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Rosa Miró-Roig, Barcelona

Justyna Szpond, Krakow

27 September – 3 October 2020

Abstract. The themes of the workshop are the Weak Lefschetz Property –
WLP – and the Strong Lefschetz Property – SLP. The name of these proper-

ties, referring to Artinian algebras, is motivated by the Lefschetz theory for
projective manifolds, initiated by S. Lefschetz, and well established by the
late 1950’s. In fact, Lefschetz properties of Artinian algebras are algebraic
generalizations of the Hard Lefschetz property of the cohomology ring of a
smooth projective complex variety. The investigation of the Lefschetz prop-
erties of Artinian algebras was started in the mid 1980’s and nowadays is a
very active area of research.

Although there were limited developments on this topic in the 20th cen-
tury, in the last years this topic has attracted increasing attention from math-
ematicians of different areas, such as commutative algebra, algebraic geom-
etry, combinatorics, algebraic topology and representation theory. One of
the main features of the WLP and the SLP is their ubiquity and the quite
surprising and still not completely understood relations with other themes,
including linear configurations, interpolation problems, vector bundle theory,
plane partitions, splines, d-webs, differential geometry, coding theory, digital
image processing, physics and the theory of statistical designs, etc. among
others.
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Introduction by the Organizers

The workshop Lefschetz Properties in Algebra, Geometry and Combinatorics, or-
ganised by Martina Juhnke-Kubitzke (Osnabrück), Juan Migliore (Notre Dame),
Rosa Maŕıa Miró-Roig (Barcelona), Justyna Szpond (Cracow) was attended by 11
present and 26 remote participants from Europe, Asia and both South and North
America. There was a diversity in experience level ranging from early postdocs to
established, internationally recognized professors. Thanks to this diversity we were
able to achieve considerable progress on topics highlighted at the workshop and to
provide excellent training for early career participants. Workshop activities were
divided between 20 hour or half-hour talks and research in group collaborations.
Activities commenced on the first day with an in-depth discussion of problems
to be studied. There were also two formal progress report sessions, apart from
informal discussions held throughout the workshop.

The research groups focused their efforts on six main problems, labeled A–F
and described below.

A. Jordan type and symmetric decomposition of an Artinian Gorenstein
algebra with respect to an ideal. The group consists of the following members:
Anthony Iarrobino, Leila Khatami, Pedro Macias Marques, Liena Colarte Gomez,
and Johanna Steinmeyer. This work grew in part from discussions at several
previous Lefschetz Properties conferences.

A local Artinian Gorenstein (AG) algebra (A,m) satisfies, A∗, the associated
graded algebra, has a decreasing filtration by ideals A∗ = C(0) ⊃ C(1) ⊃ · · ·
whose successive quotients Q(a) = C(a)/C(a + 1) are reflexive A∗ modules [9,
Theorem 1.5]. The Hilbert function decomposition has been mainly studied for
non-homogenous AG algebras, with respect to the maximum ideal m. The ideals
C(a) are defined using the intersection of the m-adic and Loewy (0 : mi) filtrations
of A∗. By generalizing the definitions of [9], or by using work of T. Harima and
J. Watanabe on central simple modules [8] we can consider such decompositions
with respect to any ideal J . When the ideal J = (ℓ) is principal and A is homo-
geneous we hypothesized that this concept leads to Jordan degree type, discussed
by B. Costa and R. Gondim and others [5]. However, we found that it only leads
to the Jordan type (Lemma 2). We omit the definition of CJ (a) (see [9, 1]).

Lemma 1. [1, Theorem 2.5] Let A be a Gorenstein Artinian algebra of socle
degree j, and J ⊂ m an ideal of A, and suppose A = R/Ann F , F ∈ S.

(i.) The sequence GrJ (A) = CJ (0) ⊃ CJ(1) ⊃ · · · ⊃ CJ(j) = 0 is a descending
sequence of ideals of GrJ (A). If J = (ℓ), ℓ ∈ A1 the quotient QJ(0) =
R/Ann F0 where F0 is the term of F of highest degree in L when F is
written as

∑
FiL

j−i with ℓ ◦ L = 1 and Fi ∈ ℓ⊥.
(ii.) Let 〈·, ·〉 → k be an exact pairing on A and assume further that JjJ = 0 :

mA
∼= k. Then 〈·, ·〉 induces an exact pairing 〈·, ·〉 : QJ(a)v ×QJ(a)jJ−a−v

→ k.

Example. Take A = k{x, y}/I, I = (xy, y2−x3) = Ann F , F = Y 2 +X3, Hilbert
function H(A) = (1, 2, 1, 1) and Jordan partition Py = (3, 1, 1): as a vector space
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A = 〈1, x, y, x2, x3〉 and we have that the y socle degree can be read from F and is
jy = 2, the degree of the highest Y term in F , as X ∈ y⊥. So Qy(0)∨ = 〈1, Y, F 〉.
The next term in F has degree 0 in Y , so two less, giving that Qy(2)∨0 = 〈X,X2〉,
the derivations of the term X2 that are linearly independent from Qy(0)∨. In
Gry(A) we have Qy(0) = 〈1, y, y2 = x3〉 and Hy(Q(0) = (10, 11, 12), Qy(1) = 0,
but Qy(2)0 = 〈x, x2〉, with Hy(Qy(2)) = (20), giving Hy(Gry(A)) = (1, 1, 1) +
(2, 0, 0) = (3, 1, 1) which is the conjugate of PA∗,y = (3, 1, 1) arising from a y-
symmetric decomposition of Gry(A).

Lemma 2. Each Jordan ℓ-string of any AG algebra A begins in degree zero. The
Hilbert functions in the Qℓ(a) decomposition are entirely determined by Pℓ,A the
Jordan type. Each part pi determines a string (pi)0 in Qℓ(j+1−pi), where j = jℓ
is the ℓ-socle degree. So each Hℓ(Q(a)) is constant, like Q(0) above, of the form

Hℓ(Q(a)) = ((na)0, . . . , (na)j−a),

where na is the number of parts equal to jℓ + 1− a in the Jordan type Pℓ.

Proof. Let t be the number of strings (parts of Pℓ). Consider mℓ : A→ A. It has
kernel (0 : (ℓ)) and image (ℓ), but dimk(0 : ℓ) just counts the number of strings,
so dimk A/ℓA = dim(0 : ℓ) = dimA − t, so each string begins in ℓ−degree zero
(there are no unexpected relations). �

Double stratification, QJ,K(a, b) decomposition. We considered symmetric
decomposition for two ideals together [1, Definition 2.13, Lemma 2.14]. We con-
cluded there should be two different socle degrees, jJ and jK . But we found
that this was problematic when jJ 6= jK . It seems that the Definition needs a
modification.
Example. F = X2Y 3 + XY 4 (two monomials of the same m-degree). Here,
letting A = R/Ann F , we have |A| = 12, j(x) = 2, j(y) = 4,

I = Ann F = (x3, y4 − xy3 + x2y2), Hm(F ) = (1, 2, 3, 3, 2, 1).

We take J = (x), K = (y). We have Px = (3, 3, 3, 3), P∨
x = (4, 4, 4); Py = (5, 5, 2),

P∨
y = (3, 3, 2, 2, 2). We found that Q(0, 0) and Q(0, 1) strata had some expected

behavior, but not a predicted duality. But there were extra terms that seemed
spurious in Q(0, 2) and Q(0, 3) – they were linear combinations of terms in Q(0, 0)
and Q(0, 1). On the other hand, when we considered F = X3Y Z+X2Y 3 we found
no spurious terms and the projections to the x, y directions gave the Qx and Qy

single decompositions.

Question 1A. Can we redefine the QJ,K stratification so as to give the expected
dimension, and also maintain the connection to the single ideal QJ(a), QK(a)
stratifications? Take J , K principal and compare with Jordan types?
Question 1B. By considering the Qℓ,m decomposition, can we define a Jordan
order type for non-graded AG algebras?

Question 2. Consider F = µ1 +µ2 binomial, say in X , Y . Can we determine the
Qx,y decomposition as combinatorial invariants depending on a poset formed from
µ1, µ2? What changes if we have binomials of different degrees or in 3 variables?
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Question 3. Consider a minimal resolution of an AG A = R/I; can we find some
stratification on the syzygy modules, related to Q(a) decomposition?
Question 4. What can we say about the Jordan type of A and Q(0): can A be
strong Lefschetz but Q(0) not be strong Lefschetz? (The opposite can occur).

B. Companion varieties. Let Z be a finite set of points in the projective space
PN admitting an unexpected hypersurface, see [4] for an introduction to this circle
of ideas. It was realized in [7] that if for a given point P = (p0 : . . . : pN) the set
Z admits a unique unexpected hypersurface of degree d, there is an associated bi-
homogeneous polynomial F (p, x). This polynomial, written in a basis g0, . . . , gM
of the graded part [I(Z)]d has the form

F (p, x) =

M∑

i=0

hi(p)gi(x).

Polynomials g0, . . . , gM define, under favorable circumstances, a rational map
PN

99K PM , whose image X(Z) has interesting geometric properties.
Szpond realized in [12] that also the image Y (Z) of the rational map defined

by h0, . . . , hM has interesting properties. She called X(Z) and Y (Z) companion
varieties associated to Z. In [12] they were studied in detail for the case when
Z is the root system B3. The working group, consisting of Roberta Di Genarro,
Giovanna Illardi, Rosa Maria Miró Roig, Tomasz Szemberg and Justyna Szpond
extended this study to configurations of points defined by other root systems and
by the duals of Fermat-type arrangements of lines. The works are continued and
a joint publication is expected as an outcome.

C. Proper intersections. This group (Brian Harbourne, Giuseppe Favacchio,
Emilia Mezzetti, Juan Migliore, Tomasz Szemberg, Justyna Szpond and Martin
Vodička) worked on problems motivated by [2]. Chiantini and Migliore attempted
to classify sets of points in P3, spanning the whole P3, which projections to a gen-
eral plane in P3 are complete intersections. They showed that sets of intersection
points of lines (grids) on a smooth quadric surface in P3 have this property. The
appendix to [2] contains, however, an example of points which don’t come this
way, yet their projection to a general plane is a complete intersection. Shortly
before the workshop, Pokora, Szpond and Szemberg [11] found another series of
examples.

The works of the group was motivated by the following two problems:

(1) Is there a series of examples of non-grids in P3 with an unbounded number
of points?

(2) Are there similar examples in higher dimensional projective spaces?

A possible path of investigations in higher dimensional projective spaces is related
to proper intersections. We say that two subvarieties X and Y in the projective
space PN form a proper intersection, if their dimensions are complementary, i.e.,
dim(X) + dim(Y ) = N and they intersect in dim(X) · dim(Y ) points. Then, the
original question, can be stated in a slightly milder version: are there subvarieties
in PN+1, which project to proper intersections in P3?
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During the workshop partial answers to above problems have been found and the
group stays in contact pushing the research further.

D. Lefschetz properties and monomial algebras. The group consists of the
following members: Akihito Wachi, Junzo Watanabe, Samuel Lundqvist, Chris
McDaniel, Nasrin Altafi, Mart́ı Salat Moltó.

A result by Wiebe [13] says that if R/ ini(I) has the WLP (SLP), then so does
R/I. Thus it makes sense to find techniques to decide whether a monomial algebra
has the WLP (SLP) or not.

The group has been exploiting an idea1 which can be used to draw conclusions
about the presence of the WLP (SLP) of a monomial algebra A := R/I by looking
at smaller pieces of A. More precisely, let m be a monomial and let I0 := I + (m)
and I1 := I : (m). If A0 := R/I0 and A1 := R/I1 have the WLP (SLP), and also
fulfills a ”symmetricish” condition on the Hilbert series, then so does A. When
this condition is fulfilled and A0 and A1 have the desired Lefschetz property, we
say that A is glued from A0 and A1. The process might of course be continued,
constructing A00 and A01 and so on. The hope is that we will eventually end of
with something nice which we know has the WLP (SLP), say a CI or something
in codim 2.

Our main focus have been on algebras with a symmetric Hilbert function. In this
case our symmetricish condition can be split into two classes; ”center-to-center”
and ”slightly shifted”.

Results:

• The Gorenstein algebra with dual generator x2y2 + z4 has the SLP and
a symmetric Hilbert series, but does not decompose center-to-center, so
Question 1 in the paper in the second footnote has a negative answer. But
it does decompose slightly shifted, and its Gin does decompose center-to-
center.
• There is a connection to the connected sum construction of Gorenstein

algebras. There are indications by means of examples that the method we
study is stronger than the connected sum construction.
• We have a condition in terms of the socle for when a symmetric algebra

with the SLP can be decomposed center-to-center, but it is unclear how
to use the condition.

Questions:

• Does a Gin coming from an SLP algebra with a symmetric series always
decompose ”center-to-center?
• Can all algebras in three variables with symmetric Hilbert series and the

SLP be decomposed symmetricish?
• Does a Gorenstein algebra with dual generator

∑
i ℓ

d
i with the SLP de-

compose center-to-center by always choosing the variables as m in the
operations A0 := A + m and A1 := A : m?

1See https://arxiv.org/pdf/2006.14453.pdf
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• Under which conditions are R/A1, R/A01, R/A001 . . . isomorphic to
k[x]/xd? (Different d’s.)
• What can be said about the intersection of CI ′s? When does the inter-

section give a symmetric HS?
• Can our method be used to provide a new proof of the fact that for n = 2,

all artinian quotients have the SLP?
• When does a lex segment have the WLP (SLP)?

E. Lefschetz properties and toric varieties. This group consists of Karim
Adiprasito, Eran Nevo and Larry Smith. They discussed two problems:

• The adaption of biased pairing theory, and thereby construction of Lef-
schetz elements, for toric varieties with a free involution. It seems that
even in this case, significant new ideas are needed.
• Based on an idea of Smith, we investigated the relation between the

Eisenbud-Levine-Khimshiashvili to maximal totally anisotropic subspaces.
After understanding that the formula instead describes maximal totally
isotropic subspaces, we discovered a relation to a question of Charney and
Davis concerning the signature of certain toric varieties.

Unfortunately, since Eisenbud-Levine-Khimshiashvilionly describes the
absolute value of the signature, this seems to be a dead end.

F. Sym(∞)-Lefschetz properties. The group consists of the following members:
Mats Boij, Martina Juhnke-Kubitzke, Uwe Nagel, Piotr Pokora, Tim Römer, and
Larry Smith.

We studied Sym(∞)-Lefschetz properties in the following setting. Let In ⊂
Sn := K[x1, ..., xn] be a Sym(n)-invariant monomial ideal. We also assume that

〈Sym(m)InRm〉 ⊆ Im with m ≥ n.

Because of this, there will be a limiting object I∞ =
⋃

n≥0 In ⊆ S∞ =
⋃

n≥0 Sn.

(See e.g. [6].)
In general, we would be interested to see how the Lefschetz properties with

respect to a linear form for Sn/In are reflected in the limiting object S∞/I∞.
Here we have concentrated on the case of ideals generated by monomials. Since
we have Sym(n)-symmetry we get that the ideals we need to consider are built
up from blocks indexed by partitions of d when we consider ideals generated by
monomials of degree d.

First of all, we wanted to use representation theory in order to find obstructions
to Lefschetz properties.

Example 1. (Togliatti) For d = 3 and n = 3, I3 = 〈x3
1, x

3
2, x

3
3, x1x2x3〉 corresponds

to the sum of two ideal I(3) +I(1,1,1) – the failure of the Weak Lefschetz Property in
degree 2 to 3 that is known for n = 3 generalizes to all n ≥ 3 and the representation
theoretic obstruction is the same for all n ≥ 3. In particular, we have two copies
of the trivial representation in degree two and only one in degree three. Observe
that since we have the torus action, we only need to consider the symmetric linear
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form which makes the multiplication map equivariant and Schur’s lemma shows
that it cannot be injective.

The representation stability that we see from the example has been proven to
hold in general for FI-modules by Church, Ellenberg and Farb [3] and this will
allow us to provide a large family of examples generalizing the Togliatti example
above.

In order to get positive results we would need some kind of maximal rank
property that is valid within each representation type corresponding to a specific
Specht-module Sλ. This turns out to be false in general, as we can see from
examples where bijectity fails in the symmetric part even though we have the
same multiplicity for the trivial representation in two consecutive degrees. These
examples all have in common that the failure occurs in degrees less than the
degrees of the generators of In. For multiplication maps in higher degrees there is
still hope for a maximal rank property to hold.
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Abstracts

Some problems in Lefschetz theory

Karim Adiprasito

I presented some problems in Lefschetz theory. First, I discussed the problem of
describing the space of Artinian reductions that are Lefschetz, for instance among
those toric varieties with fixed equivariant cohomology. As observed in earlier work
of the author, one of the natural sufficient conditions for the Lefschetz property
are based on totally isotropy of monomial subspaces under the Hodge-Riemann
pairing, and this leaves several problems, concerning in particular varieties with
group actions that prevent Artinian reductions in sufficient symmetry.

On the other hand it is equally an open problem for general position linear
systems, and in particular it is an open question whether for neighborly spheres,
every linear system of parameters is Lefschetz. We presented some evidence to-
wards this conjecture, by showing it true when restricted to low-degree strong
Lefschetz properties.

The second problem is equally related to the construction of Lefschetz elements.
Indeed, assume a space of multilinear forms. We discussed how much the Schmidt
norm of a generic element, and the Schmidt norm of the subspace can differ, though
in recent work with Kazhdan and Ziegler, we were able to demonstrate a linear
bound in fixed degree.

Using Jordan type to determine irreducible components of families of
local Artinian Gorenstein algebras of given Hilbert function

Pedro Macias Marques

(joint work with Anthony Iarrobino)

We study local Artinian Gorenstein (AG) algebras and consider the set of Jordan
types of elements of the maximal ideal, i.e. the partition giving the Jordan blocks
of the respective multiplication map.

Let A = R/I be a local AG algebra, quotient of R = k{x1, . . . , xr}, the regular
local ring in r variables over an infinite field k. We denote by m the maximal ideal
of A, and by j its socle degree, i.e. the unique integer satisfying mj 6= 0 = mj+1.
The Hilbert function of A is H(A) = (h0, . . . , hj), where hi = dimk m

i/mi+1. We
term Gorenstein sequence a sequence of integers that is the Hilbert function of
an AG algebra. If T is a Gorenstein sequence, we let Gor(T ) be the the reduced
variety whose closed points are the Gorenstein quotients A of R having Hilbert
function T . We adress the following question:

Conjecture 1. Given a Gorenstein sequence T , is the family Gor(T ) an irre-
ducible algebraic set? If not, how many irreducible components does it have?
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A central tool in the study of AG algebras is their dual generator, given by
Macaulay’s inverse systems. Let S = kDP [X1, . . . , Xr] be the divided power ring
in r variables and let R act on S by contraction, i.e.

xα ◦Xβ =

{
Xβ−α, if β ≥ α

0, otherwise.

Then for any AG algebra A = R/I there is an element f ∈ S such that

I = Annf = {h ∈ R : h ◦ f = 0}.

The associated graded algebra of an AG algebra A is A∗ =
⊕

i≥0 m
i/mi+1.

Iarrobino showed [3, Theorem 1] that A∗ admits a filtration by ideals C(a), a ≥ 0,
whose successive quotients Q(a) are reflexive modules over A∗ (see also [4] for a
further discussion). As a consequence, the Hilbert functions of the modules Q(a)
give a symmetric decomposition D of H(A). We denote by GorD(T ) the subfamily
of Gor(T ) of those algebras whose symmetric decomposition is D. Iarrobino also
showed [4, Lemma 4.1A] that the dimensions Ni,b = dimk m

i/
(
mi ∩ (0 : mb)

)
, that

can be read from the symmetric decomposition of H(A), satisfy a semicontinuity
property along flat families of AG algebras having fixed Hilbert function.

Given an element ℓ ∈ m, we define the Jordan type Pℓ as the partition of
n = dimk A giving the Jordan block decomposition of the nilpotent multiplica-
tion map mℓ : A→ A, mℓ(a) = ℓ · a. The generic Jordan type of A is the Jordan
type of ℓ in an open dense subset of m.

Given two partitions P and P ′ of n, with P = (p1, p2, . . . , ps), p1 ≥ p2 ≥ · · · ≥ ps
and P ′ = (p′1, p

′
2, . . . , p

′
t), p

′
1 ≥ p′2 ≥ · · · ≥ p′t, we say that P ≤ P ′ in the dominance

order if for each i ∈ {1, . . . ,min(s, t)} we have

i∑

k=1

pk ≤
i∑

k=1

p′k.

Harima and Watanabe [2] have shown that a linear element ℓ in a graded Artinian
algebra A is a weak Lefschetz element if and only if the number of parts in its
Jordan type is the Sperner number of the Hilbert function of A, and that ℓ is a
strong Lefschetz element if and only if its Jordan type is the conjugate partition
of the Hilbert function of A. Together with Maeno, Morita, Numata, and Wachi,
these authors have shown [1] that when the Hilbert function of A is unimodal, its
conjugate partition is an upper bound for the Jordan type of ℓ. In a joint work
with Chris McDaniel and Tony Iarrobino [5], we have extended this result to the
case of non-standard graded Artinian algebras and modules over local Artinian
algebras. Given this bound in general, we may extend the notions of weak and
strong Lefschetz properties to local Artinain algebras, by saying that an Artinain
algebra A satisfies the weak Lefschetz property if the number of parts in its generic
Jordan type is the Sperner number of the Hilbert function, and that it satisfies
the strong Lefschetz property if its generic Jordan type is the conjugate partition
of the Hilbert function.
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Let (At)t∈T be a flat family of AG algebras over an irreducible parameter space
T . Let PT be the generic Jordan type of At, for t in an open dense subset of
T . Then for any t0 ∈ T , the generic Jordan type PAt0

of the algebra At0 satisfies
PT ≥ PAt0

, in the dominance order.
We use the semicontinuty properties of the dimensions Ni,b and Jordan types

to determine irreducible components in Gor(T ). In particular, we show:

Theorem 2. The Gorenstein sequence H = (1, 3, 4, 4, 3, 2, 1) has three symmetric
decompositions.

(1) (a) A generic algebra in GorD1(H),

D1 =
(
H(0) = (1, 2, 3, 4, 3, 2, 1), H(1) = H(2) = 0, H(3) = (0, 1, 1, 0)

)

will have generic Jordan type P1 = (7, 5, 3, 2, 1).
(b) A generic algebra in GorD2(H)

D2 =
(
H(0) = (1, 2, 3, 3, 3, 2, 1), H(1) = 0, H(2) = (0, 1, 1, 1, 0)

)

will have generic Jordan type P2 = (7, 5, 3, 3).
(c) Finally, a generic algebra in GorD3(H),

D3 =
(
H(0) = (1, 2, 2, 2, 2, 2, 1), H(1) = (0, 1, 2, 2, 1, 0)

)
,

will have strong Lefschetz Jordan type P3 = (7, 5, 4, 2).
There are no further symmetric decompositions of H.

(2) These three decompositions satisfy N2,3(D1) ≥ N2,3(D2) ≥ N2,3(D3); as a
consequence

GorD3(H) ∩
(
GorD2(H) ∪GorD1(H)

)
= ∅

and
GorD2(H) ∩GorD1(H) = ∅.

(3) In the dominance partial order, P3 ≥ P2 ≥ P1. We have that no subfam-
ily A(W ) ⊂ GorDi

(H) can specialize to an element A(w0) of GorDj
(H)

having generic Jordan type Pj when i < j.
(4) Each GorDi

(H), i ∈ {1, 2, 3}, is an irreducible component of Gor(H).
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Expect unexpected

Tomasz Szemberg

(joint work with Piotr Pokora, Justyna Szpond)

This presentation is based on a joint work with Piotr Pokora and Justyna Szpond
carried out in the period September 13-26, 2020 at the MFO, while we were Re-
search Fellows there. Our MFO preprint [11].

1. Introduction

Finite sets of points in the complex projective plane P2 determined as intersection
points of line arrangements or as the duals of lines forming the arrangement, or
both, exhibited a number of properties interesting from the point of view of various
packages of problems studied currently in algebraic geometry and commutative al-
gebra. Arrangements of lines defined by finite reflection groups seem of particular
interest. Most prominently, they appear in recent works on the containment prob-
lem between symbolic and ordinary powers of homogeneous ideals (see e.g. [8],
[2]) and in works revolving around the Bounded Negativity Conjecture (see e.g.
[3], [1]).

In our work we are interested in properties of Z60, the set points in P3 deter-
mined by the reflection group labeled as G31 in the Shephard-Todd classification
[12]. It turns out that this configuration of points was known already to Felix Klein,
who studied it in connection with his early works on Icosahedron [10]. Recently,
the 60 points forming the configuration have been rediscovered by Ivan Cheltsov
and Konstanti Sharamov [4]. They showed that they are a union of three orbits of
a cyclic extension of a finite Heisenberg group H2,2 acting on the projective space
P3. As this group is much smaller than G31, it makes explicit calculations much
more feasible.

2. Unexpected hypersurfaces

Building upon an example due to Di Gennaro, Illardi and Vallès [7], Cook II,
Harbourne, Migliore and Nadel introduced in [6] the notion of unexpected curves,
which in the subsequent article by the last three authors joined by Teitler [9] has
been extended to hypersurfaces of arbitrary dimension. Roughly speaking, a set
Z in a projective space admits an unexpected hypersurface of degree d if the naive
count of conditions imposed by a fat point of multiplicity m ≥ 2 on the linear
system of hypersurfaces of degree d fails, i.e., if there are more such hypersurfaces
than expected. It is worth to point out that it never happens if Z is an empty
set or if Z consists of general points. It was in fact quite surprising to realize that
there are indeed sets Z admitting unexpected hypersurfaces.

Our main result in this direction are the following two statements to the effect
that Z60 admits unexpected surfaces in two unrelated ways. Such a phenomena
has been not observed before.

Theorem 1. The set Z60 admits, for a general point P in P3 a unique unexpected
surface of degree 6 with a points of multiplicity 6 at P .
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Theorem 2. Let P,Q1, Q2 be general points in P3. Then there exists a unique
unexpected surface of degree 6 vanishing in all points of Z60 with a point of mul-
tiplicity 4 at P and multiplicity 2 at Q1 and Q2.

3. Sets of points with the geproci property

Two years ago, in another workshop from the series of workshops on Lefschetz
properties, Luca Chiantini and Juan Migliore noticed that there are sets Z of
points in P3 spanning the whole space, such that their generic projection to a
plane is a complete intersection. If this happens for a set Z, we say simply that
the set Z has the geproci property. In [5] the authors identified a natural class
of sets, which they call grids, with the geproci property. The appendix to their
article contains an example of a set Z with the geproci property which is not a
grid. Such sets seem very hard to come by and it is natural to wonder if they
can be classified in some way. We show that Z60 and some of its subsets have the
geproci property.

Theorem 3. The set Z60 has the geproci property. More precisely, its general
projection to P2 is a complete intersection of curves of degree 6 and 10.

We show that whereas the curve of degree 6 is irreducible, the curve of degree
10 can be constructed taking projections of 10 lines, naturally associated to the
Z60 configuration.
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Gorenstein algebras generated by determinants

Akihito Wachi

(joint work with Takahiro Nagaoka)

In this talk, it is shown that Artinian Gorenstein algebras generated by powers of
the basic relative invariants of regular prehomogeneous vector spaces of commuta-
tive parabolic type have the strong Lefschetz property (SLP). See Nagaoka-Yazawa
[3] for a relation to Hodge-Riemann relation, and see also Maeno-Numata [2] for
a related work about Gorenstein algebras associated to matroids.

Set R = C[x1, x2, . . . , xn], and let F be a homogeneous polynomial in R. Define
an ideal AnnR(F ) of R as

AnnR(F ) = {p ∈ R | p ◦ F = 0},

where the circle (◦) means the differentiation, that is, xi◦F = ∂
∂xi

(F ), for example.

Then it is known that the quotient algebra R/AnnR(F ) is a standard graded Ar-
tinian Gorenstein algebra, which we call the Artinian Gorenstein algebra generated
by a polynomial F .

For example, if F = xa1
1 xa2

2 · · ·x
an
n , then AnnR(F ) = (xa1+1

1 , xa2+1
2 , . . . , xan+1

n )
and the algebra R/AnnR(F ) generated by F is a monomial complete intersec-
tion, and it has the SLP. But, in general, the SLP of the algebra generated by a
polynomial is difficult to determine, and the SLP is determined only for limited
cases.

As another example, which is part of the main result, let R = C[xij | 1 ≤ i, j ≤
n], and F = det(xij). Then the algebra R/AnnR(F ) generated by F turns out
to have the SLP. Furthermore, we have the following theorem, which is the main
result of this talk.

Theorem 1. If R and F are in the following table, and t is a non-negative integer,
then the Artinian Gorenstein algebra R/AnnR(F t) generated by F t has the SLP.
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In the first three cases, note that R is the coordinate ring of Sym(n,C) (the space
of symmetric matrices of size n), Mat(n,C) (the space of square matrices of size
n), or Alt(n,C) (the space of alternating matrices of size n).

type R F

(Cn, n) C[xij | 1 ≤ i, j ≤ n]/(xij − xji) det(xij)
(A2n−1, n) C[xij | 1 ≤ i, j ≤ n] det(xij)
(Dn, n) C[xij | 1 ≤ i, j ≤ n]/(xij + xji) Pf(xij) (n: even)
(Bm, 1), (Dm, 1) C[x1, x2, . . . , xn] x2

1 + x2
2 + · · ·+ x2

n

(E7, 7) C[27 variables] a polynomial of degree 3

‘Type’ is of regular prehomogeneous vector spaces of commutative parabolic type,
which is explained in the next remark.

The set of Lefschetz elements coincides with the open orbit of the prehomoge-
neous vector space. In particular, it is independent of t.

Remark 2. If a Lie group K acts on a vector space V , and there is a Zariski
open K-orbit on V , then the pair (K,V ) is called a prehomogeneous vector space.
See Kimura [1] for the details.

Let g be a simple Lie algebra, p a parabolic subalgebra of g, n+ the nilpotent
radical of p, and k a Levi subalgebra of p. Denote by K a complex Lie group whose
Lie algebra is k, then K acts on n+ by the adjoint action. If n+ is a commutative
Lie algebra, then p is automatically a maximal parabolic subalgebra of g, and it is
known that (K, n+) becomes a prehomogeneous vector space. This prehomogeneous
vector space is called a prehomogeneous vector space of commutative parabolic
type.

For a prehomogeneous vector space (K,V ) (assume V is C-vector space), a
polynomial F ∈ C[V ] is called a relative invariant, if there exists a group character
χ : K → C× such that F (kv) = χ(k)F (v) for any k ∈ K and v ∈ V .

Prehomogeneous vector spaces of commutative parabolic type are classified, and
those having relative invariants are also classified into six cases (A2n−1, n), (Cn, n),
(Dn, n) (n: even), (Bm, 1), (Dm, 1), and (E7, 7). See Rubenthaler [4] for the de-
tails. In this notation, the first entry is the type of the simple Lie algebra g, and
the second entry is the index of the simple root which determines the maximal
parabolic subalgebra p. In each case, there exists a unique irreducible relative in-
variant up to scaling, which is called the basic relative invariant. The polynomials
F in the table of the theorem are the basic relative invariants. These six cases are
called regular prehomogeneous vector spaces of commutative parabolic type. The
definition of ‘regular’ is not explained here, but a prehomogeneous vector space is
regular if and only if there is a relative invariant and its Hessian is not identically
zero.

We give an outline of the proof of the theorem. The proof is independent of six
cases.
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Lemma 3 (condition of the SLP in terms of sl2). Let R = C[x1, x2, . . . , xn], and
I be a homogeneous ideal of R. Suppose that R/I is an Artinian algebra with a
symmetric Hilbert function. Then (1) and (2) are equivalent.

(1) R/I has the SLP.
(2) There is an action of sl2 = 〈x, y, h〉 such that

(a) the eigenspaces of h coincide with the homogeneous components of R/I,
and
(b) the action of y gives the multiplication map of a linear form in R.

In view of the lemma, it suffices to find a ‘nice’ sl2-triple. But it can not be
found in k, since K-action on C[n+] does not change degrees of monomials, while
the action of y in the lemma changes degrees. So the key idea is to find a ‘nice’
sl2-triple in a Lie algebra larger than k. In fact, it is found in g.

For a Lie algebra homomorphism λ : p → C, define the generalized Verma
module as

M(λ) = U(g)⊗U(p) Cλ (Cλ is the representation space of λ),

where U(g) denotes the universal enveloping algebra of g. Then we have M(λ) ≃
U(n−) ≃ S(n−) ≃ C[n+] as vector spaces, where U(n−) is the universal enveloping
algebra of n−, which is the opposite Lie algebra of n+, and S(n−) denotes the
symmetric algebra of n−. The first isomorphism is by the definition of M(λ), the
second one is by the commutativity of n−, and the third one is by the duality of n+

and n− under the Killing form. M(λ) is, of course, a left g-module, and therefore
g acts on C[n+]. So if sl2-triple is given in g, then it acts on C[n+].

Finally the ‘nice’ sl2-triple can be found in g, which satisfies the condition of
the lemma. In the following, we give an example of sl2-triple etc.

Example 4. For the type (Cn, n),

g = spn =

{(
A B
C − tA

) ∣∣∣ A ∈ gln, B, C ∈ Symn(C)

}
,

p =

{(
∗ ∗
0 ∗

)
∈ g

}
, k =

{(
∗ 0
0 ∗

)
∈ g

}
≃ gln,

n+ =

{(
0 ∗
0 0

)
∈ g

}
≃ Symn(C), n− =

{(
0 0
∗ 0

)
∈ g

}
≃ Sym∗

n(C),

and (K, n+) is a regular prehomogeneous vector space of commutative parabolic
type. The basic relative invariant is

F = det(X) (X ∈ n+ ≃ Symn(C)).

The ‘nice’ sl2-triple can be taken as

x =

(
0 1n
0 0

)
, y =

(
0 0
1n 0

)
, h =

(
1n 0
0 −1n

)
∈ spn,

where 1n denotes the unit matrix of size n. Then y is in the open K-orbit on n−,
and it corresponds to a Lefschetz element x11 + x22 + · · ·+ xnn. The open orbit is
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the set of non-singular symmetric matrices of size n, and thus this set is equal to
the set of Lefschetz elements.
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The Jordan degree type of codimension three Artinian Gorenstein
algebras, and punctual schemes in P2.

Anthony Iarrobino

(joint work with Nancy Abdallah, Nasrin Altafi, Leila Khatami, Alexandra
Seceleanu, and Joachim Yaméogo)

Let ℓ be a linear, non-unit element of a graded Artinian algebra A. The Jordan
degree type S(A, ℓ) of the multiplication map mℓ : A→ A is a sequence of ordered
pairs giving the lengths of the cyclic k[ℓ] modules decomposing A, and the degrees
of their generators [10, §2.6]. It has equivalent information to the central simple
modules for (A, ℓ) of T. Harima and J. Watanabe [7, 8]. When A is Gorenstein
S(A, ℓ) enjoys a symmetry, illustrated by the string diagrams of B. Costa and
R. Gondim [5].

The morphism π. If the Hilbert function T of a codimension three Artinian
Gorenstein (AG) algebra contains (s, s, s), where s is the Sperner number – the
maximum value of T – then V. Kanev and the author showed that there is a
morphism

π : Gor(T )→ Hilbs(P2)

mapping an AG quotient A = R/I of R = k[x, y, z] having Hilbert function T ,
to the punctual Hilbert scheme Hilbs(P2) parametrizing length-s subschemes of
the projective space P2. Here π(A) is a scheme whose one-dimensional coordinate
algebra B satisfies B = R/J where J is the ideal of the early generators of I.
Using this, we can see how the pairs in S(A, ℓ) fall into three groups, having to do
with a newly-defined Jordan degree type S(B, ℓ) for a one-dimensional ring. This
viewpoint leads to restrictions on the Jordan degree types S that may occur for
A ∈ Gor(T ), and any ℓ ∈ R1.

The morphism π has been studied by J.O. Kleppe [11], and in special cases
where the image π(A) is smooth [1, 3]. The Hilbert scheme of length s punctual
schemes in P2 has an extensive literature, and structure theorems for s small are
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known. Also, Macaulay duality has been studied for dimension one CM rings B
[6]. These are ingredients that can enter into the study of JDT for codimension
three Artinian Gorenstein algebras.

We are interested in all linear forms ℓ, as studied analogously in [2] in height two.
We study the case T = (1, 3, 3, 1) where there are seven JDT, and T = (1, 3, 3, 3, 1)
where there are eight: the 8 possible JDT for T = (1, 3k, 1) for any k ≥ 3 will
correspond to those for k = 3. We can verify the results in this case using the
rank matrices as introduced by N. Altafi in [1].

A challenge to extending this approach in general is that the information in
the image π(A) is not enough to determine the Jordan degree type of A uniquely:
rather the socle-degree j Artinian Gorenstein algebras in the fibre of the mapping
to B = R/J correspond to elements F of degree j in the perpendicular set of forms
annihilated by the ideal J , and these can correspond to a finite set of JDT, even
fixing Jordan type information for B.

It is an open problem in general whether a height three AG algebra is strong
Lefschetz (see [1, 3, 4, 12] for special cases. We discussed the strong Lefschetz
property of AG algebras A = R/I having Hilbert function (1, 3, 4, 4, 4, 3, 1). First,
there is a non-zero-divisor ℓ ∈ R1 on B = R/J, J = (I≤3): that is enough to show
that the map ℓ2 : A2 → A4 has full rank. The non-vanishing of a Hessian [13]
shows that ℓ4 : A1 → A5 is also an isomorphism; we considered some alternate
ways to show this based on the map π.

There is much that is mysterious about the map π and Jordan type.
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[12] R. Miró-Roig and Q. H. Tran. The weak Lefschetz property for Artinian Gorenstein algebras
of codimension three, J. Pure Appl. Algebra, 224(7): 106305, 29 pp., 2020.

[13] J. Watanabe and M. de Bondt. On the theory of Gordan-Noether on homogeneous forms
with zero Hessian (improved version), arXiv:1703.07264.

Rank matrices and Jordan types of Artinian Gorenstein algebras

Nasrin Altafi

We introduce rank matrices of linear forms for graded Artinian algebras that
represent the ranks of multiplication maps in various degrees.

Let S = k[x1, . . . , xn], where k is a filed of characteristic zero. Let R =
k[X1, . . . , Xn] be Macaulay dual ring to S and F be a polynomial of degree d ≥ 2
in R. We consider Artinian Gorenstein algebra A = S/Ann(F ) with socle degree
d.

Definition 1. For a linear form ℓ ∈ A1 define the rank matrix, Mℓ,A, of A and ℓ
to be the upper triangular square matrix of size d + 1 with the following entries

(Mℓ,A)i,j = rk
(
×ℓj−i : Ai −→ Aj

)
,

for every 0 ≤ i ≤ j ≤ d.

Entries of the rank matrix are equal to the ranks of higher Hessian matrices
introduced by Maeno-Watanabe [3] and Gondim-Zappalà [2].

(1) rk Hess
(i,d−j)
ℓ (F ) = (Mℓ,A)i,j , 0 ≤ i < j.

For an upper triangular square matrix M of size d+1 with non-negative entries
we provide necessary conditions to ensure that M occurs as the rank matrix for
some Artinian Gorenstein algebra A and linear form ℓ ∈ A1.
Define the diagonal vector of M by diag(i,M) := ((M)0,i, (M)1,i+1, . . . , (M)d−i,d),
and denote diag(i,M)+ := (0, (M)0,i, (M)1,i+1, . . . , (M)d−i,d).

Proposition 2. Let M be the rank matrix of some Artinian Gorenstein algebra
A and linear form ℓ ∈ A1. Then

(i) diag(i,M) is an O-sequence, for every 0 ≤ i ≤ d,
(ii) diag(i,M)− (diag(i + 1,M))+ is an O-sequence, for every 0 ≤ i ≤ d − 1

(v+ = (0,v)),
(iii) Mi,j + Mi−1,j+1 ≥ Mi−1,j + Mi,j+1, for every 0 ≤ i ≤ j, set Mi,j = 0 for

i < 0 or j < 0.

We show that there is a one-to-one correspondence between the rank matrices
and Jordan degree type partitions. We introduce Jordan degree type matrix, Jℓ,A,
associated to A and ℓ to be upper triangular matrices of size d+1 and with entries

(Jℓ,A)i,j := (Mℓ,A)i,j + (Mℓ,A)i−1,j+1 − (Mℓ,A)i−1,j − (Mℓ,A)i,j+1,

where we set (Mℓ,A)i,j = 0 if either i < 0 or j < 0.
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Proposition 3. There is a one-to-one correspondence between the rank matrices
and Jordan degree types.

We provide a formula to obtain the Jordan type partition of ℓ and A from
the rank matrix of ℓ and A. For every 0 ≤ i ≤ d, where d is the socle degree
of A, define Artinian Gorenstein algebra A(i) := S/Ann(ℓi ◦ F ). Denote d :=
(dimk A

(0), dimk A
(1), . . . , dimk A

(d)).

Proposition 4. The Jordan type partition of ℓ for A is given by

Pℓ,A =
(
d + 1, . . . , d + 1︸ ︷︷ ︸

nd

, d, . . . , d︸ ︷︷ ︸
nd−1

, . . . , 2, . . . , 2︸ ︷︷ ︸
n1

, 1, . . . , 1︸ ︷︷ ︸
n0

)
,

such that n = (n0, n1, . . . , nd) = ∆2d, the second difference sequence of d.

Using this approach, we provide a complete list of possible rank matrices for
Artinian Gorenstein quotients of S = k[x, y, z] with at most three non-zero diago-
nals, or equivalently, rank matrices for linear forms ℓ such that ℓ3 = 0. We state
the result for even and odd socle degree d separately.
Denote by t = hA(d2 − 1), s = hA(1)(d2 − 1), and r = hA(2)(d2 ).

Theorem 5. There is an Artinian Gorenstein algebra A = S/Ann(F ) of even
socle degree d ≥ 2 and ℓ ∈ A1 such that ℓ2 6= 0, ℓ3 = 0 if and only if

(1) r ∈ [1, d2 − 1], s ∈ [2r, d
2 + r] and t ∈ [2s− r, d

2 + s + 1], for d ≥ 4; or

(2) r = d
2 , s = d− 1 and t ∈ [ 3d2 − 2, 3d2 ], for d ≥ 2.

Moreover, Mℓ,A is completely determined by (r, s, t).

Denote by t = hA(d−1
2 ), s = hA(1)(d−1

2 ), and r = hA(2)(d−1
2 ).

Theorem 6. There is an Artinian Gorenstein algebra A = S/Ann(F ) of odd socle
degree d ≥ 2 and ℓ ∈ A1 such that ℓ2 6= 0, ℓ3 = 0 if and only if

(1) r ∈ [1, d−1
2 − 1], s ∈ [2r, d−1

2 + r], t ∈ [2s− r, d−1
2 + s + 1], for d ≥ 5; or

(2) r ∈ [1, d−1
2 − 1], s = d−1

2 + r + 1, t = d + r, for d ≥ 5; or

(3) r = d−1
2 , s ∈ [d− 1, d] and t ∈ [d−1

2 + s− 1, 3 d−1
2 ], for d ≥ 3.

Moreover, Mℓ,A is completely determined by (r, s, t).

Using the above theorems and the correspondence between rank matrices and
higher Hessians in (1) we are able to prove that Jordan type partitions (or more
precisely, Jordan degree type partitions) of A and ℓ where ℓ4 = 0 area completely
determined by the ranks of at most three of the Hessian matrices. Moreover, the
explicit formulas for the rank matrices completely determine the Jordan (degree)
types in these cases.
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The Weak Lefschetz Property for Cohomology Modules of Vector
Bundles on P2

Zachary Flores

(joint work with Gioia Failla, Chris Peterson)

Let K be an algebraically closed field, and R = K[x0, x1, . . . , xr] the polynomial
ring over K. Any R-modules considered will be finitely generated and graded. We
are interested in finite length R-modules with the following property.

Definition 1. Given a finite length graded R-module M , write M =
⊕

j∈Z
Mj.

We say that M has the Weak Lefschetz Property (WLP) if given a general linear
form ℓ, the map ×ℓ : Mj−1 →Mj has maximal rank for all j ∈ Z.

The following result served as motivation for our main result. Moreover, each
proof provided guidance on how to further utilize geometric techniques in this
situation. For an ideal I ⊆ R, let α(I) denote the minimal degree of an element
of R.

Theorem 2 (Theorem 2.3, [3] and Corollary 2.4, [1]). If r = 2, K has charac-
teristic zero, and I is a complete intersection with α(I) ≥ 2, then R/I has the
WLP.

We quickly note Theorem 2 fails in positive characterstic: if r ≥ 2 and K has
characteristic p > 0, then R/(xp

0, . . . , x
p
r) does not have the WLP. Henceforth, we

will always assume that K has characteristic zero, and also that r = 2, so R is a
polynomial ring in three variables over an algebraically closed field in characteristic
zero.

We start with some remarks on the proof Theorem 2 in [3]. Suppose I =
(f1, f2, f3) with deg(fi) = di, and ≤ d1 ≤ d2 ≤ d3. In (Corollary 2, [5]) it was
shown that if d3 ≥ d1 + d2− 3, then R/I has the WLP. Utilizing this result in [3],
it is shown that R/I has the WLP when d3 < d1 + d2 − 3 to complete the proof
of Theorem 2.

With this, we ask the following:

(1) Can we extend Theorem 2 to non-cyclic finite length R-modules? If so,
what class of finite finite R-modules is an appropriate replacement for
complete intersections?

(2) Provided (1) is answered, can we give a self-contained proof?

We affirmatively answer (1) and (2) in the following theorem.

Theorem 3 (Theorem 3.7, [2]). Let E be a rank two, normalized (that is, c1(E) ∈
{−1, 0}) vector bundle on P2. Then H1

∗ (P2, E) has the WLP.
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To see how this is an extension of Theorem note that M := H1
∗ (P2, E) is a finite

length R-module with presentation

(⋆)

n+2⊕

j=1

R(−bj)
ϕ
→

n⊕

j=1

R(−ai)→M → 0

Conversely, given any such presentation (⋆) with M a finite length R-module, if

E = ker(ϕ), then its sheafification, Ẽ, is a rank two vector bundle on P2, which up

to a twist, is normalized. Moreover, there is a d ∈ Z such that H1
∗ (P2, Ẽ)(−d) ∼= M .

Since a complete intersection has presentation (⋆) with n = 1, we recover Theorem
2.

We next discuss the techniques involved in the proof of Theorem 3. Let ℓ be a
general linear form and L the general line defined by ℓ in P2. Consider the short
exact sequence for t ∈ Z

(1) 0→ E(t− 1)→ E(t)→ E(t)|L → 0

Now H1
∗ (P2, E) = ⊕t∈ZH

1(P2, E(t)), and the exact sequence (1) induces the
map that is multiplication by ℓ:

φℓ(t) : H1(P2, E(t− 1))→ H1(P2, E(t))

Thus to show that H1
∗ (P2, E) has the WLP, we need to show that φℓ(t) is either

injective or surjective for all t ∈ Z. To obtain conditions about the rank of φℓ(t),
we apply the global section functor to the short exact sequence (1) to obtain a
long exact sequence of cohomology groups. With some basic diagram chasing, we
obtain several conditions that tell us about the rank of φℓ(t), but all of which
involve the need to understand the vector bundle E|L.

Now E|L is a vector bundle of rank two on a copy of P1, so it splits as sum of
line bundles

E|L ∼= OL(a)⊕OL(b)

for (a, b) ∈ Z2. The vector (a, b) is called the generic splitting type of E , as
the restriction of E to any general line L′ will split as a sum of the line bundles
OL′(a) ⊕OL′(b). The key ingredient to the proof of Theorem 3 is understanding
the generic splitting type of rank two bundles on P2.

We calculate the generic splitting type of a rank two vector bundle on P2 by
making use of slope-stability conditions. The first result in this direction is the
classical Grauert-Mülich theorem that computes the generic splitting type for a
semistable bundle on P2.

Proposition 4 (Corollary 2, pg. 206, [4]). Let E be a be a normalized, semistable
rank two vector bundle on P2. Then

• if c1(E) = 0, then the generic splitting type of E is (0, 0);
• if c1(E) = −1, then the generic splitting type of E is (0,−1).

A vector bundle that is not semistable is called unstable, and in order to prove
Theorem 3, we need calculate the generic splitting type for an unstable rank two
vector bundle on P2. In this direction, if E is unstable vector bundle on P2 of
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rank two, there is a k ≥ 0 such that H0(P2, E(−k)) 6= 0 by (Lemma 1.2.5, [4]).
The largest such k is called the index of instability of E . We compute the generic
splitting type of an unstable vector bundle E in the following proposition.

Proposition 5 (Proposition 3.5, [2]). Let E be a normalized, unstable bundle of
rank two on P2 with index of instability given by k. Then

(1) if c1(E) = 0, then k > 0, and the generic splitting type of E is (−k, k);
(2) if c1(E) = −1, then k ≥ 0, and the generic splitting type of E is (−k−1, k).

With Proposition 4 and Proposition 5, we can given an even more precise state-
ment of our main result.

Theorem 6 (Theorem 3.7, [2]). If E is a normalized, rank two vector bundle
P2, with first cohomology module H1

∗ (P2, E) = ⊕t∈ZH
1(P2, E(t)), and φℓ(t) :

H1(P2, E(t− 1))→ H1(P2, E(t)) is multiplication by ℓ, then

(1) H1
∗ (P2, E) has the WLP;

(2) if E is semistable, then
(a) if c1(E) = 0, φℓ(t) is injective for t ≤ −1 and surjective for t ≥ −1;
(b) if c1(E) = −1, then φℓ(t) is injective for t ≤ −1 and surjective for

t ≥ 0;
(3) if E is unstable with index of instability k, then

(a) If c1(E) = 0, then φℓ(t) is injective for t ≤ k − 1 and surjective for
t ≥ −k − 1;

(b) If c1(E) = −1, then φℓ(t) is injective for t ≤ k and surjective for
t ≥ −k − 1.
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On the canonical module of GT-varieties and the normal bundle of
RL-varieties.

Liena Colarte-Gómez

(joint work with R. M. Miró-Roig)

Through this abstract, K denotes an algebraically closed field of characteristic
zero, R = K[x0, . . . , xn] denotes the polynomial ring and GL(n + 1,K) represents
the group of invertible matrices of size (n + 1)× (n + 1) with coefficients in K.



1564 Oberwolfach Report 31/2020

Introduction. A homogeneous artinian ideal I ⊂ R generated by homogeneous
forms F1, . . . , Fr of degree d is said be a Togliatti system if R/I fails the weak Lef-
schetz property, abridged WLP, in degree d−1. Togliatti systems were introduced
by Mezzetti, Miró-Roig and Ottaviani (2013), they related the failure of the WLP

to the existence of rational projective varieties of P(n+d

d )−r−1 satisfying a Laplace
equation. In [2], a new family of Togliatti systems is defined, the so called GT -
systems. By G ⊂ GL(n+1,K), we denote a linear finite group of order d acting on
R. A GT -system with group G is a Togliatti system Id = (F1, . . . , Fµd

) ⊂ R such
that the morphism ϕId : Pn → Pµd−1 given by (F1, . . . , Fµd

) is a Galois covering
with group G. We call Xd := ϕId(Pn) a GT -variety with group G. In [3], we study
the homogeneous ideal of certain GT -threefolds. In [1], [2] and [4], the authors use
invariant theory methods to tackle GT -system and the geometry of GT -varieties.

Hereby, we present the most recent results, collected in [4], on GT -varieties with
finite linear cyclic diagonal groups, the notion of RL-varieties and the outcomes
on their normal bundles.

The homogeneous ideal of GT -varieties. We fix integers 2 ≤ n < d, 0 ≤ α0 ≤
· · · ≤ αn < d with GCD(d, α0, . . . , αn) = 1 and we fix e a dth primitive root of
1 ∈ K. By Md;α0,...,αn

, we denote the diagonal matrix diag(eα0 , . . . , eαn). We set
Γ := 〈Md;α0,...,αn

〉 ⊂ GL(n+1,K) the linear cyclic group of order d and we denote

Γ ⊂ GL(n+1,K) the linear abelian group of order d2 generated by Md;α0,...,αn
and

Md;1,...,1 = eId. By RΓ (respectively RΓ), we represent the ring of invariants of Γ

(respectively Γ) acting on R. Let Id ⊂ R be the ideal generated by the set of all
monomialsMd := {m1, . . . ,mµd

} ⊂ RΓ of degree d. We denote ϕId : Pn → Pµd−1

the associated morphism and we set Xd := ϕId(Pn).
Partially motivated by the long-standing problem, posed by Gröber (1965),

of determining whether a projection of the Veronese variety νd(Pn) ⊂ P(n+d
d )−1

is arithmetically Cohen-Macaulay (abridged aCM), in [1] the authors prove the
following.

Theorem 1. (i) Md is a basis of RΓ.

(ii) RΓ is the coordinate ring of Xd. Hence, Xd is an aCM monomial projection

of the Veronese variety νd(Pn) ⊂ P(n+d
d )−1 from the inverse system I−1

d .

(iii) If µd ≤
(
d+n−1
n−1

)
, then Id is a GT -system with group Γ.

Let w1, . . . , wµd
be a new set of indeterminates and set S := K[w1, . . . , wµd

].
We denote I(Xd) ⊂ S the homogeneous ideal of Xd. From Theorem 1, we have
that I(Xd) is the kernel of the morphism ρ : S → R given by ρ(wi) = mi. It holds
that I(Xd) is the homogeneous binomial prime ideal generated by

Wd = {wi1 · · ·wik − wj1 · · ·wjk ∈ S such that mi1 · · ·mik = mj1 · · ·mjk , k ≥ 2}.

We denote by I(Xd)k, k ≥ 2, the set of all binomials of Wd of degree exactly k.
In [4], it is shown that I(Xd) is generated by quadrics and cubics; and examples
of GT -varieties whose homogeneous ideals are minimally generated by both types
of generators are exhibited. Precisely,
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Theorem 2. [4] I(Xd) = (I(Xd)2, I(Xd)3).

The canonical module of GT -varieties. The algebraic structure of the canon-
ical module wX of the coordinate ring of an aCM projective variety X plays a
central role on its geometry. Among others, it carries on information of the Hilbert
function and series, as well as the Castelnuovo-Mumford regularity, of X .

Let Xd be a GT -variety with group Γ. We denote Hd ⊂ Zn+1
≥0 the semigroup

associated toMd and by k[Hd], we represent the associated semigroup ring. From

Theorem 1, it follows that RΓ = k[Hd]; and from a classical result of Danilov

and Stanley, it follows that wXd
= relint(Id), where relint(Id) is the ideal of RΓ

induced by H+
d = {(a0, . . . , an) ∈ Hd | ai > 0, i = 0, . . . , n}. For k ≥ 1, let

relint(Id)k ⊂ relint(Id) be the set of all monomials of degree kd. In [4], it is
proved that:

Theorem 3. relin(Id) = (relint(Id)1, relint(Id)2).

It is then natural wondering under which conditions RΓ is level, i.e., relint(Id) is
generated in only one degree, and in particular when it is Gorenstein, i.e., relin(Id)
is a principal ideal. We give the following families of examples.

Proposition 4. [4] (i) Fix integers k ≥ 1, n ≥ 2 with n even and fix Γ =
〈Mk(n+1);0,1,2,...,n〉 ⊂ GL(n + 1,K). The associated GT -variety Xd is level, in
particular Xn+1 is Gorenstein.

(ii) Fix integers k ≥ 1, n ≥ 3 with n odd and fix Γ = 〈Mk(n+1);0,1,...,1,2〉. The
associated GT -variety Xk(n+1) is level, in particular Xn+1 is Gorenstein.

By means of the description of the canonical module of RΓ, we determine the
Castelnuovo-Mumford regularity of Xd. Precisely,

Theorem 5. [4]

n ≤ reg(RΓ) ≤ n + 1.

The equality reg(RΓ) = n + 1 holds if and only if relint(Id)1 6= ∅.

Cohomology of the normal bundle of RL-varieties. In [4], we call level
a GT -variety Xd with group Γ such that relint(Id) = (relint(Id)1). Moreover,
Proposition 4 gives examples of level GT -varieties for any dimension. Motivated
by the recent work of Alzati and Re (2020) and these examples, we introduce a
new family of smooth projective varieties, the so called RL-varieties, which are
naturally related to level GT -varieties.

Definition 6. [4] Let Xd be a level GT -variety with group Γ. The RL-variety
Xd associated to Xd is defined as the projection of the Veronese variety νd(Pn) ⊂

P(n+d

n )−1 from the linear system 〈relint(Id)1〉.

We can see Xd as the variety associated to the parametrization fd given by
the inverse system relint(Id)−1

1 . We prove that Xd is smooth and that fd is an
embedding. Afterwards, we compute the cohomology table of the normal bundle
of any RL-variety. Precisely,
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Theorem 7. [4] Fix a level GT -variety Xd with group Γ = 〈Md;α0,...,αn
〉. Set

ηd := |relint(Id)| and Nd :=
(
n+d
d

)
− ηd − 1. Let Xd ⊂ PNd be the RL-variety

associated to Xd. It holds:
(i) for 0 < i < n− 1 and for all k ∈ Z, hi(X ,NXd

)(−k) = 0.
(ii)

h0(Xd,NXd
)(−k) =





(Nd + 1)
(
n+d−k
d−k

)
− (n + 1)

(
n+1−k
1−k

)
k ≤ 1

(Nd + 1)
(
n+d−k
d−k

)
k ≤ d

0 otherwise.

(iii)

hn−1(Xd,NXd
)(−k) =





(n + 1)
(

k−2
k−2−n

)
n + 2 ≤ k < d + n + 1

νd + n(d−1)
d

(
n+d−1

n

)
k = d + n + 1

(n + 1)νd k = d + n + 2
0 k ≤ n + 1 or k ≥ d + n + 3.

(iv)

hn(Xd,NXd
)(−k) =





(Nd + 1)
(

k−d−1
k−d−n−1

)
− (n + 1)

(
k−2

k−2−n

)
+

νd + n(d−1)
d

(
n+d−1

n

)
k = d + n + 1

(Nd + 1)
(

k−d−1
k−d−n−1

)
− (n + 1)

(
k−2

k−2−n

)
+

(n + 1)νd k = d + n + 2

(Nd + 1)
(

k−d−1
k−d−n−1

)
− (n + 1)

(
k−2

k−2−n

)
k ≥ d + n + 3

0 otherwise.
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[2] L. Colarte, E. Mezzetti, R. M. Miró-Roig, and M. Salat. Togliatti systems associated to the
dihedral group and the weak Lefschetz property, submitted.
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The WLP for almost complete intersections generated by uniform
powers of general linear forms

Mats Boij

(joint work with Samuel Lundqvist)

For positive integers n, m and d, consider the polynomial ring = k[x1, x2, . . . , xn]
and m general linear forms ℓ1, ℓ2, . . . , ℓm. We are interested in the problem of
when the ring

Rn,m,d = k[x1, x2, . . . , xn]//〈ℓd1, ℓ
d
2, . . . , ℓ

d
m〉

satisfies the Weak Lefschetz Property (WLP), that is when the multiplication maps
with a general linear form all have maximal rank.
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In the case n = 3, there is a powerful result by Schenck and Seceleanu [8] that
shows that WLP holds for R3,m,d for any m and d.

For n ≥ 4 and m = n + 1, which means for almost complete intersections,
Migliore, Miró-Roig and Nagel [4] showed that the WLP fails for even n ≥ 4 and
d ≥ 2 except for (n, d) = (4, 2). For odd n they made the following intriguing
conjecture.

Conjecture 1. [4, Conjecture 6.6] Let n ≥ 9 be an odd integer. Then Rn,n+1,d =
k[x1, x2, . . . , xn]/〈ℓd1, ℓ

d
2, . . . , ℓ

d
n+1〉 fails the WLP if and only if d > 1. Furthermore,

if n = 7 then Rn,n+1,d fails the WLP when d = 3.

Some important contributions to this have been made by Sturmfels and Xu [9],
Miró-Roig [5], Miró-Roig and Tran [6], Nagel and Trok [7] and Ilardi and Vallès [1].

We are able to settle this conjecture completely and we can in fact extend it to
a full classification of when WLP fails for Rn,n+1,d.

Theorem 2. Let d, n ≥ 1. Then Rn,n+1,d = k[x1, x2, . . . , xn]/〈ℓd1, ℓ
d
2, . . . , ℓ

d
n+1〉

fails the WLP except when n ≤ 3, d = 1 or (n, d) ∈ {(4, 2), (5, 2), (5, 3), (7, 2)},
and in these cases, the WLP holds.

Our first step is to relate this to Fröberg’s conjecture [2] by taking the quotient
by a general linear form. This leads to Rn−1,n+1,d and to the question whether
the Hilbert series of this ring is the one expected from Fröberg’s conjecture for the
ideal if n + 1 general forms of degree d in n− 1 variables.

When studying Rn,n+2,d, our work builds on the methods of inverse systems.
This means that we look for polynomials F in a dual polynomial ring R =
k[X1, X2, . . . , Xn] where S acts by differentiation such that ℓdi ◦ F = 0 for all
i = 1, 2, . . . , n + 2. The existence of such a form shows that the Hilbert function
of Rn,n+2,d is non-zero in that degree which in most cases will let us show that
Rn+1,n+2,d fails to have the WLP.

The degree where we construct a non-zero element in the inverse system of
Rn,n+1,d is given by

s(n, d) =

{
(n+1)(d−1)

2 if n is odd,⌊
n(n+2)(d−1)

2(n+1)

⌋
if n is even.

This number was already shown by Nagel and Trok [7] to be an upper bound for
the regularity of Rn,n+2,d. By an inductive argument building on the case d = 2,
which was handled by Sturmfels and Xu [9], we prove the following proposition.

Proposition 3. Let n ≥ 1 be odd and let d ≥ 1. Then the value of the Hilbert
function of Rn,n+2,d is non-zero in degree s(n, d).

Example 4. As an example we look at the case (n, d) = (4, 4) where we want
a form of degree s(4, 4) = ⌊4 · 6 · 3/(2 · 5)⌋ = 7 that is annihilated by the fourth
powers of the linear forms ℓ1, ℓ2m. . . , ℓ6. For each i = 1, 2, 3 we can find a unique
quadric Qi that is annihilated by ℓi and by ℓ2j , for j 6= i since there is a unique
quadric in three variables passing through five general points. We can also find a
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linear form L that is annhilated by ℓ4, ℓ5 and ℓ6. Now ℓ4i ◦ (Q1Q1Q3L4,5,6) = 0
for i = 1, 2, . . . , 6 by the pigeonhole principle since ℓi annihilates one of the factors
and ℓ2i annihilates the other factors.

In order to prove that this leads to a proof of the failure of WLP we also
need to show that the Hilbert function of Rn,n+2,d would have to be zero in this
degree if Rn+1,n+2,d satisfies the WLP. This Hilbert series that Rn,n+2,d would
have if Rn+1,n+2,d satisfied the WLP is given by the Fröberg conjecture and can
be expressed as

(1)

[
(1− td)n+2

(1− t)n

]

where the brackets indicate that we truncate the series before the first non-positive
term.

We are able to show that the degree of this series is less than s(n, d) in all but
a few cases. These sporadic cases are handled using an explicit formula for the
unique form in the top degree of the inverse system of Rn,n+2,2 in the case n is
odd.

Theorem 5. Let n = 2k − 1 for a positive integer k. The the form

F =
∑

σ∈Sn

sgn(σ)V (aσ1 , aσ2 , . . . , aσk
)V (aσk+1

, aσk+2
, . . . , aσn

)
n∏

j=k+1

aσj

k∏

j=1

Xσj

is the unique form of degree k in k[X1, X2, . . . , Xn] that is annihilated by the
squares of the linear forms x1, x2, . . . , xn, x1+x2+· · ·+xn, a1x1+a2x2+· · ·+anxn.

Theorem 6. The WLP fails for Rn,n+1,d = k[x1, x2, . . . , xn]/〈ℓd1, ℓ
d
2, . . . , ℓ

d
n+1〉 in

the cases (n, d) ∈ {(5, 5), (7, 3), (9, 2), (9, 3), (11, 2), (11, 3)}. In particular we have
that the Hilbert series of R4,6,5, R6,8,3, R8,10,2, R8,10,3, R10,12,2, and R10,12,3 are

1 + 4t + 10t2 + 20t3 + 35t4 + 50t5 + 60t6 + 60t7 + 45t8 + 14t9,
1 + 6t + 21t2 + 48t3 + 78t4 + 84t5 + 43t6,

1 + 8t + 26t2 + 40t3 + 16t4,
1 + 8t + 36t2 + 110t3 + 250t4 + 432t5 + 561t6 + 492t7 + 171t8,

1 + 10t + 43t2 + 100t3 + 121t4 + 32t5,
and

1 + 10t + 55t2 + 208t3 + 595t4 + 1342t5 + 2431t6 + 3520t7 + 3916t8

+2860t9 + 682t10

which differ in the leading term from 10t9, 42t6, 15t4, 135t8, 22t5 and 88t10 that
are expected by the Fröberg conjecture.
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Associated Prime Ideals of Equivariant Coinvariant Algebras

Larry Smith

Recall for a finite group G and a representation θ : G →֒ GL(n,F) of G over a field
F that the equivariant coinvariant algebra of θ is the algebra F[V ]⊗F[V ]GF[V ],
where V = Fn is the representation space of θ, F[V ] the algebra of polynolmial
functions on V , and F[V ]G the subalgebra of G-invariant forms of F[V ]. The
minimal prime ideals of F[V ]⊗F[V ]GF[V ] were determined in [1 – 4] (by quite
distinct methods). In this note we will show that if θ is defined over a finite
field F then the associated prime ideals of the equivariant coinvariant algebra
F[V ]⊗F[V ]GF[V ] can only be the minimal primes or the maximal ideal. We do
so by making use of Steenrod operations to obtain information concerning prime
ideals in unstable algebras over the Steenrod algebra P∗, in particular for the
associated prime ideals, of an equivariant coinvariant algebra over a finite field
which is such an unstable algebra. Among we obtain are the following.

• The Going Down Theorem of W. Krull holds for prime ideals with respect
to the natural inclusion of either tensor factor of IF[V ] in

IF[V ] ֒
λ
−→ IF[V ]⊗IF[V ]GIF[V ]

ρ
←−֓ IF[V ].

• If p ⊂ F[V ] is a prime ideal and P ⊂ F[V ]⊗F[V ]GF[V ] a prime ideal lying
over it, then ht(p) = ht(P ), coht(p) = coht(P ), and ht(p) + coht(p) =
dim(F[V ]) = n = dim(F[V ]⊗F[V ]GF[V ]) = ht(P ) + coht(P ).
• If p ⊂ F[V ]⊗F[V ]GF[V ] is a P∗-invariant prime ideal then it is generated

by the linear forms that it contains.
• The minimal prime ideals of F[V ]⊗F[V ]GF[V ] are P∗-invariant so are gen-

erated by the linear forms that they contain.

Notice that the first two results are statements purely in commutative algebra:
The statements have nothing to do with Steenrod operations. It is in their proofs
that Steenrod algebra technology plays a role.
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For the sake of completeness we also supply proofs of several basic results concern-
ing the interaction of the Steenrod algebra with commutative algebra that seem
to be new or, if they are extracted from the literature, then are given new proofs.
Among which are following:

• J-P. Serre’s Theorem: P∗-invariant ideals in F[V ] are generated by the
linear forms that they contain. This is used in the proof of almost all the
results that follow it.
• A standard graded P∗-unstable integral domain A that is finitely generated

as an algebra is a polynomial algebra.
• The minimal prime ideals of an unstable P∗-algebra, are P∗-invariant.

We hope that the method of proof used in these results will find interest among
commutative algebracists in general.
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Togliatti systems associated to the dihedral group and the weak
Lefschetz property.

Mart́ı Salat Moltó

(joint work with Liena Colarte-Gómez, Emilia Mezzetti and Rosa M. Miró-Roig)

Introduction. Togliatti systems were introduced in [5], where the authors related
the existence of homogeneous artinian ideals failing the weak Lefschetz property
to the existence of projective varieties satisfying at least one Laplace equation.
Precisely, a Togliatti system is an artinian ideal Id ⊂ k[x0, . . . , xn] generated by

r ≤
(
n+d−1
d−1

)
forms F1, . . . , Fr of degree d which fails the weak Lefschetz property

in degree d − 1. The name is in honour of E. Togliatti who gave a complete
classification of rational surfaces parameterized by cubics and satisfying at least
one Laplace equation of order 2. Since then, this topic and related problems
has centered the attention of many works. Notwithstanding, most expositions
and results deal with monomial Togliatti systems, while the non monomial case
remains barely known.

Recently, in [4] and [2] the authors studied GT -systems, a new family of mono-
mial Togliatti systems having a special geometric property. A GT -system is a
Togliatti system Id whose associated morphism ϕId : Pn → PµId

−1 is a Galois
covering with cyclic group Z/dZ. This geometric property establishes a new link
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between Togliatti systems and Invariant Theory. Precisely in [1] and [3], the au-
thors apply Invariant Theory techniques to investigate both GT -systems and their
images Xd = ϕId(Pn), the so called GT -varieties. Afterwards, in [2], this notion
was extended to tackle the action of any finite group, including non abelian ones.
This is a starting point to the study of non monomial Togliatti systems.

Invariants of the dihedral group. From now on, we focus on the dihedral
group action on k[x0, x1, x2]. More precisely, we fix an integer d ≥ 3 and ε a
2dth primitive root of 1. We set e = ε2 and let ρ : D2d → GL(3, k) be the linear
representation of D2d = 〈τ, ε|τd = ε2 = (ετ)2 = 1〉, the dihedral group of order
2d, defined by:

ρ(τ) = M =




1 0 0
0 e 0
0 0 ed−1



 and ρ(ε) = σ =




1 0 0
0 0 1
0 1 0



 .

By D2d we denote the subgroup of GL(3, k) of order (2d)2 generated by ρ(D2d)
and εId. Also, we denote by Γ (resp. Γ) the cyclic subgroup generated by M
(resp. M and εId). Using the results of [1] and [3] about cyclic groups, we can use
the subgroup Γ to describe the invariants of D2d. For instance, using this method
we find the Hilbert function:

Proposition 1. [2] With the above notation,

H(D2d, t) =
2dt2 + (d + GCD(d, 2) + 2)t + 2

2
.

Then we can obtain an explicit basis for the graded pieces of the k−algebra RD2d

of invariants of D2d, as well as a k−algebra basis.

Theorem 2. [2] A k-basis B2td of the vector space RD2d
t is formed by:

(i) the set of td+ 1 monomials x2td
0 , x2td−2

0 x1x2, x
2td−4
0 x2

1x
2
2, . . . , x

td
1 xtd

2 of de-
gree 2td which are invariants of Γ; and

(ii) the set of all binomials xa0
0 xa1

1 xa2
2 + xa0

0 xa2
1 xa1

2 of degree 2td such that
a1 6= a2 and xa0

0 xa1
1 xa2

2 ∈ RΓ.

Moreover, RD2d is a graded k-algebra generated in degree 1 by B2d.

This allows us to obtain information about the Cohen-Macaulayness of RD2d :

Corollary 3. [2]

(i) RD2d is a Cohen-Macaulay level algebra with Cohen-Macaulay type d −
GCD(d, 2) and Castelnuovo-Mumford regularity 3.

(ii) RD2d is Gorenstein if and only if d = 3 or 4.

GT-systems with dihedral group. Finally, considering I2d ⊂ R the ideal
generated by all invariants of degree 2d of D2d we obtain the first large class of
non monomial Togliatti systems, which are GT−systems with group D2d. We

establish a link between the ring RD2d and the coordinate ring of the associated
varieties of these GT -systems. We call these varieties, GT−surface with group
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D2d, and we denote them SD2d
. Using the previous results about the invariants

of D2d, we obtain geometric information about SD2d
and its homogeneous ideal

I(SD2d
). For instance, the last corollary translates as:

Proposition 4. [2] SD2d
is an arithmetically Cohen-Macaulay surface of degree

deg(SD2d
) = 2d, regularity 3, codimension 1

2 (3d + GCD(d, 2) − 2) and Cohen-

Macaulay type 1
2 (d−GCD(d, 2)). In particular, SD2d

is Gorenstein if and only if
d = 3, 4.

Moreover, we define Wd := {w(r,γ) | 0 ≤ r ≤ 2(d − 1) and max{0, ⌈ (r−2)d
d−2 ⌉} ≤

γ ≤ r} and a new polynomial ring S = k[w(r,γ)]w(r,γ)∈Wd
. Then, the homogeneous

ideal I(SD2d
) can be seen as the kernel of ϕd : S → R defined by

ϕd(w(r,γ)) =

{
x2d−2γ
0 xγ

1x
γ
2 if r = γ

x
(2−r)d+(d−2)γ
0 (x

rd−(d−1)γ
1 xγ

2 + xγ
1x

rd−(d−1)γ
2 ) otherwise.

Together with the previous results, this allows us to finally give explicitly a minimal
free S−resolution of S/I(SD2d

) in terms of the codimension C and h = 2d−C−2:

Theorem 5. [2] With the above notation, S/I(SD2d
) has a minimal free S-

resolution

0→ SbC,2(−C − 2)→ ⊕l=1,2S
bC−1,l(−C + 1− l)→ ⊕l=1,2S

bC−2,l(−C + 2− l)

→ · · · → ⊕l=1,2S
bC−h,l(−C + h− l)→ SbC−h−1,1(−C + h)

→ · · · → Sb1,1(−2)→ S → S/I(S2d)→ 0

where

bi,j−i :=





i
(

C
i+1

)
+ (C − i− h)

(
C
i−1

)
if 1 ≤ i ≤ C − h− 1, j = i + 1

i
(

r
i+1

)
if C − h ≤ i ≤ C, j = i + 1

(i− C + h + 1)
(
C
i

)
if C − h ≤ i ≤ C, j = i + 2

0 otherwise

In particular we have a description of the structure of the homogeneous ideal
I(SD2d

):

Corollary 6. [2] I(SD2d
) is minimally generated by 9d2+2d+8

8 quadrics if d is even

and by 9d2−4d+3
8 quadrics if d is odd.

Using the explicit description of the morphism φd, in [2] we are able to find an
explicit set of binomials and trinomials of degree two generating I(S2d).
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Generic initial ideals and unexpected hypersurfaces

Giuseppe Favacchio

(joint work with Elena Guardo, Brian Harbourne, Juan Migliore)

Given a subscheme X of Pn, its defining saturated homogeneous ideal IX ⊆ R =
K[Pn] = K[x0, . . . , xn] (where K is a field) and integers t ≥ m ≥ 1, we define
two numbers associated to (X, t,m). The actual dimension, adim(X, t,m), is the
dimension of the vector space of the forms in IX of degree t vanishing at a general
point P with multiplicity m. That is,

adim(X, t,m) = dim[IX ∩ ImP ]t.

Next, the virtual dimension, vdim(X, t,m), is the dimension of the linear system
of the forms of degree t in IX minus the expected number of conditions imposed
by taking P with multiplicity m. That is,

vdim(X, t,m) = dim[IX ]t −

(
m− 1 + n

n

)
.

Of course, adim(X, t,m) ≥ vdim(X, t,m) for any t,m. We say (as introduced in [1]
and then in [3]) that X admits an unexpected hypersurface of degree t vanishing at
a general point P with multiplicity m when adim(X, t,m) > 0 and adim(X, t,m) >
vdim(X, t,m).
For a given subscheme X of Pn and a non-negative integer j ≥ 0, we define the
AV sequence of X with respect to j as AVX,j : Z>0 → Z≥0 where

AVX,j(m) := adim(X,m + j,m)− vdim(X,m + j,m).

For any subscheme X and integer j ≥ 0, the sequence AVX,j is actually an
O-sequence, up to a shift (see [2, Theorem 3.4]). Indeed, it is the Hilbert function
of the standard K-algebra R/(gin(IX) : xj+1), where gin(IX) denotes the generic
initial ideal with respect to the lexicographic order with x0 > x1 > · · · > xn.

This result is a consequence of the connections between the actual and virtual
dimensions of a scheme with its the generic initial ideal since, see [2, Lemma 3.1],
for any scheme X and non-negative integers t and m, we have

(i) adim(X, t,m) = dim[gin(IX) ∩ ImQ ]t, where Q = (1, 0, . . . , 0);

(ii) vdim(X, t,m) = vdim(gin(IX), t,m).

This fact can be used to obtain results which ensure the non-existence of un-
expected hypersurfaces. In particular, if X lies on a hyperplane or if gin(IX) is
a lex-segment ideal then X does not admit any unexpected hypersurfaces of any
type, and hence adim(X, t,m) always has the expected value.

We also notice that the failure of gin(IX) to be a lex-segment ideal is a weaker
condition for X than admitting some unexpected hypersurfaces. In fact, the set of
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points in Pn coming from a root system An+1 has no unexpected hypersurfaces for
any degree and multiplicity but its generic initial ideal fails to be a lex-segment.

As an application we study the case of a codimension two complete intersection
C in Pn. We apply a new method to study the question of unexpected hyper-
surfaces, namely the theory of partial elimination ideals. Using standard tools we
show that dim[IC ∩ ImP ]t > 0 for prescribed values of t and m.

References

[1] D. Cook II, B. Harbourne, J. Migliore, and U. Nagel. Line arrangements and configurations
of points with an unexpected geometric property, Compositio Mathematica, 154: 2150 –
2194, 2018.

[2] G. Favacchio, E. Guardo, B. Harbourne, and J. Migliore. Expecting the unexpected: quanti-
fying the persistence of unexpected hypersurfaces, arXiv:2001.10366.

[3] B. Harbourne, J. Migliore, U. Nagel, and Z. Teitler. Unexpected hypersurfaces and where
to find them, Michigan Mathematical Journal, to appear.

Unexpectedly found unexpected curves

Piotr Pokora

(joint work with Grzegorz Malara, Halszka Tutaj-Gasińska)

Let Z = P1 + ... + Ps be a reduced scheme of mutually distinct points in P2
C

. We
say that Z admits an unexpected curve of degree d if for a general point P ∈ P2

C

of multiplicity m we have that

dimC[I(Z + mP )]d > max

{
dimC[I(Z)]d −

(
m + 1

2

)
, 0

}

with I(Z + mP ) = I(P1) ∩ ... ∩ I(Ps) ∩ I(P )m.
A general question that we can ask is to classify all those configurations of mu-

tually distinct points Z that admit unexpected curves. In [2], Cook II, Harbourne,
Migliore, and Nagel study unexpected curves from the viewpoint of line arrange-
ments in the complex projective plane, i.e., in their setting Z denotes the set of
points which are dual to lines of a given arrangement A ⊂ P2

C
.

Consider a set of points Z = {z1, . . . , zd} in P2
C

and the dual line arrangement
AZ = {ℓ1, . . . , ℓd} given by the defining polynomial f . Let us recall that the
module of logarithmic derivations D is a submodule of Der(S) (the module of all
C-linear derivations) consisting of all elements δ ∈ Der(S) such that δ(f) ∈ S · 〈f〉.
Obviously D contains the Euler derivation ∂E = x∂x + y∂y + z∂z. We know that
the quotient D0 = D/∂E is isomorphic to the twist of Syz Jf , namely we have the
following exact sequence of sheaves

0→ D0 → O
3
P2
C

→ Jf (d− 1)→ 0,

where Jf is the sheafification of the Jacobian ideal Jf and D0 is a locally free sheaf
of rank 2. It is well-known that D0 restricted to a generic line splits, according
to Grothendieck’s theorem, as a sum of line bundles OP1

C

(−aZ)
⊕
OP1

C

(−bZ). If
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the line is generic, then the pair (aZ , bZ) is called the splitting type of D0 and it
satisfies aZ + bZ = |Z| − 1.

In [2] the authors consider the case when an unexpected curve is of degree
d = m + 1, where m is the multiplicity that the curve has in a given general
point P . They proved the following theorem, which we quote in a version changed
according to Dimca’s paper [3].

Theorem 1. Let Z be the finite set of points in P2
C
. Let (aZ , bZ) be the splitting

type of the derivation bundle D0. Let m(AZ) be the of maximal multiplicity among
the singular points of the arrangement AZ . Then Z admits and unexpected curve
of degree m with a general point Q of multiplicity m− 1 if and only if

m(AZ) ≤ aZ + 1 <
|Z|

2
.

Nearly free arrangements

Let us recall [2, Example 6.1] which motivates our investigations in this section.

Example 4. Consider the arrangement A ⊂ P2
C
of 19 lines given by the following

defining polynomial:

Q(x, y, z) = xyz(x + y)(x− y)(2x + y)(2x− y)(x + z)(x− z)(y + z)(y − z)

(x + 2z)(x− 2z)(y + 2z)(y − 2z)(x− y + z)(x− y − z)

(x − y + 2z)(x− y − 2z).

We can compute the minimal free resolution of the Milnor algebra M(Q) := S/JQ
obtaining

0→ S(−30)→ S(−29)2 ⊕ S(−26)→ S(−18)3 → S.

This arrangement, as it was said in [2], is close to be free in the sense of the
addition-deletion procedure, namely if we remove the line 2x + y, then the new
arrangement A′ is free with exponents d1 = 7 and d2 = 10. It turns out that
the set of duals to lines in A admits an unexpected curve of degree 9 having at a
general point P multiplicity 8.

Now we are going to explain what actually means to be close to be free. Let us
denote by m = 〈x, y, z〉 the irrelevant ideal. Consider the graded S-module

N(f) = If/Jf = H0
m(S/Jf ),

where If is the saturation of Jf with respect to m.

Definition 5. We say that a reduced plane curve C is nearly free if N(f) 6= 0
and for every k one has dimN(f)k ≤ 1.

A lot of work has been done to understand geometrical and combinatorial prop-
erties of nearly free curves, both from a viewpoint of vector bundles [6] and ho-
mological properties of those curves [4].

The description of the Milnor algebra M(f) for a nearly free curve C : f = 0
comes from [4].
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Theorem 2 (Dimca-Sticlaru). If C is a nearly free curve given by f ∈ S, then
the minimal resolution of the Milnor algebra M(f) has the following form:

0→ S(−b− 2(d− 1))→ S(−d1 − (d− 1))⊕ S(−d2 − (d− 1))⊕ S(−d3 − (d− 1))

→ S3(−d + 1)→ S

for some integers d1, d2, d3, b such that d1 + d2 = d, d2 = d3, and b = d2 − d + 2.
In that case, the pair (d1, d2) is called the set of exponents of nearly free curve C.

Our main result of this section provides a whole family of nearly free arrange-
ments which are non-examples with respect to [6, Proposition 3.1.].

We start with the well-known family of Fermat line arrangements Fn in P2
C

given by the following defining polynomial

Q(x, y, z) = (xn − yn)(yn − zn)(zn − xn)

with n ≥ 3. This arrangement has exactly n2 triple points and 3 points of multi-
plicity n, and it is known to be free with the exponents (n+1, 2n−2). We consider
the arrangement NFn defined by the following equation

Q̃(x, y, z) = (xn − yn)(yn − zn)(zn − xn)/(x− y) =

(xn−1 + yxn−2 + ... + yn−2x + yn−1)(yn − zn)(zn − xn)

with n ≥ 3.
Let us present the most important combinatorial properties of NFn.

(1) For n = 3 we obtain an arrangement which is isomorphic to the famous
MacLane arrangement of 8 lines – according to our best knowledge this
fact is not written explicitly in the literature.

(2) For given n ≥ 3 the arrangement NFn has exactly two points of multi-
plicity n, one point of multiplicity n−1, n2−n triple points, and n double
points.

Now we show main results devoted to nearly free arrangements – [5]. The first
result is devoted to deletion arrangements.

Theorem 3. For n ≥ 3 the arrangement NFn is nearly free with the exponents
d1 = n + 1 and d2 = 2n− 2.

Here is our main result devoted to unexpected curves associated with nearly
free arrangements which comes from

Theorem 4. Let Z = {z1, . . . , zd} ⊂ P2
C
be a set of points such that the dual lines

give a nearly free arrangement A with the exponents (d1, d2). Then Z admits an
unexpected curve of degree d1 + 1 with a general point Q of multiplicity d1 if and
only if d2 − d1 ≥ 3.

Example 6. Let us come back to family NFn with n ≥ 3. Then the dual set of
points Zn to NFn admits an unexpected curve of degree d1+1 with a general point
Q of multiplicity d1 if and only if

d2 − d1 = 2n− 2− (n + 1) = n− 3 ≥ 3,

so exactly when n ≥ 6.
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Complete quadrics and linear spaces of symmetric matrices

Martin Vodicka

(joint work with Laurent Manivel, Mateusz Michalek, Leonid Monin,
Tim Sennaeve)

Let L be a general a-dimensional linear subspace of n× n symmetric matrices L.
Consider the variety L−1, which is obtained by inverting all matrices in L. More
precisely, we invert only regular matrices and take the closure of the image of this
rational map. What is the degree of L−1? We denote the answer by φ(a, n).

This question can be reformulated. Firstly we pass to the projective space
P(S2(V )). The degree L−1 is equal to the number of points of P(S2(V )) which lie
in L and their inverses satisfy a− 1 given linear condition. If we think of elements
of P(S2(V )) as quadrics in Pn−1 we get another equivalent problem. How many

quadrics in Pn−1 pass through
(
n−1
2

)
− a given points and are tangent to a − 1

given hyperplanes?
One of our goals is to compute these numbers (effecitvely). The answer has

also meaning for statisticians, because it is maximum likelyhood degree of linear
covariance model. On the other hand, it is also interesing theoretical problem. We
are also interested in nice properties of these numbers. So far, only few values was
known - for n ≤ 7 or a ≤ 4. In the latter case it was known to be a polynomial in
n and it was conjectured by Sturmfels, Uhler [6] that it is always a polynomial.

Our first idea was to compute numbers φ(a, n) using intersection theory. How-
ever, we can not work in the space P(S2(V )) because the low rank matrices will
cause problem here, since their cofactor matrices are zero and satisfy any linear
condition. Instead we pass to the space of complete quadrics.
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Definition 1.The space of complete quadrics CQ(V) is the closure of φ(P(S2(V ))◦),
where

φ : P(S2(V ))◦ → P(S2(V ))× P
(
S2 (V ∧ V )

)
× . . .× P

(
S2

(
n−1∧

V

))
,

given by

A 7→ (A,
2∧
A, . . . ,

n−1∧
A).

There is a lot of literature about this space and there are many nice results
[2, 3, 4]. However, the answer to our problem was not known.

In the space of complete quadrics there are two types of divisors L1, . . . , Ln−1

and S1, . . . , Sn−1. Li are pullbacks of hyperplanes under

πi : CQ(V )→ P

(
S2

(
i∧
V

))
.

The divisors Si consist of tuples (A1, . . . , An−1) where rank of Ai is 1. The classes
of this divisors are not independent. In fact Li generate Pic(CQ) and the following
relations hold:

Si = −Li−1 + 2Li − Li+1

This allows us to express φ(a, n) as the intersection product in the cohomology
ring of the space of complete quadrics:

φ(a, n) = L
(n+1

2 )−a

1 La−1
n−1

Using relations between divisors and intersection theory on Grassmanian, and a
lot of known formulas from [4] we were able to find recurrent formulas for comput-
ing numbers φ(a, n). Using Hard Lefschetz Theorem and Hodge-Riemann relations
it can be shown that for the fixed n they form a log-concave sequence. We were
also prove our main result:

Theorem 2. Let a be a positive integer. Then φ(a, n) is a polynomial in n.

However, there are many other questions we can ask. For example our compu-
tations suggest that he coefficients of these polynomials also form a log-concave
sequence. Another interesting thing to look at is what happen when we consider
different intersection product, i.e. not only those with L1 and Ln−1.

When one asks the same question for diagonal matrices instead of symmetric
matrices, then one can get to study the permutohedral variety. Therefore, our ap-
proach is, in some sense, a generalization of the work of Adiprasito, Huh and Katz
[1], where they proved famous Rota conjecture that the coefficients of characteris-
tic polynomial of a matroid form a log-concave sequence. We believe that studying
the variety of complete quadrics its cohomology and using Lefschetz properties it
is possible to obtain more interesting results.

Despite the fact that the variety of complete quadrics have been intensively
studied for a long time, there are still a lot of unanswered problems. Understanding
them and solving them may have applications in various branches of mathematics.
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Radical and Perfection of Two-Rowed Specht Ideals

Chris McDaniel

(joint work with Junzo Watanabe)

Let R = F[x1, . . . , xn] be a polynomial ring in n-variables over a field of char-
acteristic zero. For a subset indices S ⊂ {1, . . . , n} define the S-Vandermonde
polynomial ∆S =

∏
i<j∈S(xi − xj). A tableau T on a partition λ ⊢ n is a labeling

of the boxes of the Young diagram for λ with numbers {1, . . . , n}. The Specht
polynomial of a tableau T on λ is the product of C-Vandermonde polynomials as
C ranges over the columns of T , i.e.

FT =
∏

C∈col(T )

∆C .

Their F-span, as T ranges over tab(λ), the set of all tableau on λ, forms an
irreducible representation for the symmetric group Sn, called the Specht module
of λ, i.e.

V (λ) = spanF (FT | T ∈ tab(λ)) .

The Specht ideal of λ is the ideal in R generated by the Specht module, i.e.

a(λ) = V (λ).R.

In his recent paper [3], Yanagawa asks for which λ is the ideal a(λ) perfect, or
equivalently, for which λ is the quotient ring R/a(λ) Cohen-Macaulay? He proves
the following results:

Proposition 1. If λ = (n− k, k), then a(λ) is radical.

Proposition 2. If λ = (n− k, k) then a(λ) is perfect.

Proposition 2 essentially follows from Proposition 1, and a deep theorem from
the representation theory of rational Cherednik algebras obtained by Etingof,
Gorsky, and Losev [1]. Our motivating goal in this project is to give an inde-
pendent, self-contained proof of Proposition 2 which does not appeal to Cherednik
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alegbras. In this joint talk, I will discuss Proposition 1 and radicals of two rowed
Specht ideals, and Junzo will discuss their perfection.

In an attempt to understand Yanagawa’s proof of Proposition 1 we introduce
the so-called shifted Specht polynomials, modules, and ideals. For a tableau T on
λ = (n− k, k), fix an integer k ≤ d ≤ n− k, and if

T =
i1 · · · ik ik+1 · · · id id+1 · · · in−k

j1 · · · jk

then define its d-shifted Specht polynomial as

FT (d) = (xi1 − xj1) · · · (xik − xjk)xik+1
· · ·xid .

Their F-span is a finite dimensional Sn representation called the d shifted Specht
module

V (n, k, d) = spanF (FT (d) | T ∈ tab(λ))

and the ideal it generates is the d-shifted Specht ideal

a(n, k, d) = V (n, k, d).R.

In case k = 0, V (n, 0, d) and a(n, 0, d) are generated by square free monomials
of degree d; for this ideal we also use the notation (x1, . . . , xn)(d). In the other
extreme, d = k, V (n, k, k) and a(n, k, k) are the usual Specht objects, generated by
Specht polynomials of degree k. In this sense we regard the shifted Specht objects
as interpolating between square free monomial objects and Specht objects.

A well known fact from representation theory of the symmetric group, e.g.
[2], states that a basis for the Specht module V (n, k, k), and hence a minimal
generating set for the Specht ideal a(n, k, k) are the Specht polynomials indexed by
the standard tableaux, i.e. tableaux in which the rows and columns are increasing.
We denote this set of standard tableaux as stab(λ), and hence we have:

V (n, k, k) = spanF (FT | T ∈ stab(λ)) .

In general, the standard tableaux on λ are insufficient to generate the shifted
Specht modules, as the following example shows.

Example 3. Let n = 4, k = 1, and d = 2 so that λ = (3, 1). Then the standard
tableaux on λ are

1 3 4

2
, 1 2 4

3
, 1 2 3

4

but to generate V (4, 1, 2) we need the additional, non-standard tableaux

1 4 3

2
,

1 4 2

3

It turns out that a minimal generating set for V (n, k, d) can still be indexed
by standard tableaux, not on λ but on the shifted shape λ(d) obtained from the
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shape λ by moving the excess n− k− d boxes from the right end of row one to the
left end of row two, i.e.

λ =

d︷ ︸︸ ︷ n−k−d︷ ︸︸ ︷

→

︸ ︷︷ ︸
n−k−d

d︷ ︸︸ ︷

= λ(d).

We identify tableaux on λ with tableaux on λ(d) in the obvious way.

Theorem 4 (M.-Watanabe, 2020). A basis for V (n, k, d), and hence a minimal
generating set for a(n, k, d) are Specht polynomials indexed by standard tableaux
on λ(d), i.e.

V (n, k, d) = span (FT (d) | T ∈ stab(λ(d))) .

Example 5. Let n = 4, k = 1, and d = 2 so that λ = (3, 1). Then the standard
tableaux on λ(2) are

1 2

3 4
,

1 3

2 4
,

1 4

2 3
,

2 3

1 4
,

2 4

1 3
,

which form a basis for V (4, 1, 2).

Using a familiar bijective correspondence with lattice paths, we get a dimension
count, and a surprising application of Lefschetz properties (the namesake of this
workshop!) yields an Sn-module decomposition of the shifted Specht module:

Theorem 6 (M.-Watanabe, 2020). The shifted Specht module has dimension

dim (V (n, k, d)) =

(
n

d

)
−

(
n

k − 1

)
.

It decomposes as a direct sum of irreducible Sn modules by

V (n, k, d) =

d⊕

i=k

V (n, i, i)[d− i].

Finally, using Theorem 4, we prove the following generalization of a result of
Yanagawa.

Theorem 7 (M.-Watanabe, 2020). For any integers 0 ≤ k ≤ d ≤ n− k we have
an equality of ideals

a(n, k, d) = a(n, k, k) ∩ (x1, . . . , xn)(d).

Yanagawa essentially proved Theorem 7 for d = k + 1, and using this in con-
junction with some basic commutative algebra, went on to prove Proposition 1. It
turns out that his arguments apply to our more general set up, and we obtain the
following:

Theorem 8 (M.-Watanabe, 2020). For all 0 ≤ k ≤ d ≤ n− k the shifted Specht
ideal a(n, k, d) is radical.
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It also follows from Theorem 7 that the shifted Specht ideals cannot be pure, or,
in particular, perfect, unless d = k or d = k + 1. In fact we have the following
result, which Junzo will discuss further in his talk:

Theorem 9 (M.-Watanabe, 2020). The shifted Specht ideal a(n, k, d) is perfect if
and only if d = k or d = k + 1.
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The perfection of Specht ideals corresponding to two-row Young
diagrams and related topics

Junzo Watanabe

(joint work with Chris, McDaniel)

F denotes a field. The characteristic of F is assumed to be zero unless otherwise
specified. Let R = F[x1, . . . , xn] be the polynomial ring and E ⊂ R the graded
vector subspace spanned by the square free monomials. We are interested in the
algebra A = R/(x2

1, . . . , x
2
n), the quadratic monomial complete intersection and

the element l =
∑

xi, the sum of variables. It is well known that A has the SLP
and l is an SL element. This means that

×ln−2i : Ai → An−i

is an isomorphism of vector spaces for all i = 0, 1, . . . , [n/2].
The composition of maps

E →֒ R ։ A

is an isomorphism of graded vector spaces. With this isomorphism we identify
E and A. Let Sn be the symmetric group acting on R by permutation of the
variables. The action of Sn can be restricted on E. Hence E is an Sn-module.

The multiplication map ×l : R → R induces an Sn-module map on A. With
the identification E = A, it is possible to define the map ×l : E → E. We denote
this map by L. For f ∈ E, the image Lf ∈ E by L is obtained by expanding lf
as an element in R and ignoring the terms which include squared variables. Let
D = ∂

∂x1
+ · · ·+ ∂

∂xn
. It is easy to see that the three operations of L,D, [L,D] on

E are an sl2-triple.
We may write ker

(
D : E → E

)
as a sum of homogeneous spaces:

ker
(
D : E → E

)
=

[n/2]∑

i=0

V (n, i), V (n, i) ⊂ Ri.
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Since D : Ei → Ei−1 is surjective for i ≤ [n/2], we see that the dimension of
V (n, i) is

|V (n, i)| =

(
n

i

)
−

(
n

i− 1

)
.

It seems noteworthy that if i = n/2 or i = (n−1)/2, this number is the Catalan
number. Also note that the kernel of the operator D : R→ R is the set of solutions
of the linear partial differential equation

(
∂

∂x1
+ · · ·+ ∂

∂xn

)
F = 0. One sees easily

that the kernel of D : R→ R is the subring

K[x1 − x2, . . . , x1 − xn].

Thus we have

V (n, i) = K[x1 − x2, . . . , x1 − xn] ∩ Ei,

and we are almost forced to conclude that V (n, i) is spanned by products of i linear
binomials xp − xq without overlaps of indices. We take it for granted that V (n, i)
is an irreducible Sn-modules. V (n, i) is the Specht module corresponding to the
partition λ = (n− i, i) of the integer n. As an isomorphism type of Sn-module we
write V (n, i) ∼= V λ. To each V (n, i) we may apply L as many times as possible.
Then

E =
⋃

i,j

LjV (n, i)

is the decomposition of the space E into irreducible Sn-modules. This can be
illustrated by the following diagram: (n = 6)

V (6, 3)
V (6, 2) LV (6, 2) L2V (6, 2)

V (6, 1) LV (6, 1) L2V (6, 1) L3V (6, 1) L4V (6, 1)
V (6, 0) LV (6, 0) L2V (6, 0) L3V (6, 0) L4V (6, 0) L5V (6, 0) L6V (6, 0)

Horizontally all boxes are isomorphic to V (n−i,i) and vertically no two boxes are
isomorphic.

Definition 1. For a triple of integers n, k, d satisfying 0 ≤ k ≤ d ≤ n − k, we

define a(n, k, d) to be the ideal in R generated by elements in

{LjV (n, i) | i + j = d, i ≥ k}.

(These are the boxes at degree d and at level k or higher.)

Recently we succeeded in proving the following theorem extending the results
in [2] and [8].

Theorem 2. (1) a(n, k, d) is radical over F in any characteristic.
(2) a(n, k, k + 1) is perfect over F with char F = 0.
(3) a(n, k, d) is perfect if and only if it is grade unmixed, i.e., d = k or k + 1.

(char F = 0)
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Remark 3. Etingof et al. [2] proved that
√
a(n, k, k) is perfect over F with

char F = 0. Yanagawa [8] proved that a(n, k, k) is radical (i.e.,
√
a(n, k, k) =

a(n, k, k)) in any characteristic.

The ideal a(n, k, k) is defined by products of linear forms. So it can be viewed
as a linear space arrangement. In fact

a(n, k, k) =
⋂

1≤i1<...<in−k+1≤n

(xi1 − xi2 , xi1 − xi3 , . . . , xi1 − xin−k+1
).

The RHS will be denoted by

(x1 − x2, x1 − x3, . . . , x1 − xn−k+1).

(“Overline” means to take the intersection of all such linear primes obtained by
permutation of indices.)

A similar ideal is the intersection of coordinate primes of an equal height. Define
the reduced power of the maximal ideal (x1, . . . , xn)(k) to be the ideal generated
by the square-free monomials of degree k. Then we have

(x1, . . . , xn)(k) = ({xi1xi2 · · ·xik | ij 6= il})

=
⋂

1≤i1<···<in−k+1≤n

(xi1 , xi2 , . . . , xin−k+1
)

= (x1, x2, . . . , xn−k+1).

Recall Hochster-Eagon [5] proved the following result.

Proposition 4 ([5]). Suppose that I, J are perfect of grade g. Then I∩J is perfect
if and only if I + J is perfect of grade g + 1.

Proof is easy by Meyer–Vietoris exact sequence:

0→ R/I ∩ J → R/I ⊕R/J → R/(I + J)→ 0.

It is easy to see that both a(n, k, k) and (x1, . . . , xn)(k+1) have the same grade
n− k and their sum n− k + 1. Hence we have

Proposition 5. The following conditions are equivalent.

(1) a(n, k, k) + (x1, . . . , xn)(k+1) is perfect.
(2) a(n, k, k) ∩ (x1, . . . , xn)(k+1) is perfect.

Claim (2) can be proved by the following two equalities:

a(n + 1, k + 1, k + 1) + (xn+1) = a(n, k, k + 1) + (xn+1)

(provided k < n/2 if n is even) and

a(n, k, k + 1) = a(n, k, k) ∩ (x1, . . . , xn)(k+1) = ideal (2).

So Theorem 2 implies the following:
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Corollary 6 (to Theorem 2). a(n, k, k) + (x1, . . . , xn)(k+1) is perfect of grade
n− k + 1.

Surprisingly enough we have the primary decomposition of this ideal as follows:

Theorem 7. Under the assumption char of F is zero we have

a(n, k, k) + (x1, . . . , xn)(k+1)

= (x1 − x2, x1 − x3, . . . , x1 − xn−k+1, x2
1).

If char F > 0, then an embedded component can appear.

In this primary decomposition if we replace x2
i by xr

i , it is not easy to describe
a set of generators (see Example 10) but it is possible to prove that the ideal is
perfect.

Theorem 8. The ideal
⋂

1≤i1<···<in−k+1≤n

(xi1 − xi2 , · · · , xii − xin−k+1
, xr

i1 )

is perfect (independent of characteristic).

Note that if r = 2, this can be proved as a consequence of results of Etingof
et al. [2], but for r > 2 we need a new proof. Tracing back the argument for
Theorem 8 we can prove the perfection of the Specht ideal a(n, k, k).

Example 9. Let R = F[x1, x2, x3, x4]. Let f1 = (x1 − x2)(x3 − x4), f2 = (x1 −
x3)(x2 − x4), g1 = x2x3x4, g2 = x1x3x4, g3 = x1x2x4, g4 = x1x2x3. Then by
definition

a(4, 2, 2) = (f1, f2),

and

(x1, x2, x3, x4)(3) = (g1, g2, g3, g4).

Theorem 7 says that, if F = Q,

a(4, 2, 2) + (x1, . . . , x4)(3) =(x2
1, x1 − x2, x1 − x3) ∩ (x2

1, x1 − x2, x1 − x4)

∩ (x2
1, x1 − x3, x1 − x4) ∩ (x2

2, x2 − x3, x2 − x4)

This is not true if char F = 2. Indeed, over F = Z/(2) a primary decomposition of
a(4, 2, 2) + (x1, . . . , x4)(3) is obtained as

a(4, 2, 2) + (x1, . . . , x4)(3) =(x2
1, x1 − x2, x1 − x3) ∩ (x2

1, x1 − x2, x1 − x4)

∩ (x2
1, x1 − x3, x1 − x4) ∩ (x2

2, x2 − x3, x2 − x4)

∩ (x2
1, x

2
2, x

2
3, x

2
4, f1, f2, x2x3x4)

Furthermore it turns out that

(h1, h2, h3) =(x2
1, x1 − x2, x1 − x3) ∩ (x2

1, x1 − x2, x1 − x4)

∩ (x2
1, x1 − x3, x1 − x4) ∩ (x2

2, x2 − x3, x2 − x4)
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where h1 = x2x3 + (x2 +x3)x4, h2 = x1(x3 +x4) +x3x4, h3 = x1x2 + (x1 +x2)x4.
The three dimensional vector space 〈h1, h2, h3〉 is an irreducible S4-module, which
is not isomorphic to any Specht module.

Example 10. Let R = Q[x1, x2, x3, x4]. Put

I =
⋂

1≤i1<i2<i3≤4

(xr
i1 , xi1 − xi2 , xi1 − xi3).

Then I = (f1, f2, g1, g2, g3, g4), where

f1 = (x1 − x2)(x3 − x4),

f2 = (x1 − x3)(x2 − x4)

g1 = (x1 − x2)xr
4,

g2 = (x1 − x3)xr
4,

g3 = (x1 − x4)xr
3,

g4 = x3x4(x2hr−2(x3, x4)− x3x4hr−3(x3, x4))

hd(u, v) is the complete symmetric function of degree d in two variables.

Note that 〈f1, f2〉 ∼= V (2,2). It is possible to choose gi so that 〈g1, g2, g3〉 ∼= V (3,1)

and 〈g3〉 ∼= V (4).

Related results can be found in [1], [3], [4], [6], [7].
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Progress in Tropical Hodge Theory

Graham Denham

(joint work with Federico Ardila, Graham Denham, June Huh)

One of the key ideas in Adiprasito, Huh and Katz’s proof [2] of the conjectures of
Rota, Heron and Welsh is a notion of Hodge theory for matroids. To a matroid
M one associates a tropical linear space ΣM, the Bergman fan. This fan has a
Chow ring A(ΣM). They showed A(ΣM) possesses Poincaré duality, the Hard Lef-
schetz property, and the Hodge–Riemann relations with respect to strictly convex,
piecewise-linear functions ℓ on ΣM.

The Hodge–Riemann relations provide inequalities resembling those of mixed
volumes in convex geometry. Such inequalities can be useful in conjunction with
combinatorial interpretations of intersection indices of particular choices of the
function ℓ. Indeed, we make use of this idea again in [3] to prove conjectures of
Dawson and Brylawski about certain matroid h-vectors, where we introduce and
study the conormal fan ΣM,M⊥ of a matroid.

To be more precise, let Σ be a simplicial fan in a vector space N ∼= Rn. Let
A(Σ) be the ring of real-valued piecewise polynomial functions on Σ modulo the
ideal generated by linear functions on Σ, and let K(Σ) be the cone of strictly
convex piecewise-linear functions on Σ.

Definition 1. A d-dimensional simplicial fan Σ is Lefschetz if it satisfies the
following.

(1) (Fundamental weight) The group of d-dimensional Minkowski weights on Σ
is generated by a positive Minkowski weight w. We write deg for the corre-
sponding linear isomorphism

deg : Ad(Σ) −→ R, η 7−→ η ∩ w.

(2) (Poincaré duality) For any 0 ≤ k ≤ d, the bilinear map given by multiplication

Ak(Σ)×Ad−k(Σ) Ad(Σ) R
deg

is nondegenerate.

(3) (Hard Lefschetz property) For any 0 ≤ k ≤ d
2 and any ℓ ∈ K(Σ), the multipli-

cation map

Ak(Σ)→ Ad−k(Σ), η 7−→ ℓd−2kη

is a linear isomorphism.

(4) (Hodge–Riemann relations) For any 0 ≤ k ≤ d
2 and any ℓ ∈ K(Σ), the bilinear

form

Ak(Σ)×Ak(Σ) 7−→ R, (η1, η2) 7−→ (−1)k deg(ℓd−2kη1η2)

is positive definite when restricted to the kernel of the multiplication map
ℓd−2k+1.
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(5) (Hereditary property) For any 0 < k ≤ d and any k-dimensional cone σ in Σ,
the star of σ in Σ is a Lefschetz fan of dimension d− k.

We show that the Lefschetz property is geometric, in the following sense.

Theorem 2 ([3]). Let Σ1 and Σ2 be simplicial fans that have the same support. If
K(Σ1) and K(Σ2) are nonempty, then Σ1 is Lefschetz if and only if Σ2 is Lefschetz.

For example, it follows that the reduced normal fan of any simple polytope
is Lefschetz, since the reduced normal fan of a simplex is Lefschetz. This was
first shown by McMullen in [5] and revisited in [6, 4], and the proof we give of
Theorem 2 is modelled on those arguments. Using the toric Weak Factorization
Theorem [1, 7], we reduce the problem to showing that the theorem holds when
the fans Σ1 and Σ2 differ by a stellar subdivision of a two-dimensional cone.

Our motivating application is to show that the conormal fan ΣM,M⊥ is Lefschetz.
By construction, ΣM,M⊥ has the same support as a product of Bergman fans
ΣM × ΣM⊥ . The two factors are Lefschetz [2], and the Lefschetz property is
preserved by products.

Question 3. Can one find other, combinatorially interesting families of tropical
varieties with the Lefschetz property?
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Asymptotic Behaviour of Hilbert function of Gorenstein algebras of
socle degree four

Giovanna Ilardi

(joint work with Armando Cerminara, Rodrigo Gondim, Giuseppe Zappala)

For a standard graded Artinian Gorenstein algebra, when the codimension of the
algebra is less than or equal to 3, all its Hilbert vectors are unimodal and they
have been characterized (see [4] and [6]).

Problem 1. While it is known that non unimodal Gorenstein h-vectors exist in
every codimension greater than or equal to 5 (see [1]), it is open whether non
unimodal Gorenstein h-vectors of codimension 4 exist.
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Historically, the first such example of a non unimodal Gorenstein h-vector was
given by Stanley, that showed that the h-vector (1, 13, 12, 13, 1) is indeed a Goren-
stein h-vector and the non unimodality occurs here in degree 2 (see [4, Example
4.3]). Stanley’s example is optimal and for our purposes we call it minimal, (see
[3]). We study special Gorenstein h-vectors of type (1, r, h2, r, 1). For the codi-
mension r and denoting the least possible value that h2 may assume by f(r), we
study the asymptotic behavior of f(r).
Stanley in [5] conjectured:

Conjecture 2. There exists the following limit

lim
r→∞

f(r)

r
2
3

and the precise value is 6
2
3 .

The precise limit was only proved in 2006 (see [2]).
The ideas are the following:

• We construct a family of Gorenstein algebras called Full Perazzo alge-
bras and our main result is that, for small m, the Hilbert vectors of Full
Perazzo algebras of type m, are always minimal. Moreover, we are able
to give a simple proof of Stanley’s conjecture and we pointed out that
the h-vector of the Stanley’s example is a special case of a Full Perazzo
algebra.
• We introduce another family of Artinian Gorenstein algebras having non

unimodal Gorenstein h-vectors: the Turan algebras that are Artinian
Gorestein algebra presented by quadrics. We have a conjecture about the
asymptotic behaviour of Artinian Gorenstein algebra presented by quadric.

Definition 3. Let K[x1, . . . , xn, u1, . . . , um] be the polynomial ring in the n vari-
ables x1, . . . , xn and in the m variables u1, . . . , um. A Perazzo polynomial is a
reduced bihomogeneous polynomial f ∈ K[x1, . . . , xn, u1, . . . , um](1,d−1), of degree
d, of type

(1) f =

n∑

i=1

xigi

with gi ∈ K[u1, . . . , um]d−1, for i = 1, . . . , n, linearly independent and algebraically
dependent polynomials in the variables u1, . . . , um.

Remark 4. A Perazzo polynomial f ∈ K[x1, . . . , xn, u1, . . . , um](1,d−1) of degree d
is a Nagata polynomial, hence the algebra A = Q/Ann(f), associated to f , where
Q = K[X1, . . . , Xn, U1, . . . , Um] is the ring of the differential operators, can be
realized as a Nagata idealization of order 1, socle degree d and codimension n+m.

By above Remark (4), we can give the following definition:

Definition 5. Let f ∈ K[x1, . . . , xn, u1, . . . , um](1,d−1) be a Perazzo polynomial of
degree d. The algebra A = Q/Ann(f) associated to f is called Perazzo algebra

and it is a bigraded algebra of socle degree d and codimension n + m.
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Now we fix m ≥ 2 and we consider the m variables u1, . . . , um. Let us consider
Mj = u

αj1

j1
· · ·u

αjm

jm
for j = 1, . . . , τm where τm :=

(
m+d−2
d−1

)
and αj1 + · · ·+ αjm =

d− 1.

Definition 6. A bihomogeneous polynomial f ∈ K[x1, . . . , xτm , u1, . . . , um](1,d−1)

of degree d of type:

(2) f =

τm∑

j=1

xjMj

is called Full Perazzo polynomial of type m.

Remark 7. As in Remark (4), let f ∈ K[x1, . . . , xτm , u1, . . . , um](1,d−1) be a Full
Perazzo polynomial of type m and of degree d, the algebra A = Q/Ann(f), asso-
ciated to f , where Q = K[X1, . . . , Xτm , U1, . . . , Um] is the ring of the differential
operators, can be realized as a Nagata idealization of order 1, socle degree d and
codimension m + τm.

By above Remark (7), we can give the following definition:

Definition 8. Let f ∈ K[x1, . . . , xτ , u1, . . . , um](1,d−1) be a Full Perazzo poly-
nomial of degree d. The algebra A = Q/Ann(f) associated to f is called Full

Perazzo algebra and it is a bigraded algebra of socle degree d and codimension
m + τm.

Proposition 9. Let A be a Full Perazzo algebra of type m ≥ 2 and socle degree
d. Then, for k = 0, . . . , ⌊d2⌋, hk = dimAk =

(
m+k−1

k

)
+
(
m+d−k−1

d−k

)
.

For small m, the Full Perazzo algebra of type m ≥ 3 and socle degree 4 has
minimal h2. Denoting h2 by µ(r), where r is codimension of the Full Perazzo
Algebra, we have the following conjecture:

Conjecture 10. Consider the set of Gorenstein algebras of codimension r =
m +

(
m+2
3

)
and socle degree 4. Then µ(r) = m(m + 1).

The following result is a generalization of the main result of [3].

Theorem 11. Let A be a Gorenstein K-algebra of socle degree 4, codimension r,
with r = m +

(
m+2
3

)
and m ≥ 3. Let m = (m)(2) =

(
s
2

)
+
(
t
1

)
with m > s > t ≥ 0

and ε =
(
t−1
0

)
. Let

τ = ⌊m +
3

2
− s− ε−

√
s2 − 3s + 2t +

1

4
⌋+ 1.

Then m(m + 1) − τ < µ(r) ≤ m(m + 1). Moreover, for m = 3, 4, 5, we get
µ(r) = m(m + 1) and the Full Perazzo algebras have minimal second entry of the
Hilbert vector.

Let r and d be two integers, we consider the family of standard graded Ar-
tinian Gorenstein K-algebras of codimension r and socle degree d, G(r, d) :=
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{
A : A ≃ Q

Ann(f)

}
, with some f ∈ K[x1, . . . , xr]d homogeneous polynomial of de-

gree d. We define, for 0 < k < d an integer, the following non-decreasing function:

µk(r, d) = min
A∈G(r,d)

{dimAk} , δk(r, d) = n− µk(r, d).

Fixed d, the above functions can be written without dependence by d, hence
µk(r, d) = µk(r) and δk(r, d) = δk(r). Then, analyzing the case d = 4, we give a
new short proof of the Theorem in [2] solving Stanley’s conjecture.

Theorem 12. Let A ∈ G(r) be a Gorenstein algebra of codimension r. Then

lim
r→∞

[µ(r)]

r2/3
= 62/3.

Finally a family of Artinian Gorestein algebras, presented by quadrics, having
non unimodal Hilbert function, are the Turan algebras, inspired by the famous
Turan’s Graph Theorem. Let QG(r) be the family of Artinian Gorenstein algebras
presented by quadrics with socle degree 4 and codimension r. Let us call ν(r) =

min
A∈QG(r)

{dimA2}.

Conjecture 13. Let A ∈ QG(r) be a Gorenstein algebra of codimension r. Then

lim
r→∞

[ν(r)]

r2/3
= 6.
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Waring problems and the Lefschetz properties

Rodrigo Gondim

(joint work with Thiago Dias, Rodrigo Gondim)

The Waring problem, in number theory, asks for each exponent k, what is the
minimum s such that every positive integer can be decomposed as a sum of at
least s perfect k-th powers. Hilbert proved that for every k ≥ 2 the Waring
problem is well posed, that is, there is a s such that every positive integer can be
decomposed as a sum of at least s perfect k-th powers.
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In analogy, the algebraic Waring problem asks what is the minimum s such that
any homogeneous polynomial f ∈ C[x0, . . . , xn]d, of degree d, can be decomposed
as a sum of at least s perfect d-th powers of linear forms. This problem was solved
by Alexander and Hirschowitz, at least generically. They studied the higher secant
defect of Veronese varieties.
We are interested in three variants of the Waring problem, our focus are special
forms.

We consider these notions of rank for f ∈ Rd = C[x0, . . . , xn]d.

(1) The Waring rank of f is its algebraic rank: it is the minimum s = wrk(f)
such that f can be decomposed as a sum of d-th powers of s linear forms.

(2) The Border rank of f is its geometric rank: it is the minimum s = rk(f)
such that the class [f ] ∈ P(Rd) belongs to the s-th secant variety of the
Veronese variety Vd(Pn) ⊂ P(Rd).

(3) The Cactus rank of f is its schematic rank: it is the minimum s = cr(f)
such that there is a finite scheme K of length s, K ⊂ Vd(Pn) ⊂ P(Rd)
such that [f ] ∈< K >.

We know that rk(f) ≤ wrk(f) and cr(f) ≤ wrk(f), while in general cr(f) and
rk(f) are incomparable. Very few examples are known satisfying cr(f) > rk(f),
they are called wild forms. According to the best of our knowledge, the first
example of wild form was constructed by W. Buczyńska, J. Buczyński.

Example 1 (BB = Un esempio semplicissimo, from Perazzo). Consider the cubic
f = xu2 + y(u + v)2 + zv2 ∈ C[x, y, z, u, v]3. It is easy to compute its Waring
rank wrk(f) = 9. They showed, explicitly, that rk(f) ≤ 5. On the other hand,
cr(f) = 6 which agrees with the description of f as the sum of three double points
in the Veronese. To conclude that cr(f) = 6 the authors studied the saturation of
the annihilator of f .

This idea was generalized for concise forms with minimal border rank and van-
ishing Hessian by Huang, Micha lek and Ventura.

Theorem 2 (Huang, Micha lek and Ventura). Let f ∈ Rd be a concise form with
minimal border rank. If hessf = 0, then f is wild.

Theorem 3 (Double annihilator Theorem of Macaulay). Let R = K[x0, x1, . . . , xn]
and let Q = K[X0, X1, . . . , Xn] be the ring of differential operators. Let A =
d⊕

i=0

Ai = Q/I be a standard graded Artinian K-algebra. Then A is a standard

graded Gorenstein algebra of socle degree d if and only if there exists f ∈ Rd such
that A ≃ Q/Ann(f).

We say that f is concise if dimA1 = n + 1, or equivalently I1 = 0. In this case
codimA = n + 1.

Let A = Q/Ann(f) be a standard graded Artinian Gorenstein K-algebra of
socle degree d. Let k ≤ l ≤ d be two integers and let Bk = (α1, . . . , αmk

) be an
ordered K-linear basis of Ak and let Bl = (β1, . . . , βml

) be an ordered K-linear basis
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of Al. The mixed Hessian of f of order (k, l) with respect to the basis Bk and Bl

is the matrix Hess
(k,l)
f := [αiβj(f)]mk×ml

. Moreover, we define Hesskf = Hess
(k,k)
f

and hesskf = det(Hesskf ).

Theorem 4 (-,Zappala, 2018). Let A = Q/AnnQ(f) be a n AG algebra and
L ∈ A1. Let Bk and Bl be ordered basis ofr Ak and Al. The matrix of the map
•Ll−k : Ak → Al, for k < l ≤ d

2 , with respect to the basis Bk and Bl coincides

with Hess
(d−l,k)
f (L⊥), using basis B∗

l and Bk. In particular:

rk
(
•Ll−k

)
= rk

(
Hess

(d−l,k)
f (L⊥)

)
.

We recall that a form is wild if cr(f) > rk(f). Our strategy to construct wild
forms is to find an upper bound for the border rank and a lower bound for the
cactus rank and compare them.

Lemma 5. Let f ∈ C[x1, . . . , xn, u, v](k,d−k) be a bi-homogeneous form of bi-degree
(k, d− k) with 1 ≤ k ≤ d− k. The border rank of f satisfies:

rk(f) ≤ k(d + 2).

A form f ∈ Rd is called k-concise, with d ≥ 2k + 1, if Ij = 0 for j = 1, 2, . . . , k.

It is equivalent to aj =
(
n+j
j

)
for j = 0, . . . , k. As usual, 1-concise forms are called

concise.

Lemma 6. Let f ∈ Rd be a k-concise form and A = Q/I be the associated algebra

with I = Annf . Suppose that ak ≤ ad−s and k+ s ≤ d. If Hess
(k,s)
f is degenerated,

then exists α ∈ Isatk \ Ik.

Lemma 7. Let f ∈ Rd be a k−concise form with 2k < d and let I = Ann(f) ⊂ Q.
Let J = (Id−k) ⊂ Q be the ideal generated by the degree d−k part of I. If Jsat

l 6= ∅
for some l ≤ k, then

cr(f) > ak =

(
n + k

k

)
.

Theorem 8. Let f ∈ Rd be a k-concise homogeneous form, with 2k ≤ d. If
hessf = 0, then

cr(f) >

(
n + k

k

)
.

In particular, if rk(f) ≤
(
n+k
k

)
, then f is wild.

The following Corollary is the main result of [1].

Corollary 9. Let f ∈ Rd be a concise form with minimal border rank. If hessf =
0, then f is wild.

Proof. Minimal border rank means rk(f) = n+1. Since f is 1-concise and hessf =
0, by Theorem 8, we get cr(f) > n + 1. �
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Example 10 (A wild form with non minimal border rank). Consider the forms
f ∈ C[x, y, z, u, v]288, given by f = g16 with

f = xu17 + yu16v + zv17.

We know that f has vanishing Hessian. Indeed, by Gordan-Noether criteria, since
the partial derivatives of g satisfy g16x gz = g17y , they are algebraically dependent,
therefore, hess f = 0. Moreover, the choice of g was in such a way that its polar
image has degree d. If the polar degree was lower, then the f could be not 16-
concise. We checked the 16-conciseness of f which implies that its border rank is
non minimal. In this case cr(f) > a16 = 4845 and rk(f) ≤ 4640, hence f is wild.

Theorem 11. Let f ∈ Rd be a k-concise homogeneous form with 2k ≤ d and let
l, s be integers such that l ≤ k ≤ s and s+l ≤ d. Let I = Ann(f) and A = Q/I and

suppose that Hilb(A) is unimodal. Suppose that Hess
(l,s)
f is degenerated. Then:

cr(f) >

(
n + k

k

)
.

In particular, if rk(f) ≤ ak, then f is wild.

The first example of a form with vanishing second Hessian whose Hessian is non
vanishing was given by Ikeda.

Example 12 (A wild form without vanishing hessian). Let f = xu3v + yuv3 +
x2y3 ∈ C[x, y, u, v]5. Let A = Q/Annf , we get

Hilb(A) = (1, 4, 10, 10, 4, 1).

Therefore f is 2-concise. We know that hess2f = 0. By Proposition 5, rk(xu3v +

yuv3) ≤ 7. We know that, rk(x2y3) = 3, then rk(f) ≤ 10. By Theorem 11 we get
that cr(f) > 10, therefore f is wild.
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Asymptotic properties of invariant chains

Tim Römer

In algebraic geometry and commutative algebra several objects of interest occur
in (symmetric) families depending on n variables. Often some “limit behavior” is
visible and it is a natural question whether such a result is an accident or not.
For an explicit example consider the ideal In which is generated by all quadratic
monomials in n variables, i.e. In = 〈X2

1 , X1X2, . . . , X1Xn, X
2
2 , X2X3, . . . , X

2
n〉.

Then one is interested in associated invariants like the projective dimension or
the Castelnuovo-Mumford regularity.

Following an approach of Hillar-Sullivant [5] and others we fix a suitable setup.
For this let K be a field and c ≥ 1 an integer. For n ≥ 1 let Rn = K[Xc×n] =
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K[Xi,j : 1 ≤ i ≤ c, 1 ≤ j ≤ n] be a polynomial ring in c × n variables over K.
Note that these form an ascending chain R1 ⊆ R2 ⊆ · · · ⊆ Rn ⊆ . . . of polynomial
rings. Let Sym(n) denote the symmetric group on {1, . . . , n}. Considering it as
stabilizer of n+1 in Sym(n+1), similarly one gets an ascending chain of symmetric
groups. Define an action of Sym(n) on Rn induced by

σ ·Xk,j = Xk,σ(j) for σ ∈ Sym(n), 1 ≤ k ≤ c, 1 ≤ j ≤ n.

A Sym-invariant chain (In)n≥1 is a sequence of ideals In ⊆ Rn satisfying: (1) Each
In is invariant under the action of Sym(n); (2) Sym(n + 1) · 〈InRn+1〉 ⊆ In+1.
Note that such a chain is essentially the same as an FI-module over XFI,1 as
studied in [9], but this point of view will not be stressed in the following.

The central problem is to study the asymptotic behavior of invariants of ideals
in such Sym-invariant chains.

A first remarkable observation follows from Aschenbrenner-Hillar [1] and Hillar-
Sullivant [5] and states that Sym-invariant chains stabilize, which means that there
is some integer n0 such that, for n ≥ n0, a generating set of In can be obtained
from a generating set of In0 by applying permutations, i.e.

In = 〈Sym(n)In0 〉 for all n ≥ n0.

In the example In = 〈X2
1 , X1X2, . . . , X1Xn, X

2
2 , X2X3, . . . , X

2
n〉 from above, n0 =

2 and up to symmetry In is generated by X2
1 and X1X2. See Draisma [4] for a

survey on this and other results in the last decade. See also related approaches
and developments by Church-Ellenberg-Farb-Nagpal (see, e.g., [2, 3]) and by Sam-
Snowden (see, e.g., [10, 11]).

Considering again Sym-invariant chains and having the mentioned result from
above in mind, several other properties and objects of interested were studied very
recently. In [8] for a Sym-invariant chain I = (In)n≥1 of graded ideals its bigraded
Hilbert series was defined as

HI(s, t) =
∑

n≥0, j≥0

dimK [Rn/In]j · t
jsn =

∑

n≥0

HRn/In(t) · sn

and one of the main results of [8] states that this series is a rational function of a
particular form.

As a consequence one gets, e.g., that there exists integers A,B with 0 ≤ A ≤ c
such that, for all n≫ 0,

dimRn/In = An + B.

In [6] and [7] the following conjecture was formulated and studied:

Conjecture 1. Let (In)n≥1 be a Sym-invariant chain of ideals. Then pdRn/In
and regIn are eventually linear functions, that is,

pdRn/In = An + B and regIn = Cn + D

for some integers A,B,C,D whenever n≫ 0.

For evidences for this conjecture and especially cases where it is known to be
true we refer to [6, 7]. The asymptotic behavior of syzygies in general was studied
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in [9]. One of the main results of that paper states informally that for every integer
p ≥ 0, the p-syzygies of the ideals In look alike eventually.

Having seen the (conjectured) asymptotic behavior of ideals in Sym-invariant
chains, it is a natural question to ask whether Lefschetz properties can be under-
stood from this point of view. More precisely, let (In)n≥1 be a Sym-invariant chain
of artinian ideals. Then decide whether either In has SLP/WLP for all n ≫ 0
or In has not SLP/WLP for all n ≫ 0. This question is studied in a working
group as part of the workshop “Lefschetz Properties in Algebra, Geometry and
Combinatorics”.
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