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Introduction by the Organizers

First and foremost, we would like to thank the Mathematisches Forschungsinstitut
Oberwolfach for making this conference possible in an equally safe and enjoyable
format. The opportunity of a combined personal and digital exchange of ideas
provided an excellent framework for this productive workshop. This was explicitly
mentioned by many of the participants.

The workshop “Automorphic Forms and Arithmetic” was attended by 15 par-
ticipants being physically present in Oberwolfach, and 36 additional participants
who joined digitally, with a total of 14 female participants. We heard 22 talks
featuring a selection of the latest research results in the field.
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Modern analytic number theory draws from a wide array of methods ranging
from algebraic geometry to real and complex analysis and ergodic theory. An
overarching theme is the theory of automorphic forms where the interactions goes
in both directions: families of automorphic forms and their L-functions can be
investigated by means of analytic number theory, and conversely many classical
questions in analytic number theory need the full power of the spectral theory of
automorphic forms. The goal of the workshop was the exploration of the links
between analytic number theory and automorphic forms, with a particular focus
on areas where deep new ideas are emerging, such as

• moments of L-functions and equidistribution,
• automorphic forms over function fields, and
• applications of modular forms to sphere packing.

We highlight major results that were presented featuring strong methodological
variety.

New and unexpected connections between moments of L-functions and equidis-
tribution were presented in talks of Brumley, Young and Risager, focusing on
quantum variance and simultaneous equidistribution of toric periods. The lat-
ter is an excellent example of the fruitful interactions of arithmetic, automorphic
forms and ergodic theory: Duke’s classical equidistribution theorem proves the
equidistribution of toric periods within quotients of adelic quaternion algebras. It
has several arithmetic incarnations, such as equidistribution of Heegner points,
lattice points on the sphere and supersingular reduction of elliptic curves. In
the modern framework Duke’s theorem is an application of subconvexity bounds
for automorphic L-functions. It is quite remarkable that the much harder set-up
of simultaneous equidstribution of a diagonally embedded toric period within two
copies of adelic quaternion algebras can be also approached, and even in two ways:
through ergodic means (the joinings theorem of Einsiedler and Lindenstrauss) and
through an analysis of fractional moments of certain L-functions.

Nelson presented his work on the cubic moment for PGL2 over number fields
that emphasizes the point of view of period integrals and a method to handle
general test functions; Nunes approached the topic of reciprocity formulas using
integral representations, and interesting links were noticed between parts of the
two problems. Nelson’s work is partly inspired by a recent breakthrough result of
Petrow and Young that was reported on by Petrow – the Weyl bound for Dirichlet
L-functions – which after almost 70 years improves on the Burgess bound from
1960s. The proof features a beautiful combination of analytic number theory,
automorphic forms and algebraic geometry in the form of trace functions. In
connection with Nelson’s work, this Weyl bounds is also valid over general number
fields.

Various aspects of families of automorphic forms were considered in talks of
Khayutin, Milićević and Matz. Jasmin Matz, who opened the conference, dis-
cussed quantum ergodicity in the level aspect, while Milićević settled a very general
version of Sarnak’s density conjecture in the level aspect. The density conjecture
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for exceptional eigenvalues – inspired by the density conjecture for exceptional ze-
ros of L-functions – features a flow of ideas in the other directions: deep properties
of automorphic representations can be obtained from the geometry of numbers in
number fields or arithmetic properties of generalized Kloosterman sums.

Khayutin presented an exciting new method to bound large values of auto-
morphic forms, an approach which for the first time deviates from the classical
Iwaniec-Sarnak technique and therefore offers a number of new features. This
method is, quite surprisingly, particularly strong in the challenging squarefree
level aspect; the new exponent breaks the previous 2015 record by N. Templier
and goes half way towards Sarnak’s purity conjecture. It is the strongest result
ever obtained in any version of the sup-norm problem.

Large values from the point of view of automorphic over function fields were
discussed in a talk of Will Sawin. Kowalski surveyed recent work of Sawin that de-
fines suitable notions of “complexity” for trace functions in many variables, which
have the potential to facilitate many applications of Deligne’s Riemann Hypothesis
to analytic number theory. The MFO workshop provided a perfect opportunity
to present the powerful function field aspect of automorphic forms theory to a
large audience of analytic number theorists. Kowalski’s sheaf theoretic talk was
complemented by a very different viewpoint on exponential sums in a talk by Lil-
lian Pierce who discussed direct estimates in the context of harmonic analysis, yet
another manifestation of the interdisciplinary nature of analytic number theory.

Important new results in classical analytic number theory were presented in
talks of Harper on arithmetic insights that can be derived from the probabilis-
tic notion of “multiplicative chaos”, Merikoski on a generalization of the famous
Friedlander-Iwaniec result concerning primes of the form a2 + b6 and in particular
a double talk of Teräväinen and Kaisa Matomäki on higher order uniformity of
the Möbius function, presenting deep and difficult breakthrough results on the
non-correlation of the Möbius function with polynomial and even more general
phases related to nilsequences.

Anke Pohl presented some surprising, partly experimental and still unexplained
discoveries about the structure of the set of resonances on infinite-area hyperbolic
surfaces, while Saha focused on the fundamental Fourier coefficients for the group
GSp4.

One of the most spectacular applications of modular forms is the sphere pack-
ing problem, in particular in dimension 8 and 24, which is intimately connected
also to Fourier interpolation and the question under what conditions a function
can be reconstructed from a subset of its values and a subsets of the values of its
Fourier transform. The recent developments in this area were discussed in several
talks: Radchenko has introduced a new surprising Fourier interpolation formula
that can essentially reconstruct a function from its values at the non-trivial zeros
of an L-function (for example the Riemann zeta function) and the values of its
Fourier transform at the logarithms of integers. This formula is a broad gener-
alization of the famous Riemann–Weil explicit formula. Cohn spoke about the
newly discovered connection between the Cohn-Elkies linear programming bound
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for the sphere packings and the modular bootstrap in conformal field theory. He
also presented new numerical results computing the above-mentioned bounds in
high dimensions. Matthew de Courcy-Ireland gave an overview of linear program-
ming bounds for the sphere packing and presented an approach for obtaining a
“bound on the bound”, while Hedenmalm highlighted the connection between the
Klein-Gordon equation and Fourier interpolation.

The conference spanned a wide range of viewpoints on automorphic forms and
arithmetic, emphasizing its interdisciplinary nature. Wednesday evening was de-
voted to a lively and interesting problem session with contributions both from
people at the institute and those joining digitally from various parts of the world.
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Abstracts

Quantum Ergodicity in the level aspect

Jasmin Matz

(joint work with Farrell Brumley)

Suppose S is a Riemannian symmetric space of non-compact type, and let G be its
group of isometries. Let Γn ≤ G, n ∈ N, be a sequence of torsion-free, cocompact
lattices such that the sequence of compact locally symmetric spaces Yn := Γn\S
Benjamini-Schramm converges to S as n → ∞. In this setting, [1] showed that
limit multitplicity holds, that is, as n → ∞, the L2-spectra of Yn converge to the
L2-spectrum of S in a suitable sense.

A more refined question then involves the distribution of not only the spectrum,
but also the corresponding eigenfunctions on the Yn. In the situation of just one
fixed closed Riemannian manifold M whose geodesic flow is ergodic, Shnirelman
and others [8, 4, 9] and others showed that any orthonormal basis {ψj}j∈N con-
sisting of L2-normalized Laplace eigenfunctions of M is quantum ergodic, so in
particular, for every a ∈ C(M),

1

#{j : λj ≤ λ}
∑

j: λj≤λ

∣∣∣∣〈aψj , ψj〉L2(M) −
1

vol(M)

∫

M

a

∣∣∣∣
2

−→ 0

as λ→ ∞, whith λj ≥ 0 denotes the Laplace eigenvalue of ψj .
In view of those results it make sense to ask for a type of quantum ergodicity

result that looks at the behavior of the Laplace eigenfunctions in the high level
aspect instead of the high energy one.

A first precise formulation of this type of question has been provided in [7] and
[2], where they focus on the case of G having rank 1. In our recent preprint [3] we
consider the following higher rank situation: We suppose that S = SLd(R)/SO(d)
with d ≥ 3, and Γn ≤ SLd(R) is a sequence of torsion-free cocompact lattices. We
write Yn = Γn\S again. We suppose that the Γn are uniformly discrete, that is,
the distances between any g ∈ S and its translates γg, γ ∈ Γn−{1} are uniformly
bounded away from 0.

Before we can state our main result, we need some more notation. Let a be
the Lie algebra of the usual maximal split torus T of G = SLd(R) consisting
of diagonal matrices, and let W denote the Weyl group of (T,G). Then the
Weyl group orbit ia∗/W of the subspace ia∗ of the complexified dual a∗C can
be identified with the unramified tempered spectrum of G. We call a spectral
parameter ν ∈ ia∗/W sufficiently regular if ν is sufficiently far away from all
singular hyperplanes determined by the roots of (T,G) in ia∗/W .

For each n let {ψn,j}j∈N denote an orthonormal basis of L2(Yn) consisting of
Laplace eigenfunctions. Let νn,j ∈ a∗C/W denote the spectral parameter of ψn,j .
For ν ∈ ia∗/W and ̺ > 0 let B(ν, ̺) denote the ball of radius ̺ around ν in
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ia∗/W , and let Nn(ν, ̺) denote the number of j ∈ N with νn,j ∈ B(ν, ̺). The
main result of [3] then is:

Theorem. Let d ≥ 3, S = SLd(R)/SO(d), and let Γn ≤ SLd(R) be a sequence of
uniformly discrete cocompact lattices with vol(Γn\S) −→ ∞. Let an ∈ C(Γn\S)
be a sequence of uniformly bounded functions. Then there exists ̺ > 0 such that
for every sufficiently regular ν ∈ ia∗/W ,

(1)
1

Nn(ν, ̺)

∑

j: νn,j∈B(ν,̺)

∣∣∣∣〈anψn,j , ψn,j〉L2(Yn) −
1

vol(Yn)

∫

Yn

an

∣∣∣∣
2

−→ 0

as n→ ∞.

Remarks:

• The analogue result for d = 2 had been proven in [7] under the additional
assumptions that the Yn Benjamini-Schramm converge to S as n → ∞,
and that the smallest non-zero Laplace eigenvalues of Yn are uniformly
bounded away from 0 for all n. We require those properties as well, but
they are automatically satisfied when d ≥ 3 because of [1] and [6].

• [2] extend the results of [7] to general rank 1 spaces. They are also able
to use pseudo-differential operators of degree 0 instead of the functions
an, and permit (sufficiently slowly) shrinking intervals instead of intervals
B(ν, ̺) of fixed length. So far, we were not able to incorporate those
features into our higher rank results.

Ideas of proof

The first main step in the proof of the Theorem is to average over a kind of wave
propagation operator, an idea that was already used in [7] and [2]. More precisely,
we need to find a suitable family of expanding measurable sets Et, t ≥ 0, with⋃
t≥0Et = G. Let ρΓn\G be the right regular representation on L2(Γn\G), and

kt ∈ Cc(G) the characteristic function of Et normalized by the square-root of
its measure. We then define our wave propagation operator as Ut = ρΓ\G(kt) :

L2(Γn\G) −→ L2(Γn\G). From now on we assume that
∫
Yn
an = 0.

Our next task then is to show that we can replace
∣∣〈anψn,j, ψn,j〉L2(Yn)

∣∣2 by a
time average: For every j with νn,j ∈ B(ν, ̺) we have

∣∣〈anψn,j, ψn,j〉L2(Yn)

∣∣2 ≪ν,̺

∣∣〈A(τ)ψn,j , ψn,j〉L2(Yn)

∣∣2

where An(τ) = 1
τ

∫ τ
0
UtanUt dtL

2(Yn) −→ L2(Yn), and the implied constant is
independent of n and the choice of functions an. As a consequence the left hand
side of (1) is bounded by a constant multiple of the square of the Hilbert-Schmidt
norm ‖An(τ)‖2HS of An(τ). Proving this inequality requires a good lower bound
on certain elementary spherical functions on average.
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We now need to bound ‖An(τ)‖2HS from above. More precisely, we prove that for
τ ≫ 0 we have

(2) ‖An(τ)‖2HS ≪
‖an‖2L2(Yn)

τ
+

ecτ

InjRad(Yn)dimS
vol((Yn)≤2τ+c′)‖an‖2L∞(Yn)

where c, c′ > 0 are suitable constants, and (Yn)≤r denotes the r-thin part of Yn.
Once this inequality is established, we use the fact that the Yn Benjamini-Schramm
converge to S to find a suitable sequence of τ = τn with τn −→ ∞ such that the
right hand side goes to 0 as n → ∞. This finishes the proof of the Theorem once
we prove a lower bound on Nn(ν, ̺) of the right order. A key ingredient in the
proof of (2) is a quantitative ergodic mean theorem due to Nevo [5]. Consequently,
we need to bound the volume of the intersections gEt ∩ Et ⊆ G from above, for
which our choice of Et becomes crucial. Metric balls as used in [7, 2] do not work
for us in higher rank any longer so that we need to define those expanding sets in
a different way, using suitable expanding polytopes in a.
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Eisenstein series and the cubic moment for PGL2

Paul D. Nelson

We described (following the preprint [7]) how to use Eisenstein series to establish
summation formulas for the cubic moment of standard L-functions on PGL2. We
deduced some applications.
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The cubic moment of interest first appeared in Motohashi’s formula [6] for the
fourth moment of the Riemann zeta function (see also Ivić [3]):

∫

t∈R
|ζ(1/2 + it)|4h(t) dt =

∑

ϕ

L(ϕ, 1/2)3

L∗(ϕ× ϕ, 1)
h̃(rϕ) + (· · · ).

Here h is a test function, h̃ is an explicit integral transform, ϕ runs over the
Hecke–Maass cusp forms on Γ := SL2(Z) of eigenvalue 1/4 + r2ϕ, and (· · · ) de-
notes the analogous contributions from holomorphic forms, Eisenstein series, plus
a degenerate term.

In their 2006 ICM survey, Michel–Venkatesh [4] suggested a “one-line proof
sketch” of Motohashi’s formula, assuming standard facts from the theory of in-
tegral representations of L-functions. Denoting by Es : Γ\H → C the Eisenstein
series for SL2(Z) with Fourier expansion

Es(x+ iy) =
∑

±
ξ(1 ± 2s)y1/2±s +

∑

n≥1

τs(n)√
n

2 cos(2πnx)Ws(ny),

their sketch consists of evaluating the regularized inner product
∫ ∞

0

E2
0 (iy) d×y

via two different spectral expansions and applying standard facts from the theory
of integral representations of L-functions.

We briefly indicated how one can develop this approach to Motohashi-type
formulas rigorously, paying attention to issues of regularization. The most direct
implementation of this method gives Motohashi-type formulas for rather specific
weight functions. The main focus of the talk was to explain how to achieve flexible
weights on the cubic moment side. Our discussion featured the diagram

I(0) ⊗ I(0)

{h : (PGL2)∧gen → C} {h̃ : (GL1)∧ → C}

f 7→h̃ff 7→hf

?

relating elements of an induced representation of PGL2 ×PGL2 (parametrizing
linear combinations of products of Eisenstein series) to local weight functions, as
well as the diagram

I(0) ⊗ I(0)

C∞
c (PGL2)

{h : (PGL2)∧gen → C} {h̃ : (GL1)∧ → C}

f 7→h̃fhφ=hf

φ 7→hφ
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describing our approach for showing that every nice enough (“Paley–Wiener”) test
function on the cubic moment side arises from some linear combination of products
of Eisenstein series.

Our main motivation for developing such an approach to Motohashi-type for-
mulas is to introduce tools from representation theory and the theory of integral
representations of L-functions into their study. The resulting method applies uni-
formly over number fields and in all aspects. It has some potential for generaliza-
tion to higher rank groups.

We illustrated the transformation h 7→ h̃ in an explicit example, showing how
the two-variable exponential sums studied by Conrey–Iwaniec [2] arise.

We deduced several applications:

• Weyl-type subconvex bounds for quadratic Hecke characters over number
fields, generalizing results of Conrey–Iwaniec [2].

• Improved estimates for representation numbers of ternary quadratic forms
over number fields, improving upon estimates of Blomer–Harcos.

• Improved bounds for the prime geodesic theorem arithmetic 3-folds via
recent work of Balog–Biró–Cherubini–Laaksonen [1].

We described how one might hope to understand recent work of Petrow–Young
[8, 9] from the perspective of our method.

We indicated ongoing work with Lei Zhang that aims to generalize the basic
summation formula to higher rank orthogonal groups using the (non-Gelfand)
diagram

SOn+1

SOn SOn−1 × SO2

SOn−1

One obtains in this way identities of the shape
∑

σ⊆L2(SO2n+1(Z)\ SO2n+1(R))

hf (σ)L(σ, 1/2)2n+1 =

∫

t∈Rn

h̃f (t)L(t) dt+ (· · · ).

These recover Motohashi’s formula when n = 1, in which case L(t) = |ζ(1/2+it)|4.
When n ≥ 2, the quantity L(t) is more mysterious: it is defined by an Eulerian
integral, but seems unlikely to be an L-value in the traditional sense.

In summary, we gave a rigorous implementation of Michel–Venkatesh’s strategy
for deriving Motohashi-type formulas with flexible weights on the cubic moment
side, deduced applications such as strong subconvex estimates over number fields,
and indicated some directions for ongoing and future work.
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Simultaneous equidistribution of torus orbits and fractional moments
of twisted L-functions

Farrell Brumley

(joint work with Valentin Blomer)

The classical Linnik problems are concerned with the equidistribution of periodic
adelic torus orbits on the homogeneous spaces attached to inner forms of PGL2, as
the discriminant of the torus gets large. When specialized, these problems admit
beautiful classical interpretations, such as the equidistribution of integer points on
spheres, of Heegner points or packets of closed geodesics on the modular surface,
or of supersingular reductions of CM elliptic curves. In the mid 20th century,
Linnik and his school [11, 12] established the equidistribution of many of these
classical variants through his ergodic method, under a congruence condition on the
discriminants modulo a fixed auxiliary prime. When these methods are sufficiently
quantified, the auxiliary congruence condition can be removed by appealing to
the Generalized Riemann Hypothesis for the L-functions of quadratic Dirichlet
characters.

More recently, the Waldspurger formula and subconvex estimates on L-functions
(or, more accurately, of Fourier coefficients of half-integer weight modular forms)
were used to remove these congruence conditions unconditionally, and provide
effective power-savings rates. This is the fundamental work of Duke [3], dat-
ing from the late 1980’s, which built on a breakthrough of Iwaniec [9]. Duke’s
equidistribution theorems were further generalized, and Linnik’s difficult methods
were understood through the lens of modern ergodic theory, in the early 2000’s,
thanks to the collaborative work Ellenberg, Einsiedler, Lindenstrauss, Michel, and
Venkatesh [5, 6, 7, 8]. Perhaps most notably, the equidistribution of periodic adelic
torus orbits on PGL3(Z)\PGL3(R) was established [6] by an ingenious combina-
tion of ergodic and analytic techniques.

In their 2006 ICM address [13], Michel and Venkatesh proposed a new variant
of the Linnik equidistribution problems in which one considers the product of two
distinct inner forms of PGL2, along with a diagonally embedded torus of large
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discriminant. One can again specialize the setting to obtain interesting classical
reformulations, such as the joint equidistribution of integer points on the sphere,
together with the shape of the orthogonal lattice. This hybrid context has received
a great deal of attention recently in the dynamics community, where, for instance,
the latter problem was solved by Aka, Einsiedler, and Shapira [1], under supple-
mentary congruence conditions modulo two fixed primes, using as critical input the
joinings theorem of Einsiedler and Lindenstrauss [4]. In fact the motivating appli-
cation of the Michel–Venkatesh conjecture was to the simultaneous supersingular
reduction of CM elliptic curves, which has recently been shown in [2] to follow from
the joinings theorem, again subject to the double Linnik condition at two distinct
auxiliary primes. In contrast to the original Linnik problem, these ergodic meth-
ods have not yet been sufficiently quantified so as to allow for a removal, under
the assumption of GRH, of the twin congruence conditions on the discriminants.
From the perspective of effective methods in homogeneous dynamics, this seems
to be a difficult problem.

In joint work with Valentin Blomer, we remove the supplementary congruence
conditions in the joint equidistribution problem, conditionally on GRH, while
obtaining a logarithmic rate of convergence. (We impose further technical con-
straints, like maximal level structure, and we test equidistribution only against
the discrete automorphic spectrum.) The proof uses Waldspurger’s theorem to
reduce the problem to that of bounding the following fractional moment of L-
functions in the family of class group twists:

1

vol C̃lE

∑

χ∈C̃l
∨

E

L(1/2, π1,×χ)1/2L(1/2, π2,×χ)1/2.

Here, π1 and π2 are two distinct cuspidal automorphic representations of PGL2

over Q of square-free level, E is a quadratic field extension of Q of large dis-

criminant D, and C̃lE is the Arakelov class group of its ring of integers. Using
the pioneering method of Soundararajan [14] to estimate high moments of L-
functions, and in particular its more recent use in the work of Lester–Radziwi l l
[10], we show that, under GRH, the above moment decays faster than (log |D|)−δ
for any 0 < δ < 1/4.
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Questions on exact large values of modular forms

Will Sawin

The sup-norm problem asks for the size of the largest value of an automorphic
form on an arithmetic manifold. In investigating a function field analogue of the
sup-norm problem [7], I came to a number of questions, which make sense in the
classical setting as well. The goal of my talk was to present these questions.

We adapt a setup of Milićević [4], building on work of Rudnick and Sarnak [6].
Let F be an imaginary quadratic extension of Q. Let D be a quaternion algebra
over Q. Assume D is not split at ∞ and not split over F . Let K = K∞K∞ be a
compact subgroup of D×(AF ) with K∞ open and

K∞ = D×(R) mod Z(D×(F∞)).

Then we can take

M = D×(F )\D×(AF )/KZ(D×(AF )).

Because

D×(F∞)/(K∞Z(D×(F∞))) = GL2(C)/(U2(R)C×) = H3,

M is an arithmetic hyperbolic three-manifold. Because D is not split over F , M
is compact.

Let f be an eigenfunction of the Laplacian on M , with eigenvalue λ, which is
also an eigenform of the Hecke operators. Normalize f to have

∫
M

|f(x)|2µ = 1,
where in this, and every subsequent integral, µ is a measure of total mass 1. Does
|f | take values much larger than its average value 1? Milićević showed, using
the relative trace formula, that there exist infinitely many f such that the period
integral

(1)

∫

D×(Q)\D×(AQ)

f(x)dµ(x)
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is greater than a constant times λ1/4 [4]. This built on earlier work of Rudnick
and Sarnak [6]. It follows that for at least some

x ∈ D×(Q)\D×(AQ)/(K ∩D×(AQ))Z(D×(AQ))

we have f(x) greater than a constant times λ1/4. It turns out that this double
coset space is a finite set.

I would like to know a better asymptotic formula for the values of f on this
finite set. We say f is special if f arises from the quadratic base change of an
automorphic form on GL2(AQ) with central character the quadratic character χF
associated to F/Q. Based on [6], we expect that for special F the integral (1) is
large and for all other f this integral should vanish. It is reasonable to expect that
for special f , the value at each point is close to the value of the period integral.
Confirming that expectation would answer the following two questions:

Question 1. Does there exist δ > 0 such that for y ∈ D×(AQ), for all Hecke-
Laplace eigenfunctions f , we have

f(y) =

∫

D×(Q)\D×(AQ)

f(x)dµ(x) +O
(
λ1/4−δ

)
?

Question 2. Do we have, for y ∈ D(AQ), for all special eigenfunctions f ,

f(y) = (1 + o(1))

∫

D(Q)\D(AQ)

f(x)dµ(x)?

To obtain an asymptotic for f(y), we would also need a formula for the period
integral, similar to what Lapid and Offen [3] did for GLn instead of D×.

To answer the first question, it would suffice to estimate the period integrals∫

D×(Q)\D×(AQ)

f(x)g(x)dµ(x)

for g a nonconstant Hecke eigenform on D×(Q)\D×(AQ)/(K ∩ D×(AQ))Z(D×

(AQ)). Upper bounds for similar period integrals, in the case D nonsplit, were
obtained in [5, Theorem B], using Ichino’s triple product formula [2] to reduce to
estimating a certain L-function. Nelson suggested a similar method could work for
this problem, but only conditionally on the Ramanujan conjecture for f together
with Sato-Tate-like estimates on the Fourier coefficients of f . Sufficient estimates
for the L-function would also follow from the generalized Riemann hypothesis.

One can also consider questions about the behavior of f near special points
x ∈ D×(Q)\D×(AQ). For this, the most important invariant is the derivative of
f , which is a function on D×(Q)\D×(AQ)/(K∞ ∩ D×(AQ))Z(D×(AQ)) that is
not invariant under K∞ ∩D×(AQ) but instead transforms according to the three-
dimensional representation of (K∞ ∩ D×(AQ))/Z(K∞ ∩ D×(AQ)) = SO(3). If
there are no such functions, the derivative vanishes, and it is reasonable to guess
that x is a local maximum, except when the eigenvalue is very small.

Question 3. If there are no nonzero functions on

D×(Q)\D×(AQ)/(K∞ ∩D×(AQ))Z(D×(AQ))
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that transform according to the 3-dimensional spherical representation of SO(3),
then for all but finitely many special eigenfunctions f , is each x ∈ D×(AQ) a local
maximum?

Question 4. If there are nonzero such functions, then is each x ∈ D×(AQ) not a
local maximum for a density 1 set of special eigenfunctions f?

My final questions concern the function field setting, in the genus aspect. In
this setting, we fix a quaternion algebra D over Fq(t), and let F be a varying
quadratic extension of q. Let g be the genus of the underlying hyperelliptic curve,
equivalently, let q2g+2 be the discriminant of F . Let K be a compact subgroup of
D×(AF ). Let m be the index of K ∩D×(AFq(t)) in a maximal compact subgroup,
which we note does not depend on the choice of maximal compact subgroup of
D×(AFq(t)) because they all have the same Haar measure.

Let f be a complex-valued function on D×(F )\D×(AF )/KZ(D×(AF )) which is
an eigenfunction of the Hecke operators and such that

∫
D×(F )\D×(AF ) |f(x)|2dµ(x)

= 1.
We can first ask for an analogue of the result of Milićević [4] in this setting.

Question 5. Does there exist a universal constant C such that
∫

D×(Fq(t))\D×(AFq(t))

f(x)dµ(x) = Ω(m−Cqg/2)?

Question 6. Do there exist universal constants C and δ > 0 such that for y ∈
D×(AFq(t)),

f(y) =

∫

D×(Fq(t))\D×(AFq(t))

f(x)dµ(x) +O
(
mCq(1−δ)g/2

)
?

The implicit constants in the big O and Ω should depend on q and D but not
on F or K.

I can check these hold in the case whereD is split andK is the standard maximal
compact subgroup (though, in that case,D×(Fq(t))\D×(AFq(t)) is noncompact and
so the constant may depend on y) explicitly using the Fourier expansion (calculated
by Drinfeld [1] in this case). Thus I suspect this is the right formula in general.
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Fourth Moments of Modular Forms on Arithmetic Surfaces

Ilya Khayutin

(joint work with Paul Nelson, Raphael S. Steiner)

In this talk we have discussed recent progress on the sup-norm problems for GL2.
Let Γ < SL2(R) be an arithmetic lattice and ϕ : Γ\SL2(R) → C be a Hecke
eigenfrom. Assume1 ‖ϕ‖2 = 1. The sup-norm problem asks for the best possible
bound on ‖ϕ‖∞ in terms of the analytic conductor. An important variant is the
problem of finding the best possible bound on ‖ϕ ↾Ω ‖∞, where Ω ⊂ SL2(R) is a
bounded open subset, in terms of the analytic conductor and Ω. In practice, we
often seek a bound independently in terms of the Laplace eigenvalue, the weight
or the level. The sup-norm problem is analogues to the subconvexity problem for
automorphic L-functions; and indeed proving an optimal bound on the sup-norm
would imply several instances of the generalized Lindelöf hypothesis.

The first breakthrough is due to Iwaniec–Sarnak [IS95]. Let Γ < SL2(R) be the
unit norm elements of an Eichler order in an indefinite quaternion algebra over Q.
Iwaniec and Sarnak establish the inequality

(1) ‖ϕ‖∞ ≪Γ,ε (1 + λϕ)5/24+ε‖ϕ‖2
for a Hecke-Mass form ϕ : Γ\H → C of Laplace eigenvalue λϕ. The same inequality
(1) with the larger exponent 1/4 is known to hold for any Laplace eigenfunction on
a compact Riemannian manifold [Sog88]. Hence (1) saves a power over the “triv-
ial” convexity bound. Incidentally, the 5/24 exponent has not been improved since
[IS95]. Iwaniec and Sarnak have introduced the method of amplification as a ma-
jor tool in studying the sup-norm problem. It has been then extensively used and
developed further in [BH10, Tem10, Tem15, HT12, HT13, Sah17a, Sah17b, Sah20,
HS19, Kır14, DS15, Ste17, BHM16, BHMM20, Ass17, Van97, BMi11, BMi13,
BP16, BMa15, BMa16, Mar14] to establish sup-norm bounds on automorphic
forms in different aspects and settings.

In this talk we have presented new results whose proof does not use amplifica-
tion. Instead, the argument exploits a method to bound fourth moments of families
of automorphic forms using the theta correspondence and a sharp second-moment
count of integral matrices in terms of the determinant. The theta correspondence
was first used by Steiner to bound sup-norms of Hecke eigenforms on the 3-sphere
[Ste20], and this result motivated our study into the subject. In this talk we had
several new theorems to present. Let Γ < SL2(R) be the units of an Eichler order
as above. Let Bnew

m be an orthonormal basis of Hecke eigenforms for Snew
m (Γ) –

1with respect to the probability measure on Γ\SL2(R).
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the space of weight m holomorphic newforms attached to Γ\H. Denote by V the
covolume of Γ.

Theorem 1 (Khayutin-Steiner [KS19]). Assume m > 2 and let z = x + iy ∈ H.
Then there exists A > 0 such that

(2) y2m
∑

f∈Bnew
m

|f(z)|4 ≪ε V
Am1+ε(1 + htΓ(z)2m−1/2) ,

where htΓ vanishes if Γ is co-compact and for a congruence subgroup Γ < SL2(Z)

(3) htΓ = min{Im(γ.z) | γ ∈ SL2(Z)} .
This bound is best possible in terms of the power of m. As a corollary we derive

the individual convexity-breaking bound ‖f‖∞ ≪V,ε m
1/4+ε. This extends the

results of Xia [Xia07] to the co-compact setting and improves upon Das–Sengupta
[DS15] and Ramacher–Wakatsuki [RW]. A notable feature of our method is that we
do not need to use any strong arithmetic information about the Hecke eigenvalues
of modular forms. In particular, unlike the previously known results we do not use
Deligne’s bound. Instead, our method bounds the fourth moment by an expression
roughly of the form

(4)
∑

1≤n≪m

# {ξ ∈ R | det ξ = n , u(z, ξ.z) ≪ 1/m}2 ,

where R ⊂ M2(R) is an Eichler order with Γ = R ∩ SL2(R) and u(z, w) =
|z − w|2/(4 Im z Imw). The gist of the argument is that we are able to establish
an optimal upper bound for (4) in terms of m. Our main tools being geometry
of numbers and several delicate applications of the divisor bound to reduce the
quadratic problem into several independent linear ones.

The value of A in 1 is very far from the best possible, even though an explicit
value of A can be extracted from the argument. Indeed, one would hope to prove
the optimal bound A = 1 + ε. The covolume satisfies V = (qDB)1+o(1), where
q is the level of the Eichler order R and DB is the reduced discriminant of the
rational quaternion algebra B containing R. Hence an optimal bound of the form
≪ε V

1+ε on (2) would imply rather strong new sup-norms bounds in the level
aspect. It turns out that proving an optimal fourth moment bound in terms of the
covolume V is a formidable challenge. The counting methods from [KS19] need
be replaced with several new ideas. Very recently, together with Paul Nelson, we
have been able to establish an optimal bound to the analogue of (4) in terms of
V .

Theorem 2 (Kh–Nelson–Steiner ’20 [KNS20]). Assume m > 2 and let f ∈
Snew
m (Γ) be a Hecke newform of weight m > 2 for the lattice Γ of unit norm

elements in an Eichler order R of square-free level , then

(5) ‖f‖∞ ≪ε (mV )1/4+ε‖f‖2 .
Moreover, if ϕ : Γ\H → C is a Hecke-Maass newform of eigenvalue λϕ then

(6) ‖ϕ‖∞ ≪ε,λϕ
V 1/4+ε‖ϕ‖2 .
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We also establish similar results for the case of definite quaternion algebras. It
is worth mentioning that in addition to several new ingredients the the proof of
Theorem 2 also utilizes an idea of Blomer–Michel from [BMi11, BMi13].

I would like to conclude with an open problem, which has thus far eluded us.
For simplicity we state it only in the case of SL2(Z)\SL2(R).

Conjecture 3. Fix H > 0. Let B be an orthonormal basis of Hecke-Maass eigen-
forms of the cuspidal spectrum L2 (SL2(Z)\H)

cusp
. Write the Laplace eigenvalue

of ϕ ∈ B as λϕ = 1/4 + t2ϕ, then for all T ≫ 1

(7) sup
z∈H

∑

ϕ∈B
T≤tϕ≤T+H

|ϕ(z)|4 ≪ε,H T 1+ε .
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Sphere packing and linear programming: a bound on the bound

Matthew de Courcy-Ireland

The sphere packing problem is to arrange non-overlapping spheres of equal size
so as to occupy the greatest fraction of volume in Euclidean space. The linear
programming bound of Cohn-Elkies estimates the optimal density from above,
and a dual construction constrains how close an approximation can be achieved
by this method. We will discuss these programs and pose the question of how
insights into equidistribution for modular forms in the level aspect might improve
the “bound on the bound”.

The method of linear programming involves the construction of an auxiliary
function, which yields a bound as follows. Suppose given an integrable function

f : Rd → R whose Fourier transform satisfies f̂ ≥ 0, while f(x) ≤ 0 for all
x satisfying |x| ≥ r. Cohn-Elkies show that the center density in Rd is then
bounded above by

f(0)

f̂(0)

( r
2

)d

It is easy to give examples of f satisfying the constraints (a convolution square, for
example), but apparently difficult to minimize this objective. Viazovska succeeded
in doing so in dimension d = 8, where the bound exactly matches the center density
of a known configuration. Her method applies also to dimension d = 24, where
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Cohn-Kumar-Miller-Radchenko-Viazovska showed that again the bound matches
a known packing. As a result, these packings are now known to be optimal.

This match between the bound and a known configuration provably occurs for
d = 1 as well, although the optimal choices of f do not seem parallel to the
constructions for d = 8 or 24. Numerical evidence suggests a match for d = 2,
but a certificate f is lacking. Except for d = 1, 2, 8, 24, there seem to be no cases
where the Cohn-Elkies bound is sharp. In practice, numerical efforts to optimize
f converge quickly to values larger than the best known densities. In principle,
the possibility remains that some as-yet-unexplored candidates for f yield a better
bound. To rule this out, a natural approach is duality for linear programs.

The underlying duality is the Plancherel relation

〈f, µ〉 = 〈f̂ , µ̂〉
Suppose that µ is a measure with µ ≥ δ0 and µ−δ0 supported outside a ball |x| < r
(corresponding to the radius r in the Cohn-Elkies bound). Suppose moreover that
the Fourier transform satisfies µ̂ ≥ cδ0 for some positive real c, where δ0 is a Dirac
delta at the origin. Then the Cohn-Elkies bound is at least

c
(r

2

)d

In other words, regardless of whether there is a packing of a certain density, the
linear programming bound can be tricked by a measure imitating such a packing.

This dual linear program was studied by Torquato-Stillinger. As d→ ∞, their
analysis of a specific choice of µ shows that the Cohn-Elkies bound for packing
density (rather than center density) is at least

2−τd+o(d), τ =
3 − 1

log 2

2
= 0.7786 . . .

This is substantially higher than the best known configurations, which have density
2−d+o(d), and substantially lower than the best known construction of f , which
achieves

2−κd+o(d), κ = 0.5990 . . .

A suitable f achieving this was adapted by Cohn-Zhao from a related construction
of Kabatiansky-Levenshtein on the sphere instead of Euclidean space. The true
size of the Cohn-Elkies bound could be anywhere in between Torquato-Stillinger
and Kabatiansky-Levenshtein. It is not clear whether optimal packings in high
dimensions can achieve a better exponential rate than 2−d.

The connection with the present meeting is a method, proposed by Cohn-
Triantafillou, to construct suitable measures µ from modular forms. Given a holo-
morphic function g on the upper half-plane, let g̃ be its Atkin-Lehner transform
with level N . For packing in dimension d, the relevant weight is k = d/2 and then
g̃ is given by

g̃(z) = (−iz)−kN−k/2g

(−1

Nz

)
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Assuming that both g and g̃ are invariant under z 7→ z + 1, and of moderate
growth, then there is a Fourier pair

µ =

∞∑

n=0

anδ√n µ̂ =

(
2√
N

)k ∞∑

n=0

bnδ2
√
n/N

where an and bn are the respective coefficients in the Fourier expansions of g and
g̃. In particular, one obtains such a pair whenever g is a modular form of level
N . The inequalities on µ and µ̂ amount to a finite-dimensional linear program,
with additional constraints an = 0 for finitely many coefficients of g. The number
of coefficients forced to be 0 determines what radius r can be chosen. By this
approach for d = 12 and d = 16 among other examples, Cohn-Triantafillou found
measures µ outperforming the packings presumed best in those dimensions.

All of the above suggests the question of whether a suitable N can be found
to approximate the strongest choices of µ in the dual “bound on the bound”.
If so, this might help to understand whether there are other dimensions besides
d = 1, 2, 8, 24 where the linear programming bound is sharp, or to estimate the
bound as d → ∞. The purpose of this talk is to survey the background above
in an expository fashion, and hopefully forge connections with other large-level
problems.
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Fourier interpolation from zeros of the Riemann zeta function

Danylo Radchenko

(joint work with Andriy Bondarenko, Kristian Seip)

Let f : R → C be a sufficiently nice function (at least f ∈ C(R) ∩ L1(R)), and
define the Fourier transform of f by

f̂(ξ) :=

∫

R
f(x)e−2πixξdx .
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Consider the following question: when is it possible to reconstruct f from the

restrictions f |A and f̂ |B , where A,B ⊂ R. If such recovery is possible, (A,B) is
called a uniqueness pair. Among all uniqueness pairs (A,B) of particularly interest
are the ones with A and B minimal, so that there is no redundant information.
Note that an obstruction to minimality of (A,B) can be manifested as a (classical
or non-classical) Poisson summation formula. For some interesting results on non-
classical Poisson summation formulas, which are sometimes also called crystalline
measures, see [4], [5], [6]. Finally, given a uniqueness pair (A,B), one can ask

whether there is an explicit formula that recovers f from f |A and f̂ |B.
A familiar situation when reconstruction can be done in a non-redundant way

by an explicit formula is the following: if A = {x : |x| ≥ 1/2} and B = Z, then the
Poisson summation formula

f(x) = −
∑

n6=0

f(x+ n) +
∑

n∈Z

f̂(n)e2πinx

reconstructs f from f |A, f̂ |B. One can also show that (A,B) is minimal in the
sense that neither can “1/2” be increased, nor can any point be removed from B.

It turns out that such a reconstruction is sometimes also possible when both A
and B are discrete. The main result of [7], which for simplicity we only state for
even functions, is that there exists a sequence of even Schwartz functions an : R →
R such that for every even Schwartz function f : R → C one has

f(x) =
∞∑

n=0

f(
√
n)an(x) +

∞∑

n=0

f̂(
√
n)ân(x).

The functions an are given explicitly as an integral transform of certain weakly-
holomorphic modular forms of weight 3/2, and they satisfy an(

√
m) = δn,m and

ân(
√
m) = 0 when m ≥ 1. In particular, this implies that, for even functions,

A = {√n}n≥0, B = {√n}n≥1 is a minimal uniqueness pair. A related result
was proven in [2], where it was shown that a radial Schwartz function on Rd

for certain d can be recovered from f(
√

2n), f ′(
√

2n), f̂(
√

2n), f̂ ′(
√

2n), n ≥ 1.
The corresponding interpolation formula plays a central role in the proof of the
universal optimality of the E8 and Leech lattices.

The proof of the explicit interpolation formula from [7] relies on the structure
of the set {±√

n}n≥0 in a crucial way, and, except for some small perturbations of√
n, it does not seem possible to adapt it to obtain other uniqueness pairs (A,B)

consisting of discrete sets. A conjectural example of such a pair is A = {±cnα}n≥0,
B = {±dnβ}n≥0, where α, β > 0, α+ β = 1, and 2cd = α−αβ−β .

In [1] we have proved a new interpolation formula with discrete A and B, with
A consisting of suitably rotated nontrivial zeros of the Riemann zeta function,
and B = {± logn

4π }n≥1. More precisely, let Sε = {z : | Im z| < 1/2 + ε}. Then there
exist two sequences of rapidly decaying even entire functions Un(z), n = 1, 2, ...,
and Vρ,j(z), 0 ≤ j < m(ρ), with ρ ranging over the nontrivial zeros of ζ(s) with
positive imaginary part, such that for every even analytic function f : Sε → C that
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satisfies

sup
|y|<1/2+ε

∫ ∞

−∞
|f(x+ iy)|(1 + |x|)dx <∞

and every z = x+ iy in the strip |y| < 1/2 we have

f(z) =

∞∑

n=1

f̂

(
log n

4π

)
Un(z) + lim

k→∞

∑

0<γ≤Tk

m(ρ)−1∑

j=0

f (j)

(
ρ− 1/2

i

)
Vρ,j(z).

Here Tk → ∞ is some increasing sequence of positive numbers that does not
depend on neither f nor on z. Moreover, the corresponding uniqueness pair is
minimal since Un(z) and Vρ,j(z) enjoy the following interpolatory properties:

U
(j)
n

(
ρ−1/2
i

)
= 0, Ûn

(
logn′

4π

)
= δn,n′ ,

V
(j′)
ρ,j

(
ρ′−1/2

i

)
= δ(ρ,j),(ρ′,j′), V̂ρ,j

(
logn
4π

)
= 0.

The proof of this interpolation formula is based on a strengthening of Knopp’s
abundance principle for Dirichlet series with functional equations [3], and ulti-
mately relies on an explicit construction of weight 1/2 modular integrals for the
theta group Γθ = 〈( 1 2

0 1 ), ( 0 1
−1 0 )〉.
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[4] P. Kurasov and P. Sarnak, Stable polynomials and crystalline measures, arXiv:2004.05678.
[5] N. Lev and A. Olevskii, Quasicrystals and Poisson’s summation formula, Invent. Math. 200

(2015), 585–606.
[6] Y. Meyer, Measures with locally finite support and spectrum, Proc. Natl. Acad. Sci. USA

113 (2016), 3152–3158.
[7] D. Radchenko, M. Viazovska, Fourier interpolation on the real line, Publ. Math. Inst. Hautes
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Spectral Reciprocity via Integral representations

Ramon Nunes

1. Spectral reciprocity formulae

In recent years there has been some interest in studying (automorphic) spectral
reciprocity formulae. By this we mean an identity of the shape

(1)
∑

π∈F
L(π)H(π) =

∑

π∈F̃

L̃(π)H̃(π),
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where F and F̃ are families of automorphic representations, L(π) and L̃(π) are

L-values associated to π, H and H̃ are some weight functions.
The term first appeared in this context in a paper by Blomer, Miller and Li

[BML19] but such identities have been around at least since Motohashi’s formula
connecting the fourth moment of the Riemann zeta-function to the cubic moment
of L-functions of cusp forms for GL(2) (cf. [Mot93]).

Besides the intrinsical beauty of such results they often have applications to
non-vanishing and subconvexity for the associated L-functions. Moreover there
are several works on L-function on which one can find such spectral identities
hidden inside the proof.

A recent result of Blomer and Khan [BK17] shows a very interesting identity
of the shape (1) where for coprime integers q and ℓ, on one side we sum over
representations of GL(2) over Q of conductor q and the weight function involves
the ℓ-th Hecke eigenvalue for these representations and on the opposite side the
roles of q and ℓ are reversed.

Their proof is classical: it uses the Kuznetsov and Voronoi summation formulae
and ultimately relies on the additive reciprocity trick

e

(
1

ab

)
= e

(
a

b

)
e

(
b

a

)

.
In this talk we described our work [Nun20] towards a new proof of Blomer-

Khan’s result. We use an adelic approach and the theory of integral representations
of L-functions as developped by Jacquet, Piatetski-Shapiroi and Shalika. This has
the advantage of making the generalization to number fields straightforward.

2. Blomer-Khan result

Let us now describe the main result in [BK17]: Let Π be a fixed automorphic
representation of GL(3) over Q. Let q and ℓ be coprime integers. We write

M(q, ℓ;h) :=
1

q

∑

cond(π)=q

L(1/2,Π× π)L(1/2, π)

L(1,Ad, π)
λπ(ℓ)h(tπ) + (· · · ),

where

• tπ is the spectral parameter,
• h is a fairly general smooth function and
• (· · · ) denotes the contribution of the Eisenstein part, the terms of lower

conductor and some polar terms coming from shifting contours.

Then, Blomer an Khan have showed that

M(q, ℓ, h) = M(ℓ, q, ȟ),

where h 7→ ȟ is given by an explicit integral transformation.
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When Π corresponds to an Eisenstein series, this has an application to subconvex-
ity: Let π be a cuspidal automorphic representation for GL(2) oer Q of squarefree
conductor, then:

L(1/2, π) ≪ǫ (cond(π))
1
4−

1−2ϑ
24 +ǫ,

where ϑ is an admissible exponent towards the Ramanujan conjecture (we know
that 7

64 is admissible and ϑ = 0 corresponds to the conjecture).

3. Our result

Our setting is similar but we work over general number fields and we must make
some technical assumptions along the way. Let F be a number field. Let Π be an
automorphic representation of GL(3) over F and let q and l be unramified coprime
integral ideals of F . We let

M0(q, l) :=
1

Nq

∑

cond(π)=q

π spherical

Λ(1/2,Π × π)Λ(1/2, π)

Λ(1,Ad, π)
λπ(l) + (· · · ),

where all the definitions are the natural generalizations of the ones in the Blomer-
Khan scenario except that we use completed L-functions and by π spherical we
mean that we are only summing over representations whose local components are
spherical at every archimedean place. Moreover, unlike the previous setting we
do not have the freedom of varying the weight function h. One may say that
our result is specialized to a very specific weight function given by a quotient of
Gamma functions accounting for the completed L functions.

We may now state our theorem

Theorem. Let the notation be as above and suppose that Π is an everywhere
unramified cuspidal automorphic representation of GL(3) over F . Then

M0(q, l) = M0(l, q).

3.1. Application to non-vanishing. As an application, We may deduce a non-
vanishing result which is similar in spirit to a result of Khan (cf. [Kha12, Theorem
1.2]):

Corollary. For prime ideals p with sufficiently large norm, there is at least one
automorphic representation π of conductor p, unramified for every archimedean
place and such that Λ(12 ,Π × π) and Λ(12 , π) are both non-zero.

3.2. Loose ends. There are still some unresolved issues that keep us from claim-
ing a complete generalization of Blomer-Khan’s result to general number fields.

The first one fixed automorphic automorphic representation Π we work with
needs to be taken cuspidal in order for our arguments to hold. This is is unfor-
tunate since when Π corresponds to a minimal parabolic Eisenstein series, the
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L-function L(s,Π × π) simplifies and as in [BK17], this may lead to a strong sub-
convexity estimate. This issue is likely to be resolved by using the technique of
renormalizations of integrals. We hope to look into that in the future.

Another drawback of our result as it stands is that in order to complete our
arguments we have no freedom to choose weight functions h. For applications it
would be useful to allow for more general weight functions as well as understanding
the integral transform involved in the transformation h 7→ ȟ in the representation-
theoretic viewpoint. A very similar question to this one was addressed by Paul
Nelson in [Nel19]. We hope that his ideas can be carried over to our context.
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Multiplicative chaos in number theory

Adam J. Harper

I gave a survey style talk describing a probabilistic object called multiplicative
chaos, and some of its emerging connections with analytic number theory.

Multiplicative chaos was first studied by Kahane in 1985 [2]. Informally, the
idea is to construct a random measure (i.e. a random weighting) on a set H by
integrating test functions against the exponential of some collection of random
variables (X(h))h∈H defined on that set. Thus for a test function g, we can look
at ∫

H
g(h)eγX(h)dh,

where γ > 0 is a real parameter. For number theoretic purposes, it generally
suffices to consider the simple case where H is the interval [−1/2, 1/2] (say), and
the test function g(h) ≡ 1.

One needs to make assumptions on X(h) in order for this construction to be in-
teresting. It turns out one gets something very interesting if the X(h) are Gaussian
random variables (or close to this); they each have mean zero EX(h) = 0, and the
same (or similar) finite non-zero variance EX(h)2; and the covariance EX(h)X(h′)
(i.e. the dependence between X(h) and X(h′)) decays logarithmically as |h − h′|
increases.
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To make the connection with number theory, we consider the situation of having a
family of functions Fj(s), for j ∈ J , s ∈ C, that each have an Euler product struc-
ture (either exact or approximate) as well as some orthogonality/independence
between the contribution from different primes, when we vary over j ∈ J . Then
in place of

∫
H g(h)eγX(h)dh, we look at

∫
g(h)|Fj(1/2 + ih)|γdh

as j ∈ J varies (giving our “randomness”). Now if Fj(s) has an (approximate)
Euler product structure, then log |Fj(s)| = Re logFj(s) is (approximately) a sum
over primes. Furthermore, if the contributions from different primes are orthog-
onal/independent as j varies, we can expect log |Fj(s)| to behave like a sum of
independent contributions. In many situations, this means that log |Fj(1/2 + ih)|
will behave roughly like Gaussians with mean zero and comparable variances.
The desired logarithmic covariance structure emerges because there is a multiscale
structure in an Euler product: pih = eih log p varies on an h-scale roughly 1/ log p,
so contributions from small primes remain correlated over large h intervals, whilst
contributions from larger primes decorrelate more quickly.

I described various specific applications of these ideas (by myself and others),
including to random Euler products; random multiplicative functions; shifts and
“typical large values” of the Riemann zeta function; averages of character sums;
and pseudomoments of the Riemann zeta function. Here are a couple of sample
theorems:

Theorem 1. Uniformly for all large T and all 0 ≤ q ≤ 1, we have

1

T

∫ 2T

T

(∫ 1/2

−1/2

|ζ(1/2 + it+ ih)|2dh
)q

dt ≪
(

logT

1 + (1 − q)
√

log logT

)q
.

Theorem 2. Let r be a large prime. Then uniformly for all 1 ≤ x ≤ r and
0 ≤ q ≤ 1, if we set L := min{x, r/x} we have

1

r − 2

∑

χ6=χ0 mod r

|
∑

n≤x
χ(n)|2q ≪

(
x

1 + (1 − q)
√

log log 10L

)q
.

Theorem 1 is from my paper [1], whilst Theorem 2 is my work in preparation,
improving a previously announced weaker bound(

x

1+(1−q)
√

min{log log 10L,log log log r}

)q
.

I conjecture that both bounds are sharp.
The key feature of the theorems, which is characteristic of the application of

multiplicative chaos ideas, is the
√

log log term in the denominators. In contrast,
a simple application of Hölder’s inequality to compare with the q = 1 case would
produce weaker bounds logq T and xq .

The
√

log log terms reflect the standard deviation of the Euler product corre-
sponding to the object under study (so a product roughly over primes ≤ T in
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Theorem 1, and over primes ≤ x in Theorem 2). The proofs are inspired by the
multiplicative chaos literature. The most fundamental idea is that, when study-
ing distributional properties (including low moments) of

∫
H g(h)eγX(h)dh or its

number theoretic avatars, one can restrict to the case where all the partial Euler
products involved obey certain size bounds. This restriction can be imposed be-
cause it holds with very high probability (i.e. for very many T ≤ t ≤ 2T or χ
respectively), but it reduces the size of the averages computed by a quantity re-
flecting the number of partial products involved, namely the appropriate standard
deviation.
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On Superorthogonality

Lillian B. Pierce

Let {fn}n be a sequence of functions associated to a function f . We study two
types of inequalities.
The direct inequality:

‖
∑

n

fn‖Lp ≤ cp‖(
∑

n

|fn|2)1/2‖Lp .

The converse inequality:

‖(
∑

n

|fn|2)1/2‖Lp ≤ cp
′‖f‖Lp.

A fundamental reason such inequalities are of interest in harmonic analysis is the
following: given an operator with a suitable decomposition

T =
∑

n

Tn,

upon setting fn = Tn(f), if both estimates were true, they would imply that

‖Tf‖Lp ≤ cp
′cp‖f‖Lp.

Superorthogonality can be used to prove one or both of these inequalities. Su-
perorthogonality is the property that for any tuple of functions fn1 , . . . , fn2r from
the given sequence {fn}n,

(1)

∫
fn1 f̄n2 · · · fn2r−1 f̄n2rdx = 0

as long as an appropriate condition is satisfied by the tuple of indices (n1, . . . , n2r).
We show that the framework of superorthogonality, and associated direct and

converse inequalities, unites a wide variety of topics in harmonic analysis and
number theory. In particular, this perspective gives clean proofs of central results
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relating to Khintchine’s inequality, Walsh-Paley series, discrete operators, decou-
pling, counting solutions to systems of Diophantine equations, multicorrelation of
trace functions, and the Burgess bound for short character sums.

We exhibit three main types of superorthogonality.
Type I: Type I superorthogonality is the case in which (1) holds if the tuple

(n1, . . . , n2r) has the property that some value nj appears an odd number of times.
Any collection of functions with Type I superorthogonality satisfies a direct in-
equality. Type I superorthogonality classically appeared in Khintchine’s inequality
for the Rademacher functions, which can be viewed as both a direct and a converse
inequality. A refinement of Type I superorthogonality underpins the recent work
[GGPRY19], a philosophical converse to the proof of the Vinogradov Mean Value
Theorem via decoupling. This notion of superorthogonality shows that counts for
the number of diagonal solutions and near-solutions to a system of Diophantine
equations can imply a direct inequality for a square function; this in turn implies
a decoupling inequality for the extension operator associated to the corresponding
curve.

Type II: Type II superorthogonality is the case in which (1) holds if the tuple
(n1, . . . , n2r) has the property that some value nj appears precisely once. Any
collection of functions with Type II superorthogonality satisfies a direct inequality.
Any sequence {fn}n in which f1, f2, . . . , fn, . . . are mutually independent random
variables, and each has mean zero (in the sense that

∫
fndx = 0), satisfies the

Type II condition. Type II superorthogonality is also widely used in recent work
in the area of discrete analogues in harmonic analysis.

Type III: Type III superorthogonality is the case in which (1) holds if the tuple
(n1, . . . , n2r) has the property that some value nj appears precisely once and is
strictly greater than all other values in the tuple. This type of superorthogonality
occurred in Paley’s work on Walsh-Paley series.

Quasi-superorthogonality: Fourth, we introduce quasi-superorthogonality:
we no longer assume that (1) vanishes, but instead that it exhibits quantitative
cancellation. Now instead of a direct inequality, we obtain a variant that also
includes an “off-diagonal” term on the right-hand side. Such inequalities are nev-
ertheless very useful.

In fact, we observe that a deep application of ℓ-adic cohomology and the Rie-
mann Hypothesis over finite fields proves that Type I quasi-superorthogonality
holds for sequences of “trace functions”; this is a statement of multicorrelation
of trace functions proved in [FKM15]. Hence an approximate direct inequality
holds for such functions. Moreover, the source of quasi-superorthogonality of trace
functions is a consequence of “exact” superorthogonality in the sense of (1) for a
different set of functions, combined with the Riemann Hypothesis over finite fields;
this is an observation of Emmanuel Kowalski.

As an application, we give a complete proof of the Burgess bound [Bur57] from
the perspective of quasi-superorthogonality and an approximate direct inequality
for square functions. As remarked in [GM10], “While the original argument [of
Burgess] is easily followed line-by-line, it seems hard to comprehend the larger
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sense of it, because several technical difficulties are being dealt with at the same
time that the main idea is unfolding.” The new perspective of superorthogonality,
combined with ideas introduced by modern proofs in [GM10, HB12], shows that
the Burgess method is not an isolated anomaly, but fits into a unified class of
proofs. This also clarifies which aspects of the method have no slack, and which
might be possible points for improvisation.
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Cubic moments and a distance function on cuspidal representations

Ian Petrow

(joint work with Matthew P. Young)

Let Hit(m,ψ) denote the set of GL2 cuspidal automorphic representations over
Q of conductor m, central character ψ, and unramified at infinity with spectral
parameter it. Generalizing work of Conrey and Iwaniec [CI00], in [PY20, PY19]
we proved the following.

Theorem 1. There exists a B > 2 such that for all primitive χ modulo q not
quadratic and ε > 0 we have

(1)
∑

|tj |≤T

∑

m|q

∑

π∈Hitj
(m,χ2)

L(1/2, π ⊗ χ)3 +

∫ T

−T
|L(1/2 + it, χ)|6dt ≪ε T

Bq1+ε.

Theorem 2. For all primitive χ modulo q, δ, ε > 0, and T ≫ qδ we have
(2)
∑

T≤tj<T+1

∑

m|q

∑

π∈Hitj
(m,χ2)

L(1/2, π⊗χ)3+

∫ T+1

T

|L(1/2+it, χ)|6dt≪δ,ε T
1+εq1+ε.

Note that π ⊗ χ has trivial central character and conductor exactly q2 [JL70,
Prop. 3.8(iii)]. By deep results of Guo [Guo96] we have L(1/2, π⊗χ) ≥ 0 and thus
by positivity the Weyl-strength subconvexity bound: for any primitive Dirichlet
character χ modulo q and ε > 0

(3) L(1/2 + it, χ) ≪ε (q(1 + |t|))1/6+ε.
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The crucial idea in the above is the shape of the family of automorphic forms over
which we prove a Lindelöf-on-average upper bound for the 3rd moment. To that
end, we now make some further comments on families of automorphic forms which
are useful in analytic number theory.

Fix a degree n ≥ 1. Let A(GLn) denote the space of automorphic forms on
GLn, and let C(π) denote the analytic conductor of π ∈ A(GLn). The function
a : A(GLn) ×A(GLn) → R defined by

exp(a(π1, π2)) =
C(π1 ⊗ π2)

C(π1 × π1)1/2C(π2 ⊗ π2)1/2

provides a reasonable notion of the distance between π1 and π2. We call it the
Rankin-Selberg distance between π1 and π2.

Many families of automorphic forms in the literature can be seen to particu-
larly small diameter with respect to the Rankin-Selberg distance (or, the expo-
nentiation thereof). For example, consider the family Fχ =

⋃
tj≪1{π ⊗ χ : π ∈

Hitj (m,χ2), m | q}, as in Theorem 1. The diameter with respect to a of Fχ re-
mains bounded as q → ∞, so this family is particularly close-knit. Indeed, when
χ2 6= 1 the local component at p < ∞ of any member of Fχ is isomorphic to the
principal series χp ⊞ χp for some character χp of Q×

p coinciding with χ on Z×
p .

Similarly, another example of a close-knit family is given by specifying for each
p <∞ a supercuspidal representation σp of GL2(Qp) with trivial central character,

and letting Fσp
=
⋃
tj≪1{π : π ∈ Hitj (pf(σp), 1), πp ≃ σp}. Such supercuspidal

representations may be constructed from a quadratic extension E/Qp and a char-
acter θ of E× satisfying θ|

Q
×

p
= 1 by compact induction theory. Again, we have

that the diameter of Fσp
with respect to a remains bounded as p→ ∞. Studying

the cubic moment of L-functions over the family Fσp
is joint work in progress with

Y. Hu.
The Rankin-Selberg distance also arises in a natural way in unpublished work of

Michel and Nelson on hybrid subconvexity for Rankin-Selberg L-functions (private
communication).

At the level of local representations, we can be more precise. Recall that a
pseudometric on X is a function d : X × X → R satisfying the axioms of a
metric, except possibly the fact that d(x, y) = 0 implies that x = y. Let F be
a non-archimedean local field of finite residue characteristic and f(π) denote the
conductor of a generic irreducible representation π of GLn(F ).

Definition 3. The function d defined by

d(π1, π2) = f(π1 ⊗ π2) − 1

2
f(π1 ⊗ π1) − 1

2
f(π2 ⊗ π2)

is called the local Rankin-Selberg distance between generic irreducible representa-
tions π1 and π2 of GLn(F ).

Proposition 4. The local Rankin-Selberg distance defines a pseudometric on the
set of irreducible supercuspidal representations of GLn(F ).
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The proposition follows quickly from the following important theorem of Bushnell-
Henniart [BH17]. The statement of their theorem below is quoted from [Lap20,
Thm. 1], wherein a simpler proof of this theorem is given.

Theorem 5 (Bushnell-Henniart). Let πi be irreducible supercuspidal representa-
tions of GLni

(F ), i = 1, 2, 3. Then

(4)
f(π1 ⊗ π3)

n1n3
≤ max

(
f(π1 ⊗ π2)

n1n2
,
f(π2 ⊗ π3)

n2n3

)
.

Consequently,

(5)
f(π1 ⊗ π2)

n1n2
≥ max

(
f(π1 ⊗ π1)

n2
1

,
f(π2 ⊗ π2)

n2
2

)
.

Proof of Proposition 4. The only unclear point is the triangle inequality, that is
d(π1, π3) ≤ d(π1, π2) + d(π2, π3). By (5) we have

(6) f(π2 ⊗ π2) ≤ max (f(π2 ⊗ π2), f(π3 ⊗ π3)) ≤ f(π2 ⊗ π3)

for any irreducible supercuspidal π2, π3.
Next, suppose that π1, π2, π3 are such that f(π1 ⊗ π2) ≥ f(π2 ⊗ π3). Then we

have by (4)

(7) f(π1 ⊗ π3) ≤ max (f(π1 ⊗ π2), f(π2 ⊗ π3)) = f(π1 ⊗ π2).

Putting together (6) and (7) we get

f(π1 ⊗ π3) + f(π2 ⊗ π2) ≤ f(π1 ⊗ π2) + f(π2 ⊗ π3),

which after subtracting

1

2
f(π1 ⊗ π1) + f(π2 ⊗ π2) +

1

2
f(π3 ⊗ π3)

from both sides yields the desired inequality. The case where f(π1 ⊗π2) ≤ f(π2 ⊗
π3) follows similarly by applying (6) with π1, π2 replacing π2, π3. �

Natural questions regarding the local Rankin-Selberg pseudometric present
themselves. For instance, let Br(π) be the ball of radius r surrounding π in-
side the set of irreducible supercuspidal representations of GLn(F ). What is the
Plancherel measure of Br(π)?
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Higher order uniformity of the Möbius function I and II

Kaisa Matomäki, Joni Teräväinen

(joint work with Maksym Radziwi l l, Terence Tao, Tamar Ziegler)

Let λ denote the Liouville function. It is well known that the fact that∑

n≤x
λ(n) = o(x)

is equivalent to the prime number theorem, whereas the claim
∑

n≤x
λ(n) = Oε(x

1/2+ε) for every ε > 0

is equivalent to the Riemann Hypothesis.
Concerning higher order correlations, Chowla has conjectured that, for any

distinct h1, . . . , hk one has

1

x

∑

n≤x
λ(n+ h1) · · ·λ(n+ hk) = o(1).

In light of the above equivalences it is natural to see this as an analogue of the
notoriously hard prime k-tuple conjecture.

Tao [5] has shown that the logarithmically averaged version of Chowla’s conjec-
ture is equivalent to the logarithmically averaged higher order Fourier uniformity
conjecture. We discuss our recent progress [4] on the latter conjecture as well as
applications of our result.

Before stating the full higher order uniformity conjecture, let us state the special
case of polynomial phases.

Conjecture 1. Let k ≥ 1 and H = H(X) → ∞ as X → ∞. Then

sup
deg(P )=k
P (x)∈R[x]

∣∣ ∑

x≤n≤x+H
µ(n)e(P (n))

∣∣ = o(H)

for almost all x ∈ [X, 2X ].

Towards this, we show in [4] the following.

Theorem 1. Let k ≥ 1 and H ≥ Xε (ε > 0). Then

sup
deg(P )=k
P (x)∈R[x]

∣∣ ∑

x≤n≤x+H
µ(n)e(P (n))

∣∣ = o(H)

for almost all x ∈ [X, 2X ].
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Actually we obtain an analogous result for any “non-pretentious” multiplicative
function taking values in the unit disc. Furthermore, in this case of polynomial
phases we managed to obtain the result in a wider range H ≥ exp((logX)5/8+ε).

Our main result extends this to non-correlation with higher order nilsequences.
These are the characters of the higher order Fourier analysis that contain e.g.
polynomial phases as well as “bracket polynomial” phases such as e(αn⌊βn⌋). Let
us now state the full Fourier uniformity conjecture from [5].

Conjecture 2. Let G/Γ be a nilmanifold of degree k ≥ 1 and let H = H(X) → ∞
as X → ∞. Then for any fixed Lipschitz map F : G/Γ → C,

sup
g∈Poly(Z→G)

∣∣ ∑

x≤n≤x+H
µ(n)F (g(n)Γ)

∣∣ = o(H)

for almost all x ∈ [X, 2X ].

Our main theorem takes the following step towards this conjecture.

Theorem 2. Let G/Γ be a nilmanifold of degree k ≥ 1 and let H ≥ Xε. Then
for any fixed Lipschitz map F : G/Γ → C,

sup
g∈Poly(Z→G)

∣∣ ∑

x≤n≤x+H
µ(n)F (g(n)Γ)

∣∣ = o(H)

for almost all x ∈ [X, 2X ].

Thus for example

sup
α,β∈R

∣∣ ∑

x≤n≤x+H
µ(n)e(αn⌊βn⌋)

∣∣ = o(H), H = Xε

for almost all x ∈ [X, 2X ].
By the inverse theorem of the Gowers norms [1], we can state this equivalently in

terms of the local Gowers norm ‖f‖Uk [N][x,x+H] := ‖f1[x,x+H]‖Uk[N]/‖1[x,x+H]‖Uk [N].

Theorem 3. For any k ≥ 1,

‖µ‖Uk[x,x+xε] = o(1)

for almost all x ∈ [X, 2X ].

We note that the k = 0 case of this was proved earlier in [2] (for arbitrarily
short intervals), and the k = 1 case was recently established in [3].

We have two applications of our results. The first concerns the number of sign
patterns of the Liouville function — let

s(k) = {v ∈ {−1,+1}k : (λ(n+ 1), . . . , λ(n+ k)) = v for some n}
be the number of sign patters of length k in λ.

Theorem 4 (Superpolynomial word complexity for the Liouville sequence). s(k) ≥
ckA for every fixed A and some c = c(A).

The second application is a new averaged version of Chowla’s conjecture.
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Theorem 5 (Chowla’s conjecture with a short one-variable average). Let k ≥ 1.
Then

1

xε

∑

h≤xε

∣∣∣∣∣∣
1

x

∑

n≤x
λ(n)λ(n + h) · · ·λ(n+ kh)

∣∣∣∣∣∣
= o(1).

We also get a result for much more general polynomial patterns.
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[3] K. Matomäki, M. Radziwi l l, T. Tao, Fourier uniformity of bounded multiplicative functions
in short intervals on average, Invent. Math., 220 (2020), 1–58.
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Resonances of Schottky surfaces

Anke Pohl

(joint work with O. Bandtlow, T. Schick, A. Weiße)

The investigation of L2-Laplace eigenvalues and eigenfunctions for hyperbolic sur-
faces of finite area is a classical and exciting topic at the intersection of number
theory, harmonic analysis and mathematical physics. In stark contrast, for ge-
ometrically finite hyperbolic surfaces of infinite area, the discrete L2-spectrum
is finite. A natural replacement are the resonances of the considered hyperbolic
surface, which are the poles of the meromorphically continued resolvent

R(s) = (∆ − s(1 − s))−1

of the hyperbolic Laplacian ∆. These spectral entities also play an important role
in number theory and various other fields, and many fascinating results about them
have already been found; the generalization of Selberg’s 3/16-theorem by Bour-
gain, Gamburd and Sarnak [4] is a well-known example. However, an enormous
amount of the properties of such resonances, also some very elementary ones, is
still undiscovered. Prominent open questions include the existence of a Weyl law,
the fractal Weyl law conjecture by Lu, Sridhar and Zworski [6], and the essential
spectral gap conjecture by Jakobson and Naud [5].

A few years ago, by means of numerical experiments, Borthwick [2] noticed
for some classes of Schottky surfaces (hyperbolic surfaces of infinite area without
cusps and conical singularities) that their sets of resonances exhibit unexpected
and nice patterns, which are not yet fully understood. He used the method of
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periodic orbit expansion, which is well-suited for investigations of resonances with
positive real part and of Schottky surfaces with large funnel widths and Euler
characteristic near −1.

We discussed an alternative method, termed domain-refined Lagrange–Cheby-
chev approximation, which has some advantages over the method of period orbit
expansion. Figure 1 displays a part of the resonance set of a so-called funneled
torus Schottky surface, calculated with this method.

Observation ([1]). The method of domain-refined Lagrange–Chebychev approxi-
mation allows us to calculate resonances also for Schottky surfaces with smaller
Euler characteristic or small funnel widths as well as resonances with negative real
part. This method is efficient and does not require any specific properties (e.g.,
additional symmetries) of the Schottky surfaces.

Figure 1. Resonances for a Schotty surface

The methods of periodic orbit expansion and of domain-refined Lagrange–
Chebychev approximation have the same starting point as both take advantage
of the interpretation of resonances as zeros of the Selberg zeta function and of
a transfer-operator-based representation of this zeta function. For any Schottky
surface X , the Selberg zeta function ZX is given by the Euler product

(1) ZX(s) =
∏

ℓ∈LX

∞∏

k=0

(
1 − e−(s+k)ℓ

)
for Re s≫ 1,

and its holomorphic continuation to all of C. Here, the multiset LX in the first
product of (1) refers to the primitive geodesic length spectrum of X . There exists
a family of transfer operators (LX,s)s∈C for X , which derives from a discretization
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of the geodesic flow on X and whose Fredholm determinant equals the Selberg
zeta function of X :

(2) ZX(s) = det(1 − LX,s) .
For the method of periodic orbit expansion one infers from (2) a series expansion

ZX(s) =

∞∑

n=0

dn(s) ,

whose coefficients (dn(s))n∈N0 are defined and calculated recursively in terms of
the traces (TrLmX,s)m∈N of the transfer operator LX,s. The zeros of the truncated
series approximate the zeros of ZX , and hence the resonances of X .

For the method of domain-refined Lagrange–Chebychev approximation we note
that the transfer operator LX,s has an integral kernel. Thus,

(LX,sf)w =

∫

Ω

Ks(z, w)f(z) dz ,

where Ω is a finite union of certain open subsets of C, the map f belongs to a well-
chosen function space, and the integral kernel Ks has a rather simple structure.
We use the Gauss–Chebychev quadrature rule to approximate Ks or, equivalently,
Lagrange–Chebychev interpolation for the functions f . Then the transfer opera-
tor Ls gets approximated by a finite matrix, say Ms, and hence the Selberg zeta
function ZX(s) = det(1−LX,s) is approximated by D(s) := det(1−Ms). The zeros
of D serve as an approximation of the zeros of ZX , and in turn of the resonances
of X .

The method of periodic orbit expansion allowed us to discover that the reso-
nance set exhibits astonishing structures in the positive half-plane, as shown by
Borthwick’s seminal work [2] and subsequent investigations (we refer to [3, 1] for
extensive references). With the method of domain-refined Lagrange–Chebychev
approximation we see that these structures not just extend to the negative half-
plane but show new patterns there.
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Sign changes and large values for fundamental Fourier coefficients of
Siegel cusp forms of degree 2

Abhishek Saha

(joint work with Jesse Jääsaari, Stephen Lester)

Let Φ belong to a family of automorphic forms whose members have “Fourier
expansions” of the form

Φ(z) =
∑

n∈S
Φnen(z)

where S is the indexing set for the Fourier coefficients and en are some functions.
Let D be an interesting subset of S. We are interested in situations where the
following implication is true:

(1) Φn = 0 ∀ n ∈ D ⇒ Φ = 0.

Equivalently: Φ 6= 0 ⇒ there exists n ∈ D such that Φn 6= 0. In other words,
the subset of Fourier coefficients from D determine the automorphic form Φ. In
practice, this situation is most interesting for eigenforms Φ for which the Fourier
coefficients are not multiplicative. Given a situation where it is possible to prove
(1), one may ask the following refined questions:

• Are there many sign changes among {Φn}n∈D?
• How large are the non-zero {Φn}n∈D

In this talk, I considered this question for Φ a Siegel cusp form of degree 2.
Recall that the Siegel upper-half space of degree 2 is defined by

H2 = {Z ∈M2(C) | Z = Zt, Im(Z) is positive definite}.
For any positive integer N , define

(2) Γ
(2)
0 (N) :=

{(
A B
C D

)
∈ Sp4(Z) | C ≡ 0 (mod N)

}
.

Let S
(2)
k (N) denote the space of holomorphic functions F on H2 which satisfy the

relation

(3) F (γZ) = det(J(γ, Z))kF (Z)

for γ ∈ Γ
(2)
0 (N), Z ∈ H2, and vanish at all the cusps. Any F ∈ S

(2)
k (N) has a

Fourier expansion

F (Z) =
∑

T∈S
a(F, T )e(Tr(TZ)),

where

S = {T =

(
a b/2
b/2 c

)
: a, b, c ∈ Z, disc(T ) := b2 − 4ac < 0}.

In fact, because

(
A 0
0 tA−1

)
∈ Γ

(2)
0 (N) for all A ∈ SL2(Z), we have, using (3),

that

(4) a(F,ATAt) = a(F, T )
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for all A ∈ SL2(Z), thus showing that a(F, T ) only depends on the class of T in
SL2(Z)\S, where the action of SL2(Z) on S is A · T = ATAt.

Our interest is in the natural subset Sfund of S consisting of the matrices whose
discriminant is a fundamental discriminant. These are the “basic building blocks”,
in the sense that one cannot use the theory of Hecke operators to relate the Fourier
coefficients at these matrices to those at simpler matrices. In this situation, it was
proved some years ago that (1) holds. More precisely,

Theorem 1 (Saha, 2013; Saha–Schmidt, 2013). Let k > 2 and N be a squarefree

integer. Moreover, if N > 1, assume that k is even. Let 0 6= F ∈ S
(2)
k (N) belong

to the orthogonal complement of the oldspace. Then, one has the lower bound

|{0 < |d| < X, d squarefree , a(F, S) 6= 0 for some S with d = disc(S)}| ≫F X
5/8.

In particular, there are infinitely many distinct S ∈ SL2(Z)\Sfund such that
a(F, S) 6= 0.

The above theorem had important consequences for the existence of unramified
Bessel models and the non-vanishing of central L-values, as explained in [1] and [2].
In ongoing joint work with Jesse Jaasaari and Steve Lester, we can now answer the
remaining two questions posed at the beginning, while simultaneously improving
the exponent in Theorem 1.

Theorem 2 (Jääsaari–Lester–S, 2020). Let F be as in Theorem 1. Then for all
large X there exist rX ≫ǫ X

1−ǫ distinct elements {Si}1≤i≤rX in SL2(Z)\Sfund

with disc(S1) < disc(S2) < . . . < disc(SrX ) < X and a(F, Si)a(F, Si+1) < 0.

Theorem 3 (Jääsaari–Lester–S, 2020). Let F be as in Theorem 1. Then for all
large X there exist rX ≫ǫ X

1−ǫ distinct elements {Si}1≤i≤rX in SL2(Z)\Sfund

with disc(Si) ≍ X and

|a(F, Si)| ≫F |disc(Si)|
k
2− 3

4 exp

(
1

82

√
log |disc(Si)|√

log log |disc(Si)|

)

The proofs of the above theorems rely on transferring to the setup of classical
half-integral weight forms, via the Fourier–Jacobi expansion. Once that is done, we
extend (to the setup of half-integral weight forms with level that are not necessarily
Hecke eigenforms) methods previously developed by Lester–Radziwi l l and Gun–
Kohnen–Soundararajan resepctively.

A key interest of the above theorems come from a remarkable connection to the
refined Gan–Gross–Prasad conjecture. Let d < 0 be a fundamental discriminant
and put K = Q(

√
d). Let ClK denote the ideal class group of K. It is a fact going

back to Gauss that the SL2(Z)−equivalence classes of binary quadratic forms of
discriminant d are in natural bijective correspondence with the elements of ClK .
In view of (4), for any c ∈ ClK the notation a(F, c) makes sense.

For F ∈ S
(2)
k (N), an imaginary quadratic field K with discriminant equal to d,

and a character Λ of the finite group ClK , we define
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(5) R(F,K,Λ) =
∑

c∈ClK

a(F, c)Λ−1(c).

Then for a non-lift newform F , a consequence of the refined Gan–Gross–Prasad
conjecture is the following identity proved in [3]:

(6)
|R(F,K,Λ)|2

〈f, f〉 =
24k−4 π2k+1

(2k − 2)!
w(K)2 |d|k−1 L(1/2, F ×AI(Λ−1))

L(1, F,Ad)

∏

p|N
cp

where w(K) is the number of roots of unity and cp are some local constants.
This tells us that the Fourier coefficients a(F, S) for S ∈ S are mysterious objects
which may be viewed as unipotent periods whose weighted averages are Bessel
periods whose absolute squares are essentially central L-values of degree 8 L-
functions. The above theorems help shed light on these underlying periods and
their statistical properties.

Remark 4. Using Theorem 3 and (6), it is not hard to give a lower bound for
L(1/2, F × AI(Λ−1)) for infinitely many Λ (i.e., an Ω-result). In ongoing work,
we are studying the fractional moments of L(1/2, F ×AI(Λ−1)) to go in the other
direction and prove an upper bound for a(F, S).
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Quantitative sheaf theory (d’après Sawin)

Emmanuel Kowalski

(joint work with A. Forey, J. Fresán, W. Sawin)

Deligne’s Riemann Hypothesis is now a fundamental tool of analytic number the-
ory; in the context of automorphic forms, it appears prominently through the
Ramanujan–Petersson conjecture for classical holomorphic modular forms, but
also in a number of significant works, such as the estimate of Conrey and Iwaniec
for the cubic moment of special values of Hecke L-functions.

From the very beginning, a basic challenge has been to bound the “number
of roots” after applying the Riemann Hypothesis. Indeed, an exponential sum
might be expressed (by the Grothendieck–Lefschetz trace formula) as a sum of
Weil numbers with square-root cancellation

∑

x∈Fn
p

e
(f(x)

p

)
=

Np∑

i=1

αi, |αi| = pn/2,
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but we need to bound Np to get a non-trivial result (if we had Np = p2n, then the
resulting direct estimate would be trivial).

The formalism of algebraic geometry (“étale cohomology”) does not immedi-
ately imply such bounds in general.

For this particular case, bounds for Np are due to Bombieri, Adolphson–Sperber
and especially Katz, but this is not sufficient for many other situations. Indeed,
the problem becomes even worse when we use the Riemann Hypothesis in more
complicated situations where knowing the integer Np is not sufficient.

For instance, we might want to estimate

∑

x∈Fn
p

x=g(y)

e
(f(x)

p

)

for some polynomials g = (g1, . . . , gn) in m variables.
Or

∑

0≤xi≤X
e
(f(x)

p

)
λ1(x1) · · ·λn(xn)

for some other interesting arithmetic functions λi.
This problem was particularly evident in the papers of Fouvry, Kowalski Michel

(such as [2]), where we consider general one-variable trace functions and analytic
expressions like ∑

n≤X
λf (n)t(n)

for some modular form f and some trace function t modulo a prime q. We defined
(on Feb. 28, 2012) a “complexity” invariant c that turns out to give a good theory
for one-variable sums, in the sense that in analytic estimates, the only dependency
on t is through c. However, many natural problems involve two (or more) variables.

Let n ≥ 1 be an integer. Let ψ (resp. χ) be a character of F (resp. of F×).
Put χ(0) = 0 if χ is non-trivial, and otherwise χ(0) = 1.

The following are trace functions on An:

(AS) For any polynomial f ∈ F[x1, . . . , xn], the function t1(x) = ψ(f(x)).
(K) For any polynomial f ∈ F[x1, . . . , xn], the function t2(x) = χ(f(x)).

(FC) For any n-tuple of polynomials g = (g1, . . . , gn) inm variables, the function

t4(x) = |{y ∈ Fm | g(y) = x}|.

(TT) The constant functions |F|1/2 and |F|−1/2.

Moreover, given trace functions t1 and t2 in n variables:

(DS) The functions t1 + t2, t1 − t2 are trace functions in n variables.
(TP) The function t1t2 is a trace function in n variables.
(PB) Given g = (g1, . . . , gn) with gi ∈ F[x1, . . . , xm], the function t1 ◦ g is a

trace function in m variables.
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(DI) Given h = (h1, . . . , hm) with hi ∈ F[x1, . . . , xn], the function

t3(y) =
∑

h(x)=y

t1(x)

is a trace function in m variables.
(D) The complex conjugate t1 is a trace function.

Application. This formalism allows us to defined already the Fourier transform.
Denote x · y = x1y1 + · · · + xnyn.

Corollary. Let t be a trace function in n variables. The Fourier transform

t̂(y) =
1

|F|n/2
∑

x∈Fn

t(x)ψ(x · y)

is a trace function in n variables.

Main theorem. To each underlying geometric object of a trace function, Sawin
associates an integer c(F). (This is, roughly speaking, the maximum of the “num-
ber of roots”/sum of Betti numbers for the restrictions of F to “generic” affine
subspaces of all dimensions ≤ n.)

To each tuple g = (g1, . . . , gm) of polynomials in n variables (giving a morphism
An → Am) he also associates an integer c(g). (This has a similar definition, but
can be bounded from above explicitly in terms of the number and degrees of the
polynomials gi).

These measure the complexity of the trace function, or of the morphism. In all
operations, the complexity “after” is bounded in terms of the complexity “before”
– this is a form of continuity. Moreover, in most cases, the complexity can increase
at most linearly. Also, crucially, the complexity controls the “number of roots”
and other analytic invariants of the trace functions.

For instance we have:

c(ψ(f)) ≪ c(f), c(χ(f)) ≪ c(f), c(|F|1/2t) = c(t)

c(t1 ± t2) ≪ c(t1) + c(t2), c(t1t2) ≪ c(t1)c(t2), c(t̄) ≪ c(t)

as well as c(t(g(y))) ≪ c(g)c(t(x)) for g = (g1, . . . , gn) with gi ∈ F[x1, . . . , xm] and
c(h!t) ≪ c(h)c(t) given h = (h1, . . . , hm) with hi ∈ F[x1, . . . , xn], where

h!t(y) =
∑

f(x)=y

t(x).

And given a trace function t associated to the complex F , we have:

• The “total number of roots” of F is ≤ c(F) (this means that the L-
function of F (constructed using extensions of F) can be written as f1/f2
for polynomials f1 and f2 with deg(f1) + deg(f2) ≤ c(F)).

• Under suitable conditions (e.g., for two geometrically irreducible perverse
sheaves) the Riemann Hypothesis becomes
∣∣∣ 1

|F|n
∑

x∈Fn

t1(x)t2(x) − (main term)
∣∣∣≪ c(F1)c(F2)|F|−1/2.
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• For one variable trace functions, we have

cfkm(F) ≤ c(F) ≤ 3cfkm(F)2.

For instance, it follows that

c(t̂) ≪ c(t)

for the Fourier transform, where the implied constant depends only on n.

Application 1 (equidistribution along primes)
Combining the formalism of complexity with Deligne’s Riemann Hypothesis, we
can for instance prove the following equidistribution result, which answers a ques-
tion of Katz:

Theorem. Let n ≥ 1 and e ≥ 1 be integers. Let P (n, e) be the set of polynomials
of degree e in n variables. of Deligne type1 For f ∈ P (n, e)(Fp), let

S(f ; p) =
1

pn/2

∑

x∈Fn
p

e
(f(x)

p

)
.

The families (S(f ; p))f∈P (n,e)(Fp) become equidistributed as p→ +∞ with respect
to the measure which is the image under the trace of the probability Haar measure
on U(e−1)n(C).

Application 2 (tannakian equidistribution)
In work in progress with Forey and Fres’an [1], we generalize Katz’s work on
Mellin transforms to other groups (e.g. to exponential sums parameterized by
tuples (χ1, . . . , χn) of multiplicative characters, or by pairs (χ, ψ) of multiplicative
and additive characters).

For instance, we can get “vertical” equidistribution statements for

S(χ, ψ;F) =
1

|F|1/2
∑

x∈F

χ(x)ψ(x)t(x)

for suitable trace functions t.
We can also obtain applications to things like the variance of arithmetic func-

tions for twists of higher-degree L-functions over F[u] (generalizing work of Hall,
Keating and Roditty–Gershon).
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1I.e., the homogeneous part of degree e defines a smooth hypersurface.
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Sphere packing and the modular bootstrap

Henry Cohn

(joint work with Nima Afkhami-Jeddi, Thomas Hartman, David de Laat, and
Amirhossein Tajdini)

In 2019, Hartman, Mazáč, and Rastelli [5] discovered a remarkable connection
between linear programming bounds for sphere packing [3] and the modular boot-
strap in conformal field theory. The modular bootstrap is a special case of the con-
formal bootstrap program, which seeks to understand constraints on the space of
possible conformal field theories (CFTs) via self-consistency relations. Specifically,
the modular bootstrap looks at constraints arising from the modular invariance
of the torus partition function. This connection puts the solution of the sphere
packing problem in 8 and 24 dimensions [7, 4] into a broader context.

In particular, the spinless modular bootstrap for two-dimensional CFTs with
conformal algebra U(1)c×U(1)c turns out to be identical to the linear programming
bound for sphere packing in R2c, while the spinning modular bootstrap amounts
to a new bound for Narain lattices (Euclidean lattices that are even unimodular
lattices under a split inner product).

In [1, 2], we study both of these bounds in more detail. Highlights include the
following two conjectures:

Conjecture 1. The linear programming upper bound for the sphere packing
density in Rn is 2−(λ+o(1))n as n→ ∞, with λ ≈ 0.6044.

For comparison, the best bound currently known has λ ≈ 0.5990, which has not
been improved since Kabatyanskii and Levenshtein’s work [6] in 1978. Conjec-
ture 1 remains unproved, but numerical evidence indicates that this exponential
improvement is possible.

We also conjecture that the spinning modular bootstrap is sharp for U(1)2 ×
U(1)2, where it matches the SU(3)1 Wess-Zumino-Witten model. That is the
content of the following conjecture, stated in terms of the Fourier transform

f̂(y) =

∫

Rd

f(x)e−2πi〈x,y〉 dx

of a function f : Rd → R.

Conjecture 2. There exists a Schwartz function f : R2×R2 → R (not identically

zero) such that f(0, 0) = 0, f̂ = −f , and f(x, y) ≥ 0 whenever |x|2 − |y|2 ∈ 2Z
and |x|2 + |y|2 ≥ 4/3.

It is natural to expect that this function should be connected with automorphic
forms, along the lines of Viazovska’s integral transform [7], but it is unclear how.
Unlike what happens in previous bounds [7, 4], this function will not be radial
(instead, f(x, y) can be assumed to depend on just |x| and |y|, but not |x|2 + |y|2),
and the inequalities are imposed only given the integrality constraint |x|2 − |y|2 ∈
2Z.
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Moments and hybrid subconvexity for symmetric-square L-functions

Matthew P. Young

(joint work with Rizwanur Khan)

Background. The widely studied subconvexity problem for automorphic L-func-
tions is completely resolved for degree ≤ 2. For uniform bounds, over arbitrary
number fields, this is due to Michel and Venkatesh [MV]; for superior quality
bounds in various special cases, this is due to many authors, of which a small
sample is [JM, BH, Bo, BHKM, PY]. The next frontier is degree 3, but here
the subconvexity problem remains a great challenge, save for a few spectacular
successes. The first breakthrough is due to Xiaoqing Li [Li], who established
subconvexity for L(f, 1/2+it) on the critical line (t-aspect), where f is a fixed self-
dual Hecke-Maass cusp form for SL3(Z). This result was generalized by Munshi
[M1], by a very different method, to forms f that are not necessarily self-dual.
Munshi [M2] also established subconvexity for twists L(f×χ, 1/2) in the p-aspect,
where χ is a primitive Dirichlet character of prime modulus p. Subconvexity in
the spectral aspect of f itself is much harder, and even more so when f is self-
dual due to a conductor-dropping phenomenon. Blomer and Buttcane [BB] and
Kumar, Mallesham, and Singh [KMS] have established subconvexity for L(1/2, f)
in the spectral aspect of f in many cases, but excluding the self-dual forms.

A self-dual GL3 Hecke-Maass cusp form is known to be a symmetric-square
lift from GL2 [S]. Let uj be a Hecke-Maass cusp form for the full modular group
SL2(Z), with Laplace eigenvalue 1/4 + t2j . It is an outstanding open problem to

prove subconvexity for the associated symmetric-square L-function L(sym2uj , 1/2)
in the tj-aspect. Such a bound would represent major progress in the problem of
obtaining a power-saving rate of decay in the Quantum Unique Ergodicity problem
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[IS]. A related problem is that of establishing the Lindelöf-on-average bound
∑

T≤tj≤T+∆

|L(sym2uj , 1/2 + it)|2 ≪ ∆T 1+ǫ(1)

for ∆ as small as possible. Such an estimate is interesting in its own right, and
also yields by positivity a bound for each L-value in the sum. At the central
point (t = 0), if (1) can be established for ∆ = T ǫ, it would give the convexity
bound for L(sym2uj , 1/2); the hope would then be to insert an amplifier in order to
prove subconvexity. While a second moment bound which implies convexity at the
central point is known in the level aspect by the work of Iwaniec and Michel [IM],
in the spectral aspect the problem is much more difficult. The best known result
until now for (1) was ∆ = T 1/3+ǫ by Lam [La]. (Lam’s work actually involves
symmetric-square L-functions attached to holomorphic Hecke eigenforms, but his
method should apply equally well to Hecke-Maass forms.) Other works involving
moments of symmetric square L-functions include [Bl, K, J, KD, BF, Ba, N].

Main results. One of the main results of this paper is an approximate version
of the subconvexity bound for L(sym2uj, 1/2). Namely, we establish subconvexity
for L(sym2uj, 1/2 + it) for t small, but not too small, compared to 2tj. This
hybrid bound (stated precisely below) seems to be the first subconvexity bound
for symmetric-square L-functions in which the dominant aspect is the spectral
parameter tj . For comparison, note that bookkeeping the proofs of Li [Li] or
Munshi [M1] would yield hybrid subconvexity bounds for tj (very) small compared
to t. Our method also yields a hybrid subconvexity bound for L(sym2uj , 1/2 + it)
when t is larger (but not too much larger) than 2tj , but for simplicity we refrain
from making precise statements. We do not prove anything when t is close to 2tj ,
for in this case the analytic conductor of the L-function drops. In fact it is then
the same size as the analytic conductor at t = 0, where the subconvexity problem
is the hardest.

Our approach is to establish a sharp estimate for the second moment as in (1),
which is strong enough to yield subconvexity in certain ranges. Let 0 < δ < 2 be
fixed, and let U, T,∆ > 1 be such that

(2)
T 3/2+δ

∆3/2
≤ U ≤ (2 − δ)T.

We have

(3)
∑

T<tj<T+∆

|L(sym2uj, 1/2 + iU)|2 ≪ ∆T 1+ǫ.

Let 0 < δ < 2 be fixed. For |tj |6/7+δ ≤ U ≤ (2 − δ)|tj |, we have the hybrid
subconvexity bound

(4) L(sym2uj, 1/2 + iU) ≪ |tj |1+ǫU−1/3.

Proof. The bound follows by taking ∆ = T 1+δU−2/3 in (3) with δ chosen small
enough. When U ≥ T 6/7+δ, this bound is subconvex. �
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For the central values we do not get subconvexity but we are able to improve the
state of the art for the second moment. This is the other main result: we establish
a Lindelöf-on-average estimate for the second moment with ∆ as small as T 1/5+ǫ.
For ∆ ≥ T 1/5+ε and U ≪ T ε we have

(5)
∑

T<tj<T+∆

|L(sym2uj, 1/2 + iU)|2 ≪ ∆T 1+ε.

It is a standing challenge to prove a Lindelöf-on-average bound in (5) with ∆ = 1.
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298 (2005), 335–390.

Fourier uniqueness in even dimensions

Haakan Hedenmalm

1. Fourier uniqueness

Fourier uniqueness questions have appeared in various forms associated with the
uncertainty principle. We work with the Fourier transform in RD, D = 1, 2, 3, . . .:

f̂(y) =

∫

RD

e−i2π〈x,y〉f(x) diffvolD(x),

where diffvolD is volume measure in RD.

The uniqueness problem. Suppose f is a test function in RD, and that A,B ⊂
RD are closed subsets. If

f |A = 0 and f̂ |B = 0 =⇒ f = 0

we say that (A,B) is a Fourier uniqueness pair.

Remark 1.1.

(1) The class of test functions may play a role. Naturally, we would like to
have as wide a class as possible.

(2) If instead of the commutative topological group 〈RD,+〉 we consider a non-
commutative group, the Fourier transform gets replaced by representation
theory. Similar uniqueness problems may be formulated then.

In work with Montes-Rodriguez, the related concept of Heisenberg uniqueness
pairs was introduced. It concerns the Fourier transforms of finite Borel complex
measures µ ∈ Meas(R2):

µ̂(y) =

∫

R2

e−i2π〈x,y〉 dµ(x).

We let Measac(Γ) ⊂ Meas(R2) denote the subset of measures supported on a
rectifiable curve Γ, which are absolutely continuous with respect to arc length.

Definition 1.2 (Heisenberg uniqueness pairs). Let Γ ⊂ R2 be a rectifiable curve,
and Λ ⊂ R2 a closed subset. Then (Γ,Λ) is a Heisenberg uniqueness pair if for
every µ ∈ Measac(Γ) we have that

µ̂|Λ = 0 =⇒ µ = 0.

Remark 1.3. The concept has various generalizations to higher dimensions.
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If Γ is the hyperbola x1x2 + 1 = 0, and µ ∈ Measac(Γ), then µ̂ solves the Klein-
Gordon equation

∂y1∂y2 µ̂ = 4π2µ̂,

which is a hyperbolic PDE for which we expect no small uniqueness sets. The set
Λ considered was a lattice-cross,

Λ = (αZ × {0}) ∪ ({0} × ({0} × βZ),

for positive reals α, β.

Theorem 1.4. (Γ,Λ) is a Heisenberg uniqueness pair if and only if αβ ≤ 1
4 .

So we find small uniqueness sets along the characteristic directions for the PDE.
An alternative formulation is that the functions

ei2παmt, e−i2πβ/t, m, n ∈ Z,

form a weak-star complete system in L∞(R) if and only if αβ ≤ 1
4 . Equivalently:

Theorem 1.5 (Alternative formulation). If 0 < γ ≤ 1, φ ∈ L1(R), and
∫

R
eiπmtφ(t)dt =

∫

R
e−iγπn/tφ(t)dt = 0,

for all m,n ∈ Z, then φ = 0. If γ > 1 the conclusion fails.

The proof relies on dynamical properties of Gauss-type maps. In particular,
the critical parameter case αβ = 1

4 involves the Gauss-type map t 7→ −1/t mod
2Z on the interval [−1, 1], which has a weakly repelling fixed point at ±1 and
the absolutely continuous ergodic invariant measure has infinite mass. This is in
contrast with the usual Gauss map t 7→ 1/t mod Z on [0, 1].

Of particular interest is the critical density case αβ = 1
4 , which corresponds

to γ = 1 in the alternative formulation. The following expansion appears to be
natural:

f(t) =
∑

n∈Z

aneiπnt + bne−iπn/t,

which is analogous the Fourier series expansion of 2-periodic functions. Would such
an expansion be unique? May we represent all functions that are e.g. bounded?
We would like the coefficients an to be the usual Fourier coefficients if f is 2-
periodic, and bn = 0 then. On the other hand,

f(−1/t) =
∑

n∈Z

bneiπnt + ane−iπn/t,

which means that bn are the Fourier coefficients of f(−1/t) if that function is
2-periodic, and an = 0 then. This problem is basically solved in joint work with
Bakan, Radchenko, Viazovska (see also [BRS]).

A strong version of ergodicity which can be obtained for the Gauss-type maps
we work with gives the following. Let H1

+(R) denote the subspace of L1(R) whose
Poisson extension to the upper half-space H are holomorphic.
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Theorem 1.6. If φ ∈ L1(R)
∫

R
eiπmtφ(t)dt =

∫

R
e−iπn/tφ(t)dt = 0,

for all m,n = 0, 1, 2, 3, . . ., then φ ∈ H1
+(R).

This theorem is stronger than the other, as H1
+(R) ∩ H1

−(R) = {0}. The for-
mulation is for critical density γ = 1, but the result generalizes to all γ with
0 < γ ≤ 1.

Informally, the Fourier transform of a Gaussian is another Gaussian. Gaussians
are not necessarily radial, but to keep things simple we restrict to radial complex
Gaussians

Gτ (x) := eiπτ |x|
2

, x ∈ RD,

which decay nicely for τ ∈ H. The Fourier transform of Gτ is then given by

Ĝτ (y) =

(
τ

i

)−D/2
e−iπ|y|2/τ , y ∈ RD.

If τ ∈ H̄ = H∪R, the function Gτ is at least bounded, and as such it has a Fourier
transform in the sense of tempered distributions. The Fourier transform equals

the bounded function Ĝτ , understood as a tempered distribution. Note that if D
is odd, the square root is of τ/i is the principal branch.

If φ ∈ L1(R), we may consider the related function

Gφ(x) :=

∫

R
Gτ (x)φ(τ)dτ =

∫

R
eiπτ |x|

2

φ(τ)dτ, x ∈ RD.

We might call this the Gaussian transform of φ, which is a radial function. We
note that

Gφ(x) = φ̂1(− 1
2 |x|2),

where the subscript 1 corresponds to taking the Fourier transform on R1. This

means that Gφ is a pretty general radial function, and that only the values of φ̂1
on R− matter. The Fourier transform of the radial function Gφ is also radial, and
given by

Ĝφ(y) =

∫

R
Ĝτ (y)φ(τ)dτ =

∫

R
e−iπ|y|2/τφ(τ)(τ/i)−D/2dτ, y ∈ RD.

Suppose Φ is a test function in RD, and suppose it is radial. Then its Fourier
transform Φ̂ is radial too, and both may be thought of as functions on R+. A
natural Fourier uniqueness problem in this context is the following.

Problem 1.7 (Radial). Suppose Φ(x) = Φ̂(y) = 0 for all x, y ∈ RD with
|x|2, |y|2 ∈ Z. Does it follow that Φ = 0 everywhere?

Here, part of the problem is to find the correct class of test functions for which
the conclusion Φ = 0 is valid. We might also leave the context of radiality.
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Problem 1.8 (Nonradial). Suppose Φ is a test function in RD which need not be

radial. If Φ(x) = Φ̂(y) = 0 for all x, y ∈ RD with |x|2, |y|2 ∈ Z, does it follow that
Φ = 0 everywhere?

The condition is that of vanishing on spherical shells. It has been investigated
by Stoller [Sto]. What about other surfaces?

We focus on D = 4, and consider radial Φ = Gφ. Then if |x|2 = m ∈ Z and

|y|2 = n ∈ Z, and if Φ(x) = Φ̂(y) = 0 for such x, y ∈ R4, we get the following
conditions on φ:

∫

R
eiπmτφ(τ)dτ = 0, m = 1, 2, 3, . . . ,

and ∫

R
e−iπn/τφ(τ)τ−2dτ = 0, n = 1, 2, 3, . . . .

Here, we initially assumed that φ ∈ L1(R), but it turns out to be better to assume
instead that φ ∈ C0(R) and φ′ ∈ L1(R). Then the Fourier transform of φ remains
well-defined, so that Φ = Gφ is well-defined as well.

Next, by integration by parts,
∫

R
eiπmτφ′(τ)dτ = 0, m = 0, 1, 2, . . . ,

and ∫

R
e−iπn/τφ′(τ)dτ = 0, n = 1, 2, . . . .

The case m = 0 is special, that the integral of φ′ vanishes is a consequence of
φ ∈ C0(R). For the second set of equation, we are lucky that

∂τe−iπn/τ = iπnτ−2e−iπn/τ .

Now we are in the setting of the strengthened ergodicity theorem. Since φ′ ∈ L1(R)
is assumed, we conclude from the theorem that φ′ ∈ H1

+(R). Since by integration
by parts

Φ(x) = Gφ(x) =
i

π|x|2
∫

R
eiπ|x|

2τφ′(τ)dτ, x ∈ R4,

it follows from a classical characterization of H1
+(R) that Φ = Gφ = 0 identically

on R4 \ {0}.
We consider D = 2d, where d ≥ 2 is an integer. Is there a counterpart of

our integration by parts trick? We start with φ as before and form the radial
function Φ = Gφ. It turns out to be natural to assume that φ(j) ∈ C0(R) for
j = 0, . . . , d− 2, whereas φ(d−1) ∈ L1(R). It is given to us that φ meets

∫

R
eiπmτφ(τ)dτ = 0, m = 1, 2, 3, . . . ,

and ∫

R
e−iπn/τφ(τ)τ−ddτ = 0, n = 1, 2, 3, . . . .
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These integrals need not be absolutely convergent, but instead make sense in terms
of integration by parts.

By iterated integration by parts, we find that

Φ(x) = Gφ(x) =

(
i

π|x|2
)d−1 ∫

R
eiπ|x|

2τφ(d−1)(τ)dτ, x ∈ R2d \ {0}.

If we introduce the radial function

Hτ,d(x) :=
eiπ|x|

2τ

|x|2d−2
, x ∈ R2d \ {0},

this means that

Φ(x) = Gφ(x) = (i/π)d−1

∫

R
Hτ,d(x)φ(d−1)(τ)dτ, x ∈ R2d \ {0}.

As a radial tempered distribution, Hτ,d has a Fourier transform:

Ĥτ,d(y) =
(iτ)d−2

|y|2d−2

{ d−2∑

j=0

1

j!
(−iπ|y|2/τ)j − e−iπ|y|2/τ

}
.

Since Hτ,d solves the differential equation

∂τHτ,d(x) = iπ|x|2Hτ,d(x),

it follows that Ĥτ,d solves the Schrödinger equation

i∂τ Ĥτ,d =
1

4π
∆Ĥτ,d,

with initial datum for τ = 0 given by

Ĥ0,d(y) =
πd−2

(d− 2)!
|y|−2.

By inspection, for fixed y 6= 0, τ 7→ Hτ,d(y) defines a bounded holomorphic func-
tion in H, and in particular, a function in L∞(R).

It remains to show that if ψ := φ(d−1) ∈ L1(R), then the conditions
∫

R
eiπmτψ(τ)dτ = 0, m = 0, 1, 2, . . . ,

and ∫

R
(iτ)d−2

{ d−2∑

j=0

1

j!
(−iπn/τ)j − e−iπn/τ

}
ψ(τ)dτ = 0,

for n = 1, 2, 3, . . . imply that ψ ∈ H1
+(R). If this is attained, then the assertion that

Φ = 0 on R2d \{0} follows from the known characterization of the Hardy space. In
turn, this boils down to a kind of dynamical problem. We have a weighted transfer
operator (transfer operators are often called Perron-Frobenius operators), and we
need to show that it does not have 1 as an eigenvalue in a slightly bigger space
than L1[−1, 1]. This bigger space contains the restrictions of Hilbert transforms
of L1 functions as well.
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The Density Hypothesis for Horizontal Families of Lattices

Djordje Milićević

(joint work with Miko laj Fra̧czyk, Gergely Harcos, Péter Maga)

Selberg’s celebrated Eigenvalue Conjecture states that all nonzero Laplacian eigen-
values on congruence quotients of the upper half-plane are at least 1/4, or equiv-
alently that the archimedean constituents of non-trivial automorphic representa-
tions occurring in the spherical discrete L2-spectrum for congruence subgroups
are tempered. In its absence, for analytic applications in a family of automorphic
forms, the non-tempered spectrum can often be satisfactorily handled if the ex-
ceptions in the family are known to be sparse and not too bad, in the following
sense resembling the classical density theorems of prime number theory.

Let G be a semisimple Lie group without compact factors. To every irreducible

unitary representation π ∈ Ĝ, we may associate the (extended) real number p(π) ∈
[2,∞] such that p(π) = 2 if and only if π is tempered and p(π) = ∞ if and only if
π = 1 is the trivial representation; specifically,

p(π) := inf
{

2 ≤ p ≤ ∞ : π has a nonzero matrix coefficient in Lp(G)
}
.

Following [7, 8], we say that a family F of lattices Γ ⊆ G satisfies the density

hypothesis if, for every bounded subset B ⊆ Ĝ,

(1)
∑

π∈B
m(π,Γ) ≪B,ǫ vol(Γ\G)2/p(B)+ǫ

holds for every ǫ > 0 uniformly for all Γ ∈ F , where m(π,Γ) is the multiplicity
with which π appears in the discrete spectrum of Γ\G, and p(B) = infπ∈B p(π).
Originally formulated and proved in SL2(R) as the density conjecture for principal
congruence subgroups Γ(N) of a fixed lattice and |B| = 1 by Sarnak–Xue [8], the
density hypothesis has been proved for various families of congruence sublattices
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of a fixed lattice Γ in SL2(R), SL2(C), and more recently in GL(3), cohomological
representations on U(n, 1), and by Blomer [2] in GL(n).

1. Connections and applications. A family F of lattices in G intersecting the
center of G in the same subgroup Θ has the limit multiplicity property if

µΓ :=
1

vol(Γ\G)

∑

π∈Ĝ/Θ

m(π,Γ)δπ −→ µ
Ĝ/Θ

(vol(Γ\G) → ∞)

weakly-* to the Plancherel measure on Ĝ/Θ. Originally discovered by DeGeorge
and Wallach [4], the limit multiplicity property implies a small-o version of (1) and
may also be thought of as the lattice (in particular, level) counterpart of Weyl’s law.
Previously studied only for families of congruence subgroups of a fixed arithmetic
lattice, the limit multiplicity property was recently proved by Abért et al. [1] and
Fra̧czyk [5] for all cocompact torsion-free arithmetic lattices whose trace field is of
bounded degree over Q (indeed for any family of lattices suitably uniformly away
from {1} in a simple group of higher rank), as well as for all cocompact torsion-free
congruence lattices of SL2(R) and SL2(C); this motivated our Theorem 1.

Following [7], say that a family of lattices F satisfies the spherical density hy-

pothesis if there exists an L > 0 such that for every bounded subset B ⊂ Ĝsph of
the spherical unitary dual, we have uniformly for all Γ ∈ F

∑

π∈B
m(π,Γ) ≪ǫ vol(Γ\G)2/p(B)+ǫ(1 + ‖B‖)L,

where ‖B‖ = supπ∈B Ω(π) < ∞ and Ω is the Casimir operator. Golubev and
Kamber [7] prove that the this spherical density hypothesis for principal congru-
ence subgroups Γ(n) along with a uniform spectral gap implies the optimal lifting
property that almost all elements of Γ(n)\Γ can be lifted to elements of Γ lying
in a ball of volume roughly vol(Γ(n)\G). Density theorems also have implications
for quantum computing, and for sharp-cutoff Weyl laws as in [3].

2. Main result. In the presented paper, we prove the spherical density hypothesis
for wide families of arithmetic lattices in the Lie group G = SL2(R)a × SL2(C)b.

Fix c ≥ 0. For any number field k with [k : Q] = a + 2b + c and any division
quaternion algebra A/k such that A⊗QR ≃ M2(R)a×M2(C)b×Hc (with H being
the Hamilton quaternions), the algebraic group G = SL1(A) satisfies G(A) ≃
G× SUc

2 ×G(Af ), and every open compact subgroup U ⊂ G(Af ) gives rise to an
arithmetic subgroup ΓU ≤ G. In particular, for every integral ideal n ⊆ ok and
every map κ : {p | n} → {0, 1}, denoting np = nop and by K0(np) and K1(np) the
groups of matrices in SL2(op) congruent to upper-triangular and scalar matrices
modulo np, respectively, we have the open compact subgroup

Kκ(n) =
∏

p∈ramf (A)

SL1(Ap) ×
∏

p|n
Kκ(p)(np) ×

∏

p 6∈ramf (A)
p∤n

SL2(op)
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and the corresponding lattice Γκ(n) = ΓKκ(n). For given a, b, c ≥ 0, we let Fa,b,c be

the family of all congruence lattices Γκ(n) ≤ SL2(R)a × SL2(C)b, over all number
fields k, all quaternion algebras A, and all n ⊂ o and κ : {p | n} → {0, 1} as above.

Let SG∞ be the set of the a+ b infinite places of k where A splits. The spherical

unitary dual Ĝsph is parametrized as πs ≃⊗v∈SG
∞

πkvsv , where πkvsv is the spherical

principal series representation over kv ∈ {R,C} of normalized Casimir eigenvalue
1/4 − s2v, which is tempered if and only if sv ∈ iR. For any S ⊆ SG∞ and any

σ = (σv) ∈ [0, 12 ]S , T = (Tv) ∈ RS
G
∞

\S , we introduce the bounded subset of Ĝsph,

B(σ,T ) :=

{
πs : s ∈

∏

v∈S
[σv, 1/2] ×

∏

v∈SG
∞

\S
i[Tv − 1, Tv + 1]

}
,

and the quantity in the spirit of analytic conductor

C(Γ,T ) := vol(Γ\G)
∏

v∈SG
∞

\S
(1 + |Tv|)ρv ,

where ρv = [kv : Q]. In particular, p(B(σ,T )) = p(σ) satisfies 2/p(σ) = 1 −
2 maxv∈S |σv|. Our main result is as follows.

Theorem 1. For every a, b, c ≥ 0, the family Fa,b,c of congruence lattices in
G = SL2(R)a × SL2(C)b satisfies the spherical density hypothesis. More precisely,

for every Γ ∈ Fa,b,c, S ⊆ SG∞, σ ∈ [0, 1/2]S, and T ∈ RS
G
∞

\S, we have for any
ǫ > 0

(2)
∑

π∈B(σ,T )

m(π,Γ) ≪ǫ,a,b,c C(Γ,T )2/p(σ)+ǫ.

Already for S = SG∞ (or for fixed T ∈ RS
G
∞

\S), Theorem 1 extends for the
first time the results of [8] to families of non-commensurable lattices. Theorem 1
allows for groups G of arbitrary rank a + b and a wider variety of congruence
subgroups Γκ(n), even when considering subgroups of a fixed lattice. Moreover,
it holds uniformly over all lattices in Fa,b,c and all possible pairs (k,A), with
no dependence on a particular fixed ambient lattice, and addresses for the first
time the (natural) dependence on the tempered components of π. In the fully
degenerate case S = ∅, Theorem 1 recovers up to vol(Γ\G)ǫ the local bound from
Weyl’s law, for the first time uniformly across all lattices in Fa,b,c.

Our proof of Theorem 1 proceeds by the Arthur–Selberg trace formula, with a
test function chosen so as to emphasize contributions of representations occurring
on the left-hand side of (2). In the sum over semisimple conjugacy classes on
its geometric side, we estimate the volumes of adelic quotients building on the
work of Borel, Ono, and Ullmo–Yafaev, the orbital integrals using various integral
transforms and counting in Bruhat–Tits trees, and the number of contributing
conjugacy classes using the geometry of numbers input from [6].
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A cubic analogue of the Friedlader-Iwaniec spin along primes

Jori Merikoski

In 1998 Friedlander and Iwaniec [1] famously proved that there are infinitely many
prime numbers of the form a2 + b4. Remarkable about this result is the fact that
this is a very sparse sequence, that is, the number of integers of the form a2 + b4

up to x is of the order x3/4. More precisely, if Λ(n) denotes the von Mangoldt
function, then we have the following.

Theorem 1. (Friedlander-Iwaniec, 1998). There are infinitely many primes of
the form a2 + b4. In fact, for a certain constant C > 0 we have

∑

a2+b4≤x
Λ(a2 + b4) ∼ Cx3/4.

One of the key ingredients in the argument is their proof that the so-called spin
(s/r) is equidistributed along Gaussian primes π = r + is.

Theorem 2. (Friedlander-Iwaniec, 1998). We have

∑

r2+s2=p≤x
r odd

(
s

r

)
≪ x1−1/77,

where ( sr ) denotes the Jacobi symbol.

It is then reasonable to ask if their argument could be extended to show that
there are infinitely many prime numbers of the form a2 + b6. However, there are
two large obstacles to this. Firstly, this sequence is even sparser than the previous,
and it turns out that due to this the Friedlander-Iwaniec method breaks down at
certain point.

The second issue is a structural one. More precisely, the proof of Theorem 2
relies heavily on the Law of quadratic reciprocity. With the sequence a2 + b6 we
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end up with cubic residues, which unfortunately do not satisfy a nice reciprocity
law on Z.

The second problem can be rectified if we lift the whole set-up from Z to the
Eisenstein integers Z[ζ3], where ζn := e2πi/n denotes a primitive nth root of unity.
In this setting we can then prove a cubic analogue of Theorem 2.

To state our main result, recall that it is possible to define for all coprime
r, s ∈ Z[ζ3] the cubic residue character

[
s
r

]
3

(analogously to the Jacobi symbol),

which takes values on cube roots of unity. Say that r ∈ Z[ζ3] is primary if r ≡ ±1
(mod 3). Then crucial to us is the law of cubic reciprocity, which states that
for any primary r, s ∈ Z[ζ3] we have

[
s
r

]
3

=
[
r
s

]
3

(cf. [2, Chapter VIII.5] for

background on reciprocity laws).
Analogous to the Gaussian integers, in this set-up we have Z[ζ3, i] = Z[ζ12], the

ring of integers of the twelfth cyclotomic field Q[ζ12]. A new feature is that the unit
group of Z[ζ12] is infinite, which means that some care is needed in formulating
the cubic analogue of Theorem 2. Say that z = r+ is ∈ Z[ζ12] is primary if z ≡ ±1
(mod 3). It turns out that for any ideal a ⊆ Z[ζ12] coprime to 3 there is a primary
generator r + is, r, s ∈ Z[ζ3] of a, and we can define the cubic spin

[a]3 = [(r + is)]3 :=

[
s

r

]

3

.

We show that this is independent of the choice of the primary generator r + is.
Our main theorem is then the following (the manuscript is still work-in-progress).

Theorem 3. (Merikoski, 2020). We have

∑

p⊆Z[ζ12]
NQ(ζ12)p≤x

[p]3 ≪ x1−1/143

This is related to primes of the form α2 + β6 ∈ Z[ζ3] similarly as Theorem 2 is
related to primes of the form a2 + b4 in the work of Friedlander and Iwaniec.

To state an open problem, we note that the proof of relies mainly on cubic
reciprocity. Thus, it seems plausible that the result could be greatly generalized as
follows. If an algebraic number field K contains a primitive mth root of unity, then
we can define the mth power residue character on K which satisfies a reciprocity
law (by Hilbert reciprocity, for instance).

Given a quadratic extension L/K we can then define a spin at elements of OL

(probably some assumptions are required, the simplest case would be K = Q(ζm)
with m odd prime and L = K(i)). Hopefully the argument could be generalized
to obtain equidistribution of this spin along principal prime ideals of OL.

To elaborate on this, let

λ3(n) :=
∑

NQ(ζ12) a=n

[a]3.
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Corollary 4.
∑

n≤x
Λ(n)λ3(n) ≪ x1−1/143.

Similar to this Friedlander and Iwaniec use the Jacobi symbol to define ”λ2(n)”
and write that this might be ”related to the Fourier coefficients of some kind of
Metaplectic Eisenstein series or a cusp form” [1, Section 23]. Obtaining such a
description should be helpful for understanding the generalization.

Open problem. Define λm(n;L/K) in general (K,L,m as in the above) and
find an automorphic interpretation. Show equidistribution along primes.
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Small scale equidistribution of Hecke eigenforms at infinity

Morten S. Risager

(joint work with Asbjørn C. Nordentoft, Yiannis N. Petridis)

Let Hk be a Hecke basis of holomorphic cusp forms f of weight k for the full
modular group Γ normalized to have Petersson norm 1. We investigate the limiting
behaviour of

µf (ψ) :=

∫

M

ψ(z)yk|f(z)|2dµ(z)

on a suitable set of testfunctions ψ depending possibly on k. Here M = Γ\H.
Holowinsky and Soundararajan [1] famously proved that for a dense set of fixed
testfunctions in L2(M) we have

µf (ψ) → ν(ψ) :=
3

π

∫

M

ψ(z)dµ(z), as k → ∞.

We investigate what happens if we allow the support of ψ to shrink as k → ∞ in
the following way: Let BH := {z ∈ M | Im(z) > H}, B = B1 and let furthermore
C∞

0 (M,BH) denote the set of smooth functions on M that are decaying rapidly
in the cusp, supported in BH , with compactly supported zero Fourier coefficient.
We then consider the following operator

Mf(ψ)(z) = ψ(x+ iy/H)

mapping C∞
0 (M,B) to C∞

0 (M,BH). Note thatMf ‘pushes’ ψ up towards the cusp.
We consider H = (k − 1)θ for θ > 0. For this operator we want to investigate to
what extend

(1) µf (M(k−1)θψ) = ν(M(k−1)θψ) + o

(∫

M

|M(k−1)θψ|dµ
)
, as k → ∞
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i.e. to what extend the measures yk|f(z)|2dµ(z) equidistribute on the shrinking
sets B(k−1)θ . We expect this to be the case all the way down to the Planck scale
which is at θ = 1. We first show that below the Planck scale we do not have
equidistribution.

Proposition 1. If θ ≥ 1 there exist ψ ∈ C∞
0 (M,B) such that

µf (M(k−1)θψ) = o(ν(M(k−1)θψ)) as k → ∞.

We then move on to show that below the Planck scale, i.e. for θ < 1 we have
equidistribution on average over f ∈ Hk and k of size K.

Theorem 1. If 0 < θ < 1 then for ψ ∈ C∞
0 (M,B), and u ∈ C∞

c (R+) we have

∑

2|k
u

(
k − 1

K

) ∑

f∈Hk

∣∣µf (M(k−1)θψ) − ν(M(k−1)θψ)
∣∣2 ≪u,ψ,θ K

2−2θ−min(1/5,1−θ)+ε,

as K → ∞.

Note that this implies that on a density one subset we have equidistribution in
this type of shrinking set B(k−1)θ .

We next show that if we restrict to C∞
0,0(M,B) = {ψ ∈ C∞

0 (M,B)|
∫
M ψdµ = 0}

then we can compute the variance. Let L(sym2f, s) denote the symmetric square
L-function related to f .

Theorem 2. Let 0 < θ < 1. There exist δθ > 0 and a bilinear Hermitian form
Bθ : C∞

0,0(M,B) × C∞
0,0(M,B) → C such that

∑

2|k
u

(
k − 1

K

) ∑

f∈Hk

L(sym2f, 1)
∣∣µf (M(k−1)θψ) − ν(M(k−1)θψ)

∣∣2

= Bθ(ψ, ψ)K1−θ +Oψ,θ(K
1−θ−δθ).

as K → ∞.

This is related to strong results by Luo and Sarnak [4] who proved the analogous
statement for θ = 0. In their case they showed that the bilinear form is diagonal-
ized by Maass cusp forms. They then showed that the corresponding eigenvalues
equals the central values of the L-function of the Maass cusp form φ times a uni-
versal constant. Such statements does not make sense in our case as Maass cusp
forms are not supported in B. But by a continuity argument one may extend Bθ
which includes 1Bφ and we may prove that Bθ(1Bφ, 1Bφ) ≥ 0. We can also show
that Bθ(1Bφ, 1Bφ) is given by a Dirichlet series expression. Using this we may
show that if φ is an even Hecke–Maass cusp form with eigenvalue sφ(1 − sφ) and
Hecke eigenvalues λφ(n), then

(2)
∑

m,n≥1

τ1((m,n))λφ(m)λφ(n)

(mn)1/2

∫ ∞

max(m,n)

|Ksφ−1/2(2πy)|2 dy
y

≥ 0.

Here τ1 is the sum of divisors function and Ks(y) is the K-bessel function. It
seems hard to see that this series expression is non-negative without going through
Theorem 2.
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Finally we discuss the explicit form of Bθ. The decomposition

(3) C∞
0,0(M,B) = C∞

cusp(M,B) ⊕ C∞
Eis(M,B),

into the cuspidal and the Eisenstein part is orthogonal with respect to Bθ for
all 0 < θ < 1. Furthermore we observe 3 different regimes in the sense that Bθ
is independent of θ on each of the three intervals 0 < θ < 1/2, θ = 1/2 and
1/2 < θ < 1. This shows that there is a transition phenomena occurring half way
to the Planck scale. This is related to transition phenomena observed in [2] [3].
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[3] Stephen Lester, Kaisa Matomäki, and Maksym Radziwi l l, Small scale distribution of zeros
and mass of modular forms, J. Eur. Math. Soc. (JEMS) 20 (2018), no. 7, 1595–1627.
MR 3807308

[4] Wenzhi Luo and Peter Sarnak, Quantum variance for Hecke eigenforms, Ann. Sci. École
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Problem Session

(1) (Farrell Brumley) Prove quantum ergodicity for Maass forms on locally
symmetric spaces of non-compact type, e.g., Γ\ SLn(R)/ SO(n).

(2) (Farrell Brumley, passing along a question of Wee Teck Gan) Periods of
automorphic forms GL3 along the diagonal torus are related via an excep-
tional theta correspondence to Fourier coefficients of automorphic forms
on G2. Given a fixed Hecke–Maass form on GL3, show that there is at
least one non-vanishing closed Cartan period.

(3) (Philippe Michel) Let ϕ be a Maass form. Let D > 0 be a large funda-
mental discriminant. Find a geodesic γ of discriminant D so that

∫

γ

ϕ 6= 0,

assuming h(D) is “huge”. Equivalently, show that there is a class group

character χ of Q(
√
D) so that L(ϕ⊗ θχ, 1/2) 6= 0.

The issue is that harmonic analytic methods most readily give such a
conclusion for some unramified Hecke character χ “close to” a class group
character.

(4) (Merikoski) There is a problem stated in Merikoski’s talk.
(5) (Sawin) There were problems advertised in Sawin’s talk.
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(6) (Kowalski) For a prime p and an interval I of size |I| = p1/2−γ with γ > 0
fixed, improve upon the trivial bound, which is |I|3/p2, for

1

p− 1

∑

a∈F×

p

∣∣∣∣∣
1√
p

∑

x∈I
e(
ax+ x̄

p
)

∣∣∣∣∣

by a small power of p. This has applications to Kloosterman paths as in
the paper of Kowalski–Sawin and is probably hard.

(7) (Harcos) Prove a sup-norm bound on GLn(R) for automorphic forms
of general K-type using the Fourier–Whittaker decomposition (near the
cusps) complemented by the pretrace formula. Motivated by papers of
Blomer–Harcos–Milićević and Humphries. The point is not to get any-
thing optimal; the point is just to get some exponent that is reasonable.

A complementary question is if one can produce lower bound in the
cusp in the style of Brumley–Templier?

(8) (Michel) Prove that the zeros of newforms in S2(N) have o(N) multiplicity
after pushforward to SL2(Z)\H.

Reporter: Edgar Assing
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SWITZERLAND

Dr. Min Lee

School of Mathematics
University of Bristol
Fry Building
Woodland Road
Bristol BS8 1UG
UNITED KINGDOM

Prof. Dr. Xiaoqing Li

Department of Mathematics
State University of New York at
Buffalo
244 Math. Bldg.
Buffalo NY 14260-2900
UNITED STATES

Dr. Yongxiao Lin

Institut de Mathématique
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Institut Galilée
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