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Introduction by the Organizers

The workshop Komplexe Analysis, Algebraicity and Transcendence, organized by
Philippe Eyssidieux (Grenoble), Jun-Muk Hwang (Seoul), Stefan Kebekus (Frei-
burg) and Mihai Păun (Bayreuth), took place the week starting from the 16th of
August 2020.

Initially (i.e. before the end of 2019) we were excited to see a large number of
mathematicians having accepted our invitation, as a result of the vitality and the
continuous renewal of the core research themes explored in our workshop. Because
of the events we are all aware, it had to be converted into a hybrid meeting,
attended by over 40 participants from around the world, ranging from young post-
doctoral researcher to senior leaders of the field. The participants from Asia and
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the USA and a sizable proportion of the participants from Europe followed the
talks through an efficient videoconference system.

The program featured eighteen lectures, and allowed ample time for discussion
and interaction for the participants present in Oberwolfach.

The organizers aimed for a balanced meeting, reflecting the main current de-
velopments on the interactions between global aspects of Complex Analysis and
Complex Algebraic Geometry.

The following list of talks and subjects is not exhaustive, but illustrates the
diversity and the importance of the recent contributions to the field that were
the subjects of the talks. The first topic below (concerning the lectures in Hodge
theory) was particularly appreciated by the participants -this was largely due to the
wonderful conference by C. Schnell-, and we are expecting spectacular outcomes
from this side.

Hodge theory. This classical subject has been recently revivified by novel meth-
ods and ideas and this trends were apparent in the talks on this subject. Christian
Schnell’s talk revisited one of its main foundations, Schmid’s SL2-orbit theorem,
giving a new and transparent proof of the norm estimates for the Hodge metric on
a Z-Variation of Hodge Structures on a punctured disk, as well as a new approach
to its several variables generalisation due to Cattani-Kaplan-Schmid. Bruno Klin-
gler’s talk gave an approach to the definability over the field of algebraic numbers
Q of the Hodge loci of a Z-VHS coming from geometry on a quasiprojective variety
defined over Q reducing it to the zero-dimensional case. Benjamin Bakker’s talk
surveyed a work in collaboration with Tsimermann and Brunebarbe establishing
an extension to admissible Variations of Mixed Hodge structures of the quasipro-
jectivity of the image of the period mapping, the pure case being the recent solution
of a long standing conjecture of Griffiths proved by the same authors and Klingler.
The last lecture of our conference was given by Colleen Robles, who presented her
joint work with Phillip Griffiths and Mark Green. Their results concern the fun-
damental question of understanding the behavior of period mappings at infinity,
the guiding model being the classical Satake-Baily-Borel compactification.

Algebraic Foliations. Jorge Pereira’s talk surveyed a recent work in collab-
oration with Lo Bianco, Rousseau and Touzet classifying birational symetries of
transversly projective algebraic codimension one foliations. The fact that algebraic
rank one foliations can also be used to prove transcendence result for numbers was
highlighted in Jean-Benôıt Bost’s talk which gave a proof using the theory of theta
invariants for infinite dimensional lattices of a geometric version of the classical
theorem of Schneider-Lang claiming that if an orbit of a rank one foliation defined
over some number field K has enough K-rational points then this orbit is closed.

K-stability. Chenyang Xu’s talk surveyed the state of the art concerning the
construction of projective moduli spaces for K-stable Fano varieties. Thibaut Del-
croix’s talk was devoted to the combinatorial description of K-stabilty for polarized
spherical varieties.
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Hyperbolicity. The work presented by Deng Ya proved the Picard hyperbolicity
of the quasiprojective base of a C-VHS with unipotent monodromy at infinity if the
period mapping has discrete fibers. A very interesting class of varieties on which
the Green-Griffiths-Lang conjecture could be tested, symmetric products of specific
algebraic varieties, was presented in Frédéric Campana’s talk which featured an
hyperbolicity statement for low degree symmetric products of a generic projective
surface.

Fano manifolds and klt singularities. Daniel Greb’s talk featured a charac-
terization of quotients of projective spaces by finite groups using a Chern number
inequality reminiscent of the Miyaoka-Yau inequality. Braun Lukas’ talk was de-
voted to his recent results on the finiteness of the regular local fundamental group
of a klt singularity or of the regular fundamental group of a singular Fano varieties
and on the finite generation of the Cox rings attached to them. Andreas Höring’s
talk was devoted to the bigness of the tangent bundle of manifolds and concluded
with examples of Fano manifolds with non psef tangent bundles.

Other topics. The enumerative geometry of the moduli space of abelian differen-
tials and its natural compactification was the topic of Martin Möller’s talk. Chris-
tian Lehn’s talk outlined a reduction of the singular Kähler case of Beauville’s
splitting theorem for compact Kähler manifolds with c1 = 0 to a Bogomolov-
Tian-Todorov theorem for the locally trivial deformations of these varieties, which
should be the outcome of his current work in progress with Bakker and Guenancia.
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Abstracts

Transcendental numbers for complex analytic geometers

Jean-Benôıt Bost

This talk presented a new approach to Diophantine geometry and transcendence
proofs based on the recent development of some “infinite dimensional geometry of
numbers,” where one studies infinite dimensional avatars of Euclidean lattices and
their invariants, notably those defined in terms of the associated θ-series.

This formalism is systematically developed in the monograph [2], where some
applications to Diophantine geometry are given. In this talk, the focus was placed
on transcendence proofs, and we sketched a proof of the theorem of Schneider-
Lang, formally similar to the proof of classical algebraization results in complex
analytic and formal geometry.

1. Consider for instance the theorem of Chow. It asserts that, if i : X →֒ PN(C) is
a C-analytic immersion of a compact C-analytic manifold X, then its image i(X) is
an algebraic subset of PN(C). Using basic results from complex algebraic geometry,
it easily follows from the following analytic statement (which, in a primitive form,
already appears in the work of Poincaré on Abelian varieties):

Let X be a compact C-analytic manifold of complex dimension n. For every
complex analytic line bundle L over X, the space Γ(X,L) of its C-analytic sections
is finite dimensional. Moreover, when D ∈ N goes to infinity, we have:

(1) dimC Γ(X,L⊗D) = O(Dn).

It turns out that classical results of transcendental number theory may be
rephrased as “arithmetic algebraization theorems” asserting the algebraicity of
geometric objects defined in terms of complex analytic geometry and of formal
geometry over a number field. For instance the theorem of Schneider-Lang, in a
generalized form, admits the following formulation.

Let us consider K a number field, embedded in C, X a smooth quasi-projective
variety overK, and L →֒ TX/K a sub-vector bundle of rank 1 of its tangent bundle.

By base field extension from K to C and analytification, we obtain a complex
analytic manifold Xan

C and an analytic sub-vector bundle Lan
C →֒ TXan

C
. Since Lan

C

has rank 1, it is integrable and defines a C-analytic foliation of Xan
C . Consider an

analytic leaf F of this foliation and assume that, for some closed discrete subset
∆ of C, we are given an étale analytic map:

f : C \∆ −→ F .

The map f defines an analytic map from C\∆ into the quasi-projective complex
variety Xan

C →֒ PN (C). The map f is meromorphic on C when it extends to an

analytic map f̃ from C to PN (C). When this holds, the meromorphic map f is of
finite order at infinity if there exists ρ ∈ R∗

+ such that:
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(2)

∫

C

log+
r

|z|
f∗ω = O(rρ) when r → +∞,

where ω denotes some continuous positive (1, 1)-form over PN(C).
Using this notation, we may formulate the theorem of Schneider-Lang as the

following algebraization result:

Theorem SL. Let K,X,F ,∆ and f be as above. If the following conditions are
satisfied:

(i) f is meromorphic and satisfies the finite order condition (2), and
(ii) there exists a subset A of C\∆ such that f(A) ⊂ X(K), whose cardinality
|A| satisfies |A| > 2ρ[K : Q],

then F is algebraic.
Here the algebraicity of F precisely means that the Riemann surface F , in-

jectively immersed in Xan
C , is actually a (necessarily closed and smooth) complex

algebraic curve in XC. It is equivalent to the algebraicity of the formal germ F̂f(z)

of F through f(z), for any z ∈ A. These formal germ F̂f(z) →֒ X̂C,f(z) are actually
defined over the number field K, and when conditions (i) and (ii) hold, F is the
set of complex points of some smooth closed K-curve in X.

2. Once they are expressed as arithmetic algebraization theorems like Theorem
SL above, transcendence theorems turn out to follow from finiteness results, analo-
gous to the estimates (1), where now the complex vector space of analytic sections

Γ(X,L) is replaced by some infinite dimensional Euclidean lattice Γ(X̃ , L̃) of sec-

tions of some metrized line bundle L̃ on some suitable “formal-analytic variety”

X̃ , and its complex dimension by its theta-invariant h0
θ(Γ(X̃ , L̃)).

Let us briefly explain the meaning of these notions, in a simplified framework.
Recall that a Euclidean lattice E is a pair (E, ‖.‖) consisting in a free Z-module

E of finite rank and a Euclidean norm ‖.‖ on the R-vector space ER := E ⊗Z R.
In Arakelov geometry, Euclidean lattices occur as the so-called Hermitian vector
bundles over the scheme SpecZ and, as such, appear as the analogues of vector
bundles on a smooth projective curve C over some base field k. In this analogy,
the role of the dimension

(3) h0(C,E) := dimk Γ(C,E)

of the k-vector space of global sections of E is played by the R+-valued invariant
of Euclidean lattices:

(4) h0
θ(E) := log

∑

v∈E

e−π‖v‖2

.

For every δ ∈ R, we may introduce the Euclidean lattice

E ⊗O(δ) := (E, e−δ‖.‖).
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Then the theta-function θE of E, defined by

(5) θE(t) :=
∑

v∈E

e−πt‖v‖2

for every t ∈ R∗
+,

satisfies:

h0
θ(E ⊗O(δ)) = log θE(e

−2δ),

and the invariants h0
θ(E) of Euclidean lattices are essentially special values of their

theta-functions.
The analogy between the invariants (3) and (4) attached respectively to vector

bundles on curves and to Euclidean lattices goes back to the German school of
number theory (Hecke, F.K. Schmidt, Artin). More recently, it appears in Quillen’s
diary [4], and, in explicit relation with Arakelov geometry, in the work of van der
Geer – Schoof [5] and Groenewegen [3]. The key role of special values of the theta
series (5), and also of the measure

γE :=
∑

v∈E

e−π‖v‖2

δv

over ER and of its Fourier transform, when investigating the properties of an
arbitrary Euclidean lattice E has been rediscovered, in a different context, by
Banaszczyk [1], whose approach has been extremely influential in the developments
of lattice based cryptography during the last two decades.

Let us emphasize that the invariant h0
θ(E) satisfies formal properties remarkably

similar to the ones of h0(C,E), although they are derived by very different meth-
ods, the investigation of h0

θ often involving non-trivial arguments from harmonic
analysis. For instance, as first observed by Quillen and Groenewegen, h0

θ satisfies
the following subadditivity property: for every admissible short exact sequence of
Euclidean lattices1

0 −→ E −→ F −→ G→ 0,

we have:

(6) h0
θ(F ) ≤ h0

θ(E) + h0
θ(G).

An infinite dimensional Euclidean lattice is defined as a pair Ê := (Ê, ‖.‖) where

Ê is a topological Z-module isomorphic to ZN (equipped with the topology product
of the discrete topology on each factor Z), and where ‖.‖ is a lower continuous
Euclidean quasi-norm on the Fréchet space

ÊR := Ê⊗̂ZR ≃ RN,

namely, a lower continuous map

‖.‖ : ÊR −→ [0,+∞]

1If E, E, and E are three Euclidean lattices, an admissible short exact sequence 0 → E →

F → G → 0 is a short exact sequence 0 → E → F → G → 0 involving the underlying Z-modules
such that the Euclidean norms on ER and GR defining E and G are induced, by restriction and
quotient, by the Euclidean norm FR defining F .



1272 Oberwolfach Report 24/2020

such that

EHilb
R := {v ∈ ER | ‖v‖ < +∞}

is a subvector space of ER and ‖.‖|EHilb
R

is a Euclidean norm on it. Then (EHilb
R , |.‖)

is a Hilbert space, continuously embedded in ÊR.

Examples: (a) To any R ∈ R∗
+, we may attach the arithmetic Hardy space defined

by Ê := Z[[X ]] and the quasi-norm ‖.‖R on ÊR ≃ R[[X ]] such that:

‖
∑

n∈N

anX
n‖2R :=

∑

n∈N

a2nR
2n.

(b) Consider an admissible projective system of Euclidean lattices:

E• : E0
q0
←− E1

q1
←− · · ·

qi−1
←− Ei

qi
←− Ei+1

qi+1
←− · · · .

To E• is attached its projective limit lim
←−

E•, defined as the infinite-dimensional Eu-

clidean lattice Ê = (Ê, ‖.‖) where Ê := lim
←−i

Ei and ‖(xi)i∈N‖ := limi→+∞ ‖xi‖Ei

for every (xi)i∈N ∈ ER ≃ lim
←−i

Ei,R

(
→֒

∏
i∈N Ei,R

)
.

This construction of projective limits actually produces all infinite dimensional

Euclidean lattices Ê such that EHilb
R is dense in ÊR, and from now on we consider

only those.

It turns out that there is a non-trivial formalism of theta-invariants attached to
such objects. This theory is not formal: with the notation of Example (b), the ex-
istence and the value of the limit limi→+∞ h0

θ(Ei) indeed depends on the projective

system used to realize Ê as a projective limit proj limE•.
It is actually possible to introduce a nice class of infinite dimensional Euclidean

lattices — the θ-finite ones — that is suitable for the applications to transcendence
theory, and for which these difficulties can be remedied.

With the notation of Example (b), we may introduce the summability condition:

Sum(E•) :
∑

i∈N

h0
θ(ker qi) < +∞.

When it holds, the subbaditivity (6) shows that the limit limi→+∞ h0
θ(Ei) exists

in R+. An infinite dimensional Euclidean lattice Ê is said to be θ-finite when,
for every δ ∈ R, there exists a projective system Eδ• as in Example (b) such that

Ê ≃ lim
←−

Eδ• and Sum(Eδ• ⊗O(δ)) holds. Then, if δ
′ < δ, the limit

h0
θ(Ê ⊗O(δ

′)) := lim
i→+∞

h0
θ(Eδ,i ⊗O(δ

′))

is a well-defined invariant of Ê and satisfies good formal properties (e.g. the sub-
additivity (6)). This is established by measure theoretic arguments on the Polish

space Ê, which involve the family of measures γEi
on its successive quotients Ei.
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[3] R. P. Groenewegen. An arithmetic analogue of Clifford’s theorem. J. Théor. Nombres Bor-
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Projective flatness over klt spaces and characterisation of finite
quotients of projective spaces

Daniel Greb

(joint work with Stefan Kebekus, Thomas Peternell)

Let X be a Q-Fano n-fold ; that is, let X be a normal, projective, n-dimensional
variety with at worst klt singularities such that −KX is Q-ample. If the tangent
sheaf TX is stable with respect to the anticanonical polarisation −KX , then by
[3] its first two Q-Chern classes, which are well-defined for all spaces with klt
singularities, satisfy the Q-Bogomolov-Gieseker Inequality,

n− 1

2n
· ĉ1

(
Ω

[1]
X

)2

· [−KX ]n−2 ≤ ĉ2

(
Ω

[1]
X

)
· [−KX ]n−2.

In analogy to the case of manifolds with ample canonical bundle and as a
generalisation of the Chen-Oguie inequality for Kähler-Einstein Fano manifolds,
one expects more, namely a Q-Miyaoka-Yau Inequality of the form

(7)
n

2(n+ 1)
· ĉ1

(
Ω

[1]
X

)2

· [−KX ]n−2 ≤ ĉ2

(
Ω

[1]
X

)
· [−KX ]n−2.

As classical examples show, even in the smooth case (7) does not hold without
imposing an additional (semistability) condition. Moreover, one observes that (7)
looks like the Bogomolov-Gieseker inequality for a −KX-slope-semistable sheaf of
rank n+ 1.

In my talk I explained that the natural sheaf to consider in this problem is
constructed as follows: The first Chern class of the Q-Cartier divisor −KX defines
a non-trivial, locally split extension of the form

0→ OX → EX → TX → 0,

which / whose middle term we call the canonical extension. For smooth Fano
manifolds, this is just the Atiyah extension induced by the anticanonical line bun-
dle. It has been studied in various problems of Kähler geometry, for example by
Semmes, Tian, Donaldson and Greb–Wong.

It now follows as in the proof of the Q-Bogomolov-Gieseker inequality above
that if the canonical extension EX of a Q-Fano n-fold is slope-semistable with
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respect to the anticanonical polarisation −KX , then (7) holds. The semistability
required for this result can be shown in various classes of examples: It holds if X
admits a Kähler-Einstein metric ([4], [1]), and more generally if X is smooth and
K-semistable (Chi Li), but also for every smooth Fano threefold of Picard number
one and every smooth Fano n-fold of Picard number one and index n− 1 (the last
two statements are proven in [2]).

Once an equality of the form (7) has been established, it is interesting to con-
sider those varieties realising equality. A characterisation of these is given by the
following result contained in [2], which applies not only to Fano varieties but more
generally to those having nef anticanonical divisor.

Theorem 1. Let X be a projective variety. Assume that X has at most Kawamata
log terminal singularities and that its anti-canonical class −KX is nef. Then, the
following statements are equivalent.

(1) There exists an ample Cartier divisor H on X such that the canonical
extension EX is semistable with respect to H and such that

n

2(n+ 1)
· ĉ1

(
Ω

[1]
X

)2

· [H ]n−2 = ĉ2

(
Ω

[1]
X

)
· [H ]n−2.

(2) The variety X is a quotient of the projective space or of an Abelian variety
by the action of a finite group of automorphisms that acts without fixed
points in codimension one.

Coming back to the Fano case, the previous theorem characterises quotients of
projective spaces by finite group actions that are free in codimension one. These
varieties are simply-connected, and the regular part has fundamental group iso-
morphic to the given group. While every finite group admits a finite-dimensional
complex representation V such that the induced action on P(V ) is free in codi-
mension one, it is also interesting to notice that any non-trivial representation of
a non-abelian finite simple group automatically has this property, see again [2].
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Chern classes of the moduli spaces of Abelian differentials

Martin Möller

(joint work with M. Costantini, J. Zachhuber)

Only few aspects of the topology of the moduli spaces of holomorphic or meromor-
phic Abelian differentials PΩMg,n(µ) with singularities of type µ = (m1, . . . ,mn)
are currently known, such as the connected components [5], and partial informa-
tion about (quotients of) the fundamental group. In this talk we explained a route
taken in [2] to compute the Euler characteristic of these moduli spaces of Abelian
differentials.

The moduli spaces of Abelian differentials can be thought of as relatives of the
moduli space of curvesMg,n, for which the Euler characteristic was computed in
[4] using a cellular decomposition (given by the arc complex) and counting of cells.
Our strategy here is quite different. While the Euler characteristic is an intrinsic
quantity associated to PΩMg,n(µ), our strategy heavily uses the compactification

PΞMg,n(µ) constructed in [1] and all its properties that make it quite similar to

the Deligne-Mumford compactificationMg,n ofMg,n.

Theorem 1 ([1]). There is a proper smooth Deligne-Mumford stack PΞMg,n(µ)
that contains the projectivized stratum PΩMg,n(µ) as open dense substack with the
following properties.

(i) The boundary PΞMg,n(µ) \ PΩMg,n(µ) is a normal crossing divisor.
(ii) The boundary strata are labeled by enhanced level graphs, dual graphs of

stable curves with an additional level structure.
(iii) The codimension of a boundary stratum DΓ in PΞMg,n(µ) is equal to the

number of horizontal edges plus the number of levels below zero.

It is well-known that if the k-dimensional orbifold B admits a compactification
B with normal crossing boundary divisor D, then the Euler characteristic of B
can be computed as integral

(8) χ(B) = (−1)k
∫

B

ck(Ω
1
B(logD))

Our strategy is based on the fact that the compactified spaces PΞMg,n(µ), much
like projective space, admit an Euler sequence

(9) 0 −→ K −→ (H
1

rel)
∨ ⊗OB(−1)−→OB −→ 0

thanks to the flat structure given by period coordinates. Here H
1

rel is the Deligne
extension of the local system of relative cohomology and K is a vector bundle that
restricts to the cotangent bundle over PΩMg,n(µ) and whose difference to the
cotangent bundle at the boundary can be determined.

To state the result, let KΓ be the product of the enhancements associated with
the edges of a level graph Γ ∈ LGL, where L denotes the number of levels below
zero, and let N⊤

Γ be the dimension of the moduli space of Abelian differentials
(possibly on disconnected curves) at the top level of such a level graph.
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Theorem 2. The orbifold Euler characteristic of the moduli space PΩMg,n(µ) is

the dimension-weighted sum over all level graphs Γ ∈ LGL(B) without horizontal
nodes

(10) χ(PΩMg,n(µ)) = (−1)d
d∑

L=0

∑

Γ∈LGL(B)

KΓ ·N
⊤
Γ

|Aut(Γ)|
·

−L∏

i=0

∫

B
[i]
Γ

ξ
d
[i]
Γ

B
[i]
Γ

of the product of the top power of the first Chern class ξ
B

[i]
Γ

of the tautological

bundle at each level, where d
[i]
Γ = dim(B

[i]
Γ ) and d = dim(B) = N − 1.

This theorem, as well as all the computations in the tautological ring of the
moduli spaces PΞMg,n(µ) necessary to evaluate the expressions, have been imple-
mented in a sage package diffstrata, with the algorithms documented in [3].
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Quasiprojectivity of images of mixed period maps

Benjamin Bakker

(joint work with Yohan Brunebarbe, Jacob Tsimerman)

Let X be an algebraic space,M a moduli space of polarized integral pure Hodge
structures, and φ : X →M the period map corresponding to a polarized integral
variation of pure Hodge structures. It was conjectured by Griffiths [4] and proven
by the authors [2] that the closure of the image of φ is a quasiprojective algebraic
variety. The aim of this talk is to extend this result to the mixed setting. The
proof makes heavy use of o-minimality, particularly the o-minimal GAGA theorem
of [2] and the more recent work with B. Klingler [1] associating a Ran,exp-definable
structure to mixed period domains and admissible mixed period maps.

More precisely, letM now be a moduli space of graded-polarized integral mixed
Hodge structures. There is a period space D parametrizing the associated graded
objects of the points inM with a mapM→D, and to any period map φ : X →M
corresponding to a variation of graded-polarized integral mixed Hodge structures
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there is a period map grφ : X → D for the associated graded variation. By the
above results we have a factorization

X D

Z

gr φ

g ǫ

where g is algebraic and dominant (meaning OZ → g∗OX is injective), ǫ is a closed
immersion, and Z is quasiprojective (polarized by the Griffiths bundle).

In this talk I will discuss the following result:

Theorem 1. Let X be a separated algebraic space of finite type over C and φ :
X →M the period map associated to an admissible variation of (graded-polarized
integral) mixed Hodge structures. Then there is a factorization

X M.

Y

φ

f ι

where f is dominant algebraic and ι is a closed immersion. Moreover, the natural
theta bundle on Y is algebraic and relatively ample over the image Z of the period
map of the associated graded. In particular, Y is quasiprojective.

The period spaceM is naturally a quotient Γ\M of a graded-polarized integral
mixed period domain M by an arithmetic group Γ, but the same result for the
quotient Γmon\M by the image of the monodromy representation easily follows
from the theorem.

As a sample application we obtain as a corollary the following:

Corollary 2. Let X be a separated Deligne–Mumford stack of finite type over
C admitting a quasi-finite admissible mixed period map. Then the coarse moduli
space of X is quasi-projective.

The factorization statement in the main theorem follows easily from the results
of [1] and [2], and the main content is the relative ampleness of the theta bundle.
This is especially interesting compared to the corresponding result in the pure
case as the positivity does not stem from the negative curvature ofM; indeed, the
fibers ofM→D are flat.

Loosely speaking, the theta bundle Θ arises from the fact that the extension
data of adjacent-weight graded pieces of an integral mixed Hodge structure are
parametrized by an intermediate Jacobian on which a graded polarization nat-
urally induces a line bundle. There are two main difficulties in establishing the
relative ampleness of Θ. First, we must show Θ is algebraic. This follows for X
smooth by work of Brosnan–Pearlstein [3] and in general by definable GAGA [2].
In fact, we also give a simplified proof of the result of Brosnan–Pearlstein.

Second, the theta bundle only accounts for the compact parts of the extension
data, and the rest of the argument is devoted to showing that the remaining
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extension data is affine. More precisely, there are period maps for which Y → Z
has positive-dimensional fibers but for which all of the “one-step” extensions are
locally constant on the fibers, and in this case the theorem requires OY to be
relatively ample—i.e., that Y is quasiaffine over Z. This ultimately relies on the
geometry of mixed period spaces parametrizing “two-step” extensions and our
argument critically uses the formalism of Hodge modules due to Saito.
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A singular BTT theorem for K-trivial varieties and applications

Christian Lehn

(joint work with Benjamin Bakker, Henri Guenancia)

Deformations of compact Kähler manifolds with trivial canonical bundle are unob-
structed by the famous theorem of Bogomolov–Tian–Todorov [5, 16, 17], a result
which has greatly improved our understanding of these varieties. This in par-
ticular applies to Calabi-Yau manifolds and irreducible holomorphic symplectic
manifolds. For singular varieties, an example of Gross shows [8] that deformations
of Calabi-Yau varieties with canonical singularities can be obstructed. For singu-
lar symplectic varieties on the other hand, Namikawa has proven unobstructedness
with varying hypotheses (see [12] and references therein) so that for a long time
it looked like there was a dichotomy between symplectic and Calabi-Yau varieties.
This is a preliminary report about our research which suggests that this dichotomy
disappears once we restrict to locally trivial deformations.

The goal of our research project is to prove an unobstructedness result for
numerically K-trivial varieties of Fujiki class C . Let us recall that a variety is
called numerically K-trivial if the canonical sheaf is (Q-Cartier and) numerically
trivial. So far, we can show

Theorem 1. Let X be a compact variety of Fujiki class C with log terminal
singularities. Suppose that one of the following holds:

(1) There is a holomorphic symplectic form σ ∈ Γ(Xreg,Ω2
X).

(2) X has quotient singularities and numerically trivial canonical sheaf.

Then locally trivial deformations of X are unobstructed.

The proof relies on the results of Kebekus–Schnell [11] and on Saito’s theory
of Hodge modules [14, 15]. Previously, we obtained unobstructedness for certain
symplectic varieties in [2, 3].
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As an application of unobstructedness of locally trivial deformations, we can
prove a common generalization of the Beauville–Bogomolov decomposition the-
orem [1] and its singular variant by Druel–Greb–Guenancia–Höring–Kebekus–
Peternell ([10] and references therein). We also refer to Campana’s article recent
article [4].

Theorem 2. Let X be a compact Kähler variety with log terminal singularities
and numerically trivial canonical sheaf. Suppose that locally trivial deformations
of X are unobstructed. Then there is a finite quasi-étale cover X ′ → X such that
X ′ splits as a product

X ′ ∼= T ×
∏

i

Ci ×
∏

j

Sj

where T is a complex torus, the Ci are Calabi–Yau varieties, and the Sj are irre-
ducible symplectic varieties.

Apart from unobstructedness, the proof uses three main ingredients:

• A result about algebraic approximation by Graf–Schwald [9].
• A relative version of the decomposition of the tangent sheaf as in [7] for
locally trivial families.
• Singular Kähler–Einstein metrics in the sense of Eyssidieux–Guedj–Zeriahi
[6] and regularity results by Păun [13] in the Kähler case.

Given a locally trivial deformation X → S, we show that a finite base change
X ′ = X ×S S′ has a generalized Beauville–Bogomolov decomposition relative over
a Zariski open set U ⊂ S′. This open set U is nonempty by algebraic approxima-
tion, and we use cycle spaces to obtain integrability of the foliation on X . The
limit cycles are controlled using positivity arguments and singular Kähler–Einstein
metrics.
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Finiteness and klt singularities

Lukas Braun

There is a long-lasting interest in Kawamata log terminal (or klt) singularities
and their global counterparts, weakly Fano pairs, since they behave very well
with respect to many aspects of algebraic and complex geometry. Not only is the
canonical ring of a projective klt variety known to be finitely generated and thus
a vast part of the goals of the minimal model program are achieved [4], in the
weakly Fano case much more is known: the Cox ring is finitely generated and thus
for any divisor on such a variety a minimal model program can be carried out.

The triviality of the fundamental group of a Fano manifold may have been a first
hint for a similar well-behaviour of these spaces also from the topological viewpoint.
There are several proofs, relying e.g. on Atiyah’s L2-index theorem or rational
connectedness. Triviality of the fundamental group of a weakly Fano variety was
then proven by Takayama, notably with different methods, using the Γ-reduction
or Shafarevich map and Nadel’s vanishing theorem [21]. The finiteness of the
fundamental group of the smooth locus emerged as kind of a folklore conjecture out
of these works and was confirmed in dimension two and several special cases [25,
16, 17]. In the local setting, Kollár conjectured the finiteness of the so-called local
fundamental group πloc

1 (X, x) - i.e. the fundamental group of a small punctured
neighbourhood - for klt singularities [18, 19]. Progress in this direction was made
by Xu, who proved both the local and the global conjecture for étale fundamental
groups [23]. These results were applied and generalized to several settings not only
over the field of complex numbers but also to characteristic p [14, 10, 2, 3].

Finally in [22], it was understood that (as in the étale case) one approach would
be to prove both conjectures simultaneously by a local-to-global induction. One of
the two necessary steps, the proof of finiteness of the local fundamental group of
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an (n+1)-dimensional klt singularity under the assumption that the smooth locus
of n-dimensional weakly Fano pairs has a finite fundamental group, was obtained
in [22].

The second step was proven by the author in [6]. One of the main insights is
that the concept of the local fundamental group has to be replaced by the regional
fundamental group πreg

1 (X, x), the fundamental group of the smooth locus of X
intersected with a small euclidean ball around x. Then the second step means
deducing finiteness of the fundamental group of the smooth locus of a weakly
Fano pair of dimension n from finiteness of πreg

1 for klt singularities of dimension
n. In fact, it is not clear if this statement could be obtained from finiteness of the
local fundamental groups as well. Thus in the second part of [6], it was necessary
to modify the proof of the first step from [22] appropriately in order to obtain the
statement for the regional instead of the local fundamental group. In summary,
we have the following theorem on fundamental groups [6].

Theorem 1. Let X be an algebraic variety defined over the field of complex num-
bers C.

(1) Let x ∈ X be a klt singularity. Then the regional fundamental group
πreg
1 (X, x) is finite.

(2) Let (X,∆) be a weakly Fano pair. Then the fundamental group of the
smooth locus π1(Xreg) is finite.

Several consequences of these statements have been obtained so far. Combined
with the uniqueness of the minimizer of the normalized volume function of a klt
singularity obtained in [24], an effective bound on the order of the regional funda-
mental group in terms of the dimension and the normalized volume is found in [24,
Cor. 1.4]. In the same direction, together with Filipazzi, Moraga, and Svaldi, the
author proved the so-called Jordan-property for regional fundamental groups of klt
singularities in [7], meaning that for any dimension n, there is a constant c(n) de-
pending only on n, such that the regional fundamental group of any klt singularity
of dimension n has a normal abelian subgroup of rank at most n and order at most
c(n). This statement is deduced from the similar global one for the fundamental
groups of the smooth loci of weakly Fano pairs, which in turn relies on the Jordan
property of automorphism groups of weakly Fano pairs obtained in [20].

Other applications concern more general spaces with klt singularities, e.g. Q-
Fano Kähler-Einstein varieties [12], finite quotients of projective space [15], and
compact Kähler spaces with vanishing first Chern class and algebraic singulari-
ties [11]. In upcoming work, we aim to explore and extend these applications on
more general klt spaces in greater detail.

Here, we will concentrate on the interplay with the already mentioned property
of having a finitely generated Cox ring - the Mori Dream Space property - and
the divisor class group. In prior work [5], the author used the finiteness of étale
fundamental groups together with the Mori Dream Space property of klt quasicone
singularities to prove finiteness of the iteration of Cox rings for weakly Fano pairs
and klt quasicones. It was shown in [9, 13], that the Cox ring of a weakly Fano pair
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is not only finitely generated, but in addition its spectrum has klt singularities.
Since it is also a quasicone and Gorenstein (when considering the whole divisor
class group - possibly including torsion - in the Cox construction), it even has
canonical singularites [5]. The only thing that may fail when the divisor class
group has torsion is factoriality of the Cox ring. So if this happens, it is natural

to consider the Cox ring of X̂ := SpecCox(X), the spectrum of the Cox ring of
X . The point here is that the statement from [4] concerning finiteness of the Cox
ring can be directly transferred to the klt quasicone case, i.e. the Cox ring of

X̂ will be finitely generated as well, and, moreover, its spectrum is a Gorenstein
canonical quasicone [5]. Iterating this construction leads to the so-called iteration
of Cox rings, introduced in [1] for log-terminal singularities with a torus-action of
complexity one. By explicitly computing the occurring Cox rings, it was shown
in [1] that in the above special case, the iteration of Cox rings is finite and ends
with a factorial master Cox ring.

Then in [5], finiteness of the iteration of Cox rings for weakly Fano pairs and
klt quasicones was proven by constructing a sequence of finite abelian covers cor-
responding to the torsion in the respective class groups and thus reducing the
problem to finiteness of the étale fundamental groups [23, 14]. Lifting the abelian
group actions gives a quotient by a reductive solvable group X → X , where X is
the spectrum of the master Cox ring.

It is thus natural to ask if this can be generalized to arbitrary klt singularities.
In upcoming work with Joaqúın Moraga [8], we aim to complete the picture by first
reasonably defining Cox rings, suitable finiteness and other notions for Cox rings
of local rings of klt singularities, leading to the concept of grocal Cox rings. These
graded rings, finitely generated over the degree zero part, which may be either a
local ring or the ground field, comprise the Cox rings of all objects we encountered
so far. Building on these definitions, we show finiteness of the iteration of Cox
rings for klt singularities, with a factorial canonical master Cox ring as in the
quasicone and weakly Fano case.

The existence of these two kinds of covers - the universal quasi-étale cover
corresponding to the fundamental group of the smooth locus; and the spectrum of
the master Cox ring corresponding to the iterated divisor class groups - the first
one simple from the viewpoint of the fundamental group, the other one simple from
the viewpoint of the divisor class group - brings us to the question if both can be
combined. This is the second task [8] is concerned with. We construct a unified
cover - essentially the spectrum of the Cox ring of the universal quasi-étale cover -
that has both a simply connected regular locus and trivial class group. Moreover,
any combination of finite quasi-étale covers and Cox constructions will finally end
with this unified cover. The simplicity of this covering space will hopefully enable
us to prove statements about X by computations on the cover, which will be the
object of future investigations. As a first example class, in [8] we aim to determine
explicitly the unified covers of all klt singularities with a torus action of complexity
one.
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Big Picard theorem for varieties admitting variation of Hodge
structures

Ya Deng

In 1972, Armand Borel [3] and Kobayashi-Ochiai [8] proved generalized big Picard
theorem for any hermitian locally symmetric variety X : any holomorphic map
from the punctured disk to X extends to a holomorphic map of the disk into any
projective compactification of X . In particular, they proved that any analytic map
from a quasi-projective variety to X is algebraic. Their theorem motivated Ariyan
Javenpeykar to propose the notion of “Borel hyperbolicity” for quasi-projective
varieties in [7].

Definition 1. A complex quasi-projective variety Y is Borel hyperbolic if any
holomorphic map from another quasi-projective variety X to Y is an algebraic
morphism.

Inspired by the above-mentioned generalized big Picard theorem of Borel and
Kobayashi-Ochiai, we proposed the following notion of hyperbolicity in [5].

Definition 2. A complex quasi-projective variety Y is Picard hyperbolic if any
holomorphic map from the punctured unit disk to Y extends to a holomorphic map
from the unit disk to Y , where Y is some (thus any) projective compactification of
Y .

It has been proved in [7] that a complex quasi-projective variety Y is Borel
hyperbolic if it is Picard hyperbolic.

Period domains, introduced by Griffiths in 1969, are classifying spaces for Hodge
structures. They are transcendental generalizations of hermitian locally symmetric
varieties. In the workshop “Oberwolfach Komplex analysis 2017”, Ariyan Javen-
peykar proposed the following conjecture.

Conjecture 3. Let Y be a quasi-projective manifold, which admits a polarized
variation of Hodge structures, whose period map is quasi-finite. Then Y is Borel
hyperbolic.

He further conjectured that the moduli spaces of polarized manifolds with semi-
ample canonical sheaf is Borel hyperbolic.

Conjecture 3 was first investigated by Bakker, Brunebarbe and Tsimerman in
their work [1] on the Griffiths conjecture. They proved Conjecture 3 when the
monodromy group of the variation of Hodge structures is arithmetic. Their work
is based on delicate results in o-minimality. In particular, they have to use the very
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recent deep theorem by Bakker, Klingler and Tsimerman [2] on the definability of
period maps.

In [5], we proved the following generalized big Picard theorem for varieties
admitting complex variation of Hodge structures. In particular, we proved Con-
jecture 3 completely.

Theorem 4. Let Y be a quasi-projective manifold, which admits a polarized vari-
ation of Hodge structures, whose period map is quasi-finite. Then Y is Picard
hyperbolic.

We use purely complex analytic methods to prove Theorem 4. Based on Nevan-
linna theory, we first establish some criterion for Picard hyperbolic in [6].

Lemma 5. Let X be a quasi-projective manifold. Assume that γ : ∆∗ → X. If
there is a Finsler metric h for TX(− logD) so that ddc log |γ′(t)|2h ≥ γ∗ω where ω

is a Kähler form on X. Then γ extends to ∆→ X.

Such criterion was first applied in [6] to prove the Picard hyperbolicity of moduli
spaces of polarized manifolds with semi-ample canonical sheaf. Let us mention
that, prior to that, in [4] we proved the Brody hyperbolicity of these moduli
spaces, which is indeed a conjecture by Viehweg and Zuo [9].

In [5], we construct some special Higgs bundles over the variety Y in Theorem
4. We then apply these Higgs bundles to construct the desired negatively curved
Finsler metric as Lemma 5 so that we can apply the above criterion to prove the
Picard hyperbolicity of Y .

Let us mention that our techniques unifies Picard hyperbolicity of hermitian
locally symmetric varieties X by Borel and Kobayashi-Ochiai.
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Degenerating variations of Hodge structure, revisited

Christian Schnell

My talk was about Schmid’s foundational paper [1]. The local results in Schmid’s
paper concern polarized variations of Hodge structure (VHS) defined on a punc-
tured disk. Given such a VHS, let V denote the complex vector space of mul-
tivalued flat sections of the underlying flat vector bundle, and T ∈ GL(V ) the
monodromy operator; by the monodromy theorem, the eigenvalues of T have ab-
solute value 1. Schmid showed the existence of a “limiting mixed Hodge structure”
on V , whose weight filtration W• is uniquely determined by N , the logarithm of
the unipotent part of T . Schmid also proved that the weight filtration accurately
reflects the asymptotic behavior of the Hodge metric: if v ∈ V is a multivalued flat
section, then v ∈Wℓ\Wℓ−1 if and only if the pointwise Hodge norm of v grows like
L(t)ℓ/2, where L(t) = − log|t|2. This gives a very nice conceptual explanation for
the appearance of the weight filtration and of the limiting mixed Hodge structure;
the only problem is that the Hodge norm estimates come at the end of a long
sequence of other results, so this explanation is somewhat “after the fact”. (To
be exact, Schmid only proves these results when the VHS has an underlying real
structure, and when all eigenvalues of T are roots of unity.)

In my talk, I presented a simple direct proof for the Hodge norm estimates.
It is inspired by Simpson’s and Mochizuki’s work on harmonic bundles, but ends
up being much easier. An intermediate result, interesting in its own right, is the
following comparison theorem: Let E1 and E2 be polarized variations of Hodge
structure on the punctured disk; if the two underlying flat vector bundles are
isomorphic, then the Hodge metrics h1 and h2 are mutually bounded, up to a
constant, as t→ 0.

The main reason for revisiting Schmid’s work is a joint project with Claude Sab-
bah – called the “MHM Project” – in which we are trying to generalize Morihiko
Saito’s theory of Hodge modules to the case of complex Hodge modules (without
rational structure). For that, we need all the foundational results in the theory
of degenerating variations of Hodge structure without assuming the existence of a
rational structure.
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Symmetric powers of complex projective manifolds: specialness and
hyperbolicity issues

Frédéric Campana

(joint work with B. Cadorel, E. Rousseau)

Let X be a connected compact complex manifold of dimension n. Let m > 0 be
an integer. The symmetric group Sm on m letters operates by permutation of the
factors of Xm, the product of m copies of X . Let qX,m = q : Xm → Symm(X) =
Xm := Xm/Sm be the quotient map, so that Xm is a normal connected compact
complex space. This construction is functorial, any holomorphic map f : X → Y
inducing a holomorphic fm : Xm → Ym. The fibre of fm over qY,m(y1, . . . , ym) is
isomorphic to the product of the fibres of f over the y′is when these are all distinct.
The ramification in Xm of q : Xm → Xm consists of the (x1, . . . , xm) such that
xi = xj for some i 6= j, and so has codimension n.

Aim: Compare the birational and hyperbolicity properties of X and X ′
m, for any

X and m. These are interesting test cases for various conjectures related to those
of S. Lang.

When n = 1, Xm, ∀m > 0 is smooth. But this is no longer true when n ≥ 2.
For example: (C2)2 ∼= C2 × A1 by diagonalising the action of S2. More generally
(using the Reid-Tai criterion):

Theorem 1. ([Arapura-Archava 1998]) The singularities of Xm are canonical.
Thus κ(X ′

m) = m · κ(X) if n > 1, ∀m. Here X ′
m is any smooth model of Xm, and

so Jm : X ′
m → (JX)m is the Iitaka fibration of X ′

m if J : X → JX is the Iitaka
fibration of X with κ(X) ≥ 0.

This is false when m = 1: if X is a curve of genus g, then X ′
m is of general type

if m < g, is birational to Jac(X) if m = g, and to a Pm−g-fibration if m > g. So
κ(Xm) = 1, 0,−∞ respectively in these 3 cases.

We next obtain similar statements for the other two fundamental fibrations
of birational geometry: the MRC fibration r : X → RX , and the ‘core map’
c : X → CX , which may be seen as (J ◦ r)n (in the orbifold category).

Recall that the MRC is the unique fibration on X with rationally connected
(ie: RC) fibres and non uniruled base RX .

Theorem 2. [1] The MRC r′m : X ′
m → RX′

m
of X ′

m is given by rm : X ′
m →

(RX)m, except when some finite étale cover of X fibres over a curve of genus
g ≥ 1 and m ≥ g. In particular: X is RC if and only if some (or equivalently
each) Xm is RC.

The proof is an easy application of the Miyaoka-Mori uniruledness criterion,
and of the canonicity of the singularities of Xm.

Remarks.

1. If X is rational, so is X ′
m for each m > 0 (Mattuck 1969). This raises

several questions about converse statements, such as:
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2. IfXm is unirational (resp. rational, stably rational) for some (or any large)
m > 1, is the same true for X? (The converse is obvious.)

3. Test cases: smooth cubics in P4, Artin-Mumford conic bundles, double
covers of P3 ramified over a smooth sextic, conic bundles over P2 with
discriminants smooth of large degrees. In the first two cases (resp. the
last two cases), does Xm become rational (resp. unirational) for some
(hence infinitely many) m’s? Can the Brauer group of X ′

m be estimated
from the one of X?

Recall that the ‘core map’ cX : X → CX is the unique fibration on X with
fibres ‘special’ and (orbifold) base of general type, and that X is ‘special’ if, for
any L ⊂ Ωp

X coherent of rank 1, we have: κ(X,L) < p. If X is RC, or if κ(X) = 0,
X is special.

Theorem 3. [1] The core map cX′

m
: X ′

m → CX′

m
is cm : X ′

m → (CX)m, except
when X fibres over a hyperbolic orbifold curve, with special fibres, and m is (ex-
plicitely) sufficiently large. In particular, X is special if and only if X ′

m is special
for some m > 0 (‘if ’ fails exactly in the previous exceptional case).

The conjectural relationships between birational geometry and hyperbolicity
are the following:

Conjectures:

1. (S. Lang) κ(X) = n if and only if there exists W ( X , Zariski closed, such
that any non-constant holomorphic map h : C → X has image contained
in W .

2. (F. Campana) X is special if and only if there exists and ‘entire curve’
h : PC → X with dense image.

On the second conjectural statement, we have (by [1]) the following

Examples.

1. Let X := F × B be the product of two curves, with g(F ) ≤ 1, g(B) ≥ 2.
Then Symm(X) contains an entire cuve with dense image if and only if
m ≥ g(B), i.e: if and only if Symm(X) is special. The main reason is
that if p : X → B is the projection, pm : Xm → Bm has generic fibres
isomorphic to Fm.

2. If X is a K3 (hence special) surface with Pic(X) ∼= Z generated by an
ample line bundle L of degree (2g − 2), g > 1, then Symm(X) is PC2g-
dominable (i.e: there exists a meromorphic H : C2g → Symm(X) whose
image contains a nonempty Zariski open subset). The proof rests on sev-
eral important results and the relative Jacobian fibration Symm(X)→ Pg

associated to the curves in the linear system |L| on X . This supports
Conjecture 2 above in this case.
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Concerning the first statement in the above conjecture, we have:

Theorem 4. [1] Let X ⊂ Pn+1 be a generic hypersurface of degree d ≥ (2n− 1)5 ·
(2m2 + 10n− 1). Then Xm is hyperbolic.

Similar statements hold for generic complete intersections of large and explicit
multidegrees in Pn+n′

, n′ ≥ n, and for quotients of bounded symmetric domains.
The proof of the preceding theorem rests on the consideration of the spaces of
jet differentials on suitable orbifold structures on resolutions of Xm, and restrict-
ing their base loci, combined with previous work on jet differentials on generic
hypersurfaces of projective spaces by Demailly, Brotbek, Darondeau, Ya Deng,
Berczi-Kirwan. The technique, due to Riedl-Yang, of decreasing the dimension of
these by base loci by taking hyperplane sections also enters crucially the proof in
order to get the hyperbolicity statement.

Remark that although optimal, in certain sense, this statement does not imply
the ‘generic hyperbolicity’ for all Xm claimed by Lang’s conjecture for any hyper-
bolic X , such as the ones considered in the theorem. The hyperbolicity of X does
not imply that of Xm for m ≥ g. Indeed: if g is the genus of the normalisation of
any irreducible curve C ⊂ X , since Cm ⊂ Xm then contains dense entire curves,
Xm is not hyperbolic. As m grows, more and more projective Cm appear on which
the Kobayashi pseudodistance vanishes.

A direct consequence of Theorem 0.1 is that if for m generic points of X an
irreducible curve C ⊂ X exists containing them, then g(C) > m if X is of general
type. But:

Theorem 5. [1] Assume Ω1
X is ample, m > 1 given. There exists then a countable

family of subvarieties Vk ( Xm such that any non-hyperbolic curve C ⊂ Xm is
contained in some Vk. Moreover, codimX(Vk) ≥ (n− 1), ∀k.
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Fields of definitions of Hodge loci

Bruno Klingler

(joint work with Anna Otwinowska, David Urbanik)

The purpose of this talk was to explain the results on fields of definition of Hodge
loci obtained in [8].

Let (V,V , F •,∇) be a variation of Z-Hodge structure (ZVHS) on a smooth com-
plex irreducible algebraic variety S. Recall this means the following: V is a finite
rank ZSan -local system on the complex manifold San associated to S; and the
holomorphic module with integrable connection (Van := V ⊗ZSan OSan ,∇an) on
San associated to V by the Riemann-Hilbert correspondence is endowed with a de-
creasing filtration (F •)an of DSan-modules such that for each s ∈ San the filtration

https://arxiv.org/abs/2007.07572
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F •
s on Vs is the Hodge filtration of a pure Hodge structure. Following Deligne [5,

Theor.5.9] there exists a unique algebraic module with regular integrable connec-
tion (V ,∇) whose analytification is (Van,∇an). We moreover assume V, and all
ZVHSs in this paper, to be polarizable. In this case there exists a unique filtra-
tion F • on the DS-module (V ,∇) whose analytification provides (F •)an, see [10,
(4.13)].

A typical example of such a ZVHS, referred to as “the geometric case”, is (V :=
R2kfan

∗ Z(k),V := R2kf∗Ω
•
X/S , F

•,∇) associated to a smooth projective morphism

of smooth irreducible complex quasi-projective varieties f : X → S. In this case
the Hodge filtration F • is induced by the stupid filtration on the algebraic De
Rham complex Ω•

X/S and ∇ is the Gauß-Manin connection.

From now on we abbreviate the ZVHS (V,V , F •,∇) simply by V. Let V⊗ be
the infinite direct sum of ZVHS

⊕
a,b∈N V⊗a ⊗ (V∨)⊗b, where V∨ denotes the

ZVHS dual to V. The (tensorial) Hodge locus HL(S,V⊗) is the subset of points
s ∈ San for which the Hodge structure Vs admits more Hodge tensors than the very
general fiber Vs′ . Following Deligne [6, 7.5] this is a meager subset of San. While
a priori HL(S,V⊗) has no nice geometric feature, in the geometric case the Hodge
conjecture easily implies that HL(S,V⊗) is a countable union of closed irreducible
algebraic subvarieties of S, see [15]. Remarkably, Cattani, Deligne and Kaplan [3]
(see also [2] for a simplified proof) proved unconditionnally that for any ZVHS
V on S the Hodge locus HL(S,V⊗) is a countable union of irreducible algebraic
subvarieties of S, called the strict special subvarieties of S for V (or sometimes “the
irreducible components of the Hodge locus HL(S,V⊗) ”). A special subvariety of
dimension zero is called a special point. We refer to [14] for a survey on Hodge
loci.

Let us now turn to fields of definitions of special subvarieties. In the geometric
case, let us suppose that the morphism f : X → S is defined over a number field
K. In that case the filtered algebraic DS-module (V , F •,∇) is also defined overK.
Again, the Hodge conjecture is easily seen to imply that each special subvariety
Y of S for V⊗ is defined over a finite extension of K and that each of the finitely
many Gal(Q/K)-conjugates of Y is a special subvariety of S for V. In fact this
follows from the weaker conjecture that Hodge classes are absolute Hodge, see [4,
3.5].

Let us say that a general ZVHS V is defined over a number field K ⊂ C if S, V , F •

and ∇ are defined overK: S = SK⊗KC, V = VK⊗KC, F •V = (F •
KVK)⊗KC and

∇ = ∇K⊗KC with the obvious compatibilities. Following Simpson [11, “Standard
conjecture” p.372], such a ZVHS defined over a number field ought to be motivic:
there should exist a Q-Zariski-open subset U ⊂ S such that the restriction of V to
U is a direct factor of a geometric ZVHS on U . In particular Simpson’s “standard
conjecture” and the remark above concerning the geometric case implies:
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Conjecture 1. Any special subvariety associated to a ZVHS defined over K is
defined over a finite extension L of K and its finitely many Gal(Q/K)-conjugates
are still special subvarieties of S for V.

For simplicity of notations, we will refer to this situation by saying that V is
defined over Q, that special subvarieties are defined over Q and that their Galois
conjugates are special subvarieties.

Let us mention the few results in the direction of Conjecture 1 we are aware of:

(1) In [13, Theor. 0.6 (ii)] (see also [14, Theor. 7.8]) Voisin proves that if
f : X → S is defined over Q and if the special subvariety Y ⊂ S defined
by a Hodge class α ∈ H2k(X0,Z(k)) satisfies that any locally constant
Hodge substructure L ⊂ H2k(Xy,Z(k)), y ∈ Y an, is purely of type (0, 0)

then Y is defined over Q and its Gal(Q/Q)-translates are still special
subvarieties of S for V⊗.

(2) In [9] Saito and Schnell prove that for any ZVHS defined over Q a special
subvariety is defined over Q if (and only if) it contains a single Q-point
of SQ; this generalizes the well-known fact that the special subvarieties

of Shimura varieties are defined over Q (as any special subvariety of a
Shimura variety contains a CM-point, and CM-points are defined over Q).

Notice that both Voisin’s and Saito-Schnell’s criteria are difficult to check in prac-
tice as one usually knows very little about the geometry of a special variety Y : in
Voisin’s case one would need to control the Hodge structure on the cohomology
of a smooth compactification of X|Y ; in Saito-Schnell’s case, there is no natural

candidate for points over Q.

In [8] we provide a geometric criterion for a special subvariety of a ZVHS V de-
fined over Q to satisfy Conjecture 1. Let us first recall the notion of algebraic
monodromy group. Let S be a smooth irreducible complex algebraic variety and
V a local system on San. Given an irreducible closed subvariety Y ⊂ S, a natural
invariant attached to Y and V is the algebraic monodromy group HY of Y for V:
the connected component of the Tannaka group of the category 〈V|Y nor〉⊗QLoc of
local systems on (the normalisation of) Y tensorially generated by the restriction
of V and its dual; equivalently the connected component of the Zariski-closure of
the monodromy of the local system V|Y nor .

Definition 2. Let S be a smooth irreducible complex algebraic variety and V a
local system on San. Let Y ⊂ S be an irreducible closed subvariety. We say that
Y is weakly non-factor for V if it is not contained in a closed irreducible Z ⊂ S
such that HY is a strict normal subgroup of HZ .

Our main result in this paper is the following:

Theorem 3. Let V be a polarized variation of Z-Hodge structure on a smooth
quasi-projective variety S. Suppose that V is defined over Q. Then:
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(1) any special subvariety of S for V which is weakly non-factor is defined over
Q;

(2) its Galois-translates are special subvarieties of S for V.

As an explicit corollary we obtain:

Corollary 4. Let V be a polarized variation of Z-Hodge structure on a smooth
quasi-projective variety S. Suppose that V is defined over Q and that its adjoint
generic Mumford-Tate group Gad

S is simple. Then any strict special subvariety
Y ⊂ S for V, which is positive dimensional for V and maximal for these properties,
is defined over Q, and its Galois-translates are special subvarieties of S for V.

Theorem 3 also enables to reduce the full Conjecture 1 to the case of points:

Corollary 5. Special subvarieties for ZVHSs defined over Q are defined over Q

if and only if it holds true for special points. Similarly their Galois-translates are
special subvarieties if and only if it holds true for special points.
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Rational endomorphisms of codimension one foliations

Jorge Vitório Pereira

(joint work with Federico Lo Bianco, Erwan Rousseau, Frédéric Touzet)

Singular holomorphic foliations (from now on, simply foliations) on projective sur-
faces invariant by birational maps were classified by Cantat and Favre in [2]. They
explored the classification of birational transformations of surfaces to give a very
precise description of the foliated surfaces with an infinite group of birational trans-
formations. Foliations on projective surfaces invariant by non-invertible rational
maps were classified in [3] by exploring the birational classification of foliations on
projective surfaces according to their Kodaira dimension, by Brunella, McQuillan,
and Mendes.

The analogue problem for foliations on higher dimensional manifolds is much
less studied. Some activity on the subject was spurred by a question posed by
Guedj in [4, page 103]: if h is a bimeromorphic map of a compact Kähler manifold
which is not cohomogically hyperbolic, is it true that h preserves a foliation? A
negative answer was provided by Bedford, Cantat, and Kim in [1], by exhibiting
families of pseudo-automorphisms of rational 3-folds which are not cohomologically
hyperbolic and do not preserve any foliation. Their strategy explores the explicit
form of the pseudo-automorphisms they construct, in particular the existence of
certain invariant surfaces, and uses the available knowledge about foliations on
surfaces invariant by rational maps.

Transversely projective foliations. Together with Lo Bianco, Rousseau, and
Touzet we started in [5] a study of codimension one foliations invariant by rational
maps. Our focus is on the following question: given a projective manifold X and
a dominant rational map f : X 99K X preserving a codimension one foliation F ,
under which conditions some iterate of f preserves each leaf of F? When this
happens, we say that the transverse action of f is finite.

Our approach to this question was inspired by a conjecture of Cerveau and Lins
Neto, which predicts that codimension one foliations on projective manifolds are
either rational pull-backs of foliations on surfaces or admit a (singular) transversely
projective structure. A confirmation of this conjecture would reduce the study of
rational maps with infinite transverse action on codimension one foliations to the
class of transversely projective foliations.

Theorem 1. Let X be a projective manifold and let F be a transversely projective
foliation of codimension one on X. If f : X 99K X is a rational endomorphism of
F with infinite transverse action then F is virtually transversely additive.

Roughly speaking, a transversely additive foliation is a foliation which is defined
by a closed 1-form with coefficients in a finite algebraic extension of C(X).

Zariski dense dynamics. The statement of Theorem 1 gives little information
about the nature of the rational endomorphism f : X 99K X . In order to have
a precise description of f , we first restrict to the class of purely transcendental
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foliations (i.e. through a general point of a general leaf there is no positive di-
mensional algebraic subvariety tangent to it) and to rational endomorphisms with
Zariski dense orbits.

Theorem 2. Let X be a projective manifold and let F be a transversely projective
and purely transcendental foliation of codimension one on X. If f ∈ End(X,F)
has Zariski dense orbits then f is conjugated to a Lattes-like map.

A rational endomorphism f : X 99K X is a Lattes-like map if there exists
an abelian algebraic group A, a cyclic finite group Γ acting on A, and a map
ϕ : A→ A which is the composition of a group endomorphisms with a translation
such that f is birationally conjugated to the map induced by ϕ on the quotient
A/Γ.

The proof of Theorem 2 relies on reduction of singularities for foliations defined
by closed rational 1-forms and on the following result.

Theorem 3. Let f : X 99K X be a rational map on a projective manifold X
with a Zariski dense orbit and let D be a simple normal crossing divisor on X. If
f∗D has support contained in the support of D then the quasi-albanese morphism
alb(X,D) : X−D → Alb(X,D) is a dominant rational map with irreducible general
fiber.

A conjecture. We do believe that the hypothesis on the transverse structure of
F is not necessary, as predicted by Cerveau-Lins Neto conjecture.

Conjecture 4. Let X be a projective manifold and let F be a codimension one
foliation on X. If the transverse action of f ∈ End(X,F) is infinite then F is
virtually transversely additive.

We prove that in order to verify Conjecture 4, it suffices to consider foliations
invariant by rational endomorphisms with Zariski dense orbits. In particular,
Conjecture 4 holds true when the Zariski closure of the general orbit of f has
dimension at most two.

We also show that the semi-group of rational endomorphisms preserving a foli-
ation of (adjoint) general type with canonical singularities is finite. Extrapolating
the picture drawn by the classification of foliations on surfaces according to their
adjoint dimension [6], it seems reasonable to expect that purely transcendental
codimension one foliations which are not of adjoint general type are transversely
projective. If this expectation is confirmed, then our results would confirm Con-
jecture 4.
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Fano manifolds such that the tangent bundle is (not) big

Andreas Höring

Let X be a Fano manifold, i.e. a complex projective manifold such that the
anticanonical bundle −KX = detTX is ample. One of the most basic questions
one can ask about Fanos is whether the positivity of detTX implies any positivity
properties of TX . Obviously, one should not expect too much: by Mori’s theorem
we know that the projective space is the only Fano manifold such that TX is ample,
and, more generally, one expects that semipositivity of the tangent bundle (e.g.
metric conditions, TX is nef, etc.) should only appear for very special geometries.
In this project (which is joint work with Jie Liu and Feng Shao) we consider a
much weaker condition:

Definition. Let X be a projective manifold. We say that the tangent bundle is
pseudoeffective (resp. big) if the tautological class c1(OP(TX )(1)) on the projec-
tivised bundle P(TX) is pseudoeffective (resp. big).

Examples of manifolds with pseudoeffective tangent bundle are almost homoge-
neous spaces (or more generally any manifold admitting a non-zero vector field);
by a result Hsiao [6] all toric varieties have big tangent bundle. A priori, it is not
clear if the property of having a big tangent bundle is very restrictive. In fact big
vector bundles can be very pathological: given an ample line bundle A → X on
any projective manifold, the vector bundle V = A⊕A∗ is big, but its determinant
is trivial and the restriction to any curve is not nef. More generally the Chern
class inequalities that are so useful when dealing with nef vector bundles will not
hold for pseudoeffective vector bundles.

As a first step towards a theory of Fano manifolds with big/pseudoeffective
tangent bundles, we characterise this property for some of the standard examples:

Theorem 1. For n ≥ 2, let X ⊂ Pn+1 be a smooth hypersurface. Then TX is
pseudoeffective if and only if X is a hyperplane or a quadric.

For the proof we use the theory of Schur functors to compute explicitly the space
of global sections of certain twists of the symmetric powers of the tangent bundle.
This involves vanishing theorems of Brückmann and Rackwitz [2], Schneider [12]
and Bogomolov-de Oliveira [1]. Since these theorems already fail for complete
intersections of higher codimension, settling the question for del Pezzo surfaces
of degree 4 and 5 requires a different approach: every Fano manifold carries a
family of minimal rational curves, i.e. a family of rational curves f : P1 → X that



1296 Oberwolfach Report 24/2020

dominates X and such that for a general point x ∈ X , the curves passing through
x form a complete family. It is well-known that a general minimal rational curve
is standard, i.e. one has

f∗TX ≃ OP1(2)⊕ OP1(1)p ⊕ O
n−p−1
P1

for some p ∈ {0, 1, . . . , n − 1}. By a famous theorem of Cho-Miyaoka-Shepherd
Barron [4] and Kebekus [9] one has p 6= n− 1 unless X is the projective space, so

we can consider the curves l̃ ⊂ P(TX) corresponding to the trivial quotients

f∗TX → OP1 .

Let Č ⊂ P(TX) be the closure of the locus covered by these curves, then we call Č
the total dual VMRT of the family of minimal rational curves. This terminology
is justified by the fact that for x ∈ X general the fibre Čx is the projective dual of
the VMRT Cx that plays a prominent rôle in the theory of Hwang and Mok [7].
The total dual VMRT is a divisor in P(TX) unless the VMRT is dual defective, so
we can consider that in “many” cases this construction yields a divisor. It turns
out that the class of this divisor can be computed in a number of cases, leading to
the following result:

Theorem 2. Let S be a smooth del Pezzo surface of degree d := (−KS)
2. Then

one has

TS is big if and only if d ≥ 5.

Let X be a 3-dimensional del Pezzo manifold, i.e. a smooth Fano threefold such
that −KX = 2H where H is a Cartier divisor. Set d := H3. Then one has

TX is big if and only if d ≥ 5.

In the surface case, related results were obtained by Paris [11], Hosono-Iwai-
Matsumura [5] and Mallory [10].

If X is a del Pezzo threefold of degree d, a general element of the linear system
|H | is a del Pezzo surface S of degree d. Thus the two parts of Theorem 2 taken
together imply that

(*) TX is big if and only if TS is big.

This property is very surprising: the tangent bundle TS is a subbundle of TX |S , so
we can not expect any relation between their positivity properties. For example
the del Pezzo threefold of degree five is almost homogeneous, so it has many vector
fields. However the del Pezzo surface of degree five has no vector fields, hence the
inclusion

H0(S, TS) →֒ H0(S, TX |S) 6= 0

is the zero map. The proof of our theorem gives a hint why the property (∗) holds:
if one computes the class of the total dual VMRT of a family of lines on a del Pezzo
threefold X , the result depends on the number of (−1)-curves in S ! While the
details of the proof are somewhat technical, the general strategy is quite classical:
we follow the computation of the invariants of the Fano variety of lines of the cubic
threefold that appears in the seminal work of Clemens and Griffiths [3].
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A condition of existence of cscK metrics on spherical manifolds

Thibaut Delcroix

Consider a smooth compact Kähler manifold X . Determining if there exists a
cscK metric or not in a given Kähler class is a very hard geometric analysis
problem involving a fourth order highly non-linear PDE. The aim of the Yau-
Tian-Donaldson conjecture is to translate this geometric analysis problem into an
algebro-geometric problem, involving a condition of K-stability inspired by GIT
stability and the Kobayashi-Hitchin correspondence for Hermite-Einstein metrics.
It is not apparent in general that the K-stability condition is easier to check than
the construction of cscK metrics. The resolution of the Yau-Tian-Donaldson in the
special case of the anticanonical class however allowed different authors to solve
the question of existence of Kähler-Einstein metrics on large classes of manifolds
that seemed out of reach from analytic techniques, and we had the pleasure to
present such a result [2] at Oberwolfach in 2017.

In the case of general polarizations, arguably the best result in the direction of
the YTD conjecture was obtained by Donaldson in a series of papers starting in
2002 [3] and ending in 2009 [4]. There he showed the YTD conjecture holds for
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toric surfaces. A toric manifold X is a n-dimensional complex manifold equipped
with an effective (C∗)n making it almost-homogeneous. It was later realized (see
for example [5]) that thanks to big progress in the domain [1], Donaldson’s work
could actually be used to prove the uniform YTD conjecture for toric manifolds
of arbitrary dimension. It should be remarked that Donaldson’s result for surfaces
is more precise and actually allows to determine whether a toric surface admits a
cscK metric in simple enough cases, whereas the higher-dimensional uniform YTD
result is not a priori as effective.

The work we presented at the workshop was initiated by a remark of Odaka
to the effect that a very recent alternative proof of the uniform YTD conjecture
for toric manifolds, obtained by Chi Li [6], applies as well to spherical manifolds.
Spherical manifolds are a wide generalization of toric manifolds in the following
sense. A complex manifold X equipped with an action of a connected reductive
group G is spherical if any Borel subgroup of G acts on X with an open orbit. In
order to apply this solution of the uniform YTD conjecture to determine explicitly
when a spherical manifold admits a cscK metric, we first translate the condition
of uniform K-stability of spherical varieties as a convex geometric problem, as was
done by Donaldson for toric manifolds. By studying the type of convex geometric
problem arising from this condition, we obtain a combinatorial sufficient condi-
tion of uniform K-stability which amounts to a finite number of conditions to be
checked. This is not the only application we have in mind to the convex-geometric
translation of uniform K-stability condition for spherical varieties. Our hope is
that it can be used to upgrade the more precise YTD result of Donaldson for toric
surfaces to spherical manifolds of dimension three and rank two (the rank of a
spherical variety being the maximal dimension of a torus orbit).
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Singularities and Syzygies of Secant Varieties of Smooth
Projective Curves

Lawrence Ein

(joint work with Wenbo Niu, Jinhyung Park)

In this report, I would describe my joint work with Wenbo Niu and Jihgyung Park
[7] on the singularities and syzygies of secant varieties of nonsingular projective
curves. We study the secant varieties of a nonsingular projective curve embedded
in a projective space by a sufficiently very ample line bundle. Throughout the
paper, we work over an algebraically closed field k of characteristic zero. Let

C ⊆ P(H0(C,L)) = Pr

be a nonsingular projective curve of genus g ≥ 0 embedded by the complete linear
system of a very ample line bundle L on C. For an integer k ≥ 0, the k-th secant
variety

Σk = Σk(C,L) ⊆ Pr

to the curve C is defined to be the Zariski closure of the union of (k + 1)-secant
k-planes to C in Pr. One has the natural inclusions

C = Σ0 ⊆ Σ1 ⊆ · · · ⊆ Σk−1 ⊆ Σk ⊂ Pr.

If degL ≥ 2g + 2k + 1, then

dimΣk = 2k + 1 and Sing(Σk) = Σk−1.

Note that Σk−1 has co-dimension two in Σk. The geometric consequence of the
condition degL ≥ 2g + 2k + 1 is that any effective divisor on C of degree k + 1
spans a k-plane in Pr.

The strategy is the following. We would like to induct on k. One of the difficulties
is that Σk−1 is of co-dimension two in Σk. This leads us to study the singularities
of the pair (Σk,Σk−1). From the classical work, we know Σk has a natural smooth
model. βk : Bk(L) → Σk, where Bk(L) is a Pk- bundle over Ck+1, the k + 1
folds symmetric product of C. We prove that β−1

k (Σk−1 = Zk−1 is an irreducible

divisor in Bk(L) and the pair (Bk(L), Zk−1) is a log-canonical pair. By the work
of Bertram [2], the fiber of βk over a point p ∈ Σm−Σm−1 is isomorphic to Ck−m.
Furthermore, one can compute the co-normal sheaf of the fiber. As in [4], one can
use the formal functions theorem to show that Σk is normal. More recently, Ullery
has used a similar argument to show that Σ1 is normal in [17]. Furthermore,the
pair has property similar to a pair with rational singularities. Again using the
formal functions theorem, we show that

Rβk(O(−Zk−1)) = IΣk−1/Σk
.

By induction Σk−1 has Du Bois singularities. It follows from a theorem of Kollár
and Kovács that the condition implies that Σk also has Du Bois singularities.

There has been a great deal of work on the secant varieties in the last three decades.
The major part of the research focused on local properties, defining equations, and
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syzygies. Recently, classical questions on secant varieties find interesting applica-
tions to moduli of stable rank 2 bundles on C, algebraic statistics and algebraic
complexity theory. However, a lot of problems in this area are still widely open,
and not much is known about general pictures. the embedding line bundle is the
better geometry the secant variety would have. For the first secant variety of a
curve, investigation has been conducted in a series of work by Vermeire [18], [19],
[20] and the work with his collaborator Sidman [15], [16]. Among other things,
the issue whether secant varieties are normal attracted special attention, as nor-
mality is critical in establishing many other important properties. Only for the
first secant variety, the normality problem was settled by Ullery [17] fairly recently
for a nonsingular projective variety of any dimension under suitable conditions on
the embedding line bundle. Soon afterwards Chou and Song [3] further showed
that the first secant variety has Du Bois singularities under the setting of Ullery’s
study.

On the other hand, the classical questions on the projective normality and the
defining equations of secant varieties are the initial case of a more general pic-
ture involving higher syzygies, under the frame of Green’s pioneering work ([9]).
Keeping in mind that the curve can be viewed as its zeroth secant variety, the
fundamental Green’s (2g + 1 + p)–theorem (see [9]) asserts that if the embedding
line bundle L has degL ≥ 2g + 1 + p, then C ⊆ Pr is projectively normal and
satisfies the property N2,p, i.e., the curve is cut out by quadrics and the first p
steps of its minimal graded free resolution are linear. This result sheds the lights
on understanding the full picture of syzygies of arbitrary order secant varieties.

In this paper, we give a thorough study on singularities and syzygies of the k-th
secant variety Σk of the curveC for arbitrary integer k ≥ 0. The general philosophy
guiding our research can be summarized as that singularities and syzygies interact
each other in the way that the singularities of Σk determine its syzygies while the
syzygies of Σk−1 determine the singularities of Σk, and so on and so forth. It turns
out that all the sufficient conditions that guarantee each basic property of secant
varieties are satisfied if the embedding line bundle is positive enough beyond an
effective bound. each basic properties of secant varieties, and show the interaction
between them. It turns out all those conditions are satisfied if the line bundle is
positive enough beyond an effective bound.

The first main result of the paper describes that the possible singularities of secant
varieties are mild ones naturally appearing in birational geometry.

Theorem 1. ([7]) Let C be a nonsingular projective curve of genus g, and L be
a line bundle on C. For an integer k ≥ 0, suppose that degL ≥ 2g + 2k + 1.
Then Σk = Σk(C,L) has normal Du Bois singularities. Furthermore, one has the
following:

(1) g = 0 if and only if Σk is a Fano variety with log terminal singularities.
(2) g = 1 if and only if Σk is a Calabi–Yau variety with log canonical singu-

larities but not log terminal singularities.
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(3) g ≥ 2 if and only if there is no boundary divisor Γ on Σk such that (Σk,Γ)
is a log canonical pair.

The above theorem therefore completely solves the normality problems men-
tioned in ([17]), and answers Chou–Song’s question ([3]) for curves.

The second main result gives a description of the syzygiies of the secant variety. It
reveals one full picture hiding in the Green’s (2g+1+p)–theorem aforementioned.

Theorem 2. ([7]) Let C ⊆ P(H0(C,L)) = Pr be a nonsingular projective curve of
genus g embedded by the complete linear system of a very ample line bundle L on
C. For integers k, p ≥ 0, suppose that

degL ≥ 2g + 2k + 1 + p.

Then one has the following:

(1) Σk = Σk(C,L) ⊆ Pr is arithmetically Cohen–Macaulay.
(2) Σk ⊆ Pr satisfies the property Nk+2,p.
(3) reg(OΣk

) = 2k + 2 unless g = 0, in which case reg(OΣk
) = k + 1.

(4) h0(ωΣk
) = dimKr−2k−1,2k+2(Σk,OΣk

(1)) =
(
g+k
k+1

)
.

The results in the theorem were conjectured by Sidman–Vermeire ([15], [16]).
The conjectures were quite wide open. For g ≤ 1, the conjectures were settled by
Graf von Bothmer–Hulek ([10]) and Fisher ([8]). By work of Vermeire ([18], [19]
[20]), Sidman–Vermeire ([15],[16]) and Yang ([22]), the question about N3,p was
finally settled for the first secant variety Σ1.

Theorem 2 gives a complete picture for syzygies of arbitrary order secant varieties
of curves. If degL ≥ 2g + 2k + 1, then Σk ⊆ Pr is indeed projectively normal. If
degL ≥ 2g+2k+2, then Σk is ideal-theoretically cut out by the hypersurfaces of
degree k + 2 Furthermore, if degL ≥ 2g + 2k + 1 + p, then the first p steps of the
minimal graded free resolution of Σk are linear.
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[14] C. Soulé, Secant varieties and successive minima, J. Algebraic Geometry, 13: 323–341,

2004.
[15] J. Sidman and P. Vermeire, Syzygies of the secant variety of a curve, Algebra Number

Theory, 3(4): 445–465, 2009.
[16] J. Sidman and P. Vermeire, Equations defining secant varieties: geometry and computation,

in Combinatorial aspects of commutative algebra and algebraic geometry, volume 6 of Abel
Symp., (2011), pages 155–174. Springer, Berlin.

[17] B. Ullery, On the normality of secant varieties, Adv. Math., 288, (2016), 631–642.
[18] P. Vermeire, Some results on secant varieties leading to a geometric flip construction,

Compositio Math., 125(3), (2001), 263–282.
[19] P. Vermeire, On the regularity of powers of ideal sheaves, Compositio Math., 131(2): 161–

172, 2002.
[20] P. Vermeire, Regularity and normality of the secant variety to a projective curve, J. Algebra,

319(3), (2008), 1264–1270.
[21] P. Vermeire, Equations and syzygies of the first secant variety to a smooth curve Proc.

Amer. Math. Soc., 140(8), (2012), 2639–2646.
[22] R. Yang, A letter about syzygies of secant varieties, (2016).

An algebraic construction of K-moduli spaces of Fano varieties

Chenyang Xu

It has been once beyond algebraic geometers’ imagination that there could be an
intrinsic construction of moduli to parametrize Fano varieties, especially if one
wants to find a compactification. One main difficulty is that the separatedness
of the functor fails miserably. Nevertheless, in the past a few years, it has be-
come clear that K-stability provides an excellent condition for constructing a well
behaved moduli space of Fano varieties, called the K-moduli of Fano varieties.

K-stability was first invented by differential geometers to characterize whether a
Fano variety admits a Kähler-Einstein metric. It has recently been well received
that, by combining with the machinery of higher dimensional geometry, the purely
algebraic study of K-stability of Fano varieties became a new field of algebraic
geometry, and a number of deep problems has experienced a tremendous progress.
One of the major problems is to construct the K-moduli.

While the connection with the existence of Kähler-Einstein metric provides a
philosophic justification, technically it seemed bold at the beginning to expect
K-stability could be a key ingredient in constructing moduli spaces of Fano va-
rieties, as its definition is somewhat complicated and remote from any known
approaches of constructing moduli.

The recently established valuative criterion of K-stability turns out to be quite
useful for the construction of K-moduli. We first see how, combined with deep
works from the minimal model program, this implies the existence of K-moduli
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stack, i.e. we know the moduli functor XKss
n,V of n-dimensional K-semistableQ-Fano

varieties of volume V , which sends S ∈ Schk to

X
Kss
n,V (S) =





Flat proper morphisms X → S, whose fibers are
n-dimensional K-semistable klt Fano varieties with

volume V , satisfying Kollár’s condition





is represented by an Artin stack X
Kss
n,V of finite type.

This statement contains two parts. The boundedness is achieved by showing
that the fixed volume and K-semistability assumption imply the local singularities
have a more uniform numerical restriction than just being general klt singularities
(see [6, 9]), and hence we can invoke the boundedness theorems of Fano varieties
in birational geometry. Then we know K-semistable Fano varieties form an open
locus in a family of Fano varieties, showed in [3, 7].

Then a more delicate but also more distinguished feature of K-stability is given
by the following theorem proved in [4, 1]: The K-moduli stack X

Kss
n,V (S) admits a

separated good moduli space

φ : XKss
n,V → XKps

n,V ,

whose closed points are in bijection with n-dimensional K-polystable Q-Fano va-

rieties of volume V , i.e., XKps
n,V is the desired K-moduli space.

The proof of the above used profound birational geometry construction, as well
as a general abstract criterion on when a good moduli space of a finite type Artin
stack exists, established in [2].

The major remaining challenge is the following conjecture:

Conjecture: The moduli good space XKps
n,V is proper.

Finally, by [5, 8], we also have a projectivity result: any proper subspace of XKps
n,V

whose points parametrize reduced uniformly K-stable Fano varieties, is projective.
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Non-commutative deformations of perverse coherent sheaves

Yujiro Kawamata

The deformation theory becomes sometimes richer when we allow associative alge-
bras instead of commutative algebras to be the parameter algebras of deformation
families. There are more NC (not necessarily commutative) deformations than C
(commutative) deformations. There are examples where the parameter algebras
of C deformations are only finite dimensional while those of NC deformations are
infinite dimensional. The most essential invariants are sometimes recovered only
from NC deformations. For example, Donovan-Wemyss conjecture predicts that
some 3-dimensional hypersurface singularities with small resolutions are recovered
from the NC deformations of the exceptional curves of the resolutions.

The existence of the versal NC deformations F̂ is proved in the same way as the
versal C deformations, and the abelianization R̂ab of the NC deformation algebra
R̂ (the parameter algebra of F̂ ) is the C deformationn algebra. The main question

of this talk is to determine (R̂, F̂ ) in some examples, and we will see that they are
related to interesting geometric questions in some cases.

A simple collection is a direct sum of objects F =
⊕r

i=i Fi in an abelian category
such that End(F ) ∼= kr for the base field k = C. In this case, the versal NC

deformation F̂ is obtained by a succession of universal extensions (under some
finiteness conditions). We set F 0 = F and construct Fm inductively by exact

sequences 0 → Ext1(Fm, F )∗ ⊗kr F → Fm+1 → Fm → 0. Then F̂ = lim
←−

Fm

is the versal NC deformation over the NC deformation algebra R̂ = lim
←−

Rm for

Rm = End(Fm).

The versal NC deformation F̂ over R̂ can be described by using A∞-algebra
in the following way. The cohomology group B =

⊕∞
i=0 Exti(F, F ) has an A∞-

algebra structure, and we have R̂ = (
∏∞

i=0

⊗i
kr B∗

1)/(m
∗B∗

2), wherem =
∑∞

i=2 mi :⊕∞
i=2

⊗i
kr B1 → B2 is a map constructed from the higher multiplications. We

have also a formula for F̂ . It is natural to ask about the convergence of the formal
power series and about the globalization. It is also interesting to consider NC
deformations of varieties.

We can define a category of perverse coherent sheaves when there is a tilting
bundle P for a projective morphism f : Y → X . It is the category of objects in the
derived categoryDb(coh(Y )) which correspond to the modules over the associative
algebra End(P ) under Bondal-Rickard equivalence. It is more algebraic than the
geometric category of coherent sheaves.

If X = Spec(S) for a complete local ring S with residue field k, then there
are only finitely many simple objects {si}i∈I in the category of perverse coherent
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sheaves. We can describe the versal NC deformation and the NC deformation
algebra for any partial collection {sj}j∈J (J ⊂ I) of simple objects using the
corresponding set of indecomposable projective objects {Pi}i∈I in the category of

perverse coherent sheaves. We have F̂ = cone(Hom(PJc , P )⊗End(PJc) PJc → P )

for P =
⊕

i∈I Pi and PJc =
⊕

i6∈J Pi, and R̂ = End(P )/I for a two-sided ideal

I = (g | P → PJc → P ).
We assume further that f : Y → X is a projective birational morphism from

a smooth 3-fold whose exceptional locus C is an irreducible curve and such that
(KY , C) = 0. Such flopping contractions are induced from universal flopping

contractions f̃ : Ỹl → X̃l of length l (l = 1, 2, 3, 4, 5 or 6) by base change morphisms

X → X̃l. We can calculate NC deformation algebras of exceptional fibers of
f̃ : Ỹl → X̃l. We also calculate NC deformation algebras of f : Y → X in the case
of deformations of Laufer’s flops (l = 2). For integers n ≥ 1 and 0 ≤ i ≤ 2n, X
is defined by the following equation in k4: x2 + y3 + z2w + yw2n+1 = 0 for i = 0
(this is Laufer’s flop), and x2 + y3 + y2(−w)i + z2w + yw2n+1 − (−w)i+2n+1 = 0

for 1 ≤ i ≤ 2n. Then R̂ = k〈〈a, b〉〉/(ab + ba, a2 + b2n+1) for i = 0, and =
k〈〈a, b〉〉/(ab+ba, a2+b2n+1+b2i) for 1 ≤ i ≤ 2n. We can confirm Donovan-Wemyss

conjecture in this case. We note that the abelianizations R̂ab for n + 1 ≤ i ≤ 2n
are isomorphic, but the non-commutative algebras R̂ are not isomorphic.
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Functional Transcendence for Quotients of Bounded
Symmetric Domains

Ngaiming Mok

Finite-volume quotients of bounded symmetric domains Ω, which are naturally
quasi-projective varieties, are objects of immense interest to Several Complex Vari-
ables, Algebraic Geometry, Arithmetic Geometry and Number Theory, and an
important topic revolves around functional transcendence in relation to universal
covering maps of such varieties (in analogy to the exponential map exp : C→ C∗).
While a lot has already been achieved in the case of Shimura varieties (such as the
moduli space Ag of principally polarized Abelian varieties) by means of methods
of Diophantine Geometry, Model Theory, Hodge Theory and Complex Differen-
tial Geometry, techniques for the general case of not necessarily arithmetic quo-
tients Ω/Γ =: XΓ have just begun to be developed. For instance, uniformization
problems for subvarieties of products of arbitrary compact Riemann surfaces of
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genus ≥ 2 have hitherto been intractable by existing methods. We will explain a
differential-geometric approach leading to characterization results for totally geo-
desic subvarieties of XΓ for the universal covering map π : Ω→ XΓ. Especially, we
will explain how uniformization theorems for bi-algebraic varieties can be proven
by transcendental methods involving the Poincaré-Lelong equation (joint work
with S.-T. Chan), generalizing earlier results of Ullmo-Yafaev in 2011 in the case
of arithmetic quotients. More generally, we will consider the Zariski closures of
images of algebraic sets under the universal covering map π : Ω → XΓ. In the
arithmetic case, Klingler-Ullmo-Yafaev (2016) has confirmed the hyperbolic Ax-
Lindemann Conjecture (which is one of the two major components for the confir-
mation of the André-Oort Conjecture for Shimura varieties) ascertaining that such
Zariski closures are weakly special (equivalently totally geodesic). I will explain
how the arithmeticity condition can be dropped in the rank-1 case by a completely
different proof using foliation theory, Chow schemes and Kähler geometry.
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Completions of period mappings

Colleen Robles

(joint work with Mark Green, Phillip Griffiths)

Given the data (B,Z; Φ) of a smooth projective variety B with reduced normal
crossing divisor, and period map Φ : B = B\B → Γ\D with image ℘ = Φ(B), we
ask: What are natural completions Φc : B → ℘ to they have? What properties do
they have?

Prior results on completions. In the classical case that D is Hermitian and
Γ is arithmetic (the situation arising when studying moduli of principally polar-
ized abelian varieties and K3 surfaces), the quotient Γ\D admits the projective

Satake–Baily–Borel (SBB) compactification Γ\D
S

[2], and its toroidal normaliza-

tions Γ\D
T

[1]. For either of these we may take ℘ to be the closure of ℘ in Γ\D.

And in the case of SBB we have an extension ΦS : B → Γ\D
S

[4]. (The existence

of the extension ΦT : B → Γ\D
T

is a more subtle business [12, 7].)
We are primarily interested in the non-classical case. In general, Γ\D admits

no algebraic structure [8, 16]; this means that one does not expect to have a

reasonable candidate for Γ\D. Nonetheless, the image ℘ is quasi-projective, and
the Hodge line bundle Λ = ⊗det(Fp) → B descends to an ample line bundle on
℘ [3]; so one might still look for a projective compactification ℘ of the image ℘.
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Here one expects a relative construction, depending on the triple (B,Z; Φ). (One

may think of B as taking the role played by Γ\D in the classical case.)
In [14] a compact, Hausdorff topological generalization ΦS : S → ℘S of SBB

is defined. It is conjectured that ℘S admits the structure of an analytic variety.
The conjecture is proved for dimB = 2. And it is shown that the the conjecture
implies the canonical extension Λe = ⊗det(F

p
e )→ B descends to an ample bundle

on ℘.

The perspective of this talk. In the course of pursuing the generalization
(above) of SBB, it became clear that a better understanding of the global properties
of the period map at infinity is needed. (We contrast this with the local properties
of the period map at infinity, a topic of considerable interest, beginning with
the works [19, 10], with significant applications including the Iitaka conjecture
[21, 20, 17] and the arithmeticity of Hodge loci [9].) The divisor Z admits a
stratification, and the nilpotent orbit theorem yields a variation of (equivalence
classes of) limiting mixed Hodge structures (VLMHS) along the strata. Here
“global” properties refers the properties of this variation along the compact fibres
A of ΦS. The level one extension data of the LMHS defines a map whose restriction
to A takes value in an abelian variety that is polarized by theta line bundles. One of
the main results of this work relates the pullback of those line bundles to the normal
bundles of the irreducible components Zi ⊂ Z. This relates the geometry along
A to the geometry normal to A ⊂ B. It is perhaps the fundamental geometric
property of the period mapping at infinity.

A toroidal candidate. Let B
Φ̂
→ ℘̂ → ℘ be the Stein factorization of Φ. We

prove: The complex analytic variety ℘̂ is Zariski open in a compact, complex ana-

lytic variety ℘̂T, and the map Φ̂ : B → ℘̂ admits a proper holomorphic completion
Φ̂T : B → ℘̂T. We conjecture: ℘̂T is a projective completion of ℘̂.

We also give a conjectural definition of ℘T itself. As a set ℘T parameterizes
Γ–equivalence classes of limiting mixed Hodge structures, and as such encodes
the maximal amount of Hodge theoretic information. (At the other extreme the
set ℘S parameterizes Γ–equivalence classes of polarized Hodge structures on the
associated graded. The map ℘T → ℘S quotients-out the extension data of the
limiting mixed Hodge structures parameterized by ℘T. It is in this sense that ℘S

retains the minimal amount of meaningful Hodge theoretic information.)

Properties of line bundles. The canonical extension Λe → B is nef, [15, Propo-
sition 7.15] (for Λ = Λe|B) and [14, Theorem 1.4.1]. Under a general local Torelli
assumption there is an extensive body of literature establishing various other prop-
erties such as: the Hodge line bundle Λ→ B is big if and only if Φ satisfies generic
local Torelli [14]; and the pair (B,Z) is of log general type, KB + [Z] is big [22].
There are also a number of results on the hyperbolicity of B, including [5, 6, 11].

Here we are predominately interested in establishing conditions under which
natural line bundles on B are free and ample. We conjecture: Under suitable
local Torelli-type assumptions, there exist integers 0 ≤ ai ∈ Z and m0 so that
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mΛe −
∑

ai[Zi] is ample for m ≥ m0. (This would refine results of [3, 14].) The
conjecture is proved in the special case that Z is irreducible. And in dimension
two we have the stronger theorem: Suppose that dimB = 2 and assume that the
differential of Φ : B → Γ\D is everywhere injective. Then there exists ai ≥ 0 so
that the line bundle mΛe−

∑
ai[Zi] is ample for m≫ 0 (strengthening a result of

[14]).
The conjecture above alludes to “suitable local Torelli-type assumptions”. This

is a condition on the triple (B,Z; Φ). Specifically the Gauss–Manin connection
induces a natural map Ψ : TB(− logZ) → End(Gr•Fe

); we say that the triple

(B,Z; Φ) satisfies the local Torelli property if the map is injective.
We conjecture: generic local Torelli for Φ implies KB + [Z] is nef and big,

and local Torelli implies KB + [Z] is free. Under the stronger hypothesis of local

Torelli for (B,Z; Φ) we prove: The line bundle KB +[Z] is nef and big. (The Base
Point Free Theorem [18] then implies some multiple m (KB + [Z]) is free.) We
also identify an additional condition (expressed in terms of the level one extension
data map alluded to in our discussion of “perspective”) under which KB + [Z] is
ample.
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Université de Paris-Sud
Bât. 304
91405 Orsay
FRANCE

Dr. Lukas Braun

Mathematisches Institut
Universität Freiburg
Ernst-Zermelo-Strasse 1
79104 Freiburg i. Br.
GERMANY

Dr. Ana-Maria Brecan

Mathematisches Institut
Universität Bayreuth
Postfach 101251
95447 Bayreuth
GERMANY

Dr. Damian Brotbek

Institut Elie Cartan,
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Université de Grenoble I
BP 74
100, Rue des Maths
38402 Saint-Martin-d’Hères Cedex
FRANCE

Dr. Christian Gleißner

Mathematisches Institut
Lehrstuhl für Mathematik VIII
Universität Bayreuth, NW II
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UMR 7351 CNRS, Bureau 616
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