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Mathematics’ focused on proofs both as formal derivations in deductive sys-
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• Interactions between foundations and applications.
• Proof mining.
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• Modal logic and provability logic.
• Proof theory and theoretical computer science.
• Structural proof theory.

Mathematics Subject Classification (2010): 03Fxx.

Introduction by the Organizers

The workshop Mathematical Logic: Proof Theory, Constructive Mathematics was
held November 8-14, 2020 in a hybrid format due to the Corona pandemic. It had
12 participants at the Oberwolfach Institute and 45 virtual participants who were
connected via ZOOM. The program consisted of 31 talks of 30-40 minutes.

The purpose of the workshop was

To promote the interaction between the foundations of mathematics and applica-
tions to mathematics as done for example in the field of ‘proof mining’. P. Pinto,
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N. Pischke and A. Sipoş talked about applications of proof mining in the context
of convex optimization and ergodic theory, while A. Nicolae reported on recent
uses of proof theory in the context of geodesic geometry and the ‘Lion-Man’ game.
P. Oliva presented effective bounds for convergence theorems from probability
theory whereas T. Powell gave a quantitative analysis of some classical Tauberian
theorems. Applications of proof theory in the context of algebra were reported in
talks by T. Coquand, F. Ferreira, H. Lombardi, P. Schuster and D. Wessel. Talks
on the interplay between foundational research in the context of reverse mathemat-
ics and core mathematics where given by A. Freund and A. Weiermann, who spoke
about the strength of generalized forms of Goodstein’s theorem, and by S. Sanders,
who studied the uncountability of R in the context of higher order reverse mathe-
matics. V. Brattka’s talk investigated the Weihrauch complexity of discontinuous
problems in analysis. On the more foundational side, M. Baaz discussed the issue
of simplicity of proofs and the possibility of condensations of proofs and the use
of axioms and rules by names and B. Afshari explored the connection between
infinitary proofs, proofs with induction and cyclic proofs. B. van den Berg gave a
new approach to specifying the computational content of the extensionality axiom
in the language of finite types. R. Kahle gave an ‘extended predicative’ approach
to introduce a Mahlo universe ‘from below’. Y. Cheng discussed formal versions of
Gödel’s incompleteness theorems in the context of Robinson’s theory R and R-like
globalisers of theories. L. Ko lodziejczyk studied Π1

1-conservativity over collection
principles and solved a problem of H. Towsner.

To explore connections between proof theory, constructive formal systems and
computer science. M. Fujiwara’s talk investigated the strength of different forms
of the fan principle in the context of intuitionistic reverse mathematics. I. van
der Giessen presented new admissibility results for rules in intuitionistic provabil-
ity logics. S. Negri studied the proof theory of infinitary intuitionistic logic and
its embedding into infinitary modal logic S4. A. Akbar Tabatabai discussed the
BHK-interpretation as a spectrum of interpretations leading to different logics.
M. E. Maietti proposed ‘Minimalist Foundation’ as a predicative foundation for
constructive mathematics. On the applied side, A. Miquel discussed the connection
between implicative algebras as a generalization of complete Heyting algebras and
Krivine realizability. H. Schwichtenberg used a realizability technique to extract
formally verified algorithms operating on stream representations of real numbers
such as Gray code from proofs in constructive analysis.

To investigate further the connections between logic and computational complex-
ity. E. Jeřábek discussed the formalizability of algorithms for iterated multiplica-
tion; he showed, with a delicate and intricate argument, that the theory VTC0 for
TC0-computability can prove the correctness of the Hesse-Allender-Barrington al-
gorithm. J. Kraj́ıček’s talk explored connections between propositional complexity
and proof search algorithms, and proposed a method for comparing the strength
of proof systems that is not sensitive to easily recognized sets of hard tautologies.
I. Oitavem’s talk gave recursion theoretic definitions of the counting class #P; her
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definitions were based on Cook-Bellantoni style safe-normal recursive definitions
and can be extended to higher levels of the #P hierarchy.
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Abstracts

The Discontinuity Problem

Vasco Brattka

There is a simplest discontinuous function LPO : NN → {0, 1}, which is the test for
the zero sequence, i.e., the characteristic function of the set {0N}, also known as
limited principle of omniscience. In fact, a function F :⊆ N

N → N
N is discontinu-

ous, if and only if LPO is continuously Weihrauch reducible to F [6, Lemma 8.2.6].
However, there are many discontinuous and hence non-computable multi-valued

problems f :⊆ N
N ⇒ N

N to which LPO is not reducible. Examples are the inter-
mediate value theorem IMT or weak Kőnig’s lemma WKL [3]. Hence, it is natural
to ask the following question [1, Open Problem 5.9].

Question 1 (Schröder 2018). Is there a simplest discontinuous multi-valued prob-
lem f :⊆ N

N ⇒ N
N in terms of continuous Weihrauch reducibility?

More generally, by a problem f :⊆ X ⇒ Y we mean a multi-valued map on
represented spaces X,Y that admits a realizer. We call a problem continuous,
if it has a continuous realizer and computable or solvable, if it has a computable
realizer.

So far, the literature on Weihrauch complexity has known the non-computability
problem NON : NN ⇒ N

N, p 7→ {q ∈ N
N : q 6≤T p} and the all-or-co-unique choice

problem ACCN (also known as LLPON) as the two most simple (but incomparable)
discontinuous problems [4, 3].

We claim that the problem

DIS : NN ⇒ N
N, p 7→ {q ∈ N

N : U(p) 6= q}

is the simplest “natural” such problem, where U :⊆ N
N → N

N is a universal
computable function. Indeed, DIS is a common lower bound of NON and ACCN.
Our claim is witnessed by a number of further results.

Theorem 1. A problem f :⊆ X ⇒ Y is effectively discontinuous if and only if
DIS ≤∗

W f .

Here ≤∗
W denotes the continuous version of Weihrauch reducibility and f is

called effectively discontinuous if there is a continuous function D : NN → N
N that

witnesses discontinuity of f in the sense that for every potential realizer Φp of
f the value D(p) is an input for f on which f is not correctly realized by Φp.
Here Φ denotes some standard representation of (certain) continuous functions
F :⊆ N

N → N
N with the property that Φp(q) = U〈p, q〉.

The theorem above shows that DIS is at least the simplest effectively discon-
tinuous problem in terms of Weihrauch reducibility. The theorem can be proved
in Zermelo-Fraenkel set theory ZF with the axiom of dependent choice DC. If one
adds the axiom of determinacy AD [5], then one can go further than that.
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Theorem 2. In ZF + DC + AD every problem f :⊆ N
N ⇒ N

N is either continuous
or effectively discontinuous.

Hence, in ZF + DC + AD the problem DIS is actually the simplest discontinuous
problem on Baire space. However, with the full axiom of choice AC it is easy to
construct counterexamples to this claim.

Example 1. In ZFC = ZF + AC there exists an (even parallelizable) total discon-
tinuous problem f : NN ⇒ N

N that is not effectively discontinuous.

ZFC and ZF + DC + AD are known as alternative but incompatible axiomatic
settings [5]. Hence, it is actually a matter of the axiomatic setting of how “natural”
DIS appears as a simplest unsolvable problem.

Independent of the axiomatic setting, DIS happens to have a number of further
very interesting properties, among those the following.

Theorem 3. D̂IS ≡sW NON.

That is, the parallelization D̂IS of DIS is equivalent to the non-computability
problem, which leads to the suggestive slogan that “non-computability is the par-
allelization of discontinuity”. In fact, studying the discontinuity problem reveals
further insights into the nature of the relation between continuity and computabil-
ity.

One further relation between the discontinuous problems mentioned here is
that it turns out that DIS is the summation of ACCN. Here summation is a newly
introduced interior operator in the Weihrauch lattice that plays a dual rôle to
parallelization (and corresponds to the question mark operator ? from linear logic
in the same sense as parallelization corresponds to the bang operator !). Hence,
the three weakest discontinuous problems discussed here, DIS,ACCN and NON are
surprisingly all related to each other in a purely algebraic way.

A preprint with all the main results stated here is available at [2].
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Goodstein’s theorem meets reverse mathematics

Anton Freund

(joint work with Juan Pablo Aguilera, Michael Rathjen and Andreas Weiermann)

Goodstein’s theorem is famous as a concrete result about natural numbers that
cannot be proved in Peano arithmetic. As such, it provides a natural example for
the incompleteness phenomenon from Gödel’s theorem.

In Goodstein’s original formulation, his theorem did, in fact, involved universal
quantification over infinite sets. Kirby and Paris managed to avoid this quantifica-
tion, so that their independence result falls into the realm of first-order arithmetic
(see [3] for references and discussion). Our new work [2] adds a variant of Good-
stein’s theorem that entails the existence of infinite sets and can thus be studied
within reverse mathematics. This more abstract perspective has the advantage
that it allows for very general results. Furthermore, we find it illuminating to
have a spectrum of related results that range from the concrete (Kirby and Paris)
over an intermediate realm (Goodstein’s original work) to the rather abstract.

To describe our approach in some detail, we consider a non-decreasing function
b : N → N (“base change”) and a family c = (ci)i∈N of strictly increasing functions
(“coefficient changes”)

ci : {0, . . . , b(i) − 1} → {0, . . . , b(i+ 1) − 1}.

The simplest instance of our general result is concerned with Goodstein sequences
G2

b,c,m(0), G2
b,c,m(1), . . . that have start value G2

b,c,m(0) := m < 2b(0) and satisfy

G2
b,c,m(i+ 1) := 2ci(n0) + · · · + 2ci(nk) − 1

for G2
b,c,m(i) = 2n0 + · · · + 2nk with b(i) > n0 > · · · > nk.

Note that the exponential notation in this example is non-hereditary, in contrast to
Goodstein’s original theorem. In view of the latter, it is natural to ask whether we
always reach G2

b,c,m(i) = 0 for some i ∈ N. The answer is negative, as b(i) := 2+ i,

ci(n) := n+ 1 and m := 3 lead to G2
b,c,m(i) = 2i+1 + 20. To analyze the situation,

we recall that the original theorem does not involve coefficient changes, which
amounts to setting ci(n) := n. For this definition of ci, one obtains functions

ei : {0, . . . , b(i) − 1} → X with ei+1 ◦ ci = ei

by setting X := N and ei(n) := n. Indeed, this characterizes N as the direct
limit over the functions ci, as all natural numbers lie in the image of some ei. In
contrast, the direct limit that arises from b(i) = 2 + i and ci(n) = n + 1 is given
by X = {−n |n ∈ N}. This is witnessed by ei(n) := −1 − i+ n, since we have

ei+1 ◦ ci(n) = −1 − (i + 1) + n+ 1 = ei(n).

The point is that our example of a Goodstein sequence that does not reach zero
leads to an ill founded limit, while Goodstein’s original construction is associated
with the well founded limit N. This suggests an “extended Goodstein theorem”,
in which the limit over the ci is always well founded and any countable well order
can be obtained as such a limit. There is a relatively simple condition on b and
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c = (ci)i∈N that ensures this property and does not refer to the limit explicitly
(see [2]). When that condition is satisfied, we call (b, c) a Goodstein system. We
can now state the simplest instance of our general result in reverse mathematics:

Theorem 1 ([2]). The following are equivalent over RCA0:

(1) The extended Goodstein theorem for the binary notation: For any Good-
stein system (b, c) and m < 2b(0), we have G2

b,c,m(i) = 0 for some i ∈ N.

(2) The Turing jump of any set exists (i. e., arithmetical comprehension holds).

The crucial idea of the proof is to extend the binary notation from natural
numbers (which can be seen as finite orders n = {0, . . . , n− 1}) to arbitrary linear
orders: For any such order X , let

2X := {〈x0, . . . , xk−1〉 |x0, . . . , xk−1 ∈ X and x0 >X · · · >X xk−1}

be the set of finite descending sequences in X , ordered lexicographically. It is
known that statement (2) in the theorem above is equivalent to the assertion that
2X is a well order whenever the same holds for X . The latter is equivalent to
statement (1), as we show in [2].

The assertion thatX 7→ 2X preserves well orders is an example of a well ordering
principle. In the literature, one can find many equivalences between such princi-
ples and important set existence axioms from reverse mathematics (see [2] for a
list of references). This suggests a vast generalization of our result. However, there
is one important caveat: Many well ordering principles map natural numbers to
transfinite ordinals (consider α 7→ εα). These will not induce Goodstein sequences
of natural numbers. In [2], well ordering principles that do map natural numbers
to initial segments of N (and have some other natural properties) are called Good-
stein dilators. More precisely, we use the term “Goodstein dilator” for suitable
transformations of natural numbers. If D is such a transformation, we obtain a
transformation X 7→ D(X) of arbitrary linear orders by taking direct limits. Each
Goodstein dilator D gives rise to a Goodstein sequence GD

b,c,m(0), GD
b,c,m(1), . . .

(see [2] for details). We can now state the promised general result:

Theorem 2 ([2]). In RCA0 one can prove that the following are equivalent for
any Goodstein dilator D:

(1) The extended Goodstein theorem for D: For any Goodstein system (b, c)
and any start value m ∈ D(b(0)), we have GD

b,c,m(i) = 0 for some i ∈ N.

(2) The extension X 7→ D(X) of D preserves well orders.

Theorem 1 is a straightforward instance, assuming the known result onX 7→ 2X .
Let us point out that Abrusci, Girard and van de Wiele [1] have also considered
general Goodstein sequences relative to dilators. However, they have not allowed
coefficient changes, which means that their results stay in the “concrete” rather
than the “abstract” realm.

In addition to Theorem 1, we have established a much more impressive instance
of Theorem 2, which exhibits a Goodstein principle that is equivalent to arithmeti-
cal transfinite recursion. The crucial challenge was to slow down the Veblen hier-
archy of normal function to a transformation of natural numbers. Amazingly, the
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slowed-down Veblen hierarchy turns out to be the Ackermann function. This part
of our work has been presented in a talk by A. Weiermann at the same workshop
(see his abstract in this report). Full details for all results can be found in [2].
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Note on the Benefit of Proof Representations by Name

Matthias Baaz

The up to date most profound revolution in mathematics has been the introduction
of the axiomatic method by David Hilbert [4]. Its most important concept is the
atomistic concept of proof: A proof is a sequence of formulas A1 . . . An such that
for all i

• Ai is an instance of an axiom or
• Ai follows from Aj1 . . . Ajk by application of a rule.
• An is the result of the proof.

As such a sequence may contain arbitrary redundant subsequences not related
to the result it is maybe more rewarding to deal with tree-like proofs, where the
predecessor node / successor node relation determines the rule applications and all
formulas in the proof are connected to the result. Tree-like proofs (a variation of
Hilbert’s concept) are the basis of proof theory since Gentzen [3], as long as proof
theory is concerned with the transformation of concrete proofs. The reason is that
tree-like proofs allow for regularity in a simple way (regularity is the unique use of
eigenvariables). The disadvantage is of course that the same intermediary result
might have two different subproofs if it is used twice in parallel.

No scientific revolution is however complete and global concepts of proofs per-
sist. There are concepts where a global criterion for the soundness of the result
exists, but subproofs may be unsound. In this note it is shown, that the proof
representation by the names of axioms and rules as in Bourbaki (e.g. [2]) consti-
tutes such a global concept: Abstract cut-elimination on the proof representation
allows for a soundness proof of the result. The existence of a proof underlying a
given representation is however undecidable, therefore the representation by names
might be non-recursively simpler.

The optimal representation of proofs is a fundamental topic in mathematics
and logic c.f. Hilbert’s unpublished 24th problem (the 24th problem asks for the
development of a criterion for the simplicity of proofs). Most simplifications of
proofs are based on proof macros governed by meta-rules, as in MacLane’s thesis
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[5]1. Such simplifications are proportional abbreviations and adhere to Hilbert’s
stepwise concept of proof. They are frequently used in mathematics in connection
with explicit definitions, for example the integral is handled as an object.

Global representations of proofs as in this note allow for much stronger conden-
sations of proofs. The complication is that external soundness criteria have to be
employed. The representation in [1] leads to a more than elementary abbreviation
of cut-free proofs. The representation in this note leads to a more than recursive
abbreviation of proofs with cut.
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What’s so special about the Ackermann function and ATR0?

Andreas Weiermann

(joint work with Juan Pablo Aguilera, Anton Freund, Michael Rathjen)

Let us define the Ackermann function as usual. So put F0(n) := n + 1 and
by recursion let Fa+1 := Fn+1

a (n) where the upper index denotes the number
of iterations of the previously defined function Fa. It is well known that the
function a, b, c 7→ F b

a (c) is not primitive recursive. We show first that the function
a, b, c 7→ F b

a(c) acts like a dilator on numbers. Therefore this function extends
uniquely to a function from linear orders to linear orders. In fact it becomes a
functor which preserves direct limits and pull backs. Moreover it can be shown
that this functor preservers well foundedness and so we see that the Ackermann
function extends to a dilator.

The question is how strong the latter insight is from the viewpoint of reverse
mathematics and the answer is provided by the following result.

Theorem 1. We show that over the system RCA0 the following assertions are
equivalent.

(1) The Ackermann function extends to a dilator.
(2) The binary Veblen function is a dilator.
(3) ATR0.

Here RCA0 and ATR0 refer to the standard systems of reverse mathematics.
This result can be combined with results shown in the presentation by Anton

Freund to show the following application to Goodstein principles.

1The author is grateful to the anonymous referee for the hint to MacLane’s thesis which
contains one of the few explicit discussions of proof macros with the corresponding rules in logic.
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Theorem 2. We show that over the system RCA0 the following assertions are
equivalent.

(1) The extended Goodstein theorem holds for the Ackermann function.
(2) ATR0.
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Iterated multiplication in VTC
0

Emil Jeřábek

The underlying theme of this talk is feasible reasoning about the elementary integer
arithmetic operations +, ×, ≤: what properties of these operations can be proven
using only concepts whose complexity does not exceed that of +, ×, ≤ themselves?
To make such questions formal, we can associate to any well-behaved complexity
class C a theory of arithmetic T that “corresponds” to C, typically meaning that
the provably total computable functions of T are the C-functions, and that T
can reason with C-concepts: it proves induction, comprehension, minimization, or
similar schemata for formulas that express C-predicates.

In our case, the right complexity class is (DLOGTIME-uniform) TC0: the
elementary arithmetic operations are computable in TC0, and × is even TC0-
complete under AC0 Turing-reductions. While TC0 is easily seen to include +,
×, −, and iterated addition

∑
i<nXi, it is much harder to show that it includes

integer division and iterated multiplication
∏

i<nXi, which was proved by Hesse,
Allender, and Barrington [3], building on [1, 2]. The basic idea of [1] is to compute∏

iXi in the Chinese remainder representation (CRR), i.e., modulo a sequence of
small primes ~m, and then reconstruct the result in binary from CRR; the main
problem in getting the complexity down to fully uniform TC0 is to devise an
efficient CRR reconstruction procedure.

The basic theory corresponding to TC0 is VTC 0, a Zambella-style two-sorted
bounded arithmetic; a natural question (attributed to A. Atserias in [6]) is whether
the theory can formalize TC0 division and iterated multiplication algorithms.
More precisely, we ask if VTC 0 proves the division axiom

(DIV ) ∀X > 0 ∀Y ∃Q
(
QX ≤ Y < (Q+ 1)X

)
,

and an axiom IMUL stating the existence of iterated products
∏

i<nXi satisfying
the defining recurrence

∏
i<0Xi = 1,

∏
i<n+1Xi = Xn

∏
i<nXi.

We know that VTC 0 + IMUL proves DIV , and by [4], it is fairly powerful: it
proves binary-number quantifier-free induction (IOpen), and even minimization
for RSUV translations of Σb

0 formulas in Buss’s language.
The argument in [3] does not just consist of a single algorithm—it has a complex

structure with several interdependent parts:
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(1) Show that
∏

iXi is in TC0(pow), using CRR reconstruction. Here, pow
denotes the function ar mod m with all inputs in unary, m prime.

(2) Show that
∏

iXi with polylogarithmically small input is in AC0, by scaling
down part (1).

(3) Show that pow is in AC0 using (2), and plug it into (1).

However, what truly makes the formalization of [3] difficult is that the analysis
of the algorithms suffers from “chicken or egg” problems (which came first, the
chicken or the egg?):

• The proof of soundness of the CRR reconstruction procedure in part (1)
heavily relies on iterated products and divisions: e.g., it refers to the prod-
uct of primes from the CRR basis. But in VTC 0, we need the soundness
of CRR reconstruction to define such iterated products in the first place.

• The analysis of the pow algorithm in part (3) refers to various modular
powers, and even relies on Fermat’s little theorem am−1 ≡ 1 (mod m).
However, the latter cannot be stated, let alone proved, without having a
means to define modular exponentiation in the first place.

• In part (1), the reduction of iterated modular multiplication imul(~a,m) =∏
i ai mod m (m prime) to pow relies on cyclicity of (Z/mZ)×, difficult to

prove in bounded arithmetic. What makes this a chicken-or-egg problem
is that the cyclicity of (Z/mZ)× is in fact provable in VTC 0 + IMUL.

Despite these challenges, VTC 0 proves IMUL (specifically, the soundness of a
variant of the algorithm from [3]), as recently shown in [5]. The formalization
follows the basic outline above, adjusted to overcome the difficulties:

• Part (1) is formalized using imul as a primitive instead of pow, to postpone
the issue of cyclicity of (Z/mZ)×: i.e., we prove IMUL in VTC 0(imul). We
get around chicken-or-egg problems by developing many low-level prop-
erties of CRR in VTC 0(imul). This is the most technical part of the
formalization.

• For part (2), polylogarithmic cuts of models of V 0 are models of VNL.
• We avoid the chicken-or-egg problems in part (3) by modifying the pow

algorithm. We obtain a result of independent interest that there is a
∆0 definition of pow (even for nonprime moduli) whose defining recurrence
is provable in I∆0 + WPHP(∆0).

• The results so far imply that IMUL is equivalent to the totality of imul, and
to the cyclicity of (Z/mZ)×. Paying attention to the size of parameters
in this circle of implications, we can make progress on each turn using
a partial formalization of the structure theorem for finite abelian groups.
This allows to set up a final proof of IMUL in VTC 0 by induction.

Consequently, the results of [4] also apply to VTC 0.
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Conservativity over collection principles and a problem of Towsner

Leszek Ko lodziejczyk

(joint work with Marta Fiori Carones, Tin Lok Wong, and Keita Yokoyama)

RCA0 stands for the fragment of second-order arithmetic axiomatized by ∆0
1 com-

prehension and Σ0
1 induction. This is the usual base theory considered in reverse

mathematics.
In [4], Towsner showed that for every n ≥ 1, it is a Π2-complete computational

problem to decide whether a given Π1
2 sentence ψ is Π1

1-conservative over RCA0 +
IΣ0

n (here IΣ0
n stands for Σ0

n induction). He also asked whether the result is still
true if Σ0

n induction is replaced by the Σ0
n collection principle, BΣ0

n. Recall that
BΣ0

n lies (strictly) between IΣ0
n−1 and IΣ0

n in strength.
As stated, the question makes sense mainly for n ≥ 2, because RCA0 already

contains IΣ0
1 as an axiom, so RCA0 + BΣ0

1 is simply RCA0. To make also the case
n = 1 meaningful, we replace RCA0 with the weaker base theory RCA∗

0, which
contains BΣ0

1 (and an axiom guaranteeing the totality of exponentiation) instead
of IΣ0

1. Thus, we consider the following slight generalization of the question from
[4].

Question. Given fixed n ≥ 1, is the set

{ψ ∈ Π1
2 : RCA∗

0 + BΣ0
n + ψ is Π1

1-conservative over RCA∗
0 + BΣ0

n}

Π2-complete?

We show that the answer to this question is positive, but “barely so”. More
precisely, we obtain the following result.

Theorem. For each n ≥ 1:

(a) The set {ψ ∈ Π1
2 : RCA∗

0+BΣ0
n+ψ is Π1

1-conservative over RCA∗
0+BΣ0

n}
is Π2-complete.

(b) The set {ψ ∈ Π1
2 : RCA∗

0+BΣ0
n+¬IΣ0

n+ψ is Π1
1-conservative over RCA∗

0+
BΣ0

n +¬IΣ0
n} is a consistent recursively axiomatized theory; in particular,

it is recursively enumerable.
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To prove part (a) of the Theorem, we make use of so-called cardinality principles.
The principle CΣ0

n says that there is no number a for which there exists a Σ0
n-

definable injection from the entire natural number universe into {0, . . . , a}. We
have the following:

Lemma. For every n, k ≥ 1:

(i) RCA∗
0 + IΣ0

n + ¬CΣ0
n+1 is Π1

1-conservative over RCA∗
0 + IΣ0

n,
(ii) RCA∗

0 + BΣ0
n + ¬IΣ0

n+ ⊢ CΣ0
k.

Part (i) of the Lemma is an immediate consequence of some results of [4]. A
proof of part (ii) was first described in [2]. The only proofs of (ii) that we know are
model-theoretic. They are based on the idea, known from e.g. [3, 1], that models
of BΣ0

n +¬IΣ0
n have “many” automorphisms. On the other hand, the existence of

a witness to ¬CΣ0
k (for whatever k) puts some nontrivial restrictions on the kinds

of automorphism that a model may have.
Using the Lemma, we prove that, given a Π2 arithmetical sentence ∀x∃y δ(x, y),

the Π1
2 (in fact, Σ1

1) statement

¬IΣ0
n ∨

(
“there exists a such that ∀x≤a ∃y δ(x, y)

and there exists a Σ0
n+1 injection from the set of all numbers into [0, a]”

)

is Π1
1-conservative over RCA∗

0 + IΣ0
n exactly if ∀x∃y δ(x, y) is true.

The proof of part (b) of the Theorem also makes use of some model-theoretic
methods, including expansions, saturation properties, and an isomorphism argu-
ment. Part (b) has a particularly striking form for n = 1: we show that a Π1

2 sen-
tence ψ is Π1

1-conservative over RCA∗
0+BΣ0

1+¬IΣ0
1 if and only if WKL∗

0+¬IΣ0
1 ⊢ ψ,

where WKL∗
0 extends RCA∗

0 by Weak König’s Lemma.
As a byproduct of the proof of (b) for n = 1, we obtain an intriguing result

about restricted Σ1
1 formulas, i.e. formulas of the shape ∃Y ∀x∃y δ(X,Y, x, y) (here

δ is bounded and X is a free second-order variable). Namely, if σ(X) is restricted
Σ1

1, then there exists an arithmetical formula α(X,Z) such that WKL∗
0 proves

the following: for any sets X and Z, if some instance of IΣ0
1 with Z as the only

second-order parameter fails, then σ(X) ↔ α(X,Z).
Note that, for example, “X is not a well-order” is a restricted Σ1

1 formula. It
follows that in models of WKL∗

0 in which induction fails for some lightface Σ0
1

formula, being a well-order is an arithmetical property.
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A quantitative analysis of a discrete version of the lion and man game

Adriana Nicolae

(joint work with Ulrich Kohlenbach, Genaro López-Acedo)

The lion and man problem, which goes back to R. Rado, is one of the most
challenging pursuit-evasion games. In the inspiring book Littlewood’s Miscellany
[5] it is described as follows:

A lion and a man in a closed circular arena have equal maximum

speeds. What tactics should the lion employ to be sure of his

meal?

The same book also contains a detailed discussion of the solution to this problem.
Several variants of this game, both continuous and discrete, with applications in
different fields such as robotics, biology, or random processes, have appeared in
the literature.

In this talk, based on an interplay of ideas and techniques from logic and geo-
metric analysis, we studied a discrete-time equal-speed pursuit-evasion game with
an ε-capture criterion (in the sense that the pursuer gets within a distance less
than ε to the evader). The domain X of our game is a geodesic space. Initially,
the lion and the man are located at two points in X , L0 and M0, respectively.
One fixes a positive upper bound D on the distance the lion and the man may
jump. After n steps, the lion moves from the point Ln to the point Ln+1 along
a geodesic from Ln to Mn, that is d(Ln,Mn) = d(Ln, Ln+1) + d(Ln+1,Mn), such
that its distance to Ln equals min{D, d(Ln,Mn)}. The man moves from the point
Mn to any point Mn+1 ∈ X which is within distance D. Given a metric space,
we say that the lion wins if limn→∞ d(Ln+1,Mn) = 0 for any pair of sequences
(Ln), (Mn) that satisfy the previous metric conditions for any D > 0. Otherwise
the man wins.

In [1], a similar game is introduced for the particular case of uniquely geodesic
spaces, so that the movement of the lion is completely determined by the movement
of the man. The authors prove that in the setting of nonpositively curved bounded
domains the lion always wins. Further advances in this problem were made, among
others, in [6], where a characterization of compactness of the domain in terms of
the success of the lion was obtained in complete, locally compact, strongly convex
geodesic spaces. The main ingredient in the proof of this result is the fact that
strongly convex spaces satisfy the betweenness property. However, none of these
results provides any information on the speed of convergence towards 0 of the
sequence (d(Ln+1,Mn)).

We focused in this talk on a quantitative uniform version of the aforementioned
betweenness property and on its role in the analysis of the considered game. This
allows the weakening of the topological and geometric hypotheses that ensure the
success of the lion and the extraction of a rate of convergence for the sequence
(d(Ln+1,Mn)) that only depends on a modulus quantifying the uniform between-
ness property. Namely, the main result, stated in a purely metric setting, shows
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that, under the assumption of boundedness and uniform betweenness for the do-
main, the lion always wins. The result can be applied, e.g., in all uniformly convex
normed spaces, CAT(κ) spaces (of sufficiently small diameter for κ > 0), or com-
pact uniquely geodesic spaces satisfying the betweenness property, but also in some
particular nonuniquely geodesic spaces. The obtained rate of convergence provides
an explicit bound on the number of steps to be taken for an ε-capture.

The ideas that led to our results (which can be found in [4]) have their roots in
proof mining. By ‘proof mining’ we mean the logical analysis, using proof-theoretic
tools, of mathematical proofs with the aim of extracting relevant information hid-
den in the proofs. This new information can be both of quantitative nature, such
as algorithms and effective bounds, as well as of qualitative nature, such as uni-
formities in the bounds or weakening of the premises. A comprehensive reference
for proof mining is the book [2] (see also [3] for a recent survey).
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Nilpotency: an algebraic experiment in proof mining

Fernando Ferreira

An element of a commutative ring with identity which lies in every prime ideal is
nilpotent. This is a well-known result whose proof uses Zorn’s lemma. A weakening
of this fact is amenable to a proof mining analysis with the bounded functional
interpretation, using bounded collection (instead of Zorn’s lemma). We formulate
a quantitative version of this weakening and obtain an explicit bound. We present
an application.

Our proof mining analysis is the leitmotif for some comments and observations
on the methodology of computational extraction. We emphasize that the formula-
tion of quantitative versions of ordinary mathematical theorems is of independent
interest from proof mining metatheorems. We also notice that, under the present
type of analysis, the full result is not amenable to a quantitative analysis.
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Quantitative Borel-Cantelli Lemmas, Erdős-Rényi Theorem and
Kochen-Stone Theorem

Paulo Oliva

(joint work with Rob Arthan)

Let (Ai)
∞
i=1 be an infinite sequence of events in a probability space (S, E , P ).

The Borel-Cantelli lemma is a classical result in probability theory, relating the
convergence or divergence of the sum

∑∞
i=1 P [Ai] with the probability of the event

“Ai infinitely often”, which is defined as follows:

Ai i.o. =

∞⋂

n=1

⋃

i≥n

Ai

(i.e., ω ∈ S happens infinitely often in (Ai)
∞
i=1 if for all n there exists an i ≥ n

such that ω ∈ Ai).
The Borel-Cantelli lemma (see, for example, [2]) is normally presented in two

parts. The first part says that when the sum
∑∞

i=1 P [Ai] converges, then Ai almost
never occurs infinitely often:

Theorem 1 (First Borel-Cantelli Lemma). Let (Ai)
∞
i=1 be an infinite sequence of

events such that
∑∞

i=1 P [Ai] <∞. Then P [Ai i.o.] = 0.

The second part says that when
∑∞

i=1 P [Ai] diverges, and when the Ai are
mutually independent, then Ai almost always occurs infinitely often:

Theorem 2 (Second Borel-Cantelli Lemma). Let (Ai)
∞
i=1 be an infinite sequence

of mutually independent events such that
∑∞

i=1 P [Ai] = ∞. Then P [Ai i.o.] = 1.

In [3], Kochen and Stone presented a result that generalises the Second Borel-
Cantelli Lemma in two directions: (i) it gives a lower bound on P [Ai i.o.] when
the Ai are not mutually independent and (ii) it can be used to show that the
assumption of mutual independence in the original lemma can be weakened to
pairwise independence. We formulate this generalisation following Yan [4]:

Theorem 3 (Kochen-Stone). Let (Ai)
∞
i=1 be an infinite sequence of events such

that
∑∞

i=1 P [Ai] = ∞. Then

P [Ai i.o] ≥ lim sup
n→∞

(
∑n

k=1 P [Ak])2∑n

i,k=1 P [AiAk]
(1)
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Erdős and Rényi [1] gave a result that is intermediate between the second Borel-
Cantelli lemma and the Kochen-Stone theorem. Like the Kochen-Stone theorem it
implies that the assumption of mutual independence in the second Borel-Cantelli
lemma can be weakened to pairwise independence. Erdős and Rényi applied their
theorem to the study of generalised Cantor expansions for real numbers.

Theorem 4 (Erdős-Rényi Theorem). Let (Ai)
∞
i=1 be an infinite sequence of events

such that
∑∞

i=1 P [Ai] = ∞ and

lim inf
n→∞

∑n

i,k=1 P [AiAk]

(
∑n

k=1 P [Ak])2
= 1(2)

Then P [Ai i.o] = 1.

In this talk I present the result of joint work with Rob Arthan on the following
“quantitative” versions of the above theorems.

Theorem 5 (First Borel-Cantelli Lemma – Quantitative Version). Let (Ai)
∞
i=1

be an infinite sequence of events. Assume that (
∑m

i=1 P [Ai])
∞
m=1 converges with a

rate of convergence φ : N → N
+, i.e. that for all l ≥ 0 and m > φ(l)

m∑

i=φ(l)

P [Ai] ≤
1

2l

Then the sequence (P [
⋃m

i=1Ai])
∞
m=1 converges with the same rate, i.e. for all l ≥ 0

and m > φ(l)

P




m⋃

i=φ(l)

Ai


 ≤

1

2l

Theorem 6 (Second Borel-Cantelli Lemma – Quantitative Version). Let (Ai)
∞
i=1

be an infinite sequence of events which are mutually independent. Assume that the
sequence (

∑n
i=1 P [Ai])n∈N+ diverges with rate ω : N+ → N

+, i.e. for all N

ω(N)∑

i=1

P [Ai] ≥ N

then, for all n and N ,

P



ω(n+N−1)⋃

i=n

Ai


 ≥ 1 − e−N

Theorem 7 (Erdős-Rényi Theorem – Quantitative Version). Let (Ai)
∞
i=1 be an

infinite sequence of events. Let ω : N+ → N
+ be such that for all N

(3)




ω(N)∑

i=1

P [Ai]


 ≥ N
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and let φ : N× N → N be such that

(4) ∀l, n

(
φ(l, n) ≥ n ∧

∑φ(l,n)
i,k=1 P [AiAk]

(
∑φ(l,n)

i=1 P [Ai])2
≤ 1 +

1

2l

)

Define n1 = φ(1, 1) and, for k > 1, nk = φ(k,max(nk−1, k)). Then, for all n and l

(5) P

[
nm⋃

i=n

Ai

]
≥ 1 −

1

2l

where m = max(ω(2n), l + 3).

Theorem 8 (Kochen-Stone Theorem – Quantitative Version). Let (Ai)
∞
i=1 be an

infinite sequence of events. Let ω : N+ → N
+ be such that for all N




ω(N)∑

i=1

P [Ai]


 ≥ N

Then, for all m and l and g : N+ → N
+ such that g(i) > i, for all i, there exists

an n > m such that

• n ≤ g(2
l+1)(max(ω(2l+2

∑m
i=1 P [Ai]),m)), and

• for all j ∈ [n, g(n)]

(6) P

[
n⋃

i=m+1

Ai

]
+

1

2l
≥

(
∑j

i=1 P [Ai])
2

∑j
i,k=1 P [AiAk]
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Robinson’s theory R and a R-like Globaliser for c.e. theories

Yong Cheng

(joint work with Fedor Pakhomov)

Robinson’s theory R is introduced by Tarski, Mostowski and Robinson in [4].

Definition 1 (Tarski, Mostowski and Robinson). Robinson’s theory R consists
of schemes Ax1-Ax5 in the language {0,S,+,×,≤} where ≤ is a primitive binary
relation symbol and n = Sn0 for n ∈ N:

Ax1: m+ n = m+ n;
Ax2: m× n = m× n;
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Ax3: m 6= n, if m 6= n;
Ax4: ∀x(x ≤ n→ x = 0 ∨ · · · ∨ x = n);
Ax5: ∀x(x ≤ n ∨ n ≤ x).

The notion of interpretation, originally introduced by Tarski, Mostowski and
Robinson in [4], provides us with a method for comparing the strength of theories
in different languages.1 Let T be a recursively axiomatizable consistent theory.
We say that G1 holds for T if for any recursively axiomatizable consistent theory
S, if T is interpretable in S, then S is incomplete (see [2]). We show that G1

holds for T if and only if T is essentially undecidable (see [2]). We know that R is
essentially undecidable and hence G1 holds for R. A natural question is: can we
find a theory T such that G1 holds for T and T ⊳R?

Theorem 2 (Cheng, [2]). For any recursively inseparable pair 〈A,B〉, there is a
r.e. theory U〈A,B〉 such that U〈A,B〉 ⊳R and G1 holds for U〈A,B〉.

It is natural to examine the structure D = {S : S⊳R and G1 holds for theory S}.
It is open whether 〈D,⊳〉 is well founded (or is it that for any S ∈ D, there is T ∈ D

such that T ⊳ S)? However, the answer for the structure D = {S : S <T R and
G1 holds for theory S} is known.

Theorem 3 (Cheng, [2]). The structure D is not well founded. I.e. there is no
minimal theory below R w.r.t. Turing reducibility such that G1 holds for it.

For a consistent theory T , we say G2 holds for T if T 0 Con(T ). Pudlák shows
that there is no consistent r.e. theory S such that (Q + Con(S)) E S. A natural
question is whether G2 holds for R. Since Con(R) is a Π0

1 sentence, by the MRDP

theorem, Con(R) is equivalent to ∀x(P1(x) 6= P2(x)) for some polynomials P1

and P2 over N \ {0}. If we equate Con(R) with ∀x(P1(x) 6= P2(x)), we can show
that R 0 Con(R).

The following is a joint work with Fedor Pakhomov in [3].
Definition 4 (Interpretations of models). Let L1 and L2 be countable first-order
languages. Suppose U is a L1-theory, N is a L1-model and M is a L2-model. An
interpretation τ of U in M consists of M-definable set Dτ ⊆ |M| (the domain of
interpretation), M-definable set P τ ⊆ (Dτ )n for each n-ary predicate symbol P
from Sgn(U), and M-definable function f τ : (Dτ )n → Dτ for each n-ary function
symbol f from Sgn(U) such that (Dτ , 〈P τ |P ∈ Sgn(U)〉, 〈f τ |f ∈ Sgn(U)〉) |= U .
Similarly, we can define that τ is an interpretation of N in M if (Dτ , 〈P τ |P ∈
Sgn(N)〉, 〈f τ |f ∈ Sgn(N)〉) ∼= N.

We require Dτ to be a definable set in M in the above Definition. Depending on
what exactly we consider to be a definable set we will get different notions of inter-
pretations. We say τ is one-dimensional if Dτ ⊆ |M|; we say τ is multi-dimensional
if Dτ ⊆ |M|n for some n ∈ ω; we say τ is piece-wise multi-dimensional if Dτ is a

1Let L1 and L2 be countable first-order languages. Let U be an L1-theory and T be an
L2-theory. We write T EU , if T is interpretable in U ; we write T ⊳ U if T is interpretable in U ,
but U is not interpretable in T .



Mathematical Logic: Proof Theory, Constructive Mathematics 1715

disjoint union A1 ⊔ A2 ⊔ · · · ⊔ An of definable sets A1 ⊆ |M|i1 , · · · , An ⊆ |M|in ;
we say τ is a factor interpretation (piece-wise multi-dimensional with definable
equality) if Dτ is (A1 ⊔ A2 ⊔ · · · ⊔ An)/ ∼, where A1 ⊆ |M|i1 , · · · , An ⊆ |M|in

are definable sets and ∼ is a definable equivalence relation on A1 ⊔A2 ⊔ · · · ⊔An.
In this work, we consider interpretations in most general sense (piece-wise multi-
dimensional interpretations with definable equality).

Definition 5 (Interpretations of theories). Let L1 and L2 be countable first-order
languages. Let U be an L1-theory and T be an L2-theory. An interpretation of U
in T is an uniformly defined family of interpretations 〈τM : M |= T 〉 where τM is
an interpretation of U in M for any M |= T . Here, “uniformly defined” means
that the corresponding components of all τM should be definable sets/functions
given by the same formula in all M |= T .

Definition 6 (Globaliser of a c.e. theory). A globaliser of a c.e. theory T is a
c.e. theory U such that for any c.e. theory S, S is locally interpretable in T if and
only if S is interpretable in U .2

Visser shows that the theory R is a globalizer of EQ (the theory of pure equality).
A natural question is: does any c.e. theory has a globaliser? The answer is positive.
Pakhomov and Visser recently show that for any c.e. theory T , there is a globaliser
G(T ) of T . However, the globaliser G(T ) of T constructed in this theorem is very
abstract and not an analogue of Robinson’s theory R.

The motivation of our work is to construct a concrete globaliser of c.e. theories
that is a natural analogue of Robinson’s theory R. The theory R(T ) we construct,
a natural analogue of Robinson’s theory R, is a weak set theory with urelements.
The general idea is to generalize Robinson’s theory R to the case with urelements.
The theory R(T ) corresponds to constructible sets L(M, ω) over structures M |= T
in the same way as R corresponds to natural numbers.

Now, we first define the constructible hierarchy over M via Gödel’s opera-
tions F1(x, y), · · · ,FN(x, y).3 Define L(M, 0) = |M|, L(M, α + 1) = L(M, α) ∪
{L(M, α)}∪{Fi(x, y) : 1 ≤ i ≤ N and x, y ∈ L(M, α)∪{L(M, α)}} and L(M, λ) =⋃

α<λ L(M, α) for limit λ (see [1]). This gives us the same class of constructible
sets: L(M) =

⋃
α∈On

L(M, α). Further, we will use well-founded linear preorder
≤L on L(M, ω) that is x ≤L y ⇔ ∀n(y ∈ L(M, n) → x ∈ L(M, n)).

Now, we define the theory R(T ). WLOG, we assume that T is a c.e. theory with
finite predicate-only signature. The signature of R(T ) consists of all predicates
from Sgn(T ), predicate x ∈ y, constant Ur, binary functions F1, · · · ,FN for Gödel
operations, unary function E ,4 and binary predicate ≤L. Terms L0 = Ur and
Ln+1 = E(Ln) denote finite levels of constructible hierarchy.

2We say a theory T is locally interpretable in a theory U if any finite sub-theory T ′ of T is
interpretable in U .

3For the definition of F1(x, y), · · · ,FN (x, y), we refer to [1] and [3].
4The intended interpretation for E is E : b 7→ b ∪ {b} ∪ {Fi(x, y) | 1 ≤ i ≤ N, x, y ∈ b ∪ {b}}.
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Definition 7. For each n we denote as Ln the term En(Ur). The axioms of R(T )
are:

(1) TUr, i.e. relativizations to Ur of all axioms of T ;
(2) R(x1, . . . , xn) → x1 ∈ Ur ∧ . . . ∧ xn ∈ Ur, for predicate symbols R from the

signature of T ;
(3) x ∈ Ur → y 6∈ x;
(4) x 6∈ Ur ∧ y 6∈ Ur ∧ ∀z(z ∈ x↔ z ∈ y) → x = y (Extensionality);
(5) x ∈ Ln+1 ↔ x ∈ Ln ∨ x = Ln ∨

∨
1≤i≤N

∃y, z(x = Fi(y, z) ∧ (y ∈ Ln ∨ y =

Ln) ∧ (z ∈ Ln ∨ z = Ln)), for all n (defining axioms for Ln+1);

(6) Series of axioms Fi-Defn, for natural n and 1 ≤ i ≤ N , stating that Fi(x, y)
works on x, y ∈ Ln;

(7) x ∈ Ln ∧ y ≤L x→
∨

m≤n

y ∈ Lm, for all natural n;

(8) x ∈ Ln → y ≤L x ∨ x ≤L y.

We prove the following main theorem that generalizes the well known theorem
that R is a globaliser of EQ.

Theorem 8 (Cheng and Pakhomov, [3]). For any c.e. theory T , the theory R(T )
is a globaliser of T .
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On the proof theory of infinitary logic

Sara Negri

(joint work with Matteo Tesi)

Our first aim is to obtain a sequent calculus with good structural and analytical
properties for intuitionistic infinitary logic, i.e., intuitionistic logic extended with
countable disjunctions and conjunctions. Existing calculi [5, 6] have restrictions
on the rules of implications and infinitary conjunction that make the respective
rules non-invertible.

Often, the methods of labelled deduction allow to overcome such difficulties.
However, the labelled calculus for (finitary) intuitionistic propositional logic [1]
internalizes Kripke semantics, that does not have a viable infinitary generalization
for intuitionistic logic. In fact, Kripke frames correspond to Alexandroff topologies,
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i.e. topologies closed under infinitary intersections, and thus validate the infinitary
distributivity property

∧

k>0

(Pk ∨Q) →
∧

k>0

Pk ∨Q

which is not intuitionistically valid [3].
We introduce a neighbourhood semantics for infinitary intuitionistic logic which

simplifies the neighbourhood semantics for (finitary) intuitionistic logic introduced
in [2]: in fact, we consider neighbourhood frames which contain the unit and are
closed under supersets and finite, rather than infinite, intersections. The latter
condition maintains validity of the finite distributivity law, but does not entail
validity of its infinitary version.

By internalizing neighbourhood semantics along the lines of [4] we obtain a la-
belled sequent calculus, called G3Iω, for intuitionistic infinitary logic. The calculus
fully meets our desiderata, i.e., height-preserving admissibility of weakening and
contraction as well as cut admissibility and invertibility of all the rules. The cal-
culus also presents intuitionistic logic as an extension rather than as a restriction
of classical logic.

Completeness of the new semantics is proved both indirectly, through equiv-
alence with a complete topological semantics, and directly, through the labelled
calculus: in fact, invertibility of the rules permits a Tait-Schütte-Takeuti-style
completeness proof via the construction of a neighbourhood countermodel for a
non-terminating branch in a failed proof-search tree.

Finally, we present an infinitary version of the modal logic S4, and introduce
an infintary extension of the Gödel-McKinsey-Tarski translation from intuitionis-
tic logic into S4 [1]. The translation is proved to be sound, in the sense that if
a formula is a theorem of intuitionistic infinitary logic, then its translation is a
theorem of the infinitary S4 system. The converse direction, namely faithfulness
of the translation, is proved by induction on the height of derivations in the la-
belled calculus for infinitary modal logic G3S4ω based, likewise, on neighbourhood
semantics.
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On the Logical Shadow of the Explicit Constructions

Amir Akbar Tabatabai

“It is equally stupid and simple to consider mathematics to be just
an axiom system as it is to see a tree as nothing but a quantity of
planks.” L.E.J. Brouwer

In the intuitionistic tradition, mathematics has been considered as an incomplete
story of our mental constructions and logic as the collection of the story’s universal
laws is nothing but a distorted incomplete shadow of the real mathematics. This
role is clearly far from the foundational role that logic is usually believed to play. In
the work we present here, we try to address this Brouwerian extrinsic interpretation
of logic.

To formalize this interpretation, we have to first formalize the following two ingre-
dients. First, the constructions that mathematics is supposed to be based on and
then the interpretation that translates the logical formulas into the realm of the
previously fixed constructions. For the former, there are many reasonable choices
to make, including the computable functions formalized inside the standard model
or HA, the set-theoretical functions in IZF or CZF, the terms in Martin Löf type
theory or the morphisms in some strong enough categories such as locally Carte-
sian closed categories or toposes. In this talk and for the sake of simplicity, we set
the functions in IZF as our fixed notion of construction. For the interpretations,
though, we apparently have no choice but the canonical candidate of the BHK
interpretation. However, we believe that the BHK interpretation is not a singu-
lar specific interpretation, but a name for a spectrum of different interpretations
leading to different logics. Let us explain more, by introducing the two ends of the
spectrum: The Heyting and the Brouwer interpretations:

Definition 1. A Heyting interpretation is a map that assigns two sets [A]0 and
[A]1 to any propositional formula A, such that:

• [p]1 and [⊥]1 are inhabited, [p]0 ⊆ [p]1, for any atomic formula p and
[⊥]0 = ∅,

• [A ∧ B]1 = [A]1 × [B]1 and [A ∧B]0 = {(x, y) ∈ [A ∧B]1 | x ∈ [A]0 ∧ y ∈
[B]0},

• [A ∨ B]1 = [A]1 + [B]1 and [A ∨ B]0 = {(i, x) ∈ [A ∨ B]1 | (i = 0 → x ∈
[A]0) ∧ (i = 1 → x ∈ [B]0)},

• [A → B]1 = [B]
[A]1
1 and [A → B]0 = {f ∈ [A → B]1 | ∀x ∈ [A]0 f(x) ∈

[B]0}.

The sets [A]0 and [A]1 informally refer to the sets of the actual and possible con-
structions for A, respectively. A Brouwer interpretation is defined exactly in the
same way, except for the disjunction case that is defined by: [A ∨ B]1 = ‖[A]1 +
[B]1‖, where ‖− ‖ is the propositional truncation, i.e., ‖X‖ = {x ∈ {0} | ∃y ∈ X}
and [A ∨B]0 = {x ∈ {0} | ∃y ∈ [A]0 ∨ ∃y ∈ [B]0}.
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Given a construction for a disjunction, Heyting interpretation provides the com-
plete information of the proved disjunct and the construction used for that proof.
On the polar opposite side, the Brouwer interpretation uses the propositional trun-
cation to collapse all the possible information in the construction, except probably
its mere existence and hence no non-trivial information remained in a proof of a
disjunction in this interpretation. This difference in the disjunction case is where
the aforementioned spectrum enters the scene. Briefly, based on different amount
of information that we assume a construction of a disjunction stores, we can de-
velop different BHK interpretations.

Standing anywhere in the mentioned spectrum, it is also possible to restrict our-
selves to a subclass of the interpretations to see how different conditions on the
constructions lead to different logics. To have some examples, let us introduce the
following classes of interpretations. An interpretation is called:

• Markov, if ¬¬∃x ∈ [p]0 → ∃x ∈ [p]0, for any atomic formula p,
• Kolmogorov, if [p]1 is an external finite set and ¬¬(x ∈ [p]0) → (x ∈

[p]0), for any atomic formula p,
• Proof-irrelevant, if the condition that [p]0 is inhabited implies [p]0 =

[p]1, for any atomic formula p, i.e., if p has an actual proof, then all of its
possible proofs are actual.

With the appropriate notions of construction and interpretation, we are ready to
formalize what we mean by the theory and the logic of a calculus of constructions:

Definition 2. Let C be a definable class of Heyting interpretations. By the C-
Heyting theory of IZF, denoted by TH

C (IZF), we mean the set of all propositional
formulas A such that IZF ⊢ ∀[−] ∈ C ∃x ∈ [A]0, and by LH

C (IZF), we mean the set
of all propositional formulas A such that σ(A) ∈ TH

C (IZF), for any propositional
substitution σ. Similarly, define C-Brouwer theory and logic of IZF, denoted by
TB

C (IZF) and LB
C (IZF), respectively.

Theorem 3. Using M , K and PI to refer to the classes of Markov, Kolmogorov
and proof-irrelevant interpretations, respectively, we have:

• (Brouwerian Constructivism) TB(IZF) = TB
PI(IZF) = LB

MPI (IZF) =
LB
K(IZF) = IPC and TB

MPI(IZF) = IPC + {¬¬p→ p | p is an atom}.
• (Heyting’s Constructivism) TH(IZF) ⊇ KP, where KP = IPC + (¬A →
B ∨ C) → (¬A → B) ∨ (¬A → C). Therefore, TH(IZF) 6= IPC and
TH

PI(IZF) = INP, where INP = IPC+ (A→ B ∨C) → (A→ B)∨ (A → C)
for any ∨-free formula A.

• (Russian Constructivism) LH
MPI (IZF) = LH

K(IZF) = ML, where ML is
Medvedev logic and TH

MPI (IZF) = KP + {¬¬p→ p | p is an atom}.
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Admissibility in some intuitionistic provability logics

Iris van der Giessen

(joint work with Rosalie Iemhoff)

In this talk I present ongoing work on the admissibility of two intuitionistic prov-
ability logics; intuitionistic Gödel-Löb logic (iGL) and strong Löb logic (iSL). Both
logics have a close connection to the (unknown!) provability logic of Heyting Arith-
metic. The logics are well-understood in terms of sequent calculi and semantics.
Our goal is to understand the structure of all inferences of these logics in terms of
their admissible rules. The bad news is that the current methods that we tried so
far are not sufficient to establish nice results for iGL. The very good news is that
for iSL we establish a full description of its admissible rules.

Classically, Gödel-Löb logic GL admits a provability interpretation for Peano
Arithmetic, but it is an open problem what the provability logic of Heyting Arith-
metic is. Logic GL consists of classical modal logic K extended by the Gödel-Löb
axiom �(�A → A) → �A. iGL is obtained by restricting GL to intuitionistic
propositional tautologies and iSL is iGL plus the completeness principle A→ �A.
Logic iGL is sound with respect to the provability logic of Heyting Arithmetic, but
not complete. In [10] it is shown that iSL is the provability logic of an extension
of Heyting Arithmetic that has a link with slow provability. In addition, iSL plays
an important role in the Σ1-provability logic for Heyting Arithmetic [1].

Logics iGL and iSL are natural intuitionistic counterparts of GL for semantic
and proof-theoretic reasons. The Kripke semantics for iGL is a natural combina-
tion of intuitionistic propositional logic and modal logic where the modal relation
has the classical GL properties: transitive and conversely well-founded [9]. The
completeness principle in iSL corresponds to the strong condition that the modal
relation is a subset of the intuitionistic relation. In [4] and [5], single-conclusion
sequent calculi for iGL and iSL have been developed. For these calculi the pa-
pers provide non-trivial syntactic proofs of cut-elimination, termination and Craig
interpolation.

In this talk we explore iGL and iSL in terms of admissible rules. Admissible
rules are those rules under which the set of theorems of a logic is closed. In other
words, adding such a rule to a logic, does not change the set of formulas that
can be derived in that logic. For example, the rule �A/A is admissible in many
normal modal logics, including iGL and iSL. Admissible rules are interesting to
study, because they give insight in the structure of all possible inferences in a logic.
In addition, adding an admissible rule to a system may give shorter proofs. Our
goal is to provide nice descriptions of all admissible rules in iGL and iSL.

An important ingredient to reach the goal is the connection between so-called
projective formulas and the extension property of Kripke models. Projective for-
mulas are important in the study of admissible rules, because for those formulas,
admissibility and derivability coincide. The extension property is a useful semantic
characterization for projective formulas in many logics. Ghilardi establishes this
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correspondence for IPC and transitive classical modal logics such as GL [2, 3]. We
have established the same result for iSL. The problem for iGL is still open.

Very recently, we have established a full description of the admissible rules
for iSL (not yet published). We describe the admissible rules in terms of a proof
system for the admissible rules of iSL. We use the same strategy from Iemhoff
and Metcalfe [7], who provide Gentzen-style proof systems for admissibility for
IPC and several modal logics such as GL. These proof systems consist of rules that
reason about rules. This in contrast to the well-known sequent calculi for logics
that reason about formulas. In this sense, proof systems for admissibility can be
considered to reason about objects ‘one level higher’. Such proof systems are very
useful in obtaining decidability and complexity results for admissibility. In order
to prove soundness and completeness with respect to admissibility in iSL, we use
the connection between projective formulas and the extension property.

Admissible rules are usually described in terms of a basis. A basis is a set of
admissible rules that derive all other admissible rules in the logic. For example,
Iemhoff [6] shows that the so-called Visser rules form a basis for the admissible
rules for IPC. Jeřábek [8] defines so-called modal Visser rules for classical modal
logics including GL. We strongly conjecture that we can extract a basis from our
proof system for admissibility for iSL that is a kind of fusion of the Visser rules
for IPC and the modal Visser rules for GL. Also in this sense we can say that iSL

is a natural intuitionistic version of GL.
For iGL we expect that more tools are needed in order to give a description of

all admissible rules. All we know is that the admissible rules in iSL are admissible
in iGL, but there are examples of rules that are admissible in iGL but not in iSL.
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Proof and computation with infinite data

Helmut Schwichtenberg

(joint work with Franziskus Wiesnet)

Real numbers in the exact (as opposed to floating-point) sense can be defined
as Cauchy sequences (of rationals, with modulus). However, for computational
purposes it is better to see them as coded by “streams” of signed digits {1, 0,−1}.
A variant stream representation is the so-called “binary reflected” or Gray-code
[8, 13]. Apart from being practically more useful, the stream view turns real
numbers into “infinite data” and hence objects of type level 0. As a consequence
the type level of other concepts in constructive analysis [4] is lowered by one, which
simplifies matters considerably.

Our overall goal is to obtain formally verified algorithms (given by terms in
our language) operating on stream represented real numbers. Given an informal
idea of how the algorithm should work, there are two methods how this can be
achieved.

(I) Formulate (using corecursion) the algorithm in the term language of a
suitable theory, and then formally prove that this term satifies the speci-
fication;

(II) Find a formal existence proof M (using coinduction) for the object the
algorithm is supposed to return. Then apply a proof theoretic method
(“realizability”) to extractM ’s computational content as a term (involving
corecursion) in the term language of the underlying theory. The verifica-
tion is done by a formal soundness proof of the realizability interpretation.
The extraction of the computational content and the verification are au-
tomatic.

A general advantage of (II) over (I) is that one does not need to begin with a
detailed formulation of the algorithm, but instead can stay on a more abstract
level when proving the (existential) specification. In mathematics we know how to
organize proofs, for instance by splitting them into lemmas or on occasion make
use of more abstract concepts. In short, mathematical experience can help to find
a well-structured algorithmic solution.

Method (I) was employed in [5] using Coq, and method (II) in [2, 9, 3] using
Minlog1.

We will work with constructive existence proofs in the style of [4], but in such
a way that we can switch on and off the availability of input data for the con-
structions implicit in the proof [1]. In the present context this will be applied to
real numbers as input data: we do not want to make use of the Cauchy sequence
for the constructions to be done, but only the computational content of an ap-
propriate coinductive predicate to which the real number is supposed to belong
to. We consider division of real numbers as a non-trivial case study; it has been
dealt with in [5] using method (I). Based on the algorithmic idea in [5], we employ

1http://minlog-system.de.
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method (II) to extract signed digit and Gray code based stream algorithms for
division from proofs that the reals are closed under division (under some obvious
restrictions). In comparison with [9, 3] we have the following contributions.

• The central soundness theorem [10, p.340] is treated as a “meta” theorem
w.r.t. realizability. It only deals with “object proofs” not involving realiza-
bility predicates, which is a reasonable restriction under practical aspects.
We use axioms stating that every computationally relevant formula is in-
variant under realizability, formally A↔ ∃z(z r A). Such axioms already
appear in [7] under the name (A-r) “to assert is to realize”. A proof of
this soundness theorem is given, where the need of invariance axioms is
clearly visible.

• Instead of viewing the real numbers as abstractly given objects with all the
necessary properties assumed as axioms we now use concrete real numbers
(Cauchy sequences with moduli). The difficulty here is that for all real
functions and predicates compatibility with the defined real equality has to
be proven2; this is sometimes referred to as the “setoid hell”. This problem
can of course be avoided by dealing with real numbers axiomatically, as in
[9, 3]. However, for the task of fully verified software reliance on such an
axiom system is problematic, and needs to be backed by a careful analysis
of the axiom system. This is what we essentially do.

• As already said, based on an algorithmic idea in [5] we extract stream
algorithms for real division from proofs. However, to turn this idea into a
formal proof for concrete real numbers was a non-trivial task. As a benefit
from the necessary organization into a sequence of lemmas we obtain a
relatively easy analysis of the “look-ahead”, i.e., how far we have to look
into the argument streams to obtain the n-th digit of the result stream.
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The decidable fan theorem in constructive and classical
reverse mathematics

Makoto Fujiwara

In this workshop, I gave a talk about my recent work [1] on constructive reverse
mathematics (cf. [2]) with respect to the decidable fan theorem, which plays an
important role in constructive mathematics.

In constructive mathematics, it is widely-known that the decidable fan theo-
rem FAND(T01) for the complete binary tree {0, 1}∗ is equivalent to the general
decidable fan theorem FAND (cf. Section 4.7.5 of [3]). On the other hand, in
the context of classical reverse mathematics (cf. [4]), König’s lemma KL, a sort
of contrapositive of FAND, is strictly stronger than weak König’s lemma WKL
which is a sort of contrapositive of FAND(T01) . This seemingly paradoxical sit-
uation occurs because the countable (unique) choice is accepted in constructive
mathematics (cf. Section 4.1.6 of [3]) but only the restricted version QF-AC0,0 is
contained in the base theory RCA0 of classical reverse mathematics.

To figure out the proper relation between FAND, FAND(T01), KL and WKL,
we investigated the interrelation between these principles over the intuitionistic
counterpart EL0 (containing only QF-AC0,0) of RCA0. For each P ∈ {FAND,
FAND(T01), KL, WKL}, let dn-P denote the variant of P where the double nega-
tion ¬¬ is inserted in front of the conclusion of P. Then we showed that dn-FAND

and dn-FAND(T01) are equivalent to dn-KL and dn-WKL respectively over EL0
augmented with the double negation shift principle for function quantifiers re-
stricted to formulas of Σ0

1 form:

∀fN→N¬¬∃yNAqf(f, y) → ¬¬∀fN→N∃yNAqf(f, y),

where Aqf is quantifier-free. From these results, it turns out that some countable
choice principle is necessary to derive FAND from FAND(T01). For the purpose
of characterizing the choice principle which is necessary and sufficient for deriving
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FAND from FAND(T01), we introduced a choice principle BTfb which is defined
in terms of some notions on countable trees, and showed that KL is equivalent to
WKL plus BTfb over EL0 plus some additional induction principles. In addition,
FAND is derived from FAND(T01) plus BTfb over EL0. On the other hand, it is still
open whether FAND derives BTfb constructively without using strong countable
choice principles. See [1] for more details.

According to the outcome of our investigation, the equivalents of FAND in
constructive (reverse) mathematics can be classified into some different classes
if one works over a constructive theory containing only weak countable choice
principles (e.g. EL0 or HAω + QF-AC1,0). At the end of this talk, I illustrated this
phenomenon in a concrete study of the uniform continuity theorem [5], which is
from my joint work with Tatsuji Kawai.

References

[1] M. Fujiwara, König’s lemma, weak König’s lemma, and the decidable fan theorem, submit-
ted, 2020.

[2] H. Ishihara, Constructive reverse mathematics: compactness properties, In: From sets and
types to topology and analysis, volume 48 of Oxford Logic Guides, pages 245–267, Oxford
Univ. Press, Oxford, 2005.

[3] A. S. Troelstra and D. van Dalen, Constructivism in mathematics, An introduction, Vol. I,
volume 121 of Studies in Logic and the Foundations of Mathematics. North Holland, Ams-

terdam, 1988.
[4] S. G. Simpson. Subsystems of second order arithmetic, Perspectives in Logic. Cambridge

University Press, Cambridge, second edition, 2009.
[5] M. Fujiwara and T. Kawai, Decidable fan theorem and uniform continuity theorem with

continuous moduli, submitted, 2020.

Quantitative translations for viscosity approximation methods

Pedro Pinto

(joint work with Ulrich Kohlenbach)

Proof mining is a research program that employs proof theoretical tools to obtain
additional information from mathematical results ([1]). Its techniques have been
applied successfully to many areas of Mathematics with special focus on Nonlinear
Analysis. One well known strongly convergent algorithm in Fixed Point Theory
is due to Halpern [2]. Let X be a Banach space and C a nonempty, closed and
convex subset. Consider T a nonexpansive map on C (i.e. ‖T (x)−T (y)‖ ≤ ‖x−y‖
for all x, y ∈ C), and (αn) ⊂ [0, 1] a sequence of real numbers. With u (the anchor
point), and x0 given points in C, the Halpern iteration is defined recursively by

(H) xn+1 := αnu+ (1 − αn)T (xn).

The strong convergence of the Halpern iteration towards a fixed point of T has
been extensively studied and was generalized in several different ways. Introduced
by Moudafi [3], the viscosity approximation method is one such generalization in
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which the anchor point of the iteration is replaced by a strict contraction map, i.e.
by a map φ satisfying ∀x, y ∈ C(‖φ(x) − φ(y)‖ ≤ r‖x− y‖), for some r ∈ [0, 1),

(vH) xn+1 := αnφ(xn) + (1 − αn)T (xn).

The study of these iterations is highly relevant with applications in many practical
optimization problems. In [4], Suzuki showed that the convergence of the gener-
alized viscosity version (vH) can be reduced to the convergence of the original
iteration (H). In such strong convergence results, one usually looks for metasta-
bility rates, i.e. a function ϕ : (0,∞) × N

N → N satisfying

(1) ∀ε > 0∀f ∈ N
N∃n ≤ ϕ(ε, f)∀i, j ∈ [n, f(n)] (‖xi − xj‖ ≤ ε) ,

or for Cauchy rates (the particular case where the rate of metastability does not
depend on the counterfunction f). The quantitative analysis of Suzuki’s result
concerns the analysis of a Π0

3 → Π0
3 statement and its proof-theoretical interpre-

tation translates classically (via a negative translation) into a transformation of
a rate of metastability for the original iteration into a metastability rate for the
viscosity version. Such quantitative transformation is explicitly extracted and,
furthermore, the analysis reveals that one of Suzuki’s conditions was superfluous.
Moreover, the quantitative result largely also holds in a geodesic setting. These
qualitative improvements point to the success of Proof mining in the generaliza-
tion of proofs. By an inspection of the quantitative proof it is possible to see that
the counterfunction f does not play any special role (beyond the one inherited
from the metastability hypothesis). Hence, if we begin with a Cauchy rate for the
Halpern iterations, the quantitative transformation will output also a Cauchy rate
for the viscosity versions. This entails that Suzuki’s arguments are essentially con-
structive which was not obvious a priori. This is in line with previous observations
by Kohlenbach (e.g. in [5]) that by interpreting a proof (even a constructive one)
in a classical way one obtains stronger results without any loss of information.
Some examples of applications are given: instantiating our result with metasta-
bility rates for Halpern style iterations (from [6][7][8][9]) one obtains metastability
rates for the corresponding viscosity version.

Lastly, we discuss a particular instance where it is possible to obtain a Cauchy
rate for the Halpern iteration (H). A modulus of uniqueness for being a fixed point
of a map T : C → C is a function ω : (0,∞) → (0,∞) satisfying

(2) ∀ε > 0∀x, y ∈ C (‖x− T (x)‖, ‖y − T (y)‖ ≤ ω(ε) → ‖x− y‖ ≤ ε) .

In many cases, one can obtain rates of convergence ρ for ‖xn−T (xn)‖ → 0, usually
called rates of asymptotic regularity. It is well-known that in those situations, a
modulus of uniqueness ω entails the existence of a Cauchy rate for (xn):

(3) ∀ε > 0∀i, j ≥ ρ(ω(ε)) (‖xi − xj‖ ≤ ε) .

In [10], Gwinner introduced the following notion of a uniform accretive operator
(here A = Id − T , for T a nonexpansive map on C): there is a strictly increasing
function ϕ : [0,∞) → R such that limt→∞ ϕ(t) = ∞ and for all x, y ∈ C

(4) ∃j ∈ J(x− y) (〈A(x) −A(y), j〉 ≥ (ϕ(‖x‖) − ϕ(‖y‖)) · (‖x‖ − ‖y‖) ) ,
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where J is the normalized duality map of X . Under this assumption, in the
setting of uniformly convex Banach spaces, we extract a modulus of uniqueness
from Gwinner’s uniqueness proof. Using a rate of asymptotic regularity from [11],
we finish the talk with an application of this result to obtain a Cauchy rate for
the Halpern iteration (and thus also for the viscosity version) when αn = 1

n+1 .
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On minimality of the Minimalist Foundation

Maria Emilia Maietti

We here report some open issues and related results regarding the minimality of the
Minimalist Foundation among relevant foundations for constructive and classical
mathematics.

The Minimalist Foundation (MF) is a predicative foundation for constructive
mathematics ideated in joint work with G. Sambin in [MS05] and completed to a
two-level system in [Mai09].

MF consists of two levels with an interpretation of one into the other: an
intensional level suitable as a base for a proof-assistant and for the extraction of
computational contents from proofs, an extensional level formulated in a language
close to that of ordinary mathematics, and an interpretation of the extensional
level in the intensional one by means of a quotient completion (see [Mai09]).

A key feature of MF is that both its intensional and extensional levels consist
of type systems extending versions of Martin-Löf’s type theory with a primitive
notion of propositions in such a way that propositions are proof-irrelevant at the
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extensional level and proof-relevant at the intensional one, and choice principles
including the axiom of unique choice, even in the form of a rule as those valid in
Heyting arithmetics, are not generally valid (see [Mai17]).

MF was called minimalist in [MS05] because it was intended to constitute a
common core among the most relevant constructive and classical foundations for
mathematics in the literature.

The two level structure of MF is crucial to establish its compatibility with other
foundations at the most appropriate level: the intensional level of MF can be
easily interpreted in intensional theories such as those formulated in type theory,
for example Martin-Löf’s type theory or Coquand-Huet’s Calculus of Inductive
Constructions, while its extensional level can be easily interpreted in extensional
theories such as those formulated in axiomatic set theory, for example Aczel’s
constructive set theory CZF or those formulated in category theory as topoi. It
is worth noting that all the mentioned interpretations preserve the meaning of
propositions and of their set theoretic constructors.

Since the intensional level of MF is interpretable in first order fragment of
Martin-Löf’s type theory with one universe or in Feferman’s theory of non-iterative

fixpoints ÎD1 in [Fef82] as shown in [IMMS18], then clearly MF is predicative in
the sense of Feferman.

The intuitionistic version of the arithmetic comprehension axiom system ACAi

can be interpreted in both levels of MF by preserving the meaning of proposi-
tions and of its axioms. The same happens for the classical version ACA within
MF+EM namely MF extended with the law of excluded middle. But MF ap-
pear to be stronger than ACAi since it validates induction principles which allow
to define the inductively generated formal topology of Cantor space and that of
Dedekind real numbers.

It is still an open problem to establish the exact proof-theoretic strength of MF
and of its classical version MF+EM.

In particular to establish the predicativity of MF+EM is an important issue
to discriminate MF among other foundations. Indeed most relevant foundations
for constructive mathematics, such as Martin- Löf’s type theory and Aczel’s CZF,
becomes impredicative with the addition of the principle of excluded middle.

In our talk we want to shed some lights about this open problem by showing that
in the extensional level of MF+EM real numbers defined as Dedekind sections,
or as equivalence classes of Cauchy functional relations, do not form a set in
accordance with Weyl’s approach to foundation of mathematics. The same model
reveals that the power-collection of the natural numbers is not a set there, too.

The proof of this theorem consists in interpreting the extensional level of the
two-level system MF+EM in the quasi-topos of assemblies [van08] within Hy-
land’s Effective topos [Hyl82], by interpreting propositions as strong monomor-
phisms, sets as countable assemblies and power-collections as the quasi-topos
power-objects.
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From this model we can deduce that real numbers both defined as Dedekind sec-
tions or as equivalence classes of Cauchy functional relations do not form a set in
the extensional level of MF, too.

Instead Bishop real numbers defined as equivalence classes of regular sequences
represented by lambda terms do form a set both in MF and in MF+EM and in
the mentioned model these are interpreted as computable real numbers.
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On the uncountability of R

Sam Sanders

(joint work with Dag Normann)

The uncountability of R states that there is no injection (or bijection) from R

to N. Central as this statement may be to mathematics and its foundations, it has
hitherto not been studied from a logical or computational point of view in detail.

We provide an overview of the state-of-the-art in higher-order arithmetic with
results from [2], including the following:

First of all, the uncountability of R is hard to prove, the reals claimed to exist hard
to compute (Kleene S1-S9), in that full second-order arithmetic comes to the fore,
as has been established for the uncountable Heine-Borel theorem and the gauge
integral. Thus, a new level of simplicity has been reached since [1].

Secondly, the previous item merely indicates that the ‘normal’ scale based on
comprehension and discontinuous functionals is not the right scale for measuring
the logical and computational strength of the uncountability of R. Indeed, we
introduce the ‘non-normal scale’ in which the latter is among the weakest principles
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(both logical and computational). In other words, a new level of conceptual clarity
has been reached since [1].

Thirdly, exploring the ‘non-normal’ scale, we observe that many theorems of ordi-
nary mathematics imply the uncountability of R, including ‘pre-set theory’ results
like Arzela’s convergence theorem for the Riemann integral. The same holds for
relative computability in the sense of Kleene (S1-S9). In other words, a new level
of comprehensiveness has been reached since [1].

Fourth, formulating ‘countable set’ based on ‘injection to N’, we show that the
Bolzano-Weierstrass theorem for countable sets of reals in [0,1] is highly explosive:
combining it with the Suslin functional, i.e. higher-order Π1

1-comprehension, one
obtains Π1

2-comprehension, In other words, a new level of explosive power has been
reached since [1].
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Quantitative Tauberian Theorems

Thomas Powell

Tauberian theory compares different methods of summability. The earliest Taube-
rian theorem (due to and named after A. Tauber [1]) states that if the Abel sum
of a series exists, and moreover the coefficients are of the order o(1/n), then the
series itself converges to its Abel sum. Tauber’s theorem has been significantly
generalised, and has given rise to a whole research area dedicated to theorems of
this type [2].

In this talk, I discussed proof theoretic aspects of Tauberian theorems, in partic-
ular the prospect of applying techniques from proof theory to obtain quantitative
versions of these theorems. I first gave an account of some preliminary work along
these lines [3], where simple “finitizations” of Abel’s and Tauber’s theorem via
Gödel’s Dialectica interpretation [4] are given. I then presented some work–in–
progress aimed at giving a proof theoretic account of the famous Littlewood [5]
and Hardy-Littlewood [6] Tauberian theorems. To conclude, I listed some open
questions, including the following:

(1) Can proof theoretic methods like the Dialectica interpretation be applied
to produce new “remainder theorems” in Tauberian theory which don’t
have any precedent in the literature?

(2) Are there abstract quantitative metatheorems (in the sense of the proof
mining program) which unify and generalise groups of closely related
Tauberian theorems?

I hope to make some progress on these questions in the future.
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Resolving finite indeterminacy

Peter Schuster

(joint work with Daniel Wessel)

Abstract algebra abounds with ideal objects and the invocations of transfinite
methods, typically Zorn’s Lemma, that grant those object’s existence. Put under
logical scrutiny, ideal objects often serve for proving the semantic conservation
of additional non-deterministic sequents, that is, with finite but not necessarily
singleton succedents. By design, dynamical methods in algebra [2, 4, 9] allow to
eliminate the use of ideal methods by shifting focus from semantic model extension
principles to syntactical conservation theorems, which move has enabled Hilbert’s
Programme for modern algebra.

A paradigmatic case, which to a certain extent has been neglected in dynamical
algebra proper, is Krull’s Lemma for prime ideals. A particular form of this asserts
that a multiplicative subset of a commutative ring contains the zero element if and
only if the set at hand meets every prime ideal. Prompted by Kemper and Yengui’s
novel treatment of valuative dimension [3], the authors of the present note together
with Yengui have recently put Krull’s Lemma under constructive scrutiny [7]. This
development has eventually helped to unearth the underlying general phenomenon
[8]: Whenever a certificate is obtained by the semantic conservation of certain
additional non-deterministic axioms, there is a finite labelled tree belonging to a
suitable inductively generated class which tree encodes the desired computation.

Recall that a consequence relation on a set S is a relation ⊲ between finite
subsets1 and elements of S, which is reflexive, monotone and transitive:

U ∋ a
U ⊲ a

(R)
U ⊲ a
U, V ⊲ a

(M)
U ⊲ b U, b⊲ a

U ⊲ a
(T)

1We understand a set to be finite if it can be written as { a1, . . . , an } for some n ≥ 0.
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where the usual shorthand notations are in place. The ideals of a consequence
relation are the subsets a of S closed under ⊲ in the sense that if a ⊇ U and U ⊲a,
then a ∈ a. If U is a finite subset of S, then its closure is an ideal:

〈U〉 = { a ∈ S | U ⊲ a }

A decisive aspect of our approach is the notion of a regular set for certain
non-deterministic axioms over a fixed consequence relation, where by a non-
deterministic axiom on S we understand a pair (A,B) of finite subsets of S.
A subset p of S is closed under (A,B) if A ⊆ p implies p ≬ B, where the latter is
to say that p and B have an element in common.

Let E be a set of non-deterministic axioms over ⊲. A prime ideal is an ideal of
⊲ that is closed under every element of E . For instance, if ⊲ denotes deduction,
and E consists of all pairs (∅, {φ,¬φ }) for sentences φ, then the (prime) ideals are
exactly the (complete) theories.

A subset R of S is regular with respect to E if, for all finite subsets U of S and
all (A,B) ∈ E ,

(∀b ∈ B) 〈U, b〉 ≬ R

〈U,A〉 ≬ R

Abstracted from the multiplicative subsets occurring in Krull’s Lemma, regular
sets haved proved the right concept for our Universal Prime Ideal Theorem:

Proposition 1 (ZFC). A subset R of S is regular if and only if for every ideal a
we have R ≬ a precisely when R ≬ p for all prime ideals p ⊇ a .

Regular sets further account for the constructive version of Proposition 1. To
this end, given an ideal a, we next define a collection Ta of finite labelled trees
such that the root of every t ∈ Ta be labelled with a finite subset U of a, and the
non-root nodes with elements of S. The latter will be determined successively by
consequences of U along the elements of E .

We understand paths, which necessarily are finite, to lead from the root of a
tree to one of its leaves. Given a path π of t ∈ Ta, we write π ⊲ a whenever
U, b1, . . . , bn⊲a where U labels the root of t and b1, . . . , bn are the labels occurring
at the non-root nodes of π.

Definition. Let a be an ideal. We generate Ta inductively according to the fol-
lowing rules:

(1) For every finite U ⊆ a, the trivial tree (i.e., the root-only tree) labelled
with U belongs to Ta.

(2) If (A,B) ∈ E and if t ∈ Ta has a path π such that π ⊲ a for every a ∈ A,
then add, for every b ∈ B, a child labelled with b at the leaf of π.

We say that t ∈ Ta terminates in R ⊆ S if for every path π of t there is r ∈ R
such that π ⊲ r.

Our Constructive Universal Prime Ideal Theorem works in (a fragment of)
Constructive Zermelo–Fraenkel set theory CZF :
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Proposition 2 (CZF). A subset R of S is regular if and only if for every ideal a
we have R ≬ a precisely when there is a tree t ∈ Ta which terminates in R.

We thus uniformise many instances of the dynamical method and generalise
the universal proof-theoretic conservation criterion offered before [6], which by
Scott–style entailment relations [1] unifies numerous phenomena, e.g. [5].
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Radical theory of Scott-open predicates

Daniel Wessel

(joint work with Peter Schuster)

Let R be a commutative ring with 1, and let a ⊆ R be an ideal of R. The Jacobson
radical Jac(a) of a is widely known as the set of all ring elements that belong to
every maximal ideal of R containing a. Assuming the axiom of choice, this receives
a well-know description in first-order terms, viz.

Jac(a) = { a ∈ R | (∀b ∈ R)( 1 ∈ 〈a, b〉 → 1 ∈ 〈a, b〉) } ,

which is used to define the Jacobson radical in constructive algebra [5].
Here is our motivating question: Can we find a syntactical counterpart to max-

imality principles such as those ascribed to Teichmüller [10] and Tukey [11], in a
manner similar to how the Jacobson radical—in its computationally meaningful
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form—relates to Krull’s maximal ideal theorem [4]? Our challenge is thus to solve
the following analogy:

Jacobson

Krull
∼

?

Teichmüller-Tukey
.

Passing from ideals of R to elements of a complete lattice L, while replacing
comaximality (i.e., the property of a set of ring elements to generate 1) with a
fixed (but arbitrary) Scott-open subset O of L, we are led to a closure operator j,

jx =
∨

{ a ∈ L | (∀b ∈ L)( a ∨ x ∈ O → b ∨ x ∈ O ) } ,

related forms and instances of which had previously been considered on distributive
lattices [2], complete multiplicative lattices [3], quantales [1], and frames [9].

Key features of this j can be isolated by defining, inductively, an auxiliary
relation ⊑,

x ≤ y

x ⊑ y

y ∈ O

x ⊑ y

x ⊑ y ∨ a (∀b ∈ Oa)x ⊑ y ∨ b

x ⊑ y

where Oa = { b ∈ L | a ∨ b ∈ O }. The principal ideals generated by j-fixed ele-
ments of L can be described in terms of ⊑. In fact, for every x, y ∈ L,

x ⊑ y if and only if x ≤ jy.

Upon introducing (once again inductively) a certain class of labelled binary
trees, appropriately adapting our termination principles [7, 8] by way of ⊑, we
are able to pin down the computational import of a powerful separation principle
equivalent to the axiom of choice, and obtain a new reading of the Teichmüller-
Tukey Lemma.

McCabe’s short proof of Zariski’s lemma [6] is an exemplary, concrete applica-
tion. Rather than showing a certain ring element a to be in every maximal ideal,
and thus to argue that 1 + a be a unit, we show, towards the same conclusion,
that every path of a corresponding tree generates the required data. Incidentally,
this sheds new light on Yengui’s backtracking method [12].
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Two recent results in proof mining

Andrei Sipoş

We present two case studies that belong to the research program of proof mining,
which aims to analyze proofs in mainstream mathematics using proof-theoretic
tools in order to reveal information which may not be immediately apparent and
which is most often of a quantitative nature (a comprehensive monograph is [5],
while a recent survey is [6]). For example, if a theorem states that a given sequence
converges, one would want to extract a rate of convergence for the sequence. How-
ever, frequently, such a rate cannot be extracted using proof mining, not because
of any limitation in the techniques, but simply because such a rate may not be uni-
form or may even be uncomputable. In this case, the next best thing is to analyze
the (classically but not constructively) equivalent version of it, called “metastabil-
ity” by Terence Tao (at the suggestion of Jennifer Chayes), expressed as

∀ε ∀g : N → N ∃N ∀i, j ∈ [N,N + g(N)] d(xi, xj) ≤ ε

and tries to extract a “rate of metastability”, i.e. a bound on the N depending on
ε, g and possibly some other parameters of the problem.

Our first result (from the paper [9]) concerns the extraction of such rates of
metastability for Picard, Mann and Ishikawa iterations of continuous functions on
the unit interval [0, 1]. Some work had already been done by Jaime Gaspar in his
PhD thesis [4], where he analyzed a theorem due to Hillam, which states that if
f : [0, 1] → [0, 1] is continuous, x ∈ [0, 1] and limn→∞(fnx − fn+1x) = 0, then
the sequence (fnx) converges. We first closed this circle of ideas, analysing more
general versions of this due to Franks/Marzec and Rhoades, which do not depend
on that asymptotic regularity assumption, thus extracting unconditional rates of
metastability. Then, we analyzed another result due to Borwein/Borwein [2],
which states that if L > 0, f : [0, 1] → [0, 1] is L-Lipschitz and (xn), (tn) ⊆ [0, 1]
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be such that for all n, xn+1 = (1 − tn)xn + tnf(xn), if there is a δ > 0 such that
for all n,

tn ≤
2 − δ

L+ 1
,

then the sequence (xn) converges. The argument in the proof posed a significant
challenge – it had not been so far analyzed using proof mining techniques. We
managed to extract a rather complex rate of metastability for this kind of iteration,
depending on ε, g and the δ above.

Our second result (from the paper [10]) concerns the extraction of rates of
metastability for the mean ergodic theorem. The classical mean ergodic theorem
due to von Neumann and Riesz had been previously analyzed proof-theoretically
by Avigad, Gerhardy and Towsner [1] and by Kohlenbach and Leuştean [7]. What
we do is to analyzed a later proof of Riesz’s [8] that uses an argument which
can be readily applied to a generalization of it to multiple commuting operators
(sometimes attributed to Dunford [3]). This generalization states that if X is a
uniformly convex Banach space, d ≥ 1 and T1, . . . , Td : X → X are commuting
linear operators such that for each l and for each x ∈ X , ‖Tlx‖ ≤ ‖x‖, then for
any x ∈ X , the sequence (xn), defined, for any n, by

xn :=
1

(n+ 1)d

n∑

k1=0

. . .
n∑

kd=0

T k1

1 . . . T kd

d x

is convergent. We managed to extract a rate of metastability for this sequence that
depends, in addition to ε and g, on d, an upper bound b for ‖x‖ and a modulus of
uniform convexity η for X .
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Quantitative results for equilibrium problems

Nicholas Pischke

(joint work with Ulrich Kohlenbach)

I present a recent application [7] of proof mining (see [4] for a recent survey and [3]
for the main textbook reference) to algorithmic solutions of the equilibrium prob-
lem in convex optimization. Equilibrium problems arise as abstractions of many
interesting mathematical results: the famous Nash-equilibrium in non-cooperative
games, the classical variational inequality problem, saddle point problems, convex
minimization problems, fixed point problems and many more can be phrased as
special equilibrium problems (see [2]).

In the abstraction considered here, equilibrium problems take the form of

Problem 1. For a closed and convex set C ⊆ R
N and a function f : C × C → R

with f(x, x) = 0 for all x ∈ C, find a u ∈ C with

f(u, y) ≥ 0 for all y ∈ C.

In [1], H. Iiduka and I. Yamada introduced an algorithm for approximating
solutions of the above problem (modulo additional requirements on f) for the par-
ticular instance of C being the set of fixed-points of a firmly nonexpansive mapping
T and proved its convergence. The algorithm follows a general scheme for solving
equilibrium problems presented in [2] by first reducing the equilibrium problem to a
convex feasability problem and then solving that using subgradient-approximations
for the metric projections of the involved convex sets in combination with a hy-
brid steepest descent method defined (only in the context of variational inequality
problems) in [9].

I present two quantitative versions of their convergence result which were ob-
tained by a proof-theoretic analysis of the respective proof using recent quanti-
tative results on the convergence of Fejér monotone sequences [5, 6] (which also
originated from the proof mining program). While the first result is only an explicit
rate of metastability (in the sense of Tao [8]), under mild quantitative assumptions
on the input parameters, the second result even gives a rate of convergence under
a respectively strong “metric regularity” assumption.

References

[1] H. Iiduka and I. Yamada. A subgradient-type method for the equilibrium problem over the
fixed point set and its applications. Optimization, 58(2):251 – 261, 2009.

[2] A. Iusem and W. Sosa. Iterative algorithms for equilibrium problems. Optimization,
52(3):301 – 316, 2003.

[3] U. Kohlenbach. Applied Proof Theory: Proof Interpretations and their Use in Mathematics.
Springer Monographs in Mathematics. Springer-Verlag Berlin Heidelberg, 2008.

[4] U. Kohlenbach. Recent progress in proof mining in nonlinear analysis. IFCoLog Journal of
Logics and their Applications, 10(4):3361 – 3410, 2017.
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Converse extensionality and apartness

Benno van den Berg

(joint work with Robert Passmann)

Following Kreisel one of the main concerns of proof theory has become the extrac-
tion of hidden computational information from proofs. For this purpose Gödel’s
Dialectica interpretation (combined with negative translation, if necessary) has
proven itself to be indispensable. Indeed, within proof mining functional interpre-
tations of various kinds have become a sophisticated and flexible tool for extracting
additional qualitative and quantitative information from proofs.

One of the hardest principles to interpret using a functional interpretation is
the principle of function extensionality. This principle, which says that two func-
tions are equal if they yield the same output on the same input, is pervasive in
mathematics. But it has proven difficult to interpret using the Dialectica interpre-
tation, the reason being that the Dialectica interpretation requires one to interpret
a stronger form of extensionality, which we have dubbed converse extensionality:

CEn : ∃X ∀Φn+2 ∀f, g
(

Φf 6=0 Φg → f(XΦfg) 6=0 g(XΦfg)
)
.

As shown by Howard (see [1]), CE0 cannot be witnessed in the term model of
Gödel’s T and CE1 is unprovable in Zermelo-Fraenkel set theory (without choice).
This has often been taken as an indication that a computational interpretation of
function extensionality is well-nigh impossible.

Together with Robert Passmann, we have started to investigate whether the
situation is really that hopeless. Our idea is that by a suitable enrichment of data
it might still be possible to interpret (fragments of) converse extensionality. For
this we are looking at Brouwer’s notion of apartness.

Brouwer’s idea was that equality might not be a primitive concept and could
be defined as the negation of a strong notion of inequality called apartness. The
paradigmatic example is the real numbers, where two reals r and s are apart when
there are disjoint intervals with rational endpoints I1 and I2 such that r ∈ I1 and
s ∈ I2. Equality of real numbers can then be defined as not being apart.

Our first step is the observation (see also [2]) that on all the finite types equality
can indeed be defined as the negation of a suitable notion of apartness. But that
means that one may require functionals f of type σ → τ to come equipped with
additional data that explains how from evidence that fx and fy are apart one
obtains evidence that x and y are apart. Our initial results do indeed suggest that
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by enriching functionals with this data one may interpret certain forms of converse
extensionality, although the results are not (yet) as strong as we had hoped.

To formulate the results that we have obtained so far, we use the notion of a
typed combinatory algebra (tca), basically a model of Gödel’s T . We show that
from every tca (including the term model of Gödel’s T ) one can define a new tca,
which we have dubbed the apartness types. By using modified realizability over
these apartness types one can interpret CE0. This shows (pace Howard) that it
might still be possible to interpret CE0 using terms from Gödel’s T . To interpret
stronger principles (CE1 and higher) we currently have to use tcas which satisfy
suitable continuity principles.

We feel that stronger results should be possible by employing our methods.
Indeed, at the workshop several interesting suggestions were made which we hope
to be able to explore soon.
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Proof search problem

Jan Kraj́ıček

Propositional proof complexity is linked with SAT solving by interpreting the run
of a complete SAT algorithm that fails to find a satisfying assignment for ϕ as
a proof that ¬ϕ is a tautology. Often such an “abstract” proof system is equal
to (or close to) a standard proof system as is R (resolution). Various technical
results (and lower bounds, in particular) known in proof complexity for the proof
system can then be interpreted as results about the original algorithm. That is,
proof complexity contributes to the analysis of SAT algorithms.

This seems to be too narrow and proof complexity ought to attempt to precisely
formalize and to answer some of the outstanding informal problems. These include:

(1) How do you compare two proof search algorithms and is there an optimal
way to search for propositional proofs?

(2) Why it does not seem to be particularly helpful to search for proofs in
stronger proof systems?

(3) How is it possible that real-world algorithms (SAT or automated theorem
proving) perform well even for very long formulas while we have exponen-
tial lower bounds for the associated proof systems?

Basic notions of proof complexity as are propositional proof systems and simu-
lations and p-simulations among them, can be found in [1]. The fundamental
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problems are the NP vs. coNP problem, asking whether for some proof system P
is the length-of-proof function

sP (τ) := min (|w| | w is a P -proof of τ )

bounded by |τ |O(1), and the optimality problem: Is there a proof system that is
maximal in the quasi-ordering induced by (p-)simulation? The optimality problem
relates to a number of questions in a surprisingly varied areas and there are quite
a few relevant statements known (cf. [1, Chpt.21]).

We define a proof search algorithm to be a pair (A,P ), where P is a proof
system and A is a deterministic algorithm such that A(τ) is a P -proof of τ , for all
tautologies τ . We note two statements:

Lemma For any fixed proof system P there is A such that (A,P ) is time-optimal
among all (B,P ); it has at most polynomial slow-down:

timeA(τ) ≤ timeB(τ)O(1) .

Let (AP , P ) denote some proof search algorithm time-optimal among all (B,P ).

Theorem Let P be any proof system containing R and having the property that
for some c ≥ 1, for every τ and every τ ′ obtained from τ by substituting constants
for some atoms it holds sP (τ ′) ≤ sP (τ)c.

Then P is p-optimal iff (AP , P ) is time-optimal among all proof search algo-
rithms (B,Q).

The proof of the non-trivial if-direction uses the fact that for any Q there is a
p-time construable sequence of tautologies

〈RefQ〉n , n ≥ 1

such that if it is feasible to construct P -proofs of these formulas then P p-simulates
Q.

Another context where easy sequences of hard formulas appear are length-of-
proofs lower bounds: whenever we can show that Q is stronger than P we can
demonstrate it on such a sequence.

I would like to have a definition of a quasi-ordering on proof search algorithms
that does not declare (B,Q) stronger only because B will recognize a simple se-
quence of formulas that have short Q-proofs but long P -proofs. The idea is that
we compare proof search algorithms only on special test sets T that do not contain
easy to recognize sets of tautologies. Having such a notion, we put

Definition Define that (A,P ) is as good as (B,Q), denoted by (A,P ) � (B,Q),
iff for all test sets T :

timeA(τ) ≤ timeB(τ)O(1) for all τ ∈ T .

In [1, Sec.21.5] I took test sets to be of the form TAUT \H with H ∈ P/poly,
allowing to disregard those easy sequences of hard formulas. But maybe one
ought to disallow all such easy sets at the same time, and to declare a set easy if
it is computable in sub-exp-time 2o(n) rather than in p-time. Such “subexp-time-
immune” subsets of TAUT can be constructed by a diagonalization process but
there are also candidates that are more transparent, constructed from conjectured
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proof complexity generators: tautologies in such test sets express that a string is
outside of the range of a suitable map.

An open problem is whether for some natural test sets there is (A,P ) that is
�-maximal among all proof search algorithms. It would be interesting if some
such � allowed for an unconditional affirmative answer and if the proof system P
would be one of the weaker proof systems (this would offer answers to informal
problems 1 and 2 mentioned above).

While we have easy sequences of hard formulas for various proof systems they
are in a sense rather rare (e.g. combinatorial principles or reflection principles).
This can be an explanation why real life algorithms solve problems of huge size
(cf. informal problem 3 above): the formulas are instances from easy to describe
sets and such sets of hard formulas are rare.

Slides from the talk are available at:
www.karlin.mff.cuni.cz/˜krajicek/talk-proofsearch-mfo-11-20.pdf
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Towards #P

Isabel Oitavem

(joint work with Reinhard Kahle, Ugo dal Lago)

1. Introduction

We give recursion-theoretic characterizations of the counting class #P . This is
done in the style of Bellantoni and Cook’s safe recursion, and it takes #P into
the context of implicit computational complexity. Namely, it relates #P with the
implicit characterization of FPtime [1] and FPspace [4], by exploiting the features
of the tree-recursion scheme of FPspace.

The class #P was introduced by Valiant [5] as the class of functions which
count the number of accepting computations of non-deterministic Turing machines
working in polynomial time. For this class, Wagner [7] introduced a hierarchy of
counting functions by allowing queries to functions of the previous level. Vollmer
and Wagner [6] gave a characterization of #P which uses a closure under a SUM
operator.

2. Two implicit approaches to #P

We consider functions defined over 0-1 words. Thus by addition (+) and product
(·) we mean the word representation of the usual addition and product functions
over natural numbers. Moreover, we follow the notation introduced in [1], where
functions have two sorts of input positions: normal and safe — f(x̄; ȳ).
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Let ST0 be the input-sorted characterization of FPtime given by Bellantoni and
Cook, rephrased over 0-1 words. Based on [4], FPspace can be described as the
closure of FPtime under sorted composition and sorted tree-recursion. One writes
FPspace = [ST0; SC, STR], where f = SC [g, r̄, s̄] if f(x̄; ȳ) = g(r̄(x̄; ); s̄(x̄; ȳ)), and
f = STR [h] (g) if

f(p, ǫ, x̄; ȳ) =g(p, x̄; ȳ)

f(p, zi, x̄; ȳ) =h(p, zi, x̄; ȳ, f(p0, z, x̄; ȳ), f(p1, z, x̄; ȳ)), with i ∈ {0, 1}.

We define ST1 = [ST0; SC0, STR [+]], where SC0 [g, r̄, s̄] is SC [g, r̄, s̄] with the pro-
viso r̄, s̄ ∈ ST0, and f = STR [+] (g) if

f(p, ǫ, x̄; ȳ) =g(p, x̄; ȳ)

f(p, zi, x̄; ȳ) = + (; f(p0, z, x̄; ȳ), f(p1, z, x̄; ȳ)), with i ∈ {0, 1}.

The main result is: #P = ST1 — see [3]. This is an implicit characterization of
#P that establishes the closure of the class under a certain ‘level’ of composition.
This is a sensitive issue since #P is not known to be closed under composition. A
similar technique is used in [2] to approach NP. Concerning recursion, the STR [+]
scheme corresponds, in this context, to the SUM operator used by Vollmer and
Wagner in [6]. However, the STR [+] scheme gives us the possibility to extend
the class of step functions. Instead of taking only + as step function in the tree-
recursion scheme, one can enlarge the class of step functions without leaving #P .
This is a feature that reflects the robustness of the characterization, and that we
do not see in approaches based on the SUM operator.

Of course that step functions are expected to be aligned with the implicit
characterization of FPspace mentioned above. In particular, they should respect
the bounding lemma given in [4]. Thus, only functions satisfying |h(;u, v)| ≤
max(|u|, |v|) + k, for some constant k, are considerable. Notice that the addi-
tion (+) satisfies it, but multiplication (·) does not. There are also some other
constraints that one has to keep in mind. Namely, that recursion generalizes com-
position and, again, #P is not known to be closed under composition.

Let Affine denote the set of all affine functions of arity 2 (over 0-1 words), i.e.
functions h(;u, v) = a · u+ b · v + c with a, b, c ∈ {0, 1}∗. Considering STR [Affine]
the scheme STR [h] with h ∈ Affine one has that:

#P = [ST0; SC0, STR [Affine]] .

For instance, if f is defined by STR [Affine] with step function h(;u, v) = a·u+b·v+c
and base function g, one has that f(ǫ, 11) = a · a · g00 + a · b · g01 + b · a · g10 +
b · b · g11 + a · c+ b · c+ c. Notice that, in this sum, the number of factors in the
coefficients of the g’s is always 2 (i.e. the length of the recursion input). Actually,
the coefficients correspond to the arguments of the g’s — a for 0 and b for 1,
meaning that one has a · a · g00, a · b · g01, etc. The proof of the result above uses
the known closure of #P under addition (+), numeric product (·) and conditional
(provided that the decision condition is polytime).
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3. Conclusion

We characterize #P implicitly, in a recursion-theoretic manner. We address the
issue of closure under composition, by allowing a certain ‘level’ of composition
within the class. Moreover, we consider a variation of the tree-recursion scheme
illustrating the robustness of the approach. The present characterization of #P
can be extended to all levels of the polynomial hierarchy of the counting functions
and to the hierarchy itself, see [3]. Recursion-theoretic approaches also yield a
base for proof-theoretic ones, and there is ongoing work in this direction.
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Implicative algebras: completeness results

Alexandre Miquel

Implicative algebras [3] are a generalization of complete Heyting algebras intended
to factorize the model-theoretic constructions underlying forcing and realizability,
both in intuitionistic and classical logic. Each implicative algebra induces a (Set-
based) tripos [2, 4, 5], using a very general construction that encompasses the
construction of all forcing triposes (both intuitionistic and classical), all classical
realizability triposes (in the sense of Krivine [6]) and all intuitionistic realizability
triposes built from partial combinatory algebras [2].

In this talk, we show that actually, each (Set-based) tripos is (isomorphic to) an
implicative tripos, whose underlying implicative algebra can be constructed from
the generic predicate of the source tripos using domain-theoretic techniques à la
Engeler [1]. From this result, we deduce in particular that all classical (Set-based)
triposes are (isomorphic to) Krivine triposes.

We conclude the talk by discussing possible generalizations of the above result
to the framework of first-order theories without equality.



1744 Oberwolfach Report 34/2020

References

[1] E. Engeler. Algebras and combinators. Algebra Universalis, 13(1):389–392, 1981.
[2] J. M. E. Hyland, P. T. Johnstone, and A. M. Pitts. Tripos theory. In Math. Proc. Cambridge

Philos. Soc., Vol. 88, p. 205–232, 1980.
[3] A. Miquel. Implicative algebras: a new foundation for realizability and forcing. Mathemat-

ical Structures in Computer Science, 30(5):458–510, 2020.
[4] A. M. Pitts. The theory of triposes. PhD thesis, University of Cambridge, 1981.

[5] A. M. Pitts. Tripos theory in retrospect. Math. Struct. Comp. Sci. 12(3):265–279, 2002.
[6] T. Streicher, Krivine’s classical realisability from a categorical perspective. Math. Struct.

Comp. Sci. 23(6):1234–1256, 2013.

Geometric theories for constructive algebra

Henri Lombardi

Plan:
1) General aims
2) Historical perspective
3) Finitary dynamical theories as purely computational machineries
4) Extensions of dynamical theories

—————————–

1) General aims

Two slogans of Henri Poincaré criticizing the Zermelo formal system.

• Never lose sight of the fact that every proposition concerning infinity must
be the translation, the precise statement of propositions concerning the
finite.

• Avoid nonpredicative classifications and definitions.

a) Hilbert’s program for algebra

a1) To give a constructive semantic for existential theorems in algebra. E.g.,
the algebraic closure of an arbitrary discrete field: we replace the classi-
cal (static) algebraic structure given via Zorn’s lemma, by a dynamical
algebraic structure.

a2) To decipher abstract algebraic proofs leading to concrete results.

b) To use a framework where algebra becomes purely computational, without
logic, as in Goodstein Recursive Arithmetic.

c) To give a constructive version of the classical approach of geometric theories.

d) To give a constructive version of Grothendieck toposes and their “equivalence”
with geometric theories

2) Historical perspective
See the references in chronological order.
Sources of inspirations are also Kreisel unwindings and Kreisel NCI.
The book [11] contains some chapters using dynamical evaluation. In fact, many
parts of the book are directly inspired by dynamical algebra.



Mathematical Logic: Proof Theory, Constructive Mathematics 1745

3) Finitary dynamical theories as purely computational machineries
A coherent theory is a first order formal theory whose axioms have all the geometric
form

(1) ∀x
(
C =⇒ ∃ y1D1 ∨ · · · ∨ ∃ ymDm

)
m ≥ 0

where C and Dj ’s are conjunctions of atomic formulae, yj’s are lists of variables

(possibly empty), x are other variables (possibly empty). An empty disjunction
on the right can be replaced by ⊥ (False).

The corresponding dynamical theory is much simpler. Axioms are viewed as
computational rules. An axiom as (1) is used as a dynamical rule (2):

(2) Γ ⊢ Introduce y1 such that ∆1 op · · · op Introduce ym such that ∆m

Conjunctions of atomic formulae C, D1, . . . , Dm in (1) are replaced by lists of
atomic formulae Γ, ∆1, . . . , ∆m.

The meaning of op is: open branches of computations.
The meaning of Introduce y1 such that . . . is: introduce fresh variables.
Theorems are valid deduction rules. A dynamical proof is given by a computa-

tional tree. At each of the leaves, one disjunct ∆i(x, t
i) is proved (terms ti with

only x variables replace the variables yi)

If T is a (finitary) dynamical theory, a dynamic algebraic structure of type T is
given by generators and relations. It is seen as an incompletely specified algebraic
structure.

Examples

Commutative rings (purely equational theory). An arbitrary commutative ring
can be seen as a dynamic algebraic structure for any one of the following theories.

Without zero-divisor ring.

Integral domain. Not the same as the previous one.

Ring with a prime ideal (relation with Krull’s theorem).

Local ring.

Residually discrete local ring. Not the same as the previous one.

Discrete ordered field.

Real closed field.

Natural deduction
A dynamical theory can be seen as a weak form of natural deduction: only con-
junctions, disjunctions and existential quantifier. No place for quantifier ∀ or
connector ⇒.

4) Extensions of dynamical theories

Intuitively equivalent theories (definitions by name)

(1) Adding abbreviations.
(2) Adding connectors: disjunction, conjunction, existential quantifier.
(3) Adding terms: in case of unique existence.
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(4) Adding sorts (as in Bishop set theory): subsort, quotient sort, finite prod-
uct sort, finite disjoint union sort.

This changes neither valid rules nor constructive models. Is this the same thing
as constructive Morita equivalence?

Adding TEP ⇔ adding classical logic.
For adding classical logic, it is sufficient to add conjunctions, disjunctions, exis-
tential formulae and, for each predicate P an opposite predicate Q with the two
suitable axioms.

In-notP ⊢ P op Q El-notP P ,Q ⊢ ⊥

Fundamental theorem: adding classical logic gives a conservative extension.

Skolemisation.

Skolemisation gives a conservative extension [12]. Weak form of choice.

Simultaneous collapses.
This is a constructive form of extensions theorems in classical mathematics.

Theories proving the same Horn rules.
This is a constructive form of representation theorems in classical mathematics.
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Infinitary Proofs

Bahareh Afshari

In the traditional Hilbertian view, objects that exhibit non-finitary behaviour are
‘ideal’ and permitted only in intermediate steps towards results governing ‘con-
crete’ finitary objects. The ‘concrete’ proofs are, however, hard to construct.
Making the right choice amongst non-deterministic inference rules and correctly
identifying cut-formulas pose challenges in proof search. A more serious hurdle,
that befalls even analytic systems, is the presence of induction axioms. With the
problem of (induction) invariant generation being intractable, the quest for fini-
tary proof systems and the endeavour to automatically (or semi-automatically)
construct proofs go their separate ways.

Infinitary proofs, owing to their intuitive semantics, have helped break barriers
in the proof theory and treatment of logics formalising inductive and co-inductive
concepts. They can be broadly placed in two categories. ω-proofs, also known as
infinitely wide proofs, are well-founded derivation trees that allow infinite branch-
ing. In contrast, infinitely long proofs are ill-found (finitely branching) tree deriva-
tions where infinite branches are permitted as long as they follow the unfolding
pattern characterising the validity of the fixed point semantics involved. Lying
strictly between finitary and infintary proofs, and displaying many of the advan-
tages of both formalisms, are cyclic proofs : proof trees whose infinite expression
is strictly confined to periodic or repeating patterns, thereby permitting finite
representations.

Cyclic proofs can often be translated into ω-proofs. The latter provide a trans-
parent account of the interworking of logical systems which have an inherent in-
finitary nature such as fixed point logics. However, much like ill-founded proofs, ω-
proofs are computationally unattractive. For example, interpolation is frequently
provable via induction over the cut-free derivations in a finitary system, an ap-
proach which is helpless in the context of infinitary proofs but which has been
shown to be feasible in some cyclic proof systems.

We discussed known and open results regarding the the connection between
infinitary proofs, proofs with induction axioms, and cyclic proofs.
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Constructive remarks about the Theory of Central Simple Algebras

Thierry Coquand

I presented work in progress, part of several discussions with Henri Lombardi and
Stefan Neuwirth, which can also be seen as the research program of developing
systematically the theory of central simple algebras from a constructive point of
view. We are aware only of the previous work 1982 of Richman on this topic (which
is reproduced in his joint book on constructive algebra [3]). The main difficulty
which is pointed there is that one basic fundamental result of Wedderburn is not
valid constructively. This result states that any central simple algebra is a matrix
algebra over a division algebra. To explain more the situation and this difficulty,
it is convenient to go back at the original proof 1907 by Wedderburn of this result.
One main step there was that if a given nonzero element is not regular, then we
can find a non trivial idempotent in a constructive way. In general however, it is
not possible to decide if there is a non zero element which is not regular and we
cannot proceed further constructively. This is the main difficulty, and to develop
the theory of central simple algebra seems impossible without having such a result.

This difficulty is actually reminiscent of the problem of existence of the algebraic
closure of a field in constructive mathematics. In general it is not possible to
decide if a given polynomial is irreducible or not, and without having this, it
seems impossible to proceed further. The (recent) solution to this problem is
the method of dynamic algebra [2], which has two different sources. One source
comes from computer algebra [1]. The idea there is to proceed as if a given
polynomial is irreducible and introduce a formal root. When proceeding further
in a proof/computation we have to compute an inverse, and we can either find
the inverse or discover a non trivial divisor of the polynomial. We replace then
the polynomial by this factor and proceed further. The other source of dynamical
methods is to use suitable sheaf models, going back to ideas from Joyal, Mulvey,
Reyes, Wraith.

The main point of my presentation is that we can follow the first approach in the
context of central simple algebras. We proceed as if the given algebra is a division
algebra, and when we have to compute an inverse in a proof/computation for a
given element, we either find the inverse or we find a non trivial idempotent. In the
later case, we can write the algebra A as a matrix algebra over a simpler algebra
B. We then proceed by replacing the given algebra A by the simpler algebra B.
(It should be noted that it is not clear at this stage if the second approach using
sheaf models can apply here; we seem to need some kind of “non commutative”
space for this.)

Using these ideas, we can get a “dynamic” version of Wedderburn 1907 result
and start to develop the theory of central algebra. It is remarkable that most
other basic results hold in a non dynamic way: for instance the fact that the
dimension of a central algebra is always a square, or Skolem-Noether theorem that
states that any automorphism is an inner automorphism. We can also provide a
dynamic version of the result that a central simple algebra is a “twisted” form of a
matrix algebra: we can find a separable extension over which the algebra becomes
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a matrix algebra. It is then possible to define the reduced norm and trace of an
element, using constructive Galois theory.

We illustrate these ideas by providing a constructive reading of a recent simple
proof (which uses the axiom of choice) by Karim Becher of a corollary of the famous
Merkurjev theorem: for any central simple algebra of exponent 2 becomes a matrix
algebra by a sequence of quadratic extension (over a field of caracteristic 6= 2). We
replace the use of the axiom of choice by lexicographic induction over sequence of
natural numbers. Defining a sequence n1, . . . , np to be admissible if we can split
the given algebra by a sequence of formal extension of respective degree n1, . . . , np

we show that if a sequence σ,N, 2, . . . , 2 is admissible with N > 2, we can find
another admissible sequence of the form σ,m1, . . . ,ml with m1, . . . ,ml all < N .

Since there is a cohomological interpretation of the Brauer group over a given
field, we hope to connect this work with recent constructive sheaf models of uni-
valent type theory available at arxiv.org/abs/1912.10407.
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Mahloness and Partial Functions

Reinhard Kahle

(joint work with Anton Setzer)

Mahlo cardinals were introduced 1911 by Paul Mahlo [1, 2]. The recursive
analogue of a Mahlo cardinal is a recursively Mahlo ordinal: an admissible ordinal
κ is a recursively Mahlo ordinal, if for all f : M →M , which are M -recursive with
parameters in M , there exists an admissible κ < M such that ∀α < κ.f(α) < κ.

The analysis for the theory KPM by Michael Rathjen [3, 4, 5] and a corre-
sponding subsystem of analysis [6] was an important step in the development of
impredicative proof theory. Anton Setzer introduced in [7] a Mahlo universe in
Martin-Löf type theory to give it a constructive underpinning. In Explicit Math-
ematics, Mahloness was formalized first in a metapredicative setting by Jäger

and Strahm [8]. The impredicative version T0(M) was studied by Jäger and
Studer [9]; see also [10].

Explicit Mathematics is a formal framework introduced by Solomon Fefer-

man [11, 12] to formalize Bishop-style constructive mathematics. It comprises
a two sorted language, individuals (combinatory logic plus additional constants)
and types (i.e., collections of individuals). Types are named by individuals. Uni-
verses are collections of names with certain closure properties. In T0(M) a Mahlo
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universe is given in an axiomatic way, expressing the approriate closure conditions
for functions f from names to names.

We will work in Explicit Mathematics, but introduce a Mahlo universe “from
below”. Given a part of the Mahlo universe already constructed, we will add to
this collection names for subuniverses closed under functions f . The key difference
between this approach compared to the axiomatic approach above is that we will
not assume that f is a total function from names to names, but we will assume
that it is total on the subuniverse which should be closed under f .

Thus, we start with the following situation: v is the part of the universe already
constructed; u the potential subuniverse to be closed under f . u contains with b
also f b; although c is in u, f c may not (yet) be in v and u. Let sub(a, f, v) be a
name for u (see Figure 1).

Figure 1

After adding more names to v, we may reach the situation in the left part of
Figure 2, where sub(a, f, v) is closed under f :

Figure 2
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How f operates outside sub(a, f, v) does not matter: for b ∈̇ v we may have f b ˙6∈ v.
Closed (sub)universes are independent of v, in the sense that an enlargement of

v will not change their extension. Also, an enlargement of v also does not influence
the closure property of sub(a, f, v) under f . This gives our approach a predicative
character. Thus, we call our approach extended predicative.

Eventually, the Mahlo universe is obtained by enlarging a potential Mahlo uni-
verse v and sub (a, f, v) in parallel up to the stage that sub (a, f, v) is closed under f
(and, of course, doing this for all a and f), as illustrated in the right part of Fig-
ure 2. So, when sub (a, f,M) is closed under f , then the name sub (a, f,M) is added
to M. But its addition to M doesn’t affect the reason for originally adding it to M.

A formal presentation of the corresponding theory can be found in [13], but a
more detailed elaboration of the theory and its features is still work in progress.

This includes the possibility to obtain a least Mahlo universe by adding an
appropriate induction principle. A corresponding principle appears to be prob-
lematic for T0(M), as the quantifier in the “induction step” has to range over
arbitrary functions, not only those which are total from names to names. Also, in
Martin-Löf type theory, which is also based on total functions, the addition of an
induction principle for Mahlo doesn’t make sense.

Partial functions are essential for this induction principle, as total functions will
range over too few functions to permit leastness of the Mahlo universe. But we
used already partial functions in the predicative construction of the subuniverses,
which are constructed by f ’s which might not be total outside the subuniverse.

That is the reason to use Explicit Mathematics as framework instead of Martin
Löf type theory, where all functions need to be total. This is due to the underlying
Curry-Howard-correspondence which matches functions with proofs.

To mimic our account to Mahloness in Martin-Löf type theory, one would have
to answer the puzzling question (see also [14]):

What could be partial proofs?
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of Kurt Schütte, pages 469–481. Springer, 2020.

[6] Michael Rathjen. The recursively Mahlo property in second order arithmetic. Mathematical
Logic Quarterly, 42:59–66, 1996.

[7] Anton Setzer. Extending Martin-Löf type theory by one Mahlo-universe. Archive for Math-
ematical Logic, 39:155–181, 2000.
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