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Abstract. Variational principles for evolutionary systems take advantage of
the rich toolbox provided by the theory of the calculus of variations. Such
principles are available for Hamiltonian systems in classical mechanics, gra-
dient flows for dissipative systems, but also time-incremental minimization
techniques for more general evolutionary problems. The new challenges arise
via the interplay of two or more functionals (e.g. a free energy and a dissi-
pation potential), new structures (systems with nonlocal transport, gradient
flows on graphs, kinetic equations, systems of equations) thus encompassing
a large variety of applications in the modeling of materials and fluids, in
biology, in multi-agent systems, and in data science.

This workshop brought together a broad spectrum of researchers from
calculus of variations, partial differential equations, metric geometry, and
stochastics, as well as applied and computational scientists to discuss and
exchange ideas. It focused on variational tools such as minimizing movement
schemes, optimal transport, gradient flows, and large-deviation principles for
time-continuous Markov processes, Γ-convergence and homogenization.

Mathematics Subject Classification (2020): 49-06, 35-06, 70-06, 58E30, 60F10, 82C05.

Introduction by the Organizers

Variational approaches to evolution systems are relevant to a number of seemingly
distant branches of mathematics and physical sciences, as well as, more recently,
data science. The variational structure provides a unifying theme that creates
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connections and a powerful viewpoint to study a large family of problems. Clas-
sically, this includes studies of geometric aspects like metric structures in infinite-
dimensional function spaces and of the geometry of relevant energy landscapes.
The connection with theory of optimal transport provides new insights into metric
spaces on the one hand and provides new tools for the theory of partial differ-
ential equations on the other hand. New directions include related, geometric,
variational descriptions to evolution in rate-independent systems, kinetic systems
(e.g. Boltzmann equation), fluid dynamics, systems of reaction-diffusion equa-
tions, as well as equations on discrete graphs. Connection to stochastic analysis
(in particular large-deviation principles) and statistical mechanics provide a rig-
orous connection between microscopic, particle-based, descriptions of the systems
and their macroscopic dissipative structure.

The tools that were developed during the last few decades have shed new light
on many evolutionary equations for models in mechanics, physics, chemistry, and
biology. Concrete examples include the Fokker–Planck equation, porous medium
equations, microfluidic systems and thin-film equations, interface evolutions, pat-
tern formation and evolution, coarsening, micromagnetics, superconductors, ma-
terials science (crack propagation, behavior of material defects, epitaxial growth,
grain boundary evolution), biological aggregation, many particle systems with in-
teractions and randomness, and geometric flows.

The aim of this workshop was to bring together researchers with a variety of back-
grounds and perspectives ranging from calculus of variations, partial differential
equations, stochastic analysis, to physics and numerical analysis for a stimulating
interchange of ideas. Further goal was to provide a group of promising young
researchers with opportunity to interact and have in extended discussions with se-
nior researchers in the relaxed setting that MFO provides. A challenge that arose
was the COVID-19 crisis that forced the workshop to run in a hybrid mode and
prevented more than half of the participants from being physically present. To
stimulate the exchange of ideas, seven discussion sessions were included in the pro-
gram. Some of them ran in parallel and enabled in-depth discussions of pertinent
problems in smaller groups. Nearly all of these separate discussion sessions were
planned on-the-fly in response to questions that arose in the regular presentations.

The facilities that MFO provided enabled a surprisingly effective interaction
between the in-person and online participants throughout the workshop. While
the essential aspect of direct human interaction was not available with online
participation, the efforts of many participants made the interactions effective and
created many insightful discussions.

There was a total of 26 talks, which were, due to the hybrid format of the
workshop, 30 minutes long. The talks discussed the following topics:

• gradient flows in systems with nonlocal transport (Tse, Schlichting)
• connection between (interacting) particle systems and the energy driven
systems that arise as their continuum limits (Daneri, Feng, Júngel, Hraiv-
oronska, Esposito, Jungel, Wolfram)
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• large deviation principles and microscopic description of energy driven
systems (Patterson, Renger, Zimmer)

• kinetic systems – gradient flow structure and asymptotic (Carrillo, Daneri)
• discrete interaction systems, evolution on graphs, and their metric and
variational interpretation (Erbar, Maas, Schlichting)

• optimal transport techniques and transportation distances (Benamou, Bre-
nier, Maas)

• energy-reaction-diffusion systems (Hopf, Stephan)
• exponential gradient structures and applications (Burger, Craig)
• gradient flows for measure sampling and quantization (Hoffmann, Iaco-
belli)

• waiting-time phenomena in dissipative systems (Matthes)
• regularity of solutions of free boundary problems (Figalli)
• rate-independent energy-driven systems (Knees)
• asymptotics of gradient flows (Westdickenberg)
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Jump Processes and Generalized Gradient Flows . . . . . . . . . . . . . . . . . . . . 1440

Franca Hoffmann (joint with Alfredo Garbuno-Iñigo, Wuchen Li, Andrew
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Abstracts

Exponential gradient structures

Martin Burger

Gradient structures such as gradient flows in metric spaces or generalizations
thereof have developed to an important tool in the analysis of nonlinear partial
differential equations and Markov processes recently. A particularly celebrated ex-
ample is the Fokker-Planck equation, which can be derived from discrete Markov
processes with jump rates depending exponentially on the potential difference be-
tween jump and target location. Though widely used, there are application cases
where it is not clear whether a potential difference is really the appropriate model,
instead a simple direct dependence on the potential may be more suitable. An
example is cell migration by chemotaxis, where the approach based on potential
differences is still under debate, since it is not clear that all cells can sense a gradi-
ent of an external field and the alternative approach is understood as local sensing
(cf. [8]).

The mathematical formulation of such local sensing problems leads to equations
of the form

(1) ∂tu = −L(eE′(u) − 1)

with a positive semidefinite operator L. We call equation (1) an exponential gra-
dient structure, if there exists an operator D and a positive semidefinite operator
M(v) such that

〈v, Lev〉 = 〈Dv,M(v)Dv〉.
The latter property guarantees the energy dissipation property

∂tE(u) = −〈E′(u), D(eE
′(u))E′(u)〉 ≤ 0.

Such models recently arise in a variety of applications, ranging from cell motion
(cf. [8, 1]) over collective animal behaviour (cf. [2]) to crystal growth (cf. [4, 7]).

The canonical examples are the negative Laplacian L = −∆ with D the usual
gradient and M(v) the multiplication with ev, or a (negative) graph Laplacian

(Lv)i =
∑

j

wij(vi − vj).

The simplest model of this kind might be a linear reaction equation

∂tu = −αu+ β,

with the linear operator L = αI and the energy E(u) = u logu + β
αu, which

however allows for several different gradient formulations due to the simplicity of
L. In this case we can choose D = I and M(v) is the multiplication with the
logarithmic mean v−1

log v . In the general case D is the graph gradient and M(v) is a

diagonal operator on edge functions multiplying by
vi−vj

log vi−log vj
.
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A paradigmatic case arises is the original model in jump processes (cf. [8]), where
jump rates are due to local distances (described by some kernelK) and exponential
statistics related to some potential V . This leads to

∂tu(xi, t) = −
∑

j

K(xi − xj)(e
V (xi)u(xi, t)− eV (xj)u(xj , t)),

giving an exponential structure as in (1) with L being the graph Laplacian arising
from kernel K and E(u) =

∑
i u(xi)(log u(xi) + V (xi)). In a localized continuum

limit we obtain again the structure with the local Laplacian

(2) ∂tu = ∆(eV u) = ∇ · (eV u∇(log u+ V ),

which displays the similarity to the classical Fokker-Planck equation

(3) ∂tu = ∇ · (∇u+ u∇V ) = ∇ · (u∇(log u+ V ).

1. Analogue of Fokker-Planck Equation

In the following we further discuss (2) and its relation to the standard Fokker-
Planck equation (3). The latter has been analyzed as a gradient flow in the
Wasserstein-metric (cf. [5]) and in a similar way we can treat (2) as a gradient
flow in a weighted metric

d(ρ0, ρ1)
2 = inf

ρt+∇·jt=0

∫
a(x)

|jt|2
ρt

dx

as carried out in [6]. In the Wasserstein case we have a ≡ 1, while in the exponential
case we find a = e−V , hence it is apparent that such a metric is topologically
equivalent to the Wasserstein one if V is bounded. The geodesics may change
however, which has an impact on the geodesic convexity of the energy functional
E. However, due to the direct relation between mobility and energy, the analysis
in [6] simplifies and indeed convexity of V still implies geodesic convexity and the
Bakry-Emery condition is directly the positivity of eV ∆V (cf. [6, Thm. 1.5]).

The long-time behaviour can also be understood from the relative entropy
method. In particular for any Csiszar f-Divergence with a smooth convex function
Φ we have

(4)
d

dt

∫
Φ(

u

u∞
) dx = −c

∫
Φ′′(

u

u∞
)

∣∣∣∣∇
u

u∞

∣∣∣∣
2

dx,

where u∞ = ce−V is the unique equilibrium. In the case Φ(z) = (z − 1)2 the
Poincare inequality directly implies exponential convergence to equilibrium, inter-
estingly with a rate that depends on the scaling constant c, i.e. on the mass of the
solution.

2. Nonlocal Energies

In the case of nonlocal energies, the exponential gradient structure seems to induce
much stronger changes compared to the Wasserstein gradient structure . Apart
from the fact that an analogue of the Wasserstein metric with a mobility ueE

′(u)

is difficult to analyze per se, the properties of the metric and equation can be very
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different if E′ is unbounded. Such a case was analyzed in [1], where the gradient
flow for the same energy as in the well-kown Keller-Segel model of chemotaxis (cf.
[9]) was analyzed. It was shown that in the supercritical case, when the energy is
not bounded from below there is a changed blow-up phenomenon. In the Keller-
Segel model a celebrated result shows the finite-time blow up, while in the case
of the exponential gradient structure the blow-up is delayed to the inifinite time
limit. The key change in this case is a H−1 bound in finite time that naturally
arises from the structure ∂tu = ∆v, also related to duality estimates for cross-
diffusion systems (cf. [3]). On bounded sets in H−1 the energy is indeed bounded
below, which is the main reason for global existence of solutions.

Another example that was analyzed so far is the structure for the heat equation,
leading to the so-called exponential thin-film equation

(5) ∂tu = ∆e−∆u, E(u) =
1

2

∫
|∇u|2 dx,

but the analysis is based on the fact that the equation is also an L2 gradient flow
for the energy

F (u) =

∫
e−∆u dx.

A very relevant and still completely open case is the analogous equation for E
being the total variation instead of the Dirichlet energy, where one has to deal
with the nonsmoothness of the functional and needs a variational argument to
select an appropriate subgradient. Let us finally mention that similar statements
may hold for structures with the graph Laplacian, but there are no results on this
case yet.
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Two approaches to optimal convergence rates for (mildly) nonconvex
gradient flows

Maria G. Westdickenberg

(joint work with Olga Chugreeva, Felix Otto, and Sebastian Scholtes)

We are interested in obtaining optimal, algebraic-in-time convergence rates for
gradient flows with respect to nonconvex energies. We present two methods, the
so-called HED method based on the natural norm associated to the gradient flow,
and an L1 method developed more recently.

To explain the idea behind the first method, we begin with an abstract gradient
flow

ut = −∇E(u) with dissipation D := ||∇E||2.

Suppose that u converges to u∗ for t → ∞ and define the square-distance H :=
||u−u∗||2. An observation of Brezis reveals that a convex (but not strictly convex)
gradient flow satisfies the algebraic relationship

E ≤
√
HD

as well as the differential relationships d
dtH ≤ 0, d

dtD ≤ 0, from which it is easy to
deduce algebraic decay of the energy and the dissipation according to

E ≤ H0

t
, D ≤ H0

t2
.

We are interested in adapting the observation of Brezis to handle nonconvex
gradient flows. In [2], we observe that the one-dimensional Cahn-Hilliard equation

on the line satisfies E ≤ C
√
HD and that d

dtH , d
dtD, while not nonpositive, are

“small.” Here “small” means small enough so that we are able to close a simple
ODE argument to deduce algebraic decay of the energy. Rather than explaining
the details of this work, we explain how the HEDmethod is applied in [1] to analyze
relaxation of a curved interface to the axis for the Mullins-Sekerka evolution in
the plane. Again the ingredients are natural algebraic and differential relationships
among the quantities H , E, and D and the result is

E ≤ C
H0

t
, D ≤ C

H0

t2
.

In the second part of the talk, we return to the one-dimensional Cahn-Hilliard
equation and ask whether we can obtain optimal decay rates under the assumption
of a bounded L1 disturbance. Explicitly: Our bound should not depend on the
distance of the disturbance from the origin. In [3] we study disturbances to the
centered “kink” profile v, i.e., the minimizer of the underlying energy subject
to ±1 boundary conditions at infinity, centered so that v(0) = 0. Since any
shift va := v(· − a) of v is still a minimizer, energetic convergence alone will not
determine the final state of the solution u of the Cahn-Hilliard equation, however
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the conserved quantity ∫

R

u− v dt =

∫

R

u0 − v dx

can be used to identify to which kink the solution converges in the long-time limit;
our goal in [3] is to determine the rate.

We consider initial data normalized so that∫

R

u0 − v dx = 0

and a bounded distance in L1 away:∫

R

|u0 − v| dx <∞.

At any time t, we associate to the solution u a shifted kink vc that minimizes the
L2 distance:

vc = argmin||u − vc||2L2(R).

We use the shifted kink to define the excess mass

V :=

∫

R

|u− vc| dx.

The main idea is to establish and make use of the Nash-type inequality

E ≤ CD1/3(V + 1)4/3,

where the energy gap E := E(u)−E(v). Indeed, letting VT := supt≤T V + 1, it is
easy to show that

E ≤ C
V 2
T

t1/2
.

Hence the main and nontrivial challenge is to show

VT ≤ C(V0 + 1).

This is accomplished using a duality argument and decay estimates for the adjoint
of the linearized equation.

Work in progress with Sarah Biesenbach, Felix Otto, and Richard Schubert
analyzes relaxation rates and metastability of the one-dimensional Cahn-Hilliard
equation in a more subtle setting, in which no simple conserved quantity identifies
the limit among the collection of energy minimizers.
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The Landau equation as a Gradient Flow

José A. Carrillo

(joint work with Matias G. Delgadino, Laurent Desvillettes, Jeremy Wu)

The Landau equation is an important partial differential equation in kinetic theory.
It gives a description of colliding particles in plasma physics [8], and it can be
formally derived as a limit of the Boltzmann equation where grazing collisions are
dominant [9]. Similar to the Boltzmann equation, the rigorous derivation of the
Landau equation from particle dynamics is still a huge challenge. For a spatially
homogeneous density of particles f = ft(v) for t ∈ (0,∞), v ∈ Rd the homogeneous
Landau equation reads
(1)

∂tf(v) = ∇v ·

(

f(v)

∫

Rd

|v − v∗|
2+γΠ[v − v∗](∇v log f(v)−∇v∗ log f(v∗))f(v∗)dv∗

)

.

For notational convenience, we sometimes abbreviate f = ft(v) and f∗ = ft(v∗).
We also denote the differentiations by ∇ = ∇v and ∇∗ = ∇v∗ . The physically
relevant parameters are usually d = 2, 3 and γ ≥ −d − 1 with Π[z] = I − z⊗z

|z|2

being the projection matrix onto {z}⊥. In this paper, for simplicity we will focus
in the case d = 3 and vary the weight parameter γ, although most of our results
are valid in arbitrary dimension. The regime 0 < γ < 1 corresponds to the so-
called hard potentials while γ < 0 corresponds to the soft potentials with a further
classification of −2 ≤ γ < 0 as the moderately soft potentials and −4 ≤ γ < −2 as
the very soft potentials. The particular instances of γ = 0 and γ = −d are known
as the Maxwellian and Coulomb cases respectively.

The purpose of this work is to propose a new perspective inspired from gradient
flows for weak solutions to (1), which is in analogy with the relationship of the
heat equation and the 2-Wasserstein metric, see [7, 2]. One of the fundamental
steps is to symmetrize the right hand of (1). More specifically, if we consider a
test function φ ∈ C∞

c (Rd) we can formally characterize the equation by
(2)
d

dt

∫

Rd

φfdv = −
1

2

∫∫

R2d

ff∗|v−v∗|
2+γ(∇φ−∇∗φ∗) ·Π[v−v∗](∇ log f−∇∗ log f∗)dv∗dv,

where the change of variables v ↔ v∗ has been exploited. Building our analogy
with the heat equation and the 2-Wasserstein distance, we define an appropriate
gradient

∇̃φ := |v − v∗|1+
γ
2 Π[v − v∗](∇φ −∇∗φ∗),

so that equation (2) now looks like

d

dt

∫

Rd

φfdv = −1

2

∫∫

R2d

ff∗∇̃φ · ∇̃ log fdv∗dv,

noting that Π2 = Π. To highlight the use of this interpretation, we notice that
∇̃φ = 0, when we choose as test functions φ = 1, vi, |v|2 for i = 1, . . . , d which
immediately shows that formally the equation conserves mass, momentum and
energy. The action functional defining the Landau metric mimics the Benamou-
Brenier formula [3] for the 2-Wasserstein distance. In fact, the Landau metric is
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built by considering a minimizing action principle over curves that are solutions
to the appropriate continuity equation, that is

(3) dL(f, g) := min
∂tµ+

1
2 ∇̃·(V µµ∗)=0

µ0=f, µ1=g

{
1

2

∫ 1

0

∫∫

R2d

|V |2 dµ(v)dµ(v∗)dt
}
,

where the ∇̃· is the appropriate divergence; the formal adjoint to the appropriate
gradient. Also, we notice that analogously to the heat equation, written as the
continuity equation ∂tf = ∇ · (f∇ log f), the Landau equation can be formally
re-written as

∂tf =
1

2
∇̃ · (ff∗∇̃ log f),

equivalent to the continuity equation with non-local velocity field given by

(4)





∂tf +∇ · (U(f)f) = 0

U(f) := −
∫

Rd

|v − v∗|2+γΠ[v − v∗] (∇ log f −∇∗ log f∗) f∗dv∗ .

Considering the evolution of Boltzmann entropy we formally obtain

d

dt

∫

Rd

f log fdv =: −D(ft) = −1

2

∫∫

R2d

|∇̃ log f |2ff∗dv∗dv ≤ 0.(5)

In physical terms this is referred to as the entropy dissipation or entropy production
for it formally shows that the entropy functional

H[f ] :=

∫

Rd

f log fdv

is non-increasing along the dynamics of the Landau equation. Moreover, by inte-
grating equation (5) in time one formally obtains

H[ft] +

∫ t

0

D(fs)ds = H[f0].(6)

Similar to H-solutions our approach will also be based on the entropy dissipation
(6). Following De Giorgi’s minimizing movement ideas [1, 2], we characterize the
Landau equation by its associated Energy Dissipation Inequality. More specifically,
we show that weak solutions to (1) with initial data f0 are completely determined
by the following functional inequality:

H[ft] +
1

2

∫ t

0

|ḟ |2dL
(s) ds+

1

2

∫ t

0

D(fs) ds ≤ H[f0] for a.e. every t > 0,

where |ḟ |2dL
(s) stands for the metric derivative associated to the Landau metric

defined above. Our analysis is also largely inspired by Erbar’s approach in viewing
the Boltzmann equation as a gradient flow [6] and recent numerical simulations
of the homogeneous Landau equation in [4] based on a regularized version of (4).
In contrast with the classical 2-Wasserstein metric, one of the main features of
the Landau equation (1) and metric (3) is that they are non-local. Hence, the
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convergence analysis usually relying on convexity and lower-semi continuity needs
to be adapted to deal with the non-locality of this equation.

In order to deal with the Landau equation using the theory of metric measure
spaces, we carefully study the Landau distance dL. Moreover, we showed for a
regularized version of the Landau equation that we can construct gradient flow
solutions, curves of maximal slope, via the corresponding variational scheme. The
main result obtained for the Landau equation shows that the chain rule can be
rigorously proved for the grazing continuity equation, this implies that H-solutions
with certain apriori estimates on moments and entropy dissipation are equivalent
to gradient flow solutions of the Landau equation. We crucially make use of
estimates on Fisher-like quantities in terms of the Landau entropy dissipation
developed in [5].
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On hydrodynamic limit for non-interacting deterministic particles, A
Hamilton-Jacobi PDE in space of probability measure approach

Jin Feng

(joint work with Toshio Mikami)

We propose a method for understanding hydrodynamic limit of N -particle Hamil-
tonian dynamics by proving limit theorems for Hamilton-Jacobi equations in space
of probability measures. We start with finite particle dynamic which corresponds
to minimizer of action. The action is further characterized by Hamilton-Jacobi
PDEs. Convergence of the PDEs imply convergence of the actions, hence the
minimizers. In the infinite particle continuum limit, action becomes defined over
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probability-measure-valued curves and Hamilton-Jacobi is defined in space of prob-
ability measures. Although these PDEs are defined in abstract spaces and the
method is indirect, such approach has potential practical advantages over usual
method of directly verifying convergence of Hamiltonian ODEs to system of con-
servation law PDEs – the abstract Hamilton-Jacobi is a scalar equation with max-
imum principle, the above steps can be made rigorous.

We illustrate the above scheme using models of non-interacting determinis-
tic Hamiltonian particles with a two-scale hydrodynamic limit. We justify the
Hamilton-Jacobi convergence through a singular perturbation/homogenization ar-
gument generalized to a setting of PDEs in space of probability measures. A “cell
equation” arising in such context coincides with a finite dimensional deterministic
averaging problem considered in weak KAM (Kolmogorov-Arnold-Moser) theory.
As a consequence, we derive a continuum level effective-Hamiltonian as scaling
limit from the particle ones. The whole derivation avoids direct involvement of
micro-canonical and canonical ensembles through deterministic ergodic arguments
in any strong sense. It also avoids the even more difficult task of relating these
ensembles.

1. Microscopic N-particle dynamics and embedding into a continuum

Let H := H(q, p) : Td × Rd 7→ R. We consider N -particle non-interacting Hamil-
tonian dynamics given by

q̇i = ∇piH(qi, pi), ṗi = −∇qiH(qi, pi).

With a hydrodynamical scaling x(t) := xǫ(t) := ǫq( tǫ ),P(t) := Pǫ(t) := p( tǫ ), we

arrive at ẋi(t) = ∇2H
(
xi

ǫ , Pi

)
, Ṗi(t) = − 1

ǫ∇1H
(
xi

ǫ , Pi

)
, where the ∇1H(q, p) :=

∇qH(q, p) and ∇2H(q, p) := ∇pH(q, p). Considering symmetries in particle labels,

we model micro-state evolution processes using ρN,ǫ(t; dx) := 1
N

∑N
i=1 δxi(t)(dx)

and µN,ǫ(t; dx, dq) :=
1
N

∑N
i=1 δxi(t),qi(

t
ǫ )
(dx, dq) = ρN,ǫ(t, dx)δ x

ǫ
(dq). We will take

N → ∞ and ǫ→ 0.
We look at Hamilton-Jacobi PDEs associated with the above ODE flows. These

PDEs should be defined in space of the micro- and macro-states. First, we clarify
on notion of smooth functions for studying these problems. We denote (Rd, | · |) the
usual d-dimensional Euclidean space, and consider XN := (Td)N as a metric space
with tangent at any given point identified with

(
(Rd)N , | · |N

)
, where the weighted

norm |x|2N := 1
N

∑N
i=1 |xi|2. Let ∇N,x denote the associated notion of gradients for

functions in XN . Note that we already used ∇x to denote the usual gradients for
functions when tangent is identified with the usual un-weighted Euclidean space.
It follows that ∇N = N∇. Let GN be permutation group on N -particle labels. It
introduces an isometric group action on XN through

(
πx
)
i
:= xπ(i) for every π ∈

GN . The quotient metric space X∗
N := XN/GN has a natural metric d2N (x∗,y∗) =

infπ∈GN

1
N

∑N
i=1 d

2(xi, yπ(i)). We realize that X∗
N can be isometrically identified

with the space ofN -particle empirical probability measures: x∗ ∼ ρ := 1
N

∑N
i=1 δxi

and y∗ ∼ γ := 1
N

∑N
i=1 δyi . Moreover, d2N (x∗,y∗) = W 2(ρ, γ) is the order-2
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Wasserstein metric, and X∗
N ⊂ X∗

N+1 ⊂ . . . ⊂ X∗ with X∗ the order-2 Wasserstein
space. This reveals that the X∗

N should be considered as non-smooth space, with
singularities arise whenever particles collide (i.e. xi = xj for some i 6= j). These
X∗
N s are Alexandrov spaces with nonnegative curvature. Therefore, a rigorous

PDE theory can be built upon using test functions composed of combinations of
distance square functions. In the following, in order to be intuitive, we pursue a
different class of GN -invariant smooth test functions:

f(ρ) := ψ(〈~ϕ, ρ〉) := ψ(〈ϕ1, ρ〉, . . . , 〈ϕK , ρ〉)

= ψ
( 1

N

N∑

i=1

ϕ1(xi), . . . ,
1

N

N∑

i=1

ϕK(xi)
)
=: f(x),

where ϕk ∈ C1
c (T

d×R
d) and ψ ∈ C1(RK).We also write δf

δρ :=
∑K

k=1 ∂kψ(〈~ϕ, ρ〉)ϕk.

Introducing HN,ǫ(x,P) := 1
N

∑N
i=1 H(

xi

ǫ , Pi), then the dynamics of (x,P) can

be rewritten as a Hamiltonian flow ẋi = ∇N,PiHN and Ṗi = −∇N,xiHN . This
observation motivates us to define

HN,ǫf(ρ) := HN,ǫ

(
x,∇N,xf

)
=

∫

Td

H
(x
ǫ
,∇δf

δρ
(x)
)
ρ(dx).

2. Separation of scales and homogenization of Hamilton-Jacobi PDE

in Wasserstein space

We show that the HN,ǫ converges to a limiting effective Hamiltonian H in operator
graph sense (e.g. Kurtz [5]), and identify this limit.

Given a test function of macro-state variable f = f(ρ), we look for perturbed
test functions fN,ǫ(ρ) := f(ρ) + ǫg(µ) with g(µ) := 〈φ, µ〉, φ := φ(x, P ; q) ∈
C2

c (T
d × Rd × Td) and µ(dx, dP ; dq) := ρ(dx)δ(∇ δf

δρ (x),xǫ )
(dP, dq). The choice of

φ should depend on f which is to be determined soon. With a slight rewriting,
we can also view g(µ) = g(ρ) := 〈ϕ, ρ〉 with ϕ := ϕǫ(x) := φ

(
x,∇ δf

δρ (x);
x
ǫ

)
.

Therefore,

HN,ǫfN,ǫ(ρ) =

∫

Td×Td

H
(
q,∇x

δf

δρ
(x) +∇qφ

(
x,∇δf

δρ
(x); q

))
µ(dx, dq) + o(1)

=

∫

Td×Rd×Td

H
(
q, P +∇qφ(x, P ; q)

)
µ(dx, dP ; dq) + o(1).

Suppose that we can solve an auxiliary PDE problem

H
(
q, P +∇qφ(q)

)
= H̄(P ), ∀q ∈ T

d.

By solution, we mean that for each P fixed, there exists a pair (H̄(P ), φ(P ; ·)) ∈
R× C(Td) satisfying the above identity. Then we conclude that,

fN,ǫ → f, HN,ǫfN,ǫ → Hf
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with Hf(ρ) :=
∫
Td×Rd H̄(P )µ(dx, dP ), where the µ(dx, dP ) := ρ(dx)δ∇ δf

δρ (x)
(dP )

is precisely gradient of f in Alexandrov analysis sense. The auxiliary PDE problem
was considered in homogenization theory (Lions, Papanicolaou and Varadhan [6]).
It is also extensively studied in weak KAM theory for finite dimensional Hamil-
tonian dynamical systems (Fathi [4], E [2], Evans and Gomez [3]). In general, we
know that there is no φ ∈ C1, but a generalized sense solution (i.e. viscosity) can
be found. More importantly, the single particle level effective Hamiltonian can
always be identified implicitly through variational formula

H̄(P ) := inf
φ

sup
q

H(q, P +∇qφ).

Resolvent and Cauchy problems forH have been studied in Ambrosio and Feng [1].

3. An example

We consider the case T := [0, 1] with H(q, p) = |p|2 − V (q) and min V = 0.

Let cV :=
∫
T

√
V dq. The paper [6] identified that H̄(P ) = 0 when |P | ≤ cV , and

H̄(P ) = λ solving |P | =
∫
T
dq
√
V + λ, when |P | > cV . If V ≡ 0, then H̄(P ) = |P |2.

In this case, minimal action path in the continuum satisfies compressible Euler
equation modeling ideal gas.
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Interpreting LDPs without detailed balance

Robert I. A. Patterson

(joint work with D. R. Michiel Renger, Upanshu Sharma)

We present in outline a rather general connection between flux space large devi-
ations, free energy dissipation bounds and macroscopic fluctuation theory (MFT)
[1].

1. Detailed balance and gradient flows

It is by now fairly classical that, for systems of interacting particles X1, . . . Xn

with a finite time horizon T , satisfying a detailed balance condition and some
further technical assumptions, there is an LDP for the empirical measures ρn(t) :=
1
n

∑n
i=1 δXi(t), which informally says

P (ρn ≈ ρ) ∼ exp

(
−n
∫ T

0

L̂(ρ(t), ρ̇(t)dt
)

for some L̂ ≥ 0 and one has a decomposition [5]

L̂(x, u) = Ψ(x, u) + Ψ∗
(
x,−1

2
DI0(x)

)
+

〈
1

2
DI0(x), u

〉
.

Here Ψ and Ψ∗ are a convex dual pair of dissipation potentials, I0 is the large
deviations rate function for the invariant distributions of the ρn and D indicates

a Gateaux derivative. This characterises the zero cost flows (L̂(ρ(t), ρ̇(t)) = 0 for
all t) by

ρ̇(t) = ∂Ψ∗
(
ρ(t),−1

2
DI0(ρ(t))

)
,

where the differential of Ψ∗ is with respect to its second argument. This provides
a full description of changes in I0, which can be interpreted as a free energy.
However, detailed balance plays a fundamental role, even if one includes GENERIC
and related extensions [6, 4].

2. Fluxes

In order to make progress beyond detailed balance we describe a particle process
not just by an empirical measure ρ, but also using a flux w so that

(1) ρ(t)− ρ(0) = −∇ · w(t),
where ∇· and its adjoint −∇ are adapted to the problem (e.g. graph divergence
and gradient for particles hopping on a graph). We assume an LDP of the form

P ((ρn, wn) ≈ (ρ, w)) ∼ exp

(
−n
∫ T

0

L(ρ(t), ẇ(t)dt
)
,

where we restrict to pairs (ρ, w) satisfying (1) for all t ∈ [0, T ], L is its own convex
bidual and L∗ =: H. (Throughout this abstract convex duality refers to the final
argument of a function.)
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We weaken the assumption of detailed balance for the dynamics of the empirical
measure to simply assuming that there is an invariant distribution for ρ and a
large deviations rate function I0 for samples from this invariant distribution so
that for all ρ in a large class

(2) H(ρ,∇DI0) = 0.

Provided this equation makes sense for a sufficiently large class of ρ and some mild
reversibility conditions, weaker than detailed balance, hold, we show that

(3) L(ρ(t), ẇ(t)) = LF asym(ρ(t), ẇ(t))

−H
(
ρ(t),−1

2
∇DI0(ρ(t))

)
+

〈
1

2
∇DI0(ρ(t)), ẇ(t)

〉
.

LF asym can be interpreted as the large deviations rate function for paths under
(precisely defined) time-antisymmetrised dynamics, see [3], so that LF asym ≥ 0
and in some sense

Pasym ((ρn, wn) ≈ (ρ, w)) ∼ exp

(
−n
∫ T

0

LF asym(ρ(t), ẇ(t)dt

)
.

Additionally we are able to check that H
(
ρ(t),− 1

2∇DI0(ρ(t))
)
≤ 0. All these

results follow by fairly simple convexity arguments. They can be seen on the
one hand as a generalisation of Fisher Information inequalities for free energy
dissipation [2] and on the other hand as an abstract approach to MFT.

In principle our results are purely analytic in character and would be valid
for any L that is its own convex bidual and for any I0 satisfying (2). We find
I0 solving (2) as the large deviations rate function of the invariant measures of
an underlying family of stochastic particle models. However, other strategies for
finding solutions to this Hamilton–Jacobi equation could also be used in order to
develop the theory.

3. The purely asymmetric dynamics

We conjecture that the dynamics given by LF asym should be interpreted as the
counterpart of a gradient flow, and that it will describe a purely non-dissipative
dynamics.

In the special case of independent particles each performing a (non-degenerate)
random walk on a discrete set X with generator matrix Q and stationary distri-
bution π such that πTQ = 0, the zero cost flow of LF asym is given by the system
of ODEs

(4) ρ̇x(t) =
∑

y 6=x

(√
ρy(t)ρx(t)πy/πxQyx −

√
ρx(t)ρy(t)πx/πyQxy

)
∀x ∈ X .

With the help of other participants it was possible to identify this as a Hamiltonian
flow where the conserved energy is

∑
x∈X

√
ρx(t). It was also noted that (4) does

not have a Lipschitz right hand side close to points at which for one or more x ∈ X
one has ρx(t) = 0.
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Homogenization of discrete optimal transport

Jan Maas

(joint work with Peter Gladbach, Eva Kopfer, Lorenzo Portinale)

In the past decades there has been intense research activity in the area of opti-
mal transport. In continuous settings, a key result in the field is the Benamou–
Brenier formula [1], which provides a dynamical formulation of the classical Mong–
Kantorovich problem of optimal transport. In discrete settings, the equivalence
between static and dynamical optimal transport breaks down, and it turns out
that the dynamical formulation (introduced in [5, 6]) is essential in applications
to evolution equations, discrete Ricci curvature, and functional inequalities.

The limit passage from discrete dynamical transport to continuous optimal
transport turns out to be nontrivial. In fact, it has been shown that seemingly
natural discretizations of the Benamou–Brenier formula do not necessarily con-
verge to the Kantorovich distance W2, even in one-dimensional settings. The main
result in [2] asserts that, for a sequence of meshes on a bounded convex domain in
Rd, an isotropy condition on the meshes is required to obtain the convergence of
the discrete dynamical transport distances to W2.

In this talk we present recent work in which we identify the limiting behaviour
of the discrete metrics on Zd-periodic graphs where the isotropy condition fails to
hold.
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For an (undirected) graph (X , E) and probability measure m0,m1 ∈ P(X ), we
consider the dynamical transport cost given by

C(m0,m1) = inf
(m,J)∈CE(m0,m1)

{∫ 1

0

∑

(x,y)∈E
cxy
(
mt(x),mt(y), Jt(x, y)

)
dt

}
,

where CE(m0,m1) denotes the class of all solutions to the discrete continuity
equation connectingm0 andm1, i.e., all curves of probability measuresm : [0, 1] →
P(X ) and all time-dependent discrete vector fields (i.e., anti-symmetric functions)
J : [0, 1] → RE satisfying the discrete continuity equation

∂tmt(x) +
∑

y:y∼x

Jt(x, y) = 0, m0 = m0, m1 = m1.

The cost functions cxy : R+×R+×R → R+ are assumed to be lower-semicontinuous
and convex.

In [3, 4] we consider a Zd-periodic graph (X , E) embedded in Rd. For any ε > 0
with 1/ε ∈ N, we let (Xε, Eε) be the rescaled graph wrapped around the torus Td,
i.e.,

Xε = εX/Zd and Eε = εX/{(z, z) : z ∈ Z
d}.

The rescaled transport cost is given by

Cε(m0,m1) = inf
(m,J)∈CE(m0,m1)

{∫ 1

0

∑

(x,y)∈Eε

εdcxy

(
mt(x)

εd
,
mt(y)

εd
,
Jt(x, y)

εd−1

)
dt

}
.

Loosely speaking, our main result asserts that these discrete transport problems
converge to a continuous transport problem with a homogenized cost function,
as ε → 0. Namely, for any weakly converging sequences of probability measures
m0

ε⇀µ0 and m1
ε⇀µ1, we have convergence Cε(m0

ε,m
1
ε) → C(µ0, µ1), where the

limiting transport problem is given by

C(µ0, µ1) = inf
µ,j

{∫ 1

0

∫

Td

chom

(
dµt

dLd
,
djt
dLd

)
dxdt : ∂tµ+∇ · j = 0, µ0,1 = µ0,1

}
.

The homogenized cost chom : R+ × Rd → R is given by the cell formula

chom(µ, j) = inf
m,J

{ ∑

x∈X∩[0,1)d

∑

y∼x

cxy
(
m(x),m(y), J(x, y)

)}
,

where the infimum runs over all Zd-periodic functions m : X → R+ and all Zd-
periodic discrete vector fields (i.e., all anti-symmetric functions J : E → R with∑

y:y∼x J(x, y) = 0 for all x ∈ X ) satisfying

∑

x∈X∩[0,1)d

m(x) = µ and
1

2

∑

x∈X∩[0,1)d

∑

y∼x

J(x, y)(y − x) = j.

This cell formula describes how the limiting transport cost is affected by the ge-
ometry of the periodic graph. The rigorous formulation of our main result is given
in terms of Γ-convergence for curves in the space of probability measures.
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Many-particle limit for a system of interaction equations driven by
Newtonian potentials

Antonio Esposito

(joint work with Marco Di Francesco, Markus Schmidtchen)

The problem of approximating transport PDEs by the empirical measure associ-
ated to moving particles is quite classical in many contexts such as particle physics
and gravitation. A prototype model and variation of the pure transport PDE
which gained great attention in the last decades is the nonlocal transport-diffusion
equation

(1) ∂tρ = div(∇a(ρ) + ρ∇G ∗ ρ),
where a = a(ρ) is a nonlinear diffusion function and G is a space dependent kernel
modelling nonlocal interaction. In the aforementioned contexts in particle physics
and gravitation, G is typically a singular kernel, which makes the analysis of (1)
quite challenging. Starting from the early 2000 years, the theory of gradient flows
in Wasserstein spaces developed in [8, 10, 1] became an important tool to provide
well-posedness results for the class of models (1). The result in [4] is also relevant
in this context in that it allowed to extend the theory to kernels G displaying a
discontinuity of the gradient at the origin in the re-solution of the JKO-scheme and
in the proof of λ-convexity [9] of the related functional. The role of λ-convexity
of the functional is essential in order to prove a stability result for two solution
curves, which often implies as a byproduct a many-particle approximation result
for the target equation (1).

Recently, there has been an increasing interest in systems of gradient flows, i.e.
systems of more than one transport equations of the form (1), modelling the mutual
interplay of more than one species of individuals. The case with diffusion has a
very rich literature in that it is quite challenging at the level of well-posedness due
to the possibility of cross-diffusion effects, see for instance the recent [5] and the
references therein. In the following we consider a system of nonlocal interaction
PDEs with no (cross-)diffusion part, which is not included in the work [7], and
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whose analysis has lead to an interesting connection with a nonliner hyperbolic
system, see [3].

In particular, in [6], we deal with a deterministic particle approximation for a
system of continuity equations driven by Newtonian nonlocal interactions in one
dimension. More precisely, setting N(x) := |x|, we prove that the PDE system

(2)

{
∂tρ = −∂x(ρ∂xN ∗ ρ) + ∂x(ρ∂xN ∗ η),
∂tη = −∂x(η∂xN ∗ η) + ∂x(η∂xN ∗ ρ),

can be obtained as the many-particle limit of the deterministic ODE system
(3)



ẋi(t) =
∑

xk(t) 6=xi(t)

mksign(xi(t)− xk(t))−
∑

yk(t) 6=xi(t)

nksign(xi(t)− yk(t)),

ẏj(t) =
∑

yk(t) 6=yj(t)

nksign(yj(t)− yk(t))−
∑

xk(t) 6=yj(t)

mksign(yj(t)− xk(t)),

with i = 1, .., N , and j = 1, ..., N . System (3) models the movement of N particles
for each species, with masses m1, . . . ,mN for the x-species and n1, . . . , nN for
the y-species, under the effect of repulsive Newtonian potentials for same-species
interactions and attractive Newtonian potentials for cross-species interactions. We
stress that particles in the ODE system (3) may overlap. When this happens,
the right-hand side of (3) features a jump discontinuity, which brings additional
difficulties. To bypass this problem and to better understand the dynamics of (3),
we frame it rigorously as the (finite dimensional) gradient flow of the (convex, in
a suitable metric sense) functional

−1

2

∑

i,j

mimj |xi − xj | −
1

2

∑

i,j

ninj|yi − yj |+
∑

i,j

minj |xi − yj |,

in the convex cone CN × CN of ordered configurations

x1 ≤ x2 ≤ . . . ≤ xN , y1 ≤ y2 ≤ . . . ≤ yN .

. More precisely, among other issues:

• We prove that the sub-differential of this functional is always non-empty
for any given configuration in CN ×CN (including overlapping of particles
of opposite species).

• We analyse collisions among particles (which are possible because particles
do not “slow down” when they get very close due to the lack of regularity of
the interaction potential) and prove that particles of the same species never
collide. Moreover, we provide explicit necessary and sufficient conditions
for particles of opposite species to cross each other.

• We explore the case of initial overlapping of particles and provide the
explicit solution to the corresponding particle system.

These properties are preparatory to prove the rigorous derivation of solutions to
(2) with L1 initial data as many-particle limits of the empirical measures of the
particle system (3).
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Such a result heavily relies on uniform estimates at the discrete level. In particular,
we observe that in the 2-species case weak compactness in the measure sense by
itself is insufficient to obtain consistency in the limit due to the cross-interaction
terms. Indeed, since the cross-interaction terms cannot be symmetrised (unlike,
for instance, the Keller-Segel one-species model), weak L1 compactness is needed
in this case.

As already mentioned, system (2) is not included in the theory of [7] since the
interaction potential in the (repulsive) intraspecific part is neither convex nor λ-
convex, i.e., convex up to a quadratic perturbation. In one dimension this problem
can be overcome as shown in [3]. In particular, in case of absolutely continuous
initial data ρ0, η0 [3] proves global-in-time existence and uniqueness of solutions
by posing system (2) as gradient flow of the interaction energy functional

(4) F(ρ, η) = −1

2

∫

R

N ∗ ρ dρ− 1

2

∫

R

N ∗ η dη +
∫

R

N ∗ η dρ,

where N(x) := |x|, x ∈ R. When dealing with general measures as initial data,
in particular Dirac deltas, the sub-differential of F may be empty. Hence, in [3],
global-in-time existence and uniqueness of solutions to system (2) is proven by
(formally) re-writing the system in the pseudo-inverse formalism and by using the
concept of gradient flows in Hilbert spaces à la Brézis, cf. [2]. Another difference
with [7] is that the analysis in [3] implies that particle solutions are not gradient
flow solutions to system (2). Thus, the mean-field limit cannot be treated via
the stability result mentioned previously since the atoms of the empirical measure
may diffuse instantaneously.
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Rigorous derivation of cross-diffusion equations from interacting
particle systems

Ansgar Jüngel

(joint work with L. Chen, E. Daus, and A. Holzinger)

Cross-diffusion models describe the evolution of multicomponent systems arising
in, for instance, cell biology, gas mixture theory, and population dynamics. Their
derivation from microscopic models is important to determine the range of validity
of the diffusive equations and to understand their possible formal gradient-flow or
entropy structure. We review in this note two many-particle limits from stochastic
interacting particle systems, based on the works [2, 3].

The aim is the rigorous derivation of quasilinear parabolic systems of the form

(1) ∂tui = div

( n∑

j=1

Aij(u)∇uj
)
+ div(ui∇Ui), ui(0) = u0,i in R

d, t > 0,

where i = 1, . . . , n is the species index, u = (u1, . . . , un) is the vector of (parti-
cle) densities, Aij(u) are the diffusion coefficients, and Ui(x) are environmental
potentials, from stochastic interacting particle systems of the type

(2) dXk,i = −aN,η(X)dt+ bN,η(X)dWk,i(t), Xk,i(0) = ξk,i, i = 1, . . . , n,

where k = 1, . . . , N is the particle number, X = (Xk,i) is the vector of random
positions of the particles, the parameter η > 0 models the interaction radius,
(Wk,i) are d-dimensional Brownian motions, and ξ1,i, . . . , ξN,i are independent
and identically distributed random variables. We wish to prove the limit N → ∞
and η → 0 (in a certain sense) in (2) leading to (1). For this, we consider two
examples for aN,η(X) and bN,η(X).

1. First model: interactions in the drift term

The first model is given by

(3) dXN,η
k,i (t) = −

n∑

j=1

1

N

N∑

ℓ=1

∇Bη
ij

(
XN,η

k,i −XN,η
ℓ,j

)
dt+

√
2σidWk,i(t),

where σi > 0 are constant diffusion coefficients and the smooth interaction poten-
tials Bij satisfy Bη

ij(x) = η−dBij(|x|/η) for x ∈ Rd with
∫
Rd Bij(|x|)dx =: aij and

Bη
ij → aijδ0 in the sense of distributions as η → 0.

The limit N → ∞, η → 0 has to be understood in the following sense (see [6, 8]).
For fixed η > 0, system (3) is approximated for N → ∞ by the intermediate system

(4) dX̄η
k,i(t) = −

n∑

j=1

(∇Bη
ij ∗ uη,j)(X̄

η
k,i(t), t)dt+

√
2σidWk,i(t),

where uη,j = uη,j(x, t) satisfies the nonlocal cross-diffusion system

∂tuη,i = σi∆uη,i + div

( n∑

j=1

uη,i∇Bη
ij ∗ uη,j

)
in R

d, t > 0.
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System (4) depends on the particle index k = 1, . . . , N only via the initial data
X̄k

η,i(0) = ξk,i, i.e., X̄
η
k,i(t) are N independent copies of the solution to (4). Since

∇Bη
ij ∗ uη,j → aij∇uj in L2, the limit η → 0 in (4) leads to the limiting system

dX̂k,i(t) = −
n∑

j=1

aij∇uj(X̂k,i(t))dt+
√
2σidWk,i(t),

where the law of X̂k,i, ui = law(X̂k,i), is a solution to

(5) ∂tui = σi∆ui + div

( n∑

j=1

aijui∇uj
)

in R
d, t > 0,

and ui(0) = ui,0 is the common probability density function of ξk,i. This model
describes segregation effects in multi-species populations [1, 5].

The main result of [2] is the proof of the estimate

sup
k=1,...,N

E

( n∑

i=1

sup
0<s<t

∣∣XN,η
k,i (s)− X̂k,i(s)

∣∣
)

≤ C(t)η,

under the condition that η−(2d+4) ≤ ε logN , where ε > 0 is sufficiently small. This
estimate implies propagation of chaos [9]. The idea of the proof is to estimate

the differences |XN,η
k,i − X̄η

k,i| and |X̄η
k,i − X̂k,i|. The first difference is of order

N−1η−d−2, coming from the properties of ∇Bη
ij , while the second difference is of

order η, which comes from estimating |∇Bη
ij ∗∇uj − aij∇uj | in terms of η|D2uj |.

2. Second model: interactions in the diffusion term

The second model is given by

(6) dXN,η
k,i = −∇Ui(X

N,η
k,i )dt+

(
2σi+2

n∑

j=1

1

N

N∑

ℓ=1

Bη
ij(X

N,η
k,i −XN,η

ℓ,j )

)1/2

dWk,i(t),

where we exclude (ℓ, j) 6= (k, i) in the sum over ℓ. The idea of the many-particle
limit is as before. We first pass to the limit N → ∞, leading to an intermediate
nonlocal system, and then perform the limit η → 0, giving

dX̂k,i = −∇Ui(X̂k,i)dt+

(
2σi + 2

n∑

j=1

aijuj(X̂k,i)

)1/2

dWk,i(t),

and the function ui = law(X̂k,i) satisfies

(7) ∂tui = div(ui∇Ui) + ∆

(
σiui + ui

n∑

j=1

aijuj

)
, ui(0) = ui,0,

where i = 1, . . . , n. Model (7) corresponds to the population system suggested
by Shigesada, Kawasaki, and Teramoto [7]. It distinguishes from the first model
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(5) by the additional diffusion div(
∑n

j=1 aijuj∇ui). It is shown in [3] that if

Ui(x) = − 1
2 |x|2 and η−(2d+2) ≤ ε logN for some sufficiently small ε > 0 then

sup
k=1,...,N

E

( n∑

i=1

sup
0<s<t

∣∣XN,η
k,i (s)− X̂k,i(s)

∣∣
)

≤ C(t)η.

This result can be extended in various directions. First, we may choose general
smooth potentials Ui such that ∇Ui is globally Lipschitz continuous, D2Ui is
positive semidefinite, and DkUi is sufficiently small for kgǫ3. Second, the diffusion
coefficient in (6) can be replaced by

(
2σi + 2

n∑

j=1

fη

(
1

N

N∑

ℓ=1

Bη
ij(X

N,η
k,i −XN,η

ℓ,j )

))1/2

,

where fη is a globally Lipschitz continuous approximation of a function f that may
be only locally Lipschitz continuous (for instance, f(z) = zp for p > 1). Then the
sum

∑n
j=1 aijuj in (7) has to be replaced by

∑n
j=1 f(aijuj). This generalization

provides a derivation of the porous-medium equation from interacting particle
systems. Indeed, let n = 1, σ1 = 0, U1 = 0, and a11 = 1. Then (7) can be
written as ∂tu = ∆(uf(u)). We remark that another derivation was published in
[4] assuming a double-convolution potential in the drift term.
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Global existence analysis of energy-reaction-diffusion systems

Katharina Hopf

(joint work with Julian Fischer, Michael Kniely, Alexander Mielke)

Reaction-diffusion systems (RDS) arise in the modelling of various physical phe-
nomena and often have an underlying entropy structure linked to the thermody-
namic origin of the problem. In this talk, we propose thermodynamically consistent
extensions of RDS to the non-isothermal setting taking into account variations in
temperature, and discuss issues concerning the global-in-time existence of solu-
tions.

As a starting point, consider an isothermal system of a number of I chemical
species diffusing and reacting in a bounded Lipschitz domain Ω ⊂ Rd, described
by a vector of non-negative concentrations c = (c1, . . . , cI) obeying the evolution
law

ċi = div(ai∇ci) +Ri(c), i = 1, . . . , I.(1)

Here, ci = ci(t, x), where t > 0 denotes the time variable, x ∈ Ω the space variable,
ċ = d

dtc, and ∇ = ∇x the spatial gradient. The constant ai > 0 is the diffusion

coefficient of the i-th species, and Ri ∈ C([0,∞)I) describe the reactions. In many
applications (e.g. for a single reversible reaction following mass action kinetics),
this problem has an underlying Lyapunov functional that essentially consists of a
sum of Boltzmann entropies.

In the non-isothermal case, the thermodynamic equilibria wi = wi(u) of the
concentrations ci depend on the distribution of the thermal variable u = u(t, x),
which is itself an unknown of the problem. Following [7, 5, 8] we model changes in
temperature using the internal energy density u, the advantage being that typical
driving functionals (= the negative of the physical entropy) are convex in z = (c, u)
(but fail to be convex when considered as a function of c and the temperature θ).
Moreover, since chemical reactions do not change the internal energy, the evolution
law for u is source-free. Our models are based on Lyapunov functions of the form
(cf. [7, 8, 5])

h(c, u) = b(c|w(u)) − σ(u) =

I∑

i=1

(
λ(ci)− ci logwi(u)

)
− σ̂(u),(2)

where λ(s) = s log s− s+1 is the Boltzmann function, b(c|w) :=∑I
i=1 wiλ(ci/wi)

the relative Boltzmann entropy and σ(u) the thermal part of the entropy density
when the concentrations c = (ci)

I
i=1 are in equilibrium. We generally assume that

wi ∈ C([0,∞)) ∩ C2((0,∞)) are positive, non-decreasing and concave, while the

C2 function σ̂(s) := σ(s)−
∑I

i=1 wi(s) + I is supposed to be strictly concave and
increasing. These properties ensure that h is strictly convex and that u 7→ h(c, u)
is decreasing. The temperature θ can then be recovered via θ = 1

−∂uh(c,u)
and is

non-negative.
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Letting A(z) := M(z)D2h(z), z = (c, u), and R◦(z) := (R(z), 0), the energy-
reaction-diffusion systems (ERDS) we consider take the form

ż = div
(
A(z)∇z

)
+R◦(z), t > 0, x ∈ Ω,

0 = ν · A(z)∇z, t > 0, x ∈ ∂Ω.

Under the basic hypotheses that M be positive semi-definite and R◦ satisfy the
pointwise inequality Dh(z) · R◦(z) ≤ 0, solutions z of the above system formally
enjoy the entropy estimate

(3)
d

dt

∫

Ω

h(z) +

∫

Ω

∇z : D2h(z)M(z)D2h(z)∇z dx ≤ 0.

Due to the entropic coupling between ci and u, the Hessian of h is non-diagonal.
It takes the form

D2h(c, u) =




. . .
...

1
ci

−w′

i

wi

. . .
...

. . . −w′

i

wi
. . . ∂2uh



,

where wi = wi(u). Hence, in general the matrix A(z) = M(z)D2h(z) is not diag-
onal, usually not symmetric, and positive semi-definiteness cannot be expected.

Our existence analysis focuses on (symmetric) mobility matrices of the form

(4) M(z) := diag
(
m1, . . . ,mI , 0

)
+ π1(z)µ⊗ µ

for certain continuous functionsmi(c, u) ≥ 0 (e.g.mi = aici for some ai ∈ R+) and

π1(c, u) ≥ 0, and where µ = (µ1, . . . , µI , 1) with µi(c, u) :=
w′

i(u)
wi(u)

ci. This ansatz

is motivated by the structure of the inverse Hessian of h, and allows in particular
to model thermodynamically consistent energy-dependent extensions of the basic
isothermal problem (1).

In case that the flux term A(z)∇z and the reaction rates R(z) can be suit-
ably controlled in terms of the formal a priori bounds obtained from the entropy
structure, entropy methods for reaction-cross-diffusion systems [6] can be adapted
to our ERDS and allow us to construct global-in-time weak solutions. The key
here is to exploit the availability of a strictly convex entropy function h(z) to de-
fine a transformation w = Dh(z) upon which the system ż = div(A(z)∇z), with
A(z) = M(z)D2h(z), becomes ż = div(M(z)∇w), where now z = (Dh)−1(w) is a
function of the new unknown variables w. Letting g denote the Legendre trans-
form of h, we have z = Dg(w) (and recall that g is convex). Thus, this change
of variables reveals the parabolic structure of the PDE system. A crucial tech-
nical advantage of this transformation lies in the fact that in the new variables
the system can be regularised using standard vanishing viscosity approximations
while preserving the main a priori estimates obtained from the entropy-entropy
dissipation inequality (3). Issues with low time regularity can be taken care of by
first considering a suitable time-discrete approximation that preserves the entropy
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estimate (e.g. an implicit Euler scheme). Once, approximate solutions have been
constructed, one returns to the original variables in order to exploit (3).

In contrast to many of the models in [6], which are of volume filling type and pro-
vide a priori L∞ bounds on the concentrations, our structural assumptions do not
imply pointwise upper bounds. Instead, integrability of the concentrations solely
relies on the entropy estimate (3): it is based on Gagliardo–Nirenberg inequalities
interpolating between the uniform-in-time upper bound on

∫
Ω
h(z) dx and the gra-

dient control obtained from entropy-dissipation coercivity bounds, which in our
applications typically take the form

∇z : D2h(z)M(z)D2h(z)∇z >
∼

I∑

i=1

|∇√
ci|2 + α(z)|∇u|2.

(Here, due to the sublinearity of σ̂ the function α may be very degenerate as u→
∞. Thanks to the absence of reactions in the energy equation, the u-component
has, however, an additional quasilinear heat equation-like structure, which gives
rise to separate a priori bounds.)

The lack of good integrability bounds for the concentrations can lead to serious
issues concerning the global-in-time existence analysis. In fact, we encounter situa-
tions, where the a priori bounds obtained from entropy estimates are not sufficient
to give a meaning to the flux term A(z)∇z in the distributional sense. At the
same time, these formal bounds do prevent global blow-up of the concentrations
and provide some control of the gradient ∇z, which calls for an adaptation of the
classical concept of weak solutions when faced with the question of global exis-
tence. Related issues are well-known for Boltzmann equations, where a concept
of renormalised solutions has been introduced [3, 2]. This concept has recently
been adapted to (isothermal) reaction-diffusion systems such as (1) to deal with
continuous reaction rates not obeying any growth hypothesis [4]. This notion of
solution requires compositions ξ ◦ z for ξ ∈ C∞([0,∞)I+1) with compactly sup-
ported derivative Dξ, to satisfy in the distributional sense an evolution equation
obtained by a formal application of the chain rule. In the context of our ERDS,
this equation states

d
dtξ(z) =

∑

i,j

div
(
∂iξ(z)Aij(z)∇zj

)
−
∑

i,j

Aij(z)∇zj · ∇∂iξ(z) +
∑

i

∂iξ(z)R
◦
i (z).

(5)

This definition is meaningful if, e.g.,
√
zi ∈ L2

tH
1
x and χ{|z|≤E}A(z)∇z ∈ L2

t,x for
all E ≥ 1. Using this solution concept, we have developed an existence analysis for
the above-mentioned problem with uncontrolled flux and reactions without growth
bounds. In the construction of renormalised solutions we face two new challenges
(w.r.t. existing works [4, 1]). The first difficulty is to find a suitable regularisation
giving rise to global-in-time regular (or weak) approximate solutions since this
requires a modification at the level of the diffusive operator, which features cross
effects and is defined upon a matrix A(z) lacking positive definiteness. Here, we
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exploit the entropy form A(z) = M(z)D2h(z), where the crucial point is a ‘regu-
larisation’ (adaptation) of the mobility matrix M(z). A second complication arises
due to the presence of the squared gradients in the renormalised formulation (5),
leading to compactness issues when passing to the limit in the approximate prob-
lem. This is particularly delicate in the uncontrolled cross terms induced by energy
gradients (those are the reason for the lack of L1

t,x a priori bounds on A(z)∇z).
The key to resolve this issue lies in the heat equation-like structure of the energy
component, which allows to show strong convergence in L2

t,x at the level of ∇u.
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On fluctuations in particle systems and their links to
macroscopic models

Johannes Zimmer

(joint work with Robert L. Jack and Marcus Kaiser)

There are two views on diffusion, say for example

(1) ρ̇t = ∆ρt +∇ · (ρt∇V ),

with a (smooth and confining) external potential V . Namely, we can interpret (1)
as gradient flow for a functional F(ρ) and a metric M(ρ):

ρ̇t = −M(ρt)
δF
δρt

,

for example with F the Boltzmann entropy andM the Wasserstein metric. On the
other hand, (1) can be interpreted as a continuity equation ρ̇t = −∇ · J(ρt), with
current or flux J(ρ) = −∇ρ−ρ∇V . We can define a force F (ρ) = −∇ log ρ−∇V =
−∇ δF

δρ , such that

J(ρ) = ρF (ρ).

These structures exist on the continuum. One can think of this macroscopic
scale as scaling limit of small-scale processes. In particular, Markov processes
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can lead to macroscopic diffusive effects. Are there analogous structures on the
Markov chain level?

For reversible Markov chains, Maas and Mielke have independently discovered
a gradient flow structure [5, 7]. The irreversible case corresponds to

ρ̇t = ∆ρt +∇ · (ρtE),

with a non-gradient field E. The non-gradient structure destroys the gradient flow
structure we know for (1). However, the force-flux relation makes sense even in
this non-gradient setting. It is therefore natural to seek a force-flux structure for
Markov chains. It turns out that it is possible to define a force j and current J
for finite state Markov chains, see [3, 6] and references therein. One sees that the
force-flux relation is nonlinear,

Jxy(ρ) = axy(ρ) sinh
(
1
2Fxy(ρ)

)
;

here Jxy is the current between nodes x and y and Fxy is the force.
Furthermore, one can show that a large deviation principle holds, where the

rate functional is finite for paths satisfying a continuity equation, and then takes
the form
(2)

I[0,T ]

(
(ρt, jt)t∈[0,T ]

)
= F(ρ0) +

∫ T

0

1

2
[Ψ(ρt, jt)− 〈jt, F (ρt)〉+ Ψ⋆(ρt, F (ρt))] dt;

here Ψ and Ψ⋆ are Legendre duals, with

(3) Ψ⋆(ρ, F ) :=
∑

xy

axy(ρ)
(
cosh

(
1
2Fxy(ρ)

)
− 1
)
,

see [6, 8, 3].
The proof in [3] is an application of Sanov’s theorem, giving the rate functional

as relative entropy of a path with respect to a reference path. A similar argument
can be developed for a class of particle processes, including (non-condensing) zero-
range processes. Again a large deviation principle is can be established, giving
the relative entropy of a process with respect to a reference process. This rate
functional is again of Ψ−Ψ⋆ form as (2) and (3) above. The hydrodynamic limit
is a nonlinear diffusion process, with quadratic rate functional. We discuss here a
simple case without potential, where the rate functional can be written as

(4)

∫ T

0

‖ρ̇t −∆φ(ρ)‖21,χ(ρt)
dt = S(ρ(0))− S(ρ(T ))

+
1

2

∫ T

0

[
‖ρ̇tρ‖21,χ(ρt)

+ ‖∆ρ‖21,χ(ρt)

]
dt.

One can show that this quadratic rate functional emerges as limit of the non-
quadratic (Ψ − Ψ⋆) rate functional (2) discussed before. Namely, under strong
assumptions, notably concentration of limit paths, one can show that, among
others, the following convergences hold [4] (the subscript L indicates that the
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functional is defined on the lattice level, with L → ∞ being the continuum limit
in a suitable scaling):

(1) We have

lim
L→∞

1

Ld

∫ T

0

ΨL

(
ρLt , 

L
t

)
dt =

1

2

∫ T

0

‖ρ̇t‖2−1,χ(ρt)
dt.

(2) Also, as L→ ∞,

1

Ld

∫ T

0

Ψ⋆
L

(
ρLt , F

V
α (ρLt )

)
dt → 1

2

∫ T

0

‖∆φ(ρt)‖2−1,χ(ρt)
dt.

Furthermore, the mixed term obtained in an expansion of the left-hand side in (4),
which gives rise to the entropy difference on the right, can be obtained in a limit
from the relevant expression for the particle functional. This is a subtle point,
however, as the expansion requires suitable regularity. In particular, we need to
know that for the analogous term on the particle level, it holds that

FV
α (ρt2)−FV

α (ρt1) =

∫ t2

t1

〈
ρ̇t,

δFV
α

δρt

〉
dt = −

∫ t2

t1

〈ρ̇t,∆φ(ρt)〉−1,χ(ρt)dt,

This requires a Wasserstein-type calculus for the particle process under consider-
ation. In [4], we use equivalence of the topology to the classic Wasserstein one.
It would be worthwhile to build the limit passage relying entirely on the geom-
etry associated with the particle process in question; this can lead to interesting
connections between particle dynamics and Wasserstein-type geometries. For ex-
ample, the result [4] is restricted to one space dimension, as it uses the McCann
condition for geodesic convexity, linked to the pressure in the particle system.

The aim of [4] was to establish the passage from the Ψ − Ψ⋆ structure on the
particle level to the macroscopic structure (4), thereby giving a rigorous derivation
and interpretation of the quadratic structure of the latter functional. The classic
hydrodynamic limit passage, however, requires significantly weaker assumptions
than those made in [4]. The underlying idea of deriving macroscopic gradient
flows follows that of [2]. It is possible that ideas from [1] can be used profitably
to weaken the assumptions.
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Nonlocal equations on discrete spaces inspired by numerical schemes

André Schlichting

(joint work with Antonio Esposito, Francesco Patacchini, Dejan Slepčev,
Christian Seis)

The nonlocal-nonlocal interaction equation. We introduce a general frame-
work for studying interaction equations on families of graphs and their limits as
the number of vertices n goes to ∞ based on the preprint [4]. In particular, in
the applications to machine learning, the graphs considered are random samples
of some underlying measure in Euclidean space, and the edge weights, as well as
the interaction energy, depend on the positions of the vertices.

The vertices are points in R
d. The edges are given in terms of a non-negative

symmetric weight function η : {(x, y) ∈ Rd × Rd : x 6= y} → [0,∞), which defines
the set of edges as G = {(x, y) ∈ Rd × Rd : x 6= y, η(x, y) > 0}. This setting also
covers discrete graphs with vertices X = {x1, . . . , xn} ⊂ Rd by considering µ as
the empirical measure of the set of points, µ = 1

n

∑n
i=1 δxi . The distribution of

mass over the vertices is described by a measure ρ ∈ P(Rd).
The evolution of interest is the gradient descent of the energy E : P(Rd) → R

(1) E(ρ) = 1

2

∫

Rd

∫

Rd

K(x, y) dρ(x) dρ(y),

where K : Rd × Rd → R is symmetric. The gradient flow equation takes the form

∂tρt(x) = −
∫

Rd

jt(x, y)η(x, y) dµ(y) =: −(∇ · jt)(x),

jt(x, y) = ρt(x)vt(x, y)+ − ρt(y)vt(x, y)−,

vt(x, y) = − (K ∗ ρt(y)−K ∗ ρt(x) + P (y)− P (x)) .

(NL2IE)

Firstly, the system (NL2IE) consists of a nonlocal continuity equation, where the
divergence ∇· is encoded by the graph structure described through µ and η. Sec-
ondly, it involves a mapping from velocity to flux, which here is the upwind flux
and encodes the geometry of the gradient structure. Finally, the third equation
identifies the driving velocity as the nonlocal gradient of the variation of the en-
ergy (1). Overall, we obtain that (NL2IE) is the gradient flow of the energy E with
respect to a generalization of the Upwind transportation metric.
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Upwind nonlocal transportation metric. Let us set

(2) Vas(G) := {v : G→ R : v(x, y) = −v(y, x) for all (x, y) ∈ G}

and call its elements nonlocal (antisymmetric) vector fields on G; for any pair
(x, y) ∈ G the value v(x, y) can be regarded as a jump rate from x to y. Let us
fix a final time T > 0 and let a family {vt}t∈[0,T ] ⊂ Vas(G) be given. In the case

ρt ≪ µ for all t ∈ [0, T ], it is possible to combine the first two equations in (NL2IE)
in order to arrive at the nonlocal continuity equation for µ-a.e. x ∈ Rd

(3) ∂tρt(x) +

∫

Rd

(ρt(x)vt(x, y)+ − ρt(y)vt(x, y)−) η(x, y) dµ(y) = 0.

For general curves ρ : [0, T ] → P(Rd), it is possible to consider the weak form
of (3), which is discussed in [4].

We use the nonlocal continuity equation (3) to define a nonlocal Wasserstein
quasi-distance in analogy to the Benamou–Brenier formulation [1] for the Kantoro-
vich–Wasserstein distances. That is, for two probability measures ρ0, ρ1 ∈ P2(R

d),
let

(4) Tµ(ρ0, ρ1)2 := inf
(ρ,v)∈CE(ρ0,ρ1)

{∫ 1

0

∫∫

G

|vt(x, y)+|2η(x, y) dρt(x) dµ(y) dt
}
,

where CE(ρ0, ρ1) is the set of weak solutions ρ to the nonlocal continuity equation
on [0, 1] with ρ(0) = ρ0 and ρ(1) = ρ1. We note that the notion of the nonlocal
Wasserstein distance for measures on Rd was introduced by Erbar in [3], who used
it to study the fractional heat equation. One difference is that the interpolation
we consider is beyond the scope of [3]. Very recently, [5] has extended the gradient
flow viewpoint of the jump processes to generalized gradient structures driven by
a broad class of internal energies. However, the particular choice of the upwind
interpolation seems not to be covered.

Another difference is that here the measure µ plays an important role in how
the action is measured and allows to incorporate seamlessly both the continuum
case (e.g., µ is the Lebesgue measure on Rd) and the graph case (µ is the empirical
measure of the set of vertices).

Relation to the numerical finite-volume scheme. Equation (3) is very closely
connected to the numerical Upwind scheme, the workhorse of finite-volume meth-
ods. To draw the connection, let {x1, . . . , xn} be a suitable representative of a
tessellation {K1, . . . ,Kn}, for instance a Voronoi tessellation, of some bounded
domain Ω ⊂ Rd. Let µ be the Lebesgue measure on Ω and take η to be the
transmission coefficient common in finite-volume schemes: η(xi, xj) = Hd−1(Ki ∩
Kj)/Leb(Ki), for i, j ∈ {1, . . . , n}, where Hd−1(Ki ∩Kj) is the d− 1 dimensional
Hausdorff measure of the common face between Ki and Kj. With this choice the
equation (3) becomes the (continuous-time) discretization of the classical continu-
ity equation

∂tρt +∇ ·
(
vt ρt

)
= 0,
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for some vector field vt : Ω → R
d. Hereby, the discretized vector field vt is obtained

from vt by taking the average over common interfaces:

vt(xi, xj) =
1

Hd−1(Ki ∩Kj)

∫

Ki∩Kj

vt · νKi,Kj dHd−1,

where νKi,Kj is the unit normal to Ki pointing from Ki to Kj . We refer to the
recent work [2] for a variational interpretation of the upwind scheme, which is close
to that we propose for the more general equation (3).

The Scharfetter–Gummel scheme for aggregation-diffusion equations.
In the preprint [7], a numerical scheme based on the Scharfetter–Gummel flux in-
terpolation [6] is suggested to obtain a structure preserving scheme for the Wasser-
stein gradient flow associated to a free energy, which besides the interaction energy
from (1), contains an entropy at some temperature κ > 0

(5) Fκ(ρ) = κ

∫

Rd

log ρ(x) dρ(x) + E(ρ),

The scheme can be rewritten as (NL2IE), once the Upwind-interpolation for the
flux is replaced by the Scharfetter–Gummel interpolation

(6) jt(x, y) = θκ(ρt(x), ρt(y), vt(x, y)) := vt(x, y)
ρt(x)e

vt(x,y)
2κ − ρt(y)e

− vt(x,y)
2κ

e
vt(x,y)

2κ − e−
vt(x,y)

2κ

,

with vt(x, y) given as in (NL2IE). Let us note, that θκ(a, b, v) → a(v+)
2 + b(v−)2

for κ → 0, which is exactly the Upwind interpolation. The velocity-flux relation
in (6) encodes through the function θκ is derived by solving a suitable cell problem,
which is given as the following boundary value problem

(7)
θκ(ρ(x), ρ(y), v(x, y)) = −κ∂ξρ(ξ) + v(x, y)ρ(ξ) for ξ ∈ (0, 1),

ρ(0) = ρ(x) and ρ(1) = ρ(y).

Hence besides θκ, the function [0, 1] ∋ ξ 7→ ρ(ξ) is part of the unknown in (7).
The numerical scheme is obtained by a further implicit discretization of time.

With the choice (6) of the flux-interpolation, it is shown in [7] that a discretized
version of the free energy (5) is a Lyapunov function for the scheme. This allows to
characterize stationary states of the scheme and show also its longtime behavior.
In addition, the free-energy–dissipation gives suitable a prior bounds on discrete
gradients of solutions to the scheme, which provide enough compactness for passing
to the limit in the mesh size for obtaining weak solutions to the aggregation-
diffusion equation

(8) ∂tρt = ∇ ·
(
κ∇ρt + ρt∇W ∗ ρt

)
.
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Mean-field models for segregation dynamics

Marie-Therese Wolfram

(joint work with Martin Burger, Jan Haskovec, Jan-Frederik Pietschmann,
Helene Ranetbauer, Christian Schmeiser)

Aggregation and segregation dynamics are often observed in the collective motion
of large interacting particle systems in the life and social sciences. Hereby the
formation of clusters or aggregates serve diverse functions such as reproduction
or reducing the risk by predators. There has been an increased interest in un-
derstanding the underlying mechanisms of aggregation and segregation dynamics
in the last decades. There is an extensive literature on mathematical models for
collective dynamics on the micro- as well as macroscopic level. In all these models
the qualitative behaviour of solutions - such as equilibration and steady states - is
of particular interest.

Aggregation dynamics can be linked to different underlying individual dynam-
ics. The first popular class of models relate to self-organisation in large animal
groups, like fish schools or bird flocks. Hereby individuals align characteristic fea-
tures, such as their velocity. The respective continuum models for the individual
density ρ = ρ(x, t) are of the form

∂tρ(x, t) = ∇ · (ρ∇K ∗ ρ),
where K is a radially symmetric pairwise interaction kernel. Attraction towards
a chemical gradient (produced by the individuals themselves) is another popular
aggregation mechanism. The most prominent example is the Patlak-Keller-Segel
model

∂tρ(x, t) = ∇ · (∇ρm + ρ∇(ρ ∗ V )),

where m ≥ 1 and V is a given attractive potential. In density dependent random
walks individuals decrease the amplitude of their random motion if others are
close. The respective continuum models are generally of the form

∂tρ(x, t) = ∇ · (Φ(ρ)∇ρ),

where the diffusion coefficient might be degenerate, that is Φ(ρ) ≥ 0.
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In the following we will discuss two different microscopic models, which describe
segregation dynamics and their respective mean-field limits. Both approaches will
lead to parabolic degenerate diffusion equations or systems thereof.

In the first approach, see [1], individual dynamics are based on first or second
order models for the position Xt

i ∈ Rd and the velocity V t
i ∈ Rd of the i-th

individual, i = 1, . . .N . We assume that individuals undergo a density dependent
random walk, in which the amplitude of the random walk depends on the sensed
average density

ηti =
1

N

N∑

i=1

W (X −Xt
i ),

where W (x) = w(|x|) with w : R+ → R
+ being a bounded, non-negative and non-

increasing weight function (such as the indicator function on the interval [0, R],
R > 0). Then the first order dynamics are given by

dXt
i = G(ηti)dB

t
i , i = 1, . . . N,(1)

where Bt
i are independent d-dimensional Brownian motions and G : R+ → R

+

is a bounded, non-negative, non-increasing function. Possible choices are G(s) =
exp(−s) or G(s) ≡ 0 for s ≥ s0 > 0.

In case of second order dynamics the individually sensed density also depends
on the direction of motion, that is

ηti =
1

N

N∑

i=0

W (X −Xt
i , V

t
i ),

where W (x, v) = w(|x|, x·v
|x||v|). Then

dXt
i = V t

i dt,(2a)

dV t
i = −H(ηti)V

t
i dt+G(ηti)dB

t
i ,(2b)

where G is of the same form as in (1) and H : R+ → R+ is a non-negative and non-
decreasing damping term. In the large particle In [3] we derive the respective mean
field models. In case of first order dynamics, we obtain the following continuum
equation for the individual density ρ = ρ(x, t):

∂tρ(x, t) = ∆x(G(W ∗ ρ)2ρ),(3)

where W ∗ ρ =
∫
Rd W (x − y)ρ(y, t)dy. For the second order dynamics we derive

a Fokker-Planck equation for the particle density with respect to their position x
and velocity v:

∂tf(x, v, t) + v · ∇xf(x, v, t) = ∇v ·
(
H(W ∗ f)vf +

1

2
∇v(G(W ∗ f)2f)

)
(4)

where we define the convolution operator asW∗f=
∫
Rd

∫
RdW (x−y, v)f(y, v, t)dydv.

Stationary states and linear stability analysis: Equation (3) and (4) exhibit
complex stationary states, which can be analysed by linear stability analysis. To
do so we consider (3) on a bounded domain with periodic boundary conditions.
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Then ρ ≡ const is a trivial stationary state, but more complex stationary states
can be easily constructed. If G(s) = 0 for s > s0 then one can construct atomic
measures

ρ(x) =

N∑

i=1

ciδ(x− xi),

for some n ∈ N, xi ∈ Ω and ci such that the Delta Diracs don’t see each other
(due to the cut off for values larger than s0). Plain vanilla linear stability analysis
around the constant steady state shows that certain wavenumbers are unstable,
leading to the formation of aggregates and clusters. Furthermore if the diffusion
depends on the local density only, that isW = δ0, then equation (3) can be written
as

∂tρ(x, t) =
1

2
∇ · [G(ρ) (2G′(ρ)ρ+G(ρ))∇ρ] .(5)

Note that equation (5) is parabolic (and therefore well-posed) if 2G(ρ)G′(ρ)ρ +
G2(ρ) is strictly positive (which is the same condition that can be found in the
linear stability analysis). The non-locality does however introduce a stabilising
effect as a formal expansion of W shows. Let Wǫ := ǫ−dW ( sǫ ) such that Wǫ → δ0
as ǫ→ 0. Then this formal expansion yields

∂tρ =
1

2
∆
[
G(ρ)2ρ+ ǫ2βG(ρ)G′(ρ)ρ∆ρ

]
+O(ǫ4).

This yields a Cahn Hilliard type equation, which is well-posed for every ǫ > 0.
However, the regularising effect of the non-locality is lost for ǫ = 0.

In the second model, see [2], we focus on segregation dynamics for two species,
called red and blue in the following. Let r = r(x, t) and b = b(x, t) denote the
probability to find a red or blue particle at location x at time t. Then the individual
dynamics are given by

∂tc(x, t) =

∫

Rd

K1(x− x′) [(1− ρ)D′
cc

′ − (1 − ρ′)Dcc] dx
′,(6)

where c = r, b, ρ = r + b is the total density (normalised to one) and the dash
indicates the evaluation at x′. The diffusion coefficient are of the form

Dc(x, t) = Dc((K2 ∗ r(·, t))(x), (K2 ∗ b(·, t))(x)),

with convolution (K2 ∗ u(·, t))(x) =
∫
Rd K2(x − x′)u(x′, t)dx′. The factor (1 − ρ)

in (6) includes finite size effects - particles can only move to a site x if it is not
already occupied. The kernel K1 corresponds to the jump rate, while K2 to the
sensing area of the density. The first term on the right hand of (6) is a gain term
since individuals move from x′ into x, while the second is a loss term as individuals
move from x to x′.

By scaling the kernels K1 andK2 appropriately we can either localise one or the
other. If individuals only move in their local neighbourhood (which corresponds
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to re-scaling K1), we obtain the following partial differential equation system with
cross diffusion terms

∂tr(x, t) = ∇ · [(1− ρ)∇Dr(K2 ∗ r,K2 ∗ b)r) + rDr(K2 ∗ r,K2 ∗ b)∇ρ](7a)

∂tb(x, t) = ∇ · [(1− ρ)∇Db(K2 ∗ r,K2 ∗ b)b) + bDb(K2 ∗ r,K2 ∗ b)∇ρ] .(7b)

If we localise the sensing area (hence re-scalingK2) we obtain an integro-differential
equation instead

∂tr(x, t) =

∫

Rd

K1(x− x′)[(1 − ρ)D′
rr

′ − (1− ρ′)Drr]dx
′(8a)

∂tb(x, t) =

∫

Rd

K1(x− x′) [(1 − ρ)D′
bb

′ − (1 − ρ′)Dbb] dx
′.(8b)

Since we assume that individuals like to stick to their own group, the diffusion coef-
ficients are non-increasing functions with respect to the own species. In particular
we assume that they take the form

Dr(p, q) = Cre
−Crrp+Crbq and Db(p, q) = Cbe

Cbrp−Cbbq,(9)

with positive constants Cij , i, j ∈ {r, b}.
Existence and uniqueness of solutions to (7) follows from the boundedness by

entropy principle and from Picard Lindelöf theorem for (8).

Stationary states and linear stability: The PDE as well as the integro-differential
equation system exhibit the trivial stationary state ρ ≡ const on the bounded
domain with periodic boundary conditions. The linear stability analysis for both
systems shows that there exist unstable modes, which lead to the formation of
clusters and segregated states. The inherent separation property of the PDE
system (3) can be seen from its Cahn-Hilliard structure. For diffusion coefficients
of the form (9) we can rewrite system as (7) as

∂tr(x, t) = ∇ · [Drkr(1 − ρ)∇ (−Crr∆Kr + Crb∆Kb+ ∂rW )]

∂tb(x, t) = ∇ · [Dbkb(1− ρ)∇ (Cbr∆Kr − Cbb∆Kb+ ∂bW )] ,

where k =
∫
Rd K2(x)dx and the non-local Laplacian is defined via

−∆ku = u− 1

k
K ∗ u.

The potential W is given by

W (r, b) = r log r + b log b+ (1 − ρ) log(1− ρ)

− Crr

2
r2 + Crbrb + Cbrrb −

Cbb

2
b2 +

Crr

2
r +

Cbb

2
b.

If we ignore the diffusion terms the potential has three global minimisers (r, b)
at the corners of the unit triangle, that is (1, 0), (0, 1) and (0, 0). The first two
correspond to segregated states, the last one to void. These energy minimisers play
a main role in the long time asymptotics. In case of small diffusion the minimisers
are shifted to the interior and the segregation will be less pronounced. We refer
to [3] for a more detailed discussion in case of similar model.
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These first insights into the qualitative behaviour of solutions to nonlinear degener-
ate diffusion models for aggregation and segregation dynamics show that already
very minimalistic and basic interaction rules lead to the formation of complex
stationary states.
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Survival of the waiting time phenomenon under
Lagrangian discretization

Daniel Matthes

(joint work with Julian Fischer)

For definiteness, we consider initial value problems for the one-dimensional porous
medium equation (PME)

∂tu = (um)xx

with exponent m > 1 and the thin film equation (TFE)

∂tu = −(uuxxx)x,

on the real line, with a compactly supported initial datum ū ≥ 0. For the TFE,
we consider strong solutions, see e.g. [2], so in particular the contact angle is
zero. Without loss of generality, we further assume that the (conserved) mass is∫
R
u(t, x) dx = 1 and that the initial support is supp ū = [0, b] for some b > 0.
For both PME and TFE, it is well-known that for large times, the size R(t) of

the support of the solution expands at least at an algebraic rate: R(t) > t1/(m+1)

for the PME, and R(t) > t1/5 for the TFE. This follows by comparison with self-
similar solutions [2]. What is probably less known is that for short times, the
waiting time phenomenon may occur: if ū(x) is “very flat” for small positive x,
then the left edge of support remains at x = 0 for a certain waiting time T∗ > 0.
More specifically, if ū(x) ≤ Kxp+ for some p > 2

m−1 in case of the PME, or p > 4

in case of the TFE, then the solution satisfies inf suppu(t) = 0 for all 0 ≤ t ≤ T∗.
These criteria are essentially optimal, see e.g. [1, 4].

Intuitively, waiting times account for a slow transfer of energy from the bulk
through the thin tail to the interface. The by-now-standard method for proving the
occurence of the phenomenon rigorously and also for estimation of waiting times
from below builds on this intuition by considering localized entropy estimates: the
core idea is to compare the values and time derivatives of the functionals

Hh(t) =

∫

R

(h− x)q+u(t, x)
p dx(1)
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with suitable powers p, q > 0 and varying penetration depth h ≥ 0. A Stampacchia
estimate then allows to conclude from flatness of ū(x) near x = 0 that H0(t) = 0
for t ∈ [0, T∗], which proves the one-sided waiting time phenomenon, i.e., that
there is no expansion of support before time T∗. This method has been developed
in [3] in the context of more general thin film equations, unifying and simplifying
various earlier approaches.

Our own contribution is two-fold. First, we develop a similar method in the La-
grangian picture of the evolution; it is even slightly stronger since it directly proves
the double sided waiting time phenomenon. And second, we identify a mesh-
independent discrete waiting time phenomenon for the Lagrangian discretizations
of PME and TFE that had been proposed in [6, 7].

The Lagrangian picture of PME and TFE is obtained by passing from the
spatial coordinate x ∈ R to the mass coordinate ξ ∈ [0, 1]. The conversion is given
via the time-dependent Lagrangian map X(t; ·) : [0, 1] → R, characterized by

∫ X(t;ξ)

−∞
u(t;x′) dx′ = ξ for all 0 < ξ < 1.

That is, t 7→ X(t; ξ) is the trajectory of the mass particle that has been tagged by
ξ initially. In particular, t 7→ X(t; 0) is the curve of the left edge of support. In
terms of X and Z := u ◦X = 1

∂ξX
, the PME and TFE, respectively, become

∂tX = −∂ξ(Zm), and ∂tX = ∂ξ
(
2Z3∂ξξZ + Z2(∂ξZ)

2
)
.(2)

Theorem 1. Let X be the Lagrangian map for the solution to the PME with an
initial datum ū such that

B̄ := sup
h>0

∫ h

0
ū(x) dx

(∫ h

0
ū(x)

) 3m−1
m+1

<∞.(3)

Then X(t, 0) = 0 at least for all t ≤ T , where

T := KB̄−m+1
m−1(4)

with a universal constant K.

An analogous, technically more complicated result holds for the TFE [5].

Idea of proof: Lacking a notion of “outside of u’s support” in the Lagrangian
picture, we cannot directly use the functionals from (1) with a fixed localization in
x-space. Instead, we perform a localization — moving in time with the Lagrangian
map — from inside u’s support. Specifically, we consider for ρ ∈ [0, 1]:

Hρ(t) =

∫ ρ

0

Z(t)m−1 dξ, Dρ(t) =

∫ ρ

0

(
∂ξ
[
Z(t)m

])2
dξ, Gρ(t) =

∫ ρ

0

Z(t)2m dξ,

and obtain (up to irrelevant constants) the localized entropy dissipation estimate

sup
0≤t≤T

Hρ(t) +

∫ T

0

Dρ(t) dt ≤ H2ρ(0) + ρ−2

∫ T

0

G2ρ(t) dt.(5)
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By means of a functional inequality as simple as Gρ ≤ ρ
m+1
2m D

m+1
2m

ρ Hρ, one arrives
at the following family of estimates, parametrized by ρ:

Aρ(T ) ≤ T
m−1
2m

(
Aρ(T ) + B̄

)1+m+1
2m for Aρ(T ) := ρ−1− 4m

m+1

∫ T

0

Gρ(t) dt.

This yields the recursive relation for an := A2−n(T ),

an+1 ≤ c(an + B̄)1+
m+1
2m ,(6)

with c := T
m−1
2m . By an elementary induction argument, one concludes that the

an are n-uniformly bounded since B̄ < ∞ and T has been chosen as in (4).
From that bound, one easily deduces directly from the evolution equations that∫ T

0

(
∂tX(t; 0)

)2
dt = 0, which is the claim.

For discretization of X , we use finite differences in mass space. u is then approxi-
mated by piecewise constant functions with respect to a moving mesh on R. The
discrete evolution equations are formally identical to (2), with derivatives replaced
by finite differences. As shown in [6, 7], these discretizations are convergent. And
moreover, they inherit the dissipative (in fact: even the gradient flow) structure
of the original PME and TFE. Thus, for appropriately defined discretized versions
of Hρ, Dρ and Gρ, one proves a dissipation estimate in full analogy to (5). The
main difference is that the cascade of estimates (6) is now finite, since there is a
left-most cell of finite mass δ1 > 0.

Theorem 2. Let (x0(t), x1(t), . . . , xM (t)) be the moving Lagrangian mesh cor-
responding to a solution of the discretized PME with a ū satisfying (3). Then

|x0(t)| ≤ cδ
m−1
m+1

1 B̄− 2
m−1 at least for all t ≤ T , with the T > 0 from (4).

Again, we derive a similar result for the discretized TFE [5].

Open problem: In our numerical simulations, the waiting time phenomenon ist
captured atonishingly well, particularly for adapted meshes that become finer and
finer closer to the interfaces. For a mesh-independent waiting time, the interface
appears to be not moving at all, and then changes to positive speed quite abruptly.
The deviation of x0(t) from zero during the inital phase appears to be much smaller
than predicted by the theorem above. We would like to understand if our approach
can be modified to derive sharper estimates and to capture the quality of the
numerical observation.
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Optimal control of rate-independent systems

Dorothee Knees

(joint work with Stephanie Thomas)

In this short note, we focus on the optimal control of a rate-independent system, for
details we refer to [2]. The system is given in terms of a state variable z : [0, T ] →
Z, a time-dependent external load ℓ, a stored energy functional E depending on ℓ
and z, and a dissipation potential R : Z → [0,∞), which captures the dissipation
due to internal friction. To be more precise, we assume that the state space Z is
a separable Hilbert space which fulfills the embedding Z ⊂⊂ V ⊂ X for another
separable Hilbert space V and a Banach space X and choose ℓ ∈ H1(0, T ;V∗). We
are working with a semilinear model, i.e., we assume that there are a linear operator
A ∈ Lin(Z,Z∗) and a nonlinearity F : Z → [0,∞) such that E : [0, T ]×Z → R is
given by

E(t, z) := 1
2 〈Az, z〉Z∗,Z + F(z)− 〈ℓ(t), z〉V∗,V = I(z)− 〈ℓ(t), z〉V∗,V .

F is supposed to be nonconvex and of lower order with respect to A. The pre-
cise assumptions on A, F and ℓ can be found in [2]. In order to obtain rate-
independence, the dissipation potential R is assumed not only to be continuous
and convex, but also positively homogeneous of degree one. We are dealing with a
bounded dissipation potential, i.e. there are constants c, C > 0 such that

for all z ∈ X : c‖z‖X ≤ R(z) ≤ C‖z‖X .(1)

With these ingredients, the evolution of the state variable z can be described by
means of the doubly nonlinear equation

0 ∈ ∂R(ż(t)) + DzE(t, z(t)) for a.a. t ∈ [0, T ],(2)

where DzE is the Gâteaux derivative of E w.r.t. z and ∂R : Z → P(Z∗) denotes
the convex subdifferential of R. The main result in [2] is the existence of a globally
optimal solution of an optimal control problem of the type

min ‖ẑ − zdes‖+ α‖ℓ‖H1(0,T ;V∗)

s.t. ẑ ∈Mad,

}
(3)

where the external load ℓ is the control variable, α > 0 is a fixed Tikhonov param-
eter, and zdes is a given desired state. The problem is restrained to an admissible
setMad consisting of all solutions of (2) in the sense of parametrized BV solutions.

It is well known that rate-independent systems with nonconvex energy E in gen-
eral do not admit solutions that are continuous in time. Several solution concepts
are available in the literature that allow for discontinuous solutions and we refer
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to [5] for more details and an overview on solution concepts. Independently of
the chosen solution concept, solutions of rate-independent systems with noncon-
vex energies in general are not unique. This is a major challenge when it comes
to optimal control of such systems.

The literature concerning the optimal control of rate-independent systems with
nonconvex energies formulated on infinite dimensional spaces is rather scant. We
mention here [6, 7], where the existence of optimal solutions to a variant of the
problem (3) constrained to global energetic solutions and a reverse approximation
property are shown. To the best of our knowledge, no existence results are available
in the literature for optimal control problems constrained to BV solutions.

The solution concept in this short note are normalized, p-parametrized balanced
viscosity solutions (BV solutions). Thereby, the solutions are represented with
respect to an artificial arc length parameter as in [1] or in [4, Definition 4.2]. The
existence of BV solutions can be shown via a vanishing viscosity approach, where
the equation (2) is approximated by a sequence of equations

0 ∈ ∂R(żε(t)) + εVżε(t) + DzE(t, zε(t)) for a.a. t ∈ [0, T ],(4)

where V ∈ Lin(V ,V∗) is an elliptic and symmetric operator. These types of viscous
systems have been analyzed in the past (see, e.g., [3]) and are known to have
absolutely continuous solutions zε ∈ W 1,1(0, T ;V). In order to identify the limit
as the viscosity ε tends to zero, one option is to reformulate the viscous system with
respect to an artificial arc length parameter so that the trajectory t 7→ (t, zε(t))
is rewritten as s 7→ (t̂ε(s), ẑε(s)). There are several possibilities for choosing the
reparametrization. For our purpose, the reparametrization based on the vanishing
viscosity contact potential p(·, ·) is the most appropriate one, see [4]. Here, one
defines

sε(t) := t+

∫ t

0

p(żε(τ),−DE(τ, zε(τ)))dτ(5)

with p(v, ξ) := R(v) + ‖v‖
V
distV(ξ, ∂R(0)) and chooses t̂ε as the inverse function

of sε. Defining ẑε = zε ◦ t̂ε : [0, Sε] → Z, it is then possible to pass to the
limit for vanishing viscosity (i.e., for ε → 0) and obtain limits S ∈ [0,∞) of Sε,
ẑ ∈ AC(0, S;X ) of ẑε and t̂ ∈ W 1,∞(0, S;R) of t̂ε. Simultaneously passing to the
limit in the reparametrized energy dissipation balance associated with (4), one
also obtains the energy dissipation balance fulfilled by (t̂, ẑ), which reads

E(t̂(s), ẑ(s))+
∫ s

0

R[ẑ′](r)dr+

∫

(0,s)∩G

‖ẑ′(r)‖VdistV(−DE(t̂(r), ẑ(s)), ∂R(0))dr

= E(0, z0)−
∫ s

0

〈ℓ′(t̂(r))t̂′(r), ẑ(r)〉dr .

It is possible to show that ẑ ∈ ACloc(G;V) is differentiable almost everywhere on

G = {s ∈ [0, S] | distV(−DE(t̂(s), ẑ(s)), ∂R(0)) > 0},
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so that the second integrand is defined almost everywhere, [4]. Normalized, p-
parametrized BV solutions then are defined as triples (S, t̂, ẑ) with certain reg-
ularities that satisfy the energy dissipation identity and that are normalized in
the sense of [2, Definition 3.1]. One advantage of using the parametrization (5) is
that limits of solutions (t̂ε, ẑε)ε are automatically normalized, a property that is
essential in the analysis for the optimal control problem.

As already mentioned, BV solutions typically are not unique. Hence, for the
purpose of optimal control one needs to show the sequential closedness of the graph
of the set-valued solution operator and a compactness property, [2, Theorem 3.12].
For the proof, the main challenge is to derive a priori estimates for the driving
forces DE(t̂, ẑ) on the set G. In order to obtain these, we use the fact that for each
parametrized BV solution, there exists a Lagrange parameter λ : (0, S) → [0,∞)
with λ(s) = 0 on (0, S) \G such that the inclusion

0 ∈ ∂R(ẑ′(s)) + λ(s)Vẑ′(s) + DI(ẑ(s))− ℓ(t̂(s))(6)

is fulfilled almost everywhere on G, [4]. For each connected component of G, one
then chooses a reparametrization in such a way that the transformed functions are
solutions of the autonomous system

0 ∈ ∂R(ż(t)) + Vż(t) + DI(z(t)) − ℓ∗ for t > 0 .(7)

Analyzing this system yields the desired estimates and in particular guarantees the
compactness of solution sets, see [2, Theorem 3.12]. With this, the following exis-
tence result for the optimal control problem governed by (2), which is constrained
to the admissible set

Mad :=
{
(S, t̂, ẑ, ℓ) | (S, t̂, ẑ) is a parametrized BV solution for (z0, ℓ)

}
(8)

is immediate ([2, Theorem 4.1]:

Theorem. Let α > 0 be a fixed Tikhonov parameter, z0 ∈ Z be chosen such
that there exists ℓ ∈ H1(0, T ;V∗) such that DzE(0, z0) ∈ V∗ and let j : V → R be
bounded from below and continuous. Then, the optimal control problem (3) has
a globally optimal solution.
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On the sticky particle solutions to the multi-dimensional pressureless
Euler system

Sara Daneri

(joint work with Stefano Bianchini)

We consider the pressureless Euler system in [0, T ]× Rd

(1)

{
∂tρ+ div(ρv) = 0

∂t(ρv) + div(ρv ⊗ v) = 0,

where ρ is the distribution of particles and v is their velocity.
Such a model has been proposed by Zeldovich [9] as a simplified model for the

early stages of the formation of galaxies, when a dust of particles moving without
pressure should start to collide and aggregate into bigger and bigger clusters.

Since then, several authors devoted attention to the search of sticky particle
solutions, namely solutions to (1) which satisfy the following adhesion principle:
if two particles of fluid do not interact, then they move freely keeping constant
velocity, otherwise they join with velocity given by the balance of momentum.

The great majority of the results in the literature are concerned with the one-
dimensional pressureless dynamics (see e.g. [2, 3, 5, 6, 7, 8]) In this case, exploiting
the density of finite particle solutions, one can obtain from quite general initial
data a global measure solution of (1) satisfying an adhesion principle.

In general dimension, much less is known. For initial data given by a finite
number of particle pointing each in a given direction, it is easy to show that a
global sticky particle solution always exists and is unique. However, in dimension
d ≥ 2, one sees immediately already from a finite number of particles that the
sticky particle solutions do not depend continuously on the initial data.

In [4] it is shown that, in general, both existence and uniqueness might fail: it
is indeed possible to build initial data of non-existence or non-uniqueness for the
sticky particle solutions. In particular, in dimension d ≥ 2 one cannot hope for a
well-posedness of the Cauchy problem in the set of sticky particle solutions for all
measure-type initial data as in the one-dimensional case.

Thus the natural question of whether one can still find particle solutions for a
large class of data (hence excluding the counterexamples in [4]) remained unan-
swered. In [1] we give a positive answer to this question.

In order to state our main result, define

P2,1(R
d × R

d) :=
{
ν0 ∈ P(Rd × R

d) :

∫
|x|2px#ν0 ≤ 1,

∫
|v|2pv#ν0 ≤ 1

}
,
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where P(Rd × R
d) are the probability measures on R

d ×R
d, (x, v) ∈ R

d ×R
d the

position-velocity coordinates and px (pv) the projection operators on the first (last)
d coordinates. Moreover, we consider the problem of existence and uniqueness in
a larger class of solutions which we call dissipative since in particular their kinetic
energy is decreasing but their trajectories might cross without joining at later
times. By free flow we mean a flow in which trajectories are disjoint straight lines
which never intersect.

Our main result is the following: there is a set D0 ⊂ P2,1(R
d × Rd) such that,

for any ν0 ∈ D0 there exists a unique dissipative solution η with initial data ν0
and it is given by a free flow. Such a set is a dense Gδ set (i.e. of second category)
in the weak topology on P2,1(R

d × Rd).
Since our notion of dissipative solution includes the classical sticky particle

solutions, the above theorem implies that, even though the sticky particle solutions
are not well-posed for every measure-type initial data, there exists a comeager set
of initial data in the weak topology giving rise to a unique sticky particle solution.
Moreover, for any of these initial data the sticky particle solution is unique also in
the larger class of dissipative solutions (where trajectories are allowed to cross) and
is given by a trivial free flow concentrated on trajectories which do not intersect.
In particular for such initial data there is only one dissipative solution and its
dissipation is equal to zero. Thus, for a comeager set of initial data the problem
of finding sticky particle solutions is well-posed, but the dynamics that one sees is
trivial.

Both the concepts of dissipative and classical sticky particle solutions are defined
at a Lagrangian level as measures on the space of curves with finite energy. The
class of dissipative solutions turns out to be the compact weak closure of the set of
classical sticky particle solutions. Then we show that dissipative solutions can be
approximated in the weak topology by classical sticky particle solutions. Once one
has the density of finite particle solutions one can use the fact that the dimension is
greater than or equal to 2 to modify the initial data of such finite particle solutions
in order to have the trivial free flow as unique solution, while staying close in the
weak topology w.r.t. the initial data. Such data in particular have the property
that every dissipating solution starting from them has zero dissipation. The fact
that such initial data are a Gδ set follows from the compactness of the set of
dissipative solutions and the upper semicontinuity of the dissipation. Hence, for
a dense Gδ-set of initial data the weak solutions constructed by any reasonable
approximation scheme coincide with our dissipative solutions, i.e. the free flow.
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From quantization of measures to ultrafast diffusion equations.

Mikaela Iacobelli

(joint work with Emanuele Caglioti, François Golse, Francesco Saverio
Patacchini, Filippo Santambrogio)

The problem of quantization of measures consists of finding an atomic measure,
with fixed number N of atoms, that best approximates in the Wasserstein distance
a given density ρ in a compact subset Ω of Rd. This problem can be proved to be
equivalent to minimizing the functional

FN,r(x1, . . . , xN ) :=

∫

Ω

( N
min
i=1

|x− xi|
)r
ρ(x) dx.

A classical question concerns the asymptotic of the location of the optimal points

{x̂i}Ni=1 when N → ∞, and it is by now well-known that 1
N

∑N
i=1 δx̂i converge to

a minimizer of the functional

f 7→ F [f ] :=

∫

Ω

ρ

f r/d
dx.

Part 1: A gradient flow approach to quantization of measures.
In joint papers with Caglioti and Golse, we introduced a natural way to con-
structively find the optimal locations x̂i by studying the evolution of an arbitrary
configuration of points (x01, . . . , x

0
N ) as they follow the steepest descent curves of

the functional FN,r. In other words, one solves the ODE system in (Rd)N given
by

(1) Ẋ(t) = −∇FN,r(X(t)), X(0) = (x01, . . . , x
0
N ).

Unfortunately, this gradient flow is highly non-convex, so a strategy introduced in
[1] has been to compare this evolution to a Lagrangian version of the Wasserstein
gradient flow of F . This corresponds to considering a suitable limit of (1) as
N → ∞, and the advantage of this approach is that this limit is much more
regular. In particular, as shown in [1, 2], one can use this idea (at least in 1D, or
in some specific cases in 2D) to extract information on the above ODE and prove
quantitative convergence results.
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Part 2: Weighted ultrafast diffusion equations.
In a sequent work with Patacchini and Santambrogio, we investigated the Wasser-
stein gradient flow of F . This reads as

(2) ∂tf − div
(
f ∇

[
U ′
( f
m

)])
= 0,

where m = ρ
1

α+1 , U(s) = s−α, and α = r/d. This PDE is coupled with periodic
or Neumann boundary conditions, and the function m is supposed to be bounded
away from zero and infinity inside Ω.

The equation (2) is of very fast diffusion-type, and we call it weighted because
of the presence of the non-constant weight factor m. The asymptotic behavior
of this PDE was already studied, in the smooth case, in [3]. Then, in [4], we
exploited the gradient-flow structure of this equation, in particular through the
so-called JKO scheme, to introduce a suitable notion of weak solutions for which
we can:
1) prove existence and uniqueness, with BV and H1 regularity estimates;
2) prove L1 weighted contractivity, Harnack inequalities, and exponential conver-
gence to the steady-state.
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Jump Processes and Generalized Gradient Flows

Oliver Tse

(joint work with Mark Peletier, Giuseppe Savaré, Riccarda Rossi)

The theory for variational evolutions—evolutions driven by one or more energiesor
entropies—in spaces of measures has seen tremendous growth in the last decades,
of which resulted in a rich framework for classical gradient systems in general
metric spaces by Ambrosio, Gigli and Savaré [2], where the Wasserstein met-
ric of optimal transport theory plays a fundamental role; and a theory for rate-
independent systems [4]. While these theories have allowed massive development
of variational evolutions in a certain direction—gradient flows with homogeneous
dissipation—physics and large-deviation theory suggest the study of generalized
gradient flows—gradient flows with non-homogeneous dissipation—which are not
covered in either theories [1, 3].
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To remedy this deficiency, we have created, in [5], a functional framework for a
class of generalized gradient systems in the space of nonnegative measures, which
includes the Forward Kolmogorov equations for the laws of Markov jump processes
on Polish spaces, that can formally be written as

∂tρt + divjt = 0,(Continuity equation)

jt = DζR
∗(ρ, ζt),(Force-Flux relation)

ζt = −∇DρE(ρ),(Force-Energy relation)

in terms of a driving functional E and a dual dissipation potential R∗ = R∗(ρ, ζ)
(and its associated Legendre dual R w.r.t. the ζ variable). Here, Dζ and Dρ denote

derivatives with respect to ζ and ρ, and (∇, div) denotes the discrete gradient-
divergence pair, where (∇ϕ)(x, y) = ϕ(y)− ϕ(x), x, y ∈ V .

To illustrate the theory, we consider a Markov jump process (Xt)t≥0 on a stan-
dard Borel space V , whose law at each t ≥ 0 are time-dependent probability
measures t 7→ ρt ∈ P(V ), satisfying the Kolmogorov Forward equation

∂tρt = Q∗ρt,

where Q∗ is the dual of the infinitesimal generator Q : Bb(V ) → Bb(V ) given by

(Qϕ)(x) =

∫

V

[ϕ(y)− ϕ(x)]κ(x, dy),

for any arbitrary bounded Borel function ϕ ∈ Bb(V ). The jump kernel κ in Q
characterizes the process: κ(x, ·) ∈ M+(V ) (with M+(V ) the space of positive
finite Borel measures) is the infinitesimal rate of jumps of a particle from the point
x ∈ V to Borel sets in V , and is assumed to satisfy supx∈V κ(x, V ) < ∞, and be
in detailed balance with respect to an invariant measure π ∈ M+(V ), i.e. the joint
measure κ(x, dy)π(dx) is symmetric.

The functional that drives the evolution is the relative entropy with respect to
the invariant measure π,

E(ρ) =

{∫
V Φ(u(x))π(dx) if ρ≪ π, with u = dρ/dπ,

+∞ otherwise,

where for the Markov jump process above, Φ is the Boltzmann–Shannon entropy
Φ(s) = s log s− s+ 1. The dual dissipation functional R∗ is defined by

R∗(ρ, ζ) :=
1

2

∫∫

V×V

Ψ∗(ζ(x, y)) νρ(dxdy), ζ ∈ Bb(V )

νρ(dxdy) := α(u(x), u(y))κ(x, dy)π(dx), u = dρ/dπ,

for suitable functions Ψ∗ : R → [0,∞) and α : [0,∞)× [0,∞) → [0,∞). This class
of dual dissipation potentials gives rise to a large family of Dynamical-Variational
transport costs that is then used to generalize away from metric-based theories.
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This new framework comprises of

(1) a definition of a notion of solutions on the basis of the Energy-Dissipation
balance

L(ρ, j) :=
∫ T

0

R(ρt, jt) + R∗(ρt,−∇DρE(ρt)) dt+ E(ρT )− E(ρ0) ≡ 0,

for a pair (ρ, j) satisfying the continuity equation;
(2) a method to prove existence via a chain rule inequality for pairs (ρ, j)

satisfying the continuity equation having finite action
∫ T

0 R(ρt, jt) dt <∞,
and a generalization of the Minimizing-Movement scheme for Dynamical-
Variational Transport costs;

(3) an archetype uniqueness result based on the linear convexity of the Energy-
Dissipation functional L = L(ρ, j).

All these steps are done using only the structure that is provided directly by
the driving functional E, and dissipation/dual dissipation pair (R,R∗), which need
not be homogeneous, and we do not appeal to any metric structure.
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Sampling inspired by gradient flows

Franca Hoffmann

(joint work with Alfredo Garbuno-Iñigo, Wuchen Li, Andrew M. Stuart)

Solving inverse problems without the use of derivatives or adjoints of the forward
model is highly desirable in many applications arising in science and engineering.
In this talk we propose a new version of such a methodology, a framework for its
analysis, and numerical evidence of the practicality of the method proposed, see
[1]. Consider the inverse problem of finding u ∈ Rd from y ∈ RK where

y = G(u) + η,(1)

G : Rd → RK is a known nonlinear forward operator and η is the unknown
observational noise drawn from η ∼ N(0,Γ) for a known covariance matrix Γ ∈
RK×K . Our objective is to find information about the truth u† when the forward
map G, the covariance Γ and the data y are all viewed as given.
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Using a Bayesian approach to inversion we place a prior distribution N(0,Γ0) on
the unknown u, with Lebesgue density π0(u), then the posterior density on u|y,
denoted π(u), is given by

π(u) ∝ exp
(
−Φ(u)

)
π0(u) ∝ exp

(
−ΦR(u)

)
,

ΦR(u) =
1

2
‖y − G(u)‖2Γ +

1

2
‖u‖2Γ0

.

We seek to understand the shape of the posterior distribution π. However, for
computationally expensive nonlinear forward maps G, it is a known difficult prob-
lem to sample from the target distribution π. Our starting point is an ensemble of
over-damped Langevin diffusions which interact through a single preconditioner
computed as the empirical ensemble covariance:

u̇(j) = −C(U)∇ΦR(u
(j)) +

√
2C(U)Ẇ

(j)
,(2)

C(U) =
1

J

J∑

k=1

(u(k) − ū)⊗ (u(k) − ū) ∈ R
d×d , ū =

1

J

J∑

j=1

u(j) .

Here, the {W(j)} are a collection of i.i.d. standard Brownian motions in the space
Rd. The empirical covariance C(U) acts as a preconditioner which is known to be
able to accelerate the dynamics [9], a choice which is motivated by an underlying
gradient flow structure. System (2) can be re-written as

u̇
(j) = −

1

J

J
∑

k=1

〈DG(u(j))
(

u
(k) − ū

)

,G(u(j))− y〉Γ u
(k) − C(U)Γ−1

0 u
(j) +

√

2C(U)Ẇ
(j)

.

(3)

In many applications, derivatives of the forward map G are either not available,
or extremely costly to obtain. A common technique used in ensemble Kalman
methods is to approximate the gradient ∇ΦR by differences in order to obtain a
derivative-free algorithm for inverting G. To this end, consider the dynamical sys-
tem (3) and invoke the approximation DG(u(j))

(
u(k) − ū

)
≈
(
G(u(k)) − Ḡ

)
. This

leads us to introduce the following derivative-free algorithm to generate approx-
imate samples from the posterior distribution, which we call ensemble Kalman
sampling (EKS):

u̇(j) = − 1

J

J∑

k=1

〈G(u(k))− Ḡ,G(u(j))− y〉Γ u(k) − C(U)Γ−1
0 u(j) +

√
2C(U)Ẇ

(j)
.

(4)

This dynamical system is similar to the noisy Ensemble Kalman Inversion (EKI),
but has a different noise structure (noise in parameter space not data space) and
explicitly accounts for the prior on the right hand side (rather than having it enter
through initialization).
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In order to write down the mean field limit of (3), we define the macroscopic mean
and covariance:

m(ρ) :=

∫
vρ dv , C(ρ) :=

∫ (
v −m(ρ)

)
⊗
(
v −m(ρ)

)
ρ(v) dv .

Taking the large particle limit leads to the mean field equation

u̇ = −C(ρ)∇ΦR(u) +
√
2 C(ρ) Ẇ ,(5)

with corresponding nonlinear Fokker-Planck equation

∂tρ = ∇ ·
(
ρ C(ρ)∇ (ΦR(u) + log ρ)

)
.(6)

The rigorous derivation of the mean-field equations (5) and (6) has recently been
accomplished in [2], and an important correction term for the finite particle de-
scription was pointed out in [3]. Since the only probability densities for which C(ρ)
vanishes are Diracs, we obtain a manifold of stationary states in addition to the
equilibrium given by the posterior distribution π solving the inverse problem (1).

The nonlinear Fokker-Planck equation (6) has a generalized Wasserstein-2 gra-
dient flow structure,

∂tρ = ∇ ·
(
ρ C(ρ)∇δE

δρ

)
, E(ρ) =

∫ (
ΦR(u) + log ρ(u)

)
ρ(u) du ,(7)

for the weighted Wasserstein-2 metric

WC(ρ
0, ρ1)2 := inf

∫ 1

0

∫

Ω

〈∇φt , C(ρt)∇φt〉 ρt du

subject to ∂tρt +∇ · (ρtC(ρt)∇φt) = 0, ρ0 = ρ0, ρ1 = ρ1,

where ρ0, ρ1 ∈
{
ρ ∈ L1(Ω) : ρ > 0 a.e. ,

∫
ρ(u) du = 1

}
∩ C∞(Ω). The weighted

Wasserstein-2 metric above was also identified in [4, 5]. In that work a nonlocal
transport equation, mapping one Gaussian into another in unit time, is studied
and the transport equation is shown to have a gradient structure closely related
to the one we study here for the nonlinear nonlocal Fokker-Planck equation (7).
The work in [4, 5] emerges from understanding ensemble Kalman filtering from the
perspective of mean field limits and may be viewed as a progenitor of our work.

Using this gradient structure, we investigate large time properties of the Fokker-
Planck equation in [1], showing that its invariant measure coincides with that of
a single Langevin diffusion, and demonstrating exponential convergence to the in-
variant measure in a number of settings. In particular, for a linear forward map
G(u) = Au, we obtain closed equations for the mean and covariance of ρ, and
therefore Gaussians remain Gaussians along the flow of (7). Recently, precise
convergence rates have been obtained in [7], answering the question of equilibra-
tion posed in [10] for the linear setting: If ρ1t , ρ

2
t are solutions to (7) with initial

conditions ρ10, ρ
2
0 respectively, then under suitable conditions on ρ10, ρ

2
0, A,Γ0,Γ,

W2(ρ
1
t , ρ

2
t ) ≤ Ce−tW2(ρ

1
0, ρ

2
0) ,

where C only depends on the first two moments of ρ10, ρ
2
0, and on A,Γ0,Γ. In

addition, the authors showed that these rates are optimal.
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Several interesting open questions come out of this work. On the application side,
implementation and performance of the EKS are to be investigated, for example as
part of an algorithmic framework such as the Calibrate-Emulate-Sample approach
proposed in [8], or improvements such as the ALDI algorithm proposed in [6]

satisfying affine invariance whilst avoiding the computation of the term
√
C(U) in

front of the noise in (4) - a computational bottleneck for implementation of the
EKS in higher dimensions. On the theoretical side, it is of independent interest to
obtain a better understanding of the properties of such generalized Wasserstein-2
metric structures. More precisely, one could seek conditions on a general matrix
K(ρ, u, t) ∈ Rd×d such that the following dynamical description provides a well-
defined metric structure and geodesic equations:

WK(µ, ν)2 := inf

∫ 1

0

∫

Ω

〈∇φt , K(ρt, u, t)∇φt〉 ρt du

subject to ∂tρt +∇ · (ρtK(ρt, u, t)∇φt) = 0, ρ0 = µ, ρ1 = ν .

Some results are known for the scalar case K(ρ) ∈ R (see eg [11] and references
therein), or for the constant matrix K ∈ Rd×d (see eg [4] in the context of data
assimilation); a more general understanding however is lacking.
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Capacity constrained Entropic Optimal Transport, Sinkhorn
Saturated Domain Out-Summation and Vanishing Temperature

Jean-David Benamou

(joint work with Mélanie Martinet)

1. Context

Entropic Optimal Transport and Sinkhorn Algorithm, its companion numerical
method is used routinely to compute the Wasserstein 2 distance between proba-
bility measures. A comprehensive description of the method and its applications
can be found in [3]. It is based on a regularization of the classical Optimal Trans-
port cost with an Entropy functional. The strength of the regularization is given
by a positive parameter ǫ. Following [2] it will be called the temperature.

Sinkhorn Algorithm computes iteratively (fm
ǫ , g

m
ǫ ) ∈ C(X) × C(Y ), m is the

iteration index, such that in the limit the measure on the product space X ⊗ Y

(1) γmǫ (x, y) = exp(
1

ǫ
(fm

ǫ (x)⊕ gmǫ (y)− c(x, y))µ(x) ⊗ ν(y),

has marginals µ and ν, X and Y are two compact subsets of a metric space
(M, c). In this presentation we will restrict to the torus M = Rd/Zd and c(x, y) =
infk∈Zd

1
2‖x+ k − y‖2, the periodic Eudlidean distance squared.

When µ and ν have smooth continuous densities (still denoted µ and ν by abuse
of notation), it is well known that the classical (ǫ = 0) Optimal Transport problem
between µ and ν has a unique solution γ∗0 := (Id ⊗ T )#µ ∈ P(X ⊗ Y ) where T
is the optimal transport map. We will use the notation : x ∈ X 7→ T (x) := y⋆x ∈
Y . The optimal transport plan γ∗0 is sparse and supported only on the graph
{(x, y∗x), x ∈ X}.

In practice Sinkhorn is applied on discrete setsXN ={xi}i=1..N , YN ={yj}j=1..N

and µ and ν need to be discretized accordingly

(2) µN =

N∑

i=1

µ(xi)∑
j µ(xj)

δxi , νN =

N∑

j=1

ν(yj)∑
j ν(yj)

δyj

We are interested in using Sinkhorn to approximate the Optimal Transport
problem at 0 temperature trough the above N discretization. As can be observed
on (1), ǫ acts as bandwith and the discretization must be scaled accordingly. A
convergence result linking m the Sinkhorn iteration index, ǫ and N has recently
been given in [1]. We assume to simplifiy the formulation that XN and YN are
cartesian grids with edgelength h = 1

N1/d :

Theorem 1 (Berman joint convergence for the plan - part of corollary 1.3 [1] ). We
assume µ and ν are in C2,α, N and ǫ are dependent parameters : N = (1/ǫ)d (or
N = Cδ/ǫ

d/(2(1+δ)) for C∞ marginals ). We further assume that the discretisation
(XN , YN , µN , νN ) satisfies (µN , νN ) ⇀ (µ, ν). Then there exists a positive con-
stant A0 such that for any A > A0 the folowing holds : Setting mǫ = [−A log(ǫ)/ǫ]
as the final number of Sinkhorn iterations, the discrete probability measures γmǫ

ǫ
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on XN × YN (defined in (1)) converges weakly to the optimal transport plan γ⋆0 in
the ǫ→ 0 temperature limit and satisfies the the following estimate

(3) γmǫ
ǫ ≤ Bǫ µN ⊗ νN ,

where

(4) (x, y) 7→ Bǫ(x, y) :=
p

ǫp
exp(−c(y, y

⋆
x)

ǫ p
)

The parameter p is positive, depends on the marginals µ ν but is unfortunately
not explicit. Estimate (4) is nevertheless important for two reasons : First, it shows
that the mass of the entropic transport plan concentrates exponentially fast in a
neighbourhood of the transport map. So even though γmǫ

ǫ has support on the full
N×N grid, it will be negligible , and even null in finite precision, for an increasing
number of points as ǫ decreases. Secondly, as the support of {Bǫ > λ}, λ << 1
converges monotonically to the graph of {(x, y∗x), x ∈ X} and γmǫ

ǫ is dominated by
Bǫ, it suggests that for ǫ

′ < ǫ support information for {γmǫ′
ǫ > λ} can be recovered

from γmǫ
ǫ .

This, of course has been observed numerically long before theorem 1. A detailed
description of these phenomea and a proposed heuristic multiscale method in ǫ
can be found in [5]. A GPU implementation can also been found in [6]. They
both observe numerically the hoped for O(N log(N) complexity arising from the
sparsity in the limit of the transport plan instead of the naive more than quadratic
complexity, Just sketching the idea : the method uses the criterium fm

ǫ (x) ⊕
gmǫ (y)− c(x, y) < −M after a few iterations m for some large M to discard points
for the next ǫ′ < ǫ. This is done for a decreasing sequence ǫ (thus increasing N)
but there is no proof of convergence. Also some mass transport may be missed
if the truncation is too strong (or M too small). We show in this presentation
that theorem 1 can be used to provide guidance both in the design and also the
complexity analysis of a truncation/multi-scale method in ǫ. The details cannot
be given in full in this abstract but can be found in [4], the main ideas follow.

We work on a vertical slice of the plan γmǫ
ǫ , i.e. x is fixed, let us call it x0.

Introducing a new parameter λ and assuming that y∗x0
is known, then the sub-

level set inclusion Sx0

ǫ,λ := {γmǫ
ǫ (x0, y) < λ} ⊂ {Bǫ(x0, y) < λ} could be used as a

rule to truncate the XN ⊗ YN domain. for some small λ. The number of points
N depends on ǫ and so is the number of iterations mǫ. They are all prescribed in
theorem 1. The memory requirements and number of operations in Sinkhorn can
be computed explicitely. Like in the [5] strategy, we want to choose λ in order
to maximize the number of discarded point without destabilizing the Entropic
OT problem at scale ǫ (the problem can even become infeasible if the truncated
coupling cannot satisfy the marginal constraints). There are in summary two
difficulties. First, of course estimating y∗x0

which itself is the solution at ǫ = 0.
Secondly we need to build a ǫ, λ sequence of problems on truncated domains which
converge to the ǫ = 0 temperature Optimal Transport problem.

We notice that the set {Bǫ(x0, y) < λ} is a ball of center y∗x0
and its radius dBǫ,λ

is known as well as its size in term of N as a function of ǫ, λ. We use it to obtain
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the super inclusion {Bǫ(x0, y) < λ} ⊂ §x0

ǫ,λ := ∪y∈{γmǫ
ǫ (x0,y)<λ}B(y, dBǫ,λ). The

set on the right can be be computed without knowing y∗x0
. Then, the simple choice

λ ≡ ǫ is sufficient to guarantuee Sx0

ǫ′,λ′ ⊂ {Bǫ′(x0, y) < λ′} ⊂ {Bǫ(x0, y) < λ}§x0

ǫ,λǫ

and thus control the truncation at ǫ′ < ǫ using the solution at ǫ.
The second difficutly is tackled through the introduction of a capacity con-

straint γ ≥ λ to the Entropic Optimal Transport problem. Sinkhorn algorithm
can modified accordingly and the truncation domain becomes a saturation domain
γ = λ wich can be out-summed analytically from Sinkhorn. The full story is more
technical as one has to ensure that the estimate (4) still holds for the capacity
constrained Sinkhorn solutions, this can again be found in [4].

We are finally able to give a rigorous estimate of the complexity of this new
ǫ multicale method. Assuming the decreasing ǫ sequence is finite and that the
smaller ǫ is the sought for precision, we find a computational cost of
O(log(N)1+d/2N3/2+1/d) if N = (1/ǫ)d and O(log(N)1+d/2N1+1/d) if N =
(1/

√
ǫ)d (this is if µ and ν are C∞), N is of course the largest reached discretiza-

tion. This is not as good as the observed O(N log(N) in [5] but is certainly not
optimal as (4) is not sharp. The dependance in the dimension d is linked to the
prescribed number of iterations mǫ in theorem 1.
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Curvature and relaxation for discrete mean-field dynamics

Matthias Erbar

(joint work with Max Fathi, Vaios Laschos, André Schlichting)

We consider non-linear evolution equations arising from mean-field limits of par-
ticle systems on discrete spaces. We investigate a notion of curvature bounds for
these dynamics based on the convexity of the free energy along interpolations in
a discrete transportation distance related to the gradient flow structure of the
dynamics. We show that positive curvature bounds entail several functional in-
equalities controlling the convergence to equilibrium of the dynamics. We establish
explicit curvature bounds for several examples of mean-field limits of various clas-
sical models from statistical mechanics.
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This work is about longtime behavior for mean-field systems on discrete spaces.
Mean-field equations describe the large-scale limit of interacting particle systems
where the total force exerted on any given particle is the average of the forces
exerted by all other particles on the tagged particle. They are used to describe
collective behavior in many areas of sciences. One of the important questions
in the mathematical analysis of these equations is their longtime behavior. In
[2], Carrillo, McCann and Villani obtained quantitative bounds on the rate of
convergence to equilibrium for McKean-Vlasov equations in a continuous setting
of the form

∂tρ = ∇ · [ρ∇(S′(ρ) + V +W ∗ ρ)]
under strong convexity assumptions on the potentials S, V and W . The core idea
underlying their method is the fact that the PDE has a gradient flow structure,
i.e. it can be recast as a gradient descent equation ∂tρ = −∇F (ρ) of the free
energy functional F (ρ) =

∫
S(ρ)+

∫
V dxρ+

∫
W ∗ρdxρ in the space of probability

measure with respect to the Kantorovitch-Wasserstein distance W2. The use of
such structures in the study of longtime behavior stems from the fact that uniform
strict convexity of the driving functional (with respect to the particular metric
structure), implies exponentially fast convergence of the gradient flow. Moreover,
convexity can be used to derive strong functional inequalities relating the distance,
free energy and dissipation [9].

Our main motivation here is to adapt the approach of [2] to mean-field equations
in a discrete setting. We consider discrete mean-field dynamics of the form

(1) µ̇(t) = µ(t)Q
(
µ(t)

)
,

where µ is a flow of probability measures on a finite set X and (Q(µ)xy)x,y∈X
is a parametrized collection of Markov kernels. These dynamics naturally arise
as scaling limits of interacting particles systems on graphs where the interaction
only depends on the normalized empirical measure of the system (which indeed
corresponds to mean-field interactions). They generalize linear Markov chains on
discrete spaces, which correspond to the case where Q is a constant Markov kernel,
independent of µ.

More precisely, consider a mean-field particle system Xt = (X1
t , . . . , X

N
t ) on

X modeled as a reversible continuous time Markov chain dynamics on XN with
invariant measure and transition kernel given by

πN (x) ∼ exp
(
− U(µN )

)
, QN (x,xi,y) = Qxi,y(µ

n) ,

where µN = 1/N
∑

i δxi denotes the empirical measure of the configuration x =
(x1, . . . , xn), U(µ) =

∑
x µxKx(µ) for a kernel K : X × P(X ) → R and x

i,y

is the new configuration where particle i has jumped to site y. Then, under
suitable assumptions on Q and K, the empirical distribution of Xt converges
to the deterministic evolution µt solving (1). Typical choices of U are U(x) =
1
N

∑
i V (xi) + 1

N2

∑
ij W (xi, xj) for an external potential V and an interaction

potential W . An archetypical example is the classical Curie-Weiss model, which
corresponds to a mean-field dynamic on a two-point space. Already this easy model
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exhibits interesting behavior, such as a phase transition at an explicit critical value
of a temperature parameter.

In the work [4], we derived a gradient flow structure for (1) by replacing the
role of the Wasserstein distance with a distance W constructed via a suitable
modification of the Benamou-Brenier formula for optimal transport, extending
similar earlier results for linear reversible Markov chains obtained in [7, 8, 3].

Note that the rates Q(µ) are reversible with respect to a local Gibbs measure
of the form πx(µ) ∼ exp

(
−Hx(µ)

)
, with Hx(µ) = ∂µxU(µ). The dynamics can be

recast as a gradient flow of the free energy

(2) F(µ) =
∑

x∈X
µx logµx + U(µ), with U(µ) =

∑

z∈X
µzKz(µ).

Namely, we can rewrite (1) as

∂tµ = −KMF
µ DF(µ) ,

with the Onsager operator

KMF
µ ψ(x) = −

∑

y

(
ψy − ψx

)
Λ
(
µxQxy(µ), µyQyx(µ)

)
,

where Λ(s, t) = (s − t)/(log s − log t) is the logarithmic mean. This built up on
previous works (e.g. [1]) that showed that F is indeed a Lyapunov functional for
the flow. Moreover, we showed that the gradient flow structure of the mean-field
equation (1) naturally arises in the limit N → ∞ from the gradient structure
of the N -particle Markov chain given in [7, 8, 3] in the sense of evolutionary Γ-
convergence.

In the work [5], we exploit this gradient flow structure to analyze the long-term
behavior of (1) inspired by the approach in [2] by investigating convexity properties
of the free energy along discrete optimal transport paths for a non-linear Markov
triple (X , Q, π) as above. Following the works of Lott, Villani, and Sturm for
metric measure spaces and [6, 8] for linear Markov chains, we make the following
definition:

We say that the non-linear Markov chain
(
X , Q(·), π(·)

)
has entropic Ricci cur-

vature bounded below by κ ∈ R if for any W-geodesic (µt)t∈[0,1]:

F(µt) ≤ (1− t)F(µ0) + tF(µ1)−
κ

2
t(1− t)W(µ0, µ1)

2 .

We show that Ricci curvature lower bounds can be characterized in terms of a
discrete Bochner-type inequality by deriving the Hessian of F in the Riemannian
structure W , as well as in terms of the Evolution Variational Inequality for the
solutions to (1). Further, we show that a positive lower bound on the Ricci cur-
vature entails a number of functional inequalities that control the convergence to
equilibrium of the mean-field systems. These involve a discrete Fisher information
functional I : P(X ) → [0,∞] given by

I(µ) = 1

2

∑

x,y

Θ
(
µxQxy(µ), µyQyx(µ)

)
, Θ(a, b) = (a− b)(log a− log b) ,
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which arises from the dissipation of F along solutions to (1) as d
dtF(µt) = −I(µt).

One of our main results is the following theorem which can be seen as a discrete
analog of [2, Thm. 2.1].

Theorem 1. Assume that Ric(X , Q, π) ≥ λ for some λ > 0. Then the following
hold:

(i) there exists a unique stationary point π∗ for the evolution (1), it is the
unique minimizer of F . Let F∗(·) := F(·)−F(π∗);

(ii) the modified logarithmic Sobolev inequality with constant λ > 0 holds,
i.e. for all µ ∈ P(X ),

F∗(µ) ≤ 1

2λ
I(µ) ;

(iii) for any solution (µt)t≥0 to (1) we have exponential decay of the free energy:

F∗(µt) ≤ e−2λtF∗(µ0) ;

(iv) the entropy-transport inequality with constant λ > 0 holds, i.e. for all
µ ∈ P(X ),

W(µ, π∗) ≤
√

2

λ
F∗(µ) .

We establish explicit curvature bounds for several examples of (relatively sim-
ple) mean-field dynamics, such as the Curie-Weiss model, zero-range mean-field
dynamics, and misanthrope processes.
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Initial value problems by convex minimization and matrix-valued
generalizations of some OT, MFG and Schrödinger problems

Yann Brenier

Few years ago, at a previous edition of the MFO workshop on “Variational Meth-
ods for Evolution Equations”, I explained how to solve the Initial Value Problem
(IVP) by convex minimization for the class of first-order systems of conservation
laws enjoying a convex entropy [3]. I was asked by Ulisse Stefanelli whether our
approach could be extended to the Navier-Stokes (NS) equations, for instance as
an alternative to the method introduced by Alexander Mielke and himself [8]. In
the present talk, we try to answer this question and start with simpler parabolic
models, such as the porous medium equation and the viscous Hamilton-Jacobi
equations. Then, it can be established that all solutions of the IVP on a given
time interval [0, T ], with T < +∞, can be recovered from our convex minimiza-
tion method. In the more challenging case of the NS equations, the corresponding
convex minimization problem can be easily computed and presents interesting
features. (However, it is not true a priori that all solutions of the IVP can be re-
covered this way. There might be some restriction on the size of the time interval,
depending on the initial conditions.) Indeed, in the case of a periodic box D = T

d,
with given initial velocity field v0, our convex minimization problem for the NS
equations can be written as a kind of “generalized” Schrödinger problem:

inf
M,j

∫

Q

(j − ǫ∇ ·M) ·M−1 · (j − ǫ∇ ·M)

2
+ j · v0

where Q = [0, T ] × D is the space-time domain, the symmetric matrix-valued
“density” field M = M(t, x)gǫ0 and the “current” j = j(t, x) ∈ Rd are subject to
a generalized version of the “continuity equation”, namely:

∂tM + Lj = 0, M(T, ·) = Id,

where L is the constant coefficient first-oder pseudo-differential operator

Lj = ∇j +∇jT − 2D2∆−1∇ · j.
This minimization problem, which is closely related to the so-called “Bredinger”
(or “Brödinger”) problem adressed in [1] and more recently [2], differs from the
standard Schrödinger problem (for which we refer to [6]) in two essential ways:
1) the “density” field M is not scalar but matrix-valued, a little bit like in Quan-
tum Mechanics or in non-commutative Geometry and also in the recent theory of
matrix-valued optimal transportation (for which we refer to [4] as a recent refer-
ence);
2) the time boundary conditions are of backward-forward type, just as in the the-
ory of Mean-Field Games (MFG) à la Lasry-Lions [7]: M is only prescribed at the
final time t = T , while v0 substitutes for an initial condition for j.
Finally, let us observe that our minimization problem involves a matrix-valued
version of the Fisher information

(∇ ·M) ·M−1 · (∇ ·M), M =MT gǫ0,
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very roughly similar to the Einstein-Hilbert Lagrangian, which reads, in 4 space-
time dimension, up to a null Lagrangian [5],

(Γm
ij g

ij Γk
km − Γm

ik g
ij Γk

jm)
√
−det g

for which gij is a Lorentzian metric (of inverse gij) and Γ is its Levi-Cività con-
nection:

Γi
jk = gim(gkm,j + gjm,k − gkj,m)/2.

Yann Brenier, CNRS, DMA-Ecole Normale Supérieure, UPSL, Paris.
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A Proximal-Gradient Algorithm for Crystal Surface Evolution

Katy Craig

(joint work with Jian-Guo Liu, Jianfeng Lu, Jeremy Marzuola, Li Wang)

As a counterpoint to recent numerical methods for crystal surface evolution, which
agree well with microscopic dynamics but suffer from significant stiffness, we de-
velop a new numerical method based on the macroscopic partial differential equa-
tion, leveraging its formal structure as the gradient flow of the total variation
energy with respect to a weighted H−1 norm. This gradient flow structure relates
to several metric space gradient flows of recent interest, including 2-Wasserstein
gradient flows and its generalizations to nonlinear, concave mobilities. We de-
velop a novel semi-implicit time discretization of the gradient flow, inspired by
the classical minimizing movement scheme (known as the JKO scheme in the 2-
Wasserstein case). We then use a primal dual hybrid gradient (PDHG) operator
splitting method to compute each element of the semi-implicit scheme. In one di-
mension, we prove convergence of the PDHG method to the semi-implicit scheme,
under general integrability assumptions on the mobility and its reciprocal. Finally,
by taking finite difference approximations of our PDHG method, we arrive at a
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fully discrete numerical algorithm, with iterations that converge at a rate indepen-
dent of the spatial discretization: in particular, the convergence properties do not
deteriorate as we refine our spatial grid. We close with several numerical exam-
ples illustrating the properties of our method, including facet formation at local
maxima, pinning at local minima, and convergence as the spatial and temporal
discretizations are refined.
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Asymptotic limits of random walks via generalized gradient flows

Anastasiia Hraivoronska

(joint work with Oliver Tse)

We consider the law of continuous-time random walks on graphs as an approxima-
tion for solutions of diffusion equations. The motivation comes from developing
structure-preserving numerical schemes. Our approach is based on exploiting the
gradient structure of both evolution types and passing to the discrete-to-continuous
limit in the corresponding variational formulation. We postulate that the limit may
depend wildly on the graph geometry and can be surprisingly nontrivial.

Let G = (T ,Σ) be a graph with the set of vertices T and edges Σ. We assume
that the law of the random walk on G satisfies the forward Kolmogorov equation:

(1) ∂tρt = Q∗ρt,

where t 7→ ρt is a curve in the space of probability measures P(T ). The infinites-
imal generator is given for any bounded function ϕ ∈ B(T ) by

(Qϕ)(K) =
∑

L∈TK

(∇ϕ)(K,L)κ(K,L), K ∈ T ,

where ∇ : B(T ) → B(Σ) is the discrete gradient (∇ϕ)(K,L) = ϕ(L)−ϕ(K), and
the sum is taken over the collection of adjacent vertices TK = {L ∈ T : (K,L) ∈ Σ}
of K. The jump kernel κ : Σ → [0,∞) defines the jump rates for each edge in Σ.

To relate the discrete equation to the continuous space, we follow a finite-volume
approach. Let the discretization of Rd be given by a family T h of control volumes
and a family Σh of faces. We introduce the parameter h as a characteristic size of
the discretization h = maxK∈T h diam(K).
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We aim to determine the law of the limit process as h → 0 with the help of a
gradient structure. The works [1, 2] introduced a distance on P(T ), and showed
that that the solution of (1) evolves as the gradient flow of the relative entropy:

Fh(ρh) =
∑

K∈T h

φ
(
uh(K)

)
πh(K), φ(s) = s log s− s+ 1,

where uh is the density of the measure ρh with respect to an invariant measure
πh. Since then, gradient structures have been introduced for jump process on more
general spaces (see for instance [3] and the recently created functional framework
for generalized gradient systems [4]).

We follow [4] to characterize the solution of (1) via the energy-dissipation prin-
ciple (EDP). We say that a pair (ρh, jh) is an (Fh,Rh,R∗

h)-generalized gradient
flow solution of (1) if it satisfies the continuity equation

(CEh) ∂tρ
h
t +∇ · jht = 0

and it is a minimizer of the EDP functional Ih, i.e.
(EDPh) Ih(ρh, jh) = 0,

where

Ih(ρh, jh) :=
∫ T

0

Rh(ρ
h
t , j

h
t ) +R∗

h(ρ
h
t ,−∇φ′(uht )) dt+ Fh(ρ

h
T )−Fh(ρ

h
0 ).

Here Rh and R∗
h are the dissipation potential and its dual. We focus on the cosh-

structure that has been shown to arise from large-deviation principles for Markov
processes [5].

Our goal is to recover the corresponding limits of (CEh) and (EDPh) as h→ 0.
The first step is to embed the discrete objects into the continuous space beginning
with the pairs of measures and fluxes:

(2) ρ̂h(dx) =
∑

K∈T h

ρh(K)

|K| IK(x)dx, ̂h(dx) =
∑

K|L∈Σh

jh(K,L)σKL(dx).

Remarkably, σKL can be chosen such that the pair (ρ̂h, ̂h) satisfies the continuity
equation on Rd:

∂tρ̂
h +∇ · ̂h = 0 in distributions.

For the EDP functional we prove the lower-semicontinuity

lim inf
h→0

Ih(ρh, jh) ≥ I0(ρ, j)

separately for all components: the dissipation potential Rh, its dual R∗
h, and the

driving energy Fh. While the results for the energy being standard and the limit
forRh being rather straightforward, the convergence forR∗

h(ρ
h,−∇φ′(uh)) is more

delicate and requires the use of localization methods for Γ-convergence.
We conclude that the geometry of the discretization is of crucial importance

for the limit evolution. In general, we obtain the Γ-limit EDP functional with a
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weighted dual dissipation potential

R∗
0 (ρ,∇ϕ) =

∫
〈∇ϕ,T∇ϕ〉 dρ,

with some tensor T ∈ Rd×d that depends on the limiting geometry of the family
of discretizations. For T to be equal to the identity matrix the sequence of finite-
volume tessellation must satisfy strong asymptotic assumptions. Note that similar
assumptions on graphs are required in [6] for proving the convergence of discrete
transport metrics to the Wasserstein distance. However, we show as well that the
limit exists with the weighted R∗

0 under relaxed assumptions.
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EDP convergence for nonlinear fast-slow reaction systems

Artur Stephan

(joint work with Alexander Mielke, Mark A. Peletier)

The study of nonlinear reaction systems with different time scales has attracted
much attention over the last decades, see e.g. [Bot03, DLZ18, MiS19] and the
references therein. In this work we consider the simplest case of fast-slow reaction
systems with mass-action kinetics that have only two time scales, namely 1 and ε,

(1) ċ = Rsl(c) +
1

ε
Rfa(c),

where c ∈ C := [0,∞[
i∗ denotes the vector of the concentrations ci of the ith

species Xi. The typical aim of the above-mentioned work is to derive the limiting
equation for the evolution of c on the slow time scale, while the fast reactions are in
equilibrium. Under suitable assumptions the limiting equation can be formulated
in three equivalent ways, namely

constraint dynamics: ċ(t) = Rsl(c(t)) + λ(t), λ(t) ∈ Γfa ⊂ R
i∗ , Rfa(c(t)) = 0,

projected dynamics: ċ(t) = (I−P(c(t)))Rsl(c(t)), Rfa(c(0)) = 0,

reduced dynamics: q̇(t) = QfaRsl(Ψ(q(t))), c(t) = Ψ(q(t)).
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The goal of this work is to revisit the same limit process, but now from the point
of view of variational evolution. Our starting point is that reaction-rate equations
such as (1) can be written as a gradient-flow equation if the reactions occur in
pairs of forward and backward reactions and that these pairs satisfy the detailed-
balance condition ([Yon08, Mie11]). A different gradient structure has its origin
in the thermodynamic considerations in [Mar15] from 1915. The latter gradient
structure, which we will call the cosh-type gradient structure following [MiS19],
was mathematically derived in [MPR14, MP∗17] from microscopic chemical master
equations via a large-deviation principle.

To be specific, we assume that the species Xi, i ∈ I := {1, . . . , i∗} undergo r∗
forward-backward reactions of mass-action type

αr
1X1 + · · ·+ αr

i∗Xi∗ ⇋ βr
1X1 + · · ·+ βr

i∗Xi∗ ,

where αr = (αr
i )i∈I and βr = (βr

i )i∈I are the stoichiometric vectors in N
i∗
0 . The

reaction-rate equation (1) takes the form

(2) ċ = −
r∗∑

r=1

(
kfwr cα

r − kbwr cβ
r)(

αr−βr), where cα = cα1
1 · · · cαi∗

i∗
.

The detailed-balance condition asks for the existence of a positive concentration

vector c∗ = (c∗i )i∈I ∈ C+ := ]0,∞[
i∗ such that all r∗ reactions are in

(3) ∃ c∗ = (c∗i )i∈I ∈ C+ ∀ r ∈ R := {1, . . . , r∗} : kfwr cα
r

∗ = kbwr cβ
r

∗ .

Throughout this work we will assume that c∗ will not depend on the small
parameter ε measuring the ratio between the slow and the fast time scale. The set
of reaction pairs will be decomposed into slow and fast reactions, and, introducing

the scalars κ̂r = kfwr
(
cα

r

∗ /cβ
r

∗
)1/2

= kbwr
(
cβ

r

∗ /cα
r

∗
)1/2

, we assume κ̂r = κr for the
slow reactions and κ̂r = κr/ε for the fast reactions. With this we obtain

(4) ċ = Rsl(c) +
1

ε
Rfa(c) with Rxy(c) := −

∑

r∈Rxy

κr δ
∗
r

(
cα

r

cαr∗
− cβ

r

cβr∗

)
(αr − βr).

The cosh-type gradient structure is now defined in terms of a gradient system
(C, E ,R∗

ε), where the energy functional is given in terms of the relative Boltzmann
entropy

E(c) =
∑

i∈I

c∗i λ(ci/c
∗
i ), where λ(ρ) := ρ log ρ− ρ+ 1,

and the dual dissipation potential R∗
ε in the form

R∗
ε(c, ξ) = R∗

sl(c, ξ)+
1

ε
R∗

fa(c, ξ) with R∗
xy(c, ξ) =

∑

r∈Rxy

κr
(
cα

r

cβ
r) 1

2 C∗((αr−βr) ·ξ
)
,

where C∗(ζ) = 4 cosh(ζ/2) − 4. The fast-slow reaction-rate equation (4) can now
be written as the gradient flow equation ċ(t) = ∂ξR∗

ε

(
c(t),−DE(c(t))

)
.

In the talk, we construct the effective gradient system (C, Eeff ,R∗
eff) for the

given family (C, E ,R∗
ε) in the limit ε → 0+. Here we use the notion of conver-

gence of gradient system in the sense of the energy-dissipation principle, shortly
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called EDP-convergence. This convergence notion was introduced in [DFM19] and
further developed in [MMP19, MiS19] and is based on the dissipation functionals

Dε(c) :=

∫ T

0

{
Rε(c, ċ) +R∗

ε(c,−DE(c))
}
dt,

which are defined for all curves c ∈ L1([0, T ];C). The notion of EDP-convergence

now asks that the two Γ-convergences Eε Γ−→ Eeff and Dε
Γ−→ D0 (in suitable topolo-

gies) and that the limit D0 has the form D0(c) =
∫ T

0
Reff(c, ċ)+R∗

eff(c,−DE(c)) dt.
Our main theorem reads as follows.

Main Theorem. [MPS20] Let the Unique Fast Equilibrium Condition (UFEC)
be satisfied. Then the gradient systems (C, E ,Rε) EDP-converge to the gradient
system (C, E ,Reff), where

Eeff = E and R∗
eff(c, ξ) = R∗

sl(c, ξ) + χΓ⊥

fa
(ξ),

with Γfa = span
{
αr−βr | r ∈ Rfa} and Γ⊥

fa :=
{
ξ ∈ Ri∗ | ∀ γ ∈ Γfa : γ · ξ = 0}.

The proof of the theorem relies on the following observations:
(1) The primal dissipation potentials Rε decrease monotonically to their limit

Reff , which is degenerate. Defining Qfa : Ri∗ → R
mfa such that ker Qfa = Γfa and

im Q⊤
fa = Γ⊥

fa, the bound Dε(c
ε) ≤ Mdiss < ∞ does not provide a uniform bound

on ċε, but we are able to show weak compactness of Qfac
ε in W1,1([0, T ];Rmfa).

(2) The bound Dε(c
ε) ≤ Mdiss < ∞ implies

∫ T

0 R∗
fa(c

ε,−DE(cε)) dt ≤ εMdiss,

which forces cε into the set of equilibria of the fast equation, namely Efa :=
{
c ∈

C | Rfa(c) = 0}.
An important assumption is the UFEC, which states that the fast reaction

system c′(τ) = Rfa(c(τ)) has a unique equilibrium (denoted by Ψ(q)) in each
invariant subset Cfa

q := {c ∈ C | Qfac = q}.
The main difficulty is to show that the two complementary information in

points (1) and (2) is enough to obtain the compactness necessary for deriving

liminf estimate for the Γ-convergence Dε
Γ−→ D0 for the non-convex functionals

Dε. On the local level, one sees that (1) provides partial control of the temporal
oscillations of ċε via the bound on Qfaċ

ε in L1([0, T ];Rmfa), whereas (2) provides
strong convergence towards Efa, which is locally defined via DE(c) ∈ Γ⊥

fa. In fact,
both information yield strong convergence cεn → c̃, where c̃(t) = Ψ(q(t)) with
q ∈ W1,1([0, T ];Rmfa).

As a corollary we obtain that the limiting evolution lies in Efa and is governed
by the reduced (or coarse grained) equation q̇ = QfaRsl(Ψ(q)) described by the
slow variables q ∈ QfaC and a natural gradient structure (QfaC,E,R).
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Fast reaction limits via Γ-convergence of the Flux Rate Functional

Michiel Renger

(joint work with Mark Peletier)

This work is about fast reaction limits a linear systems, studied from a varia-
tional perspective. We are given a weighted directed network (V ,R, κǫ), under the
assumptions, see Figure 1:

(1) R = Rslow ∪Rfast where κ
ǫ
r =

{
κr, r ∈ Rslow,
1
ǫκr, r ∈ Rfast,

,

(2) the network is irreducible, and so there exists a unique positive invariant
measure πǫ ∈ P(V),

(3) V = V0 ∪ V1 where

{
πǫ
x → πx > 0, x ∈ V0,

ǫ−1πǫ
x → πx > 0, x ∈ V1,

.

The flow of mass is described by the discrete continuity equation ρ̇ǫ(t) =
−divjǫ(t) together with the constitutive law for the fluxes jǫr(t) = κǫrρ

ǫ
r−(t),

where r− denotes the source node of edge r. Instead of studying the upscaled
limit equation, our goal is to prove the Γ-limit of the variational formulation
Iǫ
0(ρ(0)) + J ǫ(ρ, j) that corresponds to the flux large deviations of independent
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Figure 1. An example of a network with slow and fast edges.

copies of a Markov chain on the graph [1, 2, 5]:

Iǫ
0(ρ) :=

∑

x∈V
s(ρx | πǫ

x), J ǫ(ρ, j) :=
∑

r∈R

∫ T

0

s(jr(t) | κǫrρǫ(t)),

with the usual relative entropy function s(a|b) = a log a/b − a+ b. We implicitly
set Iǫ

0 + J ǫ = ∞ if the continuity equation is violated.
We stress that we do not assume that the network is reversible, so that our

technique is more general than the gradient flow techniques used for example in
[3] and [4].

In order to capture the intrinsic scaling behaviour of the variables we subdivide
Rfast into Rfcyc for all edges going out of a V0-node and Rdamp for all edges going
out of a V1-node. All edges in Rfcyc are part of a connected component/cycle of
fast edges. As such we can also subdivide V0 into all nodes V0fcyc that are part
of such cycle, and all nodes V0slow that are not. The concentrations can easily be
rescaled by taking densities, and the fast cycle fluxes will need to be scaled down
to prevent blowup:

uǫx(t) :=
ρǫx(t)

πǫ
x

, x ∈ V , jǫr(t) =: 1
ǫκrρ

ǫ(t) + 1√
ǫ
̃ǫr, r ∈ Rfcyc.

In addition we introduce the density in each connected component c ⊂ C of fast
(cycle) edges uǫc(t) := 1

πǫ
c

∑
x∈c

πǫ
xu

ǫ
x(t), with πǫ

c =
∑

x∈c
πǫ
x. The reason is that

this total density in the component has much better topological properties than
the densities uǫx in each of the nodes x ∈ c ⊂ V0slow.

We prove the following equicoercivity result for the rescaled flux-density func-
tional, using a tilde to denote that the variables are rescaled:

Theorem 1. Let (uǫ, jǫ)ǫ>0 such that Ĩǫ
0

(
uǫ(0)

)
+ J̃ ǫ(uǫ, jǫ) ≤ C for some C > 0.

Then there exists a subsequence so that:

(1) uǫV0slow
converges strongly in C([0, T ];RV0slow),

(2) uǫV0fcyc
converges weakly-* in L∞([0, T ];RV0fcycle),

(3) uǫ
C
converges strongly in C([0, T ];RC),

(4) uǫV1
converes narrowly in M([0, T ];RV1)
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(5) jǫRslow
converges weakly-* in the Orlicz space LC([0, T ];RRslow),

(6) jǫRdamp
converges narrowly in M([0, T ];Rdamp),

(7) jǫRfcyc
converges weakly-* in the Orlicz space LC([0, T ];RRfcyc).

In the topology defined by this result, we prove the convergence of the rescaled
functional:

Theorem 2. Ĩǫ
0 + J̃ ǫ Γ−−−→

ǫ→0
Ĩ0
0 + J̃ 0, where

Ĩ0
0

(
u(0)

)
:=

∑

x∈V0slow

s
(
πǫ
xux(0) | πǫ

x

)
+
∑

c∈C

s
(
πǫ
cuc(0) | πǫ

c

)
,

J̃ 0(u, j) :=
∑

r∈Rslow

∫ T

0

s
(
jr(t) | κrπr−ur−(t)

)
dt+

∑

r∈Rdamp

∫ T

0

s
(
jr | κrπ̃r−ur−

)
(dt)

+
1

2

∑

r∈Rfcycle

∫ T

0

̃r(t)
2

κrπr−ur−(t)
dt,

where we implicitly set Ĩ0
0 + J̃ 0 = ∞ if the limiting continuity equations (not

written here) are violated.

As a corollary we obtain convergence of the minimisers describing the solutions
of the ODE.

Observe that in the above result s(· | ·)(dt) is a straight-forward generalisa-
tion of s(· | ·) needed to allow for densities uV1 and fluxes jRdamp

that may be
measure-valued in time, see Theorem 1. A natural question is then whether these
singularities in time can really occur or not. The answer to this question is related
to the possible occurrence of damped fluxes that appear in a cycle, see Figure 2:

Figure 2. An example of a network with slow and fast edges.

The next result shows that the possible occurrence of these singularities or
‘spikes’ are related to damped cycles.

Theorem 3. For any convergent sequence (uǫ, jǫ) → (u, j) such that Ĩǫ
0

(
uǫ(0)

)
+

J̃ ǫ(uǫ, jǫ) ≤ C for some C > 0, we have jr ∈ LC([0, T ])) if r ∈ Rdamp is not part
of a cycle of damped fluxes.

On the other hand, if the network contains a cycle of damped fluxes, then one
can construct a convergent sequence (uǫ, jǫ) → (u, j) with Ĩǫ

0

(
uǫ(0)

)
+ J̃ ǫ(uǫ, jǫ) ≤
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C and Ĩ0
(
uǫ(0)

)
+ J̃ (u, j) ≤ C for some C > 0 such that jr are singular measures

in time for all r ∈ Rdamp in the damped cycle.
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[3] K. Disser, M. Liero and J. Zinsl, Evolutionary Γ-convergence of gradient systems modeling
slow and fast chemical reactions, Nonlinearity 31 (2018), 3689.

[4] A. Mielke and A. Stephan, Coarse-graining via EDP-convergence for linear fast-slow reac-
tion systems, ArXiv 1911.06234 (2019).

[5] D.R.M. Renger, Flux large deviations of independent and reacting particle systems, with
implications for Macroscopic Fluctuation Theory, Journal of Statistical Physics 172 (2018).

The singular set in the Stefan problem.

Alessio Figalli

(joint work with Xavier Ros-Oton, Joaquim Serra)

The Stefan problem, dating back to the XIXth century, is among the most classical
and well known free boundary problems and describes phase transitions, such as
ice melting to water. More precisely, in its simplest case, the problem consists in
finding the evolution of the temperature θ(x, t) of the water when a block of ice
is submerged inside. Then, the function θ ≥ 0 satisfies ∂tθ = ∆θ in the region
{θ > 0}, while the evolution of the free boundary ∂{θ > 0} is dictated by the
Stefan condition ∂tθ = |∇xθ|2 on ∂{θ > 0} —where the gradient is computed
from inside {θ > 0}.

Let χA denotes the characteristic function of a set A. After the transformation

u(x, t) :=
∫ t

0
θ(x, τ)dτ , one can note that {u > 0} = {θ > 0} and the Stefan

problem becomes equivalent to the so-called “parabolic obstacle problem”:




∂tu−∆u = −χ{u>0}

u ≥ 0

∂tu ≥ 0

∂tu > 0 inside {u > 0}

in Ω× (0, T ) ⊂ R
n × R.

The regularity of free boundaries for the Stefan problem was developed in 1977
in Caffarelli’s groundbreaking paper. The main result therein establishes that the
free boundary (i.e., the interface ∂{u > 0}) is C∞ in space and time, outside some
closed set Σ ⊂ Ω× (0, T ) of singular points at which the contact set {u = 0} has
zero density.

A first natural question in understanding the singular set Σ is to estimate its
parabolic Hausdorff dimension. In our work in progress, we prove the following
sharp bound:
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Theorem: Let Ω ⊂ R
n be an open set, let u ∈ L∞(Ω × (0, T )) solve the Stefan

problem, and let Σ ⊂ Ω × (0, T ) be the set of singular points. Then dimpar(Σ) ≤
n− 1.

One could then wonder “how often” singular points arise. In the physical space
R3, we can prove the following:

Theorem: Let Ω ⊂ R
3, let u ∈ L∞(Ω× (0, T )) solve the Stefan problem, and let

S :=
{
t ∈ (0, T ) : ∃ (x, t) ∈ Σ

}

denote the set of “singular times”. Then dimH(S) ≤ 1
2 . In particular, for almost

every time t ∈ (0, T ), the free boundary is an (n − 1)-dimensional submanifold of
Rn of class C∞.

Reporter: Anastasiia Hraivoronska
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