserved by
such a deformation. Following [Bay19], it is sufficient to treat the case where the
imaginary part of Z remains constant; then the heart As ⊂ Ds of the stability
condition σs remains constant for all s ∈ S, and a flat family E of objects Es ∈ As

is stable with respect to σ′
s at s if and only if Es does not have a quotient in As

that is destabilising with respect to Z ′.
For any proof of such a statement, we first need to bound the set of objects that

could destabilise Es, independent of s ∈ S. This is done via two requirements.
The first is a straightforward generalisation of the support property in the absolute
case; here we fix Λ as in Section 3 and assume each Zs is given by Z ◦ vs for a
common central charge Z : Λ ! C.

Definition 5.1. A collection σ of stability conditions σs on Ds satisfies the support
property with respect to Λ if there exists a quadratic form Q on Λ⊗ R such that

• Q is negative definite on the kernel of Z, and
• for every s, and every σs-semistable object E ∈ Ds, we have Q(vs(E)) ≥ 0.

By completely elementary linear algebra, this guarantees that for a bounded
subset K ⊂ C, there are only finitely many classes v ∈ Λ with Z(v) ∈ K for which
there exists s ∈ S and a σs-semistable object E ∈ Ds with vs(Es) = v. Similarly,
given a σs-semistable object Es and a small deformation Z  Z ′ as considered
above, there exists a finite set of classes in Λ (depending only on Q, Z and Z ′)
that could support a quotient Es ։ Q destabilising Es with respect to Z ′.

Next, we need to bound the set of semistable objects of fixed class v ∈ Λ:

Definition 5.2. A collection σ satisfies boundedness if for every v ∈ Λ the stack
Mst

σ (v) of stable objects of class v is bounded: there exists a scheme B of finite
type over S and a B-perfect object E ∈ DB such that

• Eb is geometrically σb-stable with vb(Eb) = v for all b ∈ B, and
• for every geometric point s ! S and every σs-stable object F with vs(F ) =

v, there is a factorisation s ! B ! S such that Es = F .

Combining Definitions 5.1 and 5.2 with the existence of quot schemes, one can
show that after a deformation Z  Z ′, the set of geometrically Z ′-stable objects
is constructible in a flat family: the unstable locus is the image of a map from a
finite union of finite type schemes.
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6. Toward valuative criteria: base change to Dedekind schemes

To get from “constructible” to “open”, we need to show that the unstable locus
is closed under specialisation. For this, we need stronger assumptions after base
change to a DVR;6 slightly more generally, we make them after such a base change
to an integral regular one-dimensional scheme, or Dedekind scheme, C.

Definition 6.1. Assume that S = C is a Dedekind scheme. For φ ∈ R, let
PC(φ) ⊂ D be the extension-closure of all (ic)∗Pc(φ) for closed points c ∈ C, and
of objects E ∈ D such that Ec ∈ Pc(φ) for all c ∈ C. We say that σ integrates to
a HN structure on D if for every E ∈ D there exists a sequence of maps

0 = E0
f1
−! E1

f2
−! . . .

fn
−! En = E

such that the cone of fi is in PC(φi) for some real numbers φ1 > φ2 > · · · > φn.

If σ satisfies all previous definitions, this is equivalent to the existence of a heart
AC ⊂ D integrating the hearts Ac ⊂ Dc associated to σc on the fibers, in the sense
that Ac = (ic)

−1
∗ (A) for all c ∈ C.

A HN structure strengthens the notion of generic HN filtrations, formally com-
bining them with the existence of semistable reduction.

In particular, one can show that moduli stacks of semistable objects satisfy the
existence part of the valuative criterion. Namely, if R is a DVR with fraction field
K and residue field k, and EK ∈ PK(φ) ⊂ DSpecK is a σK -semistable object, we
first consider an arbitrary extension ER ∈ DSpecR; using its HN filtration in the
sense of Definition 6.1, we may assume ER ∈ PSpecR(φ); taking the quotient by
the maximal R-torsion subobject we may assume that ER is also flat over R; this
is only possible if (ER)k is σk-semistable, and so ER induces the desired map from
SpecR to the stack of semistable objects.

Combined with the existence of quot schemes, this also implies that in the
situation of a small deformation Z  Z ′ discussed in the previous section, the
unstable locus is closed under specialisation.

7. Final Definition

Definition 7.1. A stability condition on D over S is a collection σ = (σs)s∈S of
numerical stability conditions σs on Ds such that

(1) the central charges Zs are universally locally constant (Definition 3.1),
(2) σ universally satisfies openness of stability (Definition 4.1),
(3) satisfies the support property with respect to some Λ (Definition 5.1),
(4) satisfies boundedness (Definition 5.2), and
(5) after every base change C ! S essentially of finite type to a Dedekind

scheme C, the collection σC of fiberwise stability conditions on DC (in-
duced by Theorem 2.1) integrates to a HN structure on DC .

6This is where we use the assumption that S is Nagata: it is enough to verify valuative criteria
after a base change to a DVR that is given by the localisation of a finite type morphism.
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8. Results

Combining [Lie06, Tod08, AHLH18] we immediately obtain the following:

Theorem 8.1 ([BLMNSP19, Theorem 21.24]). Let σ be a stability condition on
D over S, and let v ∈ Λ. The moduli stack Mσ(D, v) of semistable objects of class
v exists as an Artin stack of finite type over S. Moreover:

• In characteristic 0, it has a good moduli space Mσ(D, v), an algebraic
space proper over S.

• In arbitrary characteristic, when semistability and stability coincide, it has
a coarse moduli space Mσ(D, v), proper over S.

The existence as an Artin stack follows from openness of stability and bound-
edness; the existence and properness of moduli spaces follows from HN structures
over DVRs combined with the results and arguments in [AHLH18].

As sketched over Sections 5 and 6, openness of is preserved under deformations,
which is the key ingredient for the analogue of the main result of [Bri07]:

Theorem 8.2 ([BLMNSP19, Theorem 22.2]). The space StabΛ(D/S) of stabil-
ity conditions on D over S is a complex manifold, and the forgetful morphism
StabΛ(D/S) ! Hom(Λ,C), given by σ 7! Z, is a local isomorphism.

9. Existence

While we don’t have a general existence result, in practice we can construct stabil-
ity conditions over S whenever we know a construction of stability conditions on
the fibers: for families of surfaces (also in characteristic p [Kos20c]), Fano three-
folds [Sch14, Li19a, BMSZ17], abelian threefolds [MP16, BMS16], threefolds with
nef tangent bundles [Kos20a], quintic threefolds [Li19b], Calabi-Yau double/triple
solids [Kos20b]. Similarly, it applies to Kuznetsov components of Fano threefolds
or cubic fourfolds [BLMS17], or Gushel-Mukai fourfolds [PPZ19].

References

[AP06] D. Abramovich and A. Polishchuk. Sheaves of t-structures and valuative criteria for
stable complexes. J. Reine Angew. Math., 590:89–130, 2006. arXiv:math/0309435.

[AHLH18] J. Alper, D. Halpern-Leistner, and J. Heinloth. Existence of moduli spaces for
algebraic stacks, 2018. arXiv:1812.01128.

[Bay19] A. Bayer. A short proof of the deformation property of Bridgeland stability con-
ditions. Math. Ann., 375(3-4):1597–1613, 2019. arXiv:1606.02169.

[BLMNSP19] A. Bayer, M. Lahoz, E. Macr̀ı, Howard Nuer, A. Perry, P. Stellari. Stability con-
ditions in families. arXiv:1902.08184.

[BLMS17] A. Bayer, M. Lahoz, E. Macr̀ı, P. Stellari. Stability conditions on Kuznetsov com-
ponents. Appendix about the Torelli theorem for cubic fourfolds by A. Bayer,
M. Lahoz, E. Macr̀ı, P. Stellari, and X. Zhao. arXiv:1703.10839.

[BMS16] A. Bayer, E. Macr̀ı, P. Stellari. The space of stability conditions on abelian three-
folds, and on some Calabi-Yau threefolds. Invent. Math., 206(3):869–933, 2016.
arXiv:1410.1585.

[BMSZ17] M. Bernardara, E. Macr̀ı, B. Schmidt, and X. Zhao. Bridgeland stability con-
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Quasimaps to moduli spaces of sheaves

Denis Nesterov

1. Introduction

Let (X,X) be a pair, such that X is an Artin stack locally of finite type and
X ⊆ X as an open substack of finite type. By H2(X) we denote some cohomology-
like group associated to X, which is a subject to a choice, a reader can safely
imagine it to be the second cohomology with integer coefficients H2(X,Z). We
comment on the choice of this group later in the remark.

Definition 1.1. A map f : C ! X is a quasimap to (X,X) of genus g and of
degree β ∈ Hom(H2(X),Z) if

• C is a nodal connected curve of genus g;
• f∗ = β;
• |{t ∈ C| f(t) ∈ X/X}| < ∞.

A quasimap f is stable if

• {t ∈ C| f(t) ∈ X/X} ∩ {nodes} = ∅;
• C doesn’t have rational tails;
• |Aut(f)| < ∞.
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Let QMg(X,X, β) be the moduli stack of stable quasimaps of genus g and degree β
to a pair (X,X). By QMC(X,X, β) we denote the moduli of quasimaps of degree β
from a fixed curve C satisfying the first condition of the stability. We will suppress
X from the notation, when it is clear what pair is considered.

In [1] the moduli spaces of GIT quasimaps QMg(V//G, [V/G], β) were defined,
and the essential properties of the moduli spaces were proven, namely properness
and existence of perfect obstruction theory. In [2], [3] statements of wall-crossing
between Gromov-Witten invariants and quasimaps invariants for certain GIT quo-
tients were established. In particular, one of the most striking applications of
theory was the genus 0 wall-crossing for a quantic threefold, viewed as a quotient
of its affine cone by Gm-action, which coincided with the wall-crossing between
Gromov-Witten invariants and B-model invariants of the quintic mirror. Hence
GIT quasimaps provided a conceptual mathematical interpretation of an instance
of Mirror Symmetry.

2. Quasimaps to moduli spaces of sheaves

Let’s now consider the next most familiar pair, namely (Mv, Cohv(S)), where
Cohv(S) is a moduli stack of coherent sheaves in a class v on a surface S, and Mv

is a locus of Gieseker-stable sheaves for some ample line bundle. The stack Mv is
a Gm-gerb over a quasi-projective scheme Mv, which is given by quotienting out
Gm-automorphisms coming from the multiplication by scalars. The same can be
done for Cohv(S), the resulting rigidified stack is denoted by Cohv(S)( Gm. The
moduli space Mv naturally embeds into Cohv(S)( Gm, giving rise to the following
square

Mv Cohv(S)

Mv Cohv(S)( Gm

Gm-gerb Gm-gerb

We are interested in the theory of quisimaps to a pair (Mv, Cohv(S)( Gm), but
quasimaps to (Mv, Cohv(S)) are more accessible. We start with the latter.

Quasimaps to Hilbn(S). For simplicity let v = (1, 0,−n). We also assume that
C is smooth and h1,0(S) = 0. There is a natural open embedding defined by
associating to a quasimap the corresponding family of sheaves,

QMC(Hilbn(S), β) !֒ Coh(S × C)

f 7! Ff .

It is not difficult to show that Ff is torsion-free of rank 1, hence stable. Moreover,
the degree β determines the Chern character of Ff by pulling back the determi-
nant line bundles on the stack Cohv(S) and applying Hirzebruch-Riemann-Roch
theorem in an appropriate way. We denote the corresponding Chern character by
vβ . Conversely, if F is a torsion-free sheaf of rank 1 on S×C in the class vβ , then
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it defines a quasimap to Hilbn(S) of degree β. We therefore obtain the following
identification

(1) QMC(Hilbn(S), β) ∼= Mvβ (S × C).

Remark 2.1. At this point the above conclusions depend on what one means
by H2(Cohv(S)). In this case we define it to be a subgroup generated by classes
of determinant line bundles in lim

U⊂Cohv(S)
H2(U,Z), where the limit is taken over

substacks of finite type U ⊂ Cohv(S). This forces the Chern character of Ff

to determine the degree β. In fact, the determinant line bundle construction is
conjectured to be surjective on algebraic classes of a moduli space, for example, it
is true for Hilbn(S). Something similar in a certain sense can be expected for an
entire stack of coherent sheaves.

Quasimaps to Hilbn(S). The moduli QMC(Hilb
n(S), β) is related to the moduli

QMC(Hilbn(S), β) via the following property of Cohv(S)( Gm,

π0(Cohv(S)( Gm(B)) ∼= π0(Cohv(S)(B))/Pic(B),

for any scheme of finite type B, where π0(. . . ) stands for isomorphism classes of
objects of the corresponding groupoids. The quotient

π0(Cohv(S)(B)) ! π0(Cohv(S)(B))/Pic(B)

admits a canonical section given by setting the determinant of a sheaf to be trivial.
In fact, this can be upgraded to a section Cohv(S)( Gm ! Cohv(S), which allows
us to lift the quasimaps. Combining this observation with (1) we get the following
identification

(2) QMC(Hilb
n(S), β) ∼= Hilbvβ (S × C).

To treat the moduli QMg(Hilb
n(S), β) in the similar fashion as above we define

Hilbs(S × C) ⊆ Hilb(S × C) to be the locus of ideal sheaves, which are perfect
and |AutC(I)| < ∞, where AutC(I) are automorphisms of C that fix I. Let Mss

g

be the moduli of semistable curves (nodal connected curves with no rational tails)
with universal curve Cg. Then (2) extends in the following form.

Theorem 2.2. The moduli QMg(Hilb
n(S), β) is a proper Deligne-Mumford stack

with a perfect obstruction theory. Moreover,

QMg(Hilb
n(S), β) ∼= Hilbs

vβ
(S × Cg/M

ss
g ).

Some parts of the above story generalise to higher ranks and to moduli spaces
of sheaves on varieties of higher dimensions, we, however, restrain from spelling it
out, as it would require some definitions.

3. Application

One of potential applications of the theory sketched above is Igusa cusp form
conjecture proposed in [4]. For the statement of the conjecture we now assume
that S is a K3 surface. We also fix a genus 1 curve E. Let FGW be the generating
series associated to Gromov-Witten invariants of Hilbn(S) for the curve E in the
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classes with a primitive non-exceptional component for all n > 0. Let FPT be
the generating series associated to stable pairs invariants of S × E in the classes
primitive in S. We refer the reader to [4] for more precise definitions of these
generating series. Then Igusa cusp form conjecture is the following two equalities.

Conjecture 3.1.

−
1

χ10

1
= FPT

2
= FGW + F,

where χ10 is Igusa cusp form, and F is explicitly defined.

The first equality was proven in the series of articles [5], [6]. The second equality
remains open, but the theory of quasimaps sheds some light on it. Firstly, we can
safely substitute stable pairs theory with Donaldson-Thomas theory for the second
equality after changing the term F . Then in this setting quasimaps allow us to
treat Gromov-Witten theory and Donaldson-Thomas theory on equal footing, since

Hilbvβ (S × E) ∼= QME(Hilb
n(S), β),

which also holds on the level of obstruction theories in an appropriate sense. In
particular, the second equality of the conjecture can now be restated as an assertion
of existence of an explicit wall-crossing between Gromov-Witten invariants and
quasimaps invariants. We expect to obtain this wall-crossing by adjusting the
approach of [2], [3] to our needs. Such wall-crossing will, in particular, determine
the fixed curve genus 1 Gromov-Witten theory of Hilbn(S).
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Recent progress on the birational geometry of foliations on threefolds

Roberto Svaldi

(joint work with Paolo Cascini, Calum Spicer)

We will always work over C.
A foliation on a normal variety X is a coherent subsheaf F ⊂ TX such that

(1) F is saturated, i.e. TX/F is torsion free, and
(2) F is closed under Lie bracket.

The rank of F is its rank as a sheaf. Its co-rank is its co-rank as a subsheaf of
TX . The canonical divisor of F is any Weil divisorKF such that O(KF ) ∼= det(F).

In analogy with the classical case of a normal projective variety X where it is
expected that the birational geometryX is governed by the positivity properties of
the canonical bundle OX(KX), a similar principle holds for foliations. Indeed, for
a pair (X,F) of a normal projective X and a foliation F ⊂ TX , one would like to
construct a birational model X ′ of X where the geometry of the strict transform of
F becomes particularly simple. As in the classical case, the way to construct such
“simpler” birational models of the pair (X,F) should rely on a careful analysis of
the positivity properties of the canonical bundle of the foliation OX(KF).

In low dimension, the birational classification of foliations has seen many im-
portant advancements in recent year:

• for surfaces, there now is a very exhaustive and effective picture of the
classification of rank 1 foliations, [6, 2, 7, 8];

• in dimension three, several foundational steps have been established to-
wards a full classification both in the case of rank 1, [1, 5], as well as rank
2 foliations on algebraic threefolds, [10, 4, 11].

In dimension greater than 3, the analogue problem is still quite obscure for several
concurring reasons, e.g., the lack of an analogue of resolution of singularities in
this context.

The aim of this report is to focus on the new advancements in the birational
classification of rank 2 foliations on threefolds.

1. The foliated minimal model program

We will be working with a slightly more comprehensive framework than the one
just introduced: namely, we will consider a co-rank 1 foliation F on a normal
algebraic threefold X , and effective divisor ∆ on X with coefficients in R≥0, such
that KF +∆ is R-Cartier. The latter condition is necessary in order to be able to
discuss intersection numbers for KF +∆.

Given a triple (X,F ,∆) as above, one would like to construct suitable birational
models where the geometry of the triple is as simple as possible. The guiding light
in this quest should be the positivity of KF +∆ which is measured in terms of the
positivity of the intersections of KF +∆ with complete curves contained in X .

In analogy with the classical Minimal Model Program (in short, MMP), we
expect 2 different types of outcomes. Given a triple (X,F ,∆), whereX projective,
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and the singularities of the triple are mild – see below for more on singularities –
we would like to algorithmically construct a triple (X ′,F ′,∆′), and a birational
contraction π : X 99K X ′ such that F ′ (resp. ∆′) is the strict transform of F (resp.
∆) under π and:

(1) either KF ′ +∆′ is nef on X ′, that is, (KF ′ +∆′) ·C ≥ 0 for any complete
curve C ⊂ X ′; or

(2) X ′ is covered by rational curves that have negative intersection with KF ′+
∆′.

In contructing X ′ (and thus, π), we would like to preserve the geometric data
encoded in the triple (X,F ,∆): in particular, we do not want to alter the linear
systems |m(KF+∆)|, as those carry many important geometric information about
F . In view of this, it follows that case (1) in the above dichotomy should corre-
spond to the case where KF +∆ is pseudoeffective, while case (2) corresponds to
the non-pseudoeffective case.

A triple (X ′,F ′,∆′) corresponding to an outcome described in (1) above is
called a minimal model of (X,F ,∆), while it is called a Mori fibre space when it
corresponds to an outcome described in (2).

The classic starting point in the birational classification of higher dimensional
algebraic varieties is the quest for a smooth representative in every birational
equivalence class. For foliations, it is not hard to see that this question already
has a negative answer for rank 1 foliations on surfaces, cf. [2]. For the purpose of
the birational classification, the class of simple singularities is the correct analogue
of a smooth model in the classical case of the birational classification of algebraic
varieties, cf. [4, Definition 2.7] for the precise definition. In dimension 2 and 3, it
is proven that for any foliated pair (X,F), where F has co-rank 1, there always
exists a birational model where the strict transform of F has simple singularities,
see [9, 3].

On the other hand, the class of simple singularities is not stable under any
meaningful class of birational transformation; hence, it is important to identify
a suitable class of singularities that works well for our own purpose. The right
class of foliated singularities to consider is that of foliated divisorial log terminal
(in short, F-dlt) singularities, an analogue in the category of foliated spaces of
that of divisorial log terminal singularities in the MMP, cf. [4, § 3] for the precise
definition and more details. F-dlt singularities can be nicely characterized in terms
of discrepancy of their log canonical divisor; they contain simple singularities and
it can be shown that they are stable under the type of birational transformations
that are used in the foliated version of the MMP, cf. next section. Hence, form
this point of view, they are the most natural class of singularities that we should
consider if we want to work with foliated spaces with simple singularities and
classify those.
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2. MMP for rank 2 foliations on threefolds

To simplify the notation for triples (X,F ,∆), we will omitX and just write (F ,∆).
We will assume that our pairs (F ,∆) have F-dlt singularities and explain how to
proceed algorithmically to produce a triple (X ′,F ′,∆′) which is either a minimal
model or a Mori fibre space for (F ,∆).

The starting input of our algorithmic construction is an F-dlt pair (F ,∆) – for
example, we could start with a foliation F with simple singularities on X .

If KF +∆ is nef, then our algorithm can stop immediately, as (F ,∆) is its own
minimal model. On the other hand, if KF + ∆ is not nef, the following result
provides a way forward in our quest for minimal models or Mori fibre spaces.

Theorem 2.1. [10, 4] Let X be a normal projective threefold and let F be a co-
rank one foliation. Suppose that (X,D) is klt for some D ≥ 0. Let (F ,∆) be a
F-dlt pair and let H be an ample Q-divisor.
Then there exist countable many curves C1, C2, . . . such that

NE(X) = NE(X)KF+∆≥0 +
∑

R+[Ci].

Furthermore, for each i, Ci is a rational curve tangent to F such that (KF +∆) ·
Ci ≥ −6, and if C ⊂ X is a curve such that [C] ∈ R+[Ci] then C is tangent to F .
In particular, there exist only finitely many (KF +∆+H)-negative extremal rays.

Given a KF + ∆-negative extremal ray R ⊂ NE(X), we can look at the set
loc(R) of all points x ∈ X such that there exists a curve C with x ∈ C and [C] ∈ R.
We have the following three distinct possibilities:

• if loc(R) = X , then [10, Theorem 8.9] implies that R is KX-negative and
so there exists a contraction f : X ! Y with dimX > dim Y . Thus, X is
covered by rational curves that have negative intersection with KF + ∆,
and it is a Mori fibre space; in this case we can stop our algorithm at this
stage.

• If loc(R) = D is a divisor, then it is shown in [10, 4] that D can be con-
tracted by means of a birational contraction f : X ! Y . Such a morphism
f is called a divisorial contraction; moreover, f preserve the linear systems
|m(KF+∆)| = |m(KFY

+∆Y )|. In this case, we substitute (X,F ,∆) with
(Y,FY ,∆Y := f∗∆), where FY is the strict transform of F , and repeat
our algorithm starting with this new triple.

• If loc(R) = C is a curve, then there exists a birational contraction f : X !

Y whose exceptional locus is Y . Such an f is called a flipping contraction.
In this case, f∗(KF+∆) ceases to be R-Cartier, as f is a small contraction
but KF +∆ intersects C negatively. Hence, we cannot just substitute X
with Y and (F ,∆) with their strict transforms, as we would not be able
to measure the positivity of KF +∆ anymore on Y .

In all the of cases above, by Theorem 2.1, the morphism f contracts curves
tangent to the foliation, thus, f is equivariant with respect to the foliation.

In the last case above, that of a so-called flipping contraction, can be remedied
by means of the so-called flip of f : X ! Y . A flip is nothing more than the
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following diagram of birational maps

X

f
��
❅❅

❅❅
❅❅

❅❅
//❴❴❴❴❴❴❴ X+

f+

}}⑤⑤
⑤⑤
⑤⑤
⑤⑤

Y

where f+ : X+
! Y is also a birational contraction whose exceptional locus has

dimension 1 and KF+ +∆+ is R-Cartier and it has positive intersection with all
curves contracted by f+, where F+ (resp. ∆+) is the strict transform of F (resp.
∆).

Theorem 2.2. [4] Let F be a co-rank one foliation on a Q-factorial projective
threefold X. Let (F ,∆) be a F-dlt pair on X.
Let φ : X ! Y be a (KF +∆)-flipping contraction. Then the (KF +∆)-flip exists.

As KF+ + ∆+ is R-Cartier, we can still discuss its intersection properties.
Moreover, it is possible to prove that when making a flip we have the equality of
linear systems |m(KF +∆)| = |m(KF+ +∆+)| and so we can substitute (X,F ,∆)
with (X+,F+,∆+) and restart our analysis as we did above.

Theorem 2.2 is a delicate and fundamental result which relies on a careful
analysis of the singularities of F , together with an ingenious argument based on
Artin’s approximation theorem that is used to produce algebraic approximations
to the (possibly formal/trascendental) separatrices1 of F around loc(R).

As for a divisorial contraction f : X ! Y , the rank of the Picard group of X is
strictly greater than that of Y , it follows that when running our algorithm, we can
just produce a finite number of divisorial contractions. The same type of result is
not a priori clear for the case of flipping contractions and flips. Using the Special
Termination for foliated pairs proved in [4] and extending the Bott connection to
the case of foliated pairs with terminal singularities, it has been proven in [11] that
there cannot be infinite sequences of flips.

Theorem 2.3. [11] Let X be a Q-factorial quasi-projective threefold. Let (F ,∆)
be an F-dlt pair. Then starting at (F ,∆) there is no infinite sequence of flips.

Thus, all of the results contained in Theorem 1-3 can be summarized in the fol-
lowing final theorem, which can be summarized by saying that “the Minimal Model
Programme terminates for co-rank 1 F-dlt foliated pairs on projective threefolds”.

Theorem 2.4 (MMP for rank 2 foliations on threefolds). Let X be a Q-factorial
quasi-projective threefold. Let (F ,∆) be an F-dlt pair. Then there exists a (KF +
∆)-negative birational contraction π : X ! X ′ and an F-dlt pair (F ′,∆′) on X ′

such that:

(1) either, KF ′ +∆′ is nef; or,
(2) there exists a contraction f ′ : X ′

! Y , with dimX ′ > dimY and KF ′ +∆′

is ample along the fibers of f ′.

1A separatrix is an invariant hypersurface for the foliation F that contains a singular point
of the foliation.
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In [11], a large suite of applications of the existence of the MMP is shown in the
guise of an analysis of local and global properties of foliations on threefolds. The
authors study foliation singularities proving the existence of first integrals for iso-
lated canonical foliation singularities, an extension of Malgrange’s theorem to the
singular case, and derive a complete classification of terminal foliated threefolds
singularities. They show the existence of separatrices for log canonical singulari-
ties. They also prove some hyperbolicity properties of foliations, showing that the
failure of the canonical bundle to be nef implies the existence of entire holomorphic
curves contained in the open strata of a natural stratification of the singular locus
of the foliation.
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A survey on automorphisms of irreducible holomorphic symplectic
manifolds I

Alessandra Sarti

The aim of the talk is to give an overview of recent results on the automorphisms
group and on the birational transformations group of irreducible holomorphic sym-
plectic manifolds and to formulate open questions.

1. Basic Facts/Questions

Let X be an irreducible holomorphic symplectic (IHS) manifold, i.e. a compact
complex manifold which is simply connected and which carries a unique (up to
scalar) global holomorphic 2-form ωX which is everywhere non–degenerate. We
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study here Aut(X) the group of biregular transformations of X . We will also
study some properties of Bir(X) the group of birational transformations of X .
More precisely consider G ⊂ Aut(X) a finite subgroup. Then we have a group
homomorphism

α : G −! C∗, g 7! α(g)

defined by g∗ωX = α(g)ωX with α(g) ∈ C∗. Since G is finite, α(G) is a finite
subgroup of C∗ hence it is cyclic. This means that it exists m ∈ Z>0 such that

α(G) ∼= Z/mZ ∼= µm

where µm denotes the group of m–th roots of the unity. We get an exact sequence:

1 −! G0 −! G
α

−! µm −! 1

and for each g ∈ G0 we have g∗ωX = ωX . This motivates the following

Definition 1.1. We call g ∈ G a symplectic automorphism if g∗ωX = ωX , we
call g a non–symplectic automorphism otherwise, i.e. if there exists ζm ∈ C∗ an
m–root of unity such that g∗ωX = ζmωX . If the order o(g) of g is equal to m we
say that g is a purely non–symplectic automorphism.

Remark 1.2. Obviously if o(g) = p a prime number then a non–symplectic au-
tomorphism is the same as a purely non–symplectic automorphism.

The study of automorphisms of irreducible holomorphic symplectic manifolds
was started in the 80’s by Nikulin in [16] for K3 surfaces and then generalized by
Beauville in [2] to the higher dimension. The first natural question one wants to
answer is the following

Question: How big can be a finite group G acting on X? More precisely one
wants to describe groups G of maximum order acting on an IHS manifold X .

The complete answer was given only recently for K3 surfaces and it remains un-
known for IHS manifolds of higher dimension. A classic result of Kondo in 1999
[14] shows that if G acts on a K3 surface then |G| ≤ 3840 and there exists a unique
pair (XKo, GKo) with |GKo| = 3840 and XKo = Km(Ei × Ei) the Kummer K3
surface associated to the product of the elliptic curve Ei with itself, where Ei is
the elliptic curve C/Z ⊕ iZ. Observe that here G contains the Mathieu group
M20, which is the group of maximum order acting symplectically on a K3 surface
as shown by Mukai in [15]. In that paper Mukai gives a list of the 11 maximum
groups of maximum order acting symplectically on a K3 surface (projective or not).
Observe that |GKo| = 4 · 960 where recall that |M20| = 960. The classification of
groups of maximum order acting on a K3 surface was completed only recently and
it turns out that these groups all contain M20 acting symplectically. The following
theorem was shown by C. Bonnafé and the author in [8] and independently by S.
Brandhorst and K. Hashimoto in [9]:

Theorem 1.3. Let X be a K3 surface and let G be a finite group acting on it.
Assume moreover that G contains M20 acting symplectically then there are exactly
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three possibilities for (G,X):

(GKo, XKo), (GMu, XMu), (GBH , XBH),

where |GMu| = |GBH | = 1920 = 2 ·960 and XMu and XBH are Kummer surfaces.

We do not give here a precise description of (GMu, XMu) and (GBH , XBH) but
we send the reader back to the paper [8], where the authors describe projective
models of the K3 surfaces and give the matrices which generate the groups. Ob-
serve that in [9] the authors classify more in general all the finite groups acting on
a K3 surface and containing one of the 11 maximal groups described by Mukai in
[15].

Before to mention further problems and the state of the art, recall that the
Markmann–Verbitsky Torelli theorem, allows to describe automorphisms of IHS
manifolds by using the properties of lattices, in fact H2(X,Z) is a lattice, i.e. a
free Z–module of signature (3, b2(X) − 2) with the Beauville–Bogomolov–Fujiki
intersection form. We mention now two main problems that were studied these
last years about automorphisms of IHS manifolds:

(1) Classify IHS manifolds with an action by G ⊂ Aut(X) a finite group:
describe the fixed locus, describe the invariant sublattice H2(X,Z)G and
its orthogonal complement (H2(X,Z)G)⊥, describe the moduli spaces, etc.
Here one main ingredient is lattice theory.

(2) Study Aut(X), Bir(X) when the rank of the Picard group is small. Here
one main ingredient is the knowledge of the cones Mov(X), Amp(X) and
Nef(X).

Of course there is not a wall between these two problems and lattice theory remains
an important tool also to attack the second problem. Moreover in each case
one interesting task is to produce geometric examples of IHS manifolds with an
automorphism of finite order. This remains in general a difficult goal since Torelli
theorem can provide the existence of the automorphism, but it does not give any
information on the geometric realization.

One starts the study of the two problems by dividing the IHS manifolds in the four
deformation types: K3[n], Kumn(A), OG10 and OG6, which denote respectively
the Hilbert scheme of n points on a K3 surface, the generalized Kummer manifold
of an abelian surface, the O’Grady’s manifolds. Most of the results are obtained
for K3[n] and its deformations, as we will see in the sequel. I will start with the
second problem, even if it was considered only recently, some time after the study
of the first one began.

2. The groups Aut(X) and Bir(X) when the rank of Pic(X) is small

The first easy question is the following:

Question: Assume the rank of Pic(X) is one, i.e. Pic(X) = ZH with H2 > 0,
can we compute Aut(X) and Bir(X)?

We recall first some general facts: since 0 = h0(X,TX) = dimAut(X) we get that
Aut(X) is a discrete group. Moreover since we assume here Pic(X) = ZH with
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H2 > 0 then H is ample and necessarily an automorphism σ ∈ Aut(X) is such
that σ(H) = H . Hence Aut(X) is a subgroup of some compact Lie group, this
means that it is finite. Moreover an element f ∈ Bir(X) is also forced to preserve
the ample class H hence by [13, Section 27.3] it is an automorphism. This means
that Aut(X) = Bir(X) is finite. In [6, Theorem 3.1] it is shown the following result
in the case that X is deformation equivalent to K3[2] (we say that X is of type
K3[2]):

Theorem 2.1. Let X be a very general IHS manifold of type K3[2] and assume
that Pic(X) 6= ZH with H2 = 2, then Aut(X) = {id}.

In fact if Pic(X) = ZH with H2 = 2 (we just write Pic(X) = 〈2〉) then
Aut(X) = Z/2Z and X is a double EPW sextic. This is an IHS manifold intro-
duced by O’Grady, which is the double cover of an EPW sextic, a special sextic
hypersurface in P5. Hence in this case X admits in a natural way an involution
which is non–symplectic. The other exceptions are for Pic(X) = 〈46〉, then in
[4] it is shown that there exists a unique IHS manifold X with a non–symplectic
automorphism of order 23. If Pic(X) = 〈6〉 then in [5] it is shown that it exists a
10–dimensional family of Fano varieties of lines of cubic fourfolds which admit a
non–symplectic automorphism of order three.

If X is of type K3[n] with n ≥ 3, the Theorem 2.1 was generalized recently by
O. Debarre in [11, Proposition 4.3], but to my knowledge a similar result is not
known for the others deformation types of IHS manifolds.

We consider now the case of the rank of Pic(X) equal to 2. Again one has
several results for the case where X is of type K3[n], more precisely for X = S[n]

where S is a K3 surface. Let Pic(S) = ZH with H2 = 2t by abuse of notation we
denote again by H the class induced on S[n] and we have

Pic(X) = ZH ⊕ Zδ

where δ2 = −2(n− 1) and δ is the exceptional divisor coming from the Hilbert–
Chow morphism. Again we ask:

Question: Can we describe Aut(S[n]), Bir(S[n]) when the rank of the Picard
group is the smallest possible?

The answer for Aut(S[2]) is described in the following Theorem of [7], we keep the
same notations as before:

Theorem 2.2. (1) If t = 1 then Aut(S[2]) = Z/2Z = 〈ι[2]〉. Where ι[2] is
the involution induced on S[2] by the involution ι on S, which is called a
natural involution.

(2) If t > 1 then the following are equivalent
(a) Aut(S[2]) = Z/2Z
(b) there exists an ample class D ∈ Pic(S[2]), such that D2 = 2.
(c) t is not a square and Pell’s equation Pt(−1) : x2 − ty2 = −1 has a

solution and Pell’s equation P4t(5) : x
2 − 4ty2 = 5 has no solution.



1010 Oberwolfach Report 19/2020

The last condition on P4t(5) is related to the study of Amp(S[2]) by A. Bayer and
E. Macr̀ı in [1]. Then in 2019 O. Debarre and E. Macri have shown in [12] that in
the cases of Theorem 2.2 we have Aut(S[2]) = Bir(S[2]), moreover they show that
there are values of t such that Aut(S[2]) = {id} but Bir(S[2]) = Z/2Z and they
describe precisely such t’s by using Pell’s equations. Recently Al. Cattaneo in [10]
has formulated a similar result as Theorem 2.2 for S[n], n ≥ 3. In particular he
has shown

Theorem 2.3. (1) If t = 1 then Aut(S[n]) = Z/2Z = 〈ι[n]〉. Where ι[n] is the
natural involution.

(2) If 2 ≤ t ≤ 2n− 3 then Aut(S[n]) = {id} for n ≥ 3.

Finally in [3] P. Beri and Al. Cattaneo generalize the description of O. Debarre
and E. Macr̀ı to Bir(S[n]), n ≥ 3. The interesting fact here is that there are cases
where Bir(S[n]) = Z/2Z×Z/2Z but Aut(S[n]) = Z/2Z. This situation is new and
not possible if n = 2.
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A survey on automorphisms of irreducible holomorphic symplectic
manifolds II

Samuel Boissière

1. Classification of automorphisms on IHS manifolds

Starting from an irreducible holomorphic symplectic (IHS) manifold X with a
biregular automorphism σ, we associate an isometry of an abstract lattice as fol-
lows. The second cohomology space with integer coefficients H2(X,Z) is a non-
degenerate lattice for the Beauville–Bogomolov–Fujiki integral quadratic form.
Denote by L a representative of the isometry class of this lattice and fix an
isometry between H2(X,Z) and L. The isometry σ∗ induced by σ on H2(X,Z)
defines an isometry ρ ∈ O(L) which is well-defined up to conjugation. By the
global Torelli theorem of Markman–Verbitsky [7], we can reconstruct σ from ρ,
but not always uniquely: for this, we need the faithfulness of the representation
Aut(X) ! O

(
H2(X,Z)

)
, σ 7! (σ∗)−1.

However, in practice the classification process of pairs (X, σ), using lattice the-
ory and Smith theory, provides less than ρ but rather the data of two primitive
sublattices of L: the invariant lattice T := Lρ and its orthogonal complement
S := T⊥. It may happen, although not so often, that the data (T, S) corresponds
to several possible automorphisms. The challenge is then to understand their
relationship.

In this talk, I fix the following setup: X is an IHS manifold deformation equiv-
alent to the Hilbert square of a K3 surface, or equivalently to the Fano variety of
lines on a smooth cubic fourfold; σ is an order 3 automorphism acting nonsym-
plectically. Denoting by ωX the holomorphic 2-form of X , we have σ∗ωX = ζωX ,
with ζ := e2iπ/3.

In the classification tables given in [4], I extract three most stimulating cases
whose geometrical properties are sketched in [4, 5]:

(1) T = 〈6〉, S = U⊕2 ⊕ E8(−1)⊕2 ⊕A2(−1);
(2) T = U ⊕A2(−1)⊕5 ⊕ 〈−2〉, S = U ⊕ U(3)⊕A2(−1)⊕3;
(3) T = U(3)⊕ E∨

6 (−3)⊕ 〈−2〉, S = U ⊕ U(3)⊕A2(−1)⊕5.

Case (2) is part of a work in progress with Davide Veniani and Annalisa Grossi.
In this talk, I present some recent results on case (1), obtained in collaboration
with Chiara Camere and Alessandra Sarti.
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2. Moduli and periods

I consider a couple (X, σ) as above, with H2(X,Z)σ
∗ ∼= 〈6〉 = T primitively embed-

ded in L. Since σ acts nonsymplectically, the Hodge structure ofX is characterized
by the line H2,0(X), which lives in the ζ-eigenspace of the complexification of the
lattice S, denoted SC(ζ). This gives a point in a period domain which is the
10-dimensional complex ball: {ω ∈ P(SC(ζ)) | 〈ω, ω̄〉 > 0} ∼= B10.

As a special case of a construction given in [5], I define a moduli space N ρ
〈6〉

parametrizing pairs (X, σ) realizing the data (T, ρ, S) and a holomorphic map:

P : N ρ
〈6〉 −!

B10 \ H

Γ
,

where Γ is the group of monodromies of X fixing the sublattice T and H is the
union of the hyperplanes δ⊥ where δ ∈ S is an MBM class in the sense of Amerik–
Verbistky [2].

3. What makes the case T = 〈6〉 so interesting?

I realize this action geometrically by taking a smooth cubic threefold C ⊂ P4

and the triple covering Y ⊂ P5 of P4 branched along C. Denote by X the Fano
variety of lines of Y and by σ the automorphism induced on it by the covering
automorphism. We have (X, σ) ∈ N ρ

〈6〉. I will explain the proof of the following

result, which is deeply connected to a work of Allcock–Carlson–Toledo [1].

Theorem 3.1. [6] Every element in N ρ
〈6〉 is a Fano variety of lines on a cyclic

cubic fourfold with automorphism induced by the covering one.

4. Degenerations and limit points

When the period point ω goes to a wall δ⊥, in particular in the case of a nodal
degeneration, the representation ρ cannot be realized by an automorphism of an
IHS manifold anymore. In order to define a limit pair (X0, σ0) in the moduli
space of 〈6〉-polarized IHS manifolds, under a nodal degeneration C0 of the cubic
threefold C, we observe that generically, the Fano variety of lines on its cyclic
covering Y0 is singular along a smooth K3 surface Σ. This relates to a family of
K3 surfaces with an order three automorphism τ studied in [3]. I will explain in
which sense the definition (X0, σ0) := (Σ[2], τ [2]) is a holomorphic extension of the
period map P to the nodal walls.
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Special surfaces in special cubic fourfolds

Emanuele Macr̀ı

(joint work with Arend Bayer, Aaron Bertram, Alexander Perry)

In this talk, I reported on work in progress on a possible characterization of Hassett
divisors on the moduli space of cubic fourfolds by the property of containing special
surfaces. I sketched the construction of such special surfaces for infinitely many
divisors and the relation with the work of Russo and Staglianò on rationality of
such cubics in low discriminant.

1. The Main Theorem

Let Y ⊂ P5 denote a complex smooth cubic fourfold and let h := [OY (1)] be
the class of a hyperplane section. By following [7], we say that Y is special of
discriminant d, and use the notation Y ∈ Cd, if there exists a surface Σ ⊂ Y not
homologous to a complete intersection such that the determinant of the intersection
matrix (

h2 h.Σ
h.Σ Σ2

)

is equal to d. The locus Cd is non-empty if and only if d ≡ 0, 2 (mod 6) and d > 6;
moreover, in such a case, Cd is an irreducible divisor in the moduli space of cubic
fourfolds, which can also be described purely in terms of Hodge theory and periods
(by the Global Torelli Theorem [17] and the surjectivity of the period map [10, 13];
we refer to the book in progress [8] for the general theory of cubic fourfolds).

The main result gives an actual surface defining the divisor Cd, for special values
of d.

Theorem 1.1. Let a ≥ 1 be an integer and let d := 6a2 + 6a + 2. Let Y be a
general cubic fourfold in Cd. Then there exists a surface Σ ⊂ Y such that

• deg(Σ) := h.Σ = 1 + 3
2a(a+ 1) and Σ2 = d+deg(Σ)2

3 ;
• H∗(Y, IΣ(a− j)) = 0, for all j = 0, 1, 2.

For discriminant d as in Theorem 1.1, by [1, 2] there is a polarized K3 surface
S of degree d associated to each cubic fourfold in Cd. To be precise the surface Σ
is not unique but it is a family of surfaces in Y , parameterized by the K3 surface
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S. Moreover, if the cubic fourfold deforms in the divisor Cd, the K3 surface S and
the family of surfaces Σ deform along as well.

Example 1.2. Let Σ be the surface in Theorem 1.1.
(1) Let a = 1, and so d = 14. Then the surface Σ is a smooth quartic scroll,

whose existence was observed in [5, 6, 16]; explicitly, in the general case, this is
P1 × P1 embedded in P5 by the linear system |O(1, 2)|.

(2) Let a = 2, and so d = 38. Then the surface Σ is a smooth “generalized”
Coble surface, whose existence was observed in [14]; explicitly, this is the blow-up of
P2 in 10 general points embedded in P5 by the linear system |10L−3(E1+. . .+E10)|.

A geometric description for the surfaces Σ is not known when a ≥ 3. In par-
ticular, we currently do not know whether the surface is smooth or even integral.
If it is smooth, all numerical invariants can be computed; in particular, it will
not be rational for any a ≥ 3. On the positive side, the construction does con-
jecturally generalize to any d ≡ 2 (mod 6). In particular, it works in general for
small discriminant (e.g., d ≤ 44) and recovers well known surfaces (e.g., the ones
in [14]). Moreover, it does provide as well many rational morphisms from the cubic
fourfold, which can be described and studied by using the associated K3 surface
S and [4]. For example, in the case a = 2, this recovers completely the picture
described in [15].

The key insight in our construction comes from derived categories; in particular,
the construction of Σ arises from understanding the Kuznetsov component Ku(Y )
of Y ([9]) and moduli spaces therein ([3, 2]). For d as in Theorem 1.1, the K3
surface S associated to Y has indeed the property that Ku(Y ) ∼= Db(S) and the
surface Σ arises from a Brill–Noether locus in a special moduli space of stable
objects in Ku(Y ). The second property in the statement of the theorem can in
fact be rephrased by saying that the ideal sheaf IΣ(a) belongs to Ku(Y ).

In what follows, we will give an outline of the construction of Σ in Section 2
and how to induce rational morphisms from Y in Section 3.

2. K3 categories and Brill–Noether loci

Let Y be a cubic fourfold and let Db(Y ) denote the bounded derived category of
coherent sheaves on Y . The Kuznetsov component Ku(Y ) of Y is defined as the
right orthogonal

Ku(Y ) := 〈OY ,OY (1),OY (2)〉
⊥ ⊂ Db(Y ).

We denote by i∗ the inclusion functor Ku(Y ) ! Db(Y ) and by i∗ its left adjoint
Db(Y ) ! Ku(Y ).

The basic properties of the Kuznetsov component are the following.

• Ku(Y ) is a K3 category, i.e., it is smooth, proper triangulated category
over C, with Serre functor given by [2], the shift by 2 functor ([9]).

• There is a cohomology lattice (H(Ku(Y ),Z), (−,−)) naturally associated
to Ku(Y ), given by topological K-theory

H(Ku(Y ),Z) := Ktop(Ku(Y )) := 〈[OY ], [OY (1)], [OY (2)]〉
⊥ ⊂ Ktop(Y ),
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where (−,−) denotes the Mukai pairing. It has a Hodge structure of weight
2, given by Hochschild homology, and the Mukai vector gives a morphism
K(Ku(Y )) ! Halg(Ku(Y ),Z) ([1]).

• The classes

λ1 := i∗[Oline(1)] λ2 := i∗[Oline(2)]

define a sublattice A2 := 〈λ1, λ2〉 ⊂ Halg(Ku(Y ),Z) ([7, 1]).
• There is a “canonical” (orbit of) stability condition σ0 which deforms over
all cubics; we denote by Stab(Ku(Y )) the connected component of the
space of Bridgeland stability conditions containing σ0 ([3]).

• Given a Mukai vector v ∈ Halg(Ku(Y ),Z) and σ ∈ Stab(Ku(Y )), the
moduli space Mσ(v) behaves “as nice as” a moduli space of semistable
sheaves on a K3 surface. In particular, if v is primitive and σ generic
with respect to v, then Mσ(v) 6= ∅ if and only if v2 + 2 ≥ 0; in such a
case, Mσ(v) is a projective irreducible holomorphic symplectic manifold
of dimension v2 + 2, deformation equivalent to a Hilbert scheme of points
on a K3 surface ([2]).

• If Y does not contain a plane, then for all y ∈ Y , the projection of the
skyscraper sheaf i∗k(y) is σ0-stable of Mukai vector λ2 − λ1; in partic-
ular, we obtain an embedding Y !֒ Mσ0

(λ2 − λ1) ([12]; the geometric
construction is in [11]).

The last property is the starting point for our construction. Indeed, let us fix
v := λ2 −λ1. If we could find another Mukai vector u ∈ Halg(Ku(Y ),Z) such that
(u, v) = −1, u2 + 2 ≥ 0, and the slope of u with respect to σ0 is larger than the
slope of v, then for F ∈ Mσ0

(u), the Brill–Noether locus

BNF :=
{
E ∈ Mσ0

(v) : min(hom(E,F ), ext1(E,F )) ≥ 1
}
⊂ Mσ0

(v)

has expected codimension 2; in particular, the intersection Y ∩BNF has expected
codimension 2 as well, and so it could define a surface ΣF (parameterized by
Mσ0

(u)).
To make this argument work, we need to prove the existence of such u and

study the non-triviality of BNF and its intersection with Y . The existence of u is
a straightforward computation: u exists if and only if d ≡ 2 (mod 6).

This Brill–Noether locus can be studied directly in low discriminant; in general,
we have to assume that d = 6a2 + 6a+ 2, a ≥ 1. In such a case, we can choose u
such that u2 = 0. Let S := Mσ0

(u). Then (up to in case slightly deform σ0) S is
a smooth projective K3 surface and the universal family U (which exists) gives a
Fourier–Mukai equivalence

ΦU : Db(S)
∼=
−! Ku(Y ).

Lemma 2.1. Let a ≥ 2. Then, for all E ∈ Mσ0
(v), we have Φ−1

U (E) ∼= IΓ, where
Γ ⊂ S is a 0-dimensional closed subscheme of length 4.
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In particular, by Lemma 2.1, we can identify Mσ0
(v) with the Hilbert scheme S[4]

(in the case a = 1 this is not true; this case has to be studied separately). We can
use this to show the following.

Lemma 2.2. Let F ∈ Mσ0
(u) general. Then (up to shift and taking derived dual)

we have
i∗F ∼= IΣF

(a),

where ΣF ⊂ Y is a surface.

Theorem 1.1 follows then directly from Lemma 2.2.

3. Morphisms

We keep the notation as in the previous section, with v = λ2 − λ1, u, and F ∈
Mσ0

(u). Then in “optimal situations” by taking extensions with F gives a well-
defined rational map

g = gF : Mσ0
(v) 99KMσ0

(v − u)

which induces a diagram

BlΣF
Y //

σ

��

BlBNF
Mσ0

(v)

�� ''P
PP

PP
PP

PP
PP

P

Y // Mσ0
(v)

g
//❴❴❴❴ Mσ0

(v − u)

and so a closed embedding f : BlΣF
Y !֒ Mσ0

(v − u).
If this is the case, and we let ∆ denote the exceptional divisor of σ, we have

the following result.

Lemma 3.1. For a divisor classe D ∈ NS(Mσ0
(v−u)) ∼= (v−u)⊥⊂ Halg(Ku(Y ),Z),

we have

f∗D = −
(D + (D, u)u, λ1 + λ2)

2
σ∗h+ (D, u)∆.

If d = 6a2 + 6a + 2 as in Theorem 1.1, then g is indeed well-defined: F corre-
sponds to a skyscraper sheaf at a point p ∈ S, and the morphism g is nothing but
the map

S[4]
99K S[5], Γ 7! p+ Γ.

Moreover, by fixing p, the morphism f gives a closed embedding BlΣY !֒ S[5].
To get rational maps from Y , we can study morphisms from S[5] and these can

be studied by simply looking at the base locus decomposition of the movable cone
Mov(S[5]), which has been completely described in [4].

In the example when a = 2 (and so, d = 38), we have the following diagram:

S[5] oo
∼= //❴❴❴❴❴❴❴

!!❈
❈❈

❈❈
❈❈

❈ M1

}}⑤⑤
⑤⑤
⑤⑤
⑤⑤

oo
∼= //❴❴❴❴❴❴❴

!!❇
❇❇

❇❇
❇❇

❇
M2

}}⑤⑤
⑤⑤
⑤⑤
⑤⑤

oo
∼= //❴❴❴❴❴❴❴❴

""❊
❊❊

❊❊
❊❊

❊❊
❊

. . .

M1 M2 . . .
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where the leftmost diagram is a Mukai flop at a P3-bundle over the Fano variety
of lines F (Y ) of Y , and the next diagram is a Mukai flop at a P2-bundle over the
product S × F (Y ).

By taking the restriction of the above sequence of morphisms to Y , we find
exactly the “trisecant flop” description in [15]

S[5] ⊃ BlΣY oo
∼= //❴❴❴❴❴❴❴❴❴❴

σ

zztt
tt
tt
tt
tt
t

''◆
◆◆

◆◆
◆◆

◆◆
◆◆

Y1 ⊂ M1

xxrr
rr
rr
rr
rr

''❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖

Y Y 1 ⊂ M1 Y 2
∼= P4 ⊂ M2.

The divisors associated to the two birational maps from Y to Y 1, respectively Y 2,
correspond, by using Lemma 3.1, to the linear systems |IΣ(3)|, respectively |I2Σ(5)|
on Y . Concretely, trisecant lines and 5-secant conics in Y .

In [15] this was used to show the rationality of Y in C38. Conjecturally ([9]) all
cubic fourfolds in Cd, where d = 6a2+6a+2, should be rational. The corresponding
picture already in the case a = 3 (d = 74) is not understood: S[5] has only one
interesting morphism, which corresponds to the linear system |I3Σ(10)| on Y , and
the rationality of Y in C74 is not known.

I would like to thank Arend Bayer, Aaron Bertram and Alex Perry for the very
nice and pleasant collaboration, Giulia Saccà, Paolo Stellari, and Sandro Verra
for very useful discussions, and Christopher Hacon, Daniel Huybrechts, Richard
Thomas and Chenyang Xu for the invitation and for the possibility of presenting
the talk.1
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École Polytechnique Fédérale de

Lausanne

1015 Lausanne

SWITZERLAND

Dr. Laura Pertusi

Dipartimento di Matematica

”Federigo Enriques”

Università degli Studi di Milano

Via Cesare Saldini 50

20133 Milano

ITALY

Prof. Dr. Alexander Polishchuk

Department of Mathematics

University of Oregon

Eugene OR 97403-1222

UNITED STATES

Prof. Dr. Alessandra Sarti

Laboratoire de Mathématiques et
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