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Introduction by the Organizers

The workshop Cohomology of finite groups: Interactions and Applications was held
under extraordinary circumstances, due to the spread of Covid-19 and the isolation
measures surrounding the pandemic. This meant that 25 of the 49 participants
were present in person, with the rest participating remotely by Zoom. Three of
the four organisers were physically present. The technology was up to the task,
and participation was high among the remote attendees, in spite of often large
time differences. Since there were a large number of North Americans taking part
remotely, the majority of the talks were in the afternoon and evening, with the
late morning set aside for discussions and collaborations. There was room in the
schedule for everyone who submitted an abstract to give a talk. There were 20
one hour talks in total, of which 15 were given in person and 5 remotely. Of the
15 given in person, 4 were by postdocs and the rest by more seasoned researchers.
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The weather was somewhat variable, but held out for the traditional Wednesday
afternoon hike to St. Roman.

There were many scientific highlights of the meeting. Fusion systems and
their cohomology were prominent. Nadia Mazza talked on the cohomology of
pro-saturated pro-fusion systems on pro-p-groups and presented a version of the
Cartan–Eilenberg stable element method in this context for the continous coho-
mology. Bob Oliver and Ellen Henke gave us the latest applications of fusion
systems to the theory of finite simple groups. Henke’s talk discussed the relation-
ship between fusion systems and their homotopy theory, and Chermak’s partial
groups. The purpose was to give a smoother and more conceptual framework for
their applications in Aschbacher’s programme for rewriting parts of the classifi-
cation of finite simple groups in terms of fusion systems. Oliver’s talk was more
focused on the simplicity of the fusion systems associated with the known simple
groups, and whether there were exotic fusion subsystems. Radha Kessar’s talk on
weight conjectures for p-compact groups showed their connection to the modular
representation theory of finite groups of Lie type via fusion systems, and their rela-
tions with the theory of spetses. This gave rise to extensive discussions, especially
at an informal evening session organized by Tobias Barthel.

The structure of stable module categories appeared in Jon Carlson’s Zoom talk,
with the focus on the structure of the endomorphism ring of the trivial module
after a Verdier localisation. A striking example showed how one can realise the
negative part of Tate cohomology in such a construction. Dan Nakano’s Zoom
talk involved a noncommutative version of the tensor triangulated geometry that
we know in the commutative version from Paul Balmer’s work, and described how
it related to various stable module categories where the tensor product is not
commutative up to isomorphism.

Antoine Touzé talked about his work on functor categories with Djament and
Vespa, and its application to understanding the category of polynomial functors
when the coefficient ring is not a field. Jesper Grodal’s talk on the group of
endotrivial modules gave us an update of progress in going from finite p-groups
to arbitrary finite groups, a project involving many authors, including a number
of participants of the conference. He presented a new perspective, considering
the stable module category of a finite group as a stable infinity category. This
allows us to consider the Picard space for such category, which has the advantage
of being better behaved with respect to limits, and with respect to stable module
categories for p-subgroups. The group of connected components is then the Picard
group. This point of view led to extensive evening discussions over a beer or two,
concerning the role of infinity categories in our subject.

Staying for the moment in the realm of representation theory, Serge Bouc and
Ergün Yalçın both gave Zoom talks involving permutation modules in some form.
Bouc’s involved biset functors and their cohomology, and is part of a long running
programme for understanding extensions in this context, while Yalçın’s involved
the Dade group, constructed from endopermutation modules, but modified so
that it works for general finite groups, not just p-groups. Closely related to this
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were the talks of Peter Webb, where he described what works and what doesn’t
work when one tries to construct transfer maps in the cohomology of categories,
and that of Stefan Schwede, which was a more topological look at global Mackey
functors. The latter gave a new perspective on Nakaoka’s splitting result for the
cohomology of the symmetric groups, by adapting a proof by Dold to this setting
which then extends to orthogonal, unitary and symplectic Lie groups. This then
gives applications on the regularity of Euler classes.

Markus Linckelmann talked on his joint work with Benson and Kessar on the
Batalin–Vilkovisky operator in the Hochschild cohomology of a finite group, and
gave a very simple construction of the corresponding operator on the ordinary
cohomology of the centraliser of an element, in the centraliser decomposition of
Hochschild cohomology.

Paul Balmer was going to give a Zoom talk about the role of permutation
complexes in the bounded derived module category, but logistic complications got
in the way, and he had to cancel. Dave Benson, as an organiser, was not expecting
to talk, but gave them one at short notice on the exotic abelian symmetric tensor
categories in prime characteristic that he had been developing in joint work with
Etingof and Ostrik, and described a conjecture for their cohomology algebras.

Moving to the topological side, John Greenlees talked about work in progress
with Benson and Stevenson, aimed at understanding the singularity category of
C∗(BG), the geometric cochains on the classifying space of a finite group G. This
category vanishes if and only if G is a finite p-group, and otherwise it is not well
understood. He showed how it is closely related to the modules for C∗(ΩBG

∧

p ),
the chains on the loops of the p-completion of BG, and described their approach
when G is a finite group with a cyclic Sylow p-subgroup.

Of the four postdoc talks, three were on the topological side and one on the
algebraic side of the subject. Simon Gritschacher’s talk involved joint work with
Adem and Gomez on topological invariants of the space of commuting pairs of
elements of a compact Lie group, and in particular gave a description of π2 of
this space. Marc Stephan talked about obstructions to the topological realisation
of G-equivariant chain complexes by free G-spaces motivated by a conjecture of
Carlsson on free actions of elementary abelian p-groups on finite CW-complexes.
Markus Hausmann’s talk described the role of formal groups in the context of
stable homotopy theory, focusing on Quillen’s work on complex cobordism, and
the analogous setting in both equivariant formal group laws and equivariant stable
homotopy theory for abelian compact Lie groups, where he presented statements
generalizing the classical results. The algebraic talk was by Daniel Bissinger, who
told us about his work on modules of constant Jordan type with Loewy length
two.
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Abstracts

The singularity category of a group with cyclic Sylow p-subgroup

J.P.C. Greenlees

(joint work with D.J. Benson, G. Stevenson)

1. Context

For a compact Lie group G and a field k of characteristic p, we are interested in
the cohomology ring H∗(BG) (coefficients in k), but in fact a refinement shows
richer and more uniform behaviour: we therefore consider the cochains C∗(BG)
(again with coefficients in k), or more precisely the commutative ring spectrum
C∗(BG) = map(BG, k) with π∗(C

∗(BG)) = H∗(BG).
It is known that for finite G the ring C∗(BG) is always Gorenstein ([1]), and

that it is regular if and only if G is p-nilpotent. Accordingly it is natural to consider
the singularity category, and we would like to define

Dsg(C
∗(BG)) := Db(C∗(BG))/Dc(C∗(BG)).

It is perfectly clear how to make sense of Dc(C∗(BG)) as the compact C∗(BG)-
modules in D(C∗(BG)), but it is much less clear how to define the bounded derived
category Db(C∗(BG)).

In fact we start by choosing a faithful representation ν : G → U in a group
U with C∗(BU) regular, and then say that a C∗(BG)-module M is ν-finitely
generated if M is small as a C∗(BU)-module via restriction along ν∗ : C∗(BU)→
C∗(BG).

Theorem 1 (Greenlees-Stevenson[2]). The condition that a C∗(BG)-module M
is ν-finitely generated is independent of ν.

Choosing U so that H∗(BU) has polynomial cohomology (for example U =
U(n) for some n) we obtain an easy characterization of finitely generated C∗(BG)-
modules.

Corollary 2. A C∗(BG)-module M is finitely generated if and only if π∗(M) is
finitely generated over H∗(BG).

We also see that the vanishing of the singularity category captures regularity
as required.

Corollary 3. The singularity category is trivial if and only if G is p-nilpotent.

This poses the problem of calculating the singularity category in some case
where it does not vanish.
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2. Groups with cyclic Sylow p-subgroup

First of all, if G has cyclic Sylow p-subgroup C = Cpn then the maps

G← NG(C)→ NG(C)/Op′NG(C)

induce an equivalence

BG∧
p ≃ B(C ⋊D)∧p

where D = Cq acts faithfully on C, so q|p− 1. This reduces us to the special case
when G is a semi-direct product G = C ⋊D.

2.1. The cohomology ring. From now on we supposeG = C⋊D where C = Cpn

and D = Cq with q|p−1 and D acts faithfully on C. We write h = pn−(pn−1)/q.
To avoid G being a p-group we suppose q ≥ 2 so p ≥ 3.

Here we have

H∗(BG) = k[X ]⊗ Λ(T ) with degX = −2q, degT = −(2q − 1).

It is easily deduced from the known Massey products in H∗(BC) that the pn-
fold Massey product is defined and (with zero indeterminacy) we have

〈T, T, . . . , T 〉 = −Xh.

2.2. The Koszul dual. The case pn = 3 is a bit exceptional, but for pn > 3

H∗(Ω(BG
∧
p )) = Λ(ξ)⊗ k[τ ] with deg(ξ) = 2q − 1 deg(τ) = 2q − 2.

Theorem 4 (Benson-Greenlees [3]). The h-fold Massey product is defined and
(with zero indeterminacy)

〈ξ, ξ, . . . , ξ〉 = −τp
n

.

3. The singularity category

3.1. The BGG correspondence. The following uses the BGG correspondence
of [2] to give a complete description of the singularity category.

Theorem 5. We have equivalences

Dsg(C
∗(BG)) = Db(Ω(BG∧

p ))/〈k〉 ≃ Db(Ω(BG∧
p )[τ

−1]).

In principle this gives a complete calculation. In particular, it immediately
makes clear (2q−2)-periodicity and provides a functor to modules over k[τ, τ−1]⊗
Λ(ξ)-modules. However the statement does not address the question of what the
objects of the category are.

3.2. Realizability. An H∗(BG)-module M is said to be realizable if there is
a C∗(BG)-module X with π∗(X) ∼= M . The realization is unique if any two
C∗(BG)-module realizations of M are equivalent. For example, the residue field
k is uniquely realizable because C∗(BG) is coconnected.

Where an H∗(BG)-module M is uniquely realizable, we will also write M for
its realization.



Cohomology of Finite Groups: Interactions and Applications 1205

3.3. Reducing to Maximal Cohen-Macaulay modules. If M is any finitely
generated C∗(BG)-module, we may find a finitely generated free H∗(BG)-module
F mapping onto π∗(M), and then we have a short exact sequence

0→ Ωπ∗M → F → π∗M → 0,

and becauseH∗(BG) is of Krull dimension 1, Ωπ∗M is a maximal Cohen-Macaulay
module (MCM) over H∗(BG).

Of course F is a sum of suspensions of H∗(BG), so we may realize it by taking
F to be the corresponding sum of suspensions of C∗(BG). We may also realize the
map F → π∗M , and the resulting cofibre sequence

ΩM → F→M

shows that in realizing finitely generated modules we need only consider realizing
MCMs.

3.4. Maximal Cohen-Macaulay modules. The indecomposable MCMs over
H∗(BG) = k[X ]⊗ Λ(T ) are the ideals

Mi = (X i, T ) for i = 0, 1, 2, 3, . . . ,∞.

Theorem 6. The modulesM0,M1, . . . ,Mh are uniquely realizable and the modules
Mi for h+ 1 ≤ i ≤ ∞ are not realizable.

To prove this one may check that if Mi is realizable then Mi−1 is realizable,
and that Mi is then uniquely constructed from Mi−1 by attaching a copy of k.
This uses an Adams-Eilenberg-Moore spectral sequence to make calculations, and
matrix factorizations to give convenient periodic resolutions of Mi over H

∗(BG).
This shows that the realizable indecomposable MCMs Mi are for i in an initial
segment [0, s] and also that they the realizable modules are uniquely realizable.
Finally, one observes thatMi (if it exists) embodies the vanishing of an (i−1)-fold
Massey power of ξ ∈ [k, k]C∗(BG) = H∗(Ω(BG

∧
p )).

The result now follows from Theorem 4.
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Representations and cohomology of GLn(R) with an arbitrary ring R

Antoine Touzé

(joint work with Aurélien Djament, Christine Vespa)

Representations and cohomology of the finite groups GLn(Fq) are familiar objects
which are extensively studied. In particular, they are known to be closely related
to the polynomial representations of GLn(k) and their cohomology. In this talk
we explain similar relations when Fq is replaced by a more general ring R.

To give an idea of the relations we are talking about, we state two theorems.
Fix an algebraically closed field k of positive characteristic p. Recall that
a k-linear finite dimensional representation V of GLn(k) is called polynomial (of
degree d) if its action morphism is given by polynomial formulas (of degree d) in
the entries of g = [gst] ∈ GLn(k). Polynomial representations yield a full abelian
subcategory Poln of kGLn(k)−Mod, which is much studied in terms the Schur
algebras S(n, d), indeed we have an equivalence of categories [9]:

Poln ≃
⊕

d≥0

S(n, d)−mod .

The first theorem deals with simple representations. Let us recall a classical
construction, which is an instance of Schur-Weyl duality. For all finite dimensional
vector spaces V , and all kSd-modules M , let EM (V ) be the kGL(V )-module:

(1) EM (V ) := Image
(
(V ⊗d ⊗M)Sd

Norm
−−−→ (V ⊗d ⊗M)Sd

)
.

If S is a simple representation of kSd, then either ES(k
n) is zero, or ES(k

n) is a
simple polynomial representation of GLn(k). Not all simple polynomial represen-
tations of GLn(k) are of this kind: the representations obtained this way are the
p-restricted ones. The next theorem is a variant of the celebrated tensor product
theorem of Steinberg [11], the latter being usually stated for a finite field R.

Theorem 1. Let R be a finite ring of characteristic pr, and let B1, . . . , Bs be a
set of representatives of the isomorphism classes of simple (k,R)-bimodules. A
kGLn(R)-module M is simple if and only if there is an isomorphism

M ≃M
[B1]
1 ⊗ · · · ⊗M [Bs]

s

where each M [Bi] is the restriction of a p-restricted simple representation Mi along
the morphism GLn(R)→ GLn dimk Bi

(k) determined by Bi.

The second theorem deals with cohomology. It should be noted that the Ext
between polynomial representations look very different if they are computed in
Poln or in kGLn(k)−Mod. This difference can already be seen on the behavior of
Frobenius twists. Let M [r] denote the restriction of a polynomial representation

M along the group morphism F r : GLn(k)→ GLn(k), such that F r([gst]) = [gp
r

st ].
Since F r is an automorphism of groups, the extensions Ext∗kGLn(k)(M,N) are

isomorphic to Ext∗kGLn(k)(M
[r], N [r]). On the other hand, there is no inverse for
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restriction along F r in the realm of polynomial representations. In fact it is known
that the induced map

Ext∗Poln(M,N)→ Ext∗Poln(M
[r], N [r])

is always injective but not an isomorphism in general. The next result is a version
for GLn(k) of the celebrated theorem of Cline Parshall Scott and van der Kallen
[2] on the cohomology of the finite groups of Lie type (see also [1]).

Theorem 2. Let M and N be two polynomial representations of degree d. If n is
big enough with respect to d and i, there is an isomorphism:

ExtikGLn(k)(M,N)→ colim
r

ExtiPoln(M
[r], N [r]) .

We obtain theorems 1 and 2, as well as some other results in the same spirit,
from the study of representations of a small additive category A. We now explain
how these two topics are connected.

Let kA−Mod denote the abelian category of (not necessarily additive) functors
F : A → k−Mod and natural transformations. This category is related in two
ways with representations of groups. Firstly, for all objects a of A, the value of a
functor on a is naturally endowed with an action of the monoid (EndA(a), ◦), and
we have a recollement of abelian categories:

{F |F (a) = 0} kA−Mod kEndA(a)−Mod
F 7→F (a)

.

The theory of recollements of abelian categories asserts that evaluation on a yields
a bijection between the isomorphism classes of simple functors F such that F (a) 6=
0 and those of the simple representations of the monoid (EndA(a), ◦). Under
some favorable circumstances, the simple representations of the group (AutA(a), ◦)
identify with a subset of those of (EndA(a), ◦), hence we get a connection between
the simple objects of kA−Mod and the simple kAutA(a)-modules.

A second connection holds when A = PR, the category of finitely generated
projective modules over a ring R. In this case, evaluation on Rn turns functors
into representations of GLn(R), and it was proved by Scorichenko [10], see also
[3], that there is an isomorphism for all i ≥ 0:

TorkPR

i (F,G) ⊗ colim
n

Hi(GLn(R), k) ≃ colim
n

Tor
kGLn(R)
i (F (Rn), G(Rn)) .

provided F and G are polynomial functors in the sense of Eilenberg and Mac Lane
[6]. If the ring R is nice, homological stabilization occurs and the colimits on
both sides of the isomorphism are isomorphic to the homology of GLn(R) for n
big enough with respect to i. Then the isomorphism above provides a connection
between the Tor-computations in kPR−Mod and the homology of GLn(R) (and
by dualizing we get a similar connection between Ext-computations in kPR−Mod
and the cohomology of GLn(R)).
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Theorem 1 then follows from the connection between simple kGLn(R)-modules
and simple objects of kPR−Mod explained above, together with the following:

Theorem 3. [5] Let F : A → k−Mod be a polynomial functor with finite dimen-
sional values. Then F is a simple if and only if there are pairwise non isomorphic
simple additive functors Ai : A → k−mod, some simple kSdi

-modules Si and an
isomorphism (the functors ESi

: k−mod→ k−mod are defined by (1))

F ≃ (ES1 ◦A1)⊗ · · · ⊗ (ESs
◦As) .

Similarly, theorem 2 follows from Scorichenko’s isomorphism and a general-
ization of the strong comparison theorem of [7] that we now explain. Polynomial
functors of interest are provided by the compositions F ◦A, where A : A → k−mod
is an additive functor and F : k−mod→ k−mod is a strict polynomial functor in
the sense of Friedlander and Suslin [8], such as a symmetric power Sd, an exterior
power Λd, a functor ES , a Frobenius twist functor I(r). . . If F is a d-homogeneous
strict polynomial functor then F (kn) is a module over the Schur algebra S(n, d),
and Ext and Tor in the category of strict polynomial functors can be computed in
terms of Ext and Tor over Schur algebras.

Theorem 4. [4] Let A be an additive Fq-linear category, let A and B be two Fq-
linear functors from A to k−mod, respectively contravariant and covariant, and let
F and G be two strict polynomial functors of degree d < q. Assume furthermore
that the Hochschild-Mitchell homology HHi(A, A ⊗ B) vanishes for 0 < i < e.
Then for 0 ≤ i < e there is a k-linear isomorphism

TorkAi (F ◦A,G ◦B) ≃ colim
r

Tori(F ◦H ◦ I
(r), G ◦ I(r))

where H refers to the contravariant functor H = Homk(−, HH0(A⊗B)), and the
Tor on the right hand side are taken in the category of strict polynomial functors.
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On the cohomology of pro-fusion systems

Nadia Mazza

(joint work with Antonio Dı́az Ramos, Oihana Garaialde Ocaña, Sejong Park)

Throughout, let p denote a prime number. Fusion systems for finite groups and
compact Lie groups have been defined as algebraic models for their p-completed
classifying spaces, see [1]. Recently, fusion systems have been defined over pro-p
groups and are called pro-fusion systems, see [5] (and also [3, 4, 6] for the back-
ground on profinite groups). Loosely, pro-fusion systems on pro-p groups generalise
the fusion systems on finite p-groups. Recall that a fusion system on a finite p-
group S is a category whose objects are the subgroups of S and the morphisms are
injective group homomorphisms subject to certain axioms. A morphism of fusion
systems (fij , Fij) : Fj → Fi consists of a group homomorphism fij : Sj → Si and
a functor Fij : Fj → Fi such that Fij(P ) = fij(P ) for each subgroup P of Sj , and,
for each morphism ϕ : P → Q in Fj we have a commutative diagram (left hand
side column in Sj and right hand side in Si)

P
fij

//

ϕ

��

fij(P )

Fij(ϕ)

��

Q
fij

// fij(Q).

Elaborating on this, we can define inverse systems of fusion systems on finite p-
groups, and therefore pro-fusion systems. We call F pro-saturated if F is the
inverse limit of saturated fusion systems. (Note that pro-saturated and saturated
pro-fusion systems are distinct notions, see [5]). If F is a pro-fusion system on a
pro-p group S, we let F◦ denote the full subcategory whose objects are the open
subgroups of S. We say that F (resp. F◦) is finitely generated if there exists a
finite set of morphisms X of F (resp. F◦) such that every morphism in F is the
composition of finitely many restrictions of morphisms in X ∪ Inn(S).

To compute the mod-p cohomology rings of finite groups and compact Lie
groups two results stand out, namely, the Cartan-Eilenberg stable elements the-
orem [2, XII.Theorem 10.1], and the Lyndon-Hochschild-Serre spectral sequence.
In the present work, we study the corresponding tools for the continuous mod-p
cohomology ring H∗

c (·;Fp) of pro-fusion systems, where the coefficients are the
trivial module Fp. The cohomology ring of a (pro-)fusion system F on a (pro-)p
group S is the subring H∗

c (F ;Fp) := H∗
c (S;Fp)

F formed by the F -stable elements
in H∗

c (S;Fp). Our first main result is as follows.

Theorem 1 (Stable Elements Theorem for Pro-Fusion Systems). Let F be a pro-
fusion system on a pro-p group S, where F = lim

←−i∈I
Fi and S = lim

←−i∈I
Si. Assume
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that either F is pro-saturated, or that F◦ is finitely generated. Then there is a
ring isomorphism

H∗
c (S;Fp)

F ∼= H∗
c (S;Fp)

F◦ ∼= lim
−→
i∈I

H∗(Si;Fp)
Fi .

Equivalently, H∗
c (F ;Fp) ∼= H∗

c (F
◦;Fp) ∼= lim

−→
i∈I

H∗(Fi;Fp).

Let FS(G) denote the pro-fusion system defined by the conjugation action of
a profinite group G on a Sylow p-subgroup S. Then FS(G) is pro-saturated and
saturated. Moreover, FS(G) is finitely generated if S is open in G; which happens
in particular if G is a compact p-adic analytic group (for example if G = GLn(Zp),
see [3]). As a corollary, we obtain:

Corollary 2 (Stable Elements Theorem for Profinite Groups). Let G be a profinite
group. Then, there is a ring isomorphism

H∗
c (G;Fp) ∼= H∗

c (S;Fp)
FS(G) ∼= H∗

c (S;Fp)
FS(G)◦ .

Our second main result provides a version of a Lyndon-Hochschild-Serre spectral
sequence that can be used to compute the continuous mod-p cohomology of pro-
fusion systems. Recall that a subgroup T ≤ S is strongly F -closed (in S) if
ϕ(Q) ≤ T for all ϕ ∈ HomF (Q,S) and for all Q ≤ T .

Theorem 3. Let F be a pro-saturated pro-fusion system on a pro-p group S and
let T ≤ S be a strongly F-closed subgroup. Then there exists a first quadrant
cohomological spectral sequence with second page

En,m
2 = Hn

c (S/T ;H
m
c (T ))F ,

and which converges to H∗
c (F ;Fp).

As an application, we compute the cohomology ring H∗
c (G;F3), where G =

(Z3 × Z3) ⋊ Z/3 is the 3-adic version of the finite extraspecial group of order 33

and exponent 3.

Theorem 4. The continuous mod-3 cohomology of the group G = (Z3×Z3)⋊Z/3
is

H∗
c (G;F3) ∼= F3[x

′]⊗ Λ(y, y′, Y, Y ′)/{yy′, yY, y′Y ′, Y Y ′, yY ′ − y′Y },

with degrees |y| = |y′| = 1, |Y | = |Y ′| = |x′| = 2.

Finally we determine the cohomology rings of the general linear groups of di-
mension 2 over the p-adic integers, for p odd.

Theorem 5. We have:

(a) For p = 3, H∗
c (GL2(Z3);F3) ∼= F3[X ]⊗ Λ(Z1, Z2, Z3), with degrees |Z1| =

1, |Z2| = |Z3| = 3 and |X | = 4.
(b) For p > 3, H∗

c (GL2(Zp);Fp) ∼= Λ(Z1, Z2) with degrees |Z1| = 1, |Z2| = 3.
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Torsion-free endotrivial modules

Jesper Grodal

(joint work with Tobias Barthel, Joshua Hunt)

The goal of my Oberwolfach talk was to explain joint work with Tobias Barthel
and Joshua Hunt [BGH], in which we obtain generators for the torsion-free part
of the group of endotrivial modules. Combined with my earlier work [Gro16],
which described the torsion part, we are able to provide a computable model for
the whole group of endotrivial modules for an arbitrary finite group. The result
extends the celebrated classification for finite p–groups, due to Carlson–Thévenaz.
An important new ingredient in our joint work is a systematic use of methods from
higher algebra, extending the homotopy methods from my earlier work. In this
extended abstract I’ll explain this story in more detail, as outlined in my talk.

Let G be a finite group and k any field of characteristic p, where p||G|. We’re
interested in calculating the group of endotrivial modules i.e.,

Tk(G) = { iso. classes of indecomposable kG-modules M |M ⊗kM
∗ ∼= k⊕ (proj)}

which, in more high-flying language, identifies with the Picard group of the stable
module category StModkG. This is an abelian group under ⊗k (and discarding
projectives) with unit k and inverse to M given by the dual M∗ = Hom(M,k). It
plays an important role in modular representation theory.

The group Tk(G) was shown in the 1980’s by Puig to be finitely generated,
and hence begs the question: Which group is it? Obvious elements include 1–
dimensional modules and Ωk = ker(proj ։ k), the shift of the trivial module
(which has inverse Ω−1k). These in fact often generate Tk(G), but not always.
Here are two small examples where they do to keep in mind:

TF7(C7 × C3) = 〈ΩF7〉 ×Hom(C3,F7) ∼= Z/2× Z/3 ∼= Z/6

TF7(C7 ⋊ C3) = 〈ΩF7〉 ∼= Z/6
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In fundamental work from 1978 Dade showed that for A an abelian p-group, Ωk
is all there is:

Theorem 1 ([Dad78a, Dad78b]). For any finite abelian p–group A,

Tk(A) ∼= 〈Ωk〉 ∼=





0 if |A| ≤ 2
Z/2 if A is cyclic |A| > 2
Z else

The order of Ωk encodes that k has a periodic resolution iff A is cyclic, where the
periodicity is 1 or 2 as indicated. The first theorem of Carlson–Thévenaz classifies
torsion in Tk(S), for S a p–group:

Theorem 2 ([CT05]). For S a finite p–group, Tk(S) has torsion only if S is
cyclic, generalized quaternion Q2n, n ≥ 3, or semi-dihedral SD2n , n ≥ 4 (the two
last examples for p = 2).

It has been known since the 1970s that Tk(Q2n) ∼= Z/4⊕ A, where A is either
Z/2 or 0, depending on whether or not k has a primitive 3rd root of unity, and
Tk(SD2n) ∼= Z⊕ Z/2.

The torsion in Tk(G) for general finite G hence equals Tk(G,S) = ker(Tk(G)
res
−−→

Tk(S)), except in the few cases when Tk(S) has torsion. In [Gro16], I described
Tk(G,S) in terms of p–local group theory, using methods from homotopy theory,
and developed a number of methods to calculate it:

Theorem 3 ([Gro16]). Tk(G,S)
∼=
−→ H1(O∗

p(G); k
×) ∼= Hom(π1(O∗

p(G)), k
×)

∼= H0
G(|C|;H

1(−; k×)) ∼= lim
[P0≤···≤Pn]∈|C|/G

Hom(NG(P0 ≤ · · · ≤ Pn), k
×)

Here O∗
p(G) is the p–orbit category with objects G/P for P a non-trivial p–

subgroup of G, and morphisms G–equivariant maps, and C is a collection of non-
trivial p–subgroups such that the inclusion C ⊆ Sp(G) induces a G–homotopy
equivalence |C| ⊆ |Sp(G)| on geometric realization. E.g., C = Sp(G), Ap(G), etc.,
where Ap(G) means non-trivial elementary abelian p–subgroups (Z/p)r, r ≥ 1.
The limit is taken over conjugacy classes of chains, ordered by inclusion, and H∗

G

denotes Bredon equivariant cohomology.
The fundamental group of the p–orbit category π1(O∗

p(G)) turns out to be a
finite p′–group, a quotient of NG(S)/S describable in terms of explicit generators
and relations. Arbitrary representations of this group, not necessarily of dimension
one, turn out to govern a slightly larger class of kG–modules. The last expression
in Theorem 3 implies an affirmative answer to the so-called Carlson–Thévenaz
conjecture, providing an algorithmic description of Tk(G,S). The description also
implies a number of structural results, and Tk(G,S) has subsequently been cal-
culated using these methods for all finite simple groups. The most complicated
case, that of finite groups of Lie type, is established in a joint work with Carlson,
Mazza, and Nakano [CGMN].

Now, for the torsion-free quotient of Tk(G), Alperin establish around year 2000
a formula for the torsion-free rank of G (originally just for p–groups, but later
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generalized to all finite groups): If G does not contain (Z/p)3 as a subgroup the
torsion-free rank of Tk(G) equals the number of G–conjugacy classes of maximal
rank 2 elementary abelian p–subgroups, and otherwise it is this number plus one.
However it still left open what the generators were. For G a p–group, this problem
was also solved by Carlson–Thévenaz in another fundamental paper.

Theorem 4 ([CT04]). Let S be a finite p–group that is not cyclic, semidihedral,
or generalized quaternion. Then

Tk(S)
∼=
−→ {{nV0} ∈ lim

[V0≤···≤Vn]∈|Ap(S)|/S
Tk(V0) | {nV0} satisfies the “CT-conditions”}

via the restriction maps M 7→M |V ∈ Tk(V ).

Here and later the assumption on S is just for simplicity. The “CT-conditions”,
short for Carlson–Thévenaz-conditions, are some explicit natural restrictions, stem-
ming from the structure of projective resolutions, which we won’t repeat here. As
Tk(V ) ∼= Z if V has rank at least two, and is of order 1 or 2 otherwise, the formula
amounts to specifying an integer nV ∈ Z for each component of |Ap(G)≥2|/G,
subject to the aforementioned restrictions. This is called the type function.

It was speculated that the image of the restriction Tk(G) → Tk(S) might be
obtained by simply replacing S–conjugacy by G–conjugacy in the formula above.
The main theorem with Barthel and Hunt shows that this is true when p = 2, but
is in general false when p is odd. We can however precisely determine the extent
of the failure, which relates to how p′–elements act on p–elements, a propagation
of the phenomenon we already saw in the Z/7 ⋊ Z/3 and Z/7 × Z/3 examples
from the beginning. Anyone care to walk the Brauer tree? More precisely, we
have to build into our model how the type function of Carlson–Thévenaz, as in
Theorem 4, interacts with “orientations”, i.e., the 1-dimensional representations
used to describe T (G,S) in Theorem 3. They arise when one restricts a moduleM
to rank 1 elementary abelian p–subgroups V , where the periodic resolutions, not
just the elements in Tk(V ), have to match up. (In fact checking on pZ(S) ∼= Z/p,
the rank one subgroup of elements of order at most p in the center of S, suffices.)
For a fixed kG–module M we need to consider the assignment

(*) V̄ = [V0 ≤ · · · ≤ Vn] 7→ (nV0 , ϕV̄ )

where M |V0
∼= ΩnV0 k, and ϕV̄ ∈ Hom(NG(V̄ ), k×) is obtained by considering the

action of NG(V̄ ) = NG(V0)∩ · · · ∩NG(Vn) on the 1-dimensional Tate cohomology

group ĤnV (V ;M). The second factor captures the p′–part of the residual NG(V̄ )–
action on ΩnV0k. When rkp(V0) ≥ 2 the integer nV0 is uniquely defined, whereas
for rkp(V0) = 1 there is an ambiguity, due to the periodicity of the resolution of
M |V0 . Furthermore, when p is odd, changing nV0 also changes the NG(V̄ )–action,
as we already saw for Z/7 ⋊ Z/3, and we have to adjust for this dependency.
However, this is all that is needed, and our main classification theorem reads as
follows:

Theorem 5 ([BGH]). Let G be a finite group with Sylow p–subgroup S, which is
not cyclic, semi-dihedral, or quaternionic. Then
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Tk(G)
∼=
−→ {{(nV0 , ϕV̄ )} ∈ lim

V̄ ∈|Ap(G)|/G
F (V̄ ) | {nV0} satisfies the “CT-conditions”}

via (*), with F (V̄ ) = (Z×Hom(NG(V̄ ), k×))/R(V0) ,

and R(V0) =

{
0 for rkp(V0) ≥ 2
〈(mp, νV0)〉 for rkp(V0) = 1

Here νV0 is the 1–dimensional character on NG(V̄ ) obtained by restriction of
NG(V0)→ Aut(V0) ∼= F×

p → k×, and mp = 1 if p = 2 and 2 otherwise.

Note that the Carlson–Thévenaz conditions are only conditions on S. Since the
extra compatibility condition is trivial for p = 2 we get that, for S as above,

Tk(G) ∼= {{nV } ∈
∏

V ∈π0(|Ap(G)≥2|/G)

Z | {nV } satisfies the “CT-conditions” } × Tk(G,S).

Contrary to the expectation before our work, the image of

Tk(G)→ {{nV } ∈
∏

V ∈π0(|Ap(G)≥2|/G)

Z | {nV } satisfies the “CT-conditions”}

may be a proper subgroup when p is odd. E.g., for G = Sp2 , p odd, it has
index p − 1 and for G = PSL3(Fp), 3|p − 1, it has index 3. The cokernel will
however always be annihilated by p− 1 as one sees from our model. Furthermore
Tk(PSL3(Fp)) →֒ Tk(SL3(Fp)) has index 3 when 3|p− 1, with both groups torsion-
free, despite that SL3(Fp) → PSL3(Fp) induces an isomorphism on p–fusion; this
also implies that torsion-free generators for Tk(PSL3(Fp)) cannot be chosen to lie
in the principal block. These statements provide counterexamples to conjectures
of Carlson–Mazza–Thévenaz.

The way we prove Theorem 5 is by extending the identification of my earlier
theorem, Theorem 3, “to the right”; we keep the notation from that theorem.

Theorem 6 ([BGH]). There are exact sequences

0→ H1(O∗
p(G); k

×)→ Tk(G)
res
−−→ lim

O∗
p(G)op

Tk(−)
α
−→ H2(O∗

p(G); k
×)

and

0→ H0
G(|C|;H

1(−; k×))→ Tk(G)
res
−−→ lim

O∗
p(G)op

Tk(−)
β
−→ H1

G(|C|;H
1(−; k×)).

The maps α and β can be described explicitly, and provide the additional rela-
tions of Theorem 5. The key ingredient in proving these theorems is systematic use
of higher algebra. In particular, a theorem of Mathew provides a decomposition of
StModkG as an ∞–category, in terms of StModkP for p–subgroups P . This allows
us to get an obstruction theory whose obstructions we then identify and calculate
explicitly, leading to Theorems 6 and 5.
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On the space of commuting pairs in a Lie group

Simon Gritschacher

(joint work with Alejandro Adem and José Manuel Gómez)

Let G be a simply–connected and simple compact Lie group. The space of ordered
n-tuples of commuting elements in G,

{(g1, . . . , gn) ∈ G
n | gigj = gjgi} ⊆ G

n ,

is naturally identified with the space Hom(Zn, G) of group homomorphisms Zn →
G. It has the structure of a real algebraic variety, usually with complicated sin-
gularities. The study of varieties of commuting elements in algebraic groups has
a long history [6]. The interest in the topology of spaces of commuting elements
with a view towards their higher homotopical invariants is more recent [1].

In the talk I presented results, obtained in joint work with Alejandro Adem
and José Manuel Gómez, concerning the second homotopy group of the space
of commuting pairs Hom(Z2, G). The topology of Hom(Z2, G) is intricate, and
little is known about the homology even in simple cases such as SU(3). The
representation space Rep(Z2, G) := Hom(Z2, G)/G, obtained by factoring out the
adjoint action of G, describes the coarse moduli space of semistable GC-bundles
over an elliptic curve of genus one, which is known to have the structure of a
weighted projective space CP(n∨

0 , . . . , n
∨
r ) [4]. The weights are the coroot integers

of G, that is, the coefficients in the expansion of the coroot dual to the highest
root in terms of the simple coroots.

The main result presented in the talk was

Theorem. Let G be a simply–connected simple compact Lie group of rank r. Then

π2(Hom(Z2, G)) ∼= Z and π2(Rep(Z
2, G)) ∼= Z ,

and on these groups the quotient map
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Hom(Z2, G)→ Rep(Z2, G)

induces multiplication by the Dynkin index D = lcm(n∨
0 , . . . , n

∨
r ).

The Dynkin index is 1 for An (n ≥ 1) and Cn (n ≥ 2), 2 for Bn (n ≥ 3), Dn

(n ≥ 4) and G2, 6 for E6 and F4, 12 for E7, and 60 for E8.
It is not too difficult to see – by what has been known already – that the group

π2(Hom(Z2, G)) has rank one; the difficult part is to prove the rather surprising
fact that this group is torsionfree. The result should also be compared with the
fundamental fact from Lie group theory that π2(G) = 0 and π3(G) ∼= Z. The latter
group is represented by the homomorphism S3 ∼= SU(2)→ G corresponding to the
highest root of G. We show that the same homomorphism induces an isomorphism
π2(Hom(Z2, SU(2))) ∼= π2(Hom(Z2, G)).

By the results of [5], and by standard arguments with the universal cover, our
calculations apply to a wider class of groups.

Corollary. Let G be a connected real or complex reductive algebraic group. Then

π2(Hom(Z2, G)) ∼= Zs ,

where s is the number of simple factors in g.

The theorem applies to the study of families of flat bundles over the 2-torus. A
homomorphism φ : Z2 → G is associated with a continuous map Bφ : BZ2 → BG
which classifies a flat principal G-bundle over the 2-torus BZ2 with holonomy
φ. (This bundle is necessarily trivial, since BG is 3-connected). The assignment
φ 7→ Bφ defines a continuous map from Hom(Z2, G) to the based mapping space
map∗(BZ2, BG). By reduction to the case G = SU(2) we obtain

Corollary. Let G be a simply–connected simple compact Lie group. Then the map

Hom(Z2, G)→ map∗(BZ2, BG)

induces an isomorphism on πi for all i ≤ 2.

Loosely speaking, the corollary implies that every principal G-bundle over S2×
(S1)2 is induced by an S2-family of holonomies Z2 → G, unique up to homotopy.

The proof of the theorem is based on the observation that

π2(Hom(Z2, G)) ∼= H2(EG×G Hom(Z2, G);Z) .

On the right is the Borel homology of the G-space Hom(Z2, G) with the adjoint
action, which can be calculated via the Atiyah-Hirzebruch spectral sequence

E2
s,t = HG

s (Hom(Z2, G);Ht) =⇒ Hs+t(EG×G Hom(Z2, G);Z) .

On the E2-page we have the Bredon homology of Hom(Z2, G), where Ht means
the coefficient system G/K 7→ Ht(BK;Z).

The groups E2
s,0 are the integral homology groups of Rep(Z2, G), which are the

homology groups of a weighted projective space and hence known by [3]. A direct
argument shows furthermore that E2

0,2 = 0.
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The calculation of the groups E2
s,1 requires a careful analysis of centralisers of

commuting pairs in G along the lines of [2]. The key idea is to study, for each
prime p, the space

XG(p) := {(x, y) ∈ Hom(Z2, G) | π0(Z(x, y))⊗ Z(p) 6= 0} .

We prove a decomposition

HG
s (Hom(Z2, G);H1) ∼=

⊕

p∈P

HG
s (XG(p);H1 ⊗ Z(p)) ,

where P is the set of torsion primes of G. We show that the restriction of the
coefficient system H1 ⊗ Z(p) to XG(p) is constant at Z/p in all cases except when
p = 2 and G = E7 or G = E8. In these cases the argument must be adapted, but
otherwise the calculation is reduced to the calculation of the mod-p homology of
XG(p)/G. We then proceed to show that XG(p)/G is homotopy equivalent to a
weighted projective space, of which the homology is known.

In the range considered, the analysis of the differentials in the spectral sequence
is straightforward, and no non-trivial extensions occur.
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Weight conjectures for p-compact groups and spetses

Radha Kessar

(joint work with Gunter Malle, Jason Semeraro)

We describe some of the results of the paper [4] which reveal new connections
between the local-global conjectures of modular representation theory of finite
groups, the theory of fusion systems, the theory of ℓ-compact groups, and the
representation theory of finite groups of Lie type. The local-global conjectures
considered are the Alperin weight conjecture and Robinson’s ordinary weight con-
jecture. Here, we will concentrate mainly on the Alperin weight conjecture, briefly
touching upon the Robinson ordinary weight conjecture at the end.

If k is an algebraically closed field of characteristic p, G is a finite group, B0 is
the principal block of kG, and Fp(G) is the fusion system of G (on some Sylow
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p-subgroup of G), then Alperin’s Weight Conjecture (AWC) predicts the equality

|ℓ(B0)| = w(Fp(G))

where, for a saturated fusion system F ,

w(F) :=
∑

P∈Fcr/F

z(kOutF(P )),

and the sum runs over F -conjugacy class representatives of F -centric, F -radical
subgroups (see [2, IV, Prop. 5.46]). Here, for a finite group H , z(kH) denotes
the number of isomorphism classes of projective simple kH modules and ℓ(B0)
denotes the number of isomorphism classes of simple B0-modules.

Let q be a prime power prime to p, G a connected reductive linear algebraic
group and F a Frobenius morphism on G with respect to an Fq-structure and
let e be the order of q-modulo p. By results of Geck-Hiss, Broué-Malle-Michel
and Cabanes-Enguehard (see [4, Prop. 4.1]), if p is very good for G, and B0 is the
principal block of kGF , then ℓ(B0) equals |Irr(We)|, whereWe is a certain complex
reflection subquotient of the Weyl group W of GF described via Lehrer-Springer
theory. Thus AWC for B0 is equivalent to the assertion

(1) w(Fp(G
F )) = |Irr(We)| .

Let X be a simply connected p-compact group with associated p-adic reflection
groupW and let τ be a self-equivalence ofX whose class in the outer automorphism
group of X is of p′-order. If p is odd, then Broto and Møller have shown that
the space of homotopy fixed points under τψq, where ψq is an unstable Adams
operator, is the classifying space of an p-local finite group (which they call a p-
local Chevalley group), and in particular the triple (X, q, τ) determines a saturated
fusion system F(τX(q)) on a finite p-group [3, Thm. A]. Moreover, the structure
of the underlying p-group is controlled by a certain Springer-Leher subquotient
We of the Weyl group W of X ([4, Theorem 3.6]). If W is rational and GF is
a group of Lie type associated to W as above, results of Friedlander–Mislin and
Quillen imply that for suitable X and τ , F(τX(q)) is the fusion system of GF on
a Sylow p-subgroup of GF and the equality (1) for the group GF is equivalent to
the equality

w(F(τX(q))) = |Irr(We)|.

If W is not rational, then in infinitely many cases, the fusion system F(τX(q))
is exotic, that is, there is no finite group G such that F(τX(q)) = Fp(G). Our
main result is that the above equality extends to the non-rational case.

Theorem 1. [4, Theorem 1] Let p > 2, X a simply connected ℓ-compact group, q
a prime power prime to ℓ and τ an automorphism of X whose image in the outer
automorphism group of X has finite order prime to p. If ℓ is very good for X,
then

w(F(τX(q))) = |Irr(We)|,

where e is the order of q modulo ℓ.
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The above result may be viewed as saying that a version of AWC holds for Cheval-
ley p-local finite groups. As a byproduct, we recover the validity of AWC for the
principal ℓ-blocks of simply connected groups of Lie type, in particular the previ-
ously unknown cases of types E6, E7 and E8, for all very good primes ℓ > 2. The
proof of the Theorem is on a case by case basis, the bulk being devoted to the
case of the generalised Grassmanians. This case is handled by developing an equi-
variant version of the Alperin–Fong proof of AWC for finite general linear groups
[1], combined with a result of Ruiz [5] identifying the relevant fusion systems as
subsystems of fusion systems of finite general groups.

In the second half of [4], combining the theory of spetses, Lusztig’s Jordan
decomposition of characters of finite groups of Lie type, and the structure of
centralisers of p-elements in p-compact groups, we associate to the triple (X, τ, q)
as above a finite set which plays the role of the set of ordinary character degrees
in the principal block of a finite group of Lie type. We formulate (and prove some
cases of) a version of Robinson’s ordinary weight conjecture in this context.
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Simplicity of fusion systems of finite simple groups

Bob Oliver

(joint work with Albert Ruiz)

For a prime p and a finite group G, the fusion system of G over a Sylow p-subgroup
S of G is the category FS(G) whose objects are the subgroups of S, and whose
morphisms are those homomorphisms between subgroups induced by conjugation
by elements of G. The fusion system of G thus encodes the conjugacy relations
among its p-subgroups and p-elements (its “p-local structure”). Motivated by con-
nections with modular representation theory, Lluis Puig in the 1990s defined the
concept of abstract fusion systems (first in unpublished notes and later published
in [Pg]): a (saturated) fusion system F over a finite p-group S is a category whose
objects are the subgroups of S, and whose morphisms are injective homomor-
phisms satisfying certain axioms motivated by properties of finite groups such as
the Sylow theorems (see [AKO, Definitions I.2.1–2]).
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Normal fusion subsystems and simple fusion systems are defined by analogy to
those of finite groups. One special case of this is that where the fusion system of a
subgroup Q E S is normal in a fusion system F over S: in this case, FQ(Q) E F
(usually writtenQ E F) if and only if each morphism ϕ in F extends to a morphism
between subgroups containing Q and sending Q to itself.

The fusion system of a finite simple group G need not in general be simple. For
example, if a Sylow p-subgroup S ≤ G is abelian, then by a theorem of Burnside
[Bu, § 123], FS(G) = FS(NG(S)), and hence S E FS(G) (i.e., FS(S) E FS(G)).

Our main result, described below, was to determine for exactly which known
finite simple groups G and which primes p the p-fusion system of G is simple. This
question had been studied and answered in most cases by Aschbacher in Chapter
16 of his memoir [A2], but a few cases (all involving groups of Lie type in cross
characteristic) were left open, and it was on those cases that we focused in our
work. We also corrected two errors found among Aschbacher’s conclusions. One
problem of particular interest was that of for which G and p, the p-fusion system
of G contains a normal subsystem of index prime to p that is exotic, and we were
able to describe that situation quite precisely.

Our detailed group-by-group results are summarized in the following theorem,
which depends on the classification of finite simple groups. In the theorem, by
analogy with the notation used for finite groups, Op′

(F) denotes the smallest
normal fusion subsystem of index prime to p (see [AKO, Theorem I.7.7]). Also,
a fusion system is realizable if it is isomorphic to the fusion system of some finite
group, and is exotic otherwise.

Theorem A ([OR, Theorems A and 4.8]). Fix a prime p and a known finite
simple group G such that p | |G|. Let S be a Sylow p-subgroup of G, and set
F = FS(G). Then one of the following holds: either

(a) S E F ; or
(b) p = 3 and G ∼= G2(q) for some q ≡ ±1 (mod 9), in which case |O3(F)| = 3,

and O3′ (F) has index 2 in F and is realized by SL3(q) (if q ≡ 1 (mod 9)) or
SU3(q) (if q ≡ −1); or

(c) p ≥ 5, G is one of the classical groups PSL±
n (q), PSp2n(q), Ω2n+1(q), or

PΩ±
2n+2(q) where n ≥ 2 and q 6≡ 0,±1 (mod p), in which case Op′

(F) is
simple and exotic; or

(d) Op′

(F) is simple, and it is realized by a known finite simple group G∗.

Moreover, in case (c), there is a subsystem F0 E F of index at most 2 in F with

the property that for each (saturated) fusion system E over S such that Op′

(E) =

Op′

(F), E is realizable if and only if it contains F0. In case (d), if p = 2, then F

is always simple (i.e., Op′

(F) = F).

Note that case (d) includes all cases where the fusion system is simple. Note
also that when p = 2, there are only two possibilities: either S E F (case (a)), or
F is simple (case (d)).
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Here are a few examples of pairs (G, p) where these four cases occur:

(a) By Burnside’s theorem, if S is abelian, then S E F , and we are in case
(a). But we also have S E F in a few other cases, including groups of Lie
type in defining characteristic p and of Lie rank 1 (e.g., (Sz(22n+1), 2) and
(PSU3(p

n), p)), and a few sporadic groups such as J3 when p = 3.
(b) As stated in Theorem A, if p = 3 and G ∼= G2(q) for q ≡ ±1 (mod 9), then

F contains a normal subsystem of index 2 (the fusion system of SL3(q) or
SU3(q)), and also contains a normal subsystem of order p. By comparison, if
G ∼= G2(q) for q ≡ ±2,±4 (mod 9), then S E F .

(c) The smallest example where case (c) occurs is the group G = SL20(2) for
p = 5. Here, G contains the group ΓL5(2

4) (the extension of GL5(F16) by its
field automorphisms), and F contains an exotic normal subsystem of index 4
containing the fusion system of GL5(2

4) (first shown by Ruiz [Ru]).
(d) When G is an alternating group An, and n ≥ 8 (if p = 2) or n ≥ p2 (if p is

odd), then F = FS(G) is simple whenever n ≡ 0, 1 (mod p) (in particular,
whenever p = 2). If n ≡ k (mod p) where 2 ≤ k < p, then F is isomorphic
to the fusion system of Σn and also that of Σn−k, and contains the fusion
system of An−k as a normal subsystem of index 2.

When G is a sporadic group and S 5 F , then F is simple in most cases.
But there are a few pairs (G, p), such as (M24, 3) or (He, 3), for which F is
almost simple, and contains a normal simple realizable subsystem of index 2
(in these two cases, Op′

(F) is the fusion system of M12).

Theorem A, and other results in our paper [OR], were originally motivated by
our work (still being written up) with Carles Broto and Jesper Møller, proving
tameness of all realizable fusion systems (see [AKO, § III.6.1] for more on tame-
ness, including the definition). While trying to determine automorphism groups of
certain realizable fusion systems, we found that it is first necessary to understand
more precisely the normal fusion subsystems of fusion systems of simple groups.
Independently of that, some of the results in [OR] were used in recent work of
Radha Kessar, Gunter Malle, and Jason Semeraro [KMS] to calculate weights
(in the context of the Alperin weight conjecture in modular representation theory)
attached to exotic fusions arising from homotopy fixed points of p-compact groups.
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Noncommutative Tensor Triangular Geometry

Daniel K. Nakano

(joint work with Kent B. Vashaw, Milen T. Yakimov)

Given a symmetric monoidal tensor triangulated category, Balmer [1] initiated the
study of tensor triangular geometry by viewing the category like a commutative
ring via its tensor structure. In his seminal work, he defined a categorical spectrum
and related this notion to the important concept of support datum. Recently,
the authors [4] developed a general noncommutative version of Balmer’s theory
that deals with an arbitrary monoidal triangulated category K (M∆C for short).
Noncommutative versions of Balmer’s theory were sought after before, however, for
various reasons, a general noncommutative version of tensor triangular geometry
had not been fully realized. There are many important M∆Cs, and one motivating
example is the stable module categories of finite dimensional Hopf algebras (which
are in general not cocommutative).

Prior attempts in the noncommutative setting focused on the fact that the
conditions on the objects in K do not satisfy the usual axioms for commutative
support data from [1]. These considerations attempted to mimic the treatment of
completely prime ideals in a noncommutative ring. In general there are too few
completely prime ideals so a new definition of prime ideal was introduced in terms
of tensoring thick ideals of K, and not to use object-wise tensoring. With this new
definition, completely prime ideals are prime ideals.

For arbitrary noncommutative rings, the prime spectrum of a ring is very hard to
describe as a topological space (e.g., the spectra of universal enveloping algebras of
Lie algebras and quantum groups). However, in the categorical setting, the authors
[4], were successful in developing strategies for computing the Balmer spectrum
Spc(K) that are as useful as the commutative counterparts. Furthermore, the set
of right ideals of a noncommutative ring are rarely classifiable with the exceptions
of very few rings. Surprisingly, in the categorical setting, we provide effective
methods to classify the thick right ideals of an M∆C.

In this talk, I will show how to construct a general noncommutative version
of Balmer’s tensor triangular geometry that is applicable for arbitrary monoidal
triangulated categories (M∆C). Insights from noncommutative ring theory is used
to obtain a framework for prime, semiprime, and completely prime (thick) ideals of
an M∆C, K, and then to associate to K a topological space–the Balmer spectrum
Spc(K).

We develop a general framework for (noncommutative) support data, coming
in three different flavors, and show that Spc(K) is a universal terminal object for
the first two notions (support and weak support). The first two types of support
data are then used in a theorem that gives a method for the explicit classification
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of the thick (two-sided) ideals and the Balmer spectrum of an M∆C. The third
type (quasi support) is used in another theorem that provides a method for the
explicit classification of the thick right ideals of K, which in turn can be applied
to classify the thick two-sided ideals and Spc(K). Applications will be given for
quantum groups and non-cocommutative finite-dimensional Hopf algebras studied
by Benson and Witherspoon [2].

The problem of whether the cohomological support map of a finite dimensional
Hopf algebra has the tensor product property has attracted a lot of attention fol-
lowing the earlier developments on representations of finite group schemes. Many
authors have focussed on concrete situations where positive and negative results
have been obtained by direct arguments.

At the end of the talk I will demonstrate that it is natural to study questions
involving the tensor product property in the broader setting of a monoidal triangu-
lated category. Using [5], we give an intrinsic characterization by proving that the
tensor product property for the universal support datum is equivalent to complete
primeness of the categorical spectrum. From these results one obtains information
for other support data, including the cohomological one. Two theorems are proved
giving complete primeness and non-complete primeness in certain general settings.

As an illustration of these methods, we solve a recent conjecture of Negron and
Pevtsova [6] on the tensor product property for the cohomological support maps
for the small quantum Borel algebras for all complex simple Lie algebras.
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Transfer in the homology and cohomology of categories

Peter Webb

Let RC denote the category algebra of the finite category C over the commutative
ringR. The cohomology ring of C overR isH∗(C, R) := Ext∗RC(R,R)

∼= H∗(|C|;R),
where R is the constant functor on C and |C| is the nerve of C. Similarly, the

homology of C over R is H∗(C, R) := TorRC
∗ (R,R) ∼= H∗(|C|;R). The isomorphisms

indicate both an algebraic and a topological definition of these groups, and are
explained in [8].
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These definitions extend the definition of group homology and cohomology to
arbitrary small categories, although we are interested only in finite categories here.
Because every finite CW-complex can be realized, up to homotopy, as the nerve
of a finite category, the cohomology of finite categories includes the cohomology
of such spaces, for instance, and there are many special cases of interest.

Group cohomology comes with several operations that relate the cohomology
of a group to that of subgroups and quotients; namely restriction, corestriction
or transfer, conjugation and inflation. We ask how similar operations can be
formulated for the cohomology of categories. For some of these operations the
answer is straightforward. If we are given a functor F : C → D, the induced
map |F | : |C| → |D| gives a contravariant map F ∗ : H∗(|D|) → H∗(|C|), and
this construction gives maps that generalize restriction, inflation and conjugation.
What about the transfer map? In what circumstances can this map be defined?
What properties should it satisfy? For instance, for finite groups these maps
satisfy relations that make cohomology a Mackey functor, and cohomology with
trivial coefficients both a global Mackey functor and an inflation functor, in the
terminology of [7].

The approach we take is to use the formalism of biset functors for categories,
extending the theory developed for groups that is documented in [4]. Biset functors
for categories were introduced in [9], and we summarize the construction. First, for
groups, if G and H are finite groups, a (G,H)-biset is a set GΩH with a left action
of G and a right action of H , so that these actions commute. This is the same
as a set with a left action of G × Hop and, if we regard G and H as categories
G and H with a single object and all morphisms invertible, it is the same as a
functor G ×Hop → Set. A biset for categories C,D is thus defined to be a functor
C × Dop → Set.

It turns out that such bisets for categories have already appeared in the litera-
ture, and are called distributors or profunctors. They were introduced in [5] and
[1], and an exposition is given in [2]. In particular, it is shown that there is a
product operation on distributors, associative up to natural isomorphism, giving
rise to a distributor bicategory where the objects are categories, the morphisms
are distributors and the 2-morphisms are natural transformations of distributors.

For our purposes we change this definition in two important ways: we linearize,
and we impose a relation. We define AR(C,D) to be the free R-module with the
finite (C,D)-bisets as basis with the following relation imposed: Ω ⊔ Ψ = Ω + Ψ.
Here the disjoint union Ω⊔Ψ of bisets Ω,Ψ is the biset whose value at the object
(x, y) of C × Dop is Ω(x, y) ⊔ Ψ(x, y). Now AR(C,D) is the free R-module with
basis the isomorphism types of (C,D)-bisets that are indecomposable with respect
to ⊔. We define the biset category B over R to have finite categories as objects,
and HomB(D, C) = AR(C,D), with composition given by the product of bisets. A
biset functor is an R-linear functor M : B→ R-mod.

The category of biset functors for categories has a number of properties that
extend those of biset functors for groups, but the aspect that interests us here
is that of defining H∗(C, R) and H∗(C, R) as biset functors in a suitable sense.



Cohomology of Finite Groups: Interactions and Applications 1225

We cannot define them as functors on B, because in the special case of groups,
group cohomology does not possess the deflation map enjoyed by biset functors in
general. In the case of groups, we get round this by using only bisets for which
the group action on one side is free. We now show how to extend this condition
to categories.

Employing an abuse of terminology, we will say that a functor Θ : C → Set is
representable if Θ ∼=

⊔
i Hom(xi,−), for some objects xi ∈ C. Usually this term

is reserved for the situation where there is only one object xi. We say that a
(C,D)-biset Ω is representable on the right if

⊔
x∈C Ω(x,−) is representable, with

a similar definition for representable on the left.

Theorem 1. If CΩD and DΨE are bisets that are representable on the left (or
right), then so is the biset product CΩ ◦ΨE .

Let B1,all be the subcategory of B obtained by using only bisets that are repre-
sentable on the left, and Ball,1 be the subcategory using bisets free on the right.
Our main theorem is the following. It is our solution to question of constructing
a transfer map.

Theorem 2. Let R be a field. Then C 7→ H∗(C, R) has the structure of a biset
functor on the category Ball,1, and C 7→ H∗(C, R) has the structure of a biset
functor on B1,all.

When the categories are groups our construction provides the usual notion of
restriction, transfer and inflation as the functorial effect of cohomology on the
bisets HGG, GGH , and GQQ, where H is a subgroup of G and Q is a quotient of
G. The proof of this result puts together a result on Hochschild homology and an
analogue for homology of the result of Xu [10] that the cohomology of a category
is naturally a summand of its Hochschild cohomology. The theorem on Hochschild
cohomology quotes independent work of Bouc and Keller and can be expressed as
follows.

Theorem 3 (Bouc [3], Keller [6]). Hochschild homology C 7→ HH∗(RC) has the
structure of a functor on B1,all.

In [10], Xu showed that there are canonical maps

H∗(C, R)→ HH∗(RC)→ H∗(C, R)

with composite the identity, providing a canonical decomposition HH∗(RC) =
H∗(C, R)⊕Y for some summand Y . We show that the same is true for homology.
For groups this splitting is well known. For categories, the argument goes via use
of the factorization category F (C) of Quillen.

We combine Xu’s decomposition with the construction of Bouc and Keller in
Hochschild homology, getting a definition of homology H∗(C, R) as a biset functor.
So far, the argument does not require R to be a field. When R is a field, H∗(C, R)
and H∗(C, R) are the homology and cohomology of a space (the nerve), and so
one is the dual of the other. Transporting the result for homology to its dual, we
obtain a dependence of cohomology as a biset functor.



1226 Oberwolfach Report 23/2020

References
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[3] S. Bouc, Bimodules, trace généralisée, et transferts en homologie de Hochschild, preprint

(1997).
[4] S. Bouc, Biset functors for finite groups, Lecture Notes in Mathematics 1990, Springer-

Verlag, Berlin, 2010.
[5] M. Bunge, Categories of Set-Valued Functors, Ph.D. Thesis, University of Pennsylvania,

(1966).
[6] B. Keller, Invariance and localization for cyclic homology of DG algebras, J. Pure Appl.

Algebra 123 (1998), 223–273.
[7] P.J. Webb, Two classifications of simple Mackey functors with applications to group co-

homology and the decomposition of classifying spaces, J. Pure Appl. Algebra 88 (1993),
265–304.

[8] P.J. Webb, An introduction to the representations and cohomology of categories, pp. 149-173
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Splittings of global Mackey functors and regularity of equivariant
Euler classes

Stefan Schwede

In 1962, Dold [3] published an elegant proof of Nakaoka’s splitting [8] of the co-
homology of symmetric groups. Dold’s proof only uses formal aspects of group
cohomology; his argument is a lot more general and also provides a splitting of
the values of global Mackey functors at symmetric groups. The relevant kind of
global Mackey functor has been studied under different names, for example as in-
flation functors [14] or global (∅,∞)-Mackey functors [6]. These objects are special
cases of biset functors [1], and they are equipped with restrictions, transfers and
inflations (but possibly no deflations).

Dold’s arguments from [3] also prove the following result.

Theorem. For every inflation functor F and every n ≥ 1, the restriction homo-
morphism

resΣn

Σn−1
: F (Σn) → F (Σn−1)

is a naturally split epimorphism.

I would not be surprised if this splitting were published somewhere in the algebraic
literature on the subject; however, I am not aware of a reference. Dold’s proof
proceeds as follows. We write

F (Σ; k) = ker(resΣk

Σk−1
: F (Σk)→ F (Σk−1))
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for the kernel of the restriction homomorphism. For k = 0, we interpret this as
F (Σ; 0) = F (e), the value of F at the trivial group; the group F (Σ; 1) is actually
trivial. For 0 ≤ k ≤ n, we write

p∗k,n−k : F (Σk) → F (Σk × Σn−k)

for the inflation homomorphism associated to the projection to the first factor,
and we write

trk,n−k : F (Σk × Σn−k) → F (Σn)

for the transfer along the inclusion of the block subgroup Σk × Σn−k inside Σn.
We define a natural homomorphism

ψk,n : F (Σ; k) → F (Σn)

as the following composite

F (Σ; k)
inclusion
−−−−−→ F (Σk)

p∗
k,n−k

−−−−−→ F (Σk × Σn−k)
trk,n−k
−−−−−→ F (Σn) .

For example, ψ0,n is inflation along the unique homomorphism Σn → Σ0, and ψn,n

is the inclusion F (Σ;n)→ F (Σn). The key observation is that these maps satisfy
the relation

resΣn

Σn−1
◦ ψk,n = ψk,n−1 ,

an almost immediate consequence of the double coset formula for the subgroups
Σn−1 and Σk × Σn−k of Σn. Induction on n then shows that the map

n∑

k=0

ψk,n :

n⊕

k=0

F (Σ; k) → F (Σn)

is an isomorphism and restriction from Σn to Σn−1 is a naturally split epimor-
phism.

Equivariant homotopy theory provides a more general kind of global Mackey
functor with values at all compact Lie groups. My main result is an analog of
Dold’s splitting for the values of these global Mackey functors at orthogonal, uni-
tary and symplectic groups. As a consequence of these splittings, certain long exact
sequences of equivariant homotopy groups decompose into short exact sequences.
This in turn implies that the Euler class of the tautological U(n)-representation
in homotopical equivariant bordism is a non zero-divisor.

A global functor in the sense of [11, Definition 4.2.2] is an additive functor from
the global Burnside category of [11, Construction 4.2.1] to the category of abelian
groups. In more explicit terms, a global functor specifies values on all compact Lie
groups, restriction homomorphisms along continuous group homomorphisms, and
transfers along inclusions of closed subgroups; this data has to satisfy a short list
of explicit relations that can be found after Theorem 4.2.6 of [11]. The data of a
global functor is equivalent to that of a functor with regular Mackey structure in
the sense of Symonds [12, §3, p.177]. When restricted to finite groups, we obtain
an inflation functor. My main result is now as follows.
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Theorem. For every global functor F , and every n ≥ 1, the restriction homo-
morphisms

res
O(n)
O(n−1) : F (O(n))→ F (O(n− 1)) ,

res
U(n)
U(n−1) : F (U(n))→ F (U(n− 1)) and

res
Sp(n)
Sp(n−1) : F (Sp(n))→ F (Sp(n− 1))

are naturally split epimorphism.

The families of alternating groups, special orthogonal groups and special unitary
groups have the same kind of structure as the symmetric, orthogonal, unitary
and symplectic groups; so one might wonder about the existence of splittings for
the values of global functors at An, SO(n) and SU(n). However, the restriction
homomorphisms between adjacent groups in these families do not split naturally,
except in some low-dimensional cases and for half of the special orthogonal groups.

The strategy of proof of the splitting theorem is the same as in Dold’s argument
presented above; the proof of the key relation

res
O(n)
O(n−1) ◦ ψk,n = ψk,n−1

now involves an instance of the double coset formula for the subgroups O(n −
1) and O(k) × O(n − k) of O(n), and here things become a little more subtle.
Every global functor satisfies a generalization of the double coset formula in the
context of compact Lie groups, see [5, IV §6] or [11, Theorem 3.4.9]. In this
generality, the double coset space is typically not discrete, and the statement of
the double coset formula is substantially more involved than for finite groups. The
double coset space comes with a stratification by locally closed subspaces that are
manifolds (typically not compact). The summands in the double coset formula
are indexed by the path components of these orbit type manifolds, and they have
integer coefficients given by internal Euler characteristics (i.e., Euler characteristics
based on compactly supported cohomology).

In the case relevant to us, the double coset space O(n−1)\O(n)/O(k)×O(n−k)
is a closed interval with orbit type stratification as the two endpoints and the
interior; the double coset formula thus has three terms, one of which has coefficient
−1, the internal Euler characteristic of the open interval.

The splitting theorem for global functors has several applications to equivariant
stable homotopy theory. Indeed, for every global equivariant spectrum X , i.e., an
object of the global stable homotopy category [11, Section 4], and every integer
m, the collection of m-th equivariant stable homotopy groups πG

m(X) naturally
forms a global functor as G varies over all compact Lie groups. Moreover, the
preferred t-structure on the global stable homotopy category shows that every
global functor arises in this way, see [11, Theorem 4.4.9]. The splittings thus
show that for every global equivariant spectrum X , the restriction homomorphism

res
O(n)
O(n−1) : π

O(n)
∗ (X) → π

O(n−1)
∗ (X) is a naturally split epimorphism. And the

analogous statements hold for unitary and symplectic groups.
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The splitting results imply regularity properties for certain equivariant Euler
classes of the global Thom spectrum MU defined in [11, Example 6.1.53]. For
every compact Lie group G, the underlying G-homotopy type of MU is that of
tom Dieck’s homotopical equivariant bordism [13]. These equivariant spectra have
received a lot of attention; for example, for abelian compact Lie groups, the equi-
variant cohomology theory represented by MU is the universal complex-oriented
equivariant cohomology theory [2, Theorem 1.2], and the equivariant homotopy
groups of MU carry the universal global group law [4, Theorem C].

Since the global theory MU is complex-oriented, every unitary representation
W of a compact Lie group G has an equivariant Euler class eG,W ∈MU2n

G , where
n = dimC(W ). The Euler class of the tautological U(n)-representation νn on
Cn and the restriction homomorphism from U(n) to U(n − 1) feature in a well-
known long exact sequence of equivariant homotopy groups. BecauseMU is global
spectrum, our splitting theorem implies that the restriction from U(n) to U(n−1)
is surjective, and the long exact sequence decomposes into short exact sequences,
leading to the following results.

Corollary. For every compact Lie group G, every character χ : G → U(1) and
every n ≥ 1, the Euler class of the (G × U(n))-representation χ ⊗ νn is a non
zero-divisor in the graded-commutative ring MU∗

G×U(n).

Corollary. For all k1, . . . , km ≥ 1, the Euler class of the tautological represen-
tation of the group U(k1) × · · · × U(km) is a non zero-divisor in the graded ring
MU∗

U(k1)×···×U(km).

Another consequence of our splittings for global functors are stable splitting of
global classifying spaces of orthogonal, unitary and symplectic groups. In the
model of [11], unstable global homotopy types are represented by orthogonal spaces,
continuous functors to spaces from the category of finite-dimensional inner prod-
uct spaces and linear isometric embeddings. An important example is the global
classifying space BglG of a compact Lie group G, see [11, Definition 1.1.27]. The
unstable global homotopy type of BglG ‘globally represents’ principal G-bundles
over equivariant spaces, see [11, Proposition 1.1.30]. In particular, the underlying
non-equivariant homotopy type of BglG is a classifying space for the Lie group G.

The global stable homotopy category GH is the localization of the category of
orthogonal spectra at the class of global equivalences [11, Definition 4.1.3]. The
global stable homotopy category is a compactly generated tensor triangulated
category, see [11, Section 4.4]. The 0-th G-equivariant homotopy group functor
πG
0 : GH → (abelian groups) is represented by the unreduced suspension spectrum

of BglG, compare [11, Theorem 4.4.3]. The natural splittings of O(n)-, U(n)-
and Sp(n)-equivariant stable homotopy groups thus correspond to splittings of
the representing objects. The upshot is:
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Corollary. For every n ≥ 0, there are sum decompositions in the global stable
homotopy category

Σ∞
+ BglO(n) ∼=

∨

k=0,...,n

Σ∞Bgl(O(k), O(k − 1)) ,

Σ∞
+ BglU(n) ∼=

∨

k=0,...,n

Σ∞Bgl(U(k), U(k − 1)) and

Σ∞
+ BglSp(n) ∼=

∨

k=0,...,n

Σ∞Bgl(Sp(k), Sp(k − 1)) .

Here Bgl(O(k), O(k−1)) denotes the unreduced mapping cone of the morphism
BglO(k− 1)→ BglO(k) induced by the embedding O(k− 1)→ O(k); it is globally
equivalent to the global Thom space of the global vector bundle associated with
the tautological O(k)-representation on Rk. And similarly for the unitary and
symplectic groups.

If we apply the forgetful functor from the global stable homotopy category to the
non-equivariant stable homotopy category, the above global splittings specialize to
the classical stable splittings due to Snaith [9, Theorem 4.2], [10, Theorem 2.2]
and Mitchell-Priddy [7, Theorem 4.1]. If G is a compact Lie group, we can apply
the forgetful functor [11, Theorem 4.5.23]

UG : GH → G-SH

from the global to the genuine G-equivariant stable homotopy category. This
forgetful functor turns the global splittings of BglO(n), BglU(n) and BglSp(n)
into G-equivariant stable splittings of the classifying G-spaces for G-equivariant
real, complex and quaternionic vector bundles. These equivariant splittings appear
to be new.
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Realizability of equivariant chain complexes

Marc Stephan

(joint work with Henrik Rüping)

A classical conjecture in the theory of transformation groups by Carlsson [Car86]
states that the sum of the mod-p Betti numbers of a finite, free (Z/p)n-CW complex
X 6= ∅ is at least 2n. An algebraic version [Car86, Conjecture II.2] (see also
[AS95]) of this conjecture predicted the same bound for the total dimension of
the homology of any finite, nonacyclic, free Fp(Z/p)n-chain complex. In [IW18]
Iyengar and Walker constructed counterexamples to this algebraic conjecture and
asked if they can be realized topologically in order to produce counterexamples
to Carlsson’s conjecture. In this talk, I explained that these counterexamples can
not be realized topologically.

The counterexamples are for n ≥ 8 and odd primes p. They arise as the mapping
cone

Cone(w : Σ2K∗ → K∗)

of multiplication with a certain cycle w of degree 2 of the Koszul complexK∗ of the
group ring Fp(Z/p)n. For arbitrary n ≥ 1, prime p and cycles w ∈ K∗, we classified
which mapping cones Cone(w : ΣrK∗ → K∗) can be realized topologically, where
r = deg(w).

Theorem 1 ([RS19, Theorem A]). There is a free (Z/p)n-space whose singular
chain complex is quasi-isomorphic to Cone(w : ΣrK∗ → K∗) as Fp(Z/p)n-chain
complexes if and only if w is a boundary or the degree of w is at most 1.

I focused on establishing nonrealizability, explaining the difficulty, a general
approach adapted from Carlsson’s solution [Car81] to the Steenrod problem [Las65,
Problem 51] that does not provide obstructions, and a new approach.

If an equivariant chain complex C∗ can be realized topologically as the singular
chain complex of an equivariant space, then its cohomology will have a multiplica-
tive structure. A challenge in establishing nonrealizability lies in not knowing how
this potential multiplicative structure looks like. Group cohomology helps to get a
handle on the multiplicative structure in the cohomology of the coinvariants of C∗.
For any finite group G, if a free FpG-chain complex C∗ is quasi-isomorphic to the
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singular chain complex C∗(X ;Fp) of a free G-space X , then H∗(C∗/G) becomes
a H∗(BG;Fp)-module. This action by the group cohomology can be calculated
algebraically from C∗, just as the multiplication in group cohomology can be de-
fined algebraically from any free resolution of the coefficient field. Moreover, the
annihilator ideal in H∗(BG;Fp) of the action must be closed under Steenrod oper-
ations and thus can provide obstructions to realizability. In general, this approach
does not provide obstructions for realizing Cone(w : ΣrK∗ → K∗).

The new approach is to use the interplay between group cohomology and the
multiplicative structure in the following spectral sequence. Compatibility with the
Steenrod operations gets replaced by compatibility with the differentials.

Theorem 2 ([RS19, Theorem B]). Let G = (Z/p)n. For any free G-space X,
there is a multiplicative spectral sequence with E1-page

E∗,q
1
∼= Hq(X/G;Fp)⊗

Fp[y1, . . . , yn]

(yp1 , . . . , y
p
n)

converging to Hq(X ;Fp). The differential d1 is determined by

d1(x⊗ yj) = (−1)|x|x ∪ aj ,

where the aj’s form an explicit basis of H1(BG;Fp).

It can be calculated algebraically from the associated cochain complex C∗(X ;Fp)
by filtration with powers of the augmentation ideal IL−k, where L is the nilpo-
tency index of I minus one. For the mapping cones Cone(w : ΣrK∗ → K∗), I
explained how to use the potential H1(BG;Fp)-action to produce contradictions
to the Leibniz rule, establishing the nonrealizability part of Theorem 1.

I concluded remarking that the spectral sequence from Theorem 2 extends to
any finite p-group G and asked for a group theoretic interpretation of the d1-
differential in general.
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Dade groups for finite groups and dimension functions

Ergün Yalçın

(joint work with Matthew Gelvin)

LetG be a finite group with Sylow p-subgroup S and let k be an algebraically closed
field of characteristic p > 0. We assume that all kG-modules are finitely generated.
A kG-module M is called an endo-permutation module if Endk(M) ∼= M∗ ⊗k M
is a permutation kG-module, i.e., if it has a G-invariant basis.

When G = S is a p-group, a group of endo-permutation modules is defined
as follows: An endo-permutation kS-module M is said to be capped if it has a
summand with vertex S. Two capped endo-permutation modules M and N are
said to be equivalent if M ⊕ N is an endo-permutation module, or equivalently
if M∗ ⊗ N is a permutation module. The Dade group D(S) of a p-group S is
defined to be the group whose elements are the equivalence classes of capped endo-
permutation kS-modules and whose group operation is induced by tensor product,
i.e., [M ] + [N ] := [M ⊗ N ]. The Dade group of a p-group has been studied by
Bouc, Thévenaz, Carlson, Mazza, and many others. A complete description of
D(S) in terms of the genetic sections of the group S is given by Bouc in [2].

When G is a finite group, the situation is more complicated since a transitive
permutation kG-module need not be indecomposable. A kG-module M is a p-
permutation module if it is a summand of a permutation kG-module. A kG-
module M is called an endo-p-permutation module if End(M) ∼= M∗ ⊗M is a
p-permutation module. Endo-p-permutation modules were studied by Urfer [6]
using an equivalence relation on the sources of endo-p-permutations modules, and
by Lassueur [5] by considering the class of strongly capped endo-p-permutation
modules. As a generalization of Lassueur’s definition of strongly capped endo-p-
permutation modules (see [5, Prop 5.2]), we define a notion of a Dade kG-module.

Definition 1. A kG-module M is a Dade kG-module if there is an integer n ≥ 0
such that

End(M) ∼= kn ⊕W

for some p-permutation module W , all of whose indecomposable summands have
vertices that are non-Sylow p-subgroups of G.

A Dade module is capped if it has a Sylow-vertex component, or equivalently if
n ≥ 1 in the above decomposition. We show that a Dade kG-module has a unique
cap up to isomorphism: If U and V are two Sylow-vertex components of a Dade
module M , then U ∼= V . We declare that two capped Dade modules M and N
are equivalent if M ⊕N is a Dade module.

Theorem 2. Let D(G) denote the set of equivalence classes of capped Dade kG-
modules under the equivalence relation defined above. Then the operation [M ] +
[N ] := [M ⊗ N ] defines an abelian group structure on D(G). The group D(G)
defined this way is isomorphic to the Dade group defined by Lassueur in [5].

One important source of Dade modules is the kG-modules defined as relative
syzygies. Given a G-set X , the kernel of the augmentation map ε : kX → k is
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called the relative syzygy of X , and is denoted by ∆(X). We show that if X is a
finite G-set such that XS = ∅, then ∆(X) is a capped Dade kG-module. For such
a G-set, we define ΩX := [∆(X)] in D(G). We extend this definition to all G-sets
by declaring ΩX = 0 whenever XS 6= ∅.

Definition 3. The subgroup of D(G) generated by the elements ΩX as X ranges
over all G-sets is called the Dade group generated by relative syzygies, and is de-
noted by DΩ(G).

For a finite group G and a fixed prime p, we denote by Fp the family of all
p-subgroups in G. A function f : Fp → Z that is constant on the G-conjugacy
classes of subgroups in Fp is called a superclass function. The set of superclass
functions defined on Fp forms a group under addition, denoted by C(G, p). For
each G-set X , there is a superclass function ωX defined by

ωX(P ) =

{
1 if XP 6= ∅,

0 otherwise

for every p-subgroup P ≤ G. One of our main results is the following:

Theorem 4. There is a well-defined surjective group homomorphism

ΨG : C(G, p)→ DΩ(G)

that sends ωX to ΩX for every G-set X.

We call the homomorphism ΨG the Bouc homomorphism for G since it is a
generalization of the homomorphism defined by Bouc [1] for p-groups.

When G = S is a p-group, the kernel of the Bouc homomorphism is completely
determined. Let C(S) denote the group of all superclass functions f : Sub(S)→ Z,
and Cb(S) denote the subgroup of C(S) formed by superclass functions satisfying
Borel-Smith conditions. It is known that Cb(S) is also equal to the image of the
dimension homomorphism Dim : RR(S)→ C(S) from the real representation ring
RR(G) to C(S) which sends a real G-representation V to the function Dim(V )
defined by

Dim(V )(P ) = dimR(V
P )

for all P ≤ S. Bouc and Yalçın [3] showed that the kernel of ΨS is equal to Cb(S),
and hence equals the image of the homomorphism Dim : RR(S)→ C(S).

A real G-representation V is called k-oriented if the NG(P )/P -action on the

reduced homology group H̃∗(S(V )P , k) ∼= k is trivial for every P ∈ Fp. The set
of isomorphism classes of k-orientable real representations forms a group under
direct sum, which we denote by R+

R (G, k). There is a group homomorphism

Dim : R+
R (G, k)→ C(G, p)

that takes a representation V to its dimension function Dim(V ). We prove the
following:

Theorem 5. The image of the dimension function Dim : R+
R (G, k) → C(G, p)

lies in the kernel of Bouc homomorphism ΨG : C(G, p)→ DΩ(G).
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As in the p-group case, it is possible to characterize the image of the dimension
homomorphism Dim : R+

R (G, k)→ C(G, p) by a set of conditions defined on certain
subquotients of G. Using this characterization we conclude that when p = 2, the
image of the homomorphism Dim is equal to Cb(G, 2), the group of superclass
functions in C(G, 2) satisfying the Borel-Smith conditions when restricted to a
Sylow 2-subgroup. This gives the following corollary of Theorem 5.

Corollary 6. There is a short exact sequence of abelian groups

0 // Cb(G, 2)
j

// C(G, 2)
ΨG

// DΩ(G) // 0

where the first map is the inclusion and the second map is the Bouc homomorphism
for G.

The proof of Theorem 5 relies on topological methods. A Moore G-space over
k relative to the family Fp is a G-CW-complex X such that for every P ∈ Fp,
the fixed-point subspace XP is a Moore space over k, i.e., the reduced homology

H̃∗(X
P ; k) is nonzero only in a single dimension. We show that the reduced

homology of an n-dimensional Moore G-space X whose point-stabilizers are all
non-Sylow p-subgroups is a capped Dade kG-module. Moreover, if Xi denotes the
G-set of i-cells of X , then the equality

[H̃n(X ; k)] =

n∑

i=1

ΩXi

holds inDΩ(G). This is analogous to [7, Thm 1.2] which proves the same statement
for Moore S-spaces when S is a p-group.

We then consider Moore G-spaces whose isotropy subgroups are arbitrary, in-
cluding the possibility that XS is nonempty. We prove a similar theorem in this
case, and apply it to a k-orientable real representation sphere X = S(V ) to obtain
that ΨG(Dim(X)) = 0 in DΩ(G). This gives the conclusion of Theorem 5.

It is an open question whether the equality Cba+(G, p) = kerΨG also holds
when p is odd. This is related to the question whether DΩ(G) has a well-defined
biset functor structure, which is also open.
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Varying the object sets of linking systems

Ellen Henke

Saturated fusion systems play a role in local finite group theory, in the modular
representation theory of finite groups and in parts of homotopy theory. The main
examples are the categories FS(G), whereG is a finite group, S a Sylow p-subgroup
of S, the objects of FS(G) are all subgroups of S, and the morphisms are the
conjugation maps by elements of G. In the same setting, there is also a category
LcS(G) defined which is called the centric linking system and is closely related to
FS(G). As shown by Broto, Levi and Oliver [3], we have BG∧

p ≃ |L
c
S(G)|

∧
p where

(·)∧p denotes the Bousfield-Kan p-completion functor.

In general, a saturated fusion system is a category F together with a p-group S
such that the objects of F are all subgroups of S and the morphisms in F are
injective group homomorphisms subject to certain axioms. If F is a saturated
fusion system over S, then the following are defined somewhat analogously to the
corresponding concepts in finite group theory:

(1) A normalizer NF (P ) and a centralizer CF (P ) for P ≤ S. If P is suitably
chosen in its F -isomorphism class, then NF (P ) and CF (P ) are saturated.

(2) Normal subsystems.
(3) Subnormal subsystems; here E is subnormal in F if there exists a “sub-

normal series” E = E0 E E1 E · · ·E Ek = F of subsystems of F .
(4) Components of F ; a component is a subnormal subsystem of F which is

(in a certain sense) a perfect central extension of a simple fusion system.
(5) A normal subsystem F ∗(F) called the generalized Fitting subsystem of F .

The precise notion of a normal subsystems as well as the definitions mentioned in
(4) and (5) are due to Aschbacher [1, 2] and play an important role in his program
to revisit the classification of finite simple groups using fusion systems.

Broto, Levi and Oliver [4] built the foundation for the homotopy theory of fusion
systems by introducing centric linking systems. The longstanding conjecture that
there is a unique centric linking system associated to each saturated fusion system
was first shown by Chermak [6] and subsequently by Oliver [12] using an impor-
tant idea from Chermak’s proof. Both proofs use originally the classification of
finite simple groups, but work of Glauberman–Lynd [9] removes the dependence
of Oliver’s proof on the classification. This leads also to a classification-free proof
of the Martino–Priddy conjecture, which was originally shown by Oliver.

Linking systems of a more general kind were defined and studied in [5], [11] and
[10]. If F is a saturated fusion system over a p-group S, the object set of a centric
linking system associated to F is the set Fc of centric subgroups of S, whereas the
object set of a linking system in the definition of Oliver [11] is a subset of the set
Fq of quasicentric subgroups. We will use our definition of a linking system [10],
which is the most general one currently in the literature. The object set of a linking
system in this definition is a subset of the set Fs of subcentric subgroups. The
existence and uniqueness of centric linking systems implies that there is a unique
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quasicentric linking system and a unique subcentric linking system associated to F
meaning linking systems whose object sets are the sets Fq and Fs respectively; see
[5] and [10]. More generally, given any set ∆ of subcentric subgroups of S, there
is a unique linking system with object set ∆ associated to F provided ∆ fulfills
some conditions which are necessary for such a linking system to exist. Every
linking system is a full subcategory of a subcentric linking system. Moreover,
the homotopy type of the nerve of a linking system depends not on the choice
of the object set; see [10]. If t is any of the symbols c, q or s (standing for the
centric, quasicentric and subcentric subgroups of a fusion system), then a further
interesting choice for the object set of a linking system is the set

Fδ(t) := {P ≤ S : (P ∩ F ∗(F))Op(F) ∈ F
t}.

We introduced this set in unpublished notes generalizing ideas of Chermak [7]. His
set δ(F) turns out to be equal to Fδ(s).

In the talk we outline the advantages and disadvantages of different object sets
of linking systems. The underlying problem is that there is no meaningful notion
of morphisms of linking systems. We ask however the more modest question how
linking systems associated to the saturated subsystems mentioned in (1),(2),(3)
(and thus to the subsystems mentioned in (4) and (5)) can be seen inside of
a linking system associated to F . The case (2) is here particularly important
as a basis for formulating an extension theory of fusion systems. We moreover
believe that understanding these concepts on the level of linking systems will lead
to simplifications in Aschbacher’s program. Already now our results enable us
(partly in joint work with Chermak) to revisit and significantly extend the theory
of fusion systems. Our new algebraic concepts allow us moreover to formulate
some conjectures about maps between p-completed nerves of linking systems.

To summarize now the answer to the above question, it turns out that a centric,
quasicentric or subcentric linking system associated to one of the saturated sub-
systems mentioned in (1) can be seen inside of a centric, quasicentric or subcentric
linking system associated to F . However, if E is a normal subsystem of F , then a
centric or quasicentric linking system associated to E can only in special cases be
seen inside of a centric or quasicentric linking system for F . In contrast, the sub-
centric linking system associated to E can be seen inside of the subcentric linking
system associated to F ; the same holds if we replace “subcentric” by “t-regular”
where t stands again for either of the symbols c, q or s. As a consequence, a sub-
centric or t-regular linking system associated to a subnormal subsystem of F can
be seen inside of a linking system associated to F which is subcentric or t-regular
respectively. However, in the case of subcentric linking systems it is not clear
that different subnormal series lead to the same embedding. Thus, when looking
at subnormal subsystems it is good to work with t-regular linking systems. This
becomes even more evident if one considers localities rather than linking systems.

The concept of a locality was introduced by Chermak [6] in the context of his proof
of the existence and uniqueness of centric linking systems. A locality is a “partial
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group” L together with a “Sylow p-subgroup” S, and a set ∆ of “objects”. Every
linking system corresponds to a locality with the same object set which we then call
a linking locality. Similarly we will talk about centric, quasicentric, subcentric and
t-regular linking localities. Because of the group-like structure of a locality, there
are natural notions of “partial normal subgroups” and thus of “partial subnormal
subgroups”.

Together with Chermak we proved that, for any linking locality L associated to
F , there is a one-to-one correspondence between the partial normal subgroups of
L and the normal subsystems of F . If L is a subcentric linking locality, then a
subcentric linking locality associated to a normal subsystem E can be seen inside
of the partial normal subgroup N corresponding to E . If L is instead t-regular,
then even N itself is a t-regular locality. As a consequence, there is a one-to-one
correspondence between the subnormal subsystems of the fusion systems and the
partial subnormal subgroups of an associated t-regular locality. This induces a
similar correspondence for components.

In Aschbacher’s program one needs to consider components of fusion systems as
well as the saturated normalizers and centralizers of p-subgroups from (1). It
seems however that there is no systematic way to see the t-regular linking locali-
ties associated to these normalizers and centralizers inside of the t-regular linking
locality associated to F . We propose therefore to work in this context with the
subcentric linking locality associated to F using results about components of such
localities which we proved together with Valentina Grazian.
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Constant Jordan type modules of Loewy length 2

Daniel Bissinger

In the modular representation theory of finite groups one direction of research has
been the study of modules via their restrictions to algebraic families of subalgebras
of type k[T ]/(T p), where p = char(k) > 0. One example are rank varieties, defined
by Carlson [5], for modules of elementary abelian p-groups.

More recently, modules of constant Jordan type and modules with the equal
images property were introduced by Carlson, Friedlander and Pevtsova [6] for
finite group schemes over k. They have been studied subsequently especially in
the context of elementary abelian p-groups [1, 7]: Let r ≥ 2 and Er

∼= (Z/(p))r be

an elementary abelian p-group of rank r and V be a k-complement of Rad2(kEr) in
Rad(kEr). A moduleM ∈ mod kEr has constant Jordan type, provided the Jordan
canonical form of the nilpotent operator xM : M →M,m 7→ x ·m is independent
of x ∈ V \ {0}. We let CJT(r) be the full subcategory of all modules of constant
Jordan type and denote for M ∈ CJT(r) its Jordan type by Jt(M) ∈ Np

0, i.e. for
each i ∈ {1, . . . , p} and each x ∈ V \ {0} the Jordan canonical form of xM has
exactly Jt(M)i blocks of size i.

When investigating the category CJT(r), the rank variety is not a suitable
tool as it only distinguishes projective and non-projective modules in CJT(r). A
more promising approach is to look at the map Φ: CJT(r) 7→ Np

0,M 7→ Jt(M) to
distinguish modules and get information about CJT(r). One of the main objectives
today in studying modules of constant Jordan type is to determine the image of
Φ, in other words to determine which tuples (a1, . . . , ap) ∈ Np

0 can be realized as
the Jordan type of a module in CJT(r).

Among other things, this is motivated by a connection between kEr-modules
of constant Jordan type and vector bundles on Pr−1. The connection has been
established by Benson and Pevtsova in [2] by means of functors Fi for 1 ≤ i ≤ p
that assign to each finite dimensional kEr-module a coherent sheaf Fi(M) on the
projective space Pr−1. Building on the foundational work by Friedlander-Pevtsova
[8], they proved that a module M has constant Jordan type if and only if Fi(M)
is an algebraic vector bundle for all i ∈ {1, . . . , p} and that in this case the rank of
Fi(M) is given by the number Jt(M)i. Hence one might hope that a classification
of indecomposable objects in CJT(r) and their Jordan types may lead to new
indecomposable vector bundles on Pr−1.

Unfortunately, such a classification is deemed hopeless as CJT(r) is of wild
representation type for (p, r) 6= (2, 2). One is therefore led to consider smaller
subcategories that might be easier to handle.

We investigate the full category CJT2(r) of modules of constant Jordan type
and Loewy length ≤ 2. Although these categories remain wild for r ≥ 3, consider-
ations in CJT2(r) have compared to the general case the advantage, that modules
of Loewy length ≤ 2 can be understood as representations for the Kronecker quiver
Γr with r arrows. The indecomposable representations in the category of finite di-
mensional representations rep(Γr) fall into three classes: there are the preprojective
ones, the preinjective ones and the regular ones. The preprojective and preinjective
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representations are well understood, whereas very little is known about the regular
representations for r ≥ 3.

We call an arbitrary non-zero representation X regular, provided every inde-
composable direct summand of X is regular. The building blocks of the full sub-
category reg(Γr) ⊆ rep(Γr) of regular representations are the so-called elementary
representations:

Definition. A non-zero regular representation E is called elementary, provided
there is no short exact sequence

0→ X → E → Y → 0

with X and Y non-zero and regular.

By definition each regular representation X possesses a filtration

0 = X0 ⊂ X1 ⊂ · · · ⊂ Xn = X

such that each filtration factor Xi/Xi−1 is elementary.
By considering the generic Jordan type for elementary representations and com-

bining our findings with Kac’s Theorem [9], we give a complete answer to the
realization problem for CJT2(r). By considering Φ(M) as an element in N2

0 (as
Φ(M)i = 0 for all M ∈ CJT2(r) and i > 2) this result may summarized as follows:

Theorem 1. ([4, 4.3]) Let r ≥ 2 and denote by indCJT2(r) the class of all
indecomposable modules in CJT2(r), then

Φ(indCJT2(r)) = {(a1, a2) ∈ N2 | r − 1 ≤ a1, qΓr
(a2, a1 + a2) ≤ 1} ∪ {(1, 0)},

where
qΓr

: Z2 → Z, x 7→ x21 + x22 − rx1x2
denotes the Tits quadratic form.

Moreover, we explain why an indecomposable module M ∈ mod kEr of Loewy
length ≤ 2 that satisfies

qΓr
((dimkM/RadkEr

(M), dimk RadkEr
(M)))+ dimkM − 2 dimk RadkEr

(M) ≥ 1

has the equal images property and therefore is an element in CJT2(r). This result
naturally leads to the following definition.

Definition. An element δ ∈ N2
0 has the equal images property, provided

(1) there exists an indecomposable kEr-module N of Loewy length ≤ 2 such
that δ = (dimkN/RadkEr

(N), dimk RadkEr
(N)), and

(2) every such indecomposable module has the equal images property.

We consider all dimension vectors δ ∈ N2
0 with the equal images property. Using

the universal covering of π : Cr → Γr and Kac’s Theorem, these dimension vectors
can be characterized by the Tits form as follows:

Theorem 2. ([3, 4.10, 5.1]) Let δ ∈ N2
0. The following statements are equivalent.

(i) The vector δ has the equal images property.
(ii) qΓr

(δ) ≤ 1 and qΓr
(δ) + δ1 − δ2 ≥ 1.
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Some exotic tensor categories in prime characteristic

David Benson

This talk was about joint work with Pavel Etingof and Victor Ostrik. Let k be an
algebraically closed field, and C a rigid abelian symmetric tensor category over k.
We shall also assume that C has a generator, under the operations of direct sum,
tensor product, and taking subobjects and quotient objects.

We say that an object X in C has moderate growth if for some Schur functor
Sλ we have SλX = 0. The tensor nth power functor has a filtration by Schur
functors, and the number of terms in the filtration grows worse than exponentially
with n. It follows that if X⊗n has finite length that grows at most exponentially
with n then X has moderate growth. The category C is said to be of moderate
growth if every object in C is.

Theorem 1 (Deligne [4]). If k has characteristic zero and C has moderate growth
then there exists a symmetric tensor functor from C to the category SVec(k) of
finite dimensional super vector spaces over k, that doesn’t kill any non-zero object.

A functor of this nature to a smaller and better understood category is called
a fibre functor. So the theorem says that in characteristic zero, with moderate
growth, there is always a fibre functor to SVec(k). This category has as its objects
the Z/2-graded finite dimensional vector spaces V = V0 ⊕ V1, with symmetric
braiding V ⊗W →W ⊗ V given by v ⊗ w 7→ (−1)|v||w|w ⊗ v.

As a consequence of this theorem, the Tannakian point of view (see for exam-
ple Deligne [3]) implies that C is equivalent to the category of finite dimensional
modules for an affine supergroup scheme G (plus a bit more structure).

In characteristic p, the same is no longer true. More targets are necessary for
the fibre functors. We say that C is finite if it is equivalent as an abelian category
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to the category of finite dimensional modules for a finite dimensional algebra. This
algebra is automatically self injective.

Theorem 2 (Ostrik [5]). If k has characteristic p and C is finite and semisimple
then there is a fibre functor from C to Verp.

Here, Verp is the Verlinde category, namely the semisimplification of rep(Z/p).
To semisimplify means to quotient out all maps f : X → Y with the property that
for all g : Y → X we have Tr(gf) = 0. There are p−1 objects S1, . . . , Sp−1 in Verp,
and the tensor product is determined by the statement that S2⊗Si

∼= Si−1⊕Si+1,
with the convention that S0 and Sp are taken to be zero. Note that for p odd, Verp
decomposes as a Deligne tensor product Ver+p ⊠ SVec(k), where Ver+p has simples
S1, S3, . . . , Sp−2. So for example we have Ver2 = Vec(k) and Ver3 = SVec(k).

For non-semisimple C the theorem is no longer true. For example, in charac-
teristic two, we have a category C1 whose objects are pairs (V, d) with V a finite
dimensional vector space and d an endomorphism satisfying d2 = 0. We put the
usual tensor product on this, so that d(v ⊗ w) = d(v) ⊗ w + v ⊗ d(w), but the
symmetric braiding is given by x ⊗ y 7→ y ⊗ x + dy ⊗ dx. This category does not
fibre over Vec(k). The category C1 appears in algebraic topology as the target for
Morava K-theory in characteristic two.

This turns out to be part of an infinite sequence of examples that are incom-
pressible in the sense that they do not fibre over anything smaller. We call these
categories Verpn by analogy with the non-symmetric versions in characteristic zero.
The following theorem was proved with Etingof [1] in characteristic two, and with
Etingof and Ostrik [2] in general.

Theorem 3. There are incompressible finite rigid abelian symmetric tensor cat-
egories Verpn ⊇ Ver+pn in characteristic p with the following properties.

(1) For p = 2 we have Vec = Ver2 ⊆ Ver+22 ⊆ Ver22 ⊆ Ver+23 ⊆ · · ·

(2) For p odd we have Verpn = Ver+pn ⊠ SVec(k), and

SVec(k) �
�

// Verp
� �

// Verp2
� �

// · · ·

Vec(k)
� �

//
?�

OO

Ver+p
� �

//

?�

OO

Ver+p2

� �
//

?�

OO

· · ·

(3) For n ≥ 2, Verpn is not semisimple.
(4) Verpn has pn−1(p− 1) isomorphism classes of simple modules.

(5) The Grothendieck ring of Ver+pn is isomorphic to Z[2 cos(π/pn)].

It is plausible that this is a complete list, and that every finite rigid abelian
symmetric tensor category in characteristic p fibres over the union Verp∞ .

The construction of the categories Verpn uses tilting modules for SL(2, k), and
is described in detail in [2]. Here is a brief sketch. Let Ti be the ith tilting module,
numbered so that T0 = k and T1 is the natural two dimensional module. Then
Tpn−1 = Stn, the nth Steinberg module of dimension pn. The category Verpn ,
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as an abelian category, is representations of the endomorphism ring E = End(T )

where T =
⊕pn−2

i=pn−1−1 Ti. Furthermore, the symmetric tensor structure also comes

through projective resolutions from SL(2, k). The point here is that projective
E-modules correspond to modules in Add(T ), so we know the symmetric tensor
structure on projective resolutions. The crucial property is that this tensor product
is exact, so that when we tensor together two projective resolutions of E-modules,
we get a projective resolution of some E-module, and that gives the candidate for
the tensor product.

We have a conjecture for the Ext ring of the tensor identity in these categories,
and we plan to write a paper about this in the near future.

References

[1] D. J. Benson and P. Etingof, Symmetric tensor categories in characteristic 2, Adv. in Math.
351 (2019), 967–999.

[2] D. J. Benson, P. Etingof, and V. Ostrik, New incompressible symmetric tensor categories
in positive characteristic, arXiv:2003.10499. Preprint, 2020.

[3] P. Deligne, Catégories tannakiennes, The Grothendieck Festschrift II (P. Cartier, ed.),
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The endomorphism ring of the trivial module

Jon F. Carlson

Let k be a field of characteristic p > 0, algebraically closed, and let G be a
finite group. Assume that kG-modules are finitely generated unless otherwise
indicated. We work in the stable category stmod(kG) that has all finitely gen-
erated kG-modules as objects and morphisms (for M and N objects) given by
HomkG(M,N) = HomkG(M,N)/PHomkG(M,N) where PHom means homomor-
phisms that factor through projective modules.

The support variety VG(M) of a kG-module M is the closed set of all primes in
the projectivized prime ideal spectrum of H∗(G, k) that contain the annihilator of
Ext∗kG(M,M). A subcategoryM in stmod(kG) is thick provided it is triangulated
and closed under taking direct summand. It is a thick tensor ideal if in addition
it has the property that if M is inM and N is any finitely generated kG-module,
then M ⊗N is inM. We know [2] that ifM is a thick tensor ideal in stmod(kG),
then there exists a collection V of subvarieties of VG(k) which is closed under
specializations and finite unions such thatM is the subcategory of all kG-modules
M with VG(M) ∈ V .

If M is a thick subcategory of a triangulated category C, then the Verdier
localization of C at M is the category whose objects are the same as those of C
and whose morphisms are obtained by inverting a morphism if the third object in
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the triangle of that morphism is in the subcategoryM. Thus, a morphism from
L to N in the localized category has the form

L
γ

// M N
θ

oo

where the third object in the triangle of the map θ is in M. So in the localized
category, θ−1γ is a morphism.

Jeremy Rickard has shown in [3] that that associated to a thick tensor idealM
there is a triangle of idempotent modules

. . . // EM
µ

// k // FM
ν

// . . .

This is a triangle in the stable category of all kG-modules. This has the property
that any map from an object M inM to k factors through µ, In turn this implies
that for any map θ : k → N such that the third object in the triangle of that map
is inM, there is a map φ :M → FM such that φθ = ν. Indeed, it can be shown,
in the case that set V is the collection of all subvarieties of a fixed closed set, that
F is a homotopy colimit of a sequence

k ⊆ F1 ⊆ F2 ⊆ F3 ⊆ . . . · · · ⊆ F

of finitely generated modules such that for any such θ as above, and for n large
enough, there is a map φ′ : M → Fn with φ′θ equal to the inclusion of k in Fn.
Thus any endomorphism of the trivial module in the Verdier localization can be
taken to have the form ζ−1γ where for some n, ζ and γ map k to Fn. The third
object in the triangle of ζ is inM.

We consider finite groups of the form G = H × C where C is a cyclic group of
order 2. Let z be a generator for C, and Z = z + 1, so that kC ∼= k[Z]/(Z2) and
kG ∼= kH ⊗ k[Z]/(Z2). Let V = res∗G,C(VC(k)), the image under the map induced
by restriction to C. LetM =MV , the thick tensor ideal of all modules M with
VG(M) ⊆ V , and let C be the localization of stmod(kG) atM.

Suppose that

. . . // P2
∂

// P1
∂

// P0
ε

// k // 0

is a minmal projective kH-resolution of k. Let E be the module whose restriction
to H is the infinite direct sum P0⊕P1⊕P2⊕ . . . , with the element Z acting by the
boundary map ∂. Because ∂2 = Z2 = 0, the module is well defined. In addition,
the augmentation provides a map µ : E → k.

Similarly, let F be the kG-module which when restricted to H is the direct sum
k ⊕ P0 ⊕ P1 ⊕ P2 ⊕ . . . . Here the action of Z is by the boundary homomorphism
in addition to the relation that Zm = ε(m) for m ∈ P0. We have a natural map
ν : k → F that sends k to the first direct factor. The critical result is that we
have a triangle

. . . // E
µ

// k
ν

// F // . . .

and it is the canonical triangle for the thick tensor ideal M. That is, E ∼= EM
and F ∼= FM. These are idempotent modules and the universal properties are
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satisfied. Proving this fact requires mostly computing the support varieties of the
modules.

The structure for the idempotent modules leads us to the main theorem.

Theorem: In the described situation we have an isomorphism of rings

EndC(k) ∼= Ĥ
≤0

(H, k),

the ring of negative Tate cohomology. This says that for any finite group H the
negative cohomology ring of H is realized as the endomorphism of the trivial
module in a Verdier localization of stmod(kG) for an extension G of H .

The point is that HomkH(k, Pn) ∼= Ĥ
−n−1

(H, k). So the equation in the theorem
is correct as vector spaces. We need only worry about compositions. But it can
be shown that the composition is really chain maps on the projective resolution
and this is the definition of the cup product in negative cohomology [1].

An immediate corollary of the theorem is that if H is an elementary abelian
group of rank 2 or more, then EndC(k) is an infinitely generated local ring whose
radical has square zero [1]. A similar thing should be true in other cases where H
has 2-rank at least two.

We note that all of the above is generalized to odd characteristics p > 2, and it
is also proved in the case that G and H are finite group schemes. The assumption
that G and H are groups or group schemes guarantees us that the cohomology is
finitely generated. But in the end, while we need the algebras to be cocommutative
Hopf algebras, it makes little difference what the coalgebra structure is.
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Equivariant formal groups and bordism rings

Markus Hausmann

1. Introduction: Quillen’s theorem

In [Qui69], Quillen proved that the complex bordism ring MU∗ is isomorphic to
the Lazard ring carrying the universal formal group law. This theorem provides a
bridge from the algebraic theory of formal group laws to the stable homotopy cat-
egory, which since then has proved to be one of the main organizational principles
for studying the latter.

One example for this principle is the thick subcategory theorem [HS98] due
to Hopkins–Smith, which can be rephrased as the computation of the Balmer
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spectrum [Bal05] of the category of finite spectra. The generalized homology
theory MU∗(−) gives rise to a support theory on the category of finite spectra by
sending a finite spectrum X to the support of MU∗(X). Here, MU∗(X) is viewed
as a comodule over the Hopf algebroid (MU∗,MU∗MU) classifying formal group
laws and their strict isomorphisms, and the support is taken in the invariant prime
ideals ofMU∗. The thick subcategory theorem can then be phrased as saying that
this support theory is the universal one, inducing a homeomorphism between the
the Zariski spectrum of invariant prime ideals of the Lazard ring and the Balmer
spectrum of finite spectra.

2. An equivariant version

This talk concerned an equivariant version of Quillen’s theorem over abelian com-
pact Lie groups A. The relevant equivariant generalization of MU is the homo-
topical A-equivariant bordism spectraMUA introduced by tom Dieck [tD70]. The
notion of an A-equivariant formal group law was first defined by Cole–Greenlees-
Kriz [CGK00] (building on Cole’s thesis [Col96]), as a certain quintuple

(k,R,∆, θ, y(ǫ))

consisting of a commutative ground ring k, a complete commutative topological k-
algebra R, a comultiplication ∆: R→ R⊗̂kR, an augmentation θ : R→ kA

∗

and a
coordinate y(ǫ) ∈ R, satisfying various conditions. Here, A∗ = Hom(A,T) denotes
the dual group. The augmentation θ : R→ kA

∗

is equivalent to an A∗-action on R
that is compatible with the coproduct. Non-equivariantly, the conditions this data
needs to satisfy imply that R is a power series ring over k on the coordinate y(ǫ),
but in the equivariant case R is generally more complicated.

The authors of [CGK00] also showed:

(1) There exists a universal A-equivariant formal group law, defined over an
A-equivariant Lazard ring LA.

(2) The coefficients of any A-equivariant complex oriented cohomology theory
E carry an A-equivariant formal group law with R = E∗(CP (UA)) the
value of E at the base space of the universal A-equivariant line bundle.

Since MUA is canonically complex oriented, one obtains a map

ϕA : LA → (MUA)∗

and the A-equivariant version of Quillen’s theorem amounts to showing that this
map is an isomorphism. First progress was made by Greenlees [Gre00, Gre01] who
showed that for finite A the map ϕA is surjective, and that the kernel consists of
Euler-torsion and Euler-divisible elements. In [HW18], Hanke–Wiemeler proved
that ϕC2 is an isomorphism, bulding on an explicit presentation of (MUC2)∗ given
by Strickland [Str01]. In [Hau19] we proved the general case:

Theorem 1 (H.). The map

ϕA : LA → (MUA)∗

is an isomorphism for every abelian compact Lie group A.
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2.1. Balmer spectra. Given this theorem, one may hope that as in the non-
equivariant case the theory of A-equivariant formal group laws gives a good ap-
proximation to the category of A-spectra. In joint work with Lennart Meier, we
show that at least with respect to the Balmer spectrum of finite A-spectra this is
indeed the case, in a similar way to the non-equivariant thick subcategory theorem
sketched in the introduction.

The Balmer spectrum of the category SpcA of finite A-spectra for abelian A was
determined in the three papers by Balmer–Sanders [BS17], Barthel–H.–Naumann–
Nikolaus–Noel–Stapleton [BHN+19] and Barthel–Greenlees–H. [BGH20]. The
main tool in all three papers are the geometric fixed point functors for closed sub-
groups of A, to pull back information from the category of non-equivariant finite
spectra. The following theorem shows that the result again allows an algebro-
geometric interpretation in terms of equivariant formal groups:

Theorem 2 (H.–Meier). The assignment

SpcA → Specinv(LA)

X 7→ supp((MUA)∗X)

is the universal support theory on SpcA, i.e., it induces a homeomorphism

Specinv(LA) ∼= Spc(SpcA)

from the Zariski spectrum of invariant prime ideals of LA (with respect to strict
isomorphisms of A-equivariant formal group laws) and the Balmer spectrum of the
category of finite A-spectra.

3. Idea of proof and global version

The main tool in the proof of Theorem 1 is the global equivariant structure, which
helps us to obtain a better understanding of equivariant Lazard rings. The various
Lazard rings assemble to a functor

Lgl : (ab. compact Lie groups)
op → comm. rings

A 7→ LA,

and the universal Euler class e ∈ LT forms a distinguished element at the circle
group T. The main observation used in the proof is that the pair (Lgl, e) allows a
global characterization that looks quite different from the universal properties of
the individual values LA:

Theorem 3 (H.). (1) For every torus A and split surjective character V : A→
T the sequence

0→ LA
eV ·
−−→ LA

resAker(V )
−−−−−→ Lker(V ) → 0

is exact. Here, the first map is given by multiplication with the Euler class
eV (the pullback of e ∈ LT along V ), and the second map is restricting to
the kernel of V .

(2) The pair (Lgl, e) is initial under functors with this property.
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We call a contravariant functorX from abelian compact Lie groups to commutative
rings equipped with an element at the circle group satisfying the analog of the exact
sequences above a ‘global group law’. Hence, the pair (Lgl, e) is the initial global
group law. The motivation for this definition comes from global homotopy theory
[Sch18]: Given a complex oriented ring spectrum E, the sequences

0→ EA
eV :
−−−→ EA → Eker(V )→0

are (split) exact as a consequence of the A-equivariant cofiber sequence

A/ ker(V )+ → S0 → SV ,

the complex orientation and the global functoriality. In particular this holds for
global complex bordism MU (see [Sch18, Example 6.1.53]), which restricts to
MUA at a fixed A.

The reason the characterization in Theorem 3 is useful is that it tells us some-
thing about the regularity of Euler classes in Lazard rings, which was the major
issue in previous approaches to proving the equivariant Quillen theorem. In par-
ticular, Theorem 3 directly implies that when A is a torus and V ∈ A∗ is split,
then eV ∈ LA is a regular element.

The main remaining work in showing that LA → (MUA)∗ is an isomorphism
is to show that (Lgl, e) in fact has even stronger regularity properties: The Euler
classes of all non-trivial characters for tori are regular elements; more generally,
given a linearly independent tuple V1, . . . , Vn of characters over a torus A, the
sequence (eV1 , . . . , eVn

) of Euler classes in the Lazard ring LA is regular. These
properties are not shared by the coefficients of complex oriented global theories
in general, but do hold for MU as a consequence of the theorem (due to Löffler
[Löf73] and Comezaña [Com96]) that for abelian A the homotopy groups (MUA)∗
are concentrated in even degrees.

Remark 1. Finally we remark that there is a similar story for A-equivariant real
(unoriented) bordism MOA, see [Hau19, Section 4]. Here, the family of abelian
compact Lie groups needs to be replaced by the family of elementary abelian 2-
groups, and the formal groups that arise are all 2-torsion.
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Extensions of simple biset functors

Serge Bouc

1. Introduction

Let R be a commutative ring (with identity element). The biset category RC over
R is defined as follows:

• The objects of RC are the finite groups.
• For finite groups G and H , the set HomRC(G,H) is the R-linear extension
RB(H,G) = R⊗ZB(H,G) of the double Burnside group B(H,G), i.e. the
Grothendieck group of the category of finite (H,G)-bisets, for relations
given by disjoint union decomposition.
• The composition of morphisms in RC is the linear extension of the usual
composition (also called tensor product) of bisets: if V is a (K,H)-biset
and U is an (H,G)-biset, then V ◦ U = V ×H U = (V × U)/H , where H
acts on the right the cartesian product V × U by (v, u) · h = (vh, h−1u).
• The identity morphism of the group G in RC is (the class of) the set G,
viewed as a (G,G)-biset by left and right multiplication.

The category RC is R-linear. A biset functor over R is an R-linear functor from
RC to the category R-Mod of all R-modules. Biset functors, together with natural
transformations of functors, form an R-linear abelian category FR.
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2. Extensions

2.1. Simple biset functors. The simple biset functors SH,W overR are paramet-
rized by pairs (H,W ), where H is a finite group, and W is a simple ROut(H)-
module. If S is a simple biset functor, then S ∼= SH,W if and only if H has minimal
order such that S(H) 6= {0}, and W = S(H).

For a finite group G, we denote by Φ(G) its Frattini subgroup (the intersection
of all the maximal proper subgroups of G), and by Soc(G) its socle (the subgroup
generated by all the minimal non trivial normal subgroups of G).

Definition 1. Let H and G be finite groups. We say that G is a Frattini faithful
quotient of H if there exists a surjective group homomorphism s : H ։ G such
that Ker s ∩ Φ(H) = 1.

Theorem 2. Let SG,V and SH,W be simple biset functors over a field F of char-
acteristic 0.

(1) If Ext1FF
(SG,V , SH,W ) 6= {0} then either G is a proper Frattini faithful

quotient of H, or H is a proper Frattini faithful quotient of G.
(2) If Soc(G) ≤ Φ(G) and Soc(H) ≤ Φ(H), then Ext1FF

(SG,V , SH,W ) = {0}.

2.2. Nilpotent groups.

Definition 3. ([4] Section 6) A finite nilpotent group G is called atoric if it cannot
be split as a direct product E × K, where E is a non-trivial elementary abelian
group.

One can show easily that a finite nilpotent group G is atoric if and only if
Soc(G) ≤ Φ(G). Moreover each finite nilpotent group has a well defined largest
atoric quotient G@, isomorphic to G/N , where N is any normal subgroup of G
maximal such that N ∩ Φ(G) = 1. If G and H are nilpotent finite groups, then
G@ ∼= H@ if and only if G and H have a common Frattini faithful quotient.
Moreover:

Theorem 4. Let SG,V and SH,W be simple biset functors over a field F of char-

acteristic 0. If G and H are nilpotent, and if Ext1FF
(SG,V , SH,W ) 6= {0}, then

G@ ∼= H@.

2.3. B-groups.

Definition 5. For a normal subgroup N of a finite group G, let

mG,N =
1

|G|

∑

X≤G
XN=G

|X |µ(X,G),

where µ is the Möbius function of the poset of subgroups of G.
The group G is a B-group ([1] Section 7.2.3 or [3] Definition 5.4.6) if mG,N = 0

for any non-trivial normal subgroup N of G.
The group G is a minimal B-group if G is a non-trivial B-group, and any

quotient B-group of G is either trivial or isomorphic to G.
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Recall ([3] Theorem 5.4.11) that any finite group G has a largest quotient B-group
β(G), well defined up to isomorphism. Let F be a field of characteristic 0. If H
is a B-group, then the dimension of SH,F(G) is equal to the number of conjugacy
classes of subgroups K of G such that β(K) ∼= H . Also recall ([3] Proposition
4.4.8) that the simple biset functor S1,F is isomorphic to the functor FRQ.

Theorem 6. Let SH,W be a simple biset functor over a field F of characteristic 0.
The following are equivalent:

(1) Ext1FF
(S1,F, SH,W ) 6= {0}.

(2) Ext1FF
(SH,W , S1,F) 6= {0}.

(3) The group H is a minimal B-group, and W = F.

Moreover if this holds, then Ext1FF
(S1,F, SH,W ) ∼= F ∼= Ext1FF

(SH,W , S1,F).

A finite group G is a minimal B-group if and only if:

• Either G is non-solvable, and then G contains a normal subgroup N ∼= Sk,
where S is a non-abelian simple group and k ≥ 1, the centralizer CG(N)
is trivial, the quotient G/N is cyclic and acts transitively on {1, . . . , k},
• Or G is solvable, and then either G ∼= Cp×Cp, where p is a prime number,
or G ∼= Fq ⋊ 〈λ〉, where Fq is a finite field of cardinality q, and λ is a
primitive element of Fq (with λ 6= 1 if q is prime).

2.4. Groups of odd order. Recall ([2]) that the assignment sending a finite
group G to the group B×(G) of units of its Burnside ring is a biset functor over F2.
By an observation of tom Dieck ([6] Section 1.5), based on a theorem of Dress ([5]),
Feit-Thompson’s theorem is equivalent to the assertion that B×(G) = {±1} (i.e.
dimF2 B

×(G) = 1) when G has odd order. This is a good motivation for studying
biset functors over F2, and for restricting them to groups of odd order, throughout
the rest of this section.

Definition 7. For a normal subgroup N of a finite group G of odd order, let

mG,N =
∑

X≤G
XN=G

µ(X,G)

be the image of mG,N in F2. The group G is a B2-group if mG,N = 0F2 for any
1 6= N E G. The group G is a minimal B2-group if G is a non-trivial B2-group,
and any quotient B2-group of G is either trivial or isomorphic to G.

One can show that any finite group of odd order has a largest quotient B2-
group β2(G), well defined up to isomorphism ([3], Remark 5.4.12). Moreover,
Feit-Thompson’s theorem has the following consequence:

Theorem 8. Let G be a group of odd order.

(1) β2(G) ∼= G/Φ(G). In particular G is a B2-group if and only if Φ(G) = 1.
(2) A simple functor SH,W over F2 is a subquotient of F2B if and only if

Φ(H) = 1 and W = F2.
(3) If H has odd order and Φ(H) = 1, then dimF2 SH,F2(G) is equal to the

number of conjugacy classes of subgroups K of G such that K/Φ(K) ∼= H.
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Theorem 9. Let SH,W be a simple biset over F2 (where |H | is odd). The following
are equivalent:

(1) Ext1FF2
(S1,F2, SH,W ) 6= {0}.

(2) Ext1FF2
(SH,W , S1,F2) 6= {0}.

(3) The group H is a minimal B2-group - that is H has odd prime order, and
W = F2.

Moreover if this holds, then Ext1FF2
(S1,F2 , SH,W ) ∼= F2

∼= Ext1FF2
(SH,W , S1,F2).
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On degree −1 operators in cohomology

Markus Linckelmann

(joint work with Dave Benson, Radha Kessar)

The purpose of this talk is to describe the content of the paper [2]. We describe
an algebraic recipe for calculating the components of the BV operator ∆ on the
Hochschild cohomology of a finite group algebra with respect to the centraliser
decomposition. We use this to investigate general properties of ∆ and to make
some computations for particular classes of finite groups.

1. Degree −1 operators on Ext∗A(U, V )

We start with an elementary construction principle for degree −1 operators on
Ext∗A(U, V ) determined by a central element in an algebra A which annihilates
both modules U and V . Let k be a commutative ring.

Theorem 1.1. Let A be a k-algebra, let z ∈ Z(A), and let U , V be A-modules.
Suppose that z annihilates both U and V . Let P = (Pn)n≥0 together with a surjec-
tive A-homomorphism π : P0 → U be a projective resolution of U , with differential
δ = (δn : Pn → Pn−1)n≥1. For notational convenience, set Pi = 0 for i < 0 and
δi = 0 for i ≤ 0. Then the following hold.

(i) There is a graded A-homomorphism s : P → P of degree 1 such that the
chain endomorphism δ ◦ s+ s ◦ δ of P is equal to multiplication by z on P .
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(ii) The graded k-linear map

s∨ = HomA(s, V ) : HomA(P, V )→ HomA(P [1], V )

sending f ∈ HomA(Pn, V ) to f ◦ s ∈ HomA(Pn−1, V ) for all n ≥ 0 is a
homomorphism of cochain complexes. In particular, s∨ induces a graded
k-linear map of degree −1

DA
z = H∗(s∨) : Ext∗A(U, V )→ Ext∗−1

A (U, V )

(iii) The graded map DA
z is independent of the choice of the projective resolution

P and of the choice of the the homotopy s satisfying (i). In particular, we
have DA

0 = 0.

Example 1.2. Let G be a finite group and g ∈ Z(G). Then g − 1 ∈ Z(kG)
annihilates the trivial kG-module k, and hence induces, by the above Theorem, a
degree −1 operator

Dg−1 : H∗(G, k)→ H∗−1(G, k)

In degrees 1 and 2, this takes the following form. Let ζ ∈ H1(G, k) = Hom(G, k).
Then Dg−1(ζ) = ζ(g) ∈ k = H0(G, k). Let η ∈ H2(G, k). Then η is represented
by a central group extension

1 // k // Ĝ // G // 1

where here k is the additive group structure on k. For h ∈ G denote by ĥ an inverse
image of h in Ĝ. Then Dg−1(η) is the group homomorphism G → k determined
by

Dg−1(η)(h) = [ĥ, ĝ] ∈ k = ker(Ĝ→ G) .

2. Background on Hochschild cohomology

Let A be a k-algebra such that A is projective as a k-module. By classical results
of Gerstenhaber, the Hochschild cohomology

HH∗(A) = Ext∗A⊗kAop(A,A)

of A is graded-commutative with respect to the cup product and carries a graded
Lie algebra structure of degree −1, called the Gerstenhaber bracket. In particular,
HH1(A) is a Lie algebra, canonically isomorphic to the quotient Der(A)/IDer(A)
of the Lie algebra Der(A) of k-linear derivations on A by the Lie ideal IDer(A) of
inner derivations.

If A = kG for some finite group G, then HH∗(kG) admits a degree −1 operator

∆ : HH∗(kG)→ HH∗−1(kG)

called the Batalin-Vilkovisky operator, or BV operator for short. The Gerstenhaber
bracket measures the failure of ∆ to be a graded derivation on HH∗(kG); that is,
we have

[x, y] = (−1)|x|∆(x, y) − (−1)|x|∆(x)y − x∆(y)

for homogeneous elements x, y in HH∗(kG). This formula implies in particular
that the cup product and the BV-operator determine the Gerstenhaber bracket.
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The Batalin-Vilkovisky formalism emerged in the early 1980s in theoretical physics,
giving rise to a rich literature. In the 2000s the BV-formalism appeared in the
context of symmetric algebras in papers of Tradler [15] and Menichi [10], and has
subsequently been used by many authors for calculations in HH∗(kG), including
Ivanov, Volkov, Menichi, Witherspoon, Zhou, and others.

The BV-operator ∆ in the Hochschild cohomology of finite group algebras can
be constructed as the dual of the Connes B-operator, obtained from the Connes
exact sequence relating Hochschild and cyclic (co-)homology

// HHn+1(kG)
I

// HCn+1(kG)
S

// HCn(kG)
B

// HHn+1(kG) //

Thus B◦I is a degree 1 operator on Hochschild homology of kG. Duality yields the
degree−1 operator ∆ on Hochschild cohomology of kG. More backgroundmaterial
for this section may be found in Benson [1, §§2.11–2.15], Loday [9, Chapter 7],
Burghelea [3], and Karoubi and Villamayor [6], for instance.

3. The centraliser decomposition of HH∗(kG)

Let G be a finite group. We have a canonical graded k-linear identification

HH∗(kG) = ⊕g∈G/∼ H∗(CG(g), k) ,

where the notation g ∈ G/ ∼ means that g runs over a set of representatives of
the conjugacy classes in G. Both sides are graded algebras, but this identification
is not an equality of graded algebras. Siegel and Witherspoon described in [14]
the cup product on the left side in terms of the decomposition on the right side.

As a consequence of the work of Burghelea [3], the Connes exact sequence
respects the centraliser decomposition. It follows that the BV operator ∆ :
HH∗(kG)→ HH∗−1(kG) preserves the centraliser decomposition; that is we have

∆ = ⊕g∈G/∼ ∆g ,

where ∆g : H∗(CG(g), k)→ H∗−1(CG(g), k).
In order to calculate the components ∆g of the BV operator, note first that g ∈

Z(CG(g)). It is easy to see that in order to calculate ∆g, we may therefore assume
that g ∈ Z(G). The following result relates ∆g to the construction principle of
degree −1 operators described above.

Theorem 3.1. Let g ∈ Z(G). Then g − 1 ∈ Z(kG) annihilates the trivial kG-
module, and we have

∆g = Dg−1 : H∗(G, k)→ H∗−1(G, k) .

It follows from the general properties of the construction of degree −1 operators
above that ∆g is a derivation on H∗(G, k), and that ∆g commutes with restriction,
transfer, Bockstein and Steenrod operations.
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4. Applications to the Lie algebra HH1(kG)

LetG be a finite group and let k be a field of prime characteristic p. ThenHH1(kG)
is a restricted Lie algebra; that is, in addition to the Lie algebra structure, there
is p-power map on HH1(kG), induced by mapping a derivation f on kG to the
p-fold composition f ◦ f ◦ · · · ◦ f (p times) of f .

Theorem 4.1 (Jacobson-Witt, 1940s). Let P be an elementary abelian p-group
of order at least 3. Then HH1(kP ) = Der(kP ) is a simple Lie algebra.

These Lie algebras, called Jacobson-Witt Lie algebras, were the first non clas-
sical finite-dimensional simple Lie algebras in prime characterstic. The combined
efforts of many authors have culminated in a classification of finite-dimensional
simple Lie algebras in characteristic p > 3. See [11] and [12] for more details.

Theorem 4.2 (Fleischmann-Janiszczak-Lempken [5]). Suppose that p divides the
group order of G. Then HH1(kG) is nonzero.

Perhaps surprisingly, the proof of this result requires the classification of finite
simple groups via the centraliser decomposition. The nonvanishing of HH1(kG)
is equivalent to the nonvanishing of Hom(CG(g), k) for some g ∈ G. Since the
additive group k has exponent p, this is in turn equivalent to the group theoretic
condition Op(CG(g)) < CG(g). Using the classification of finite simple groups,
it is verified in [5] that every finite group of order divisible by p has an element
satisfying this condition.

It is not known which simple Lie algebras can occur as HH1(kG), or more
generally, as HH1(B) for B a block of kG. The only simple Lie algebras presently
known to arise in this way are the Jacobson-Witt Lie algebras. For blocks with
one simple module, the following result shows that no other simple Lie algebras
arise in this way.

Theorem 4.3 (Linckelmann-Rubio [7]). Let B be a block of kG. Suppose that B
has a unique isomorphism class of simple modules. The following are equivalent.

(1) HH1(B) is a simple Lie algebra.
(2) HH1(B) is a Jacobson-Witt Lie algebra.
(3) B is Morita equivalent to kP for some elementary abelian p-group of order

at least 3.

By standard block theory, statement (3) is equivalent to the statement that B
is a nilpotent block with an elementary abelian defect group of order at least 3. It
is not known whether HH1(B) is nonzero for any block B with a nontrivial defect
group. There are a number of recent criteria for the solvability of HH1(B).

Theorem 4.4 (Eisele-Raedschelders [4], Rubio-Schroll-Solotar [13]). Suppose that
p = 2 and that B is a tame block not Morita equivalent to the Klein four group
algebra. Then HH1(B) is a solvable Lie algebra.

Theorem 4.5 (Linckelmann-Rubio [8], Rubio-Schroll-Solotar [13]). Let A be a
finite-dimensional split algebra over a field. Suppose that the quiver of A is a
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simple graph (that is, no loops or double arrows). Then HH1(A) is a solvable Lie
algebra.

We add to this some criteria when a finite p-group algebra yields a solvable Lie
algebra (in contrast to elementary abelian groups).

Theorem 4.6. Let P be an extraspecial finite p-group. Then HH1(kP ) is a solv-
able Lie algebra.

The proof combines the Siegel-Witherspoon formula and the above description
of the components of the BV operator.
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