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Introduction by the Organizers

The workshop Almost Complex Geometry, organised by Daniele Angella (Uni-
versità di Firenze), Joana Cirici (Universitat de Barcelona), Jean-Pierre Demailly
(Institut Fourier), and Scott Wilson (Queens College, CUNY) took place in hybrid
format due to the pandemic emergency. Thirteen participants attended the work-
shop, one of which was in person, coming from eight different countries and sharing
a diverse and complimentary background. Other than the eight contributed talks,
the workshop consisted of five discussion sessions, a concluding problem session,
and asynchronous discussions held on an online platform. The aim of the workshop
was to allow all the participants to share their recent advances in several interdisci-
plinary fields, and to provide a forum to discuss and compare different and newly
proposed techniques for addressing longstanding foundational open problems in
complex and almost complex geometry.
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Shortly after a 1953 conference at Cornell University on Fiber Bundles and Dif-
ferential Geometry, Hirzebruch [Hir54] published a list of fundamental problems
related to the topology and geometry of manifolds. Many of these problems
were solved in the following years, especially those centering on the Hirzebruch-
Riemann-Roch Theorem. Some were solved only decades later through major
advances in the area. Five problems have remained essentially open to this day
[Kot13], two of which concern almost complex geometry: Problem 13 on complex
structures on CP3 and on S6, related to topological obstructions to integrability of
almost complex structures, and Problem 20 on ∂̄-harmonic forms and Dolbeault
theory for almost complex manifolds. In the workshop, we discussed very recent
developments concerning these two open problems, relating them to new algebraic,
cohomological, and analytical approaches to the study of the topology of complex
and almost complex manifolds.

Topology of complex and almost complex manifolds. A very relevant prob-
lem, continuously pursued by geometers and topologists for decades, is to find
topological obstructions to the integrability of almost complex structures. In real
dimension four there are many examples of almost complex manifolds not admit-
ting integrable structures. In this case, obstructions are attained using a variety
of tools, ranging from the Enriques-Kodaira classification of complex surfaces and
Chern number inequalities, to gauge theory via Seiberg-Witten invariants. In real
dimensions ≥ 6, it is not known whether there exists any almost complex man-
ifold not admitting an integrable structure. Although Yau speculated that such
examples do not exist, we are still in search for evidence of the conjecture.

This conjecture is related to Problem 13 in [Hir54], which concerns the exis-
tence and classification of complex manifolds. It asks whether there is a complex
structure on CP3 with vanishing second Chern class. Hirzebruch noted that such
a structure would not admit a Kähler metric and that a negative answer would
imply that the six-sphere does not carry a complex structure. The problem of
deciding whether the six-sphere admits the structure of a complex manifold goes
back to Heinz Hopf and is still one of the most prominent open problems in com-
plex geometry (see the talk by Michael Albanese). Many solutions have been
proposed in both directions, but so far these have always turned out to be faulty
(see [ABG+18] for a record).

Related to this, a wide open problem is to understand what are the rational ho-
motopy types of complex manifolds. One knows there are strong restrictions on the
rational homotopy types of Kähler manifolds, as they are all formal. Forthcoming
work [Mil20] suggests there are no rational homotopy obstructions to almost com-
plex structures other than the necessary conditions required of Chern numbers and
the congruence relations coming from index theory (see the talk by Aleksandar
Milivojevic). Sullivan has asked: Are there any additional rational homotopy
theoretic obstructions to integrable complex structures? There appears to be no
progress at all on this problem. Nevertheless, there is important recent progress in
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understanding the topology of almost complex manifolds when considering com-
patible special metrics, such as the recently established almost formality for Sasaki
and Vaisman manifolds [OV19].

Another approach to these problems is suggested by a conjecture formulated by
Bogomolov, asserting the transverse embeddability of arbitrary compact complex
manifolds into foliated algebraic varieties. In this direction, a universal embedding
space for compact almost complex manifolds was recently introduced and studied
in [DG17, Cle19, Shi19]. It can be used to investigate the existence of topologi-
cal obstructions to integrability, as the obstructions to transverse embeddability.
Another very different approach is through the calculus of variations, by the para-
bolic flows proposed in [Yau93] and [KT20]. The latter work extends Ricci flow in
a way that is compatible with almost complex structures. Establishing long-time
existence of such flows could prove to be as equally effective as the Ricci flow
program, and have significant impact on the problems above.

Cohomology of complex and almost complex manifolds. Problem 20 in
[Hir54], attributed to Kodaira and Spencer, concerns almost-Hermitian structures
and a potential generalization of Dolbeault numbers to the category of almost
complex manifolds. The problem includes two questions. The first one asks
whether the Hodge-theoretic numbers defined via ∂̄-harmonic forms are metric
independent. Very recently, Holt and Zhang [HZ20] have answered this question
negatively by constructing examples on the Kodaira-Thurston surface using meth-
ods from PDE theory, harmonic analysis, and number theory (see the talk by
Thomas Holt). The second part of the question asks for a definition of metric-
independent numbers generalizing Dolbeault cohomology to the non-integrable
case. In [CW18a], the authors naturally extend the definition of Dolbeault co-
homology groups, introducing a Frölicher-type spectral sequence for all almost
complex manifolds. The two works together thus offer a full solution to Problem
20, via completely different techniques.

Understanding cohomological invariants for (almost) complex manifolds, such as
Kodaira dimension, or Bott-Chern and Aeppli cohomologies, as well as their rela-
tions with the underlying topological structure is a common issue for the two prob-
lems above (see the talk by Jonas Stelzig). These cohomologies are also related
to the existence of further geometric structures on the manifolds, and to issues of
formality in the sense of rational homotopy [AT13]. There is a surprising number
of new cohomological approaches for almost complex, symplectic, and general-
ized complex manifolds which are receiving widespread attention. Examples are
the cohomological decompositions for almost complex manifolds of Li and Zhang
and subsequent developments [LZ15] (see the talk by Adriano Tomassini), the
Hodge theory of Tseng and Yau, in the corresponding setting of symplectic mani-
folds [TTY16], and further extensions [LV15, AOT18], and Cavalcanti’s Dolbeault
cohomology in the unifying generalized complex setting [Cav09]. In this context,
locally homogeneous manifolds of nilpotent Lie groups play a useful role as test
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examples: compare [BMn12, LU19] for some results on the classification of low-
dimensional nilmanifolds with complex or generalized complex structures in terms
of the real homotopy type.

Special metrics on complex manifolds. We paid special attention to recent
powerful results arising with the presence of special metrics, such as almost Kähler,
strong Kähler with torsion, and balanced metrics. These metrics are also impor-
tant because of their role in the geometry of compactification of heterotic super-
strings with torsion to 4-dimensional Minkowski spacetime (see the talk by Anna
Fino).

Additional cohomological properties under non-Kähler metric assumptions were
obtained earlier in Verbitsky’s work on harmonic forms for nearly Kähler manifolds
[Ver11]. This has strongly influenced the works of Wilson on Hermitian Hodge
theory [Wil19], and of Cirici-Wilson [CW18b] and Tardini-Tomassini [TT19] on
almost Kähler Hodge theory (see the talk by Nicoletta Tardini), with strong
connections with symplectic geometry and topology.

Progress is being made on many interesting open problems related to the in-
tegrability of restricted geometries, such as Donaldson’s question on almost com-
plex structures tamed by a symplectic form on 4-dimensional manifolds [TWY08,
TW11]. The analogue of Donaldson’s tamed-to-compatible question in higher di-
mension forces the almost complex structure to be integrable: it asks whether
there exist non-Kähler Hermitian-symplectic complex manifolds (see the talk by
Dan Popovici). Hermitian-symplectic structures are closely related to SKT met-
rics, which in the generalized geometry approach, allows one to develop a Hodge
theory for SKT metrics (see the talk by Gil Cavalcanti).

Open problems. The following problems were discussed.

• The foundational open problems are of course the Hopf and Yau problems
[Hop48, Hir54, Yau93, ABG+18], concerning the existence of a higher-
dimensional almost complex manifold admitting no integrable almost com-
plex structures. The six-dimensional sphere is clearly an interesting, po-
tential example; on the other side, one may hopefully think about more
interesting examples from the rational homotopy point of view.

• Related to the above, we recall the Sullivan question: Are there any addi-
tional rational homotopy theoretic obstructions to integrable complex struc-
tures?

• There are four-manifolds which admit an almost complex structure but
no complex structures. The statement follows by the Enriques–Kodaira
classification and Chern number inequalities, but it would be useful to have
other arguments for this that avoid classification and the special properties
of compact complex Kähler surfaces [Lam99, Buc99].

• One important unsolved problem in the theory of almost complex man-
ifolds is to find good criteria ensuring the existence of rational pseudo-
holomorphic curves. The reader is referred to the survey book [MDS04]
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for basic information on the subject. Consider a compact symplectic 2n-
dimensional smooth differentiable manifold (M,ω), and a compatible al-
most complex structure J on M . Then the first Chern class c1(M,J) is
well defined as the first Chern class of the complex tangent bundle (TM , J),
and this class is independent of J . Assuming that

∫
M
c1(M,J)∧ωn−1 > 0,

it is expected that M possesses a covering family (Ct)t∈S of rational
pseudo-holomorphic curves. A positive solution to this question, raised in
[BDPP04], would provide a vast generalization to the symplectic case of
Mori’s results on the existence of rational curves, which are currently only
known for projective algebraic varieties. In fact, the only known proofs
involve characteristic p techniques. Finding alternative more geometric or
analytic arguments would probably yield a lot of consequences in symplec-
tic geometry. The general theory of moduli spaces of pseudo-holomorphic
curves, the study of their compactifications, along with cohomology theo-
ries for almost complex manifolds, seem instrumental in such problems.

• It was pointed how properties like finite-dimensionality of the Dolbeault
cohomology and metric independence of the kernel of the Dolbeault Lapla-
cian in the integrable case should be appreciated, in view of finding ob-
structions to integrability. In other words, developing a deeper under-
standing of the harmonic theory on almost complex manifolds, and clari-
fying what particular properties are special to integrable setting would be
interesting. The same must also be asked of the newly developed Dolbeault
theory as well. A related question is the spectral theory of non-integrable
complex vector bundles, as initiated e.g. in [Lae02] and [Pop13], which,
even in the case of complex manifolds, is connected to important unsolved
problems such as transcendental Morse inequalities and Kähler invariance
of plurigenera.

• A natural question is to understand an analogue of Lamari’s [Lam99] and
Buchdahl’s [Buc99] result for complex manifolds of complex dimension
greater that two. It was suggested to investigate further non-linear alge-
braic structures in the cohomology ring.

• In analogy with the Barge-Sullivan theorem, one may ask about the real-
ization of bi-differential bi-graded algebras as Dolbeault double-complex
of a complex manifold.

• De Rham theory is powerful in that it can be computed in several ways,
and has a dual theory with evaluation map, via homology (which too can
be represented in several ways, e.g. cycles, currents etc.) It would be
advantageous to push the theory of Dolbeault cohomology in these ways
as well. In particular, there may be connections with the theory of pseudo-
holomorphic curves, or generalizations thereof.

• The Streets-Tian question concerning the (non-)existence of non-Kähler
Hermitian-symplectic manifolds is another fundamental problem, related
to the Donaldson tamed-to-compatible question for almost complex four-
manifolds. More in general, Popovici asks: Do there exist a Kähler metric
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in the Aeppli cohomology class of any Hermitian-symplectic structure?.
Special cases are well-understood, including dimension two, nilmanifolds
and solvmanifolds with special complex structures, twistor spaces. A prob-
lem is to determine other conditions implying that any manifold admitting
a Hermitian-symplectic metric also necessarily admits a Kähler metric.

• A question that arose is the relation between the existence of SKT metrics
and the degeneration of the Frölicher spectral sequence. In [Pop13], it is
conjectured that SKT metric forces E2 = E∞.

• A natural question is how to extend the definition of ∂∂-Lemma for almost
complex manifolds, and understand its relationship to Dolbeault, Bott-
Chern and Aeppli cohomologies, and the duality of the latter two.
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Realization of rational spaces by almost complex manifolds . . . . . . . . . . . . 1675

Nicoletta Tardini (joint with Adriano Tomassini)
Harmonic forms on almost-Hermitian manifolds . . . . . . . . . . . . . . . . . . . . . 1678

Tom Holt (joint with Weiyi Zhang)
When is dimHp,q

∂̄
an almost complex invariant? . . . . . . . . . . . . . . . . . . . . . 1682

Gil Cavalcanti
Hodge theory on SKT manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1684

Anna Fino (joint with Gueo Grantcharov and Luigi Vezzoni)
Balanced metrics and the Hull-Strominger system . . . . . . . . . . . . . . . . . . . 1684

Adriano Tomassini (joint with Richard K. Hind)
On the cohomology of almost complex manifolds . . . . . . . . . . . . . . . . . . . . . 1686





Mini-Workshop: Almost Complex Geometry 1667

Abstracts

A Generalised Volume Invariant for Aeppli Cohomology Classes of
Hermitian-Symplectic Metrics

Dan Popovici

(joint work with S lawomir Dinew)

This is a report on the very recent joint work [DP20] of the author with S. Dinew.

(I) Because it lies at the sweet spot between symplectic and complex Hermitian
geometries, the following notion has emerged as a cornerstone of complex analytic
geometry.

Definition 1. ([Sul76], [HL83], [ST10, Definition 1.5]) Let X be a compact complex
manifold. A Hermitian-symplectic (H-S) metric on X is a C∞ positive definite
(1, 1)-form ω on X such that ω is the component of bidegree (1, 1) of a real C∞

d-closed 2-form ω̃ on X.
If X carries such a metric, X is said to be a Hermitian-symplectic (H-S)

manifold.

The analogous notion on almost-complex manifolds X is the notion of sym-
plectic form ω compatible with the almost-complex structure J of X . In 2006,
Donaldson asked the following question that has come to be referred to as Don-
aldson’s tamed-to-compatible conjecture.

Question 2. ([Don06, Question 2]) If J is an almost-complex structure on a
compact 4-manifold which is tamed by a symplectic form, is there a symplectic
form compatible with J?

Later on, Streets and Tian asked the following complementary question in ar-
bitrary dimension but supposing J to be integrable.

Question 3. ([ST10, Question 1.7]) Do there exist non-Kähler Hermitian-symplec-
tic complex manifolds X with dimCX ≥ 3?

So far, the only case where the answer is known lies at the intersection of
Questions 2 and 3. This is the case of compact complex surfaces, for which it has
been proved that the existence of an H-S metric implies the existence of a Kähler
metric.

(II) In [DP20], we investigated Question 3 by introducing and studying a func-
tional F on the open convex subset S{ω0} ⊂ {ω0}A ∩ C∞

1, 1(X, R) of all the
Hermitian-symplectic metrics ω lying in the Aeppli cohomology class {ω0}A ∈

H1, 1
A (X, R) of an arbitrary Hermitian-symplectic metric ω0.

Lemma and Definition 4. ([DP20, Lemma and Definition 3.1]) For every Hermi-
tian-symplectic metric ω on X, there exists a unique smooth (2, 0)-form ρ2, 0ω on
X such that

(1) (i) ∂ρ2, 0ω = 0 and (ii) ∂̄ρ2, 0ω = −∂ω and (iii) ρ2, 0ω ∈ Im∂⋆ω + Im ∂̄⋆ω.
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Moreover, property (iii) ensures that ρ2, 0ω has minimal L2
ω norm among all the

(2, 0)-forms satisfying properties (i) and (ii).
We call ρ2, 0ω the (2, 0)-torsion form and its conjugate ρ0, 2ω the (0, 2)-torsion

form of the Hermitian-symplectic metric ω.

With this preliminary notion in place, we set

Definition 5. ([DP20, Definition 3.3]) Let X be a compact complex Hermitian-
symplectic manifold with dimCX = n. For the Aeppli cohomology class {ω0}A ∈
HSX of any Hermitian-symplectic metric ω0, we define the following energy
functional:

(2) F : S{ω0} → [0, +∞), F (ω) =

∫

X

|ρ2, 0ω |2ω dVω = ||ρ2, 0ω ||2ω,

where ρ2, 0ω is the (2, 0)-torsion form of the Hermitian-symplectic metric ω ∈ S{ω0}

defined in Lemma and Definition 4, while | |ω is the pointwise norm and || ||ω is
the L2 norm induced by ω.

The immediate observation that justifies the introduction of this functional is
the following equivalence:

ω is Kähler ⇐⇒ F (ω) = 0.

By studying the first variation of our functional, we obtained the following
results.

Theorem 6. ([DP20, Corollary 3.6]) Suppose n = 3. Then a Hermitian-symplectic
metric ω on a compact complex manifold X of dimension 3 is a critical point of
the energy functional F if and only if ω is Kähler.

Proposition 7. ([DP20, Corollary 3.7]) Let X be a compact complex manifold of
dimension n = 3 admitting Hermitian-symplectic metrics. Then, for any Aeppli-
cohomologous Hermitian-symplectic metrics ω and ωη, the respective (2, 0)-torsion
forms ρ2, 0ω and ρ2, 0η := ρ2, 0ωη

satisfy the identity:

F (ωη) + Volωη
(X) = F (ω) + Volω(X),

where Volω(X) :=
∫
X ω3/3!, and are related by

ρ2, 0η = ρ2, 0ω + ∂η.

Consequently, we get the following invariant attached to any Aeppli class of
Hermitian-symplectic metrics that generalises the classical volume of a Kähler
class.

Definition 8. ([DP20, Definition 3.8]) Let X be a 3-dimensional compact complex
manifold supposed to carry Hermitian-symplectic metrics. For any such metric ω
on X, the constant

(3) A = A{ω}A
:= F (ω) + Volω(X) > 0

depending only on {ω}A is called the generalised volume of the Hermitian-
symplectic Aeppli class {ω}A.
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In [DP20], we also obtained two cohomological interpretations of this invariant.

(III) We further identified an obstruction to the Aeppli cohomology class of a
given Hermitian-symplectic metric containing a Kähler metric.

Lemma and Definition 9. ([DP20, Lemma and Definition 4.1]) Suppose that ω is
a Hermitian-symplectic metric on a compact complex n-dimensional manifold
X.

(i) The (0, 2)-torsion form ρ0, 2ω ∈ C∞
0, 2(X, C) of ω represents an E2-cohomology

class {ρ0, 2ω }E2
∈ E0, 2

2 (X) on the second page of the Frölicher spectral sequence of

X. Moreover, {ρ0, 2ω }E2
∈ ker(d2 : E0, 2

2 (X) → E2, 1
2 (X)).

(ii) Suppose that n = 3. Then, the class {ρ0, 2ω }E2
∈ E0, 2

2 (X) is constant when
the Hermitian-symplectic metric ω varies in a fixed Aeppli cohomology class.

The class {ρ0, 2ω }E2
∈ E0, 2

2 (X) is called the E2-torsion class of the Hermitian-
symplectic Aeppli class {ω}A.

Since ω is Kähler if and only if ρ0, 2ω = 0, we get the following necessary condition
for a given Hermitian-symplectic Aeppli class {ω}A to contain a Kähler metric.

Corollary 10. ([DP20, Corollary 4.2]) Suppose that n = 3. If a given Hermitian-
symplectic Aeppli class {ω}A contains a Kähler metric, then its E2-torsion class

{ρ0, 2ω }E2
∈ E0, 2

2 (X) vanishes.

Moreover, the condition {ρ0, 2ω }E2
= 0 in E0, 2

2 (X) is equivalent to ρ0, 2ω ∈ Im ∂̄
for some (hence every) metric ω lying in {ω}A.

This corollary shows that, if a Hermitian-symplectic manifold X exists such
that the E2-torsion class associated with every Hermitian-symplectic metric ω is
non-zero, then X carries no Kähler metric. The existence of such manifolds will
answer affirmatively the Streets-Tian Question 3.

It is likely that the methods of [DP20] can be extended to the case of SKT
manifolds, namely compact complex manifolds X carrying metrics ω such that
∂∂̄ω = 0. There are many non-Kähler SKT manifolds, but the SKT property is
likely to have weaker and still interesting cohomological consequences.
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Bott-Chern and Appli cohomology, the Borel spectral sequence and
maximally non-integrable structures

Jonas Stelzig

The talk presented some suggestions for definitions and partial results that were
inteded to serve as a starting point for further discussion during the workshop and
were mostly related to the recent definition of Dolbeault Cohomology for almost
complex manifolds [4] by Cirici and Wilson. Three topics were discussed:

Bott-Chern and Aeppli cohomology:

On a complex manifold X , one has a diagram:

HBC(X)

H∂(X) (HdR(X), F, F̄ ) H∂(X)

HA(X)

and X satisfies the ∂∂-Lemma iff all arrows in this diagram are isomorphisms and
the spectral sequences degenerate.1 If X is merely known to be an almost complex
manifold, by the work of Cirici and Wilson [4], one still has an analogue of the
horizontal strip of this diagram:

HDol(X) =⇒ HdR(X) ⇐= HDolbar(X)

where, if (AX , µ, ∂, ∂, µ) denotes the complex of C-valued forms, HDol(X) =
H∂(Hµ(AX)) and HDolbar(X) = H∂(Hµ(AX)). What can we put in the verti-
cal row? As some minimal requirements, one would like such tentative HBC and
HA to ...

(1) ... coincide with the classical definitions for integrable complex manifolds
(2) ... fit in the diagram, i.e. map to (resp. receive maps from) HdR, HDol

and HDolbar (and all higher pages of the spectral sequences).
(3) ... be equipped with a real structure.
(4) ... be an algebra (HBC), resp. an HBC-module (HA).

Definition 1. Given a 4-complex (A, µ, ∂, ∂, µ), define the sub- resp. quotient
double complex to be:

As := kerµ ∩ ker ∂
2
∩ ker ∂2 ∩ µ Aq := A/(imµ+ im ∂

2
+ im ∂2 + imµ)

With this, define

HBC(X) := HBC((AX)s) HA(X) := HA((AX)q)

for any almost complex manifold X.

1A priori weaker statements like the top central arrow being injective are actually enough.
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Theorem 2. For an almost complex manifold X, set HBC(X) := HBC((AX)s)
and HA(X) := HA((AX)q). These satisfy four minimal requirements listed above.

In particular, this yields candidates for a definition of the ∂∂-property in the
almost-complex setting.

Remark 3. Many results in the study of cohomologies associated with double
complexes have very simple proofs using the fact that there is a discrete classifica-
tion of all indecomposable double complexes [5]. It is therefore a natural question
whether there is a similar classification for 4-complexes. However, this is not the
case. In fact, one can show that even in the simplest geometrically relevant case
of 4-complexes concentrated in bidegrees (p,q) with 0 ≤ p, q ≤ 2, the classification
problem is wild.

Borel spectral sequence:

For a fibre bundle F −→ E
π

−→ B of complex manifolds, Borel constructed, a
spectral sequence

E0 = grLAE =⇒ H∂(E)

Arising from the filtered complex (AE , ∂, L) where Lk consists of the forms which,
locally, have at least k components which are pullbacks from forms on the base B.
Under some mild conditions, this satisfies E2 = H∂(B) ⊗C H∂(F ).

It is straightforward to check that, even if F → E → B is just a fibre bundle of
almost complex manifolds, all four components µ, ∂, ∂, µ respect the filtration L.
In particular, (Hµ(E), ∂, L) and (AE , µ, L) are filtered complexes and one obtains
an analogue of Borel’s spectral sequence

µE0 = grLHµ(E) =⇒ (HDol(E), L)

and the E0 of this can be computed via another spectral sequence, the µ-spectral
sequence:

E0 = grLAE =⇒ (Hµ(E), L)

To have a chance a good description for the first of these, one should understand
the second one and this section was focussed on this more modest goal. From the
short exact sequence

(∗) 0 −→ A1,0
B

π∗

−→ A1,0
E −→ A1,0

E/B −→ 0

one obtains a bigraded complex (Ap,q
E/B , µE/B) of forms along the fibres and one

has:

Theorem 4. There are isomorphisms

µE0
∼= π∗AB ⊗A0

E
AE/B and µE1

∼= π∗AB ⊗A0

E
Hµ(AE/B).

Any hermitian metric induces a splitting of (∗), which in turn induces an isomor-
phism of spaces of total forms AE

∼= AB ⊗ AE/B. If such a metric can be chosen
such that the splitting is compatible with the µ’s on both factors, then there are
canonical identifications µE2

∼= µE∞
∼= Hµ(E) ∼= π∗Hµ(AB) ⊗A0

E
Hµ(AE/B).
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The assumptions for the E2-generation happen for a product, yielding in particular
a Künneth-formula for Hµ, but also non-product examples can be constructed.

Complex structures with µ of (locally) constant rank:

A complex structure is integrable if and only if µ = 0. This can be seen as the
requirement for µ to have constant rank 0. One can study more generally almost
complex J structures for which µ has (locally) constant rank. Since for nonzero

locally constant rank µ is a nontrivial bundle homomorphism A1,0
X → A0,2

X , one has
restrictions on the Chern classes of J . The extreme case is that of maximal rank,
so-called maximally non-integrable structures. In low dimensions, these are:2

real dimension condition
4 5χ+ 6σ = 0
6 3c1 = c21 = c1c2 = 0
8 c3 − 7c31 = c22 + 5c41 − 5c4 − 6c2c

2
1 = 0

We raised the question whether it might be possible to deform any almost-complex
structure satisfying the necessary Chern class conditions to a maximally non-
integrable one and presented the following result:

Theorem 5. All complex surfaces which are non-torus solvmanifolds and S1×S3

admit left-invariant maximally non-integrable almost complex structures. The real
2n-dimensional torus admits (non-left-invariant) complex structures for which µ
is of any constant (necessarily even) rank between 0 and 2n.

All of these structures have vanishing Chern classes and are homotopic to the
standard one. They are given explicitly and one can show:

Theorem 6. There exists a maximally non-integrable complex structure on the
real 4-torus T for which HDol(T ), HBC(T ) and HA(T ) are infinite-dimensional.
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Almost complex manifolds with a small sum of Betti numbers

Michael Albanese

(joint work with Aleksandar Milivojević)

A smooth manifold admits an almost complex structure J if and only if it admits
a non-degenerate two-form ω. There is a notion of integrability for each structure;
namely, the manifold admits coordinate charts in which the structure takes its
standard form. By the Newlander-Nirenberg theorem, J is integrable if and only
if the Nijenhuis tensor NJ vanishes, while by Darboux’s theorem, ω is integrable
if and only if it is closed. A manifold equipped with an integrable almost complex
structure is equivalent to a complex manifold, while a manifold equipped with
an integrable non-degenerate two-form is a symplectic manifold. As there are
complex manifolds which are not symplectic, and symplectic manifolds which are
not complex, the integrability conditions NJ = 0 and dω = 0 are independent.
The existence of an almost complex structure (equivalently, a non-degenerate two-
form) on a smooth manifold imposes some topological restrictions. What if we
further require integrability of J or ω?

On a closed manifold M , the integrability condition dω = 0 implies that ωk

defines a non-zero element of H2k
dR(M) for k = 1, . . . , 12 dimM ; in particular, the

even Betti numbers are non-zero, a restriction that does not apply to almost
complex manifolds. This is in stark contrast to the case of open manifolds where
it follows from Gromov’s work on the h-principle that an open manifold admits a
symplectic form if and only if it admits an almost complex structure, see [5].

What if we instead impose integrability of J? The situation is far less under-
stood. In the closed case, the only known distinction between the class of almost
complex manifolds and the class of complex manifolds occurs in real dimension
four. In particular, there are closed four-manifolds which admit almost complex
structures, none of which are integrable, e.g. (S1 × S3)#(S2 × S2)#(S2 × S2).
It has been suggested by Yau that no such examples exist in higher dimensions,
see [6, Problem 52]. In the open case, it again follows from Gromov’s work on the
h-principle that if M admits an almost complex structure and dimM ≤ 6, then
M admits an integrable almost complex structure [4, page 103]. The reason the
condition NJ = 0 is less understood than the condition dω = 0 is that we do not
know the answer to the following fundamental question:

Question. What topological restrictions does integrability of J impose?

Note that if a closed 2n-dimensional manifold is symplectic, we have b(M) ≥
n + 1 where b(M) denotes the sum of Betti numbers of M . Complex manifolds
do not satisfy this inequality. For example, Hopf manifolds and Calabi-Eckmann
manifolds are diffeomorphic to the product of two odd-dimensional spheres and
hence have b(M) = 4. Motivated by this, Dennis Sullivan made the following
conjecture:

Conjecture (Sullivan). Let M be a compact complex manifold with dimCM ≥ 3.
Then b(M) ≥ 4.
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If the conjecture were true, then S6 would provide an example of a manifold of
dimension greater than four which admits almost complex structures, none of
which are integrable (contradicting Yau’s suggestion). Would there be any other
such examples? That is, are there other closed manifolds with b(M) < 4 which
admit almost complex structures? Note that b(M) ≥ 2 for a closed orientable
manifold, so there are two cases to consider, namely b(M) = 2 and b(M) = 3.

If b(M) = 2, then M is a rational homology sphere, i.e. M has the same rational
homology as a sphere. A famous result of Borel and Serre [3] states that the only
spheres which admit almost complex structures are S2 and S6. The following
generalises this result to the case of rational homology spheres:

Theorem. [1, Theorem 2.2] Let M be a rational homology sphere. If M admits
an almost complex structure, then dimM = 2 or 6.

There are infinitely many six-dimensional rational homology spheres. At least
one of them admits an almost complex structure, namely S6. As the following
theorem demonstrates, this property is not shared by all six-dimensional rational
homology spheres.

Theorem. [1, Corollary 2.5] There are infinitely many six-dimensional ratio-
nal homology spheres which admit almost complex structures, and infinitely many
which do not.

This result was established by proving that the spinc property is preserved under
a process known as spinning. In particular, repeatedly spinning the Wu manifold
SU(3)/SO(3) produces an orientable non-spinc rational homology sphere S in any
dimension greater than or equal to 5.

Corollary. Let M be a compact manifold of even dimension greater than 4. The
existence of an almost complex structure on M cannot be detected by H∗(M ;Q)
alone.

In particular, for any such manifold M , the manifold M ′ = M#S satisfies
H∗(M ;Q) ∼= H∗(M ;Q) and does not admit an almost complex structure. A
natural question to ask then is which rational cohomology rings can be realised by
manifolds which admit almost complex structures? This is known as the realisation
problem, see Aleksandar Milivojević’s talk.

If a closed manifold with b(M) = 3 admits an almost complex structure then

dimM = 4 and H∗(M ;Q) ∼= H∗(CP2;Q); this follows from [1, Theorem 3.3]
and unpublished work of Jiahao Hu and Zhixu Su. Therefore, the only potential
counterexamples to Sullivan’s conjecture are six-dimensional rational homology
spheres. This is summarised in the following figure where the full circles represent
the minimal sum of Betti numbers among known compact complex manifolds in
the given dimension and the empty circle indicates the position of a potential
complex manifold diffeomorphic to a six-dimensional rational homology sphere.
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It is also interesting to investigate the boundary case, i.e. b(M) = 4. In this case,
the manifold M has two possible rational cohomology rings, either the rational
cohomology ring of a product of two spheres, or Q[x]/(x4). The study of which of
these rings can be realised by a manifold admitting an almost complex structure
was initiated in [2]. See Aleksandar Milivojević’s talk for further results in this
direction.
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Realization of rational spaces by almost complex manifolds

Aleksandar Milivojević

A general goal one could hope for is to describe the homotopy types of closed
smooth manifolds admitting almost complex structures. This is a relatively diffi-
cult problem, and not solved in full generality in dimensions ≥ 10. More tangibly,
we can aim to describe the rational homotopy types of closed smooth manifolds
admitting almost complex structures. Two spaces (we will take all spaces to be
connected degree-wise finite dimensional cell complexes whose fundamental group
is trivial or at least nilpotent with nilpotent action on the higher homotopy groups)
are rationally homotopy equivalent if there is a map between them inducing an iso-
morphism on rationalized homotopy groups, or equivalently on rational homology.
Every space X has its associated rationalization X → XQ, a rational homotopy
equivalence where XQ is a rational space in the sense that the ordinary homotopy
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groups of XQ are isomorphic to rational vector spaces as abelian groups. The
rationalization is unique up to homotopy equivalence; rational spaces are homo-
topy equivalent if and only if they are rationally homotopy equivalent. To build
the rationalization of a space one can either “tensor the Postnikov tower of X by
Q” or take a cellular decomposition and replace the maps of spheres and cones
on them with maps of rationalized spheres and their cones. The Postnikov tower
picture informs one that the information of a rational space can be encoded in a
free graded–commutative differential graded algebra; the categories of nilpotent
rational spaces and nilpotent such algebras are equivalent in a suitable sense [1].

Now, given a rational space XQ, we can ask if there is a closed almost complex

manifold (M,J) with a rational homotopy equivalence M
f
−→ XQ. If there is to be

a positive answer, XQ must satisfy Poincaré duality on its rational cohomology and
hence there must be an index n (the real dimension of M) such that Hn(XQ;Q) ∼=
Q and H>n(XQ;Q) = 0; there also must be rational cohomology classes in XQ

that pull back to the rational Chern classes of (M,J). So let us restrict our
question to: given a rational Poincaré duality space XQ with a choice of non-zero
element [XQ] ∈ Hn(XQ;Q) (its “fundamental class”) and a choice of c1, c2, . . .
in H2∗(XQ;Q), is there a closed almost complex manifold (M,J) and a rational

homotopy equivalence M
f
−→ XQ such that f∗[M ] = [XQ] and f∗ci = ci(M,J)?

(Varying the choice of fundamental class and ci we retrieve our original question.)
If there were such an M , notice that the “Chern numbers” 〈cI , [XQ]〉 satisfy

〈cI , [XQ]〉 = 〈cI(XQ), f∗[M ]〉 = 〈f∗cI(XQ), [M ] = 〈cI(M), [M ]〉 =

∫

M

cI(M),

and the latter must be integers that satisfy all the (finitely many) congruence
conditions coming from index theory, i.e.

∫
ch(E)td(TM) ∈ Z for any complex vector bundle E →M.

This condition can be recast purely in terms of XQ, [XQ], ci. Furthermore, since∫
M
cn is the Euler characteristic of the putative almost complex manifold M , we

must have 〈cn, [XQ]〉 be the Euler characteristic of X .
If the dimension n is divisible by 4, we furthermore have:

• The non-degenerate symmetric bilinear pairing on H
n
2 (XQ;Q) must be

the rationalization of a unimodular pairing over the integers, i.e. in some

basis the pairing on H
n
2 (XQ;Q) is of the form

(
±1

. . .
±1

)
.

• If we form the “Pontryagin classes” via 1 − p1 + p2 − · · · = (1 − c1 + c2 −
· · · )(1 + c1 + c2 + · · · ), the Hirzebruch L–polynomial evaluated on these
classes and paired with [XQ] must calculate the signature of the pairing

on H
n
2 (XQ;Q) correctly, 〈L(pi), [XQ]〉 = σ(XQ).
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As for sufficiency, we have:

Theorem. Let XQ be a simply connected rational space, with H∗(XQ;Q) finite–
dimensional, satisfying rational Poincaré duality, of even dimension n ≥ 6, with
a choice of non-zero [XQ] ∈ Hn(XQ;Q) and a choice of ci ∈ H2i(XQ;Q). Then,
if n 6≡ 4 mod 8, the above necessary conditions (Chern number integrality and
congruences, top Chern class calculating Euler characteristic, intersection pairing
being diagonal with ±1, and signature being calculated correctly from the Chern
classes) are sufficient for the existence of a closed simply connected almost com-

plex manifold (M,J) and a map M
f
−→ X inducing an isomorphism on rational

homology, such that f∗[M ] = [X ] and f∗(ci) = ci(M,J). If n ≡ 4 mod 8 and
c1 6= 0, the same holds; if c1 = 0, imposing a further set of congruence conditions
on the Chern numbers yields the desired result.

The further congruence in the case of n ≡ 4 mod 8 and c1 = 0 stems from
the fact that for an almost complex manifold M in these dimensions with c1 = 0
integrally, we have

∫
M ch(E ⊗C)Â(TM) ∈ 2Z for any real vector bundle E →M .

The proof mimics the rational realization result of Sullivan for smooth manifolds
[1, Theorem 13.2], utilizing the techniques of normal surgery, the Pontryagin–
Thom construction, rational Poincaré duality, Stong’s description [3] of the integer
lattice in the rational homology of the classifying space BU corresponding to
the image of the map from complex bordism to BU sending a manifold to the
pushforward of its fundamental class via the classifying map for the tangent bundle,
and the freedom to ignore torsion information as we are working rationally.

From the proof, one sees that if the conditions of the theorem are satisfied, the
answer to the question of realizability of X by an almost complex manifold depends
only on the rational cohomology algebra of X . In particular, taking a simply
connected commutative differential graded algebra over Q whose corresponding
rational space is realizable by an almost complex manifold by the above theorem,
one can deform this algebra at will within the category of rational Poincaré duality
algebras and obtain corresponding almost complex manifolds. Since the rational
homotopy type of a simply connected space X is uniquely determined by the
induced C∞ structure on its rational cohomology algebra (H∗(X), {mi}i≥2), we
have the following:

Corollary. In dimensions n 6≡ 4 mod 8, the realizability of a simply connected
C∞-algebra (H, {mi}i≥2) by a closed almost complex manifold depends only on
the multiplication m2.

One would like to remove the assumption in the case of n ≡ 4 mod 8 that either
c1 6= 0 or that the Chern numbers satisfy a stronger set of congruences than those
of almost complex manifolds, in order to conclude that in all even dimensions
the realizability of a simply connected C∞-algebra (H, {mi}i≥2) by a closed almost
complex manifold depends only on the multiplication m2; this possibility remains
to be studied.
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Further corollaries are: (1) An even-dimensional simply connected rational Poincaré
duality space with vanishing Euler characteristic, and vanishing signature if the
dimension is divisible by four, is realized by a closed almost complex manifold.
(2) In odd complex dimensions, realizability is guaranteed if the Euler character-
istic is divisible by a certain positive integer d(n) depending on the dimension
(d(6) = 2, d(10) = 24 and likely, but not yet verified, d(2n) = (n − 1)!). In par-
ticular every simply connected six–dimensional rational Poincaré duality space is
realized by a closed almost complex manifold. In fact, the almost complex struc-
ture in the six–dimensional case can be taken to have c1 = 0 integrally, and hence
the obstructions to admitting a maximally non-integrable almost complex struc-
ture from Jonas Stelzig’s talk (3c1 = 0, c21 = 0, c1c2 = 0) vanish; we do not know
if these are the only obstructions to admitting such a structure.

As an example, one can calculate that there is a closed almost complex mani-
fold with the same rational homotopy type as quaternionic three–space HP

3; this
leads one to generally ask when the cohomology algebra Q[x]/(xk) is realizable in
terms of k and deg(x). For k = 3 only deg(x) = 2 is realized, corresponding to the
rational homotopy type of CP2 (unpublished work of Zhixu Su and independently
Jiahao Hu, and [6]); compare this with the general (not necessarily almost com-
plex) smooth manifold case for which there are unexpected solutions for deg(x)
when k = 3 [4], [5].
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Harmonic forms on almost-Hermitian manifolds

Nicoletta Tardini

(joint work with Adriano Tomassini)

On a smooth manifold X endowed with an almost-complex structure J , namely
a (1, 1)-tensor such that J2 = −Id, the exterior derivative d splits as the sum of
four operators. More precisely, if Ap,q(X) denotes the space of (p, q)-forms on X ,
one has that

d : Ap,q(X) → Ap+2,q−1(X) ⊕Ap+1,q(X) ⊕Ap,q+1(X) ⊕Ap−1,q+2(X)

d = µ+ ∂ + ∂ + µ̄ .
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The operators µ and µ̄ characterize the integrability of J , indeed J is integrable,
that means that (X, J) is a complex manifold, if and only if µ = µ̄ = 0.

Therefore, in the integrable case, the vanishing of d2 implies that ∂2 = 0, ∂
2

= 0
and ∂∂ + ∂∂ = 0. In particular, one can define several cohomology groups on a
complex manifold: the de Rham, Dolbeault and conjugate Dolbeault cohomologies
respectively

H•
dR(X ;C) :=

Ker d

Im d
, H•,•

∂
(X) :=

Ker ∂

Im ∂
, H•,•

∂ (X) :=
Ker ∂

Im ∂

and the Bott-Chern and Aeppli cohomologies respectively

H•,•
BC(X) :=

Ker ∂ ∩ Ker ∂

Im ∂∂
, H•,•

A (X) :=
Ker∂∂

Im ∂ + Im ∂
.

On a compact complex manifold an effective way to compute them is to fix a
Hermitian metric and compute the associated spaces of harmonic forms, since
all these cohomologies are isomorphic to the kernel of suitable elliptic differential
operators.

In the non integrable case the situation is very different, indeed, the vanishing
of d2 implies the following relations





µ2 = 0
µ∂ + ∂µ = 0

∂2 + µ∂ + ∂µ = 0

∂∂ + ∂∂ + µµ̄+ µ̄µ = 0 .

∂
2

+ µ̄∂ + ∂µ̄ = 0

µ̄∂ + ∂µ̄ = 0
µ̄2 = 0

In particular, the Dolbeault, Bott-Chern and Aeppli cohomologies are not well-
defined but their spaces of harmonic forms still are. Namely, if we fix a Hermitian

metric g on an almost-complex manifold (X, J) the operator ∆∂ := ∂∂
∗

+ ∂
∗
∂

is still elliptic. When J is integrable, H•,•

∂
(X) := Ker ∆∂ is isomorphic to the

Dolbeault cohomology so it is a holomorphic invariant. When J is non integrable
H•,•

∂
(X) a priori depends on the metric. This motivated a question by Kodaira

and Spencer, listed as Problem 20 in a paper by Hirzebruch [4], regarding whether,
on almost-complex manifolds, the dimensions of H•,•

∂
(X) depend on the choice of

the Hermitian metric. In [5] Holt and Zhang answered positively to this question,
giving an explicit construction on the Kodaira-Thurston manifold of an almost-
complex structure with dimH0,1

∂
(X) varying with different choices of Hermitian

metrics. However, very recently Cirici and Wilson in [1, 2] proposed a general-
ization of the Dolbeault cohomology for almost-complex manifolds and studied
several spaces of harmonic forms which inject in them.
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In [6] we introduced several spaces of harmonic forms on almost-Hermitian man-
ifolds, recovering, in the integrable setting, the spaces of Dolbeault, Bott-Chern
and Aeppli harmonic forms and we gave also applications to symplectic geometry.

Let (X, J) be an almost-complex manifold, we considered the operators, intro-
duced in [3]

δ := ∂ + µ̄ : A• → A•+1 , δ̄ := ∂ + µ : A• → A•+1

These two operators anticommute but their squares are zero if and only if J is
integrable. If g is a Hermitian metric on (X, J) one can define

∆δ̄ := δ̄δ̄∗ + δ̄∗δ̄ , ∆δ := δδ∗ + δ∗δ ,

∆BC(δ,δ̄) := (δδ̄)(δδ̄)∗ + (δδ̄)∗(δδ̄) + (δ̄∗δ)(δ̄∗δ)∗ + (δ̄∗δ)∗(δ̄∗δ) + δ̄∗δ̄ + δ∗δ ,

∆A(δ,δ̄) := δδ∗ + δ̄δ̄∗ + (δδ̄)∗(δδ̄) + (δδ̄)(δδ̄)∗ + (δ̄δ∗)∗(δ̄δ∗) + (δ̄δ∗)(δ̄δ∗)∗ .

If J is integrable, these differential operators coincide with the classical Laplacian
operators on complex manifolds and, in that case, their kernels has a cohomological
interpretation. We studied Hodge theory for these operators on almost-Hermitian
manifolds, in particular ∆δ̄ and ∆δ are elliptic differential operators of the second
order and ∆BC(δ,δ̄) and ∆A(δ,δ̄) are elliptic differential operators of the fourth order,
therefore their kernels are finite-dimensional as soon as X is compact. Moreover,
such operators also induce Hodge decompositions on the space of differential forms
and they respect all the natural dualities and conjugation symmetries.

In particular, on bi-graded forms we are just reinterpreting the spaces Ker (∆∂+
∆µ) = H•,•

∂
(X) ∩H•,•

µ (X) = H•,•

δ̄
(X) := Ker (∆δ̄) ∩ A•,•(X) considered by Cirici

and Wilson in [1], where ∆µ := µµ∗ + µ∗µ and H•,•
µ (X) := Ker ∆µ. However, on

total degree forms we have H•
∂
(X) ∩ H•

µ(X) ⊆ H•
δ̄
(X) := Ker (∆δ̄) ∩ A•(X) and

this inclusion can be strict.
In fact, this theory turns out to be helpful in detecting the existence of compat-

ible symplectic structures. Indeed, suppose now that (X, J) admits a compatible
symplectic structure, that is a non-degenerate d-closed 2-form ω. Hence (X, J, ω)
is called almost-Kähler manifold. We can use the almost-Kähler identities in order
to improve our knowledge of the differential operators defined above and the as-
sociated harmonic forms. In particular, if (X, J, ω) is an almost-Kähler manifold,
then by [2]

∆∂ + ∆µ = ∆∂ + ∆µ̄ and ∆d = 2(∆∂ + ∆µ + [µ̄, ∂∗] + [µ, ∂
∗
] + [∂, ∂

∗
] + [∂, ∂∗]) .

and we proved in [6] the following

Theorem. Let (X, J, ω) be an almost-Kähler manifold, then

∆δ̄ = ∆δ and ∆d = 2∆δ + [δ, δ̄∗] + [δ̄, δ∗] .

Both these results generalize the classical Hodge relations on compact Kähler
manifolds ∆∂ = ∆∂ and ∆d = 2∆∂ . In fact, as a consequence, we also proved
that on a compact almost Kähler manifold

∆d = 2∆δ
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if and only if the manifold is Kähler. Moreover, a second application of our results
is the following

Corollary. Let (X, J, ω) be a compact almost-Kähler manifold, then

H•
δ̄(X) ⊆ H•

dR(X) ≃ H•
dR(X) .

In particular, for the respective dimensions there is a topological upper bound,

dimH•
δ̄(X) ≤ b•(X) ,

where b•(X) denotes the Betti numbers of X.

These results represent obstructions to the existence of symplectic structures com-
patible with a given fixed almost-complex structure.

We also proved that on bi-graded forms all the spaces of δ̄−, δ−, Bott-Chern and
Aeppli (and actually more) harmonic forms coincide. Notice that this result, in
the integrable case, implies that on compact Kähler manifolds all the cohomology
groups are isomorphic, hence showing that compact Kähler manifolds satisfy the
∂∂-lemma. However, in the non integrable case, we cannot conclude this since
we do not have a cohomological counterpart for the spaces of harmonic forms.
In fact, it is not clear what should be a natural notion of ∂∂-lemma in the non
integrable setting. Moreover, generalized Hard-Lefschetz conditions can be proved
for these spaces of harmonic forms, indeed in [6] we showed that on a compact
almost-Kähler 2n-dimensional manifold, for any k, the maps

ωk ∧− : Hn−k
BC(δ,δ̄)

(X) → Hn+k
BC(δ,δ̄)

(X)

are isomorphisms.
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When is dimH
p,q

∂̄
an almost complex invariant?

Tom Holt

(joint work with Weiyi Zhang)

Let M be a compact, almost complex manifold of real dimension 2n, with some
chosen almost Hermitian metric. We consider the space Hp,q

∂̄
, defined to be the

kernel of ∆∂̄ in the space of (p, q)-forms. For complex structures, hp,q := dimHp,q

∂̄

does not depend on the choice of almost Hermitian metric since Hp,q

∂̄
is isomorphic

to the Dolbeault cohomology group. In the almost complex setting Kodaira and
Spencer asked the following question, which appeared as Problem 20 in Hirze-
bruch’s 1954 problem list [1].

Question (Kodaira-Spencer). Let M be an almost complex manifold and consider
the numbers hp,q. Are they independent of the Hermitian structure on M?

This question has already been answered positively in the cases of hp,0 and hp,n,
for any p = 0, 1, . . . , n [2]. Furthermore when M has dimension 4, h1,1 is at least
an almost Kähler metric invariant [3] and may well also be an almost Hermitian
metric invariant. In this talk, however, we shall demonstrate that the answer to
the Kodaira-Spencer question is in general negative, in particular there exists a
fixed almost complex structure on the Kodaira-Thurston manifold KT 4 along with
a family of compatible metrics over which h0,1 takes multiple distinct values. In
fact, in proving this we shall use a family of almost Kähler metrics, thus showing
hp,q is not even guaranteed to be an almost Kähler metric invariant. See [4] for
the full proof of this.

The Kodaira-Thurston manifold is defined to be Γ\G, where G is the group
(R4, ◦) with group operation




t0
x0
y0
z0


 ◦




t
x
y
z


 =




t+ t0
x+ x0
y + y0

z + z0 + x0y




and Γ is the subgroup Z4 acting on G by left multiplication. It turns out the
calculation of H0,1

∂̄
amounts to finding pairs of functions f, g ∈ C∞(KT 4) satisfying

a particular system of PDEs. The trick to solving these is to use classical Fourier
analysis to decompose f uniquely into a sum of simpler functions

f(t, x, y, z) =
∑

k∈Z

( ∑

l,m∈Z

fk,l,m,0e
2πi(kt+lx+my)

+
∑

n∈Z\{0}
m∈{0,1,..., |n|−1}

∑

ξ∈Z

fk,m,n(x+ ξ)e2πi(kt+(m+nξ)y+nz)

)



Mini-Workshop: Almost Complex Geometry 1683

where

fk,l,m,0 =

∫

[0,1]4
f(t, x, y, z)e−2πi(kt+lx+my)dt dx dy dz ∈ C

fk,m,n(x+ ξ) =

∫

[0,1]3
f(t, x, y, z)e−2πi(kt+(m+nξ)y+nz)dt dy dz ∈ S(R)

and likewise for g. Equipped with this decomposition we can split h0,1 into two
parts h0,1 = h′0,1 +h′′0,1 with h′0,1 being the number of independent solutions where
f, g take the form of

fk,l,m,0e
2πi(kt+lx+my).

and h′′0,1 being the number of independent solutions where f, g take the form of
∑

ξ∈Z

fk,m,n(x + ξ)e2πi(kt+(m+nξ)y+nz).

In the case of h′0,1 the system of PDEs simplifies to a system of number theoretic
equations. Looking for solutions here amounts to answering a generalised Gauss
circle problem, that is to say the number of solutions is equal to the number
of points in a lattice that are intersected by a circle with some radius and centre
depending on the chosen metric and almost complex structure. Indeed, by varying
the metric we can change the value of h′0,1 and by varying the almost complex
structure it can even be made arbitrarily large.

In the case of h′′0,1 the system of PDEs on the Kodaira-Thurston manifold
simplifies to a system of ODEs on R. Importantly, we are only looking for Schwartz
solutions to these ODEs, which is a consequence of requiring the sum over ξ to
converge to a smooth function. We can find such solutions by considering the
Stokes phenomenon of the ODEs, in particular we ask whether a solution which
decays as x→ +∞ will also decay as x→ −∞. It turns out this is rarely the case
and we can easily find a family of almost Kähler metrics for which h′′0,1 is always
zero.

Bringing together our considerations of h′0,1 and h′′0,1, we can find a family of

almost Kähler metrics for which h0,1 takes more than one value. As a result we
conclude the following:

Theorem. There exist almost complex structures on the Kodaira-Thurston man-
ifold such that h0,1 varies with different choices of almost Kähler metrics.

This answers an almost Kähler version of the Kodaira-Spencer question in the
negative.
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Hodge theory on SKT manifolds

Gil Cavalcanti

In an SKT manifold H = dcω is a closed form. This is a subtle integrability
condition placed on the metric and complex structure. Including this integrability
condition into the de Rham complex yields a twisted complex which is more com-
patible with the geometric structure than the usual Dolbeault complex and for
which a version of Hodge’s Theorem holds. We use this newfound Hodge theory
to investigate the existence of SKT structures on some complex manifolds.

Balanced metrics and the Hull-Strominger system

Anna Fino

(joint work with Gueo Grantcharov and Luigi Vezzoni)

The purpose of the talk was to review some general results about balanced metrics
and present new smooth solutions to the Hull-Strominger system [14, 24], show-
ing that the Fu-Yau solution [11, 12] on torus bundles over K3 surfaces can be
generalized to torus bundles over K3 orbifolds [9].

A Hermitian metric g on a complex manifold of complex dimension n is bal-
anced if its fundamental form ω is co-closed, or equivalently if dωn−1 = 0. Bal-
anced manifolds were introduced and studied by Michelsohn in [17]. The balanced
condition is preserved under proper holomorphic submersions and birational trans-
formations [2]. Compact examples of non-Kähler compact balanced manifolds are
given, for instance, by six-dimensional twistor spaces [17], Mishezon manifolds,
complex manifolds in the Fujiki class C and complex parallelizable manifolds [1].

Existence of balanced metrics play a central role in the study of the Hull-
Strominger system, which describes the geometry of compactification of heterotic
superstrings with torsion to 4-dimensional Minkowski spacetime. Let M be a com-
pact complex manifold of complex dimension 3 with a nowhere vanishing holomor-
phic (3, 0)-form Ω. Let E be a complex vector bundle over M with a Hermitian
metric H along its fibers and the α′ ∈ R be a constant (slope parameter). The
Hull-Strominger system, for the fundamental form ω of a Hermitian metric g on
M , is given by:

FH ∧ ω2 = 0, F 2,0
H = F 0,2

H = 0,(1)

d(‖ψ‖ω ω
2) = 0,(2)

i∂∂̄ω =
α′

4
tr (R∇ ∧R∇ − FH ∧ FH) ,(3)

where FH and R∇ are respectively the curvatures of H and of a metric connection
∇ on TM . The equation (1) describes the Hermitian-Yang-Mills equations for the
connection of H . The equation (2) says that ω is conformally balanced and it
was originally written as d∗ω = i(∂ − ∂) ln(‖Ω‖ω) (the equivalence was proved by
Li and Yau in [16]). The last equation is the anomaly cancellation equation (or
Bianchi identity) and couples the two metrics ω and H .
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The first solutions of the Hull-Strominger system on compact non-Kähler mani-
folds, taking ∇ as the Chern connection of ω, were constructed by Fu and Yau
[11, 12]. Up to now many solutions are provided by the choice of ∇ given by the
Chern connection [3, 4, 5, 6, 7, 8, 10, 18, 21, 19, 20, 23]. New examples of solu-
tions of the Hull-Strominger system on non-Kähler torus bundles over K3 surfaces
originally considered by Fu and Yau, with the property that the connection ∇ is
Hermitian-Yang-Mills have been constructed in [13].

In [9] we extended the Fu-Yau ansatz to Hermitian 3-folds foliated by non-
singular elliptic curves, showing the following:

Theorem. ([9]) Let X be a compact K3 orbifold with a Ricci-flat Kähler form
ωX and orbifold Euler number e(X). Let ω1 and ω2 be anti-self-dual (1, 1)-forms
on X such that [ω1], [ω2] ∈ H2

orb(X,Z) and the total space M of the principal T 2

orbifold bundle π : M → X determined by them is smooth. Let E be a stable
vector bundle of degree 0 over (X,ωX) such that

α′(e(X) − (c2(E) −
1

2
c21(E))) =

1

4π2

∫

X

(‖ω1‖
2 + ‖ω2‖

2)
ω2
X

2
.

Then, M admits a Hermitian structure (M,ωu) and there is a metric h along the
fibers of E such that (V = π∗E,H = π∗(h),M, ωu) solves the Strominger system.

Using Seifert S1-bundles [15], we can show that the smooth manifolds S1 ×
♯k(S2 × S3), 13 ≤ k ≤ 22, and ♯r(S2 × S4)♯r+1(S3 × S3), 14 ≤ r ≤ 22, have a
solution to the Hull-Strominger system via the Fu-Yau ansatz. The cases k = 22
and r = 22 respectively correspond to the solutions of Fu and Yau. In this way
we construct new simply-connected compact non-Kähler 6-manifolds admitting a
solution of the Hull-Strominger system.
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On the cohomology of almost complex manifolds

Adriano Tomassini

(joint work with Richard K. Hind)

Cohomological properties provide a connection between analytical and topologi-
cal features of complex manifolds. Given any complex manifold (M,J), natural
complex cohomologies are defined, e.g., Dolbeault, Bott-Chern and Aeppli coho-
mologies, defined respectively as

H•,•

∂
(M) =

Ker ∂

Im ∂
, H•,•

BC(M) =
Ker ∂ ∩ Ker ∂

Im ∂∂
, H•,•

A (M) =
Ker ∂∂

Im ∂ + Im ∂
.

If (M,J) is compact and it admits a Kähler metric, then the complex de Rham
groups are isomorphic to the direct sum of (p, q)-Dolbeault groups. For a 2n-
dimensional almost complex manifold (M,J), the exterior differential d acting on
the space of complex valued (p, q)-forms Ap,q(M)

d : Ap,q(M) → Ap+2,q−1(M) ⊕Ap+1,q(M) ⊕Ap,q+1(M) ⊕Ap−1,q+2(M)

splits as
d = µ+ ∂ + ∂ + µ̄,
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where ∂, respectively µ̄ are the (p, p+1), respectively, the (p−1, q+2) components
of d. Then, the almost complex structure J is integrable if and only if µ̄ = 0.
Consequently, in the non integrable case ∂ is not a cohomological operator. Let
(M,J) be a 2n-dimensional almost complex manifold. Then J acts as involution
on the space of 2-forms A2(M) by

Jα(X,Y ) = α(JX, JY ),

for every pair of vector fields X , Y on M . Then we denote as usual by Λ−
J (M)

(respectively Λ+
J (M)) the +1 (resp. −1)-eigenbundle; then the space of corre-

sponding sections A−
J (M) (respectively A+

J (M)) are defined to be the spaces of
J-anti-invariant, (respectively J-invariant) forms, i.e.,

A±
J (M) = {α ∈ A2(M) | Jα = ±α}

A(2,0),(0,2)(M)R = A−
J (M), A1,1(M)R = A+

J (M)

Let

Z±
J (M) = Z2(M) ∩ A±

J (M) = {α ∈ A±
J (M) | dα = 0}.

Then, according to the previous decomposition on forms, T.-J. Li and W. Zhang
[9], motivated by the study of comparison of tamed and compatible sympletic
cones on an almost complex manifold (M,J), introduced the J-invariant and J-
anti-invariant cohomology groups defined respectively as defined as

H±
J (X) =

{
a ∈ H2

dR(X ;R) | ∃α ∈ Z±
J | a = [α]

}

and they gave the following (see [9, Definition 4.12]). An almost complex structure
J on M is said to be

• C∞-pure if

H+
J (M) ∩H−

J (M) = {0} .

• C∞-full if

H2
dR(M ;R) = H+

J (M) +H−
J (M).

• C∞-pure-and-full if

H2
dR(M ;R) = H+

J (M) ⊕H−
J (M).

In [3] and [4], the same authors continue the study of the J-anti-invariant coho-
mology of an almost complex manifold (M,J). Let h−J be the dimension of the real
vector space of closed anti-invariant 2-forms on (M,J). Note that in the case when
the manifold is 4-dimensional every closed anti-invariant form α is ∆gJ -harmonic,
where gJ is a Hermitian metric and ∆gJ denotes the Hodge Lapacian. Thus in the
compact 4 dimensional case h−J is the dimension of the anti-invariant cohomology.
The following appear in [3].
Conjecture 2.4. For generic almost complex structures J on a compact 4-
manifold M , h−J = 0.

Conjecture 2.5. On a compact 4-manifold, if h−J ≥ 3, then J is integrable.

For other results on C∞-pure-and-full and J-anti-invariant closed forms see [1, 5, 7]
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By starting with a (compact) Kähler surface with holomorphically trivial canonical
bundle, Drǎghici, Li and Zhang obtain non integrable almost complex structures
with h−J = 2. More precisely, for a given (compact) Kähler surface (M,J) with
holomorphically trivial canonical bundle, they take a closed 2-form trivializing the
canonical bundle. Then, fixing a conformal class of Hermitian metrics compatible
with J , they consider the Gauduchon metric representing such a conformal class
and they associate an almost complex structure Jf,s,l depending on three smooth

functions satisfying some suitable conditions. Then, generically, h−Jf,s,l
= 0, but

cases when h−Jf,s,l
= 1 and h−Jf,s,l

= 2 also occur. Therefore, again in [3], as an

extension of Conjecture 2.5, the authors asked the following natural

Question 3.23. Are there (compact, 4-dimensional) examples of non-integrable
almost complex structures J with h−J ≥ 2 other than the ones arising from [3],

Proposition 3.21? In particular, are there any examples with h−J ≥ 3?

First note that the space of closed anti-invariant forms with respect to the standard
integrable complex structure i on R4 ≡ C2 is infinite dimensional: indeed, for every
given holomorphic function h(z1, z2), the real and imaginary parts of h(z1, z2)dz1∧
dz2 are closed and anti-invariant. We show the same can also hold in the non
integrable case (see [6]).

Theorem. There exists a (non integrable) almost complex structure on R4, such
that the space of closed J-anti-invariant forms is infinite dimensional.

As a consequence, we see that compactness is essential for Conjecture 2.5. In
contrast we also show the following
Theorem. There exists a family of almost complex structures {Jf} on C2, pa-
rameterized by smooth functions f : C2 → R, with the following properties.

• Jf coincides with the standard complex structure i exactly at points where
f = 0;

• Jf is integrable if and only if the gradient of f in the z2 direction is 0;
• if f has compact support and f 6≡ 0 then h−Jf

= 1.

In particular, an arbitrarily small, compactly supported, perturbation of a com-
plex structure having an infinite dimensional space of anti-invariant forms may
admit only a single such form up to scale. This provides supporting evidence for
Conjecture 2.5, showing that typically anti-invariant forms do not persist under
nonintegrable perturbations.

A similar argument gives the following,
Corollary. There exist almost complex structures on C2 which agree with i outside
of a compact set and have h−J = 0.

We note that integrable complex structures on C2 which agree with i outside of
a compact set are biholomorphic to C2 itself, and so have h−J = ∞. This follows
from Yau, [11], Theorem 5, since such complex structures can be extended to give
complex structures on CP2.

In the compact case, we construct a 2-parameter family of (non integrable)
almost complex structures on the Kodaira-Thurston manifold, depending on two
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smooth functions, for which the anti-invariant cohomology group has maximum
dimension equal to 2. This provides an affirmative answer to Question 3.23. In
the last section, we give a simple construction to obtain 6-dimensional compact
almost complex manifolds with arbitrary large anti-invariant cohomology. Hence
dimension 4 is also an essential part of Conjecture 2.5. For almost-complex struc-
tures on a 4-manifold which are tamed by a symplectic form, Drǎghici, Li and
Zhang show in [2], Theorem 3.3, that h−J ≤ b+ − 1. Thus any counterexamples to
Conjecture 2.5 cannot come from tamed almost-complex structures on symplec-
tic 4-manifolds with b+ ≤ 3. Moreover T.-J. Li in [8], Theorem 1.1, shows that
symplectic 4-manifolds of Kodaira dimension 0 all have b+ ≤ 3.
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Matemàtiques/Informatica
Universitat de Barcelona
Gran Via 585
08007 Barcelona, Catalonia
SPAIN

Prof. Dr. Jean-Pierre Demailly

Institut Fourier
Laboratoire de Mathématiques
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Università degli Studi di Parma
Parco Area delle Scienze, 53/A
43124 Parma
ITALY

Prof. Dr. Scott Wilson

Department of Mathematics
Queens College
CUNY
65-30 Kissena Blvd.
Queens, NY 11367-1597
UNITED STATES

Dr. Weiyi Zhang

Mathematics Institute
University of Warwick
Zeeman Building
Coventry CV4 7AL
UNITED KINGDOM




