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Introduction by the Organizers

In the middle of a pandemic, the workshop Arithmetic geometry was attended by
about half of the original invitees, a little more than 25 participants, coming from
various parts of Europe. Everybody was very glad for the chance to meet and
discuss mathematics. To enable remote participation via video from participants
overseas, we moved all talks (except on Friday) to the afternoon. The participation
via zoom turned out to work very well, but it was difficult to recreate the immersive
Oberwolfach experience via video.

The talks covered a wide spectrum of topics, related to automorphic forms,
Shimura varieties, Langlands correspondences, complex and p-adic Hodge theory,
rational points, to foundational problems on étale cohomology and reciprocity laws
encoded in sphere spectra.

In the Langlands program, concerning the relation between automorphic forms
and Galois representations, it is critical to understand the cohomology of Shimura
varieties. Ideally, one would like to know that all of the interesting cohomology is
concentrated in the expected range of degrees; often just the middle degree. Boxer
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and Pilloni reported on joint work concerning the ordinary cohomology (with Zp-
coefficients) or the cohomology of small slope (with Qp-coefficients), proving such
results. Their proof uses the Hodge-Tate period map towards the flag variety, and
is partly inspired by Kempf’s proof of the classical Borel-Weil-Bott theorems on
the cohomology of flag varieties.

For the study of Shimura varieties at p-adic places, one needs to find integral
models. It is still an open problem to find a good characterization of those in
general, but Fargues gave a related characterization of integral models of local
Shimura varieties. Moreover, one wants to understand the singularities of these
integral models, which leads to the study of local models of Shimura varieties.
These have now been analyzed in fine detail, and in particular Richarz explained
results on Cohen-Macaulayness, while Lourenço observed that in some cases local
models can fail to be normal.

Concerning the local Langlands correspondence, Fargues has recently suggested
a geometrization in terms of the stack BunG of G-bundles on the Fargues-Fontaine
curve. Le Bras reported on a proof of much of Fargues’ conjecture for GLn, while
Viehmann determined the topological space |BunG|. Hellmann explained a closely
related categorical form of the local Langlands conjecture, in terms of a fully
faithful functor from the category of smooth representations of G(Qp) towards
coherent sheaves on the stack of L-parameters.

Of much interest is also the study of the p-adic local Langlands correspon-
dence, which studies representations of G(Qp) on p-adic vector spaces, and is
important for proving automorphy (lifting) theorems following Taylor-Wiles and
Breuil-Conrad-Diamond-Taylor. While the precise form this local correspondence
should take remains mysterious beyond GL2(Qp), one can analyze the problem
via looking at global instances. New results were announced by Paškūnas, who
showed in very large generality that Hodge-Tate-Sen weights match infinitesimal
characters under this correspondence, and Schraën, who was able to determine the
“size” of the representations, as measured by the Gelfand-Kirillov dimension, in a
first interesting case beyond GL2(Qp).

Like in the usual local Langlands correspondence, one expects the p-adic corre-
spondence to be realized in the cohomology of local Shimura varieties. Motivated
by this problem, Colmez announced new p-adic comparison theorems for general
smooth p-adic analytic spaces; these are quite subtle as the relevant cohomol-
ogy groups are infinite-dimensional, and especially (pro-)étale cohomology can be
enormous.

Classical diophantine equations about rational points on curves were adressed
in the talks of Edixhoven on a geometric form of the quadratic Chabauty method
that was recently used to analyze rational points on modular curves, and in the
talk of Habegger that proved that the number of rational points can be bounded
in terms of the rank of the Jacobian. Rational points on elliptic curves, in relation
to the Birch-and-Swinnerton-Dyer conjecture and p-adic variants, were discussed
by Bertolini.
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Česnavičius discussed variants of many classical theorems in étale cohomology in
the setting of cohomology of finite flat group schemes. In particular, this includes
a general continuity formula, and a statement on invariance under henselian pairs,
yielding variants of Gabber’s affine analogue of proper base change in étale co-
homology. Gabber also generalized results in étale cohomology to new classes of
algebras, related to rigid-analytic geometry. This includes new affine Lefschetz
theorems, in particular proving some conjectures of Bhatt-Mathew and Hansen.
On the other hand, Esnault studied the hard Lefschetz theorem in étale cohomol-
ogy, and in particular the question for which classes of sheaves it holds, raising the
question whether it holds for all ℓ-adic sheaves. In characteristic 0, such results
follow from the work of Simpson on harmonic structures. Esnault outlined an
attack to this question in terms of special loci in the space of ℓ-adic local systems,
and a proof in some cases.

A central problem in Hodge theory is of course the Hodge conjecture. Starting
with Cattani-Deligne-Kaplan, one tangible direction here was to study the Hodge
loci, i.e. the locus where a given cohomology class is a Hodge class. The Hodge
conjecture predicts that this has strong algebraicity properties. Cattani-Deligne-
Kaplan proved that it is indeed an algebraic subvariety. If the ambient situation
is defined over a number field, one would moreover expect that the Hodge locus
is defined over a (the same) number field. A proof of this in many cases has been
announced by Klingler.

Finally, Clausen gave a talk on the algebraic theory of half-integral weight
modular forms, in which he made a connection between the possibility of half-
integral weights and the first stable homotopy groups of sphere π1S = Z/2Z, and
the 24-th root η of the discriminant and π3S = Z/24Z, by proving a relation
between invertible sheaves of S∧ℓ -modules attached to the Lie algebra of an elliptic
curve, and to the adelic Tate module of an elliptic curve, which is a form of a
reciprocity law.
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Abstracts

On the derived category of the Iwahori-Hecke algebra

Eugen Hellmann

1. Introduction

Let F be a finite extension of Qp or of Fp((t)) with ring of integers OF , uniformizer
̟ and residue field k. We denote by q the cardinality of k and fix an (algebraically
closed) field C of characteristic zero containing a fixed choice of a square root q1/2

of q. Recall that the local Langlands correspondence for G = GLn(F ) is a bijection




isomorphism classes
of irreducible smooth

representations π of GLn(F )



←→





isomorphism classes of n-dim
Frobenius-semi-simple Weil-

Deligne representations (ρ,N) of F





where on both sides the representations are on C-vector spaces. The simplest
special case of this correspondence is the following bijection

{
isomorphism classes

of those π such that πI 6= 0

}
←→





conjugacy classes of
(ϕ,N) ∈ GLn(C)× Lie GLn(C)

with ϕ semi-simple and Nϕ = qϕN



 .

Here I ⊂ GLn(F ) is the choice of an Iwahori subgroup, e.g. the subgroup of those
elements in GLn(OF ) that are upper triangular modulo ̟. The representations
on the left hand side can also be be described as those irreducible representations
that are subquotients of unramified principal series representations ιGBδ for some
unramified character δ of a maximal split torus T , whereB ⊂ G is a Borel subgroup
containing T and ιGB denotes (normalized) parabolic induction. Moreover, there is a
third description: the set on the left is in canonical bijection with the isomorphism
classes of simple modules over the Iwahori-Hecke algebra HG = EndG(c-indGI 1I).

For irreducible representations that have fixed vectors under an Iwahori sub-
group this classification was extended to split reductive groups by Kazhdan-Lusztig
[4]: let G be a split reductive group over F and write G = G(F ) for its F -valued
points and Ǧ for its dual group considered as an algebraic group over C. Again
we choose an Iwahori subgroup I. Then there is a surjective map





isomorphism classes of
irreducible smooth
G-representations
π such that πI 6= 0




←→





conjugacy classes of
(ϕ,N) ∈ Ǧ(C)× Lie Ǧ(C)

with ϕ semi-simple
and Ad(ϕ)N = q−1N




.

The fiber of this map over a pair (ϕ,N) is finite and can be parametrized by
certain irreducible representations of the centralizer of the pair (ϕ,N).

The aim of this talk is to describe a conjectural extension [2] of this parametriza-
tion to the level of (derived) categories. Similar conjectures/results are also the
subject of (ongoing) work of Ben-Zvi–Chen–Helm–Nadler and of X. Zhu.
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2. Formulation of a conjecture

We continue to assume that G is a split reductive group over F . Moreover, we
fix a choice of a maximal split torus and a Borel T ⊂ B ⊂ G = G(F ), and write
Ť respectively B̌ for the dual groups. We denote by W the Weyl group of (G, T )
respectively of (Ǧ, Ť ).

We write RepG for the category of smoothG-representations on C-vector spaces
and Rep[T,1]G for the Bernstein block of those G-representations all of whose irre-
ducible subquotients are also subquotients of unramified principal series represen-
tations. The category Rep[T,1]G is canonically equivalent to the category HG-mod
of modules over the Iwahori-Hecke algebra, for some choice of an Iwahori subgroup
I ⊂ G. These categories have a ZG-linear structure, where

ZG = C[X∗(T )]W = C[X∗(Ť )]W = Γ(Ť /W,OŤ /W )

denotes the center of the category Rep[T,1]G which is canonically identified with
the center of HG.

On the other hand we consider the C-scheme XWD
Ǧ

of all Weil-Deligne repre-
sentations

(ρ : WF → Ǧ,N ∈ Lie Ǧ).

Here WF denotes the Weil group of F . This scheme contains

XǦ = {(ϕ,N) ∈ Ǧ× Lie Ǧ | Ad(ϕ)N = q−1N}

as a connected component. Note that Ǧ acts on XǦ and we can form the stack

quotient [XǦ/Ǧ]. Moreover, this construction makes sense for every linear alge-

braic group H instead of Ǧ. We point out that the canonical projection to the
adjoint quotient

XǦ −→ Ǧ −→ Ť /W = SpecZG

makes QCoh([XǦ/Ǧ]) and the derived category D+
QCoh([XǦ/Ǧ]) into ZG-linear

categories.

Conjecture 1. For every (G,B, T ) as above (together with the choice of a Whit-
taker datum ψ) there exists a fully faithful ZG-linear functor

RψG : D+(Rep[T,1]G) −→ D+
QCoh([XǦ/Ǧ])

and for each parabolic subgroup B ⊂ P ⊂ G with Levi quotient M there exists a
natural ZG-linear isomorphism

ξGP : RψG ◦ ι
G
P

∼=
−→ RβP,∗Lα

∗
P ◦R

ψM

M ,

where ψM is a Whittaker datum for M induced by ψ, P is the opposite parabolic
to P , and

αP : [XP̌ /P̌ ]→ [XM̌/M̌ ] respectively

βP : [XP̌ /P̌ ]→ [XǦ/Ǧ]

are the morphisms of stacks induced by the canonical morphisms P̌ → M̌ respec-
tively P̌ → Ǧ. These data satisfy the following properties:
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- there are compatibilities among the ξGP for the various parabolic subgroups
containing B.

- If G = T is a (split) torus and T ◦ ⊂ T is the maximal compact subgroup,
then RT is induced by the canonical identification

Rep[T,1]T
∼= C[T/T ◦]-mod = C[X∗(T )]-mod = C[X∗(Ť )]-mod = QCoh(Ť ),

where Ť = XŤ is equipped with the trivial Ť -action.

- Let (c-indGNψ)[T,1] denote the image of c-indGNψ in Rep[T,1]G. Then

RψG((c-indGNψ)[T,1]) ∼= O[XǦ/Ǧ].

Remark 2. (a) There is a variant of the conjecture replacing Rep[T,1]G by

RepG and XǦ by XWD
Ǧ

.

(b) In the conjecture we are forced to consider derived categories instead of
abelian categories, as we compare structures flat over ZG with structures
that are not flat. For example (c-indGNψ)[T,1] is flat over ZG whereas the

morphism XǦ → Ť /W is not flat. In fact, at least for G = GLn, we

can identify the irreducible components of XǦ with the Ǧ-orbits in the

nilpotent cone NǦ ⊂ Lie Ǧ and it is easy to see that XǦ → Ť /W maps

all but one of these components to proper closed subschemes of Ť /W .
(c) Even worse, spelling out the compatibility among the various ξGP involves

requiring that a certain base-change morphism is an isomorphism. Work-
ing with classical schemes/stacks this is not true, and we are hence forced
to replace the schemes XH for a linear algebraic group H by a derived
scheme (defined by the equation Ad(ϕ)N = q−1N). For a reductive group
like Ǧ this does not change anything, but if H ⊂ Ǧ is a parabolic subgroup
we are forced to stick to the derived set-up. The main reason is that in
general H does not act via finitely many orbits on LieH ∩ NǦ.

3. Results

In the case G = GLn we can prove the following partial results. In the formulation
we make use of the canonical identification Rep[T,1]G

∼= HG-mod. As in the case

of GLn there is (up to isomorphism) a unique Whittaker datum ψ, we will omit
ψ from the notations.

Theorem 3. The conjecture is true for GL2.

Theorem 4. For G = GLn there exists an explicit candidate RG = − ⊗LHG
MG

such that

- RG is ZG-linear.
- RG satisfies compatibility with parabolic induction as in Conjecture 1, after
restricting to a regular locus Xreg

Ǧ
⊂ XǦ.

- RG((c-indGNψ)[T,1]) ∼= O[XǦ/Ǧ].
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The object MG is an O[XǦ/Ǧ] ⊗ZG HG-module given by the Iwahori invariants

in the family VG on [XǦ/Ǧ] interpolating the (modified) local Langlands corre-
spondence which is suggested by the work of Emerton-Helm [1] and constructed
in subsequent work of Helm [3]. More explicitly VG is the unique quotient

(c-indGNψ)[T,1] ⊗ZG O[XǦ/Ǧ] −→ VG

such that for a generic point η = (ϕη, Nη) of XǦ the fiber of VG is the rep-
resentation associated to (ϕη, Nη) by the local Langlands correspondence. The
specializations of VG to other points of XǦ can conjecturally be computed by a
similar, but slightly more involved, formula. The key to compatibility with para-
bolic induction is the conjectural identification

(1) MG
∼= RβB,∗O[XB̌/B̌].

Obviously, this identification implies that the right hand side is concentrated in
degree zero. So far we are only able to prove (1) after restriction to the regular
locus [Xreg

Ǧ
/Ǧ] which is, by definition, the open dense subset of [XǦ/Ǧ] over which

[XB̌/B̌]→ [XǦ/Ǧ] is finite.
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G-bundles on the Fargues-Fontaine curve and Newton strata

Eva Viehmann

In this talk we explain current work in progress determining the topological space
underlying the stack of G-bundles on the Fargues-Fontaine curve.

Fix a prime p and a finite extension F of Qp. Let C be an algebraically closed

complete extension of Qp and let C♭ be its tilt. Denote by X the Fargues-Fontaine

curve for C♭. The chosen field C corresponds to a point ∞ ∈ X with k(∞) = C

and ÔX,∞ = B+
dR(C).

Let G be a reductive group over F . For simplicity, we assume for this abstract
that G is quasi-split, and fix a maximal torus T and a Borel subgroup B containing
it. Then Fargues [1] proved that the set of isomorphism classes of G-bundles on X
is in bijection with Kottwitz’s set B(G) of Frobenius-conjugacy classes of elements

b ∈ G(F̆ ) where F̆ denotes the completion of the maximal unramified extension of
F . We denote the G-bundle corresponding to some [b] ∈ B(G) by Eb.

Using Kottwitz’s classification [4], the elements [b] ∈ B(G) are described by two

invariants. The first is to associate with b ∈ G(F̆ ) its image under the Kottwitz
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map κG, an element of π1(G)Γ, where Γ is the absolute Galois group of F . The
second invariant is the Newton point νb of b, an element of X∗(T )ΓQ,dom.

We have a partial order on B(G) given by [b] ≤ [b′] if κG(b) = κG(b′) and
νb′ − νb is a non-negative rational linear combination of positive coroots. By
results of Rapoport and Richartz [5], this partial order describes the specialization
order among F -isocrystals with additional structure in characteristic p.

Let BunG denote the small v-stack of G-bundles on the Fargues-Fontaine curve.
Then our main result is that the specialization order among the points of BunG is
given by the opposite of the partial order on B(G).

Theorem 1 (V., in progress). Let [b′], [b′′] ∈ B(G). Then Eb′′ ∈ {Eb′} if and only
if [b′] ≤ [b′′].

Remark 2. In [2], Fargues and Scholze prove that if Eb′′ ∈ {Eb′}, then κG(b′) =

κG(b′′). By [3], Eb′′ ∈ {Eb′} implies νb′ ≤ νb′′ , so together, these results imply one
of the directions of the theorem.

The strategy of proof involves the construction of a family of G-bundles using
Beauville-Laszlo uniformization. Let E1 be the trivial G-bundle on X . For every
x ∈ GrBdR

G (C) we obtain a new G-bundle E1,x on X by gluing the trivial bundle

over X \ {∞} and over SpecB+
dR(C) using a gluing datum determined by x. How-

ever, it turns out to be very hard to determine the isomorphism class of E1,x for

a given point x ∈ GrBdR

G (C). The main step of the proof is to circumvent this

problem by defining for a pair [b′] ≤ [b′′] ∈ B(G) two subspaces of GrBdR

G such
that the Newton stratum for [b′] resp. for [b′′] is open and dense in the respective
subspace. Furthermore, these spaces are defined in such a way that we have the
necessary closure relations between them.

References
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Higher Coleman theory

Vincent Pilloni

(joint work with George Boxer)

Let G be a split reductive group over a field k. Let B be a Borel subgroup,
containing a maximal torus T . We let X⋆(T ) be the group of characters of T . Let
FL = B\G be the Flag variety for G and π : G→ FL be the projection map. Let
d be the dimension of FL. Let W be the Weyl group of G and ρ be half the sum of
the positive roots. We have a length function ℓ : W → [0, d]. Let w0 ∈ W be the
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longest element. For any κ ∈ X⋆(T ), we define a G-equivariant line bundle Lκ over
FL. The right action of G on FL induces a left action on the cohomology groups
Hi(FL,Lκ). If κ is dominant, then H0(FL,Lκ) is a highest weight representation
of weight κ. We introduce the dotted action w · κ = w(κ + ρ)− ρ.

The following classical Borel-Weil-Bott theorem describes the cohomology of
the sheaves Lκ over FL when the characteristic of k is 0 :

Theorem 1. Assume that car(k) = 0. Let κ ∈ X⋆(T ) then :

(1) If there exists no w ∈W such that w · κ is dominant then Hi(FL,Lκ) = 0
for all i,

(2) If there exists w ∈ W such that w · κ is dominant, then there is a unique
such w, and Hi(FL,Lκ) = 0 if ℓ(w) 6= i, while Hℓ(w)(FL,Lκ) is the highest
weight w · κ representation.

Following [2], section 12, one can study the cohomology of the sheaves Lκ over
FL with the help of the Bruhat stratification FL = ∪w∈WB\BwB and build a
Cousin complex which computes the cohomology. Namely, for all w ∈ W , let
Xw be the Schubert variety equal to the closure of B\BwB in FL. Consider the
stratification of FL by closed subsets FL = Z0 ⊇ Z1 ⊇ · · · ⊇ Zd ⊇ Zd+1 = ∅
where Zi = ∪w,ℓ(w)=d−iXw. The following complex:

0→ H0
Z0/Z1

(FL,Lκ)→ H1
Z1/Z2

(FL,Lκ)→ · · · → Hd
Zd/Z1

(FL,Lκ)→ 0

computes RΓ(FL,Lκ). The cohomologies Hi
Zi/Zi+1

(FL,Lκ) are by definition cer-

tain cohomology groups with support on the Bruhat cells of codimension i.
The modules appearing in the Cousin complex are infinite dimensional, but the

action of the torus is very easy to determine and one can prove the following result
which is valid in all characteristics.

Proposition 2. Let κ ∈ X⋆(T ) and let C(κ) = {w ∈ W, w(κ + ρ) ∈ X⋆(T )+}.
Let RΓ(FL,Lκ)bw be the big weight part of RΓ(FL,Lκ), which is the direct factor
where the weights of T are > w · κ for all w /∈ C(κ). Then the cohomology
RΓ(FL,Lκ)bw is a prefect complex of amplitude [minw∈C(κ)ℓ(w),maxw∈C(κ)ℓ(w)].

One can show that the Cousin complex is a complex in the BGG category O.
In caracteristic 0, we derive a full proof of theorem 1 as a combination of some
basic properties of the category O and the description of the action of the torus
on the Cousin complex.

The main theme of our work is the coherent cohomology of Shimura varieties.
The ideas we will employ use the close relation between Shimura varieties and flag
varieties, as provided by the Hodge-Tate period map constructed in [3] and refined
in [1]. We develop methods from local cohomology similar to the Grothendieck-
Cousin complex of [2]. Let (G,X) be a Shimura datum. There are two opposite
parabolic subgroups of G attached to (G,X), called Pµ and PStdµ . The space X

embeds G(R)-equivariantly as an open subspace of FLStdG,µ(C) = G/PStdµ (C). This
is the Borel embedding.
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For any neat compact open subgroup K ⊆ G(Af ), we let SK(C) = G(Q)\X ×
G(Af )/K be the corresponding Shimura variety over C. This is a finite disjoint
union of arithmetic quotients of X .

Any representation of the Levi Mµ of PStdµ defines a G-equivariant vector bun-

dle over FLStdG,µ. By pull back to X and descent to SK(C), we obtain a functor
from the category of representations of Mµ to the category of vector bundles on
SK(C), whose essential image consists of (totally decomposed) automorphic vector
bundles.We make a choice of Borel subgroup contained in Pµ, and we let T be a
maximal torus contained in this Borel. We label irreducible representations of Mµ

by their highest weight in X⋆(T )Mµ,+. For any κ ∈ X⋆(T )Mµ,+ we let Vκ be the
corresponding vector bundle over SK(C).

The Shimura variety SK(C) has a structure of algebraic variety SK defined
over a number field E, called the reflex field. For a combinatorial choice Σ of
cone decomposition, there are algebraic compactifications StorK,Σ whose boundary

DK,Σ = StorK,Σ \ SK is a Cartier divisor. The vector bundles Vκ admit models

over SK and canonical extensions Vκ,Σ to StorK,Σ. We denote by Vκ,Σ(−DK,Σ) the
sub-canonical extension.

This paper is devoted to the study of the cohomologies of weight κ (which are
independant of Σ) : Hi(StorK,Σ,Vκ,Σ), Hi(StorK,Σ,Vκ,Σ(−DK,Σ)) as well as the interior
cohomology:

H
i
(StorK,Σ,Vκ,Σ) = Im(Hi(StorK,Σ,Vκ,Σ(−DK,Σ))→ Hi(StorK,Σ,Vκ,Σ)).

We assume that (G,X) is an abelian Shimura datum and therefore SK is (closely
related) to a moduli space of abelian varieties with certain extra structures (en-
domorphism, polarization, level structure, Hodge tensors...).

Let p be a prime number such that GQp is quasi-split. We also fix an embedding

of E →֒ Qp. We fix a compact open subgroup Kp ⊆ G(Apf ). We now consider the

following G(Qp)-representations arising from the cohomology of Shimura varieties:

Hi(Kp, κ) = colimKpHi(StorKpKp,Σ,Vκ,Σ),

and similarly Hi(Kp, κ, cusp) and H
i
(Kp, κ) = Im(Hi(Kp, κ, cusp)→ Hi(Kp, κ)).

We define a first direct summand as G(Qp)-representation Hi(Kp, κ)fs of
Hi(Kp, κ) that we call the finite slope part of Hi(Kp, κ). It contains all the irre-
ducible smooth G(Qp)-subquotients which can be embedded in a principal series

representation ι
G(Qp)

B(Qp)
λ for a character λ of T (Qp).

We define a second direct summand Hi(Kp, κ)ss of Hi(Kp, κ)fs that we call the
small slope part of Hi(Kp, κ). This direct factor of the cohomology is the smallest
which contains all irreducible subquotient smooth G(Qp)-representations which

can be embedded in a principal series representation ι
G(Qp)

B(Qp)
λ for a character λ of

T (Qp) whose p-adic valuation is small with respect to κ, in a sense that is made
precise in the paper.

We adopt similar definitions for the cuspidal and interior cohomology.
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Theorem 3. For any κ ∈ X⋆(T )Mµ,+, any prime p such that G(Qp) is quasi-
split and any compact open subgroup K, let C(κ)+ = {w ∈ W,w−1w0,M (κ+ ρ) ∈

X⋆(T )−}. Then H
i
(Kp, κ)ss is concentrated in the range

[ inf
w∈C(κ)+

ℓ(w), sup
w∈C(κ)+

ℓ(w)].

There is a classical Archimedean result due to the combined works of Blasius-
Harris-Ramakrishnan, Mirkovich, Schmid and Williams which asserts that for
any compact open K ⊆ G(Af ), the tempered at infinity interior cohomology

H
i
(StorK,Σ,Vκ,Σ)temp is concentrated in the range [infw∈C(κ)+ℓ(w), supw∈C(κ)+ ℓ(w)].

If the weight κ is such that κ + ρ is regular, then C(κ)+ consists of a single
element. The interior cohomology is therefore concentrated in one single degree.
To any representation W of the group G over a Q-vector space we can attach a
local system W on SK(C). We have the Betti cohomology groups H⋆(SK(C),W),
H⋆
c(SK(C),W) and the interior cohomology

H
⋆
(SK(C),W) = Im(H⋆

c(SK(C),W)→ H⋆(SK(C),W)).

We can consider Hi(Kp,W) = colimKpHi(SKpKp(C),W), and similarly Hi
c(K

p,W),

as well as H
i
(Kp,W) = Im(Hi

c(K
p,W)→ Hi(Kp,W)). One can consider the finite

and small slope part of these cohomology. Using Faltings’s BGG spectral sequence
we deduce easily:

Theorem 4. For any prime p such that G(Qp) is quasi-split, the small slope

at p interior Betti cohomology H
⋆
(Kp,W)ss is concentrated in the middle degree

dimSK(C).

In [1] Caraiani and Scholze proved a similar concentration result for the Betti
cohomology of unitary Shimura varieties under a genericity condition for the action
of the spherical Hecke algebra at a prime number p. Their result is much more
powerful because it also applies to the cohomology with coefficients in a ℓ-torsion
local system for a prime ℓ 6= p. The three conditions of temperdness at infinity,
genericity at p and small slope at p are related.
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Invariance under Henselian pairs for flat cohomology

Kęstutis Česnavičius

(joint work with Alexis Bouthier and with Peter Scholze)

The goal of this talk is to present results from [BČ20] and [ČS20] that established
invariance under Henselian pairs for several cohomological functors, see Theorem 5.
For context, we first explain a common utility of this invariance.

1. The role of Henselian pairs in algebraization and approximation

Definition 1. A pair (A, I) consisting of a commutative ring A and an ideal I ⊂ A
is Henselian if for every affine, étale A-scheme X , we have

X(A) ։ X(A/I).

Example 2. If A is I-adically complete in the sense that A
∼
−→ lim
←−n>0

(A/In),

then (A, I) is Henselian. If A is merely derived I-adically complete in the sense that

A
∼
−→ R limn>0(A/Lan) for a ∈ I, then (A, I) is still Henselian [ČS20, Lem. 5.6.2].

The properties of (A, I) discussed in Example 2 all depend only on the nonunital
ring I. For example, by [Gab92, Prop. 1] or [SP, 09XI], the pair (A, I) is Henselian
if and only if elements of 1 + I have multiplicative inverses and every polynomial

T n(T − 1) + anT
n + . . .+ a1T + a0 with an, . . . , a0 ∈ I

has a (necessarily unique) root in 1 + I.

We seek to exhibit invariant under Henselian pairs functors F in the sense that
F (A)

∼
−→ F (A/I) for Henselian pairs (A, I) such that F is defined on A and A/I.

Example 3 ([Gab94, Thm. 1]). For an abelian, torsion sheaf F on the étale site
of some commutative ring A0, on the category of A0-algebras A, the functor

A 7→ RΓét(A,F ) is invariant under Henselian pairs.

In Theorem 5 (b), we will establish a similar property of fppf cohomology.

The following result of Gabber shows that the functors that are invariant under
Henselian pairs behave well with respect to algebraization and approximation.

Theorem 4 (Gabber (unpublished), [BČ20, Thm. 2.1.16]). Let B be a topological
ring that has a Henselian open nonunital subring B′ ⊂ B whose induced topology
has a neighborhood base of 0 consisting of ideals of B′. If a functor

F : B-algebras→ Sets

commutes with filtered direct limits and is invariant under Henselian pairs, then

(1) F (B)
∼
−→ F (B̂).
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Here B̂ is the completion of the topological ring B. For example, we could have

(1) B := R{t}[ 1t ] with B′ := tR{t}, where R is a commutative ring and R{t}

is the Henselization of R[t] along {t = 0}, so that B̂ ∼= R((t)); or

(2) B is a Henselian Huber ring as defined in [Hub96, Def. 3.1.2] with B′ an

ideal of definition in a ring of definition, so that B̂ is a complete Huber
ring; or

(3) B := A with B′ := I for some Henselian pair (A, I) such that B′ with its

coarse topology is open in B, so that B̂ ∼= A/I.

The idea of the proof of Theorem 4. We let S be a neighborhood base of 0 in B
considered as a poset with the order U ≤ U ′ iff U ′ ⊂ U , and we consider the ring

CauchyS(B) := {germs of Cauchy nets f : S → B}

and its ideal

NullS(B) := {germs of null nets f : S → B}.

The nonunital ring NullS(B) is Henselian because it agrees with NullS(B′) which,

in turn, is an ideal in lim
−→U∈S

(∏
S≥U

B′
)

. The identification

B̂ ∼= CauchyS(B)/NullS(B)

then serves as a basic link between (1) and invariance under Henselian pairs.

This technique based on rings of Cauchy nets also leads to a reproof and a non-
Noetherian generalization of the Elkik approximation theorem, see [BČ20, §2.2].

2. Flat cohomology and invariance under Henselian pairs

The following is the promised invariance under Henselian pairs for flat cohomology.

Theorem 5. Let (A, I) be a Henselian pair.

(a) ([BČ20, Prop. 2.1.4, Thm. 2.1.7]). For a smooth, quasi-compact, algebraic
A-stack X whose diagonal is quasi-affine,

X (A) ։ X (A/I).

In particular, for a smooth, quasi-affine A-group G,

H1
fppf(A,G)

∼
−→ H1

fppf(A/I,G),

Ker(H2
fppf(A,G)→ H2

fppf(A/I,G)) = {∗},

where the H1 and H2 are interpreted in terms of torsors and gerbes.

(b) ([ČS20, Cor. 5.6.8]). For a commutative, finite, locally free A-group G,

Hi
fppf(A,G)

∼
−→ Hi

fppf(A/I,G) for i ≥ 2.
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(c) ([ČS20, Thm. 5.6.5]). If A is derived I-adically complete, I = (a1, . . . , ar)
is finitely generated, and G is as in (b), then

(2) RΓfppf(A,G)
∼
−→ R limn>0(RΓfppf(A/

L(an1 , . . . , a
n
r ), G)).

In particular, if A is I-adically complete, I is finitely generated, and G is
as in (b), then we have a short exact sequence

0→ lim
←−

1

n>0
(G(A/In))→ H1(A,G)→ lim

←−n>0
(H1(A/In, G))→ 0.

The continuity formula (2) continues to hold when A is merely an animated ring
in the sense of [ČS20, §5.1], and this added generality is crucial for the proof.

The map in (b) for i = 1 is still surjective but no longer injective: for instance,

H1
fppf(Zp, µp) 6∼= 0 but H1

fppf(Fp, µp) ∼= 0.

3. An overview of the proof of Theorem 5

In (a), one begins with an affine X , for which one uses the local structure of smooth
morphisms to eventually reduce to affine étale X (see [Gru72, I.8]) covered by Def-
inition 1. One combines the affine case, limit arguments, and Popescu’s theorem
[SP, 07GC] to reduce to Noetherian, I-adically complete A. One concludes by
combining the infinitesimal smoothness criterion with the formula

X (A)
∼
−→ lim
←−n>0

X (A/In)

that follows from Tannaka duality for algebraic stacks settled in [BHL17] or [HR19].

An analogous passage to the Noetherian, complete case reduces (b) to (c), except
that (b) for i = 2 is actually an input to (c). One deduces this low degree case from
(a) by combining the Bégueri sequence 0 → G → ResG∗/A(Gm) → Q → 0, the

identification Br(R)
∼
−→ H2(R,Gm)tors due to Gabber [Gab81, Ch. II, Thm. 1],

and the definition of the Brauer group Br(−) in terms of PGLn-torsors.

In (c), one assumes at the outset that A is animated and reduces to r = 1 with
a := a1 and G of p-power order for a prime p. One then uses the i = 2 case

of (b) to establish (2) “by hand” when the appearing H≥3
fppf all vanish. Bounds

on the p-cohomological dimension of Fp-algebras (essentially, the Artin–Schreier
sequence) ensure that this includes the case when A is an Fp-algebra. One then
deduces (2) for p-Henselian A by combining deformation theory with the p-adic
continuity formula [ČS20, Thm. 5.3.5], which, essentially, is the a = p case of (2)
and is simpler because RΓét((−)h(p)[

1
p ], G) satisfies p-complete arc hyperdescent

[BM20, Cor. 6.17]. With this in hand, the idea is to show a-completely faithfully
flat hyperdescent for the functor A 7→ RΓfppf(A,G) on a-adically complete inputs
by replacing A by its p-Henselization and using excision both for flat cohomol-
ogy [ČS20, Thm. 5.4.4] and for étale cohomology [BM20, Thm. 5.4] to reduce
the study of the flat cohomology of G to that of the étale cohomology of j!(G)
with j : Spec(A[ 1p ]) →֒ Spec(A), for which Example 3 applies. The acquired a-

completely faithfully flat hyperdescent allows one to replace A by the terms Ai of
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a large a-completely faithfully flat hypercover, constructed so that each Ai has no
nonsplit étale covers. This last property ensures that all the appearing H≥2

fppf all
vanish, to the effect that one is in the case that was already settled “by hand.”
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[BČ20] A. Bouthier, K. Česnavičius Torsors on loop groups and the Hitchin fibration, preprint
(2020), available at http://arxiv.org/abs/1908.07480v2.

[BHL17] B. Bhatt, D. Halpern-Leistner Tannaka duality revisited, Adv. Math. 316 (2017), 576–
612.

[BM20] B. Bhatt, A. Mathew The arc-topology, preprint (2020), available at http://arxiv.

org/abs/1807.04725v3.
[ČS20] K. Česnavičius, P. Scholze Purity for flat cohomology, preprint (2020), available at

http://arxiv.org/abs/1912.10932v2.
[Gab81] O. Gabber, Some theorems on Azumaya algebras, Lecture Notes in Math. 844 (1981),

129–209.
[Gab92] O. Gabber, K-theory of Henselian local rings and Henselian pairs, Contemp. Math.

126 (1992), 59–70.
[Gab94] O. Gabber, Affine analog of the proper base change theorem, Israel J. Math. 87 (1994),

325–335.
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On the Gelfand-Kirillov dimension of modulo p representations of GL2

Benjamin Schraen

(joint work with Christophe Breuil, Florian Herzig, Yongquan Hu,
Stefano Morra)

Let p be a prime and F a finite field of characteristic p. Let G be a p-adic Lie
group and fix H ⊂ G a compact open uniform pro-p-subgroup. It follows from
the work of Lazard that the complete group algebra F[[H ]] = lim

←−H′⊂H
F[H/H ′]

is a complete noetherian local ring with maximal ideal mH whose graded ring is
isomorphic to F[x1, . . . , xdimG].

Let (π, V ) be a smooth admissible representation of G over some F-vector space
V . The admissibility condition is equivalent to the fact that π∨ := HomF(V,F) is
a finitely generated F[[H ]]-module. Its graded module for the mH -topology is then
a finitely generated grF[[H ]]-module. We define the dimension dimG π of π as the
dimension of the support of gr(π∨) in Spec gr(F[[H ]]). Equivalently there exists a
positive integer C such that

dimF(π∨/mnH) ∼n→+∞
C

(dimG π)!
ndimG π.
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The integer dimG π is the Gelfand-Kirillov dimension of the graded F-vector space
gr(π∨).

Here are some examples of representations for which we know the dimension.

• We have dimG π = 0 if and only if dimF V < +∞.
• If P ⊂ G is a cocompact subgroup and (ψ,W ) is a smooth finite dimension

representation of P , we have dimG(IndG
Pψ) = dim(G/P ) where the latter

is the dimension of the p-adic analytic variety G/P .
• If G = GL2(Qp) and (π, V ) is absolutely irreducible, π 6≃ χ ◦ det for a

smooth character of Q×
p , then dimG π = 1. This is a consequence of [1],

[3] and [8].

Here is yet another example of global nature. If G = GL2(Qp), and N ≥ 3 is a
prime to p integer, let

H̃1(N,F) = lim
−→

n→+∞

H1
ét(X(Npn)Q,F)

be the (completed) cohomology with coefficients in F of the tower of modular
curves of tame level N . It is a smooth admissible representation of G carrying a
commuting action of Gal(Q/Q). Let r : Gal(Q/Q)→ GL2(F) be some absolutely
irreductible continuous representation such that

π(r) := HomGal(Q/Q)(r, H̃
1(N,F)) 6= 0

(ie a modular Galois representation of tamel level N). Then we know that π(r)
is a smooth admissible representation of GL2(Qp) and that dimG π(r) = 1. This
last fact is actually a consequence of the p-adic Langlands correspondence for
GL2(Qp) ([5], [2] etc.) and the local-global compatibility between the p-adic Lang-
lands correspondence and the completed cohomology of modular curves ([6]). A
consequence of Emerton’s work is that π(r) is (a finite direct sum of) the rep-
resentation of GL2(Qp) attached to the local Galois representation r|Gal(Qp/Qp)

:

Gal(Qp/Qp)→ GL2(F).

For other groups that GL2(Qp) we don’t know yet if there exists an analogue of the
p-adic Langlands correspondence. However looking at Galois-isotypic subspaces
in the completed cohomology of Shimura curves should give us good candidates
for representations of GL2(L), where L is a finite extension of Qp, attached to

2-dimensional representations over F of the group Gal(L/L) is some hypothetical
mod p Langlands correspondence for GL2(L). Our main result is the computation
of the dimension of such representations.

Let F be a totally real field such that p is unramified in F . Assume for simplicity
that p is inert in F . Let D be a quaternion algebra of center F which is split at
places over p and at exactly one place at infinity. Let SD be the set of ramification
places of F . We fix Kp ⊂ (D ⊗ Ap,∞F )× a compact open subgroup and define

H̃1(Kp,F) := lim
−→

Kp⊂GL2(Fp)

H1
ét(ShD(KpKp)F ,F)
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where ShD(K) denotes the Shimura curve associated to D of level K and Kp varies

among open subgroups of GL2(Fp). Let r : Gal(F/F )→ GL2(F) be some modular
continuous representation, which means that

π(r) := HomGal(F/F )(r, H̃
1(Kp,F)) 6= 0

and let Sr be the set of ramification places of r. This is a smooth admissible
representation of the group GL2(Fp) (recall that Fp is an unramified extension of
Qp).

Our main result is the following:

Theorem. We have dimGL2(Fp) π = [Fp : Qp] when the following hypotheses are
satisfied :

(i) the representation r|Gal(F/F (ζp))
is absolutely irreducible ;

(ii) the group Kp is of the form
∏
v∤pKv ⊂

∏
v∤p(OD ⊗OF OFv )× and Kv =

(OD ⊗OF OFv )× when v /∈ SD ∪ Sr ;
(iii) if v ∈ (SD ∪ Sr) \ Sp, the local framed deformation ring of r|Gal(Fv/Fv)

is

formally smooth ;
(iv) the local representation r|Gal(Fp/Fp)

is tame and “very generic”.

Let say a word about the very generic condition. Let f = [Fp : Qp]. We say that

a tame representation ρ : Gal(Fp/Fp) → GL2(F) is very generic if its restriction
to the inertia subgroup Ip is of one of the two following forms, up to twist by a
character:

• if ρ is reducible,

ρ|Ip ≃

(
ω
(r0+1)+···+pf−1(rf−1+1)
f 0

0 1

)
with 9 ≤ ri ≤ p− 12,

• if ρ is irreducible,

ρ|Ip ≃

(
ω
(r0+1)+···+pf−1(rf−1+1)
2f 0

0 ω
pf ((r0+1)+···+pf−1(rf−1+1))
2f

)

with 10 ≤ r0 ≤ p− 11, 9 ≤ ri ≤ p− 12, i > 0,

where ωf and ω2f are Serre’s fundamental characters of level f and 2f . In particu-
lar the existence of a very generic representation ρ implies that p > 19. Howeverthe
result is still expected to be true under a weaker condition as ρ generic in the sense
of [4, Def. 11.7].

It is interesting to note that [Fp : Qp] is the dimension of the flag variety
of ResFp/Qp

GL2. Our result can be thought as an “holonomy” property for the
representation π(r). Some consequences of this property are discussed in [7].

Remark. The hypothesis p inert in F is not essential and is there only for notational
convenience.
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The Sen operator and infinitesimal character

Vytautas Paškūnas

(joint work with Gabriel Dospinescu, Benjamin Schraen)

We are interested in studying Hecke eigenspaces in completed cohomology. The
main result explained in the talk says that in favourable settings if the Hecke
eigenspace is non-zero then the centre of the universal enveloping algebra acts on
its locally analytic vectors via infinitesimal character, which can be related to the
eigenvalues of the Sen operator of the corresponding Galois representation. We
explain the result in somewhat abstract setting.

Let L be a finite extension of Qp with the ring of integers O, a uniformizer
̟ and the residue field k. Let (A,m) be a complete local noetherian O-algebra
with residue field k. Let Xrig be the rigid space associated to the formal scheme
Spf A by Berthelot and let Arig be its global sections. Let G be a connected
reductive group over Qp and let K be an open compact subgroup of G(Qp). Let g
be the Lie algebra of G, let U(g) be the universal enveloping algebra of g and let
Z(g) be its centre. Further let M be an A[G(Qp)]-module, such that the induced
action of A[K] on M extends to the action of the completed group algebra A[[K]]
which makes M into a finitely generated A[[K]]-module. There is a canonical
topology on M such that the action of A[[K]] on M is continuous. Moreover, M
is compact with respect to this topology. We may define a unitary Banach space
representation of G(Qp) by

Π(M) := Homcont
O (M,L)

with the topology given by the supremum norm. We may think of Π(M) as
a family of admissible unitary Banach space representations of G(Qp) over the
maximal spectrum m-SpecA[1/p]. Namely, for x ∈ m-SpecA[1/p] we may study
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Π(M)[mx], the subspace of Π(M) consisting of elements killed by the maximal
ideal mx.

We assume that G splits over L and let Irr(GL) be the set of isomorphism
classes of irreducible algebraic representations of GL. If V ∈ Irr(GL) then we let
K act on V (L) on the right via K ⊂ G(Qp) ⊂ G(L). We further let M(V ) :=
V (L) ⊗O[[K]] M , where in the tensor product we consider V (L) as a left O[[K]]-

module via k 7→ k−1. Since by assumption M is finitely generated over A[[K]],
M(V ) is a finitely generated A[1/p]-module and we denote the quotient of A[1/p]
which acts faithfully on M(V ) by AV,M .

Theorem 1. Assume we are given a homomorphism of L-algebras χ : Z(g)L →
Arig and M as above so that the following hold

(1) there is an M -regular sequence y1, . . . , yh ∈ A such that M/(y1, . . . , yh)M
is a finitely generated projective O[[K]]-module;

(2) for all V ∈ Irr(GL), the rings AV,M are reduced;
(3) for all V ∈ Irr(GL) and all x ∈ m-SpecAV,M , Z(g)L acts on V via the

specialization of χ at x.

Then for all y ∈ m-SpecA[1/p], Z(g)L acts on the locally analytic vectors in
Π(M)[my] via the specialisation of χ at y.

The theorem is proved using density arguments. The reader should prove the
theorem when G is just the trivial group. The same commutative algebra argu-
ments are applied to the modules M(V ) in the course of the proof of the theorem.

We can also associate an L-algebra homomorphism χρ : Z(g)L → Arig, which
encodes the information about the characteristic polynomial of the Sen operator,
to a continuous Galois representation ρ : Gal(Qp/Qp)→ GL(Arig), whereGL is the
L-group. The construction uses the theory of Sen as discussed in [1], Tannakian
formalism, Chevalley’s restriction theorem and Harish-Chandra homomorphism.
It was pointed out by Peter Scholze during the talk that we should use the C-
group instead of the L-group, so in order to apply the theorem with χ = χρ the
construction of the character needs to be modified. However, in the examples
below GL is a product of GLn’s and we can get away with twisting. Informally,
our result says that if we can attach Galois representations to Hecke eigenspaces
in completed cohomology, so that at classical points the Hodge–Tate weights of
the Galois representation match the infinitesimal character of the corresponding
classical automorphic form, then this property propagates p-adically. We end the
abstract with a few examples.

Example 2. G = GQp , where G is a connected reductive group over Q with
the property that the maximal Q-split torus in the centre of G is a maximal R-
split torus in G. This means that G(R) is compact modulo its centre. M is the
completed 0-th homology with respect to a fixed tame level, localised at an open
maximal ideal m of the big Hecke algebra. A is the localisation of the big Hecke
algebra at m. In this case Π(M) is just the completed 0-th cohomology with
p inverted and Π(M)[my] is the Hecke eigenspace, see [3, §5.1] for more details.
In this case M satisfies part (1) of the theorem with h = 0, provided the tame
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level is small enough, but in this generality we don’t know how to attach Galois
representations to automorphic forms, so we don’t know how to produce χ. If G is
a definite unitary group then we can attach Galois representations to automorphic
forms and from this construct an infinitesimal character satisfying the conditions
of the theorem.

Example 3. Let F be a finite extension of Qp and let G be the restriction of
scalars of GLn over F to Qp. Then G(Qp) = GLn(F ) and our theorem applies
to the patched module M∞ in [2] with A = R∞, the patched deformation ring,
which is an algebra over the framed deformation ring of an n-dimensional mod
p representation ρ̄ of the absolute Galois group of F , with the infinitesimal char-
acter in the theorem obtained from the Galois representation obtained from the
universal framed deformation of ρ̄ by extending scalars to R∞. Part (1) follows
from [2, Prop. 2.10], the elements y1, . . . , yh are the patching variables, so that
S∞ = O[[y1, . . . , yh]] in the notation of [2]. The rings AV,M are essentially the
rings R∞(σ)[1/p] in the notation of [2, Lem. 4.17], which proves that they are re-
duced. Except that in [2] we work with K = GLn(OF ) and fix a type and here K
is some compact open subgroup, so that our ring AV,M injects into a product of
the rings of considered in [2, Lem. 4.17] with p inverted. Part (3) of the theorem
follows from the construction of the algebraic representation πalg of G out of the
Hodge–Tate weights of a Galois representation in [2, §1.8]. These Hodge–Tate
weights are precisely the eigenvalues of the Sen operator.

Example 4. Let D be a quaternion algebra over Q split at∞. Then our theorem

applies to Π(M) = Ĥ1(Up,O)m ⊗ L (with some modifications due to the centre),
the first completed cohomology group of the tower of Shimura curves associated
to D, fixed tame level Up and varying the level at p, localised at a maximal
ideal corresponding to an absolutely irreducible 2-dimensional mod p Galois rep-
resentation of Gal(Q/Q). If the ideal my in the theorem corresponds to a p-adic
Galois representation which is not Hodge–Tate at p then we can show that the
specialisation of χ at y cannot be an infinitesimal character of an irreducible finite
dimensional U(sl2)L-module. This implies that if K is a compact open subgroup

of (D ⊗ Qp)× then (Ĥ1(Up,O)m ⊗ L)[my] does not have a finite dimensional K-
invariant subquotient. By a different argument we can bound the Gelfand–Kirilov
dimension of this Banach space representation by 1 and, putting the two ingredi-

ents together, conclude that (Ĥ1(Up,O)m ⊗L)[my] is of finite length as a Banach
space representation of K. This is interesting because there should be a p-adic
Jacquet–Langlands correspondence realised by the completed cohomology, and the
result suggests that the objects on the division algebra side should be (some) ad-
missible unitary L-Banach space representations of (D⊗Qp)× of finite length and
of Gelfand–Kirilov dimension 1.
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Density of Arithmetic Representations

Hélène Esnault

(joint work with Moritz Kerz)

Let X be a smooth projective variety of dimension d defined over an algebraically
closed field k. Let ℓ be a prime number not equal to the characteristic of k. Let
η ∈ H2(X,Zℓ) be the Chern class of a polarization of X . Let F be a Q̄ℓ-local
system. If F is semi-simple one predicts the Hard Lefschetz property (HL) to be
true, that is

∪iη : Hd−i(X,F)→ Hd+i(X,F)

to be an isomorphism. Indeed, for k = C, by the comparison isomorphism between
ℓ-adic and de Rham cohomology, (HL) is true for trivial coefficients by harmonic
theory (Hodge). By work of Simpson F is semi-simple if and only if F carries a
harmonic metric ([7]). If char. k = p > 0, one easily reduces (HL) to the situation
where X is defined over a finite field, so k = F̄p. If F itself descends to a finite
field, i.e. if F is arithmetic, (HL) is proved by in [3] and [1] based on Deligne’s
theory of weights, and by the Langlands correspondence ([6]).

In absence of weights, we propose in [4] and [5] the following strategy. Let X be
a smooth connected scheme of finite type over F̄p. Fix a semi-simple continuous
residual representation ρ̄ : πét

1 (X) → GLr(F), where F is a finite extension of
Fℓ and πét

1 (X) is the geometric fundamental group based at a geometric point.
Consider the set Sρ̄ of isomorphism classes of semi-simple Q̄ℓ-local systems of a
given rank r with semi-simplified residual representation isomorphic to ρ̄. By
[2], Sρ̄ is the set of Q̄ℓ-points of a formal scheme defined over W (F), which is
noetherian and Jacobson. Assuming the Frobenius Φ leaves ρ̄ invariant, which is
true after replacing the field Fq of definition of X by Fqm for some natural number
m > 0, Φ acts on Sρ̄ as a homeomorphism. We define the set of arithmetic points
Aρ̄ ⊂ Sρ̄ as the set of points stabilized by some power of Φ, that is the set of
isomorphism classes of semi-simple Q̄ℓ-local systems which are defined over Fqm
for some positive natural number m.

Conjecture 1. (see [5]) Let Z ⊂ Sρ̄ be Zariski closed, stabilized by Φm for some
positive natural number m. Then Aρ̄ ∩ Z is Zariski dense.
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We prove the following.

Proposition 2. 1) Conjecture 1 in rank r implies (HL) in rank r ([4], [5]).
2) Conjecture 1 on P1 \ {0, 1,∞} for ρ̄ tame implies Conjecture 1 in general

([5]).

Theorem 3. The conjecture is true in the following cases.

1) For r = 1 when H1(X,Qℓ) is pure of weights 6= 0, e.g. when X is proper
or a torus ([4]);

2) For any r for Z = Sρ̄ and ℓ > 2 when X is a curve ([5]);
3) For X = P1 \ {0, 1,∞}, r = 2 and ρ̄ tame ([5]).
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Triple product p-adic L-functions, endoscopy and rational points on
ellliptic curves

Massimo Bertolini

(joint work with Marco A. Seveso, Rodolfo Venerucci)

Let E/Q be an elliptic curve over the rational numbers, which throughout this
abstract is assumed to be semistable for simplicity. Let ̺ : Gal(Q̄/Q) −→ GLn(Q̄)
be an n-dimensional Artin representation, and let L(E, ̺, s) denote the L-series
of E twisted by ̺. The equivariant Birch and Swinnerton-Dyer conjecture states
that the vanishing of L(E, ̺, s) at s = 1 implies the existence of a non-trivial point
in the ̺-isotypic component E(Q̄)̺ of E(Q̄). This talk considers representations
̺ of the form ̺1 ⊗ ̺2, where ̺i is a 2-dimensional odd Artin representation and
the self-duality assumption det(̺1) = det(̺2)−1 is satisfied. In this setting, the
modularity theorems of Wiles, Taylor-Wiles and Khare-Wintenberger guarantee
the existence of modular forms f , g and h of respective weights 2, 1 and 1, such
that L(E, s) = L(f, s), L(̺1, s) = L(g, s) and L(̺2, s) = L(h, s). To fix ideas say
that – in addition to f – g and h are also cuspidal. Note that L(E, ̺, s) is equal to
the triple product L-function L(f ⊗ g⊗ h, s), and admits an analytic continuation
to the whole of C as well as a functional equation relative to s 7−→ 2 − s. The
previous considerations motivate the next assumption:
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Assumption 1. L(f ⊗ g ⊗ h, 1) = 0.

The above setting encompasses the following

Classical setting. Let K be a quadratic imaginary field and let ηg, ηh be ray
class characters of K, which do not arise from Dirichlet characters and have in-
verse central characters. Set ̺1 = IndQ

K(ηg) and ̺2 = IndQ
K(ηh). These Artin

representations arise from weight one theta-series g and h respectively. Note that

̺ = ̺1 ⊗ ̺2 = IndQ
K(ϕ) ⊕ IndQ

K(ψ)

for ϕ = ηgηh and ψ = ηgη
c
h, where ηch is the Hecke character obtained by composing

the complex conjugation on fractional ideals of K with ηh. It follows that ϕ and
ψ are ring class characters of K, for which the factorisations

L(E, ̺, s) = L(E/K,ϕ, s) · L(E/K,ψ, s), E(Q̄)̺ = E(Q̄)ϕ ⊕ E(Q̄)ψ

hold. Assumption 1 implies, say, that L(E/K,ϕ, 1) = 0. When L(E/K,ϕ, s) has
a simple zero at s = 1, the Gross-Zagier formula guarantees the existence of a
non-trivial Heegner point in E(Q̄)ϕ and hence also in E(Q̄)̺. A construction of a
non-trivial rational point in E(Q̄)ϕ is not known in general. Let Kϕ be the ring
class field extension of K cut out by ϕ and let p be an ordinary prime for E. When
L(E/K,ϕ, s) vanishes to odd order at s = 1, the family of Heegner points defined
over the anticyclotomic p-adic tower above Kϕ can be descended to produce a
non-trivial class in a suitable p-adic Selmer group Sp(E/Q̄)ϕ containing E(Q̄)ϕ.
When L(E/K,ϕ, s) vanishes to even order at s = 1 the existence of a non-trivial
class in Sp(E/Q̄)ϕ follows from (a suitable version of) the anticyclotomic Main
Conjecture for E over the ring class field Kϕ.

Remarks 2. 1) The construction of Selmer classes alluded to above points to
the method of p-adic deformations, which will be further pursued in the
rest of this abstract.

2) The proof of the anticyclotomic Main Conjecture is heavily based on the
Jacquet-Langlands correspondence. This can be viewed as an instance of
the use of endoscopy in the arithmetic study of elliptic curves.

Returning to the general setting of a triple of cuspidal eigenforms (f, g, h) of weight
(2, 1, 1), let (f, g, h) be the triple of Coleman p-adic families interpolating (f, g, h).
Write (fk, gℓ, hm) for the specialisation of (f, g, h) at a classical triple of weights

(k, ℓ,m). Let Σf be the region of classical triples (k, ℓ,m) for which k ≥ ℓ+m and
define Σg, Σh similarly. Moreover, let Σbal be the complement of Σf ∪Σg ∪Σh in
the region of classical triples. The generic sign ǫ(k, ℓ,m) of the functional equation
for the triple-product L-function L(fk ⊗ gℓ ⊗ hm, s) is constant on the balanced
region Σbal and on the union Σf ∪Σg∪Σh of the 3 unbalanced regions, and changes
when moving from the balanced region to any of the unbalanced ones. One is thus
led to define the indefinite case, in which ǫ(k, ℓ,m) is −1 on Σbal and +1 on its
complement, and the definite case, in which the signs are opposite to those of
the indefinite case. (This terminology is motivated by the fact that the relevant
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special values are described in terms of modular forms arising from indefinite and
definite quaternion algebras, respectively.)

Indefinite case. Choose Σf as the region of classical interpolation. One may
define a p-adic L-function Lp(f, g, h)(k, ℓ,m), which interpolates the square-root
of the algebraic part of the central critical values L(fk⊗gℓ⊗hm, (k+ℓ+m)/2). See
[8] for the precise definition. The point (2, 1, 1) belongs to Σf and therefore the
behaviour of Lp(f, g, h) at (2, 1, 1) is expected to be related to a p-adic regulator
by a p-adic Bloch-Kato conjecture, generalising the Birch and Swinnerton-Dyer
conjecture. This line of research is undertaken in [1]; see also [6] for a special case.
In a restricted setting, one obtains the following explicit formula.

Theorem 3. Assume that (f, g, h) belongs to the classical setting above. Let p be
multiplicative prime for E which is inert in K. Under the additional assumptions
of [2] (to which we refer for details) the second partial derivative with respect to k
of Lp(f, g, h) at (2, 1, 1) is equal to logp(P

ϕ) · logp(P
ψ), where Pϕ resp. Pψ is a

Heegner point in E(Q̄)ϕ resp. E(Q̄)ψ and logp denotes the formal group logarithm
on E.

Remarks 4. 1) When K is replaced by a real quadratic field and Pϕ, Pψ are
replaced by so-called Stark-Heegner points, a similar formula to that of
Theorem 3 is obtained in [2] and [7].

2) By an explicit reciprocity law in the sense of Perrin-Riou, Lp(f, g, h) is
realised as the big logarithm of the p-adic Abel-Jacobi image of a family
of diagonal cycles defined in the “geometric region” Σbal. In particular
it follows that in the Heegner or Stark-Heegner case logp(P

ϕ) · logp(P
ψ)

arises as a p-adic limit of diagonal classes.
3) The starting point in the proof of the reciprocity law mentioned above

is a formula of Harris-Kudla, which for (k, ℓ,m) ∈ Σf relates the central
critical value L(fk⊗gℓ⊗hm, (k+ ℓ+m)/2) to the quantity (fk, δ(gℓ) ·hm),
where ( , ) is the Petersson inner product on weight k forms and δ
is a suitable differential operator. This expression lends itself to p-adic
interpolation, and admits a geometric interpretation in terms of diagonal
cycles at points in Σbal.

Definite case. Since the sign ǫ(2, 1, 1) is equal to −1, this setting is somewhat
more natural for the task of constructing rational points on E. The p-adic L-
function Lp(f, g, h) arises from the region of classical interpolation Σbal as in [8].

Since the point (2, 1, 1) does not belong to Σbal, the behaviour of this p-adic L-
function is not expected to be governed by a direct p-adic variant of the Birch and
Swinnerton-Dyer conjecture. Assume here for simplicity that ̺ is irreducible.

Conjecture 5 ((See [3])). There is a canonical multiple Lcan
p (f, g, h) of Lp(f, g, h),

whose value at (2, 1, 1) is equal to the formal group logarithm of a rational point
P ̺ in E(Q̄)̺. Moreover, P ̺ is non-trivial if and only if L(E, ̺, 1) has a simple
zero at s = 1.
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The above conjecture has been verified in various instances of the classical setting,
building on the main theorem of [5]. In the general setting, the following result of
[4] provides evidence for the conjecture.

Theorem 6. Assume that Lp(f, g, h) does not vanish at (2, 1, 1). Then Sp(E/Q̄)̺

is non-zero.

Remark 7. The opening gambit in the proof of Theorem 6 is the p-adic interpo-
lation of the following formula of Böcherer-Furusawa-Schulze-Pillot. For (k, ℓ,m)
and (k′, ℓ,m) in Σbal the product

L(fk ⊗ gℓ ⊗ hm, (k + ℓ+m)/2) · L(fk′ ⊗ gℓ ⊗ hm, (k
′ + ℓ+m)/2)

is related to a Petersson product (δ(ϑ(fk, fk′)|H×H), gℓ, hm), where ϑ(fk, fk′) is
a Yoshida (endoscopic) lift of the pair (fk, fk′) to the genus 2 Siegel half space
H2, |H ×H denotes restriction to two copies of the usual upper half plane H
diagonally embedded in H2, and δ is an appropriate differential operator. This
opens the way to a geometric interpretation of Lp(f, g, h)(2, 1, 1) as a p-adic limit
of classes arising in the cohomology of the Siegel threefold attached to GSp4.
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Fields of definitions of Hodge loci

Bruno Klingler

The purpose of this talk was to explain the results on fields of definition of Hodge
loci obtained in [KOU].

Let (V,V , F •,∇) be a variation of Z-Hodge structure (ZVHS) on a smooth com-
plex irreducible algebraic variety S. Recall this means the following: V is a finite
rank ZSan -local system on the complex manifold San associated to S; and the
holomorphic module with integrable connection (Van := V ⊗ZSan OSan ,∇an) on
San associated to V by the Riemann-Hilbert correspondence is endowed with a
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decreasing filtration (F •)an of DSan -modules such that for each s ∈ San the filtra-
tion F •

s on Vs is the Hodge filtration of a pure Hodge structure. Following Deligne
[De70, Theor.5.9] there exists a unique algebraic module with regular integrable
connection (V ,∇) whose analytification is (Van,∇an). We moreover assume V,
and all ZVHSs in this paper, to be polarizable. In this case there exists a unique
filtration F • on the DS-module (V ,∇) whose analytification provides (F •)an, see
[Sc73, (4.13)].

A typical example of such a ZVHS, referred to as “the geometric case”, is (V :=
R2kfan

∗ Z(k),V := R2kf∗Ω•
X/S , F

•,∇) associated to a smooth projective morphism

of smooth irreducible complex quasi-projective varieties f : X → S. In this case
the Hodge filtration F • is induced by the stupid filtration on the algebraic De
Rham complex Ω•

X/S and ∇ is the Gauß-Manin connection.

From now on we abbreviate the ZVHS (V,V , F •,∇) simply by V. Let V⊗ be
the infinite direct sum of ZVHS

⊕
a,b∈N V⊗a ⊗ (V∨)⊗b, where V∨ denotes the

ZVHS dual to V. The (tensorial) Hodge locus HL(S,V⊗) is the subset of points
s ∈ San for which the Hodge structure Vs admits more Hodge tensors than the
very general fiber Vs′ . Following Deligne [De72, 7.5] this is a meager subset of
San. While a priori HL(S,V⊗) has no nice geometric feature, in the geometric
case the Hodge conjecture easily implies that HL(S,V⊗) is a countable union of
closed irreducible algebraic subvarieties of S, see [Weil79]. Remarkably, Cattani,
Deligne and Kaplan [CDK95] (see also [BKT18] for a simplified proof) proved
unconditionnally that for any ZVHS V on S the Hodge locus HL(S,V⊗) is a
countable union of irreducible algebraic subvarieties of S, called the strict special
subvarieties of S for V (or sometimes “the irreducible components of the Hodge
locus HL(S,V⊗) ”). A special subvariety of dimension zero is called a special
point. We refer to [Voi13] for a survey on Hodge loci.

Let us now turn to fields of definitions of special subvarieties. In the geometric
case, let us suppose that the morphism f : X → S is defined over a number field
K. In that case the filtered algebraic DS-module (V , F •,∇) is also defined over K.
Again, the Hodge conjecture is easily seen to imply that each special subvariety
Y of S for V⊗ is defined over a finite extension of K and that each of the finitely
many Gal(Q/K)-conjugates of Y is a special subvariety of S for V. In fact this
follows from the weaker conjecture that Hodge classes are absolute Hodge, see
[ChSc14, 3.5].

Let us say that a general ZVHS V is defined over a number field K ⊂ C if S, V ,
F • and ∇ are defined over K: S = SK⊗K C, V = VK⊗K C, F •V = (F •

KVK)⊗K C
and ∇ = ∇K ⊗K C with the obvious compatibilities. Following Simpson [Si90,
“Standard conjecture” p.372], such a ZVHS defined over a number field ought
to be motivic: there should exist a Q-Zariski-open subset U ⊂ S such that the
restriction of V to U is a direct factor of a geometric ZVHS on U . In particular
Simpson’s “standard conjecture” and the remark above concerning the geometric
case implies:
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Conjecture 1. Any special subvariety associated to a ZVHS defined over K is
defined over a finite extension L of K and its finitely many Gal(Q/K)-conjugates
are still special subvarieties of S for V.

For simplicity of notations, we will refer to this situation by saying that V is
defined over Q, that special subvarieties are defined over Q and that their Galois
conjugates are special subvarieties.

Let us mention the few results in the direction of Conjecture 1 we are aware of:

(1) In [Voi07, Theor. 0.6 (ii)] (see also [Voi13, Theor. 7.8]) Voisin proves that if
f : X → S is defined over Q and if the special subvariety Y ⊂ S defined by
a Hodge class α ∈ H2k(X0,Z(k)) satisfies that any locally constant Hodge
substructure L ⊂ H2k(Xy,Z(k)), y ∈ Y an, is purely of type (0, 0) then Y

is defined over Q and its Gal(Q/Q)-translates are still special subvarieties
of S for V⊗.

(2) In [SaSc16] Saito and Schnell prove that for any ZVHS defined over Q a
special subvariety is defined over Q if (and only if) it contains a single
Q-point of SQ; this generalizes the well-known fact that the special subva-

rieties of Shimura varieties are defined over Q (as any special subvariety of
a Shimura variety contains a CM-point, and CM-points are defined over
Q).

Notice that both Voisin’s and Saito-Schnell’s criteria are difficult to check in prac-
tice as one usually knows very little about the geometry of a special variety Y : in
Voisin’s case one would need to control the Hodge structure on the cohomology
of a smooth compactification of X|Y ; in Saito-Schnell’s case, there is no natural

candidate for points over Q.

In [KOU] we provide a geometric criterion for a special subvariety of a ZVHS V
defined over Q to satisfy Conjecture 1. Let us first recall the notion of algebraic
monodromy group. Let S be a smooth irreducible complex algebraic variety and
V a local system on San. Given an irreducible closed subvariety Y ⊂ S, a natural
invariant attached to Y and V is the algebraic monodromy group HY of Y for V:
the connected component of the Tannaka group of the category 〈V|Y nor〉⊗QLoc of

local systems on (the normalisation of) Y tensorially generated by the restriction
of V and its dual; equivalently the connected component of the Zariski-closure of
the monodromy of the local system V|Y nor .

Definition 2. Let S be a smooth irreducible complex algebraic variety and V a
local system on San. Let Y ⊂ S be an irreducible closed subvariety. We say that
Y is weakly non-factor for V if it is not contained in a closed irreducible Z ⊂ S
such that HY is a strict normal subgroup of HZ .

Our main result in this paper is the following:

Theorem 3. Let V be a polarized variation of Z-Hodge structure on a smooth
quasi-projective variety S. Suppose that V is defined over Q. Then:
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(1) any special subvariety of S for V which is weakly non-factor is defined over
Q;

(2) its Galois-translates are special subvarieties of S for V.

As an explicit corollary we obtain:

Corollary 4. Let V be a polarized variation of Z-Hodge structure on a smooth
quasi-projective variety S. Suppose that V is defined over Q and that its adjoint
generic Mumford-Tate group Gad

S is simple. Then any strict special subvariety
Y ⊂ S for V, which is positive dimensional for V and maximal for these properties,
is defined over Q, and its Galois-translates are special subvarieties of S for V.

Theorem 3 also enables to reduce the full Conjecture 1 to the case of points:

Corollary 5. Special subvarieties for ZVHSs defined over Q are defined over Q
if and only if it holds true for special points. Similarly their Galois-translates are
special subvarieties if and only if it holds true for special points.
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Geometric quadratic Chabauty

Bas Edixhoven

(joint work with Guido Lido)

This is about joint work with Guido Lido, which started in 2018. It was announced
in Oberwolfach Report 34/2018. The aim of this work is to give a relatively simple
geometric description of the cohomological quadratic Chabauty method developed
by Balakrishnan, Besser, Dogra, Müller, Tuitman and Vonk. This approach gives
a method that probably (but not yet provably) determines if a given list of rational
points on a given curve of genus g at least two Picard number ρ and Mordell Weil
rank r satisfying r < g+ρ−1 is complete. It avoids all p-adic (non-abelian) Hodge
theory, and works in terms of Z/p2-valued points of the curve, its jacobian and its
Poincaré bundle.

By now there are good references for it: the preprint [1], 4 lectures by Edixhoven
at the Arizona Winter School [2], 1 lecture in the Number Theory Web Seminar [3].
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Cohomology of p-adic analytic spaces

Pierre Colmez

(joint work with Wies lawa Nizio l)

Let K be a field complete for vp (discrete), and let C be the completion of its

algebraic closure, C̆ = W (kC)[ 1p ], where kC is the residue field of C. Let GK be

the absolute Galois group of K.

Theorem 1. Let Y/K be a smooth, geometrically connected, dagger analytic space.
If i ≤ r, we have a bicartesian diagram of GK -modules:

Hi
proet(YC ,Qp(r)) //

��

(B+
st ⊗H

i
HK(Y ))N=0,ϕ=pr

��

Hi(Filr(B+
dR ⊗ RΓdR)) // B+

dR ⊗H
i
dR(Y )

Note:

• Dagger analytic spaces include analytifications of algebraic varieties, over-
convergent affinoids, étale coverings of Drinfeld’s symmetric spaces or,
more generally, analytic spaces with no boundary.
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• The theorem gives a description of the proétale cohomology in terms of
de Rham data which is more amenable to computations. In the realm
of algebraic varieties (and with étale cohomology in place of proétale),
theorems of this type have a long history, starting with the formulation of
the conjectures Ccris, Cst, CdR of Fontaine (refining the conjecture of Tate
on the existence of a Hodge-like decomposition for étale cohomology), and
their ensuing proofs by Fontaine-Messing, Kato, Hyodo-Kato, Faltings,
Tsuji, Nizio l, Yamashita, Scholze, etc., the most general result being that
of Beilinson [1] with no asumption on the existence of good models nor,
even, smoothness.
• In the theorem, the Hyodo-Kato cohomology groupHi

HK(Y ) is a C̆-module
with a frobenius ϕ, a monodromy operatorN , a (pro)smooth action ofGK ,

and an isomorphism ιHK : C ⊗C̆ H
i
HK(Y )

∼
→ Hi

dR(Y ). The definition [4,
5] of Hi

HK(Y ) and ιHK is a big part of the theorem; it is adapted from
Beilinson’s and uses the alterations of Hartl and Temkin to produce good
models (locally).
• In the case of algebraic varieties (or proper analytic ones), all cohomology

groups in the diagram are finite dimensional (as in [3]) and the kernels
of the horizontal arrows are 0. This is not the case for a general analytic
variety and the tensor products are (derived) completed tensor products.
Even if Hi

dR(Y ) is finite dimensional, Hi(Filr(B+
dR⊗RΓdR)) surjects onto

C ⊗ Ωr(Y )d=0 and hence can be huge (and so is Hi
proet(YC ,Qp(r))).

• In the Stein case or for an overconvergent affinoid, the horizontal arrows
are surjective and their kernels are isomorphic to (C⊗Ωr−1(Y ))/Ker d (as
in [2]).
• The general case reduces to the quasi-compact case, and then uses an

induction on the number of affinoids needed to cover the space. This in-
duction uses fine properties of the category of BC’s (BC stands for Banach-
Colmez).
• Using results of Fontaine of the type HomGK (B+

dR/t
N ,BdR) = 0, one can

recover Hi
HK(Y ) and Hi

dR(Y ) from Hi
proet(YC ,Qp). For example, we have

Hi
dR(Y )∗ = HomGK (Hi

proet(YC ,Qp),BdR).

• If we don’t assume Y to be defined over K, one can still prove the above
results but this requires (in progress) to promote the diagram to a diagram
of BC’s (slightly generalized since the spaces involved do not satisfy the
finiteness conditions required in the definition of BC’s).
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On Uniform Bounds for the Number of Rational Points on a Curve

Philipp Habegger

(joint work with Vesselin Dimitrov and Ziyang Gao)

The following theorem is due to Faltings and is also known as the Mordell Con-
jecture.

Theorem 1 ([5]). Let F be a number field and C a smooth, geometrically irre-
ducible projective curve of genus g ≥ 2 defined over F . Then the set C(F ) of
F -rational points of C is finite.

In the following we abbreviate smooth, geometrically irreducible projective
curve by smooth curve.

Faltings’s Theorem leads to the following questions for a smooth curve C of
genus g ≥ 2 defined over a number field F :

• Suppose C is presented as the solution set in some projective space of
finitely many homogeneous polynomial equations. Does there exist an
algorithm that produces a complete list of points in C(F )?
• Can one bound the cardinality #C(F ) from above in terms of suitable and

known invariants of C?

As of today, the answer to the first question is unknown. The second question
can be interpreted in many ways as the nature of the invariants is not specified.
But the answer is yes for many, and possibly all reasonable, interpretations. For
example, shortly after Faltings’s work, Parshin [12] presented a first upper bound
for #C(F ).

Later, Vojta [13] gave a new proof of the Mordell Conjecture based on ideas
from diophantine approximations. This proof led to many developments towards
the second question. Indeed, Vojta gave an upper bound for #C(F ) in his original
paper [13, Theorem 6.1]. We cite here a later result of Rémond. Let F be an
algebraic closure of F and let Jac(C) denote the Jacobian of C. Recall that
Jac(C)(F ) is a finitely generated abelian group by the Mordell–Weil Theorem.

Theorem 2 ([10]). There exists c(Jac(C)F ) ≥ 1 which depends only on Jac(C)F
with

#C(F ) ≤ c(Jac(C)F )1+rk(Jac(C)(F )).

We also mention earlier work of Silverman [11] on uniformity on the number of
rational points on twists of C.

In my talk, I presented joint work with Dimitrov and Gao on an estimate in
the spirit of Theorem 2.
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Theorem 3 ([3]). There exists c([F : Q], g) ≥ 1 which depends only on the degree
[F : Q] and g ≥ 2 such that if C is a smooth curve of genus g defined over F , then

#C(F ) ≤ c([F : Q], g)1+rk(Jac(C)(F )).

The main feature is that c([F : Q], g) does not depend on the moduli of C. Our
result answers affirmatively a question of Mazur [9], see also the earlier mention [8].

In earlier work, David and Philippon [1] obtained a completely explicit estimate
of the same quality when the curve is immersed in a power of an elliptic curve.
Here, the moduli of the elliptic curve does not appear in the bound. Later, Dim-
itrov, Gao, and myself obtained [4] a precursor to Theorem 3 where we considered
C arising in a 1-parameter family of smooth curves.

Let us indicate some of the ingredients of the proof of Theorem 3.
Our approach follows the strategy laid out by Vojta [13] in his proof of the

Mordell Conjecture.
Let C be as in the theorem and let us make the (harmless) assumption that

C(F ) is non-empty. Then the Abel–Jacobi map based at a fixed F -rational point
of C defines a closed immersion C → Jac(C). The Jacobian Jac(C) comes
equipped with a principal polarization to which we can attach the Néron–Tate

height ĥ : Jac(C)(F ) → [0,∞). It satisfies the following properties. First, the

function ĥ differs from a suitable Weil height by a bounded function on Jac(C)(F ).
By the Northcott Theorem, a subset of Jac(C)(F ) on which the Néron–Tate

height is bounded from above is finite. Second, ĥ is a quadratic form, i.e.,

〈P,Q〉 = (ĥ(P + Q) − ĥ(P ) − (̂Q))/2 is a bilinear form where P,Q ∈ Jac(C)(F ).

Third, ĥ vanishes precisely on the set of points of finite order of Jac(C)(F ). We can

view ĥ as the square of an Euclidean norm ‖·‖ on the R-vector space Jac(C)(F )⊗R.
Observe that the subspace Jac(C)(F )⊗R is finite dimensional by the Mordell–Weil
Theorem.

At the core of Vojta’s approach is his deep height inequality. An important
consequence is that there exist constants c1(C) ∈ (0,∞) and c2(C) ∈ (0, 1) with
the following property. For each y ∈ Jac(C)(F )⊗R with y 6= 0 the truncated cone

{
x ∈ Jac(C)(F )⊗ R : ‖x‖2 ≥ c1(C) and 〈x, y〉 ≥ (1 − c2(C))‖x‖‖y‖

}

can afford at most finitely many points from C(F ). The finite dimensional vector
space Jac(C)(F ) ⊗ R is covered by a finite number of cones of given angle. So at
most finitely many points in C(F ) have Néron–Tate height at least c1(C); these
are called the large points. The set of small points, those points of Néron–Tate
height less than c1(C), is finite by the Northcott Theorem.

To obtain an upper bound for #C(F ) we need more information on c1(C) and
c2(C). It turns out that c2(C) is absolute. A result of Mumford together with a
ball packing argument implies that the number of large points is bounded from
above solely in terms of rk(Jac(C)(F )); the dependency in the rank is exponential
as in Theorems 2 and 3.

The value of c1(C), roughly speaking, depends on the height of the point in
a suitable moduli space that corresponds to C, see work of de Diego [2]. So we
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cannot hope that a straightforward application of the Northcott Theorem leads to
the desired uniformity. Rather we prove a height inequality which suggests that
points on C cannot become too close to one another with respect to ‖ · ‖.

To formulate this inequality we let Mg denote the fine moduli space of smooth
curves of genus g with suitable level structure. This is an irreducible quasi-
projective variety on which we can fix a Weil height. We can realize C as a
fiber of the universal family Mg above Mg, after a finite field extension of F . We

write h([C]) for the Weil height of the F -point on Mg below C.
Let m = 3g − 2. Our height inequality amounts to the following statement.

There exists a Zariski closed and proper subset Z in the (m+1)-fold fibered power

M
[m+1]
g =Mg ×Mg · · · ×MgMg and constants c3 = c3(g) > 0, c4 = c4(g) ≥ 0 with

the following property. If each entry of (P0, P1, . . . , Pm) ∈ (M
[m+1]
g r Z)(F ) lies

on the fiber C of Mg →Mg, then

(1) max
1≤j≤m

‖Pj − P0‖
2 ≥ c3h([C])− c4.

This inequality together with other tools such as a ball packing argument and a
careful analysis of c1(C), which happens to be linear in h([C]), ultimately leads
to an upper bound on the number of small points and Theorem 3. To prove (1)
we require a functional transcendence result of Gao [6] in the spirit of the Ax–
Schanuel Theorem. An earlier height inequality for a one-parameter family of
abelian varieties, used in [4], was proved by Gao and myself in [7].
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On the ordinary part of coherent cohomology of Hilbert
modular varieties

George Boxer

(joint work with Vincent Pilloni)

1. Motivation: the case of the modular curve

Let p be a prime. We first recall the notion of the ordinary part in the sense of
Hida [5]. If M is a finitely generated Zp-module and T is an endomorphism of
M , then there is a unique T -stable decomposition M = eM ⊕ (1 − e)M so that
T is an isomorphism on eM and T is topologically nilpotent on (1 − e)M . The
idempotent e is called the ordinary projector associated to T , and eM is called
the ordinary part of M for T .

Now let X/Zp be the (compactified) modular curve of level Γ1(N) for N ≥ 3
prime to p. Let ω/X be the modular line bundle, defined as e∗Ω1

E/X where e is the

identity section of the universal generalized elliptic curve E → X. For an integer
k ∈ Z, the line bundle ωk is the sheaf of modular forms of weight k. Let X = XFp

be the special fiber, and let Xord ⊂ X be the ordinary locus.
Then we recall the following “Hida control theorem” proved in [1]. The first

case that k ≥ 3 is a classical theorem of Hida [5], which is itself a reinterpretation
of a theorem of Jochnowitz [6].

Theorem 1. There is a normalized Hecke operator Tp acting on RΓ(X,ωk),
RΓ(Xord, ωk), and RΓc(X

ord, ωk) for all k ∈ Z, and we have isomorphisms

eRΓ(X,ωk) ≃ eRΓ(Xord, ωk)

for k ≥ 3, and
eRΓ(X,ωk) ≃ eRΓc(X

ord, ωk)

for k ≤ −1.

To explain the notation let SS ⊂ X be the supersingular divisor. Then

Hi(Xord, ωk) = lim
−→
n

Hi(X,ωk(nSS))

and
Hi
c(X

ord, ωk) = lim←−
n

Hi(X,ωk(−nSS)).

This notion of coherent cohomology with compact support is due to Hartshorne
[4].

This “control theorem” also implies a vanishing theorem. Indeed by the affiness
of Xord, for all k ∈ Z we have that RΓ(Xord, ωk) is concentrated in degree 0 and
RΓc(X

ord, ωk) is concentrated in degree 1. The resulting vanishing theorem for
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eRΓ(X,ωk) is not particularly interesting, because one can prove easily using
Riemann-Roch that H1(X,ωk) = 0 for k ≥ 3 (even without applying the ordinary
projector.) Nonetheless we believe this method of proving vanishing results can
be generalized to other Shimura varieties.

2. The case of Hilbert modular varieties

From now on let F/Q be a totally real number field in which the prime p is totally
inert (we assume this for simplicity, one can also treat the case that p is unramified
in F .) Let d = [F : Q].

Let X/Zpd be a (toroidally compactified) Hilbert modular variety of some neat
level prime to p. It is a Shimura variety (of abelian type) for the group ResF/QGL2,
and (away from the boundary) it can also be viewed as a coarse moduli space of
abelian schemes A/S with an action of OF making LieA/S into a free OS ⊗ OF -
module of rank 1. X/Zpd is smooth of relative dimension d. We write D ⊂ X for
the boundary divisor and X = XF

pd
for the special fiber.

By a weight we mean a tuple of integers κ = ((kτ )τ∈Hom(F,Q
pd

); k) where the

kτ and k all have the same parity. Associated to κ is a modular line bundle
ωκ/X (which we remark is independent of k.) We say that κ is strictly regular if
kτ 6= 0, 1, or 2 for all τ ∈ Hom(F,Qpd). We then write

I(κ) = {τ ∈ Hom(F,Qpd) | kτ < 1}.

Fakhruddin and Pilloni [2] have constructed a Hecke operator Tp acting on
RΓ(X, ωκ) and RΓ(X, ωκ(−D)) for any weight κ. We would like to study the
ordinary part for this Hecke operator.

Our first result is a vanishing theorem for this ordinary cohomology in strictly
regular weight.

Theorem 2. Let κ be a strictly regular weight and let I = I(κ). Then:

• When #I = 0, eRΓ(X, ωκ(−D)) is concentrated in degree 0.
• When 0 < #I < [F : Q], eRΓ(X, ωκ) = eRΓ(X, ωκ(−D)) is concentrated
in degree #I.
• When #I = d, eRΓ(X, ωκ) is concentrated in degree d.

It can easily be seen that unlike the case of the modular curve, when d > 1 this
theorem is false without first passing to ordinary parts. For example this follows
from the existence of Hilbert modular forms in weights κ where some of the kτ
are negative, like the partial Hasse invariants introduced by Goren [3]. However
one can expect this stronger vanishing after placing a stronger restriction on the
weight κ, as for example is proved in the work of Lan and Suh [7].

We deduce this vanishing theorem from the following control theorem.

Theorem 3. Let κ be a strictly regular weight and let I = I(κ). Then there is an
isomorphism

eRΓ(X,ωκ) ≃

{
eRΓ(CI , ω

κ+ηI )[−#I] if#I ≤ d
2

eRΓc(CI , ω
κ+ηI )[#I − d] if#I ≥ d

2
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In this theorem CI ⊂ X is an Oort leaf. It is the reduced, locally closed,
subscheme for which A[p∞] is geometrically isomorphic to LTI × LTIc , where
Ic = Hom(F,Qpd)− I, and where the generalized Lubin-Tate group LTI/Fp is the
unique up to isomorphism p-divisible group of height d with OF -action such that

LieLTI
≃
⊕

τ∈I

Fp(τ)

where Fp(τ) denotes Fp with the OF action via τ . The Oort leaf CI is smooth and
affine (except in the case that I = ∅ or Hom(F,Qpd), in which case CI = Xord is
not affine because of the cusps) and it has dimension |#I−#Ic|. The weight shift
ηI appearing in the theorem has a simple combinatorial description which we do
not recall.
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On the irreducible case of Fargues’ conjecture for GLn

Arthur-César le Bras

(joint work with Johannes Anschütz)

1. Statement of the main result

Let p be a prime, and let n ≥ 1. Let Perf be the category of perfectoid spaces over
Fp. Set

Bunn

to be the small v-stack sending S ∈ Perf to the groupoid of vector bundles of rank
n on the Fargues–Fontaine curve XFF,S relative to S (and the local field Qp1).
There is a map GLn(Q̆p)→ Bunn(Fp), b 7→ Eb inducing a bijection

B(GLn) := GLn(Q̆p)/σ − conjugacy ∼= |Bunn|.

1In all the talk, we fix the base local field to be Qp, for simplicity.
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Moreover, the bundle Eb is semistable if and only if b basic. The (open) semistable
locus in Bunn has the description

∐

d∈Z

[∗/Gb(Qp)] ∼=
∐

b∈B(GLn) basic

Bunbn = Bunsst
n

j
→֒ Bunn

with deg(Eb) = d, where Bunbn is the substack parametrizing vector bundles which
are fiberwise on S isomorphic to Eb, Gb is the σ-centralizer of b (an inner form of
GLn) and Gb(Qp) is the sheaf on Perf associated to the topological group Gb(Qp).

Let also Div1 = Spd(Q̆p)/ϕZ be the moduli space of “relative Cartier effective
divisors of XFF of degree 1”. For each prime ℓ, the category of finite dimensional
continuous Qℓ-representations of WQp is equivalent to the category of finite rank

Qℓ-local systems on Div1.

For applications to representation theory, one needs to speak about ℓ-adic sheaves
on such geometric objects, for ℓ 6= p. This is subtle (especially when one wants to
deal with Qℓ-coefficients), but is part of the work in progress of Fargues-Scholze,
[3], which we will use here as a black box. For a small v-stack Y , they can define
a certain full subcategory

Dlis(Y,Qℓ) ⊆ D(Yv,Qℓ)

A key property is that Dlis(Bunn,Qℓ) admits an infinite semi-orthogonal decompo-

sition by the categoriesDlis(Bunbn,Qℓ), b ∈ B(GLn), and that for each b ∈ B(GLn),
there are equivalences

D(Rep∞
Qℓ
Gb(Qp)) ∼= Dlis([∗/Gb(Qp)],Qℓ) ∼= Dlis(Bunbn,Qℓ)
π 7→ Fπ

with Rep∞
Qℓ
Gb(Qp) the category of smooth Qℓ-representations of Gb(Qp).

Here is the main result (in progress) of this talk, which is a special case of Fargues’
conjecture (for the group GLn, and in the irreducible, instead of indecomposable,
case).

Theorem 1. For each irreducible ℓ-adic WQp -representation E of dimension n,

there exists an object AutE ∈ Dlis(Bunn,Qℓ) such that

(1) AutE is a Hecke eigensheaf with eigenvalue E.
(2) AutE is cuspidal, i.e. killed by the geometric constant term functors at-

tached to all proper parabolics of GLn (in particular, AutE ∼= j!j
∗AutE).

(3) AutE is concentrated in degree 0 and irreducible on each connected com-
ponent of Bunn.

(4) For b ∈ B(GLn) basic,

j∗bAutE ∈ Dlis(Bunbn,Qℓ) ∼= D(Rep∞
Qℓ
Gb(Qp))

is the (Jacquet-)Langlands correspondent LLb(E) of E.
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Remark 2. Our proof uses the existence of the local (Jacquet)-Langlands corre-
spondence and its realization in the ℓ-adic cohomology of the Lubin-Tate tower.
The local (Jacquet-)Langlands correspondence is anyway invoked already in the
formulation of Fargues’ conjecture, but it would be nice to obtain, starting from
E, a more direct geometric proof (not relying on local Langlands) of the existence
of a non-zero object in Dlis(Bunn,Qℓ) satisfying properties (1)-(3) of the theorem.
This is the subject of work (very much) in progress, inspired by [4].

2. Around the spectral action

As the local (Jacquet-)Langlands correspondence for GLn is known, properties (2)
and (4) in Theorem 1 force

AutE ∼=
⊕

b∈B(GLn) basic

jb,!(FLLb(E)).

This gives a possible definition of AutE , but it seems difficult to use it to check
property (1) (and also (2)) in the theorem. We therefore take a somehow opposite
road, and define a candidate for AutE which by design satisfies property (1) –
the work is then in proving that it also satisfies all the other properties. This
definition is inspired by ideas of Beilinson, Drinfeld and Gaitsgory, coming from
the geometric Langlands program.

To explain them, let us first state a very strong conjecture, which is an analog
of the main conjecture of [1]. Let XĜ be the Artin stack of n-dimensional ℓ-

adic representations of WQp , i.e., of homomorphisms WQp → Ĝ(Qℓ), taken up to
conjugacy.

Conjecture 3 (Fargues–Scholze2). There exists an equivalence

L : Db(Coh(XĜ))
≃
−→ Dlis(Bunn,Qℓ)

ω .

HereDlis(Bunn,Qℓ)
ω denotes the category of compact objects inDlis(Bunn,Qℓ).

The equivalence L is expected to satisfy the following conditions:

(1) L is equivariant for the action of Rep(Ĝ) on both sides, which is defined as
follows. Choose a completed algebraic closure C of Qp (which we already

did when considering WQp), i.e., a point of Div1. The usual Hecke functor,

combined with pullback along Spd(C♭)→ Div1 and the crucial invariance

Dlis(Bunn,Qℓ) ∼= Dlis(Bunn × Spd(C♭),Qℓ),

provide an action T : Rep(Ĝ)×Dlis(Bunn,Qℓ)→ Dlis(Bunn,Qℓ). For the
left hand side, note that we have a morphism

f : XĜ → [Spec(Qℓ)/Ĝ]

and an induced monoidal functor f∗ : Rep(Ĝ) → Perf(XĜ). Thus, V ∈

Rep(Ĝ) acts simply by tensoring with the vector bundle f∗(V ).

2See also the report by Hellmann in this volume for related ideas and results.
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(2) For E an irreducible ℓ-adic representation of WQp , the object of Dlis(Bunn,

Qℓ) attached to E by Fargues’ conjecture is

L(k(E)),

with k(E) the regular representation of the center Gm ∼= Ẑ ⊆ Ĝ at the

closed substack [Spec(Qℓ)/Ẑ] ⊆ XĜ determined by E.
(3) L(OXĜ

) ∼=Wψ, where Wψ := j1,!(FcInd
GLn(Qp)

N(Qp)
ψ

), for some generic charac-

ter ψ : N(Qp)→ Q
×

ℓ , with N ⊆ GLn the standard unipotent subgroup of
strictly upper triangular matrices.

If we assume Conjecture 3, we see that an action

Perf(XĜ)×Dlis(Bunn,Qℓ)→ Dlis(Bunn,Qℓ), (W,F) 7→W ∗ F ,

called “the spectral action”, of the category Perf(XĜ) of perfect complexes on XĜ

on Dlis(Bunn,Qℓ) is expected to exist. Of course, the action of Perf(XĜ) should

extend the action of Rep(Ĝ), L should be linear for the actions of Perf(XĜ) on
both sides.

A nice consequence of the results of Fargues-Scholze is that one can construct
this spectral action, despite the fact that Conjecture 3 is currently out of reach,
by combining the existence and properties of the geometric Hecke action together
with some general categorical machinery, developed in recent work of Gaitsgory-
Kazhdan-Rozenblyum-Varshavsky, [5].

Theorem 4 (Fargues–Scholze, [3]). The spectral action of the category Perf(XĜ)

on Dlis(Bunn,Qℓ) exists.

3. Some ideas on the proof of the main result

Assume momentarily Conjecture 3. From the equality L(OXĜ
) ∼=Wψ, one derives

the formula

L(V) ∼= V ∗Wψ

for V ∈ Perf(XĜ). In particular, let E be an irreducible ℓ-adic representation of
WQp of rank n. Then k(E) ∈ IndPerf(XĜ), and we can apply to it the previous
considerations and note that the right hand-side now makes sense without assuming
the conjecture, by Theorem 4. Therefore, we define

AutE := k(E) ∗Wψ

as a candidate for Fargues’ sheaf associated to E.
The fact that AutE satisfies property (1) in Theorem 1 is now easy. Much

more work is required to verify properties (2)-(4). (Note that it is not even clear
a priori that AutE is non-zero!) To deal with them, the main idea is to consider
the spectral action of another object of Perf(XĜ) than k(E). Namely, we consider
the first averaging functor

Av1
E∨,n := RΓ(WQp , f

∗Vst ⊗ E
∨) ∗ (−).
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Since

RΓ(WQp , f
∗Vst ⊗ E

∨) ∼= k(E)1 ⊕ k(E(1))1[−1] ∈ Perf(XĜ)

(where k(E)1 corresponds to the 1-dimensional representation x 7→ x of Ẑ ∼=
Gm, and similarly for E(1)), understanding the properties of Av1

E∨,n gives some
information about the action of k(E). It is possible, due to the concrete description
of this functor: explicitly,

Av1
E∨,n(F) =

−→
h !(
←−
h ∗(F)⊗ α∗E∨)[n− 1]

where

Mod1
n := {E →֒ E ′ fiberwise injective, deg(E ′) = deg(E) + 1},

the map
←−
h : Mod1

n → Bunn, resp.
−→
h : Mod1

n → Bunn, remembers E , resp. E ′,
and the map α : Mod1

n → Div1 remembers the support of the cokernel of the
modification. This allows us to check that

Av1
E∨,n(Wψ) ∼= jb,!FLLb(E) ⊕ jb,!FLLb(E(1))[−1],

where b ∈ B(GLn) is the class corresponding to O(1/n). This identification is an
important step towards the proof of properties (3)-(4).
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On the Dedekind eta function

Dustin Clausen

The results in this talk were motivated by a talk of Deligne’s, [3]. Let M denote
the moduli stack of elliptic curves; we’ll need to restrict to Q-schemes at some
point so I’ll take it over Q. There is an important line bundle on M, the Hodge
bundle ω, defined as the dual to the relative Lie algebra of the universal elliptic
curve. Modular forms of weight k (of level one with poles at ∞) are sections of
ω⊗k. Now, the basic classical facts I want to draw attention to are the following.

(1) There is a canonical trivialization ω⊗12 ≃ O, corresponding to the modular
form of weight 12 known as Ramanjuan’s ∆-function, whose q-expansion
is ∆(q) = q ·

∏
n≥1(1− qn)24.
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(2) Over the scheme M[24] parametrizing elliptic curves with level 24-struc-
ture, there is a square root ω⊗1/2 of ω and a section η : ω⊗1/2 ≃ O, the
Dedekind eta function, whose 24th power is (the pullback of) ∆.

The thing to note here is that the q-expansion of ∆ shows that the 24th root
of ∆, as a function on the upper half-plane, has a nice q-expansion with integral
coefficients (neglecting the leading q1/24). But even more is true by (2): η is itself
a modular form of some level, though of half-integral weight, just like the theta
series. In the background to this fact about η is a more general puzzle which
Deligne highlighted in his talk: why is there a reasonable theory of modular forms
of half-integral weight, but not, say, 1/3-integral weight?

The answer is that only for 1/2-integral weight modular forms is there a notion
of Hecke operators (developed by Shimura, [4]). But then why is this? First,
recall why ordinary modular forms admit Hecke operators: it is because the Lie
algebra of an elliptic curve (over a Q-scheme) is an isogeny invariant. Thus, when
you form a Hecke correspondence, the line bundle on the top is pulled back from
either side, letting one compose pullback and transfer to get an operator. In adelic
terms, the explanation is that the moduli stack M[∞] of elliptic curves with full
level structure carries a GL2(Af )-action, and (the pullback of) ω is canonically
equivariant for this action.

Now, according to Deligne, the reason why 1/2-integral weight modular forms
have Hecke operators is that the µ2-gerbe of square roots of the Lie algebra of
an elliptic curve up to isogeny is purely determined by its Af -Tate module. More
precisely, every lisse Af -sheaf canonically determines a µ2-gerbe, such that if the
lisse sheaf comes from an elliptic curve up to isogeny then this agrees with the
µ2-gerbe of square roots of the Lie algebra. (Moreover, this is no longer true if
you replace µ2 by µn for n > 2.)

Indeed, this implies that on M[∞] there is a canonical square root ω⊗1/2 of ω

which is equivariant with respect to the action of ˜GL2(Af ), a canonical “meta-
plectic” µ2-central extension of GL2(Af ). In concrete terms, this central extension
resolves the sign ambiguitites which arise in this theory of Hecke operators. This
whole story is some version of the usual story of automorphic forms on metaplectic
groups, but living natively in algebraic geometry.

To construct the required µ2-gerbe associated to a lisse Af -sheaf is not so diffi-
cult (in one way or another it corresponds to the product of the Hilbert symbols
at the finite primes p), but proving that it agrees with the µ2-gerbe of square roots
of ω in presence of an elliptic curve is tricky. Deligne proceeds in three steps:

(1) He does it over C where it becomes a purely topological question which
reduces to Hilbert’s form of the quadratic reciprocity law.

(2) Then he does it explicitly over Z((T ))⊗Q, using Gauss sums.
(3) Then he argues that the general case follows from (1) and (2) by some sort

of gluing principle.

We will give an approach which directly proves the result over M, bypassing
(1) and (2). In particular, the quadratic reciprocity law becomes a corollary rather
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than an ingredient. (We obtain essentially the proof of quadratic reciprocity given
in [2], which was the other inspiration for this work.) On the other hand I have the
impression that Deligne knows how to make the whole story work over Z, whereas
for what I’m about to say we do have to work over Q.

Actually, we’ll prove something quite a bit more general. Note that the µ2-
gerbe of square roots of a line bundle L over a base X is classified by the etale
cohomology class in H2(X ;µ2) given by the mod 2 reduction of the first Chern
class c1(L) ∈ H2(X ;Z2(1)). Then we have the following:

Theorem. Let ℓ be a prime and n ≥ 1. There are functorial characteristic classes
for lisse Af -sheaves valued in H2n(ℓ−1)(−;Z/ℓZ), such that for an abelian variety
up to isogeny over a Q-scheme, the value of these characteristic classes on the
Tate module agrees with the (mod ℓ) reduction of the n(ℓ− 1)st Chern class of the
vector bundle given by the relative Lie algebra.

Note that the (mod ℓ) reduction of the Chern class a priori lives in etale co-
homology with values in Z/ℓZ(n(ℓ − 1))), but the (ℓ − 1)st Tate twist of Z/ℓZ is
canonically trivial so this matches up.

Why is it only when the degree is a multiple of 2(ℓ − 1) that the (mod ℓ)
reduction of the Chern class “transfers over” to the Tate module? The answer is
in a result proved by Thom (at least for ℓ = 2) in the topological context, [5]:
in exactly those degrees, the (mod ℓ) reduction of the Chern classes of a vector
bundle only depend on the associated stable spherical fibration. Indeed, the deeper
statement underlying our above theorem is that there is an etale stable spherical
fibration associated to any lisse Af -sheaf which, applied to Tate modules, agrees
with the stable spherical fibration associated to the Lie algebra of an abelian
variety up to isogeny. To prove this one realizes these spherical fibrations as
appropriate dualizing objects in a theory of etale sheaves of spectra; then one sees
that the dualizing object for an abelian variety only depends on its “homotopy
type”, controlled by the Tate module. This is an analog of a result of Atiyah, [1]
in the topological context. To get the isogenies to play along requires some more
nuanced set-up, but it’s not so hard in the end.

So much for the general theory of half-integer weight modular forms. But what
about η? I have to admit I don’t have a fully satisfactory story. But one aspect is
an analog to the above theorem for Euler classes instead of Chern classes:

Theorem. Let ℓ be a prime. There is a characteristic class for rank n lisse Zℓ-
sheaves T over Z[1/ℓ]-schemes X valued in etale cohomology Hn(X ; ΛnT ), such
that if T is the Zℓ-Tate module of an abelian variety over X, then this class agrees
with the ℓ-adic Euler class of the relative Lie algebra.

Again we can note that the Euler class of a vector bundle of rank d (which agrees
with its top Chern class cd) lives in H2d(X ;Zℓ(d)), but both the degrees and the
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coefficients match up to make the statement of the above theorem well-defined
(this time for slightly less trivial reasons).

Restricted to elliptic curves, this shows that the full first etale Chern class

c1(ω) ∈ H2(M; Ẑ(1)) is completely determined by the Ẑ-Tate module of the uni-
versal elliptic curve. If we take for granted that the class of ω in Pic(M) is torsion
(as can be proved without exhibiting ∆), it follows that the question of the order
of ω in Pic(M) being 12, as well as the problem of producing η as a modular form
— that is, the two classical facts we started the lecture with — can be decided
purely in the world of characeteristic classes for lisse Zℓ-sheaves of rank 2, and
in fact can be produced by direct computation of the continuous cohomology of
GL2(Zℓ).
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Finiteness and duality for étale cohomology over certain
generalizations of Tate algebras

Ofer Gabber

I discussed properties of étale cohomology of certain schemes over a rank 1 valua-
tion ring V with residue field k, K = Frac(V ) and value group Γ s.t. Γ/ℓΓ is finite
(of dimension r over Fℓ), where ℓ is a prime invertible in V and the coefficient ring
is Λ = Z/ℓn (n > 0). Let η = Spec(K) (resp. s = Spec(k)) be the generic (resp.
closed) point of S = Spec V , j : η →֒ S. Then KS = τs≤r−1Rj∗Λ is a dualizing
complex on S.

Slicing lemma: Let S = SpecA be a topologically nœtherian affine scheme, S′ =
SpecA(t) where A(t) is the localization of A[t] w.r.t. the multiplicative set of
fiberwise nonzero polynomials, π : P1

S → S. If K ∈ D+(P1
S ,Λ), where Λ is a

nœtherian torsion ring and the étale topology is understood, i ∈ Z, and HiK|S′ ,

Riπ∗K, Ri−1π∗K are constructible, then HiK is constructible.

This (and variants) gives alternate proofs of results of [3], and more generally that
in our context Rf∗ preserves Db

c for a morphism between finite type V -schemes.
For a : X → S (separated) of finite type let KX = Ra!KS; extending [3] 4.3, one
shows that it is a dualizing complex. The case r = 0 is analogous to manifolds
with boundary in topology.



Arithmetic Geometry 1069

Let us consider the modified dimension function δ(s) = 0, δ(η) = r on S, extended
to schemes of finite type over S as in [6] 2.1. Similarly to [6] 2.4 one can prove
the “affine Lefschetz” theorem stating that for f : X → Y an affine morphism
between S-schemes of finite type, δ(Rqf∗F ) ≤ δ(F )−q for F a sheaf of Λ-modules
on X . One deduces that if V is an absolutely integrally closed valuation ring (of
any rank) and ℓ a prime invertible on V and X an affine V -scheme of finite type,
then cdℓX is the maximum of the dimension of fibers of X → Spec V . When V
is complete, using the slicing lemma, and techniques of partial algebraization and
comparison to the completion one can prove a finiteness result for schemes of finite
type over a restricted formal series ring V {x1, . . . , xn} (finiteness for Rj∗ when j
is the inclusion of the generic fiber) reproving results of Huber and Berkovich, see
[2] and references therein. By a method similar to that of [5] one can reprove [1]
7.3 and prove the statement expected in [1] 7.4. More generally in our case “affine
Lefschetz” holds for schemes of finite type over V {x1, . . . , xn}. To prove this the
idea is to use a weak local uniformization result as in [7] XV to approximate the
studied situation by a finite type situation with the same combinatorics. This can
be done for a certain generalization of the affinoid algebras used in classical rigid
geometry. From now on V is complete without restriction on Γ. Recall that a
special case of [4] 7.4.1 gives that if A is a flat V -algebra complete and separated
for the a-adic topology (a being a pseudo-uniformizer) s.t. the strict henselizations
of A/aA are strict henselizations of finite type V -algebras and A⊗

V
k is nœtherian,

then A is a-adically t.u. adhesive, in particular AK is nœtherian. We say that such
an A is tempered if there is an étale faithfully flat A/aA→ A′ and a weakly étale
B → A′, B flat of finite presentation over V/a. [This condition is independent of
the choice of a.] In the above situation if B is a quotient of a smooth V -algebra
C then we have a formal liftings A/an → A′

n ← C and C → A′ lifts uniquely to
a formally étale C → A′′ (A′ being the quotient of A′′ by an ideal of definition),
with SpfA′′ playing the role of a smooth ambient space for Spf(lim←−A

′
n).

By a small extension of V we mean the normalization of V in a complete valued
L/K which is a finite extension when char(K) = 0 and a purely inseparable
extension of finite height of a finite extension when char(K) > 0.

For a tempered V -algebra A we can extend Kiehl’s excellence result [8] and show
that AK is excellent. This comes with a dimension function and a Jacobian crite-
rion, and in particular one gets that morphisms like A[X ] → A{X} and A→ Âhx
(x ∈ Spec(A⊗

V
k)) are flat, and regular on generic fibers, and then using Popescu’s

theorem and some work they are filtered colimits of smooth algebras. This gives
an approximation technique similar to the one used in [7] VII to prove weak local
uniformization for quasi-excellent schemes.

We say that a morphism of log schemes is locally plurinodel if étale locally it is a
finite composition of morphisms which are locally pullbacks of morphisms defined
by the monoid map 0 → N or N → N × N. We equip S with the standard log

structure coming from the log ring V − {0} → V . If (X,M)
ϕ
−−→ (S,N) is a
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morphism of log schemes s.t. X is of finite type over a tempered V -algebra, we
say that ϕ is of plurinodel type along the special fiber if étale locally along the
special fiber (X,M) admits a formally a-adically weakly étale strict morphism to
a locally plurinodel T → (S,N). One can omit “along the special fiber” by adding
a suitable condition. In this case the log structure M is determined by the locus
of triviality as in the case of log regular schemes.

Local uniformization: If A is a tempered V -algebra, X/A V -flat of finite type,
Z ⊂ X nowhere dense closed subset, then there is a v-covering X ′ =

∐
i∈I

X ′
i → X

and a nowhere dense Z ′ ⊂ X ′ containing the preimage of Z, s.t. I is finite and
∀ i ∈ I, X ′

i is of finite type, generically finite and maximally dominating over
X ⊗

A

(
A ⊗̂
V
Vi
)

for small Vi/V , and (X ′
i, Z

′
i) is of plurinodel type over Vi.

Using this one can mimic some results of [7].

In particular if Γ/ℓΓ is finite we have that Rf∗ preserves constructibility for a
morphism of finite type A-schemes, and one can construct canonical dualizing
complexes on finite type A-schemes using the local ambient spaces mentioned
above with globalization using vanishing of negative Ext’s.
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Cohen-Macaulayness of local models

Timo Richarz

(joint work with Thomas J. Haines, partly with João N. P. Lourenço)

A prototypical example of a Shimura variety is the Q-space of isomorphism classes
of g-dimensional principally polarized abelian varieties with level structure. If
the level at a prime p is parahoric, one can construct an integral model of this
space over Zp by considering isogeny chains of abelian schemes having the same
shape as the lattice chain which determines the parahoric subgroup of GSp2g(Qp).
Typically the resulting schemes have bad reduction. The local models serve as
a tool to understand the singularities arising in the reduction modulo p. They
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are projective schemes over Zp defined in terms of linear algebra -thus are easier
to handle- and are étale locally isomorphic to the integral model for the Shimura
variety. Here I report on some recent results about the geometry of local models
for general groups, see [5] and [6].

For expository purposes we restrict ourselves to the following set-up: We fix
a triple (G, {µ},Gf ) where G is a reductive Qp-group, {µ} a minuscule conju-
gacy class of geometric cocharacters defined over a finite extension E/Qp, and
Gf is a parahoric Zp-group scheme with generic fiber G. We assume that G ∼=
ResF/Qp

(G1) where F/Qp is a finite (possibly wildly ramified) extension, and G1

is a tamely ramified reductive F -group. Pappas-Zhu [11] and Levin [9] attach to
the triple (G, {µ},Gf ) the Pappas-Zhu local model

M = M(G, {µ},Gf ),

which is a flat, projective OE-scheme equipped with a left action of G⊗OE . Recall
that its construction requires certain auxiliary choices, but that the PZ local model
depends, up to equivariant isomorphism, only on the data (G, {µ},Gf ), see [7,
Thm. 2.7] and [9, Rmk. 4.2.5]. We also note that He, Pappas and Rapoport [7,
Def. 2.10] define the local model to be the PZ local model of a suitable z-extension
of (G, {µ},Gf ), which by [5, Cor. 2.3] coincides with the (weak) normalization
of M. The advantage of this point of view is that the so defined local model is
characterized by Scholze’s conjecture, see [7, Cor. 2.17] and Lourenço’s report in
the volume for results in this direction.

In this report, we work with the PZ local model M. The generic fiber M⊗E is
the variety of type {µ} parabolic subgroups in G. The special fiber is equidimen-
sional, but not irreducible in general, and is equipped with a closed embedding
into the partial affine flag variety

M⊗ F̄p →֒ FlG♭,f♭ .

The pair (G♭, f ♭) is an equal characteristic analogue over the local function field
F̄p((t)) of the pair (G, f). Under this embedding the reduced locus of M ⊗ F̄p
identifies by [4, Thm. 5.14], with no restriction on p, with the admissible locus

A(G, {µ}) ⊂ FlG♭,f♭ ,

which is the union of the affine Schubert varieties indexed by the {µ}-admissible
set of Kottwitz-Rapoport. The following theorem proves results on the geometry
of PZ local models under weaker hypotheses than the hypothesis p ∤ |π1(Gder)|
in [11, Thm. 9.3] and [9, Thm. 4.3.2]. We recover as special cases the results of
[11] in this direction and those of [3], which treats unramified groups and facets f
whose closure contains a special vertex1.

Theorem 1. Let (G, {µ},Gf ) be as above, and assume that all Schubert varieties
inside A(G, {µ}) are normal.

1But we note that [3] includes p = 2.
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(1) The special fiber M⊗ F̄p is geometrically reduced. More precisely, as closed
subschemes of FlG♭,f♭ , one has

M⊗ F̄p = A(G, {µ}).

Further, each irreducible component of M ⊗ F̄p is normal, Frobenius split
and has only rational singularities.

(2) The PZ local model M is normal and, if p > 2, also Cohen-Macaulay with
dualizing sheaf given by the double dual of the top differentials

ωM =
(
ΩdM/OE

)∗,∗
,

where d is the Krull dimension of the generic fiber.

Furthermore, all Schubert varieties inside A(G, {µ}) are known to be normal

• if p ∤ |π1(Gder)|, see [10, Thm. 8.4];
• if µ̄ ∈ X∗(T )I is minuscule for the échelonnage root system, and the facet
f contains a very special vertex, for example, if G is unramified, {µ} is
minuscule and Gf (Zp) is an Iwahori subgroup, see [6].

In view of [8] the corresponding integral models of Shimura varieties with para-
horic level structure are normal and Cohen-Macaulay as well. The reader is re-
ferred to [1] for some applications of the Cohen-Macaulay property to the coherent
cohomology of Shimura varieties.

Theorem 1 (1) gives new cases of normal PZ local models with reduced spe-
cial fiber. The proof follows the original argument of Pappas-Zhu, using as a key
input the Coherence Conjecture proved by Zhu [12]. This is justified by our as-
sumption on the normality of Schubert varieties inside A(G, {µ}). For (2), the
normality of M is an immediate consequence of (1) by Serre’s criterion. The
Cohen-Macaulayness of M is deduced from a homological algebra result combined
with the well-known theorem of Zhu [12, Thm. 6.5]; here the restriction p > 2
enters. In particular, our method avoids using any finer geometric structure of the
admissible locus A(G, {µ}) as for example in [2, §4.5.1] or [3].

Furthermore, our assumption on the normality of Schubert varieties inside
A(G, {µ}) is necessary for M being well-behaved, see [5, Rmk. 2.4] and [6]:

Proposition 2. If a single Schubert variety inside A(G, {µ}) is not normal, then
M is not normal, not Cohen-Macaulay and its special fiber is not reduced.

An example is given by the Weil restriction of scalars G = ResF/Q2
(PGL2)

along a totally ramified quadratic extension F/Q2, the unique minuscule class {µ}
and the special vertex f corresponding to the standard lattice O2

F . In this case, the
admissible locus A(G, {µ}) is the quasi-minuscule Schubert variety in the affine
Grassmannian for PGL2 over F̄2. The completed local ring at the singular point
is the F̄2-algebra

F̄2[[x, y, v, w]]/(vw + x2y2, v2 + x3y, w2 + xy3, xw + yv).

This is a surface singularity which is geometrically unibranch, but neither weakly
normal, nor Cohen-Macaulay, nor Frobenius split. The existence of non-normal
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Schubert varieties was first observed by Lourenço and came as a total surprise to
the author, see [6]:

Theorem 3. Assume that G as above is absolutely almost simple and semisim-
ple. If p | |π1(G)|, then there are only finitely many Schubert varieties in the
partial affine flag variety FlG♭,f♭ over F̄p which are normal. The non-normal
Schubert varieties are geometrically unibranch, but neither weakly normal, nor
Cohen-Macaulay, nor Frobenius split.

In fact, we give in [6] an effective criterion to determine which Schubert vari-
eties are normal. Interestingly, the Schubert varieties inside the admissible locus
A(G, {µ}) are still normal if µ̄ ∈ X∗(T )I is minuscule for the échelonnage root
system and f contains a special vertex in its closure. Note that in the example of
PGL2 above µ̄ is only quasi-minuscule. The classification of normal Schubert va-
rieties when p | |π1(G)| seems to be a challenging problem which is closely related
to the combinatorics of integral Demazure modules in the Kac-Moody setting.
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Publ. Math. de l’I.H.É.S.128 (2018), 121–218.
[9] B. Levin: Local models for Weil-restricted groups, Comp. Math. 152 (2016), 2563–2601.

[10] G. Pappas, M. Rapoport: Twisted loop groups and their affine flag varieties,
Adv. Math. 219 (2008), 118–198.

[11] G. Pappas, X. Zhu: Local models of Shimura varieties and a conjecture of Kottwitz, In-
vent. Math. 194 (2013), 147–254.

[12] X. Zhu: On the coherence conjecture of Pappas and Rapoport, Ann. of Math. 180 (2014),
1–85.

On the geometry of mixed characteristic affine Grassmannians

João Lourenço

Affine Grassmannians are certain infinite-dimensional spaces of central importance
in arithmetic geometry. Given a smooth affine group scheme G over a base S, GrG
parametrizes G-torsors over the “formal disk” trivialized away from the origin.
Here the formal disk can either be a power series ring R[[t]] or a relative de Rham
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period ring B+
dR(R) with R a perfectoid Tate ring. In our talk we described some

progress in the study of their geometry in mixed characteristic.

1. de Rham periods

Here we assume familiarity with the v-topology and v-sheaves as in [16]. An adic
space X naturally gives rise to a v-sheaf X♦ over the untilt sheaf Spd(Zp), which
can be regarded as the topologization of X :

Theorem 1 ([16], [10]). The functor X 7→ X♦ from topologically finite type Zp-
adic spaces to v-sheaves over Spd(Zp) factors over the absolute weak normalization
functor via a fully faithful embedding.

Let G be a connected reductive group over Qp. The affine Grassmannian GrG
over Spd(Qp) is an ind-proper ind-spatial diamond. Its closed L+G-orbits GrG,≤µ,
called Schubert varieties, are defined over an extension E/Qp and indexed by
geometric conjugacy classes µ of cocharacters of G.

Given a smooth connected affine model G of G, we may define the affine Grass-
mannian GrG . There is the fundamental result going back to [15] in the power
series setting:

Theorem 2 ([16], [9]). GrG is ind-proper over Spd(Zp) iff G is parahoric.

The special fiber of GrG is the v-sheaf attached to the Witt vector affine Grass-
mannian introduced in [20] and proved to be representable by a perfect ind-scheme
in [2]. This also admits a stratification parametrized by a certain quotient of the
Iwahori-Weyl group.

Integrally we want to look at the closure GrG,≤µ defined over Spec(OE) of
GrG,≤µ inside GrG . Despite some surprising subtleties, we show in [1] that GrG,≤µ
is stable under L+G and has topologically dense generic fiber. More importantly
we are working towards:

Theorem 3 ([1], in progress). The special fiber of GrG,≤µ coincides with the µ-
admissible locus.

The µ-admissible locus is given as the union of certain Schubert varieties corre-
sponding to coweight representatives of µ. It will rely on computing nearby cycles
and the geometric Satake equivalence of [5].

Now we would like to discuss representability questions, which is not possible
in the non-minuscule case by Banach-Colmez theory.

Conjecture 4 ([16]). If µ is minuscule, GrG,µ is representable by a unique normal
flat projective OE-scheme MG,µ with reduced special fiber.

We can give the following partial evidence to the conjecture.

Theorem 5 ([8], [10]). For all pairs of abelian type, GrG,µ is representable by
a unique weakly normal flat projective OE-scheme. Its special fiber is reduced if
p > 2 or if p = 2 and the quadratic splitting extensions of the absolutely simple
factors of Gad

Q̆p
is given by a cyclic Eisenstein polynomial.
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Abelian type means here that a generic Hodge embedding can be found up to
central modification. Reducedness of the special fiber will follow from Thm. 9.
We have some ideas for proving this away from type E (thus mixing DH and DR),
which would involve revisiting [2].

2. Power series

To study phenomena in mixed-characteristic, we need “parahoric group schemes”
over O[t] with O a mixed characteristic Dedekind domain. These were constructed
by [13] in tame cases and [7] for restriction of scalars of those. Generalizing them
for quasi-split groups is the main input in getting new local models with reduced
special fiber when p = 2.

Let G be a quasi-split connected reductive group over Q(ζe, t) split over
Q(ζe, t

1/e) with e a natural number. Fix moreover a quasi-pinning consisting
of a maximal split torus S and coherent realizations of all root groups Ua, cf. [18,
Appendix]. Exactly as in [18], we extend G to a certain smooth connected group
scheme G over Z[ζe, t

±]. It turns out G⊗ F̄p(t) is at most quasi-reductive for p | e
and in small characteristics e = 2, 3 recovers the basic exotic and non-reduced
groups pseudo-reductive groups in the sense of [3]. So we need:

Theorem 6 ([17], [9]). Bruhat-Tits theory is available for quasi-reductive groups.

Then we identify the appartement combinatorics of (G,S) over various k((t)))
and construct parahoric models G over Z[ζe, t] by means of birational group law
techniques. Using the rotation action and a lemma from [14] on affine hulls, we
get:

Theorem 7 ([13], [8], [10]). G is a smooth affine connected Z[ζe, t]-group.

The affine Grassmannian GrG is an ind-projective ind-scheme. We can prove
the following on its Schubert varieties:

Theorem 8 ([4], [12], [8], [10], [6]). If Gsc = Gder, then GrG,≤µ is geometrically
normal over Z[ζe]. Otherwise it is almost never the case.

In the simply connected absolutely simple case, we recover the affine flag vari-
eties of [11]. The proof requires calculating distributions for odd unirary groups.
The existence of non-normal Schubert varieties was explained in Richarz’s talk.

If we replace the power series disk by a curve with a moving point, we get the
Beilinson-Drinfeld Grassmannian GrBD

G,Z[ζe,t]/Z[ζe], an ind-scheme over Z[ζe, t]. We

have the following far-reaching generalization of the coherence theorem of Zhu:

Theorem 9 ([19], [13], [8], [10], [6]). If Gsc = Gder, then the global Schubert

variety GrBD
G,≤µ is geometrically reduced over the base and its fibers are given by

the µ-admissible locus. This is usually false when Gsc 6= Gder.

Combined with the methods of [7], this yields the reducedness part of Thm. 5
by comparing minuscule local models of GLn.
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Minimality of integral models of Rapoport-Zink spaces

Laurent Fargues

My talk dealt with the main result of my article ”Groupes Rigides Analytiques
p-divisivles II”. Let M be the Rapoport-Zink moduli space of deformations by
quasi-isogenies of a fixed p-divisible group over Fp. This is a locally formally of

finite type formal scheme over Spf(W (Fp)). This is moreover formally smooth
(but not topologically smooth in general since this is not a p-adic formal scheme
in general). The problem is how to recover the integral model M from its generic
fiber Mη as a rigid analytic space?
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For this let ω := ωHuniv where Huniv is the universal deformation, a p-divisible
group over M. This is a vector bundle over M. Let sp : Mη → M be the spe-

cialization morphism, and O+
Mη

the sheaf of bounded by 1 holomorphic functions

on Mη. Consider ω+ := sp−1ω ⊗sp−1OM
O+

Mη
, a locally free O+

Mη
-module.

The main result of my talk is then the following

Theorem 1. Let X be a formally smooth locally formally of finite type formal
scheme over Spf(W (Fp)). Then a morphism f : Xη →Mη extends to a morphism

X →M if and only if the locally free O+
Xη

-module f∗ω+ extends to a vector bundle

on X .

In particular the couple (Mη, ω
+) determines M uniquely.

The proof relies on a notion of families of rigid analytic p-divisible groups. More
precisely, let S be a rigid analytic space. Let CS be the category of rigid analytic
commuative groups G over S such that

(1) G→ S together with its unit section is a locally trivial fibration in pointed

(by its zero section) balls B̊dS → S
(2) ×p : G→ G is finite surjective
(3) ×p : G→ G is ”topologically nilpotent”

For such a G one can define (LieG)+ as a locally freeO+
S -module, with (LieG)+

[
1
p

]

= LieG. Here is the main theorem we use to prove the preceding.

Theorem 2. Let S = ÂnOK
be the p-adic affine space for some K|Qp complete,

with generic fibre S = BbK . Then the generic fiber functor induces an equivalence

{formal p-divisible groups over S}
∼
−−→

{G ∈ CS | (LieG)+ extends to a vector bundle on S}.

This is deduced from Bartenwerfer’s theorem H1(ÂnOK
,O+) = 0.

Reporter: Lucas Mann
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Fakultät für Mathematik
Universität Duisburg-Essen
Thea-Leymann-Strasse 9
45127 Essen
GERMANY

João Nuno Pereira Lourenço

Mathematisches Institut
Universität Bonn
Endenicher Allee 60
53115 Bonn
GERMANY

Prof. Dr. Vincent Pilloni
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