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Introduction by the Organizers

The dimer model is a probabilistic model of random perfect matchings on graphs.
In the case of planar graphs, various mappings lead to consider the Ising model for
magnetization and the spanning tree model as special cases of the dimer model.
While these models have been studied for almost a century, there has been a
flurry of recent research activity on these topics warranting the need of a meeting
to assess the state-of-the-art and discuss the perspectives.

More specifically, the goal of this mini-workshop was to gather specialists of the
dimer, Ising and spanning tree models around recent and ongoing progress in two
main directions. One is the introduction of universal embeddings associated to
these models. The other is understanding the connection to the spectral curve of
these models in the cases when the curve has positive genus. Due to the Covid-19
pandemic the meeting had to be held entirely online. Still, with one mini-course,
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ten lectures and two discussion sessions we managed to foster sustained interactions
between the participants.
Dmitry Chelkak provided a three-hour mini-course on the recently introduced t-
embeddings, p-embeddings and s-embeddings, which provide the right setup for
the definition of discrete holomorphic functions on arbitrary periodic bipartite
graphs and for the convergence to conformally invariant objects in the scaling
limit for the bipartite dimer model and the Ising model. Some of the theory, such
as the existence of p-embeddings and of discrete three-dimensional objects related
to them, is still an area of ongoing research. The application of such embeddings
to random planar maps is a major long-term goal.

In a similar spirit, Asaf Nachmias showed the convergence of discrete holomor-
phic functions on orthodiagonal embeddings of arbitrary graphs to their continuous
counterparts. Paul Melotti described a local move on alpha-embeddings, which are
a common generalization of s-embeddings and orthodiagonal embeddings. Niklas
Affolter presented local moves for several geometric configurations based on cluster
algebra mutations, recovering as special cases s-, t- and orthodiagonal embeddings.

Cluster algebras also appeared in the talk of Terrence George, where their
action on networks induces an integrable system linearized on the Prym variety of
the spectral curve. Vladimir Fock presented a universal construction for the tau
function on Riemann surfaces, with an application to the dimer cluster integrable
system. David Cimasoni described properties of a Kasteleyn operator in terms
of elliptic functions on minimal graphs and its application to the inverse spectral
problem for planar periodic bipartite dimers for genus 1 Harnack curves, and the
construction of Gibbs measures beyond the periodic case.

Beyond the two special topics of embeddings and spectral maps, new develop-
ments were reported on planar statistical mechanics models. Marcin Lis showed
a computation of boundary and bulk correlations for the Ashkin-Teller model, a
generalization of the Ising model, via the introduction of a random current repre-
sentation. Nathanaël Berestycki described a dimer model on the upper half-plane
with free boundary conditions, which gives rise to a Gaussian free field with free
or Neumann boundary conditions. Richard Kenyon introduced the multidimer
model with first results on the free energy and fluctuations of the edge process.
Finally Zhongyang Li proved two conjectures of Benjamini and Schramm for site
percolation in the case of transitive hyperbolic graphs.

The organizers are grateful to the MFO for help in organizing the mini-workshop,
to Paul Melotti for acting as the video conference assistant and to Niklas Affolter
for putting together the present report. We also thank the ANR DIMERS project
(grant number ANR-18-CE40-0033) for accepting to fund transportation costs if
the workshop had been held at the MFO.
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Abstracts

Dimers with free boundary: random walk representation and
scaling limit

Nathanaël Berestycki

(joint work with Marcin Lis and Wei Qian)

We study the dimer model in which particles on part of the boundary are allowed
to form monomers with some fixed weight z > 0 called the monomer fugacity. A
bijection described in Giuliani, Jauslin and Lieb [1] relates this model to a non-
bipartite dimer, whose corresponding Kasteleyn matrix describes a random walk
with negative rates along the boundary. Yet under certain assumptions on the
domain boundary, we prove an effective random walk representation for the in-
verse Kasteleyn matrix. The proof makes use of the Schur complement formula
and the exact computation of the potential kernel of an auxiliary one-dimensional
walk. The assumptions are in particular satisfied in the infinite volume (thermo-
dynamic) limit on the upper half plane. In this case, we further show that the
scaling limit of the height function is given by a Gaussian free field with free (or
Neumann) boundary conditions, thereby answering a question of Giuliani et al.
To our knowledge, this is the first occurrence of this field as a scaling limit in the
study of height functions.
Free boundary dimers (aka monomer-dimer model). Let G = (V,E) be a
finite planar bipartite graph which is a subgraph of Z2. Let ∂m be a chosen subset
of boundary vertices (i.e., the vertices adjacent to the unique unbounded external
face). A monomer-dimer cover of G is a set M ⊂ E ∪ ∂m such that for each
vertex v ∈ V , either v ∈ M , or v belongs to exactly one edge in M . Let MD(G)
be the set of all MD covers of G, and let D(G) be the set of all dimer covers, i.e.
MD covers M such that M ∩ ∂m = ∅. For M ∈ MD(G) we call M ∩ ∂m to be
the set of monomers of the configuration M . The monomer-dimer model is a
random choice of a MD cover from MD(G) according to the following probability
measure:

P(M) =
z#monomers

Z
.

where #monomers is of course the same as |M ∩ ∂m|, and Z is a normalizing
constant. We will always assume for convenience (in reality, this is not strictly
necessary) that the graph is dimerable meaning D(G) 6= ∅. In particular, the
partition function satisfies Z > 0. The height function of a monomer-dimer
cover is a function defined (up to a constant) on the bounded faces of G. Its
definition is identical to the dimer model. The main question we aim to address
in this work is the scaling limit of the height function.
Boundary conditions. First, we assume that G is a subset of the square lattice
Z2; we assume without loss of generality that 0 ∈ V and is a black vertex. (This
fixes a unique black/white partition of G.) We also assume that its vertex set V is
contained the upper half plane H = {z ∈ C : ℑ(z) ≥ 0}. Furthermore, ∂m = V ∩R,
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so the monomers are allowed exactly on the real line. The leftmost and rightmost
vertices of V ∩R = ∂m will be referred to as the corners of G. Finally, we assume
that G has at least one black corner and one white corner.
Main results. The monomer-dimer model as discussed above was discussed (with
minor modifications) in a paper of Giuliani, Jauslin and Lieb. In that paper
it was shown that the partition function Z can be computed as a Pfaffian of a
certain matrix K. Furthermore, a bijection was provided to a non-bipartite dimer
model (the authors indicate that this bijection was suggested by an anonymous
referee). A key result of our work is a random walk representation for the inverse
Kasteleyn matrix associated to this model. Suppose G is a graph satisfying the
above assumption. Fix z > 0 and assign weight z to every monomer on ∂m
except at either corner, where (for technical reasons) we choose the weight of a

monomer to be given by z′ = z
2 +

√
1 + z2

4 . For k ∈ N = {0, 1, . . .} let us call

Vk = {v ∈ V : ℑ(v) = k}, so ∂m = V0. Let us call Veven = V0 ∪ V2 ∪ . . . and
Vodd = V1 ∪ V3 ∪ . . ..

Theorem 1 (Random walk representation for inverse Kasteleyn matrix). There
exists a pair of random walks (Zev, Zodd) on the state spaces Veven and Vodd re-
spectively such that the following holds. Consider the monomer-dimer model on G
where the monomer weight z > 0 on V0 except at its corners where the monomer
weight is z′ as above. Let K be the associated Kasteleyn matrix, and L = K∗K,
so that K−1 = L−1K∗. Then if x, y ∈ V ,

L−1(x, y) =

{
godd(x, y) if x, y ∈ Vodd

(−1)ℜ(y−x)gev(x, y) if x, y ∈ Veven

where gev, godd are the Green functions of Zev and Zodd respectively, normalised
by L(y, y).

Both Zev and Zodd behave like simple random walk far away (at distance more
than 2) from the boundary vertices, but with jumps of size ±2, so the parity of
the walk does not change. Both have nontrivial boundary conditions, including
some reflecting and absorbing boundary arcs along the non-monomer part of the
boundary. Furthermore, both are allowed to make additional jumps along their
bottommost vertices (V0 for Zev and V1 for Zodd). These jumps are symmetric,
bounded in the even case but not the odd case, although they do have exponentially
decaying tail. Hence in the scaling limit, these walks would converge to Brownian
motion in the upper half plane H with reflection on the real axis and
whatever boundary condition is inherited from the Neumann/Dirichlet status of
the other boundary arcs. The above theorem allows us to describe in detail first
an infinite volume (local) limit, then a scaling limit for the height function.

Proposition 2 (Infinite volume limit). Let Gn be a sequence of graph such that
Gn satisfies the above boundary condition, and Gn ↑ Z2 ∩ H. Let µn denote the
law of the monomer-dimer model on Gn (with weight z > 0 per monomer and z′

at the corners, as in Theorem 1). Then µn converges weakly as n → ∞ to a law
µ which describes a.s. a random monomer-dimer configuration on Z2 ∩H.
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Figure 1. A superposition of two configurations, respectively
blue and red. Double edges are in purple. The collection of arcs
joining monomers to monomers is in green. Next, a simulation of
ALE−λ,λ by B. Werness.

To describe the scaling limit, let Hg denote a Gaussian free field with Neu-
mann (or free) boundary conditions. For a small ǫ > 0 (the mesh size), let
hǫ denote the height function of the monomer-dimer model µ with weight z in
the infinite half plane H ∩ ǫZ2 (rescaled by ǫ). We identify hǫ with an almost
everywhere function H by taking the value of hǫ to be constant on each face, and
view hǫ as a random distribution (modulo constant) on H.

Theorem 3. Let f1, . . . , fn ∈ D0(H) be arbitrary test functions. Then as ǫ → 0,
(hǫ, fi)

n
i=1 → ( 1√

2π
hGFF, fi)

n
i=1 in distribution.

A conjecture. In the study of the dimer model, a well known conjecture of
Kenyon concerns the superposition of two independent dimer configurations. It
is easy to check that such a superposition deterministically results in a gas of
loops (including double edges) covering every vertex. Kenyon conjectured that
this collection of loops converges in the scaling limit to CLE4, the conformal loop
ensemble with parameter κ = 4. This is strongly supported by the fact that in
the continuum, CLE4 can be viewed as the level lines of a (Dirichlet) GFF with
a specified variance. Major progress has been made recently on this conjecture
through the work of Dubédat and Basok and Chelkak.

It is natural to ask if any interesting phenomenon occurs when we superpose two
independent free boundary dimer configurations, say in the upper half-plane. For
topological reasons, this gives rise to a gas of loops as above but also a collection of
curves connecting monomers to monomers. See the figure above for an example.
An obvious question is to describe the law of this collection C of curves in the
scaling limit. By analogy with the above, and in view of our result (Theorem 3),
it is natural to expect that this collection C converges in the scaling limit to the
level lines of a GFF with Neumann boundary conditions on the upper-half plane.
By a result of Qian and Werner, the law of these curves was determined to be
the ALE−λ,λ process (ALE stands for Arc Loop Ensemble, even though they do
not in fact contain loops). ALEs were defined by Aru, Sepulveda and Werner as
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certain local sets of the GFF (in fact, ALE−λ,λ is characterised as the “thinnest”
two-valued set of the GFF).

Conjecture 4. For any z > 0, in the scaling limit, the collection of boundary-
touching curves C converges to the Arc Loop Ensemble ALE−λ,λ. Given the
ALE, the loops form independent CLE4 in each of the connected component of the
complement.

References
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On boundary correlations in planar Ashkin–Teller models

Marcin Lis

It has been well known since the work of Groeneveld, Boel and Kasteleyn [1] that
in the Ising model the multi-point correlations of spins lying on the boundary of a
planar graph are given by Pfaffians of the respective two-point correlations. This
can be seen as the Wick’s rule for expectation values of products of noninteracting
Majorana fermions, and is one of the many manifestations of the fermionic struc-
ture underlying the planar Ising model. Recently it was noticed by the author
that certain matrices of such boundary two-point functions are totally positive [2],
i.e., determinants of all their minors are positive.

In this work we present a unified framework from which both the classical Pfaf-
fian identities and total positivity inequalities of Ising boundary correlations are
naturally concluded. In the proofs we use switching lemmas for random currents.
The idea of using switching identities to establish Pfaffian relations of Ising cor-
relations originated in the recent work of Aizenman, Duminil-Copin, Tassion and
Warzel [3] which was an inspiration for our considerations.

More generally we derive linear identities and inequalities that are satisfied
by boundary correlations of planar Ashkin–Teller models, i.e., two Ising-like spin
configurations σ and σ̃ coupled by a Hamiltonian with a four-body interaction. To
this end we first define a random current representation of the model, and show a
switching identity for the correlations of σ and σ̃ which is a generalization of the
classical switching lemma of Griffiths, Hurst, and Sherman [4] for two independent
Ising models (the case of vanishing four body interactions). Subsequently we
obtain a new switching identity for the correlations of the {−1, 0, 1}-valued spins
ϕ = (σ + σ̃)/2 and ϕ̃ = (σ − σ̃)/2. This yields a set of linear inequalities for the
correlations of σ and σ̃. Moreover, the desired linear identities follow from the
crucial observation that the correlations of ϕ and ϕ̃ may be forced to vanish by
properly choosing the order of spin insertions on the boundary of a planar graph.

We also show that the same relations are satisfied by products of Pfaffians.
Since the correlations of σ and σ̃ factorize in the noninteracting case, a unified
picture arises: The boundary correlations of σ are given by Pfaffians of their
respective two-point functions, whereas the mixed correlations of ϕ and ϕ̃ are
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given by analogous determinants. The latter may be thought of as an instance
of the fermionic Wick’s rule for expectation values of products of noninteracting
Dirac fermions.

This picture should be compared with the bosonic Wick’s rule which states that
higher moments of real Gaussian fields are hafnians and those of a complexified
pair of independent Gaussian fields are permaments of their second moments.
Interestingly, in our setting total positivity of two-point boundary correlations
turns out to be intrinsically related to the first Griffiths inequality for the spins ϕ
and ϕ̃.
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Percolation in the Hyperbolic Plane and
Benjamini-Schramm Conjecture

Zhongyang Li

Introduced by Broadbent and Hammersley in 1957 (see [9]) to study the random
spread of a fluid through a medium, percolation has been a celebrated model
illustrating the phase transition.

Let G = (V (G), E(G)) be an infinite, locally finite, connected graph. A site
percolation configuration ω ∈ {0, 1}V (G) is an assignment to each vertex in G of
either state 0 or state 1. A cluster in ω is a maximal connected set of vertices
in which each vertex has the same state in ω. A cluster may be a 0-cluster or
a 1-cluster depending on the common state of vertices in the cluster. A cluster
may be finite or infinite depending on the total number of vertices in the cluster.
We say that percolation occurs in ω if there exists an infinite 1-cluster in ω. We
can define bond percolation in a similar way by considering edge states in {0, 1}
instead of vertex states.

A central question in percolation theory is when there exists an infinite cluster.
The percolation model is a natural mathematical model for structure of matter,
magnetization, or spread of pandemic diseases. See [6, 5] for overview on percola-
tion.

The occurrence of percolation is closely related to the structure of the graph.
A graph G = (V (G), E(G)) is called vertex-transitive, or transitive, if there exists
a subgroup Γ ⊆ Aut(G), such that all the vertices are in the same orbit under the
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action of Γ on G. The graph G is called quasi-transitive if there exists a subgroup
Γ ⊆ Aut(G), such that all the vertices are in finitely many different orbits under
the action of Γ on G.

The graph G is called amenable if

inf
K⊆V (G),|K|<∞

|∂EK|

|K|
= 0,(1)

where ∂EK consists of all the edges in E(G) that have exactly one endpoint in K
and one endpoint not in K. If the left-hand side of (1) is strictly positive, then
the graph G is called non-amenable.

A manifold M is plane if every self-avoiding cycle splits it into two parts. We
say the graph G is planar if it can be drawn on the plane in such a way that its
edges intersect only at their endpoints. We say that an embedded graph G ⊂ M
in M is properly embedded if every compact subset of M contains finitely many
vertices of G and intersects finitely many edges.

The number of ends of a connected graph is the supremum over its finite sub-
graphs of the number of infinite components that remain after removing the sub-
graph.

Of particular interest is the i.i.d. Bernoulli site (resp. bond) percolation on a
graph. In such a model, an independent Bernoulli random variable, which takes
value 1 with probability p ∈ [0, 1], is associated to each vertex (resp. edge). For
the i.i.d. Bernoulli percolation, define

p
site

c (G) := inf{p ∈ [0, 1] : Bernoulli(p) site perc. on G has an infinite cluster a.s.}

p
site

u (G) := inf{p ∈ [0, 1] : Bernoulli(p) site perc. on G has a unique inf. cluster a.s.}

p
bond

c (G) := inf{p ∈ [0, 1] : Bernoulli(p) bond perc. on G has an infinite cluster a.s.}

p
bond

u (G) := inf{p ∈ [0, 1] : Bernoulli(p) bond perc. on G has a unique inf. cluster a.s.}

Although percolation in the hypercubic lattice Zd, which is amenable, has been
studied extensively, a lot of questions for percolation in more general graphs remain
unknown. The research for percolation on general graphs was initiated in the paper
[7] by Benjamini and Schramm, where they made several conjectures including the
following two.

Conjecture 1. (Conjecture 7 of [7]) Suppose G is planar, and the minimal degree
in G is at least 7. Then at every p in the range (psitec (G), 1 − psitec (G)), there are
infinitely many infinite 1-clusters. Moreover, we conjecture that psitec (G) < 1

2 , so
the above interval is nonempty.

Conjecture 2. (Conjecture 8 of [7]) Let G be a planar graph. Let p = 1
2 be the

probability that a vertex is open and assume that a.s. percolation occurs in the site
percolation on G, then almost surely there are infinitely many infinite 1-clusters.

Conjecture 1 was proved in [7] when the graph G is obtained by adding to the
binary tree edges connecting all pairs of nearest vertices of same level along a line.
Conjecture 2 was proved in [7] when G is a planar graph disjoint from the positive
x-axis ({(x, 0) : x > 0}), such that every bounded set in the plane meets finitely
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many vertices and edges of G. Conjectures 1 and 2 were later proved in [8] when
G is a regular triangular tiling of the hyperbolic plane H2 in which each vertex has
the same degree d ≥ 7 and in [2] when G is an infinite, connected, locally finite,
transitive, planar graph by the following steps:

(1) By Proposition 2.1 of [3], an infinite, connected, locally finite, quasi-
transitive graph has either one or two or infinitely many ends. If the
graph has two ends, then it is amenable. If it has infinitely many ends,
then it is non-amenable.

(2) Prove that for i.i.d. Bernoulli percolation on any connected, locally finite,
quasi-transitive graph with two ends, psitec (G) = psiteu (G) = 1.

(3) Prove that for i.i.d. Bernoulli percolation on any connected, locally finite,
quasi-transitive graph with infinitely many ends, psiteu (G) = 1.

(4) By Theorem 2 of [4], for any planar graph G with minimal vertex degree

at least 7, psitec (G) < 5+
√
5

4(3+
√
5)

≈ 0.3455.

(5) By Lemma 3.5 of [1], the number of infinite clusters in any invariant per-
colation on any quasi-transitive, non-amenable planar graph with one end
is a.s. 0,1, or ∞. When p ∈ (pc, 1−pc), to show that there exists infinitely
many infinite 1-clusters, it suffices to exclude the case of a unique infinite
1-cluster.

(6) If the one-ended graph can be embedded into the plane such that the auto-
morphism of the graph extended to isometries of the plane, the possibility
of a unique infinite 1-cluster may be excluded by planar topology.
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S-/t-/p-embeddings: state-of-the-art of convergence results for the
bipartite dimer and Ising models on irregular planar graphs

Dmitry Chelkak

The goal of this series of three lectures is to describe the recent progress on un-
derstanding the ‘discrete conformal structure’ of big planar graphs carrying either
the bipartite dimer or the nearest-neighbor Ising model via their embeddings into
the Minkowski spaces R2+2 or R2+1, respectively, as piece-wise linear surfaces. We
briefly discuss the following topics:

1. The general framework of t-embeddings [3, 4], which were also introduced
in [9] under the name Coulomb gauges ; the special cases include:

• s-embeddings [1, 2] of graphs carrying the nearest-neighbor Ising model;
• classical barycentric or Tutte’s embeddings of weighted planar graphs;

as well as even more specific ones like orthodiagonal embeddings or embeddings
coming from circle patterns ; e.g., see [8, 11].

2. The notion of t-holomorphic functions on t-embeddings T δ developed in [3]
and key ideas of their analysis in the ‘small mesh size limit’ δ → 0:

• crucial role of a space-like surface S := (z(ζ), ϑ(ζ))ζ∈D ⊂ R2+2 (where ζ
stands for the conformal parametrization of S), which appears as a (sub-
sequential) limit of the graphs (T δ;Oδ) ⊂ R2+2 of origami maps Oδ;

• interpretation of the mean curvature of S as the mass in the propagation
equation ∂ζ̄f = mf for fermions appearing in the model (either bipartite
dimer or nearest-neighbor Ising) under consideration;

• inevitable appearance of minimal-Lorentz surfaces S in the limit δ → 0,
in which case the correlations of the dimer height fluctuations become
harmonic in ζ and have the Gaussian structure. (If m 6= 0, then one
should not expect that the height correlations become Gaussian in the
limit δ → 0 since the bosonization of massive free fermions does not lead
to free bosons; cf. [7].)

3. The notion of perfect t-embeddings or p-embeddings of finite weighted bipar-
tite graphs; see [4]. Loosely speaking, we call a t-embedding of a finite graph (or a
Coloumb gauge in the terminology of [9]) perfect if the outer face of its augmented
dual belongs to the unit hyperboloid

(T δ;Oδ)
∣∣
∂outG∗

⊂ H := {(z;ϑ) : |z|2 = 1 + |ϑ|2, ϑ ∈ R} ⊂ R
2+1 ⊂ R

2+2.

It is worth emphasizing that the existence (and uniqueness) of perfect t-embeddings
remains an open question; we believe that this should be also intimately related
to more ‘algebraic’ viewpoints on the dimer model.

Conjecture 1 ([4]). Given a (non-degenerate in a certain algebraic sense to be
specified) weighted bipartite graph G with the sphere topology and a marked face
of a G, prove that its augmented dual G∗ (as defined in [9]) admits a perfect t-
embedding and that this p-embedding is unique up to Lorentz isometries of the
space R2+1 preserving the unit hyperboloid H.
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4. The main result as well as the key ideas of our (joint with Benôıt Laslier
and Marianna Russkikh, in preparation) paper [4].

Let Gδ = (Gδ, νδ), δ → 0, be (a sequence of) weighted bipartite graphs with
the sphere topology and with marked ‘outer’ faces. Assume that

(a) T δ : (Gδ)∗ → C are perfect t-embeddings of the augmented duals of Gδ;

(b) T δ satisfy a ‘technical’ assumption Exp-Fat as δ → 0 (informally speaking
this means that ‘exponentially-degenerate’ faces of T δ do not form curves
of a macroscopic size; see [3] for a rigorous statement).

(c) the graphs (T δ;Oδ) of the origami maps Oδ (associated with T δ) converge
to a Lorentz-minimal surface Sθ ⊂ R2+1 ⊂ R2+2 spanned by a contour

Lθ := {(eiφ · (cos θ(φ))−1 ; tan θ(φ))}φ∈T ⊂ H,

where θ : T → (−π
2 ,

π
2 ) is a 1-Lipschitz function on the unit circle T.

Theorem 2 ([4]). Under the assumptions (a)–(c) listed above, the correlation
functions of the fluctuations of the random dimer height functions on (Gδ)∗ con-
verge to the Gaussian Free Field (with Dirichlet boundary conditions) on the sur-
face Sθ, where the metric on Sθ is induced from the ambient Minkowski space.

Below are several important remarks:

(i) Recall that, as for now, the existence of p-embeddings T δ remains an open
question. Still, it is worth mentioning that p-embeddings do exist in particular
cases: e.g., in the situation when outer faces of the graphs Gδ have degree 4;

(ii) The existence of subsequential space-like limits S ⊂ R2+2 of discrete sur-
faces (T δ;Oδ) easily follows from compactness arguments since the definition ofOδ

implies that |Oδ(x)−Oδ(y)| ≤ |T δ(x)− T δ(y)| for all x, y ∈ (Gδ)∗.

(iii) If we assume that such a subsequential limit S is a Lorentz-minimal surface,
then it has to be one of the surfaces Sθ defined above: the definition of perfect
t-embeddings implies that S has to be bounded by a contour running in the unit
hyperboloid H ⊂ R2+1 ⊂ R2+2. In particular, the minimality assumption yields
that S ⊂ R2+1, i.e., that the second coordinate of Oδ degenerates as δ → 0.

(iv) To illustrate the general theory, in a short joint paper [5] with Sanjay Ra-
massamy we consider classical (homogeneous) Aztec diamonds (which are combi-
natorially equivalent to graphs with outer degree 4 and thus admit p-embeddings)
and demonstrate that the discrete surfaces (T δ;Oδ) converge to a surface Sθ with
a piece-wise linear function θ such that θ(0) = θ(π) = π

4 and θ(±π
2 ) = −π

4 . Of
course, the metric of this surfaces gives rise to the well-known correlation functions
of fluctuations in the liquid zone (and the frozen zones are collapsed to points).

(v) Recall that we do not expect that non-minimal surfaces S could lead to
Gaussian height fluctuations because of the presence of the mass in the propaga-
tion equation for fermionic observables. On the other hand, the famous Kenyon–
Okounkov prediction [10] claims that Gaussian fluctuations should appear when
working with subgraphs of periodic grids, similarly to what happens for classical
Aztec diamonds mentioned above. This naturally leads to the following question:
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Open question 3. What is the correspondence between the classical Kenyon–
Okounkov theory and Lorentz-minimal surfaces? How does a concrete local struc-
ture of the graphs Gδ (e.g., the fact that they are pieces of the homogeneous square
grid) lead to the conjectural Lorentz-minimality of limit surfaces S in examples
similar to Aztec diamonds?

5. Finally, we briefly discuss the convergence results obtained in [2] for the
nearest-neighbor Ising model on s-embeddings under the following assumptions:

– ‘uniformly bounded geometry’: the angles of s-embeddings Sδ are uniformly
bounded away from 0; the lengths of edges of Sδ are uniformly comparable to δ;

– the origami function Qδ = O(δ) as δ → 0.

Certainly, these assumptions are very restrictive compared, e.g., to the very
weak ‘technical’ assumption Exp-Fat for perfect t-embeddings mentioned above.
Still, this generalizes the convergence of critical FK-Ising interfaces to SLE(16/3)
curves from the very rigid classical setup of critical Baxter’s Z-invariant weights
on rhombic lattices [6] to the critical Ising models on arbitrary periodic graphs
(via their canonical s-embeddings), circle patterns [11] etc. Let us mention that

(i) the new approach used in [2] also gives a quantitative estimate on the speed
of convergence of fermionic observables; this was not known before even on Z2;

(ii) this approach avoids Smirnov’s sub-/super-harmonicity trick [12] (which is
not available beyond rhombic lattices) and can be adapted to the massive setup.

We also hope that the techniques developed in [2] for the analysis of discrete
Riemann boundary value problems can be eventually pushed forward to drop the
‘bounded geometry’ assumptions but this certainly requires a non-trivial work.
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Tau-function on Riemann surfaces.

Vladimir Fock

τ -function was introduced by M.Sato [1] as a generating function for solutions
of nonlinear integrable hierarchies of partial differential equations. He gave the
”fermionic” interpretation for this function as a section of a determinant line bun-
dle over infinite Grassmanian. We suggest an alternative ”bosonic” definition of
the τ -functions corresponding to finite gap solution of integrable hierarchies.

Let S be a Riemann surface. A quasi-rational function on S is a function
holomorphic everywhere except finitely many points and such that locally it can
be written as reφ where both r and φ are meropmorphic functions. The order
ordp re

φ of a quasi-rational function at a point p ∈ S is just the order of the
function r at this point. Observe that quasi-rational functions are not closed with
respect to addition, but nonzero quasi-rational functions form a group denoted by
H(S) with respect to multiplication.
Local group Hp. The multiplicative group of nonzero germs of quasi-rational
functions in a vicinity of a point p is denoted by Hp. Given a local coordinate zp
vanishing at p any element of Hp can be written as

f(zp) = znp e
φ(zp) = znp e

∑
t−iz

i
p ,

where φ(zp) is a germ of a meromorphic function.
The group Hp has a canonical subgroup of holomorphic germs H+

p ⊂ Hp taking

value 1 at p. Elements of this group can be written as f+(zp) = e
∑

i>0
t−iz

i
p . If the

coordinate zp is fixed one can define a complimentary subgroup H−
p of functions of

the form f−(zp) = znp e
∑

i60
t−iz

i
p . Any germ f ∈ H it can be uniquely decomposed

into the product f = f+f− with f+ ∈ H+
p and f− ∈ H−

p .

Observe that though the subgroup H+
p does not depend on the coordinate sys-

tem, the group H−
p does. In other words the splitting of the exact sequence

1 → H+
p → Hp → Hp/H

+
p → 1

depends on the choice of the local coordinate zp. In particular the decomposition
f = f+f− also depends on the choice of the local coordinate.
Cocycle and central extension. Define a cocycle cp : Hp × Hp → C× on the
group Hp by

cp(f, g) = exp
1

2πi

(∫

γ

ln fd ln g − ln g(γ(0))d ln f

)
,

where γ : [0, 1] → C× be closed path (γ(0) = γ(1)).
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It satisfies the following properties:

• c(f, g) does not depend on the choice of the path γ and the branches of
the logarithms.

• Skew-symmetry: c(f, g) = c(g, f)−1

• Multiplicativity: c(f, gh) = c(f, g)c(f, h).
• Steinberg relation: c(f, 1− f) = 1.
• For f = znp e

φ(zp) and g = zmp e
ψ(zp) it is given by

c(f, g) = (−1)mn exp(Resφdψ + (mφ − nψ)dz/z)

• For f = znp exp
∑
p−izip and g = zmp exp

∑
t−izip it is given by

c(f, g) = exp(mp0 − nt0 +
∑

ipit−i).

• The restrictions of the cocycle to H+
p and to H−

p are equal to 1 identically.

This cocycle defines a central extension 1 → C× i
→ Ĥp

s
→ Hp → 1 by the

multiplication rule on the set Hp × C×:

(f, x)(g, y) = (fg, xyc(f, g)).

Representation of Ĥp. The group Ĥp has a subgroup Ĥ+
p = {(f+, x)|f+ ∈ H+

p }.

It has a obvious one-dimensional representation Ĥ+
p → C× with (f+, x) 7→ x. The

representation of Ĥ+
p induces a representation of the group Ĥp in the space Bp of

functions v : Ĥp → C× satisfying v((g, x)(f+, y)) = yv(g, x) for any (f+, x) ∈ Ĥ+
p .

Such function is uniquely determined by its value on the subgroup H−
p . The group

Hp acts on such functions by let shifts.

v((f, x)(g−, 1)) = xc(f+, f−)c2(f+, g−)v(f−g−, 1).

By functions on Hp/H+
p we understand functions of k, t1, t2, . . . with finite support

with respect to k and polynomial in finitely many variables out of t1, t2, . . ..

Quasi-divisors. A quasi-divisor on S is an association to every point p ∈ S
of an element of Hp/H+

p in such a way that in only finitely many points these
elements are nontrivial. We denote the additive Z-graded group of quasi-divisors
by qDiv(S) =

⊕
qDivk(S). The grading is given by degp re

φ = degp r.
For a quasi-rational function f one can define a quasi-divisor denoted by (f).

The quasi-divisors obtained in this way are called principal. A principal quasi-
divisor on a closed surface S has degree 0. The group of principal quasi-divisors is
denoted by qdiv(S). Locally any quasi-divisor is principal. Two quasi-divisors with
difference belonging to qdiv(S) are called linearly equivalent. Like for ordinary

divisors the space of linear equivalence classes qDivk(S)/ qdiv(S) = Pick(S) is the
space of line bundles over S of degree k.
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Global representation. For a surface S define B(S) = ⊗p∈SBp. If we fix local
coordinates around all points, the elements of B(S) can be considered as functions
on quasi-divisors qDiv(S). Observe that the non-extended group H(S) is a sub-

group of ⊗̂pHp and therefore it acts on B(S). Indeed, it is a consequence of the
Weil reciprocity formula extended to quasi-meromorphic functions:

∏

p∈S
cp(f, g) = 1

Definition of the τ-function : τ -function is just the invariant of the group the
space B(S) under the action of H(S). In the representation of B(S) as functions

on qDiv0 the invariance of τ reads as

(1) τ [d] = τ [d+ (f)]
∏

p∈S
c2p(f

+, gp(d))cp(f
+, f−),

where gp(d) is a representative of d in the vicinity of p.
Properties of the τ-function :

A. The equation (1) defines the τ -function uniquely up to a multiplicative
constant.

B. The τ function satisfies Hirota bilinear relations which we do not formulate
here in full generality.

C. The value of the τ -function on a divisor supported at one point coincides
with the standard KP τ -function. Its value on a divisor on supported on
two points with k = 1, ti = 0 in one of the points is the KP Baker-Akhiezer
function [2]. Similarly τ - and Baker-Akhiezer functions for SG and KdV
hierarchies are particular values of our τ -function.

D. The values of the τ -function on ordinary divisors is given by an explicit
formula in terms of Riemann theta function:

τ [
∑

ni[zi]] = θq(t+
∑

nizi)
∏

i<j

θq(zi − zj)
ninj

These values satisfy discrete Hirota bilinear equation

τ [d+ z1 + z2]τ [d+ z3 + z4] + τ [d+ z1 + z3]τ [d + z2 + z4]+

+τ [d+ z1 + z4]τ [d+ z2 + z3] = 0,

where d is a divisor of degree −2. They and explicit expression A-coordi-
nates for cluster integrable systems.

E. The function τ [d] can be viewed as a limit of the generating function S :
Ω01(S) → C of the Lagrangian variety of closed 1-forms in the symplectic
variety of all forms. The function S satisfies the equation

S(α) = S(α+ ∂ ln f) exp

∫
∂̄ ln f∂ ln f + 2α∂ ln f

for any smooth function f . The limit of this relation when the form α is
a distribution valued form with support at finitely many points gives the
relation (1).
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Elliptic dimer models and genus 1 Harnack curves

David Cimasoni

(joint work with Cédric Boutillier and Béatrice de Tilière)

The aim of this talk was to present an ongoing research project with Cédric Boutil-
lier and Béatrice de Tilière [1, 2, 3].

Almost 20 years ago, Kenyon [6] showed that dimers on a bipartite isoradial
graph G with critical weights admit a Gibbs measure that is local , in the sense
that the probability of any finite family of edges of G being occupied by dimers
only depends on the geometry of G near these edges. However, such weighted
graphs form a very specific class: in the periodic case, they correspond to rational
Harnack curves , i.e. Harnack curves of genus 0, and the aforementioned measure
is one among the two-parameter family of ergodic Gibbs measures that can be
defined for such a curve [8]. Therefore, this phenomenon has long been considered
as rather exceptional.

Our project can be understood as a wide-reaching extension of Kenyon’s re-
markable results, in two directions. First, we do not restrict ourselves to graphs
that can be isoradially embedded, which by [9] are exactly those planar graphs
whose train-tracks form neither self-intersections nor bigons. Instead, we consider
the wider class of minimal graphs [10] given by planar bipartite graphs whose
(consistently oriented) train-tracks do not self-intersect and do not form parallel
bigons. As proved in [1], a graph is minimal if and only if it admits a minimal im-
mersion, a concept generalising that of isoradial embedding. Moreover, the space
of such immersions can be described as an explicit subset of the space of angles
maps associated to oriented train-tracks. One of the main results of [1] is that
minimal graphs with such angle maps give the correct framework to study dimer
models with the aim of locality in mind. Secondly, we do not restrict ourselves to
the genus 0 case, but consider Fock’s weights [4] in the elliptic (i.e. genus 1) case
in [2], and plan to address the case of arbitrary genus soon [3].

The introduction of Fock’s weights deserves some context. It was known since
Kenyon-Okounkov [7] and Goncharov-Kenyon [5] that dimer models on minimal
graphs allow to realise any spectral data, i.e. any Harnack curve together with a
divisor given by one point on each oval. The construction of a minimal graph with
the correct Newton polygon is not such a difficult problem, but it was not clear how
to construct the correct dimer weights on such a graph. In [4], Fock starts with
an arbitrary smooth planar curve of degree g (not necessarily a Harnack curve)
together with a degree g divisor on it (not necessarily on its ovals), and explicitly
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constructs weights on the minimal graph so that the corresponding “dimer model”
has this “spectral data”.

The first contribution of [2] is to show how to tune the parameters in Fock’s
elliptic weights in order for the corresponding operator K to be Kasteleyn: one
needs to start with a rectangular torus (i.e. to fix τ purely imaginary, so that
the real locus consists of two components), to chose the divisor to be a point t
on one of these components, and to fix an angle map α defining a minimal im-
mersion of the minimal graph. With these hypotheses, we then obtain a family
of inverses {Au0}uo∈D for the Kasteleyn operator K, indexed by the upper half D
of the torus with modular parameter τ . The most remarkable property of these
inverses is that they are local, in the sense that Au0

b,w only depends on the geometry
of the graph near a path joining b and w.

For our next result, we need a technical assumption that holds trivially for pe-
riodic graphs, and that we expect to hold for any minimal graph. If this condition
is satisfied, then for every u0 ∈ D, the operator Au0 defines a Gibbs measure on
dimer configurations of G. Furthermore, the set D gives the phase diagram of the
model: when u0 is on the top boundary of D, the dimer model is gaseous (expo-
nential decay of correlations); when u0 is in the interior of the set D, the model is
liquid (polynomial decay of correlations); when u0 is on the lower boundary of D,
the model is solid (no decay of correlations). Note that when G is periodic, this
gives an alternative description of the full set of ergodic Gibbs measures of [8].
Remarkably, these measures are now given by explicit local formulas. By afore-
mentioned work of Goncharov-Kenyon, it is no longer difficult to show that every
genus 1 Harnack curve with a marked point on the oval is the spectral data of an
explicit dimer model on a minimal graph G with Fock’s elliptic Kasteleyn operator,
for a unique parameter t, and an angle map α defining a minimal immersion of G.

Extending these arguments to the case of arbitrary genus, we now believe that
the possibility of expressing locally an ergodic Gibbs measure on dimers is not the
exception, but the rule.
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The multidimer model

Richard Kenyon

(joint work with Andrei Pohoata)

The dimer model on a graph is the probability model of random perfect match-
ings of that graph. For arbitrary graphs essentially nothing is known about it,
since even computing the number of configurations is NP hard (it is equivalent to
computing the permanent).

We present a certain limit of the dimer model in which exact calculations can
be done.

The multidimer model on a graph G is the dimer model on a “blow up” GN of
G, where GN is obtained from G by replacing each vertex v with Nv vertices and
each edge uv with a complete bipartite graph KNu,Nv

. Here N = {Nv}v∈V is an
assignment of multiplicities to vertices of G.

If we assign positive weights ce to edges of G, then there is a natural probability
measure on dimer covers of GN, giving a dimer cover m a probability proportional
to the product of its edge weights.

The partition function Z(N) of the multidimer model has a surprisingly simple
exponential generating function, which is just exp(P ) where P =

∑
u∼v cuvxuxv

is the “edge polynomial”.
In the limit of large multiplicities we can compute the free energy of the mul-

tidimer model on arbitrary graphs. This follows from a saddle-point calculation.
We also show that the edge occupation process tends to the Gaussian free field
with respect to an associated graph Laplacian.

Furthermore we also solve an analog of the monomer/dimer problem in this
setting, by changing the multiplicities slightly away from constants. In this case
the excess or deficit multiplicity acts like a charge associated to a particle at that
vertex, and these charges repel or attract via a Coulomb potential on the graph.

One of the most interesting features of the usual single dimer model is its limit
shape theory. For regular geometric graphs like Zd we can give an analogous limit
shape theory, along with an explicit surface tension function.



Dimers, Ising and Spanning Trees beyond the Critical Isoradial Case 1779

Triple crossing diagrams, projective configurations, dimers

Niklas Affolter

(joint work with Max Glick, Pavlo Pylyavskyy and Sanjay Ramassamy)

The goal is to study a wide array of maps from discrete differential geometry,
discrete integrable systems and statistical mechanics with one framework, that
captures and relates the geometric and algebraic properties of these maps. To this
end we introduce TCD maps, which associate certain configurations in CPn to
triple crossing diagrams [1]. To every such map we can associate a dimer partition
function [2], with face weights that are invariant under projective transformations.
Note that in general, the edge and face weights of these partition functions may not
necessarily be real positive. Moreover, we can locally change the combinatorics of
TCD maps. Such a change of combinatorics is closely related to Menelaus’ theorem
in geometry, while it corresponds to a spider move in statistical physics. The setup
of TCD maps allows us to find dimers associated to the pentagram map (as found
previously by Glick [3]), to objects from discrete differential geometry and discrete
integrable systems like Q-nets, Darboux maps and Line complexes, A-nets, Cox
lattices and so forth. In fact, we can also algebraically extend these definitions to
CP1, where the maps are not well defined by their geometry anymore. In a bit of a
surprise, it turns out that t-embeddings, harmonic embeddings and s-embeddings
known from statistical physics are not only special cases of TCD maps, but of Q-
nets, Darboux maps and Line complexes. However, the dimer partition functions
that we have associated to TCD maps do not correspond to the previously known
[4, 5] dimer partition functions associated to t-embeddings, harmonic embeddings
and s-embeddings. This has motivated us to find a second dimer partition function
associated to a TCD map. This partition function is not invariant under general
projective transformations, but only under affine transformations. It reproduces
the partition functions occurring in t-embeddings, harmonic embeddings and s-
embeddings and also in T-graphs. In fact, by carefully studying the effects of
projections, sections and duals we can associate (n+ 2) dimer partition functions
to any TCD map in CPn. While many cases of TCD maps with real positive
face weights are known, no general, systematic investigation exists. Therefore,
conjecturally, a wide array of TCD maps exist (in CP1 and beyond) that feature
the dimer model, but have not been investigated at all.

Moreover, it is well known that for certain combinatorics, one can study span-
ning trees and the Ising model via the resistor subvariety and the Ising subvariety,
where we consider subvarieties of the face weights of the dimer model. It turns
out that these subvarieties can be translated to conditions on the geometry of
TCD maps. In the projective case these are the so called Kœnigs nets and CKP
Darboux maps. In fact we can show that many TCD maps that are known to fea-
ture a discrete BKP equation have dimer face weights in the resistor subvariety,
while TCD maps that are known to feature a discrete CKP equation have dimer
face weights in the Ising subvariety. Additionally, we also show that if we begin
with TCD maps that satisfy additional quadratic constraints with respect to a
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symmetric (or anti-symmetric) bilinear form in CP3, we obtain TCD maps with
variables in the resistor (or Ising) subvariety. As special cases we recover harmonic
embeddings and s-embeddings. An open question is, whether there is a conceptual
reason why symmetric bilinear forms lead to the resistor subvariety and the BKP
equation while anti-symmetric bilinear forms lead to the Ising subvariety and the
CKP equation. Moreover, it is unclear if there are other subvarieties occurring for
TCD maps in particular position to bilinear forms in higher dimensional spaces
(than CP3).
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The Dirichlet problem for orthodiagonal maps

Asaf Nachmias

(joint work with Ori Gurel-Gurevich and Daniel C. Jerison)

In [6] we prove that the discrete harmonic function corresponding to smooth
Dirichlet boundary conditions on orthodiagonal maps, that is, plane graphs having
quadrilateral faces with orthogonal diagonals, converges to its continuous counter-
part as the mesh size goes to 0. This provides a convergence statement for discrete
holomorphic functions, similar to the one obtained by Chelkak and Smirnov [1]
for isoradial graphs. By the double circle packing theorem, any finite, simple,
3-connected planar map admits an orthodiagonal representation.

Our result improves the work of Skopenkov [11] and Werness [13] by dropping
all regularity assumptions required in their work and providing effective bounds.
In particular, no bound on the vertex degrees is required. Thus, the result can
be applied to models of random planar maps that with high probability admit
orthodiagonal representation with mesh size tending to 0. In a companion paper
[5], we show that this can be done for the discrete mating-of-trees random map
model of Duplantier, Gwynne, Miller and Sheffield [3, 7].

Discrete complex analysis is a powerful tool in the study of two-dimensional
statistical physics. It has been employed to prove the conformal invariance of the
scaling limit of critical percolation and the critical Ising/FK model, see Smirnov’s
ICM survey [12]. The high-level program of such proofs is to 1) find a model-
dependent function (the so-called discrete parafermionic observable) on the lattice
which satisfies some discrete version of the Cauchy-Riemann equations; 2) use
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discrete complex analysis to show that as the lattice’s mesh size tends to 0, the
discrete observable converges to a continuous holomorphic function; 3) identify this
function uniquely by its boundary values. The results obtained this way include
some of the most remarkable breakthroughs in contemporary probability theory.

Here we address the second part of the program above, namely, the convergence
of discrete harmonic or holomorphic functions to their continuous counterparts.
This study has been performed on the square lattice [2] as well as on rhombic
lattices [1], which are plane graphs such that each inner face is a rhombus. Because
not every quadrangulation can be embedded in C as a rhombic lattice [8], Smirnov
asked, “can we always find another embedding with a sufficiently nice version of
discrete complex analysis?” [12, Section 6, Question 1].

A broader class than the rhombic lattices are the orthodiagonal maps : plane
graphs whose inner faces are quadrilaterals with orthogonal diagonals. See Figure
1. One can ask which planar maps are representable by a rhombic lattice or by an
orthodiagonal map. For rhombic lattices the answer is the isoradial graphs. Un-
fortunately, these do not include all finite simple triangulations [8]. By contrast,
every finite simple triangulation has an orthodiagonal representation which can be
constructed using circle packing. We observe that the double circle packing the-
orem provides an orthodiagonal representation for any simple, 3-connected finite
planar map.

Skopenkov [11] proved a convergence result for the Dirichlet problem on ortho-
diagonal maps under certain local and global regularity conditions. Werness [13]
improved this result to assume only local regularity. All these works require a
uniform bound on the vertex degrees of the maps.

The main result, Theorem 1, is a convergence statement that has no regularity
assumptions of any kind. In particular, our result applies even when the vertex
degrees are not uniformly bounded. Our only condition is that the maximal edge
length of the map tends to 0. As well, our proof avoids compactness arguments
and thus provides an effective bound for the convergence.

Removing the regularity assumptions is not just mathematically pleasing; rather,
it provides a framework for the study of discrete complex analysis on random pla-
nar maps [9, 10]. In order to apply Theorem 1 to a given random map model, one
has to verify the maximal edge length condition above. This condition is believed
to hold in all natural random map models, though proving it for a random simple
triangulation on n vertices is considered an important open problem (see [9, Sec-
tion 6]). In the companion paper [5] we show that it indeed holds for the discrete
mating-of-trees random map model of Duplantier-Gwynne-Miller-Sheffield [3, 7].
Hence Theorem 1 can be applied to this model; see [5].

There has been a great deal of interest in recent years in studying statistical
physics models, such as percolation, Ising/FK and the self-avoiding walk, on ran-
dom planar maps. The behavior of these models at their critical temperature is
mysteriously related via the KPZ correspondence to their behavior on the usual
square or triangular lattices [4]. A very ambitious program is to rigorously re-
late the behavior of a statistical physics model in the random planar map setting
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Figure 1. An orthodiagonal map. Primal vertices are repre-
sented by solid disks • and dual vertices by hollow disks ◦. The
edges of the orthodiagonal map itself are drawn in black. Edges
of the primal graph are drawn with solid gray lines, and edges of
the dual graph are drawn with dashed gray lines.

(where in many cases the model is tractable) to its behavior on a regular lattice.
We hope that the framework for discrete complex analysis on random planar maps
that we provide in this paper will be useful for this endeavor.

Below is the statement of our main theorem. Even though some of the notation
has not been defined, the conclusion should be clear: the discrete harmonic func-
tion is close to the continuous one when the mesh size is small. We have gathered
the necessary definitions required to parse this theorem in Section 1.1 of [6].

Theorem 1 ([6]). Let Ω ⊂ R2 be a bounded simply connected domain, and let
g : R2 → R be a C2 function. Given ε, δ ∈ (0, diam(Ω)), let G = (V • ⊔ V ◦, E)
be a finite orthodiagonal map with maximal edge length at most ε such that the
Hausdorff distance between ∂G and ∂Ω is at most δ. Let hc : Ω → R be the
solution to the continuous Dirichlet problem on Ω with boundary data g, and let
hd : V • → R be the solution to the discrete Dirichlet problem on Int(V •) with
boundary data g|∂V • . Set

C1 = sup
x∈Ω̃

|∇g(x)| , C2 = sup
x∈Ω̃

‖Hg(x)‖2

where Ω̃ = conv(Ω ∪ Ĝ). Then there is a universal constant C < ∞ such that for
all x ∈ V • ∩ Ω,

|hd(x) − hc(x)| ≤
C diam(Ω)(C1 + C2ε)

log1/2(diam(Ω)/(δ ∨ ε))
.
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Cube flips in s-embeddings and α-immersions

Paul Melotti

(joint work with Sanjay Ramassamy and Paul Thévenin)

Our aim is to discuss a property that should be satisfied by “canonical” embeddings
of planar graphs equipped with a certain model. This property, which we call here
a cube flip, states that if the model undergoes a star-triangle transformation (or Y-
∆ move) that leaves the measure unchanged, then the corresponding embeddings
of the star-graphG∆ and the triangle-graphGY should differ only locally. In other
words, a coupling property is conjugated with a theorem of planar geometry.
This is in contrast with the usual requirements for embeddings of graphs equipped
with model, which is that observables should converge to universal conformally
invariant objects. Here we are interested only in a local feature. It is to be noted
that all embeddings known at the moment seem to display both these global and
local properties.

The first case we discuss is the notion of harmonic embeddings, first introduced by
Tutte, that maps a graph equipped with positive conductances into an arrangement
of orthodiagonal quadrilaterals. Those are the quadrilaterals with successive side
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Figure 1. The cube flip property (for s-embeddings)

lengths a, b, c, d such that a2 + c2 = b2 + d2. In this setting, the usual star-
triangle transformation of resistor networks is conjugated with a theorem of planar
geometry apparently due to Steiner; this was first noted by Konopelchenko and
Schief [3].

Theorem 1 (Steiner, [3]). Let G∆, GY be graphs equipped with conductances re-
lated by a star-triangle move. For any Tutte embedding of G⋄

∆, there exists a
unique Tutte embedding of G⋄

Y that differs only at the central point.

It was also proved by Kenyon, Lam, Ramassamy and Russkikh [2] that this
transformation can be seen at the level of the t-embedding of the underlying dimer
model given by Temperley’s bijection, and can thus be written as a composition
of Miquel moves.

We then turn our attention to s-embeddings, which correspond to the Ising model,
were introduced by Chelkak [1] and are the object of active research. An s-
embedding maps the graph to an arrangement of tangential quadrilaterals, which
is equivalent to them satisfying a+ c = b+ d. We say that an embedding is proper
if it respects a fixed order around every face of the initial graph.

Theorem 2 ([4]). Let G∆, GY be graphs equipped with Ising models related by
a star-triangle move. For any proper s-embedding of G⋄

∆, there exists a unique
proper s-embedding of G⋄

Y that differs only at the central point.

The existence can be proved using the machinery of s-embeddings. However,
this does not yield uniqueness. We provide a fully geometric proof of the latter.
One could also get uniqueness by using a composition of Miquel moves.

As a consequence the proof of Theorem 2, we provide a new concise formula for
the star-triangle move of the Ising model:

Theorem 3 ([4]). Let (G∆, θ), (GY , θ
′) be graphs equipped with Ising models and

related by a star-triangle move. The Ising models on G∆ and GY are equal in
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distribution if

cos θ′1 =
sin θ1 cos θ2 cos θ3
sin θ1 + sin θ2 sin θ3

, cos θ′2 = . . . , cos θ′3 = . . .

(or equivalently, sin θ1 =
cos θ′1 sin θ

′
2 sin θ

′
3

cos θ′1 + cos θ′2 cos θ
′
3

, . . . )

In a third part of the talk, we introduce the notion of α-quads as those that satisfy
aα + cα = bα + dα, for some α ∈ R∗; this can be extended naturally to α = 0
with ac = bd, to α = +∞ with max(a, c) = max(b, d), and to α = −∞ with
min(a, c) = min(b, d). After giving a brief overview of the space of α-quads when
α runs through R ∪ {±∞}, we introduce α-immersions as graph immersions into
α-quads. These being immersions and not embeddings, edges may intersect.

Theorem 4 ([4]). Let α > 1. For any α-immersion of G⋄
∆, there exists an α-

immersion of G⋄
Y that differs only at the central point.

This theorem is expected to be false for α ≤ 1, and we provide counter-examples
for α close to 0. Moreover, we do not claim uniqueness of the central point, and
we can produce counter-examples with as many as 3 potential central points. We
conjecture this to be the maximal number.

The proof of Theorem 4 relies on the introduction α-curves, which are sets

{M |MAα −MBα = λ}

for two fixed points A,B and λ ∈ R. Analysing the asymptotic behaviour of these
curves yields the statement.

This leaves a few questions open:

• Do α-immersions correspond to some model of statistical mechanics, or to
some integrable system, for some α distinct from 1 and 2?

• Do other families of quads exhibit geometric properties analogous to cube
moves? Namely, one may look at f -quads, defined for a homogeneous
symmetric function f by f(a, c) = f(b, d).

• The case α = 0 may be worth special investigation. In this case, α-curves
are simply circles, and an analogous to a cube flip might be obtained by
replacing points with radical axis of circles.
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Inverse spectral problem for biperiodic networks

Terrence George

A planar electrical network is a pair (G, c) where G is a planar graph and c is a
function that associates a non-zero complex number to each edge of G, defined
modulo overall scaling by a constant, called its conductance. Planar electrical
networks provide the setting for discrete potential theory and are intimately related
to random walks, spanning trees and discrete geometry. We say that (G, c) is
biperiodic, if it is invariant under a translation action of Z2. In this case, we take
the quotient (G, c)/Z2 to get an electrical network on a torus.

We start by defining the space of electrical networks. To each graph G on the
torus that satisfies a certain topological condition called minimality, we associate
the space RG = (C∗)number of edges of G−1 of conductances on it. There is a local
rearrangement of networks called the Y − ∆ transformation that preserves all
electrical properties outside the region where the transformation happens. For
each convex integral polygon N in the plane that centrally symmetric, that is,
invariant under rotation by π, a construction of Goncharov and Kenyon [6] gives
a family of electrical networks associated to N that are related by Y −∆ moves.
A sequence of Y −∆ moves relating any two networks (G, c) and (G′, c′) in this
family induces a birational map between RG and RG′ mapping c to c′. Gluing the
spaces RG for all networks G in the family according to these birational maps, we
obtain the resistor network cluster variety RN parameterizing electrical networks
associated to the polygon N .

The fundamental operator in the study of electrical networks is the discrete Lapla-
cian. Associated to the discrete Laplacian on a biperiodic network is its spectral
transform which is a rational map from RN to a certain moduli space of curves
and divisors. We show that this moduli space is a family of Prym varieties and
show that the spectral transform is birational. This provides a classfication of
biperiodic networks, analogous to the classification of electrical networks in a disc
in terms of response matrices by Curtis, Ingerman and Morrow [3].

Spectral curves of genus zero correspond to isoradial networks. In this case, our
inverse spectral transform recovers Kenyon’s expressions in [7] for the isoradial
conductances in terms of tangents. Boutillier, de Tiliére and Raschel [2] have
extended isoradial networks in a different way to the setting of massive isoradial
networks. It would be very interesting to extend the spectral transform to the
massive non-isoradial case, generalizing both.

A sequence of Y −∆ moves that takes a graph G to itself gives rise to a birational
automorphism of RN called a cluster modular transformation. We show that
cluster modular transformations are translations in the Prym variety, which hints
that RN is an integrable system. Our results for electrical networks parallel Fock’s
results in [4] for the dimer model, where the associated cluster variety is the phase
space of the dimer integrable system of Goncharov and Kenyon [6]. A natural
question here is whether electrical networks are Liouville integrable. We do not
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have a Poisson structure on RN but a possible approach to finding it is as follows:
the Poisson structure of the dimer integrable system is known to be induced by the
Poisson-Lie structure of GL from work of Fock and Marshakov [5]. For electrical
networks in a disc, Lam and Pylyavskyy [8] showed that there is a natural action
of a symplectic group that is analogous to the action of GL on dimers. We expect
that the Poisson structure on RN that we want is induced by the Poisson-Lie
structure of the symplectic group.
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Dr. Benôıt Laslier

UFR de Mathématiques
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