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Abstract. The Oberwolfach conference “Topologie” is one of only a few
opportunities for researchers from many different areas in algebraic and geo-
metric topology to meet and exchange ideas. On this occasion, because of the
Corona pandemic, only about 20 participants attended in person, but another
∼ 25 attended online. Speakers were selected from both groups. A topic of
special interest emphasized at the workshop was the rational homotopy the-
ory of embedding spaces and relations to graph complexes and formality. Two
50 minute lectures on this theme were given by Thomas Willwacher, and one
by Victor Turchin. The rest of the program covered a wide range of topics,
among them: homotopy properties of diffeomorphism groups of high dimen-
sional manifolds, advances in the classification of high-dimensional highly
connected smooth manifolds, parametrized algebraic surgery in relation to
hermitian algebraic K-theory, other advances in and geometric applications
of algebraic K-theory, stable homotopy interpretation of link invariants, ge-
ometry of surface bundles and cohomology of mapping class groups, boundary
concepts in geometric group theory, and Koszul duality for operads.

Mathematics Subject Classification (2010): 55-xx, 57-xx.

Introduction by the Organizers

This Topologie conference in Oberwolfach was organized by a committee consist-
ing of Mark Behrens, Ruth Charney, Soren Galatius and Michael Weiss. Because
of the Corona pandemic, only about 20 mathematicians from many different areas
of algebraic and geometric topology attended in person and another 25 attended
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(many of) the lectures online. Similarly, two of the organizers were able to partic-
ipate in person (Galatius and Weiss), the other two participated online. We are
indebted to Nathalie Wahl who, as one of the in-person participants, agreed at
short notice to help with the local organization. We are also indebted to Fabian
Hebestreit who took on the job of a “technical assistant” throughout the meeting.

The talks came in several formats. There were 11 regular 50 minute talks given
in the afternoon to allow “virtual” participation from America; 4 morning talks
at 30 minutes each and 2 morning talks at 50 minutes; and the 3 keynote talks by
Willwacher and Turchin at 50 minutes each (in the afternoon).

Keynote speaker Thomas Willwacher (participating “virtually”) gave two talks
on joint work with B. Fresse and V. Turchin describing new developments in the
rational homotopy theory of spaces of smooth embeddings, especially embeddings
of manifolds into euclidean space Rn subject to boundary conditions (and codi-
mension conditions). The topic has a close connection to operad theory via man-
ifold calculus, but in Willwacher’s talks this was combined with formality results
which constitute a highlight in the theory of operads (associated with the name
of Kontsevich). Graph complexes are the machinery of choice to state, prove and
exploit such formality theorems. It was striking to see how traditional (algebraic)
models for rational homotopy theory, broadly speaking Quillen’s Lie algebra for-
mulation, unfold their potential here in combination with graph complexes. In
Victor Turchin’s talk, it was shown that some of the most important formulas of
the theory have classical precursors, often at the level of π0 (embeddings up to
isotopy).

The remaining talks of the conference covered a wide variety of topics including
homotopy properties of diffeomorphism groups of high dimensional manifolds, ad-
vances in the classification of 2n-dimensional (n− 1)-connected smooth manifolds,
parametrized algebraic surgery in relation to hermitian algebraic K-theory, van-
ishing results for chromatic localizations in algebraic K-theory, applications of al-
gebraic K-theory to scissors congruence and cutting and pasting, stable homotopy
interpretation of link invariants, functor calculus methods applied to knot theory,
operads in QFT, arc complexes and finite generation properties of groups, geome-
try of surface bundles and surface homeomorphisms and cohomology of mapping
class groups, boundary concepts in geometric group theory, and Koszul duality for
operads.

Speakers were instructed to give talks that could be appreciated by an audience
of topologists of many different kinds, and they were generally very successful in
doing so. However, there was a noticeable language barrier between (a) partici-
pants coming from geometric group theory and very low-dimensional topology and
(b) those coming from algebraic topology and high-dimensional manifold theory.
We hope to make this less pronounced in future meetings of this kind by inviting
more speakers working in the geometric theory of 3-manifolds and 4-manifolds.
(This was also our policy in previous meetings, e.g. the 2018 meeting.)
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We now briefly describe the themes of the remaining regular talks (both 50 minute
talks and 30 minute talks). For more detailed information, also information on
coauthors, see the talk summaries.

Manuel Krannich explained to us how cobordism categories and parametrized
surgery can be used to re-prove, and improve on, Igusa’s stability theorem for
smooth concordances and smooth h-cobordism spaces in many cases. Somewhat
similar ideas were advertised in Alexander Kupers’ talk which described new re-
sults on the rational homotopy type of the space of diffeomorphisms of an even-
dimensional disk D2n for n ≥ 3. Cobordism categories and parametrized surgery
were also prominent, but in an algebraic setting, in the talks by Markus Land
and Fabian Hebestreit. One of the major outcomes was the resolution of an old
problem in hermitian algebraic K-theory. Jeremy Hahn gave an overview of recent
work on the classification of (n−1)-connected 2n-manifolds, based on an improved
understanding of patterns in the classical Adams spectral sequence converging to
the homotopy of the sphere spectrum. Georg Tamme spoke on chromatic ver-
sions of classical theorems stating that, under mild conditions, a map of rings or
ring spectra which is a local weak equivalence induces a local weak equivalence
of the algebraic K-theory spectra. Gijs Heuts gave a talk on Koszul duality for
topological operads (and co-operads), resolving the question as to which operads
(and co-operads) are Koszul dualizable. PROPs, which are a generalization of
operads, made an appearance in the talk by Marcy Robertson. The main point
was that specific examples of “wheeled” PROPs defined in geometric terms en-
code solutions to the the Kashiwara-Vergne problem in the theory of Lie algebras.
Nitu Kitchloo described a new categorification of well-known link invariants using
Markov’s presentation of links by braids and a construction making spectra (in
the sense of stable homotopy theory) out of braids. Danica Kosanovic’s talk was
on the usefulness of manifold calculus in classical knot theory and the finite type
invariants for knots due to Vassiliev. One of the main points was a surjectivity
result stating that elements in a finite Taylor approximation to a space of knots
can be realized up to isotopy. Jing Tao spoke on the Thurston classification of
surface (self-)homeomorphisms up to isotopy. She gave a new proof relying on
hyperbolic structures, new representatives for the pseudo-Anosov classes and a
new description of the three types in terms of the Thurston metric on Teichmüller
space. Sam Payne’s talk was on the rational homology of the moduli space of
genus g (complex) curves and relations to moduli spaces of stable tropical curves
of genus g. Ursula Hamenstädt talked about a new inequality for surface bun-
dles over surfaces, relating signature and Euler characteristic of the total space.
In Yulan Qing’s talk, a new concept of boundary for (Caley graphs of) certain
groups was introduced, generalizing the Gromov boundary for hyperbolic groups.
Kai-Uwe Bux talked on a combinatorial notion closely related to arc complexes
on surfaces and also to matching complexes associated with graphs. He used this
to obtain new results on higher finiteness properties of groups. Corey Bregman
reported on the development of a concept of outer space for right-angled Artin
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groups, analogous to Teichmüller space for a surface and the Culler-Vogtmann
outer space for a finitely generated free group.

Our thanks go to the institute for making the conference possible in these difficult
times. The dedication and resourcefulness of the Oberwolfach staff was noted and
pointed out by many participants.
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Embedding calculus for knot spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1128

Alexander Kupers (joint with Oscar Randal-Williams)
Diffeomorphisms of even-dimensional discs outside the pseudoisotopy
stable range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1131



Topologie 1089

Abstracts

Moduli spaces of h-cobordisms of discs

Manuel Krannich

The classical s-cobordism theorem identifies the set of isomorphism classes of h-
cobordisms on a compact connected smooth manifold M of dimension d ≥ 5 with
a quotient of the first algebraic K-group of Z[π1M ]—the Whitehead group

Wh(Z[π1M ]) := K1(Z[π1M ])/± π1M.

This identification can be seen as a computation of the components of the moduli
space H(M) of h-cobordisms on M , and it turns out that the higher homotopy
type of H(M) is related to algebraic K-theory in a similar way: foundational work
of Waldhausen [4] provides a canonical map

H(M)→ Ω∞WhDiff(M)

to the infinite loop space of a spectral refinement of the Whitehead group—the
smooth Whitehead spectrum

WhDiff(M) := K(S[ΩM ])/(Σ∞
+M).

On path-components, this induces the isomorphism provided by the s-cobordism
theorem, but this map is known to be more highly connected by a combination of
two major results in the parametrised study of high-dimensional manifolds:

(1) Taking cylinders induces a stabilisation map H(M)→ H(M×[0, 1]) which
is compatible with the map above and has been shown by Igusa [1] to be
approximately (d/3)-connected, based on parametrised Morse theory.

(2) The map hocolimkH(M × [0, 1]k) → WhDiff(M) is an equivalence by
Waldhausen–Jahren–Rognes’ stable parametrised h-cobordism theorem [5].

In my talk, I explained a new approach to study the relation between H(M)

and WhDiff(M) in the case M = D2n. So far, it has led to the following.

Theorem 1. There exists a (n− 2)-connected map H(D2n)→ Ω∞WhDiff(∗).
Remark 2. In [2], based on a different strategy, it is shown that, as long as one is
willing to invert primes that are large with respect to the dimension and the degree,
then the map in Theorem 1 becomes twice as connected (see also [3]).

In contrast to (1) and (2)—which Theorem 1 recovers in the caseM = D2n(with
an improved range)—the proof of Theorem 1 does not involve stabilising the di-
mension, but instead relates H(D2n) directly to algebraic K-theory. It relies on
several ingredients of which some might be of independent interest, such as an
analysis of the moduli space of block-thickenings of a finite complex, which is
largely geometric, or a general homological vanishing result for the stable twisted
homology of BGL(S[ΩM ]). I will explain the latter in a special case.
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Stable twisted homology of GLg(S). As π1BGLg(S) ∼= GLg(Z), a local system
Mg over BGLg(S) is a Z[GLg(Z)]-module. Given a sequence Mg → Mg+1 of
compatible local systems, we can form the colimit

(1) H∗(BGL(S);M∞) = colimgH∗(BGLg(S);Mg)

and ask for conditions on the sequence Mg that ensure vanishing of (1). If Mg

is constant, then (1) agrees with the homology of Ω∞
0 K(S), so it can be very

nontrivial. Another example is Mg = HomZ(Z
g,Zg) in which case (1) does not

vanish either; for instance H0(BGL(S);M∞) = colimgHomZ(Z
g,Zg)GLg(Z) does

not. Note however that for Mg = Zg, the analogous group H0(BGL(S);M∞) =
colimg(Z

g)GLg(Z) does vanish and this is no coincidence: the sequence Mg = Zg

is part of a class of sequences Mg that are induced by a an abelian-group valued
functor M on the category P(Z) of finitely generated projective modules via

Mg :=M(Zg)
M(Zg⊂Z

g⊕Z)−−−−−−−−−→M(Zg+1) =:Mg+1,

where GLg(Z) acts by functoriality. Such a functor is called reduced if M(0) = 0
and it is called analytic if it a colimit of polynomial functors. A simplified version
of the homological vanishing result that goes in the proof of Theorem 1 shows that
any sequence Mg that extends to such a functor has vanishing stable homology.

Theorem 3. For an abelian-group valued functor M on P(Z) that is reduced and
analytic, the stable homology H∗(BGL(S);M∞) vanishes.
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Top weight cohomology of Mg

Sam Payne

(joint work with Melody Chan and Søren Galatius)

The weight filtration on the cohomology of an algebraic variety (or Deligne-Mum-
ford stack) X of dimension d is an increasing filtration of rational vector spaces,

0 ⊂W0H
∗(X ;Q) ⊂ · · · ⊂W2dH

∗(X ;Q) = H∗(X ;Q).

This is functorial for all natural maps between cohomology groups that are induced
by algebraic morphisms. Diffeomorphic complex manifolds (or orbifolds) may have
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many different realizations as the analytifications of algebraic varieties or stacks.
Each choice of an algebraic structure induces a weight filtration on the singular
cohomology of the manifold, and in some cases this turns out to be useful, e.g., for
proving vanishing or non-vanishing results by separately studying different graded
pieces of the weight filtration.

In this talk, I focused on the cohomology of Mg, the moduli space of smooth
complex algebraic curves of genus g, which is a classifying space for the mapping
class group Modg. This algebraic realization of BModg induces a weight filtration
on the cohomology of the mapping class group, and we focus, in particular, on the
top graded piece of the weight filtration, i.e., GrW2dH

∗(X ;Q), in the case where
X =Mg and d = 3g − 3 is its complex dimension.

Standard arguments from Hodge theory allow us to identify the top weight
cohomology GrW2dH

∗(X ;Q) with the singular homology of the dual complex of the
boundary divisor in some (or any) simple normal crossing compactification. (Such
compactifications exist, by famous classical algebraic geometry theorems of Nagata
and Hironaka.) With somewhat more care, one can define the dual complex of
the boundary divisor in a normal crossing compactification, where the boundary
components may be singular, and self-intersect, with nontrivial monodromy, as is
the case for the Deligne-Mumford stable curves compactification Mg of Mg.

Having set up this technical construction, we study the dual complex of the
boundary divisor Dg = Mg \Mg. By previous joint work with Abramovich and
Caporaso [1], this is naturally identified with a moduli space of stable tropical
curves of genus g and volume 1. This is also the quotient of the simplicial com-
pletion of Culler-Vogtmann Outer Space by the action of Out(Fg) [6].

By examining the cellular chain complex of this tropical moduli space, and by
proving contractibility of the image of the boundary of the simplicial completion of
Outer Space (the locus of stable tropical curves with vertices of positive weight), we
identify its rational homology with the homology of Kontsevich’s graph complex
K(g). Grading conventions on this graph complex vary in the literature. If we
grade the graph complex so that the degree of a graph is its number of edges, then a
deep theorem of Willwacher [7], identifies

∏

g(H2g(K
(g)))∨ with the Grothendieck-

Teichmüller Lie algebra. Another deep theorem of Brown from Grothendieck-
Teichmüller theory [2] shows that this Lie algebra contains a free Lie subalgebra
generated by the Soulé classes σg ∈ H2g(K

g)∨, for odd g ≥ 3. One then deduces

that dimH2g(K
(g)) grows exponentially with g, and hence so does H4g−6(Mg;Q).

This disproves the conjecture of Kontsevich [5, Conjecture 7C] and of Church,
Farb, and Putman [4, Conjecture 9] that, for fixed k, the cohomology groups
H4g−4−k(Mg;Q) should vanish for g ≫ 0.

References

[1] D. Abramovich, L. Caporaso, and S. Payne, The tropicalization of the moduli space of
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Polygons, Horogons, and the Thurston Classification of Surface
Homeomorphisms

Jing Tao

(joint work with Camille Horbez)

Let S be a closed surface of genus g ≥ 2. The mapping class group Γ(S) of S
is the group of isotopy classes of orientation-preserving homeomorphisms of S.
In the 1970s, Thurston [2, 5] gave a characterization of the elements in Γ(S),
completing the work first initiated by Nielsen. This is known as the Thurston (or
Nielsen-Thurston) Classification Theorem, which goes as follows.

Theorem 1 (Thurston Classification). For any element φ ∈ Γ(S), there is a
representative f ∈ Homeo+(S) of φ such that

• f is periodic, i.e. some power of f is the identity;
• f is reducible, i.e. f preserves a closed 1–manifold on S; or
• f is pseudo-Anosov, i.e. there exist a pair of transverse (singular) measured

foliations F+ and F− on S, and K > 1, such that f(F±) = K±1F±.

An element φ ∈ Γ(S) is called periodic, reducible, and pseudo-Anosov accord-
ingly. Note that the three types are not mutually exclusive: φ can be periodic and
reducible. However, a pseudo-Anosov mapping class is never periodic or reducible.

A well-known proof of the Thurston classification is due to Bers who rephrased
the problem in terms of extremal quasi-conformal maps between complex struc-
tures on S [1]. Bers’ version of the classification can be stated as follows.

Theorem 2 ([1]). Suppose φ ∈ Γ(S) is not periodic or reducible, then there exist
a complex structure X on S, a quadratic differential q on X, a constant K > 1,
and a representative f ∈ Homeo+(S) of φ, such that the following statements hold.

• The map f : X → X has quasi-conformal constant K2, which is the mini-
mal quasi-conformal constant among all maps of X representing φ.

• The map f preserves the leaves of the vertical and horizontal foliations Vq
and Hq of q, acting by f(Vq) = KVq and f(Hq) = K−1Hq.

By considering extremal Lipschitz maps between hyperbolic structures on S, we
derive a new proof of the Thurston classification as well as new representatives for
pseudo-Anosov mapping classes. In the following, we will set up the background
needed to state our main result.
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Polygons and horogons. Let H be the Poincaré disc model of the hyperbolic
plane. An ideal polygon P in H with n vertices is called regular if P is isometric
to the ideal n–gon in H with vertices lying on the n–th roots of unity in S1 =
∂H. By a horogon we will mean a polygon h in H whose sides are made up
horocyclic segments with angle 0 at all vertices. Non-adjacent sides of h are
allowed to meet but must be tangent when this happens. A horogon h determines
an ideal polygon P in which it is inscribed, whose ideal vertices are the horocyclic
centers of the sides of h. We also say P circumscribes h. An ideal polygon is
called circumscribing if it circumscribes some horogon. Not all ideal polygons are
circumscribing and an inscribed horogon may not be unique. Some examples: (1)
Every regular ideal polygon circumscribes a unique equilateral horogon. (2) Every
ideal triangle is regular, and the only inscribed horogon is the equilateral one.
(3) The only circumscribing ideal quadrilateral is regular, which circumscribes a
family of horogon. For each inscribed h, if a and b are two adjacent side lengths,
then ab = 2 and 1 ≤ a, b ≤ 2. See the left side of the figure below.

Given a horogon h inscribed in P , then h induces a measured foliation FP (h)
with support on P \ int(h), whose leaves are horocycles, and whose measure on
transverse arcs coincides with the Lebesque measure along the sides of P . Call
FP (h) the horocyclic foliation dual to (P, h). See the right side of the figure above.

Filling geodesic laminations. A geodesic lamination on a hyperbolic surface X
is a nonempty closed subset λ of X foliated by simple complete geodesics, called
the leaves of λ. A geodesic lamination λ is filling if each complementary region of
X \ λ is an ideal polygon, and maximal if each complementary region is an ideal
triangle. Given a filling geodesic lamination λ onX , enumerate the complementary
polygons of X \ λ by P1, . . . , Pk. We say a sequence H = (h1, . . . , hk) of horogons
is inscribable in X if each hi is inscribable in Pi. We say X is λ–circumscribing if
each Pi is circumscribing, and X is λ–symmetric if each Pi is regular. When λ is
maximal, then X is always λ–circumscribing and λ–symmetric.

In [4], Thurston defined the horocyclic foliation dual to a maximal geodesic
lamination. We generalize this to a filling geodesic lamination λ on X for which
X is λ–circumscribing. In this case, let H = (h1, . . . , hk) be inscribable in X ,
and let Fi = FPi

(hi) be the horocyclic foliation dual to (Pi, hi). The tangent
line field of the union of Fi has a continuous extension to the leaves λ which is
Lipschitz. Integrating then yields a measured foliation FX(λ,H) with support on
X −⋃

i int(hi) that extends each Fi. Call FX(λ,H) the horocyclic foliation on X
dual to (λ,H). When X is λ–symmetric and each hi is the equilateral horogon in
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Pi, then FX(λ) = FX(λ,H) is the symmetric horocyclic foliation dual to λ. When
λ is maximal, then FX(λ) coincides with Thurston’s construction in [4].

Main results. We now state our version of the Thurston Classification Theorem.

Theorem 3 ([3]). Suppose φ ∈ Γ(S) is not periodic or reducible, then there exist
a hyperbolic structure X on S, a perfect (no isolated leaves) and filling geodesic
lamination λ on X for which X is λ–symmetric, a constant K > 1, and a repre-
sentative f ∈ Homeo+(S) of φ, such that the following statements hold.

• The map f : X → X has Lipschitz constant K, which is the minimal
Lipschitz constant among all maps of X representing φ.

• The map f preserves the leaves of λ and the symmetric horocyclic foliation
F = FX(λ) dual to λ, acting by f(F ) = KF .

Our proof of the Thurston classification is inspired by Bers’ proof. The main
tool is the Teichmüller space T (S) of S. While Bers used the Teichmüller metric on
T (S), which is suited for comparing complex structures on S, we use the Thurston
metric [4] which is better suited for comparing hyperbolic structures on S. The
mapping class group Γ(S) acts on T (S) by isometries with respect to either metric.
The starting point of Bers’ and our proof is to show that a non-periodic irreducible
φ ∈ Γ(S) must act on T (S) as a hyperbolic isometry. From here the details of the
two proofs diverge due to the diverging behavior of the two metrics.

We end this abstract with the classification of isometries of the Thurston metric
which is one application of Theorem 3. The best way to state our result is to
contrast it with the known result for the Teichmüller metric.

Theorem 4. Consider T (S) equipped with the either the Teichmüller metric or
the Thurston metric. Then for any φ ∈ Γ(S),

Teichmüller metric [1] Thurston Metric [3]

φ is elliptic iff φ is periodic. Same.

φ is parabolic iff φ is re-
ducible but not periodic.

φ is parabolic iff some power
of φ is a multi-twist.

φ is hyperbolic iff φ is
pseudo-Ansoso.

φ is hyperbolic iff φ has a
pseudo-Anosov component.

When φ is reducible but has a pseudo-Anosov component, then it has positive
translation length in either metric, but its Teichmüller translation length is not
realized (hence φ is parabolic on the left), while its Thurston translation length
is (hence hyperbolic on the right). The realization of the Thurston translation
length is the heart of our theorem which requires the representatives that we find
for pseudo-Anosov mapping classes from Theorem 3.
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Koszul duality and a conjecture of Francis–Gaitsgory

Gijs Heuts

Moore [6] constructed a duality between the homotopy theories of augmented as-
sociative differential graded algebras and of coaugmented coassociative differential
graded coalgebras, using the bar and cobar constructions. In his work on rational
homotopy theory, Quillen [7] constructed a different (but similar) duality between
the homotopy theories of differential graded Lie algebras and of cocommutative
coaugmented coalgebras over Q, which can be phrased as an adjoint pair of func-
tors

Lie(ChQ) coCAlgaug(ChQ).
CE

prim

Here the left adjoint is the Chevalley–Eilenberg complex, whereas the right adjoint
takes the ‘derived primitives’ of a coalgebra; the latter can also be explicitly defined
in terms of a certain cobar construction. In the work of Ginzburg–Kapranov [5]
and Getzler–Jones [4], both of these algebraic dualities were recognized as special
instances of a general phenomenon, now often referred to as Koszul duality. Let
us review a rather general formulation of it (cf. [3]).

Let C be a presentable, stable, symmetric monoidal ∞-category (such as that
of spectra, or of chain complexes over a commutative ring k, or of modules over a
commutative ring spectrum, etc.) and let O be an operad in C with O(1) = 1 (with
1 the monoidal unit) and O(0) (so O is nonunital). Thinking of O as a monoid
in the ∞-category of symmetric sequences in C, one can form its bar construction
BO, which is a cooperad in C. Then there is an adjoint pair of functors

AlgO(C) coAlgdpBO(C),
indecO

primBO

where:

(1) The functor indecO (resp. primBO) takes the derived indecomposables of
an O-algebra (resp. the derived primitives of a BO-coalgebra). These
indecomposables can be constructed as the derived pushforward of an O-
algebra along the augmentation O → 1.
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(2) The ∞-category coAlgdpBO(C) is that of divided power BO-coalgebras in C.
Roughly, a BO-coalgebra is an object X of C equipped with comultiplica-
tion maps

X
δn−→ (BO(n) ⊗X⊗n)hΣn

and a coherent system of homotopies recording the compatibilities be-
tween these. A divided power structure on such a coalgebra is the data of
factorizations of the maps δn through the norm maps

(BO(n) ⊗X⊗n)hΣn

NmΣn−−−−→ (BO(n) ⊗X⊗n)hΣn

and a further coherent system of homotopies relating these.

The evident question to ask is the following: on what subcategories of AlgO(C)
and of coAlgdpBO(C) does this adjoint pair restrict to an equivalence? In a 2012
paper [3], Francis and Gaitsgory conjecture the following:

Conjecture 1 (Francis–Gaitsgory). Koszul duality restricts to an equivalence
between the subcategories of pro-nilpotent O-algebras and ind-conilpotent BO-
coalgebras.

Here an O-algebra is pro-nilpotent if it can be written as a limit of trivial
(i.e., square-zero) O-algebras. Dually, a coalgebra is ind-conilpotent if it can be
built as a colimit of trivial coalgebras. Several cases of this conjecture have been
established in the literature. For example, Ching–Harper [2] prove special cases
when C is the ∞-category of modules over a commutative ring spectrum and the
algebras under consideration are connected. Brantner–Mathew [1] prove a result
under slightly weaker connectivity assumptions: they allow a nontrivial π0, but
impose a finiteness condition on it.

The main novelty in this talk is the following, which makes no reference to
connectivity:

Theorem 2. The unit of the adjunction

AlgO(C) coAlgdpBO(C),
indecO

primBO

is the derived completion of O-algebras. Dually, the counit is the derived co-
completion of divided power BO-coalgebras. In particular, Koszul duality restricts
to an equivalence between the full subcategories of complete O-algebras an cocom-
plete BO-coalgebras with divided powers (and these subcategories are the largest
on which this works).

Remark 3. Completeness (to be discussed below) is usually straightforward to
verify under appropriate connectivity assumptions, which allows one to deduce the
Koszul duality results of Ching–Harper and Brantner–Mathew from the theorem
above.

Remark 4. A complete algebra is always pro-nilpotent, but the converse need
not be true. This can be leveraged to find counterexamples to the conjecture of
Francis–Gaitsgory. For example, take C to be the ∞-category of chain complexes
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over Q and O to be the commutative operad. Then a power series ring in infinitely
many variables is an example of an algebra that is pro-nilpotent, but not (derived)
complete at its augmentation ideal. In light of this observation, the conjecture of
Francis–Gaitsgory cannot be quite true as stated. We view the theorem above as
an adequate replacement.

We briefly comment on completeness. Define the n-truncation of the operad O
by

τnO(k) =
{

O(k) if k ≤ n,
0 if k > n.

The evident map of operads O → τnO defines an adjoint pair

AlgO(C) AlgτnO(C).

For X ∈ AlgO(C), write X → tnX for the unit of this adjunction. Then the
derived completion of X is the map

X → lim←−
n

tnX.

The algebra X is called complete if this map is an equivalence. Cocompletion of
coalgebras can be defined in dual fashion.

To conclude, we summarize some of the ingredients of the proof of Theorem 2.
We need ‘approximations’ of O-algebras arising from maps of operads

ϕnO → O → τnO.
The second one was just discussed and can be characterized as the terminal map
out of O that is an equivalence in arities ≤ n. The first map can be characterized
dually, as the initial map into O that is an equivalence in arities ≤ n. The operad
ϕnO is not obtained by ‘extension by zero’ as for τnO; rather, it is freely generated
by the terms O(k) for k ≤ n, subject to the relations existing in that portion of the
operad O. Explicit formulas for ϕnO(k) can be given in terms of certain partition
complexes (or, alternatively, certain spaces of labelled trees). We write

fnX → X

for the counit of the adjoint pair between AlgϕnO
(C) and AlgO(C). Similarly, for

a coalgebra Y there are dual ‘approximations’

tnY → Y → fnY

resulting from maps of cooperads

τnBO → BO → ϕnBO.
The essential properties of these approximations are summarized in the follow-

ing result:

Theorem 5. (1) For an O-algebra X, the tower · · · → tnX → tn−1X → · · · has
associated graded

fib(tnX → tn−1X) ∼= trivO
(

O(n)⊗ (indecOX)⊗n
)

hΣn
.
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(2) The filtration · · · → fn−1X → fnX → · · · has associated graded

cof(fn−1X → fnX) ∼= freeO(BO(n)⊗X⊗n)hΣn

and converges, in the sense that lim−→n
fnX ∼= X.

(3) For a divided power BO-coalgebra Y , the tower · · · → fnY → fn−1Y → · · ·
has associated graded

fib(fnY → fn−1Y ) ∼= cofreeBO(O(n)⊗ Y ⊗n)hΣn

and converges, in the sense that Y ∼= lim←−n f
nY .

(4) The filtration · · · → tn−1Y → tnY → · · · has associated graded

cof(tn−1Y → tnY ) ∼= trivBO

(

BO(n)⊗ (primBOY )⊗n
)

hΣn
.

One can think of (1) as describing the Goodwillie tower of the identity func-
tor on the ∞-category AlgO(C). Item (2) can analogously be thought of as a
‘dual Goodwillie filtration’; it consists of approximations by n-coexcisive func-
tors. The special property of this filtration is that it always converges, in contrast
with the Goodwillie tower (which only converges for complete algebras). Item (3)
expresses the idea that BO-coalgebras have an ‘unconditionally convergent Good-
willie tower’. Koszul duality intertwines the various approximations listed above,
in the following sense:

tnX ∼= primBO(f
nindecOX),

tnY ∼= indecO(fnprimBOY ).

Theorem 2 is then not difficult to deduce. For example, for an O-algebra X one
calculates

primBOindecOX
∼= lim←−

n

primBO(f
nindecOX) ∼= lim←−

n

tnX,

and dually for a coalgebra Y . Roughly speaking, one can thus summarize the

proof idea as exploiting the fact that both AlgO(C) and coAlgdpBO(C) admit a good
theory of Goodwillie calculus and of dual Goodwillie calculus, and that the two
are related in a suitable way by Koszul duality.
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Cut and paste invariants of manifolds via algebraic K-theory

Julia Semikina

(joint work with Renee Hokzema, Mona Merling, Laura Murray, Carmen Rovi)

The classical scissors congruence problem asks whether given two polyhedra with
the same volume P and Q in R3, one can cut P into a finite number of smaller
polyhedra and reassemble these to form Q. There is an analogous definition of
an SK (German “schneiden und kleben,” cut and paste) relation for manifolds [3].
Given a closed smooth oriented manifold M , one can cut it along a separating
codimension 1 submanifold Σ with trivial normal bundle and paste back the two
pieces along an orientation preserving diffeomorphism Σ → Σ to obtain a new
manifold, which we say is “cut and paste equivalent” to it.

Recent work of Zakharevich and Campbell [1] has focused on developing the K-
theoretic machinery to study scissors congruence problems and applying these tools
to the Grothendieck ring of varieties. In this talk we discuss a new application of
their framework to study the cut and paste invariants of manifolds. Unfortunately,
the tools used by Campbell and Zakharevich for varieties do not directly apply to
the case of manifolds. However, work in progress of Campbell and Zakharevich
on “K-theory with squares,” K�, a further synthetization of scissors congruence
relations as K-theory that generalizes Waldhausen K-theory, does give the right
framework to construct the desired scissors congruence spectrum for manifolds.

The study of SK-invariants and SK-groups in [3] focuses on closed manifolds.
However, in order for the K�-theoretic scissors congruence machinery to apply,
we need to work in the category of manifolds with boundary, since the pieces
in an SK-decomposition have boundary. This is not well-explored classically, as
most of the existing work on SK-groups is for closed manifolds. We generalize
the notion of SK-equivalence to the case of manifolds with boundary and denote
the corresponding group by SK∂n. Our definition of SK∂n is different from the one
mentioned in [3] in that we insist that every boundary along which we cut gets
pasted, and this is crucial for the further application of the K-theoretic technology.

We formulate a suitable notion of a category with squares Mfd∂n, that fits into
the framework of the K-theory with squares framework, and whose distinguished
squares exactly encode the “cut and paste” relations for n-dimensional manifolds
with boundary. The Ω-spectrum obtained from the construction of Campbell and
Zakharevich, applied to Mfd∂n, which we denote by K�(Mfd∂n), recovers the SK∂n
as its zeroth homotopy group:

K�

0 (Mfd∂n)
∼= SK∂n,

where K�
0 (Mfd∂n) is π0 of a scissors congruence K-theory spectrum K�(Mfd∂n).

We also show that the Euler characteristic as a map to Z, viewed as the zeroth
K-theory group of Z, is the π0 level of a map of spectra from the scissors congruence
spectrum for manifolds with boundary that we define. Namely, there is a map of
K-theory spectra

K�(Mfd∂)→ K(Z),
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which on π0 agrees with the Euler characteristic for smooth compact manifolds
with boundary.

Further, we also describe the connection of the spectrum K�(Mfd∂) to the
classical Madsen-Tillmann spectrum MTSO(n).
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Rational homotopy theory of embedding spaces

Victor Turchin, Thomas Willwacher

(joint work with Benoit Fresse)

The presentation is based on our collabaration work [4] with B. Fresse.

Let M ⊂ Rm be the complement of a compact submanifold possibly with bound-
ary. We study the homotopy fiber of the space of long embeddings over long
immersions

Emb∂(M,Rn) = hofiber(Emb∂(M,Rn)→ Emb∂(M,Rn))

using a rational version of the Goodwillie-Weiss calculus. In the case that n−m ≥ 3
we compute explicit rational models for the components of Emb∂(M,Rn) through a
combinatorial graph complex. More precisely, this graph complex has the following
shape. For A some (possibly non-unital) differential graded commutative algebra
we denote by HGCA,n the complex of Q-linear series of graphs with legs decorated
by an element of our algebra. Here is an example:

a1 a2

a3

, a1, a2, a3 ∈ A.

This graph complex can be equipped with a natural L∞-algebra structure [4]. For
example the Lie bracket is defined graphically by fusing hairs, multiplying the
A-decorations:

(1)





Γ
,

Γ′



 =
∑ Γ Γ′

.

Let now M ⊂ Rm be a complement to a compact submanifold (possibly with
boundary). Let Fm be the Fulton-MacPherson operad homotopy equivalent to
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the little m-disks operad. Let IFM be the Fulton-MacPherson version of the
configuration space of points onM , on which one has an infinitesimal Fm-bimodule
structure [13]. The appropriate version of the Goodwillie-Weiss calculus (see [1,
13, 5, 6, 7]) then implies that, for n−m ≥ 3 one has a weak equivalence

(2) Emb∂(M,Rn) ≃ IBimodhFm
(IFM ,Fn),

where IBimodhFm
(. . . ) is the derived mapping space of infinitesimal bimodules.

To access the rational homotopy type one may further simplify the right-hand
side of (2) using the following result using heavily previous work of Mienné [10, 11].

Theorem 1. For n−m ≥ 3 or n−m ≥ 2 and M ( Rm, the natural map

(3) IBimodhFm
(IFM ,Fn)→ IBimodhFm

(IFM ,FQ
n )

defines a rational equivalence of nilpotent spaces componentwise and is finite-to-
one at the π0-level. (Here FQ

n is the rationalization of Fn, see [3].)

Then our main technical result is then finally the following.

Theorem 2. Given M ⊂ Rm as above let R be an augmented Sullivan model of
the pointed space M∗ =M ∪{∞} (with the base-point at infinity). For n−m ≥ 2,
we have a weak homotopy equivalence

IBimodhFm
(IFM ,FQ

n ) ≃ MC•(HGCR̄,n),

where R̄ denotes the augmentation ideal of R and MC•(HGCR̄,n) denotes the
simplicial set of Maurer–Cartan forms with values in the complete L∞-algebra
HGCR̄,n.

Overall this expresses the rational homotopy type of the components of
Emb∂(M,Rn) through the hairy graph complex HGCR̄,n. For example, this also
implies that the rational homotopy groups are computed as

πQ
k Emb∂(M,Rn)ψ ∼= Hk(HGC

m(ψ)

R̄,n
),

where ψ is some point in the embedding space and m(ψ) ∈ HGCR̄,n is the corre-
sponding Maurer-Cartan element.

Examples. There are several interesting embedding spaces to which our approach
applies.

(1) String links. Let ⊔ri=1R
mi , m = max(mi) + 1, be a collection of non-

intersecting planes in Rm. By taking forM the complement of anm-ball of
some big radius together with the disjoint union of tubular neighborhoods
of each Rmi , we get Emb∂(M,Rn) ≃ Emb∂ (⊔ri=1R

mi ,Rn).
(2) Embeddings of a compact manifold. Let L be a compact submanifold

of Rm. Define M to be the union of a tubular neighborhood N(L) of
L and the complement of a compact m-ball containing N(L). We get
Emb∂(M,Rn) ≃ Emb(L,Rn). To be specific we can compute the rational
type of the connected components of embedding spaces such as Emb(S1×
S2,R6) and Emb(S2 × S2,R7).
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(3) Spherical links. In the example above, L can be disconnected with com-
ponents of possibly different dimensions. In particular we can study
Emb (⊔ri=1S

mi ,Rn), n ≥ max(mi) + 3.

As a consequence, our approach produces a natural finite-to-one map

π0 Emb∂(M,Rn)→ MC(HGCR̄,n)/∼,

where on the right we have the set of Maurer-Cartan elements modulo the gauge
equivalence. The assigned Maurer-Cartan element completely determines the ra-
tional homotopy type of the corresponding connected component of the space
of embeddings. Based on the computations of this set we conjecture that this
map is related to many interesting geometrical invariants of embeddings studied
in [2, 8, 9, 12], such as Boechat-Haefliger invariant of embeddings of 4-folds in
R7, Whitney-Skopenkov invariant of embeddings of 3-folds in R6, linking number
and higher linking of spherical or string links, in terms of Milnor invariants and
unitrivalent trees.
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[10] Michaël Mienné. Tours de Postnikov et invariants de Postnikov pour les opérades simpli-
ciales, 2018, http://www.theses.fr/2018LIL1I077
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Topological invariants of surface bundles

Ursula Hamenstädt

A surface bundle over a surface Π : E → B is a smooth manifold which fibers over
a closed oriented surface B, with fiber a closed oriented surface Sg of genus g ≥ 2.
Such a surface bundle is obtained as follows.

LetMg be the moduli space of complex curves of genus g. The universal curve
is the fiber bundle C → Mg whose fiber over a point X is just the Riemann
surface X . There exists a classifying map f : B →Mg such that E = f∗C. Thus
topological invariants of surface bundles over surfaces are related to topological
properties ofMg.

The lecture starts with describing the cohomology of such surface bundles.
Namely, a spectral sequence argument of Morita states that if there exists a co-
homology class α ∈ H2(E,Z) which restricts to a generator of the cohomology of
the fiber, then the map Π∗ : H∗(B,Z)→ H∗(E,Z) is injective, and we have

Hp(E,Z) ≡ Hp(B,Z) ⊕Hp−1(B,H1(Sg,Z))⊕ αHp−2(B,Z).

Denote by Mod(Sg) the mapping class group of Sg; this is the orbifold fun-
damental group of Mg. The existence of such a class α can be guaranteed if
the push forward group f∗π1(B) ⊂ Mod(Sg) preserves a (2g − 2)-spin structure.
If SSg → Sg is the unit tangent circle bundle, then such a spin structure is a
cohomology class in H1(SSg,Z/(2g − 2)Z) which restricts to a generator of the
cohomology of the fiber, with coefficients Z/(2g − 2)Z.

The unit circle bundles of the fibers of the universal curve C →Mg fit together
to the circle subbundle of the tangent bundle ν of the fibers of C. A circle bundle
S → Y over a simplicial complex Y is called flat if there exists a homomorphism
ρ : π1(Y ) → Top+(S1) into the group of orientation preserving homeomorphisms
of the circle so that

S = Ỹ × S1/π1(Y )

where Ỹ is the universal covering of Y and the action on S1 is via the homomor-
phism ρ. The following result is due to Morita.

Theorem: [Morita] The circle subbundle of the vertical tangent bundle of the
universal curve is flat.

The Euler class of a flat circle bundle is a bounded cohomology class, that is, it
can be given by a bounded cocycle on the underlying fundamental group. Morita’s
theorem thus implies that the Euler class of the vertical tangent bundle of a surface
bundle is a bounded cohomology class.

The signature σ(E) of a surface bundle over a surface E → B can be represented
by

3σ(E) = f∗κ1([B])

where κ1 is the first Mumford Morita Miller class of Mg. Now κ1 = 12λ where
λ is the first Chern class of the so-called Hodge bundle H →Mg and since λ is a
bounded cohomology class, we know that κ1 is bounded.
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Using the theorem of Morita and nowhere vanishing sections of the Hodge bundle
one can construct an explicit representation of κ1 by a cocycle which is bounded
in absolute value by g − 1. The leads to the following main result, extending the
Miaoka inequality for complex surfaces to all surface bundles over surfaces, where
χ(E) denotes the Euler characteristic.

Theorem: Let E → B be a surface bundle over a surface; then

|3σ(E)| ≤ |χ(E)|.
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[2] U. Hamenstädt, Signature of surface bundles and bounded cohomology, preliminary version
2020.

[3] S. Morita, Characteristic classes of surface bundles and bounded cohomology, A fete of
topology, 233-257, Academic Press, Boston MA 1988.

The classification of highly connected manifolds

Jeremy Hahn

(joint work with Robert Burklund, Andrew Senger)

The speaker reported on recent progress in the classification of (n− 1)-connected,
smooth, closed, oriented (2n)-manifolds.

Given such a manifold M , one can extract certain algebraic invariants. These
include the middle homology group H = Hn(M ;Z), the bilinear intersection pair-
ing H ⊗ H → Z, and a certain normal bundle invariant α : H → πn−1SO(n).
Explicitly, the α invariant takes a homology class x, represented by an embedded
sphere x : Sn →M , and records the normal bundle α(x) : Sn → BSO(n) of that
embedding.

The talk focused on new methods for constructing manifolds with prescribed al-
gebraic invariants, building on 1960s work of C.T.C. Wall. A key new result is that,
if n > 124, then any exotic sphere bounding an (n − 1)-connected (2n)-manifold
must also bound a parallelizable manifold. Interestingly, work of Burklund and
Senger shows that this theorem may fail in lower dimensions, particularly in the
study of 11-connected 24-manifolds.

The proof of the new result makes contact with the classical Adams spectral
sequence in homotopy theory. A helpful point, of relevance first recognized by
Stephan Stolz, is that there are lines in the standard Adams charts above which
all classes are v1-periodic. Stolz’s use of this line is improved upon via arguments
with Toda brackets and E∞-structures within Pstragowski’s category of synthetic
spectra.

Applications beyond the construction of manifolds include computations of
mapping class groups and the classification of Stein fillable exotic spheres.
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Stable equivariant homotopy types for link homologies

Nitu Kitchloo

Given a compact connected Lie group G endowed with root datum, and an el-
ement w in the corresponding Artin braid group for G, we describe a filtered
G-equivariant stable homotopy type, up to a notion of quasi-equivalence. We call
this homotopy type Strict Broken Symmetries, sB(w). As the name suggests,
sB(w) is constructed from the stack of pincipal G-connections on a circle, whose
holonomy is broken between consecutive sectors in a manner prescribed by a pre-
sentation of w. We show that sB(w) is independent of the choice of presentation
of w, and also satisfies Markov type properties. Specializing to the case of the
unitary group G = U(r), these properties imply that sB(w) is an invariant of
the link L obtained by closing the r-stranded braid w. As such, we denote it by
sB(L). The construction of strict broken symmetries also allows us to incorpo-
rate twistings. Applying suitable U(r)-equivariant (possibly twisted) cohomology
theories EU(r) to sB(L) gives rise to a spectral sequence of link invariants con-
verging to E∗

U(r)(sB∞(L)), where sB∞(L) is the direct limit of the filtration. In

[2, 3], we offer two examples of such theories. In the first example, we study a
universal twist of Borel-equivariant singular cohomology HU(r). The E2-term in
this case appears to recover sl(n) link homologies for any value of n (depending
on the choice of specialization of the universal twist). We also show that Triply-
graded link homology corresponds to the trivial twist. In the next example, we
apply a version of an equivariant K-theory n

K U(r) known as Dominant K-theory,
which can be interpreted as twisted U(r)-equivariant K-theory built from level n
representations of the loop group of U(r). In this case, the E2-term recovers a
deformation of sl(n)-link homology, and has the property that its value on the
unknot is the Grothendieck group of level n-representations of the loop group of
U(1), given by Z[x±1]/(xn − 1).

The main result presented in this talk is the construction of a filtered U(r)-
equivariant stable homotopy type sB(L) for links L that can be described as
the closure of r-stranded braids, namely, elements of the braid group Br(r). We
call this spectrum the spectrum of strict broken symmetries because it is built
from the stack of principal U(r)-connections on a circle with prescribed reductions
of the structure group to the maximal torus at various points on the circle. Even
though we have invoked the category of equivariant spectra, for links L that can be
expressed as the closure of a positive braid, our spectrum sB(L) can be described
entirely by the geometry of an underlying U(r)-equivariant space of strict broken
symmetries. For the convenience of non-experts, all the results in this abstract will
be formulated for links given by the closure of a positive braid, with the general
result for arbitrary braids described in later sections. We also point out that sev-
eral results in this article will be shown to hold for arbitrary compact connected
Lie groups G. We have chosen to highlight the case G = U(r) in the abstract for
the purposes of exposition.
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Before we proceed, let us say a few words about the category of G-spectra that
will be used in this article. The main results of this article can be understood with
very little background on equivariant spectra. It is helpful to bear in mind that
G-spectra may be seen as a natural localization of the category of G-spaces where
one is allowed to desuspend by arbitrary finite dimensional G-representations. As
with G-spaces, one may evaluate G-spectra on G-equivariant cohomology theories.
Given a subgroup H < G, one has restriction and induction functors defined
respectively by considering a G-spectrum as an H-spectrum, or by inducing up an
H-spectrum X to the G-spectrum G+ ∧H X . As one would expect, the induction
from fromH-spectra to G-spectra is left adjoint to restriction. For those somewhat
familiar with the language, by an equivariant G-spectrum we mean an equivariant
spectrum indexed on a complete G-universe.

The spectra we study are filtered by a finite increasing filtration FtX . The associ-
ated graded object Grt(X) of such a spectrum has a natural structure of a chain
complex in the homotopy category of G-spectra. In particular, one may define an
acyclic filtered G-spectrum X so that the associated graded object Grr(X) admits
stable null homotopies. The notion of acyclicity allows us to define a notion of
quasi-equivalence on our category of filtered G-spectra by demanding that two fil-
tered G-spectra are equivalent if they are connected by a zig-zag of maps each of
whose fiber (or cofiber) is acyclic.

Returning to the main application, we show that a braid w on r-strands gives rise
to a filtered equivariant U(r)-spectrum of strict broken symmetries, denoted by
sB(w), which is well defined up to quasi-equivalence. Before we get to the defi-
nition of strict broken symmetries, let us first offer a geometric description of the
U(r)-spectrum of broken symmetries. Consider a braid element w ∈ Br(r), where
Br(r) stands for the braid group on r-strands. For the sake of exposition, consider
the case of a positive braid that can be expressed in terms of positive exponents
of the elementary braids σi for i < r. Let I = {i1, i2, . . . , ik} denote an indexing
sequence with ij < r, so that a positive braid w admits a presentation in terms
of the fundamental generators of the braid group Br(r), w = wI := σi1σi1 . . . σik .
Let T , or T r (if we need to specify rank), be the standard maximal torus, and
let Gi denote the unitary (block-diagonal) form in reductive Levi subgroup having
roots ±αi. We consider Gi as a two-sided T -space under the left(resp. right)
multiplication.

The equivariant U(r)-spectrum of broken symmetries is defined as the (suspension)
spectrum corresponding to the U(r)-space B(wI ) that is induced up from a T -
space BT (wI)

B(wI) := U(r) ×T (Gi1 ×T Gi2 ×T · · · ×T Gik) = U(r) ×T BT (wI),

with the T -action on BT (wI) := (Gi1 ×T Gi2 ×T · · · ×T Gik) given by conjugation

t [(g1, g2, · · · , gk−1, gk)] := [(tg1, g2, · · · , gk−1, gkt
−1)].

As mentioned above, the U(r)-stack U(r)×T (Gi1 ×T Gi2 ×T · · · ×T Gik) is equiv-
alent to the stack of U(r)-connections on a circle with k marked points, with the
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structure group being reduced to T at the points, and symmetry being broken to
Gi along the i-th sector.

Definition 1. (Strict broken symmetries and their normalization)
Let L denote a link described by the closure of a positive braid w ∈ Br(r) with
r-strands, and let wI be a presentation of w as w = σi1 . . . σik . We first define the
limiting U(r)-spectrum sB∞(wI) of strict broken symmetries as the space that
fits into a cofiber sequence of U(r)-spaces:

hocolimJ∈I B(wJ ) −→ B(wI) −→ sB∞(wI).

where I is the category of all proper subsets of I = {i1, i2, . . . , ik}.

The spectrum sB∞(wI) admits a natural increasing filtration by spaces Ft sB(wI)
defined as the cofiber on restricting the above homotopy colimit to the full sub-
categories It ⊆ I generated by subsets of cardinality at least (k − t), so that the
lowest filtration is given by F0sB(wI) = B(wI ).

Define the spectrum of strict broken symmetries sB(wI ) to be the filtered spec-
trum Ft sB(wI ) above. The normalized spectrum of strict broken symmetries of
the link L is defined as

sB(L) := Σ−2ksB(wI ).

In order for the normalized definition to make sense, one would require proving
that the construction of sB(L) is independent (up to quasi-equivalence) of the
braid presentation wI used to describe L. This comes down to checking the braid
group relations, and the first and second Markov property. These results in fact
admit a generalization to any compact connected Lie group G. We have chosen
to highlight the case G = U(r) for the purposes of this abstract.

The second Markov property imposes a stability condition on the construction,
requiring that it be invariant under the augmentation of w by the elementary
braid σr (or its inverse) so as to be seen as a braid in Br(r+1). This is equivalent
to the observation that the link L is unchanged on adding an extra strand that
is braided with the previous one. In proving invariance under the second Markov
property, we encounter a subtle point. Notice that sB(L) is induced up from a
T r-spectrum we shall denote by sBT r (L). Proving invariance under the second
Markov property would therefore require showing that the U(r + 1)-spectrum
obtained by considering L as the closure of wσ±

r is induced from sBT r (L) along
the standard inclusion T r < U(r + 1). This requirement is almost true but for
a small subtlety. We show that when L is seen as the closure of the (r + 1)-
stranded braid wσ±

r , the corresponding U(r + 1)-spectrum, sB(L) is induced up
from sBT r (L) along a different inclusion ∆r : T r −→ U(r + 1). This inclusion
differs from the standard inclusion in the last entry. We proceed to resolve this
issue by inducing up to a larger group. The upshot is that sB(L) is a link invariant.
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Theorem 2. As a function of links L, the filtered U(r)-spectrum of strict broken
symmetries sB(L) is well-defined up to quasi-equivalence. In particular, the lim-
iting equivariant stable homotopy type sB∞(L) is a well-defined link invariant in
U(r)-equivariant spectra. We discuss sB∞(L) below.

An obvious way to obtain (group valued) link invariants from the filtered homotopy
type sB(L) is to apply an equivariant cohomology and invoke the filtration to set
up a spectral sequence. Let EG denote a family of equivariant cohomology theories
indexed by the collection G = U(r), with r ≥ 1, and naturally compatible under
restriction

EU(r)
∼= ι∗ EU(r+1), where ι : U(r) −→ U(r + 1).

Therefore, given a family of equivariant cohomology theories EU(r) as above that
satisfies some algebraic conditions, the filtration of sB(L) described above does
indeed give rise to a spectral sequence that converges to E∗

U(r)(sB∞(L)). The
E2-term of this spectral sequence is itself a link invariant, and is given by the
cohomology of the associated graded complex for the filtration of sB(L). We have

Theorem 3. Assume that EU(r) is a family of U(r)-equivariant cohomology theo-
ries as above that satisfy some algebraic conditions. Then, given a link L described
as a closure of a positive braid presentation wI on r-strands, one has a spectral
sequence converging to E∗

U(r)(sB∞(L)) and with E1-term given by

Et,s1 =
⊕

J∈It/It−1

EsU(r)(B(wJ )) ⇒ Es+t−2k
U(r) (sB∞(L)).

The differential d1 is the canonical simplicial differential. In addition, the terms
Eq(L) are invariants of the link L for all q ≥ 2.

In [2, 3], we will relate special cases of the above spectral sequence to various
well-known link homology theories. The limiting spectrum sB∞(L) can actually
be described explicitly, and so we know exactly what the above spectral sequence
converges to, yielding important information about each stage Eq(L). To this
point we prove a generalization of the following theorem for arbitrary compact
connected Lie groups G, and for braid words that are not necessarily positive.

Theorem 4. Given an indexing set I = {i1, . . . , ik}, so that wI = σi1σi2 . . . σik is
braid word that closes to the link L. Let VI denote the representation of T given
by a sum of root spaces

VI =
∑

j≤k

wIj−1
(αij ), where wIj−1

= σi1 . . . σij−1
, wI0 = id,

and where wIj−1
(αij ) denotes the root space for the root given by the wIj−1

translate
of the simple root αij . Then the U(r)-equivariant homotopy type of sB∞(L) is
given by the equivariant Thom space (suitably desuspended)

sB∞(L) = Σ−2k U(r)+ ∧T (SVI ∧ T (w)+),
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where SVI denotes the one-point compactification of the T -representation VI , and
T (w) denotes the twisted conjugation action of T on itself

t(λ) := w−1twt−1 λ where w = σi1 . . . σik , t ∈ T, λ ∈ T (w).

Remark 5. Note that the structure group T of the above Thom spectrum can be
reduced to a sub torus Tw ⊆ T that is fixed by the Weyl element w that underlies
wI . The torus Tw is isomorphic to a product of rank one tori indexed by the com-
ponents of L. More precisely, the factor corresponding to a particular component
of L is the diagonal in the standard sub torus of T r indexed by the strands belonging
to that particular compoment. Since the cohomology of sB∞(L) (assuming Thom
isomorphism) depends only on the number of components of L, we may think of
sB∞(L) as a stable lift of the Lee homology.

Let us point out an important piece of structure that is relevant to our frame-
work. Notice that each space of broken symmetries B(wI) admits a canonical
map (given by composing the holonomies along the sectors) to the stack of princi-
pal connections on a circle, which is equivalent to the adjoint action of U(r)-action
on itself

ρI : B(wI) −→ U(r), [(g, gi1 , . . . , gik)] 7−→ g(gi1 . . . gik)g
−1.

These maps ρI are clearly compatible under inclusions J ⊆ I. In particular,
the spectra sB(L) can be endowed with a U(r)-equivariant “local system” by
pulling back U(r)-equivariant local systems on U(r). We will use this structure
in [2] to twist the equivariant cohomology theories EU(r) considered above. More
precisely, in [2, 3], we will study two examples of (twisted) cohomology theories
and the corresponding spectral sequence. The first example is given by Borel-
equivariant singular cohomology HU(r). The second example is given by a version
of an equivariant K-theory n

K U(r) known as Dominant K-theory, built from level
n representations of the loop group of U(r).
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The sub-linear(ly) Morse boundary

Yulan Qing

As a result of conceptualization of Gromov boundary of hyperbolic spaces, bound-
aries have been a topic of intense interest in geometric group theory. In joint work
with Rafi, we define a family of boundaries called the sublinearly Morse boundaries
of X , where X is a CAT(0) space. Fix a basepoint o ∈ X and a monotone, concave



1110 Oberwolfach Report 21/2020

o
Y0

b[t1, t2]

Figure 1. A geodesic ray in ∂log tX is one whose projection to
any flat b[t1, t2] is bounded by c log t2.

and sub-linear function κ once and for all. A geodesic ray γ is κ-Morse if there ex-
ists a function m(q,Q) such that, any (q,Q)–quasi-geodesic segment η : [0, s]→ X
with endpoints on γ have the property

d(η(t), γ) ≤ m(q,Q)κ(‖η(t)‖).
That is to say, all quasi-geodesics with endpoints on γ stay sublinearly close to γ.
We denote the set of κ–Morse rays by ∂κX and equip ∂κX with the cone topology
on quasi-geodesics. Roughly speaking, if two geodesic rays, and all their quasi-
geodesic images, stay close for a period of time, then they are considered to be in
an open set. We prove that ∂κX is a quasi-isometry invariant. Equip this set with
coarse cone topology, we show that this boundary is QI-invariant and metrizable.

In the current work discussed at the workshop, we expand this result to all
proper metric spaces. Let (X, o) be a proper geodesic metric space with basepoint
o and fix a sublinear function κ. Let Nκ

(

γ,mγ(q,Q) be the collection of points
whose distance to γ is bounded above by mγ(q,Q)κ(||x||), where ||x|| = d(o, x).

Definition 1. A quasi-geodesic ray γ is κ–Morse if there exists a proper function
mγ : R2 → R such that for any sublinear function κ′ and for any r > 0, there
exists R such that for any (q,Q)–quasi-geodesic β with mγ(q,Q) small compared
to r, if

dX(βR, γ) ≤ κ′(R) then β|r ⊂ Nκ
(

γ,mγ(q,Q)
)

The function mγ will be called Morse gauges of γ.

A first example of a sublinearly Morse set is a unit speed, (quasi-)geodesic ray
travelling in a “tree-of-flats” space and spending up to log t among of time in each
flat where t is the time it leaves the flat.

We first show that these boundaries are group invariant.

Theorem 2 (Q-Rafi, Q-Rafi-Tiozzo). Let X be a proper, geodesic metric space
and let κ be a sublinear function. Then ∂κX is a topological space that is quasi-
isometrically invariant, and metrizable.

Our main application for the sublinear boundaries is that they serve as a topo-
logical model for for the Poisson boundaries of various groups. Let µ be...

Theorem 3 (Q-Rafi-Tiozzo). the Poisson boundaries (G,µ) can be identified with
(∂κG, ν) for the following groups.
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• Right-angled Artin groups, κ(t) =
√
t log t.

• Relative hyperbolic groups, κ(t) = log t

• Mapping class groups, κ(t) = logd t

Theorem 4 (Gekhtman-Qing-Rafi). Let X be a rank-1 CAT(0) space. A sublin-
early Morse geodesic ray is generic with respect to

• Patterson Sullivan measure
• stationary measure associated with (G,µ)

Corollary 5 (Gekhtman-Qing-Rafi). Let X be a rank-1 CAT(0) space. Let G
acting properly and cocompactly on X, and let µ be any finitely supported measure
on G, there exists a κ such that (∂κG, ν) is a model for its Poisson boundary (G,µ)
where ν is the associated hitting measure.

Theorem 6 (Gekhtman-Qing-Rafi). There exists a κ such that the Poisson bound-
ary of the mapping class group (MCG(S), µ) can be identified with (∂κX, ν) where
X is the associated Teichmüller space T (S).

Other interesting properties about sublinearly Morse boundaries have been
proven as well. Let X be a CAT(0) space,

• ∂κX is a strong visibility space.[Qing-Zalloum]
• a κ-Morse geodesics ray has at least quadratic κ-lower-divergence. [Qing-
Murray-Zalloum]

We also define κ-contracting property for a set. we say a geodesic ray γ is κ-
contracting, if there are constants cγ > 0 such that the diameter of the projection
of a ball (disjoint from γ) to γ is bounded above by cγκ(t) where t measures the
distance between o := γ(0) and the center of the ball. That is to say, we consider
geodesic rays whose contracting property weakens as they travel to infinity.

o

Figure 2. A κ–contracting geodesic ray

The connection between κ-contracting and κ-Morse are as follows:

• In CAT(0) spaces, κ-Morse is equivalent to κ-contracting. [Qing-Rafi]
• in proper metric spaces, κ-contracting is equivalence to sublinear Morse
some function k′. [Qing-Rafi-Tiozzo]
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Poincaré ∞-categories and Grothendieck–Witt groups of
Dedekind rings

Markus Land

(joint work with B. Calmès, E. Dotto, Y. Harpaz, F. Hebestreit, K. Moi,
D. Nardin, T. Nikolaus, W. Steimle)

For a commutative ring R, we consider unimodular symmetric bilinear (respec-
tively quadratic) forms over R. Such objects, together with their isomorphisms
form a symmetric monoidal groupoid (Unimodx(R),⊕) under the operation of
orthogonal direct sum of forms; here x ∈ {q, s} denotes whether we consider qua-
dratic or symmetric bilinear forms. Viewing a symmetric monoidal groupoid as a
E∞-space, we may define the Grothendieck–Witt spectrum

GWx(R) = (Unimodx(R),⊕)grp

as its group-completion; this is then a grouplike E∞-space, and we view it as a
connective spectrum throughout. Its π0 is the classical Grothendieck–Witt group
GWx

0(R) of R and the higher homotopy groups of GWx(R) are by definition the
higher Grothendieck–Witt groups of R. The classical Grothendieck–Witt group
participates in the following exact sequence of abelian groups:

K0(R)
hyp−→ GWx

0(R) −→Wx
0(R) −→ 0
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where Wx
0 (R) is the Witt group of R, which is the quotient of the monoid of

isomorphism classes of unimodular forms by those which admit a Lagrangian.
This quotient is indeed a group: the inverse of a form [P, ϕ] is the form [P,−ϕ].
The map hyp sends a projective module to its hyperbolic form (P ⊕ P ∗, ev). We
notice that hyp(P ) is canonically isomorphic to hyp(P ∗), so that the hyperbolic
map factors through the orbits of the C2-action on K0(R) induced by sending a
projective module to its dual. This construction in fact refines to a C2-action on
the connective K-theory spectrum K(R).

We prove the following extension of the above exact sequence to higher Grothen-
dieck–Witt groups:

Theorem 1. There is a fibre sequence of spectra

K(R)hC2
−→ GWx(R) −→ τ≥0L

gx(R),

where Lgs(R) is a spectrum whose homotopy groups are Ranicki’s original (non-
periodic) symmetric L-groups. Furthermore there is an equivalence Lgq(R) ≃
Σ4Lgs(R).

The goal of the talk was to indicate how we prove this result, and to mention
some applications to the Grothendieck–Witt groups of Dedekind rings.

Theorem 1 is proven by combining the following two results of which the first
is a general result in the realm of Poincaré ∞-categories (I will define these mo-
mentarily) and the second says that the general results can recover the objects we
are interested in.

Theorem 2. For every Poincaré ∞-category (C, Q), there is a fibre sequence of
spectra

K(C)hC2
−→ GW(C, Q) −→ L(C, Q)

Theorem 3. There is a Poincaré ∞-category (Dp(R), Qgx) such that

(1) a canonical map GWx(R) −→ τ≥0GW(Dp(R), Qgx) is an equivalence, and
(2) the homotopy groups of L(Dp(R), Qgx) are, as described in Theorem 1:

Ranicki’s original (non-periodic) symmetric L-groups (for x = s).

Remark 4. (1) Part (1) of Theorem 3 is a result of Hebestreit–Steimle, mak-
ing use of parameterised algebraic surgery and was discussed in more detail
in Hebestreit’s talk.

(2) L-theory for Poincaré∞-categories had previously been defined by Lurie in
his lectures on Ranicki’s theory of algebraic surgery and topological mani-
folds.

(3) GW-theory for Poincaré ∞-categories is defined in our work, using a her-
mitian Q-construction. Its underlying space can be described in terms of
an algebraic cobordism category. Again, this perspective was discussed in
more detail in Hebestreit’s talk.

Definition 5. A Poincaré∞-category is a pair (C, Q) consisting of a small stable
∞-category C equipped with a Poincaré structure Q : Cop → Sp, i.e. a reduced and
2-excisive functor Q satisfying a certain non-degeneracy condition.
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The non-degeneracy condition allows to extract from Q (in fact from its symmetric
cross effect) a duality equivalence D : Cop → C. Hence, a Poincaré∞-category is a
refinement of a category with duality: There are many Poincaré structures giving
rise to the same duality, but whose Grothendieck–Witt theory will be generally
different. Here is the most important example for the purpose of my talk:

Example 6. Let R be a commutative ring and let Dp(R) be the perfect derived
∞-category of R. This category comes with a canonical functor Proj(R)→ Dp(R),
and it turns out that a Poincaré structure is uniquely determined by its restriction
to Proj(R). Having this, we consider the following Poincaré structures. Let P ∈
Proj(R), and let H denote the Eilenberg–Mac Lane functor.

(1) Qs(P ) =
(

H (HomR(P ⊗R P,R))
)hC2

(2) Qgs(P ) = H
(

HomR(P ⊗R P,R)C2

)

(3) Qgq(P ) = H
(

HomR(P ⊗R P,R)C2

)

(4) Qq(P ) =
(

H (HomR(P ⊗R P,R))
)

hC2

Remark 7. (1) There are canonical maps

Qq ⇒ Qgq ⇒ Qgs ⇒ Qs

and these maps are equivalences if 2 is invertible in R, but not in general
(for instance for R = Z).

(2) The Poincaré ∞-categories appearing in (2) and (3) are the ones that
appear in Theorem 3.

Having Theorem 1, one can prove results about GW-theory by proving results
for K and L-theory. In fact, the K-theory side of Theorem 1 only depends on the
underlying category with duality, which is the same for all of the Poincaré struc-
tures described in the above example. We then use Ranicki’s method of algebraic
surgery to prove the following comparison results for L-theory, and consequently
for GW-theory:

Theorem 8. Let R be a commutative ring. Then

(1) the maps L(Dp(R);Qq) → L(Dp(R);Qgq) and GW(Dp(R);Qq) →
GW(Dp(R);Qgq) are isomorphisms on πk for k ≤ 1 and surjective for
k = 2.

(2) The maps L(Dp(R);Qq) → L(Dp(R);Qgs) and GW(Dp(R);Qq) →
GW(Dp(R);Qgs) are isomorphisms on πk for k ≤ −3 and surjective for
k = −2.

If R is in addition Noetherian and of finite global dimension d, then

(1) the maps L(Dp(R);Qgq) → L(Dp(R);Qs) and GW(Dp(R);Qgq) →
GW(Dp(R);Qs) are isomorphisms on πk for k ≥ d + 3 and injective for
k = d+ 2.
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(2) The maps L(Dp(R);Qgs) → L(Dp(R);Qs) and GW(Dp(R);Qgs) →
GW(Dp(R);Qs) are isomorphisms on πk for k ≥ d − 1 and injective for
k = d− 2.

In particular, the map GWq
k(R)→ GWs

k(R) is an isomorphism for k ≥ d+ 3.

Let R be a ring of integers in a number field. This is an example of a Noetherian
ring of global dimension 1. We can describe all of its quadratic and symmetric
L-groups in terms of Witt groups of symmetric and quadratic forms, the number
of primes dividing 2, and the Picard group of R and its 2-completion R2. All these
groups are finitely generated, so we obtain the following consequence of Theorems 1
and 8:

Theorem 9. Let R be the ring of integers in a number field. Then the higher
Grothendieck–Witt groups GWx

k(R) are finitely generated.

The fact that this is a consequence of Theorems 1 and 8 relies on the finite
generation of the algebraic K-groups of R, a result due to Quillen. The case x = q
in Theorem 9 can also be shown using a combination of a cofinality result together
with homological stability for the groups of automorphisms of hyperbolic forms
over R and finiteness results known for these groups of automorphisms. In the
symmetric case, to the best of our knowledge, this method is not known to work
in the generality presented above.

Finally, we show the following result, which for the case R = Z was conjectured
by Berrick and Karoubi:

Theorem 10. Let R the ring of integers in a number field. Then the map

GW(Dp(R);Qs) −→ GW(Dp(R[ 12 ];Q
s)

is a 2-local equivalence in degrees ≥ 1.

Together with results of Berrick and Karoubi on GWs
k(Z[

1
2 ]), the results of this

talk give an almost full calculation of the higher Grothendieck–Witt groups of the
integers. Such a calculation was also recently announced by Schlichting [1].

Remark 11. Throughout the talk, I assumed that R is a commutative ring, as the
applications I discussed were about Dedekind rings. Many of the general results,
however, do not rely on R being commutative and work more generally in the
presence of what we call a module with involution M . This includes M = R for a
ring with involution R, but also M being a general line bundle over a commutative
ring R.
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Parametrised algebraic surgery

Fabian Hebestreit

(joint work with Wolfgang Steimle)

Building on the talk of Markus Land I explained how classical Grothendieck-Witt
groups of rings fit into the framework of Poincaré categories introduced by Lurie
and developed in joint work with B. Calmès, E. Dotto, Y. Harpaz, M. Land, D.
Nardin, T. Nikolaus and W. Steimle, [1].

To state the main results recall from Land’s talk that a Poincaré ∞-category
consists of a small stable∞-category C and a reduced, quadratic functor Φ: Cop →
Sp, subject to a non-degeneracy condition. For such object we define a Grothen-
dieck-Witt spectrum GW(C,Q) via a version of the hermitian Q-construction.
This spectrum has many favourable properties, which allows us to explicitly de-
termine its homotopy type in many situations as was detailed by Land. It remains
to show that spectra of interest arise via this construction.

To this end let R be a ring and (M,σ) an invertible module with involution
over R, that is M is an R ⊗ R-module, together with an involution σ : M → M
such that

(1) σ is linear over the flip involution on R⊗R,
(2) M is finitely generated projective when restricted to an R-module along

either inclusion of R into R⊗R (σ provides an equivalence between these
restrictions), and

(3) the natural map
R→ EndR(M)

is an isomorphism (where again we regardM as an R-module by restriction
along either inclusion).

Simple examples include

(1) a commutative ring R and any finitely generated projective, ⊗R-invertible
R-module M (such as M = R) regarded as an R ⊗ R-module via the
multiplication R ⊗R→ R, with involution ±idM , or

(2) a ring R with anti-involution τ , and M = R made into an R ⊗R-module
using the involution on the right factor and then given the involution
σ = ±τ .

To such data come associated three functors

QuadM , SymM ,EvM , : Proj(R)
op → Ab

that take a finitely generated projective (left) R-module P to the abelian group
of M -valued quadratic, symmetric or even, that is

HomR⊗R(P ⊗ P,M)C2
, HomR⊗R(P ⊗ P,M)C2

or im
[

nm: HomR⊗R(P ⊗ P,M)C2
→ HomR⊗R(P ⊗ P,M)C2

]

,

respectively, where nm denotes the norm map and the (co)invariants are taken
with respect to the conjugation action using the flip on P ⊗ P and the involution
on M . Associated to these functors are on the one hand groupoids of unimodular
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forms of the given type which we will call Unimodr(R,M) with r ∈ {q, s, e}, where
an object is a pair (P, q) with q is an element of QuadM (P ), SymM (P ) or EvM (P )
as appropriate, whose associated map q# : P → HomR(P,M) is an isomorphism.
This groupoid is symmetric monoidal under orthogonal sum, and thus gives rise to
an E∞ space of the same name. One then classically defines the Grothendieck-Witt
space GWr(R,M) in analogy with the algebraic K-theory of R as the homotopical
group completion of this E∞-space, in formulae

GWr(R,M) = Unimodr(R,M)grp.

On the other hand, the functors QuadM , SymM and EvM admit animations (or
in more classical terminology: non-abelian derived functors) QgrM : Dp(R)op → Sp,
again with r ∈ {q, s, e}; here Dp(R) denotes the perfect derived category of R.

The main result of the talk was then the following:

Theorem 1. The natural map

GWr(R,M) −→ Ω∞GW(Dp(R),QgrM )

is an equivalence for all R and M as above.

For applications of this result, I refer the reader to Land’s talk, but let me just
mention that previous work on the left hand side was largely restricted to the case
where 2 in R is a unit [6, 7] (in which case in particular the three types of form
under consideration turn out to agree), whereas no such assumption is required
for our analysis of the right hand side in [1].

The result is akin to the (weight version of the) theorem of the heart in algebraic
K-theory, see e.g. [2], a generalisation Waldhausen’s sphere theorem and thus
Quillen’s “+=Q”-theorem. This is usually proven by employing the machinery of
exact or Waldhausen categories, the requisite generalisation of which to the setting
above is not sufficiently developed at present (unless 2 is appropriately invertible),
but see [5, 8].

We will therefore proceed in a completely different manner: As I will explain
momentarily, the hermitian Q-construction defining the right hand side can be
regarded as an algebraic type of cobordism category, and the proof of the theorem
follows a strategy developed by Galatius and Randal-Williams to relate the homo-
topy theory of diffeomorphism groups to that of cobordism categories. Before ex-
plaining the analogy, let me therefore briefly recall that for a d-dimensional vector
bundle γ, the∞-category Cobγd is defined to have objects closed d−1-dimensional
manifoldsM equipped with a bundle map TM⊕R→ γ and morphisms are cobor-
disms between such pairs. The higher structure of this category is arranged so that
there are equivalences

HomCobγ
d
(M,N) ≃

∑

W

BDiffγ∂(W )

where the sum (i.e. disjoint union) runs over all diffeomorphism types of γ-
cobordisms betweenM and N . LettingW range through the closed d-dimensional
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γ-manifolds there arises a map
∑

W

BDiffγ(W,Dd) −→ HomCobγ
d
(Sd−1, Sd−1) −→ Ω|Cobγd |

by removing the fixed disc fromW and replacing it with a pair of pants. Boundary
connecting sum gives the left hand side the structure of an Ed-space Manγ , often
referred to as a moduli space of manifolds, and the simplest case of the results of
Galatius and Randal-Williams [4] can be stated as:

Theorem 2. For n > 2 the map just described induces an equivalence

(Manhighγn )grp −→ Ω|Cobγn2n|,
where γn is the tautological bundle over τ>nBO(2n) and the source (before group
completion) is the collection of path components of Manγn spanned by n − 1-
connected manifolds.

This result is one key step in their computation of the homology of the spaces
BDiff(W,D2n) for highly connected, and even dimensionalW (though their results
also cover non-highly connected manifolds and diffeomorphism groups not fixing
discs, but intrestingly not odd dimensional manifolds). The proof proceeds by
regarding the left hand side as Ω|Cobγnhigh|, where Cob

γn
high denotes the subcategory

of Cobγn2n spanned by n-connected 2n − 1-manifolds (i.e. homotopy spheres) and
their n− 1-connected cobordisms, and then filtering the difference between these
categories by incrementally relaxing the connectivity constraints, first on objects
then on morphisms. They then show that none of the filtration steps changes the
homotopy type under consideration, increasing the connectivity of manifolds by
means of a process they termed “parametrised surgery”.

There are two further principal ingredients into their work: The group comple-
tion theorem of McDuff and Segal which allows one to analyse the homology of the
group completion in terms of the homology of the constituents, and the celebrated
theorem of Galatius, Madsen, Tillmann and Weiss on the homotopy type of the
cobordism category [3]:

Theorem 3. For every d and γ there is a canonical equivalence

|Cobγd | ≃ Ω∞−1MTγ,

the so-called scanning map, where the right hand side denotes the Thom spectrum
of −γ.

Since this makes the cohomology of the cobordism category (and its loop space)
fairly easily accessible, one can extract information about diffeomorphism groups.

Now, for a Poincaré category we define in [1] an ∞-category Cob(C,Q) with
objects the Poincaré objects in (C,ΣQ), i.e. pairs (X, q) with q ∈ Ω∞−1Q(X),
satisfying an appropriate unimodularity condition, and morphisms from (X, q) to
(Y, q′) diagrams of the form

X
f←−W g−→ Y
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together with an identification f∗(q) ≃ g∗(q′) that satisfy a relative unimodular-
ity condition. Think about unimodularity for objects in Dp(R) (in the absolute
case) as Poincaré duality, this condition is an abstract version of Lefschetz du-
ality for the “cobordism” W relative to its “boundary pieces” (X, q) and (Y, q′)
(though I will not spell it out here). A span as above is therefore an abstraction
of Ranicki’s notion of an algebraic cobordism between Poincaré chain complexes,
which hopefully suffices to justify the name algebraic cobordism category. Since
this ∞-category is rigorously build using the hermitian Q-construction as is the
Grothendieck-Witt spectrum, there is a straight forward relation between the two;
as part of [1] we obtained the following formal analogue of the theorem of Galatius,
Madsen, Tillmann and Weiss:

Theorem 4. For every Poincaré ∞-category (C,Q) there is a canonical equiva-
lence

|Cob(C,Q)| ≃ Ω∞−1GW(C,Q).
Furthermore, there are canonical maps

Unimodr(R,M) −→ HomCob(Dp(R),Qgr
M

)(0, 0) −→ Ω|Cob(Dp(R),QgrM )|
which under the above equivalences group complete to the map from the first the-
orem. This translation allows us to treat the theorem of the heart as an algebraic
analogue of the results of Galatius and Randal-Williams, and to transport their
parametrised surgery techniques into the algebraic setting (whence the title of this
talk).

To properly state the output, recall from Goodwillie calculus that every qua-
dratic functor Q : Cop → Sp uniquely decomposes into a symmetric biexact part
BQ : Cop → Sp (the cross effect) and an exact part LQ : Cop → Sp (the linear
approximation) determined by the existence of a natural cartesian square

Q(X) //

��

LQ(X)

α

��

BQ(X,X)hC2 // BQ(X,X)tC2

where the superscripts in the lower row denote the homotopy fixed point, and
Tate construction, respectively. In the case of C = Dp(R) these functors are
automatically of the form

LQ(X) ≃ homR(X,N) and BQ(X,Y ) ≃ homR⊗R(X ⊗ Y,M)

for some N ∈ D(R) and M ∈ D(R ⊗R) equipped with an involution satisfying a
derived version of the properties listed on the first page. Under these identifications
α is induced by an R-linear map N →M tC2 . In these terms, the main result is:

Theorem 5. For a triple (M,N,α) as above the natural map

Pnhigh(Dp(R),QαM )grp −→ Ω|Cob(Dp(R),QαM )|
is an equivalence, whenever M is concentrated in degree 2n and N is n-connective.
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Here the left hand side denotes the space of Poincaré objects for Q that happen
to be n − 1-connected (and thus concentrated in degree n by duality), just as in
the theorem of Galatius and Randal-Williams, and we think ofM (or equivalently
the bilinear part) as determining the dimension of the Poincaré objects and N as
an analogue of the tangential structure encoded by γ in the geometric setting. For
the functors QgrM the bilinear part is easily seen to be given by M regarded as a
chain complex in degree 0, and essentially by definition we thus have

Unimodr(R,M) ≃ Pnhigh(Dp(R),QgrM ),

the Poincaré objects concentrated in degree 0.
To apply this result then we, finally, use the somewhat surprising result from [1],
that the linear parts of QgqM ,QgsM and QgeM are given by τ≥2M

tC2 , τ≥0M
tC2 and

τ≥1M
tC2 , respectively, all of which are evidently 0-connective.

Remarks. (1) Another interesting example to which the result above applies
is the quadratic functor QqM (X) = HomR⊗R(X⊗X,M)hC2

, parametrising
derived quadratic forms. Its linear part simply vanishes. The associated
Grothendieck-Witt theory has not appeared in the literature so far, but the
L-theory associated to this Poincaré∞-category is the classical quadratic
L-theory of Ranicki and Wall (the same is not correct for QgqM ).

(2) In contrast, a non-example is QsM (X) = HomR⊗R(X ⊗ X,M)hC2 which
gives rise to the usual symmetric L-theory spectrum of R; in this case the
linear part is classified by M tC2 , which is periodic.

(3) Just like the result of Galatius and Randal-Williams the restriction to even
numbers is essential in the result. For odd numbers the final surgery in
the middle dimension encounters an obstruction.

(4) Relaxing the connectivity assumptions on LQ to n − k-connectivity still
allows one to concentrate objects in a band of degrees [n − k, n + k]
(and similarly for cobordisms) without affecting the homotopy type of
|Cob(Dp(R),Q)|, and since one then stays away from the middle dimen-
sion this statement has an analogue for M concentrated in degree 2n+ 1.
Applying this to the quadratic functors Ω2nQgs

M (where k = n), one ob-
tains a proof that L2n(Dp(R),QgsM ) is Ranicki’s short symmetric L-group
of R (and similarly in odd degrees), which forms the basis of our analysis
of GWs(R,M) in [1].

(5) The result is also not restricted to derived categories, but rather works
whenever C admits a bounded weight structure and BQ and LQ satisfy
appropriate (co)connectivity assumptions. In this form the result extends
to cover for instance the quadratic Grothendieck-Witt spectra of E1-rings,
the visible Grothendieck-Witt spectra of categories of parametrised spectra
(which recover the visible LA-theory of Weiss and Williams), and also so-
called hyperbolic Poincaré ∞-categories, in which case our result recover
the theorem of the heart in algebraic K-theory.
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Arc matching complexes and finiteness properties

Kai-Uwe Bux

We describe a class of simplicial complexes that combine matching complexes in
graphs with the arc complex associated to a surface. Connectivity properties of
these complexes are related to higher finiteness properties of groups.

Let Σ be a surface, possibly with boundary; and let O denote a finite set of
marked points, which we regards as obstacles, i.e., when we consider something
up to isotopy, the isotopy shall be relative to O. We fix a subset N ⊆ O of
distinguished obstacles, which we call nodes.

Let Γ be a graph with node set N . A drawing of Γ onto Σ is an embedding of the
geometric realization |Γ| into Σ that is the identity on N and meets the boundary
∂ Σ only at nodes. We consider drawings up to isotopy relative to obstacles.

Let G be a collection of graphs with node set N that is closed with respect to
taking subgraphs. Then G can be considered as a simplicial complex (a k-simplex
is a graph in G with k+1 edges). A G-drawing is the drawing of a graph Γ ∈ G onto
Σ. The G-drawings also form a complex, which we call the arc complex associated
to G and Σ.

There are many interesting examples of complexes of graphs, i.e., the complex
of forests in a given graph Γ or the complex ofmatchings in Γ. A matching in Γ is a
collection of pairwise disjoint edges. Clearly, any subset of a matching is a match-
ing. The connectivity properties of many graph complexes are well understood.
We shall investigate the higher connectivity of associated arc complexes.

In this talk, we focus on one particular example: the arc complexes associated
to the matching complex of a complete bipartite graph. Let A(m,n, k) be the arc
complex associated to the complete bipartite graph with m hollow nodes and n
solid nodes. The underlying surface Σ shall be the disk. We place the hollow nodes
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Figure 1. An arc matching in A(4, 6, 2) with its corresponding
matching inM(4, 6).

on the boundary and the solid nodes in the interior where k additional obstacles
are marked. The connectivity of the underlying matching complex is known:

Theorem 1 ([1, Theorem 1.1]). For the complete bipartite graph Km,n on m
white and n black nodes, the matching complex M(m,n), also called the chess
board complex, is ν-connected where ν(m,n) = min (m,n,

⌊

m+n+1
3

⌋

)− 2.

In this talk, we sketch a proof of a corresponding connectivity result for the
associated arc complex:

Theorem 2. A(m,n, k) is ζ-connected, where ζ(m,n) := min (m,
⌊

n+1
2

⌋

)− 2.

Remark 3. The obvious projection A(m,n, k) → M(m,n) has poorly behaved
fibers. Hence connectivity properties of the base do not readily transfer to the total
space. This explains in part why the connectivity bounds for both complexes differ.

Remark 4. Ken Brown has devised a method (now standard) for deriving higher
finiteness properties of groups. In his seminal paper [2], he discusses the family
of Houghton groups Hm and deduces that Hm is of type Fm−1 but not of type Fm
from the connectivity of the matching complexes M(m,n) for n→∞.

In his PhD thesis [4], Franz Degenhardt has introduced braided versions Hbr
m

of the Houghton groups and studied their finiteness properties. He was able to
show the analogue of Brown’s result for the types F1, F2, and F3. As he describes
explicitly low-dimensional skeleta of classifying spaces, higher finiteness properties
are not within reach of his methods.

It turns out, that Brown’s method can be adapted to deal with braided Houghton
groups. The arc matching complexes A(m,n, 0) arise as relative links and their
connectivity (again for n→∞) determines the finiteness properties of Hbr

m . Thus
Theorem 2 implies that Hbr

m is of type Fm−1 but not of type Fm.
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β

α

α∗

Figure 2. Surgery towards the end of β.

To prove Theorem 2, we consider the chain

A(m− 1, n− 1, k + 1) ⊂ A(m,n− 1, k + 1) ⊂ A(m,n, k)
of inclusions. Relative links are isomorphic to A(m− 1, n− 2, k + 1) for the first
inclusion and to A(m− 1, n− 1, k) for the second. Hence, induction applies to
these links, and we deduce that the induced map in homotopy

πd(A(m− 1, n− 1, k + 1))→ πd(A(m,n, k))
is an epimorphism for d ≤ ζ(m,n). It remains to show that it has trivial image,
i.e., any d-sphere S in A(m− 1, n− 1, k + 1) can be contracted within A(m,n, k).

We contract S inside A(m,n, k) using a method pioneered by Alan Hatcher [5].
Fix an arc β connecting the hollow node with label m to the solid node with label
n. We homotope S into the star of β, where it dies. To this end, we draw all arcs
(i.e. vertices) of S simultaneously onto Σ. If none of them intersects β, we have
nothing to do. Otherwise, let α be the arc whose point of intersection is closest
(along β) to the solid endpoint of β. We do surgery along β to obtain α∗ (see
Figure 2). Since no arc from S intersects the final segment of β cut off by α, any
arc from S in the link of α also lies in the link of α∗.

The final step is to homotope S so that is uses α∗ instead of α. That reduces
the number of intersections with β and we can proceed until S has moved into the
star of β. The main difficulty stems from the fact that α and α∗ are not connected
by an edge in A(m,n, k): they share end points. However, we shall not treat this
problem here.

Remark 5. In [3], the same program has been carried out for the braided Thomp-
son’s groups F br and V br. Both groups are of type F∞ because the connectivity of
arc matching complexes tends to infinity. In the case of F br, the underlying graph
complexes are the matching complexes associated to linear graphs, whereas in the
case of V br one considers the matching complexes over complete graphs.
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Outer space for RAAGs

Corey Bregman

(joint work with Ruth Charney, Karen Vogtmann)

The classical symmetric space Qn = SL(n,R)/ SO(n,R) parametrizes marked lat-
tices in Rn, i.e., discrete embeddings α : Zn →֒ Rn, up to rotation. Alternatively,
the quotient T n = Rn/α(Zn) is a torus equipped with a flat metric, and the mark-
ing α gives a particular choice of basis for π1(T

n). Thus Qn can also be regarded
as the space of marked, flat n-tori. There is a natural left action of GL(n,Z) on
Qn which changes the marking, leaving the metric fixed. Since Qn is connected,
these changes in marking can be achieved by continuously varying the flat metric
on the same underlying topological space, the n-torus. The action of GL(n,Z) on
Qn and the topology of the quotient is intimately connected with the algebraic
structure of GL(n,Z), being used, for example, to compute its group cohomology
and to prove it is a virtual duality group in the sense of Bieri and Eckmann [1].

By analogy with Qn, Culler–Vogtmann introduced a finite-dimensional, con-
tractible “Outer space” CVn on which the outer automorphism group Out(Fn) of
the free group Fn acts properly [2]. Points in CVn are pairs (G, ρ) where G is a
rank nmetric graph and ρ is an identification of π1(G) with Fn. The metric assigns
a positive length to each edge and the marking ρ specifies a homotopy equivalence
ρ : G→ Rn, where Rn is the n-petaled rose (a wedge of n circles). In contrast to
Qn, the basic objects in CVn have varying homeomorphism types, but each graph
admits an obvious homotopy equivalence to Rn by collapsing a maximal tree. In
this case, however, changes in marking are achieved by successively expanding one
maximal tree (thereby changing the homeomorphism type) and then collapsing
another. The action of Out(Fn) on CVn has been an indispensable tool in the
study of algebraic and dynamical properties of Out(Fn).

In this talk we study outer automorphism groups of right-angled Artin groups, a
class which includes both Out(Fn) and GL(n,Z) = Out(Zn), with a view towards
putting the above analogy on more formal footing. Recall that if Γ = (V,E) is a
finite simplicial graph, the right-angled Artin group (RAAG) AΓ has a presentation

AΓ = 〈v ∈ V | [v, w] = 1 if (v, w) ∈ E〉.
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That is, there is one generator for each vertex, and two generators commute if
their corresponding vertices share an edge in Γ. If Γ has no edges, then AΓ is free,
while if Γ is a complete graph then AΓ is free abelian. In this way, RAAGs form
a natural class of groups interpolating between Fn and Zn.

The automorphism group Out(AΓ) is generated by two main types of auto-
morphisms. Elements in the “untwisted” automorphism group U(AΓ) involve
generators which do not commute and therefore resemble automorphisms of Fn.
In contrast, elements in the “twist” subgroup T (AΓ) involve generators which do
commute, and thus are most similar to elementary matrices in GL(n,Z).

Past approaches to the study of Out(AΓ) have been largely algebraic (see, for
example [3, 4, 5]). Here we focus on constructing an analogue of outer space in
order to apply geometric methods. As the examples of Qn and CVn demonstrate,
in order to obtain a space on which Out(AΓ) acts, one should parametrize metric
spaces whose fundamental group is AΓ. In [6], Charney–Stambaugh–Vogtmann
constructed an outer space KΓ for U(AΓ). Points in KΓ correspond to certain
marked, locally CAT(0) cube complexes with fundamental group AΓ called Γ-
complexes. There is a canonical locally CAT(0) cube complex with fundamental
group AΓ, known as the Salvetti complex SΓ, which has a k-torus for each k-
clique in Γ. This plays the analogous role of the rose Rn in CVn, in the sense that
every Γ-complexX , though not necessarily homeomorphic to SΓ, admits homotopy
equivalence c : X → SΓ which collapses a subcomplex to a point.

In order to realize the automorphisms in the twist subgroup T (AΓ), we vary the
flat metric along tori in Γ-complexes. We define a space OΓ consisting of metric
spaces (X, d) marked with a homotopy equivalence h : X → SΓ. Each X is home-
omorphic to a Γ-complex and d is a locally CAT(0) metric, obtained by replacing
cubes with arbitrary parallelotopes. As in the special cases of GL(n,Z) acting on
Qn and Out(Fn) acting on CVn, Out(AΓ) acts on OΓ by changing the marking.
The main theorem states,

Theorem 1. For any right-angled Artin group AΓ, the space OΓ is finite-dimen-
sional, contractible and the group Out(AΓ) acts properly.

In particular, OΓ is a rational classifying space for Out(AΓ). The main theorem
gives a unified construction of an outer space for all RAAGs, and paves the way for
further investigation of Out(AΓ) by geometric means. For example, both Qn and
CVn have natural compactifications by certain degenerate actions and it is natural
to wonder ifOΓ can be compactified in this way as well. Another direction concerns
the fixed sets of finite subgroups, and in particular whether they are nonempty
and contractible. Proving the latter would imply that OΓ is a finite-dimensional
EG, or classifying space for proper actions.
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Expansions, Completions and Automorphisms of welded tangled foams

Marcy Robertson

(joint work with Zsuzsanna Dancso)

Welded tangles are knotted surfaces in R4. We say that welded tangles admit
“foamed vertices” if we allow surfaces to merge and split. In [BD16] Bar-Natan and
Dancso show that the resulting welded tangled foams carry an algebraic structure,
similar to the planar algebras of Jones, called a circuit algebra. In forthcoming
work with Dancso and Halacheva ([DHR20]), we provide a one-to-one correspon-
dence between circuit algebras and a form of rigid tensor category called wheeled
props. This is a higher dimensional version of the well-known algebraic classifi-
cation of planar algebras as certain pivotal categories. Using this, we show that
homomorphic expansions of welded tangled foams are isomorphisms of certain
(completions of) wheeled props which are, in turn, in one-to-one correspondence
with the solutions to the Kashiwara-Vergne conjecture in Lie theory.

In joint work in progress with Dancso, we this categorical description of welded
tangled foams, wF to show that the homotopy automorphisms of the rational
completion of wF are isomorphic to the group of symmetries KV, which act on
the solutions to the Kashiwara-Vergne conjecture. Moreover, we explain how
this approach illuminates the close relationship between the group KV and the
prounipotent Grothendieck-Teichmüller group conjectured in [AT12].
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Vanishing results for chromatic localizations of algebraic K-theory

Georg Tamme

(joint work with Markus Land, Lennart Meier)

In this talk, I summarized some results of the paper [2]. It is a classical result
of Waldhausen [4] that a 1-connective map of connective ring spectra which is a
rational equivalence induces a rational equivalence on algebraic K-theory. From
the viewpoint of chromatic homotopy theory, rationalization is just the zeroth
step of a series of localizations on the category of spectra. We prove the following
analog of Waldhausen’s result at higher chromatic heights.

Theorem 1. Let n ≥ 1 be an integer. Let A → B be an n-connective map of
connective ring spectra which is a T (0)⊕· · ·⊕T (n)-equivalence. Then the induced
map of K-theory spectra

K(A)→ K(B)

is again a T (0)⊕ · · · ⊕ T (n)-equivalence.
Here we have fixed an implicit prime p, and T (n) denotes the telescope Vn[v

−1
n ]

of a vn-self map vn on a p-local finite spectrum Vn of type-n. By convention
T (0) = HQ. From the theorem, we deduce several vanishing results for chromatic
localizations of algebraic K-theory of ring spectra, for example:

Corollary 2. Let K(m) denote Morava K-theory of height m at p. Then K(K(m))
vanishes T (n)-locally and hence also K(n)-locally for 0 < n < m.

The following result can be seen as a version of the first theorem with a weaker
assumption on the connectivity for a restricted class of ring spectra.

Theorem 3. Let n ≥ 1 be an integer. Then T (n)-local K-theory is truncating
on T (1)⊕ · · · ⊕T (n)-acyclic ring spectra in the following sense: For every T (1)⊕
· · · ⊕ T (n)-acyclic ring spectrum A, the natural map

K(A)→ K(π0A)

is a T (n)-local equivalence.

Note that for n ≥ 2 the theorem is equivalent to the statement that K(A)
vanishes T (n)-locally because Mitchell [3] has proven that the K-theory of discrete
rings vanishes T (n)-locally for every n ≥ 2.

Combining Theorem 3 with work of Hahn [1] we deduce the following redshift
result.

Corollary 4. Let A be a K(1)-acyclic E∞-ring. Then K(A) vanishes T (n)-locally
for all n ≥ 2.
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Embedding calculus for knot spaces

Danica Kosanović

This talk expands on the one we gave earlier this year at the OberwolfachWorkshop
2008 “Low-dimensional Topology”. Back then we presented our main results from
[5], while this time, as the audience was more familiar with the Goodwillie–Weiss
embedding calculus, we discussed the more technical results from that work.

We refer the reader to that earlier report for precise statements of the main
results. In brief, we show that the evaluation maps evn : Emb∂(I,M) → Tn(M)
from the space of (long) knots in a 3-manifold M to its corresponding Taylor tower
stages are 0-connected ; this completes some of the missing cases of the connectivity
estimates of Goodwillie and Klein [4], and is also closely related to the theory of
finite type knot invariants of Vassiliev. Namely, for classical knots M = I3 we get
that π0evn are universal rational additive Vassiliev invariants, the first such not
using integration over configuration spaces, and having potential of being universal
over the integers. Combining the work of Boavida de Brito and Horel [1] with ours
gives further evidence for that conjecture: π0evn is a universal type ≤ n−1 additive
invariant p-locally for p ≥ n− 2.

We believe that our intermediate results may be of independent interest. In the
current work in progress we use them to study the space of properly embedded
arcs Emb∂(I,M) in an oriented connected smooth manifold M of any dimension
d ≥ 3 with non-empty boundary, which agree near boundary with a fixed proper
embedding U: I →֒M (an arbitrarily chosen basepoint). Let us give some details.

Degree one. It turns out that the first Taylor stage T1(M) = Imm∂(I,M) is the
space of immersed arcs. Note that for d > 3 we simply have π0Emb∂(I,M) ∼=
π1M ∼= π0Imm∂(I,M), so it is natural to try to determine the lowest homotopy
group distinguishing embeddings from immersions. In other words, we are asking
about the connectivity of the natural inclusion ev1 : Emb∂(I,M) →֒ Imm∂(I,M).

It follows by general position arguments1 that it is at least (d− 3)-connected:

πkev1 : πkEmb∂(I,M)→ πkImm∂(I,M)

is an isomorphism for 0 ≤ k ≤ d− 4 and a surjection for k = d− 3. To determine
the kernel in the last case, one can first consider the homotopy fibre

Emb∂(I,M) := hofibU(ev1),

1Namely, the double point set of a k-parameter family of immersions generically has dimension
k + d− 2(d − 1). This is negative if k ≤ d− 3.
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the space of embeddings modulo immersions. By the argument above, Emb∂(I,M)
is (d − 4)-connected, and we can find πd−3Emb∂(I,M) using the second layer in
the Taylor tower

F2(M) := fibU
(

p2 : T2(M)→ T1(M) = Imm∂(I,M)
)

and the evaluation map ev2 : Emb∂(I,M)→ F2(M).

Theorem 1. For any d ≥ 3 there is an explicit homotopy equivalence

χ : F2(M)→ Ω2
(

Sd−1 ∨ Σd−1ΩM
)

.

In particular, F2(M) is (d− 4)-connected and χ∗ : πd−3F2(M)
∼=−→ Z[π1M ].

Moreover, there is a map of sets

ρ : Z[π1M ]→ πd−3Emb∂(I,M)

which is a group homomorphism if d ≥ 4, and which satisfies

χ∗ ◦ πd−3ev2 ◦ ρ = IdZ[π1M ].

The realisation map ρ is defined using ‘band-summing into a meridinal sphere’
as in Figure 1. As a consequence, we see that πd−3ev2 is surjective, but by results
of Dax [2], and Goodwillie and Klein [4], it is also injective, so ρ is an isomorphism.

J0
p1 µ(Sd−2)

ρ(g)(~t)

γ

Figure 1. Here g = [γ] ∈ π1M and for various values of ~t ∈ Sd−3

we depicted ‘time samples’ ρ(g)(~t) ∈ Emb∂(I,M) in the family.

General degree. We analogously have higher Taylor layers

Fn+1(M) := fibU

(

Tn+1(M)
pn+1−−−→ Tn(M)

)

and the evaluation maps

evn+1 : hofibU
(

Emb∂(I,M)
evn−−→ Tn(M)

)

→ Fn+1(M).
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Let Treeπ1M (n) be the set of rooted binary planar trees with n leaves each deco-
rated by an element of π1M , and let

Lieπ1M (n) :=
Z[Treeπ1M (n)]

Jacobi, antisymmetry

be the quotient by the usual relations satisfied by Lie brackets.
In particular, in degree one we have Lieπ1M (1) = Z[π1M ], and Theorem 1 can

be generalised to an arbitrary degree as follows.
Let us denote by N ′B(n) the set of those words w in a Hall basis for the free Lie

algebra on {xi, xi′ : i ∈ {1, . . . , n}}, in which for each 1 ≤ i ≤ n at least one of

the letters xi or xi
′

appears. Let lw denote the word length of w and l′w ≤ lw the
number of letters in w with a prime.

Theorem 2 (See [5] for the proof of the statement in the first paragraph, and for
the second in the case d = 3; the general case is work in progress). For any d ≥ 3
there is an explicit homotopy equivalence

χ : Fn+1(M)→ Ωn
weak
∏

w∈N ′B(n)

ΩΣ1+(d−2)lw(ΩM)∧l
′

w

Hence, Fn+1(M) is (n(d−3)−1)-connected and χ∗ : πn(d−3)Fn+1(M)
∼=−→ Lieπ1M (n).

Moreover, there is a map of sets

ρn : Lieπ1M (n)→ πn(d−3)hofibU(evn)

which is a group homomorphism if d ≥ 4, and which satisfies

χ∗ ◦ πn(d−3)evn+1 ◦ ρn = IdLieπ1M (n).

Similarly as before, this shows that ρn is surjective for d ≥ 3, while for d ≥ 4
the theorem of Goodwillie and Klein shows it is also injective.

At the end of the talk we briefly outlined how these computations can give
insight into some open problems in 4-dimensional topology: in a joint project
with Peter Teichner [6] we classify up to isotopy properly embedded disks in a
4-manifold that have a dual sphere in the boundary, using the corresponding 1-
parameter families of arcs they induce (in a different 4-manifold!) – a problem
posed in [3].

References

[1] P. Boavida de Brito and G. Horel.Galois symmetries of knot spaces. 2020. arXiv:2002.01470.

[2] J.-P. Dax. Étude homotopique des espaces de plongements. fr. Annales scientifiques de l’
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[5] D. Kosanović, A geometric approach to the embedding calculus. PhD Thesis. University of

Bonn, 2020.
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Diffeomorphisms of even-dimensional discs outside the pseudoisotopy
stable range

Alexander Kupers

(joint work with Oscar Randal-Williams)

The topological group Diff∂(D
d), of diffeomorphisms of a d-dimensional disc which

fix pointwise a neighbourhood of the boundary, is one of the fundamental objects of
differential topology: for d 6= 4, Morlet’s theorem says there is a weak equivalence

BDiff∂(D
d)

≃−→ Ω2n
0

Top(d)
O(d) ,

and smoothing theory gives a description of Homeo∂(M)
Diff∂(M) in terms of Top(d)

O(d) for any

d-dimensional smooth manifold M [1, Essay IV & V].
In [2], we give a complete description of the rational homotopy groups of

BDiff∂(D
2n) for 2n ≥ 6 in the range ∗ ≤ 4n− 10.

Theorem 1. Let 2n ≥ 6. Then in degrees d ≤ 4n− 10 we have

πd(BDiff∂(D
2n))⊗Q =

{

Q if d ≥ 2n− 1 and d ≡ 2n− 1 mod 4,

0 otherwise.

In higher degrees, we obtain information outside certain bands :

Theorem 2. Let 2n ≥ 6. Then in degrees d ≥ 4n− 9 we have

πd(BDiff∂(D
2n))⊗Q =



















Q if d ≡ 2n−1 mod 4 and d /∈
⋃

r≥2

[2r(n−2) − 1, 2rn− 1],

0 if d 6≡ 2n−1 mod 4 and d /∈
⋃

r≥2

[2r(n−2) − 1, 2rn− 1],

? otherwise.

As we explain now, the non-trivial classes in these theorems are detected by
topological Pontrjagin classes. Since BO→ BTop is a rational equivalence, there
are cohomology classes pi ∈ H4i(BTop;Q). We can pull these back to BTop(2n).
Weiss discovered that, in contrast with BO(2n), the relations pn+i = 0 or e2 −
pn = 0 need not hold in H∗(BTop(2n);Q) [3]. Morlet’s theorem provides an

isomorphism π∗(BDiff∂(D
2n))⊗ Q ∼= π∗+2n(

Top(2n)
O(2n) )⊗Q and in the diagram

π∗+2n(
Top(2n)
O(2n) )⊗Q←− π∗+2n+1(BTop(2n)) −→ H∗+2n+1(BTop(2n);Q)

the left map is an isomorphism for ∗ ≥ 2n − 1. Thus the non-trivial classes in
Theorems 1 and 2 give rise to homology classes in the right term, and we show that
these pair non-trivially against the appropriate cohomology class pn+i or e

2 − pn.
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